
 1

2

3

4

5

6

7

8

9

10

Document Number: DSP0252

Date: 2009-06-22

Version: 1.0.0

Configuration Management Database (CMDB)
Federation Specification

Document Type: Specification

Document Status: DMTF Standard

Document Language: E

Configuration Management Database (CMDB) Federation Specification DSP0252

2 DMTF Standard Version 1.0.0

Copyright Notice 11

Copyright © 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 12

13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php. 32

33

http://www.dmtf.org/about/policies/disclosures.php

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 3

CONTENTS 34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Foreword ... 5
Introduction ... 7
1 Scope .. 11
2 Normative References... 11

2.1 Approved References ... 11
2.2 Other References.. 12

3 Terms and Definitions ... 12
3.1 Requirements Terms... 12
3.2 Background Terminology.. 13

4 Symbols and Abbreviated Terms... 15
5 Architecture ... 15

5.1 Overview ... 15
5.2 Roles... 16
5.3 Services Overview .. 17
5.4 Identity Reconciliation... 18
5.5 Data Elements Overview .. 19

6 Query Service.. 22
6.1 Overview ... 22
6.2 GraphQuery Operation Outline... 22
6.3 Content Selection.. 25
6.4 Constraints.. 28
6.5 XPath Expressions and Normalization ... 34
6.6 GraphQuery Response... 36
6.7 GraphQuery Faults ... 38

7 Registration Service .. 40
7.1 Overview ... 40
7.2 Register... 42
7.3 Deregister ... 46

8 Service Metadata .. 49
8.1 Overview ... 49
8.2 Common Service Metadata Elements .. 49
8.3 queryServiceMetadata.. 52
8.4 registrationServiceMetadata ... 56

ANNEX A (normative) URIs and XML Namespaces ... 57
ANNEX B (normative) CMDB Federation XSD and WSDL ... 58
ANNEX C (normative) Fault Binding to SOAP... 59
ANNEX D (informative) Query Examples .. 61

D.1 GraphQuery Example 1 .. 61
D.2 GraphQuery Example 2 .. 63

ANNEX E (informative) Detailed UML Class Diagrams... 68
ANNEX F (informative) Sample WSDL Binding... 69
Bibliography .. 73

Configuration Management Database (CMDB) Federation Specification DSP0252

4 DMTF Standard Version 1.0.0

Figures 78

79
80
81
82
83
84
85

86

87
88
89
90
91
92
93

Figure 1 – CMDB as the Foundation for IT Management Processes... 7
Figure 2 – Example Aggregate View from a Federated CMDB.. 8
Figure 3 – CMDB Roles and Services .. 16
Figure 4 – Identity Reconciliation.. 18
Figure 5 – Data and Services Overview ... 19
Figure 6 – Record Type Extension Examples... 52

Tables

Table 1 – Service Usage Patterns .. 18
Table 2 – Operators Supported for XSD Built-in Datatypes ... 31
Table C-1 – [Code] Properties .. 59
Table D-1 – "User" Data.. 63
Table D-2 – "Computer" Data ... 64
Table D-3 – "Administers" Data .. 64

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 5

Foreword 94

95
96

97
98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114

115

116

117

118

119

120

121
122

123

124
125
126
127
128

The Configuration Management Database (CMDB) Federation Specification (DSP0252) was prepared by
the CMDB Federation Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability.

Acknowledgements

The CMDB Federation Working Group wishes to acknowledge the following people.

Authors:

 Forest Carlisle – CA

 Jacob Eisinger – IBM

 Mark Johnson – IBM (Editor)

 Vincent Kowalski – BMC Software

 Jishnu Mukerji – HP

 David Snelling – Fujitsu

 William Vambenepe – Oracle

 Marv Waschke – CA

 Van Wiles – BMC Software

Conventions

This specification uses the following syntax to define outlines for messages:

 The syntax appears as an XML instance, but values in italics indicate data types instead of
literal values.

 The following characters are appended to elements and attributes to indicate cardinality:

– "?" (0 or 1)

– "*" (0 or more)

– "+" (1 or more)

– The absence of any of the above characters indicates the default (exactly 1).

 The character "|" is used to indicate a choice between alternatives.

 The characters "(" and ")" are used to indicate that contained items are to be treated as a group
with respect to cardinality or choice.

 The characters "[" and "]" are used to call out references and property names.

 xs:any and xs:anyAttribute indicate points of extensibility. Additional children or attributes may
be added at the indicated extension points but shall not contradict the semantics of the parent
owner, respectively. By default, if a receiver does not recognize an extension, the receiver
should ignore the extension; exceptions to this processing rule, if any, are clearly indicated
below.

Configuration Management Database (CMDB) Federation Specification DSP0252

6 DMTF Standard Version 1.0.0

 Ellipses (that is, "...") indicate that details are omitted for simplicity, and a further explanation is
provided below.

129
130

131
132

 XML namespace prefixes are used to indicate the namespace of the element being defined or
referenced.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 7

Introduction 133

134
135

136

137

138

139
140
141

Many organizations are striving to base IT management on a Configuration Management Database
(CMDB). A CMDB contains data describing the following entities:

 managed resources, such as computer systems and application software

 process artifacts, such as incident, problem, and change records

 relationships among managed resources and process artifacts

The contents of the CMDB should be managed by a configuration management process and serve as the
foundation for other IT management processes, such as change management and availability
management, as shown in Figure 1.

 142

143

144
145

146
147
148
149
150
151
152
153
154

155
156
157
158
159

Figure 1 – CMDB as the Foundation for IT Management Processes

However, in practice it is challenging to implement such a CMDB because the management data are
scattered across repositories that are poorly integrated or coordinated.

The definition of a CMDB in the context of this specification is based on the definition described in the IT
Infrastructure Library (ITIL): a database that tracks and records configuration items associated with the IT
infrastructure and the relationships between them. Strictly speaking, the ITIL CMDB contains a record of
the expected configuration of the IT environment, as authorized and controlled through the change
management and configuration management processes. The federated CMDB in this specification
extends this base definition to federate any management information that complies with the specification’s
patterns, schema, and interfaces, such as the discovered actual state in addition to the expected state.
Typically, an administrator selects the data to be included in a CMDB by configuring the tool that
implements the CMDB.

The federated CMDB described in this specification is a collection of services and data repositories that
contain configuration and other data records about resources. The term "resource" includes configuration
items (for example, a computer system, an application, or a router), process artifacts (for example, an
incident record or a change record), and relationships between configuration items and process artifacts.
The architecture describes a logical model and does not necessarily reflect a physical manifestation.

Configuration Management Database (CMDB) Federation Specification DSP0252

8 DMTF Standard Version 1.0.0

Objectives 160

161

162

163
164
165
166
167

This section describes the functionality and target IT environment that this specification supports.

Functionality

The federated CMDB that would result from using this specification would provide a single aggregate
view of the data about an IT resource, even if the data is from different heterogeneous data repositories,
as shown in Figure 2. Clients, such as IT processes, management applications, and IT staff would use a
query service defined in the specification to access aggregated or non-aggregated views. Data
repositories would use the services described in the specification to provide the aggregated view.

 168

169

170
171

172
173

174
175

176

177

178

179

180
181

182

183
184

Figure 2 – Example Aggregate View from a Federated CMDB

The federated CMDB could support the following scenarios. (However, the scenarios that a federated
CMDB supports are left entirely to the discretion of each implementation.)

 Maintain an accurate picture of IT inventory from a combination of asset information (finance)
and deployment/configuration information

 Reflect changes to IT resources, including asset and licensing data, across all repositories and
data sources

 Compare expected configuration versus actual configuration

 Enable version awareness, such as in the following examples:

– Coordinate planned configuration changes

– Track change history

 Relate configuration and asset data to other data and data sources, such as incident, problem,
and service levels. The following are some examples:

– Integration of change management and incident management with monitoring information

– SLA incident analysis, by using the service desk and incident information in a dependency
analysis on both configurations and change records

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 9

Target IT Environment 185

186
187

188
189
190

191
192

193
194

195

196
197
198

199
200
201

202

203

204
205

206
207
208
209

210
211

212
213
214

215

216
217

218

219

220

221
222
223
224

This specification is intended to address requirements in IT environments that have the following
characteristics:

 There are strong requirements to consolidate into one or more databases (logical or physical) at
least some key data from the many management data repositories so that IT processes can be
more effective and efficient.

 IT organizations are diverse in terms of their existing tools, process maturity level, usage
patterns, and preferred adoption models.

 There are several (and possibly many) management data repositories (MDRs), each of which
may be considered an authoritative source for some set of data.

 The authoritative data for a resource may be dispersed across multiple MDRs.

 It is often neither practical nor desirable for all management data to be kept in one data
repository, though it may be practical and desirable to consolidate various subsets of the data
into fewer databases.

 Existing management tools will often continue to use their existing data sources. Only after an
extended period of time would it be realistic to expect all of the existing management tools to be
modified to require and utilize new consolidated databases.

Out-of-Scope Implementation Details

The following implementation details are outside the scope of this specification:

 The mechanisms used by each management data repository to acquire data. For example, the
mechanisms could be external instrumentation or proprietary federation and replication function.

 The mechanisms and formats used to store data. The specification is concerned only with the
exchange of data. A possible implementation is a relational database that stores data in tables.
Another possible implementation is a front-end that accesses the data on demand from an
external provider, similar to a commonly used CIMOM/provider pattern.

 The processes used to maintain the data in the federated CMDB. The goal of the specification
is to enable IT processes to manage this data, but not to require or dictate specific processes.

 The mechanisms used to change the actual configuration of the IT resources and their
relationships. The goal of the specification is to provide the means to represent changes as or
after they are made, but not to be the agent that makes the change.

Technological Assumptions

This specification is based on some assumptions with regard to underlying technology and the context of
computing standards that exist at the time of its writing.

Underlying Technology

The technologies behind CMDBs include Web Services and database management systems.

Web Services

Although the interface specification contained herein is generic, it assumes that implementations will be
based on Web Services. Although interfaces based on programming languages such as Java and C#
could be derived from this specification, such interfaces are considered out of scope and are not
addressed here.

Configuration Management Database (CMDB) Federation Specification DSP0252

10 DMTF Standard Version 1.0.0

Database Management Systems 225

226
227
228
229
230
231

In general practice CMDBs are implemented using commercially available database technology. Although
this specification is about how one or more CMDBs federate data using a standard mechanism, no
assumptions are made about how that federated data is stored or persisted. The specification focuses on
the interfaces; their behavior, and the data types they convey. Database technology is clearly a needed
component in the implementation of this specification, but its use is considered to be a hidden detail of
such implementations.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 11

Configuration Management Database (CMDB) Federation
Specification

232

233

235
236
237
238
239
240
241

243
244
245

247

1 Scope 234

This specification describes the architecture and interactions for federating data repositories together to
behave as a data store that satisfies the role of a Configuration Management Database (CMDB), or as
the federated repository that is the heart of a Configuration Management System, as described in the ITIL
best practices, version 3. For brevity, the remainder of the document uses the term CMDB, even when
the term Configuration Management System would be at least as appropriate. The federation provides an
aggregate view of a resource, even though the data and underlying repositories are heterogeneous. A
query interface is defined for external clients to access these data.

2 Normative References 242

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.1 Approved References 246

IETC RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999,
http://www.ietf.org/rfc/rfc2616.txt 248

249
250

251

ISO 8601, Third edition, 2004-12-01, Data elements and interchange formats — Information interchange
— Representation of dates and times

ITSMF, ITIL Version 3 Glossary of Terms and Definitions, May 2007,
http://www.itsmf.co.uk/web/FILES/Publications/ITILV3_Glossary_English_v1_2007.pdf 252

253 W3C, Simple Object Access Protocol (SOAP) 1.1, May 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ 254

255 W3C, SOAP Version 1.2 Part 1: Messaging Framework, April 2007,
http://www.w3.org/TR/2006/REC-xml-20060816/ 256

257 W3C, Extensible Markup Language (XML) 1.0 (Fourth Edition), September 2006,
http://www.w3.org/TR/2006/REC-xml-20060816/ 258

259 W3C, XML Schema 1.0 Part 1: Structures (Second Edition), October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ 260

261 W3C, XML Schema 1.0 Part 2: Datatypes (Second Edition), October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 262

263 W3C, XML Path Language (XPath) 1.0, November 1999,
http://www.w3.org/TR/1999/REC-xpath-19991116 264

265 W3C, XML Path Language (XPath) 2.0, January 2007,
http://www.w3.org/TR/2007/REC-xpath20-20070123/ 266

http://www.ietf.org/rfc/rfc2616.txt
http://www.itsmf.co.uk/web/FILES/Publications/ITILV3_Glossary_English_v1_2007.pdf
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2007/REC-xpath20-20070123/

Configuration Management Database (CMDB) Federation Specification DSP0252

12 DMTF Standard Version 1.0.0

W3C, XQuery 1.0 and XPath 2.0 Functions and Operators, January 2007, http://www.w3.org/TR/xquery-267
operators/ 268

W3C, XSLT 2.0 and XQuery 1.0 Serialization, January 2007, http://www.w3.org/TR/xslt-xquery-269
serialization/ 270

W3C, Web Services Description Language (WSDL) 1.1, March 2001, http://www.w3.org/TR/2001/NOTE-271
wsdl-20010315 272

274

2.2 Other References 273

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 275

277

280
281

283
284

286
287
288

290
291
292

294
295

297
298

300
301

303
304
305

3 Terms and Definitions 276

For the purposes of this document, the following terms and definitions apply.

3.1 Requirements Terms 278

3.1.1 279
can
used for statements of possibility and capability, whether material, physical, or causal

3.1.2 282
cannot
used for statements of possibility and capability, whether material, physical or causal

3.1.3 285
conditional
indicates requirements to be followed strictly in order to conform to the document when the specified
conditions are met

3.1.4 289
mandatory
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.1.5 293
may
indicates a course of action permissible within the limits of the document

3.1.6 296
need not
indicates a course of action permissible within the limits of the document

3.1.7 299
optional
indicates a course of action permissible within the limits of the document

3.1.8 302
shall
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 13

3.1.9 306
shall not 307

308
309

311
312
313

315
316

318
319
320
321
322
323

325
326
327
328
329
330
331
332
333

335
336
337
338
339
340
341
342
343
344
345

347
348
349
350
351

indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.1.10 310
should
indicates that among several possibilities, one is recommended as particularly suitable, without
mentioning or excluding others, or that a certain course of action is preferred but not necessarily required

3.1.11 314
should not
indicates that a certain possibility or course of action is deprecated but not prohibited

3.2 Background Terminology 317

This section defines terms used throughout this specification. For the most part, these terms are adopted
from other sources. The terms are defined here to clarify their usage in this specification and, in some
cases, to show their relationship to the use of the terms in other sources. In particular, this specification
shares concepts with Information Technology Infrastructure Library (ITIL). ITIL is not a standard and does
not provide normative definitions of terms. However, the ITIL version 3 glossary is quoted below as
representative of the ITIL position.

3.2.1 324
configuration item
CI
a basic tangible or intangible entity in a configuration management solution such as a CMDB.
ITIL version 3 defines a CI as follows:

"Any Component that needs to be managed in order to deliver an IT Service. Information about
each CI is recorded in a Configuration Record within the Configuration Management System
and is maintained throughout its Lifecycle by Configuration Management. CIs are under the
control of Change Management. CIs typically include IT Services, hardware, software, buildings,
people, and formal documentation such as Process documentation and SLAs."

3.2.2 334
configuration management database
CMDB
ITIL defines a CMDB as follows:

"A database used to store Configuration Records throughout their Lifecycle. The Configuration
Management System maintains one or more CMDBs, and each CMDB stores Attributes of CIs,
and Relationships with other CIs."

A configuration management database (CMDB) is often implemented using standard database
technology and typically persists CI lifecycle data as records (or configuration records) in that database.
Configuration records are managed according to some data or information model of the IT environment.
One of the goals of this specification is to expedite the federated implementation of multiple CMDBs in a
single configuration management system.

3.2.3 346
configuration management system
CMS
ITIL defines (in part) a configuration management system as follows:

"A set of tools and databases that are used to manage an IT Service Provider's Configuration
data. The CMS also includes information about Incidents, Problems, Known Errors, Changes

javascript:void(0)

Configuration Management Database (CMDB) Federation Specification DSP0252

14 DMTF Standard Version 1.0.0

and Releases; and may contain data about employees, Suppliers, locations, Business Units,
Customers and Users."

352
353
354
355
356

358
359
360
361
362
363
364
365
366
367

369
370
371

372
373

375
376
377
378
379
380
381

383
384
385
386

388
389
390
391

393
394
395
396
397
398

A configuration management system is presumed to be a federation of CMDBs and other management
data repositories. The federated CMDB described in this specification is a good match with the database
requirements of a configuration management system.

3.2.4 357
configuration record
ITIL defines a configuration record as follows:

A Record containing the details of a Configuration Item. Each Configuration Record documents
the Lifecycle of a single CI. Configuration Records are stored in a Configuration Management
Database.

For the purposes of this specification, a CI is a tangible or intangible entity treated in the abstract by this
specification, while a configuration record contains concrete data pertaining to a CI. More than one
configuration record may be associated with a given CI. Often configuration records will be from different
data sources or document different points in the lifecycle of a CI. It is possible for configuration records
associated with a single CI to contain data that may appear contradictory and require mediation.

3.2.5 368
federated CMDB
a combination of multiple management data repositories (MDRs), at least one of which federates the
others, into an aggregate view of management data.

NOTE: Whereas "federated CMDB" refers to the combination of all the data repositories, "federating CMDB" is a
specific role performed by a data repository that federates other MDRs.

3.2.6 374
federation
the process of combining information from management data repositories (MDRs) into a single
representation that can be queried in a consistent manner. Federation is often contrasted with extract,
transform, and load (ETL) systems which transfer and store data from one repository to another. This
specification does not exclude ETL activities, especially for caching, but the main purpose of the
specification is to support systems that minimize or eliminate transferring and storing data from MDRs in
federators.

3.2.7 382
graph
a kind of data structure, specifically an abstract data type, that consists of a set of nodes and a set of
edges that establish relationships (connections or links) between the nodes. In this specification the
nodes are items and the edges are relationships.

3.2.8 387
identity
a set of qualities or characteristics that distinguish an entity from other entities of the same or different
types. This set of qualities may be called the "identifying properties" of the real world entity for which the
CMDB contains data.

3.2.9 392
Information Technology Infrastructure Library
ITIL
a framework of best practices for delivering IT services. Two versions of ITIL are commonly in use:
version 2 released in 2000 and version 3 released in 2007. Because ITIL version 3 has not yet
superseded version 2 in practice, both versions have been considered in preparing this specification. A
CMDB is a key component in the ITIL best practices.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 15

4 Symbols and Abbreviated Terms 399

4.1 400
CI 401

402

404
405

407
408

410
411

413
414

416
417

419
420

422
423

425
426

429

430

431

432

433

configuration item

4.2 403
CMDB
configuration management database

4.3 406
CMDBf
configuration management database federation

4.4 409
CMS
configuration management system

4.5 412
ITIL
Information Technology Infrastructure Library

4.6 415
MDR
management data repository

4.7 418
SACM
service asset and configuration management

4.8 421
SLA
service level agreement

4.9 424
WSDL
Web Service Definition Language

5 Architecture 427

5.1 Overview 428

As shown in Figure 3, the architecture defines the following four roles:

 management data repository

 federating CMDB

 client

 administrator

Configuration Management Database (CMDB) Federation Specification DSP0252

16 DMTF Standard Version 1.0.0

These roles implement or use the following two services: 434

435

436

 Query Service

 Registration Service

 437

438

441
442
443
444
445

446
447

449
450
451

452
453
454

Figure 3 – CMDB Roles and Services

5.2 Roles 439

5.2.1 Management Data Repository (MDR) 440

An MDR provides data about managed resources (for example, computer systems, application software,
and buildings), process artifacts (for example, incident records and request for change forms), and the
relationships between them. In this architecture, managed resources and process artifacts are both called
"items". The means by which the MDR acquires data is not specified, but the means can include acquiring
data directly from instrumented resources or indirectly through management tools.

Each MDR has an ID that is unique within (at least) a group of federated MDRs, and preferably globally
unique.

5.2.2 Federating CMDB 448

A federating CMDB is an MDR with additional capabilities. It federates data from MDRs; it may also
contain non-federated data. It provides an aggregate view of an item or relationship, potentially using data
from multiple MDRs. A federating CMDB and all the MDRs together comprise a federated CMDB.

It is possible for one federating CMDB to have its data federated by a second federating CMDB. In this
case, the first federating CMDB would appear to the second federating CMDB to be an MDR. The second
federating CMDB would not be aware of any federation performed by the first federating CMDB.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 17

5.2.3 Client 455

A client is a consumer of management data, either directly from an MDR or through an aggregated view
from a federating CMDB. Examples of clients are IT process workflows, management tools, and IT
administrators. Clients only read data; there are no provisions for a client to update data through an
interface defined in this architecture.

456
457
458
459

461
462
463
464
465

467

469
470

472
473
474
475

477
478
479

481
482

484
485
486
487
488

490
491
492
493
494

5.2.4 Administrator 460

An administrator configures MDRs and federating CMDBs so they can interact with each other.
Administration includes selecting and specifying the data that is federated, describing service endpoints,
and describing which data are managed through each endpoint. Administration is done using interfaces
not defined in this architecture and that may be specific to each tool that acts in the MDR or federating
CMDB role.

5.3 Services Overview 466

The subsequent clauses explain service types, federation modes, and service usage patterns.

5.3.1 Service Types 468

The architecture defines two services: Query Service and Registration Service. A service has an
implementor and a client (caller).

5.3.1.1 Query Service 471

Both MDRs and federating CMDBs may implement the Query Service to make data available to Clients.
Queries may select and return items, relationships, or graphs containing items and relationships, and the
data records associated with each item and relationship. An MDR or a federating CMDB may declare the
data record types that its Query Service supports.

5.3.1.2 Registration Service 476

A federating CMDB may implement the Registration Service. An MDR may call the Registration Service
to register data that it has available for federation. A federating CMDB may declare the data types that its
Registration Service supports. An MDR maps its data to the supported types.

5.3.2 Federation Modes 480

The two modes available to federate data are push mode and pull mode. A federating CMDB shall use at
least one mode and may use both.

5.3.2.1 Push Mode 483

In push mode, the MDR initiates the federation. Typically an administrator configures the MDR by
selecting to federate some data types that are supported by both the MDR and the Registration Service.
The MDR notifies the Registration Service any time this data is added, updated, or deleted. Depending on
the extent of the data types, the registered data may be limited to identification data or it may include
other properties that describe the item or relationship state.

5.3.2.2 Pull Mode 489

In pull mode, the federating CMDB initiates the federation. Typically, an administrator configures the
federating CMDB by selecting the MDR data types that will be federated. The federating CMDB queries
MDRs for instances of this data. Depending on the implementation, the federating CMDB may pass
through queries to MDRs without maintaining any state, or it may cache some set of MDR data, such as
the data used to identify items and relationships.

Configuration Management Database (CMDB) Federation Specification DSP0252

18 DMTF Standard Version 1.0.0

5.3.3 Service Usage Patterns 495

Table 1 lists the service usage patterns for the roles described in 5.2 that implement or use the services. 496

497 Table 1 – Service Usage Patterns

Query Service Registration Service

Pattern (Role + Mode) Implementation Client Implementation Client

Federating CMDB – Push Mode Required Optional Required N/A

Federating CMDB – Pull Mode Required Required N/A N/A

MDR – Push Mode Optional N/A N/A Required

MDR – Pull Mode Required N/A N/A N/A

Client (external) N/A Required N/A N/A

5.4 Identity Reconciliation 498

Managed resources are often identified in multiple ways, depending on the management perspective.
Examples of management perspectives are a change management process and an availability monitoring
tool. Understanding how to identify resources, and reconciling the identifiers across multiple perspectives,
is an important capability of a federating CMDB. The following pattern is typically used for identity
reconciliation:

499
500
501
502
503

504
505
506
507
508
509
510

511
512

513
514

 Each MDR identifies a resource based on one or more identifying properties of the resource.
Identifying properties are physical or logical properties that distinguish unique instances of
resources. Examples are MAC addresses, host names, and serial numbers. Often, more than
one property will be necessary to uniquely distinguish a resource, especially when information is
incomplete. In addition, when two or more MDRs contain data about a single resource,
individual MDRs may choose or have available different identifying properties, which they may
use in their resource identifier for the item or relationship.

 Each MDR knows at least one unique and unambiguous identifier for each item or relationship it
contains or provides access to through the Query Service.

 A federating CMDB attempts to reconcile the item and relationship identification information
from each MDR, recognizing when they refer to the same item or relationship.

 515

516 Figure 4 – Identity Reconciliation

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 19

The federating CMDB performs this identity mapping using any combination of automated analysis and
manual input, as shown in

517
518
519
520
521
522
523
524

526
527

529
530

531
532
533
534
535
536

Figure 4. In a typical implementation the federating CMDB analyzes the
identifying properties to determine the resource identity. As each item or relationship is registered, the
service determines if this item or relationship is already registered or is new. The determination of identity
is seldom absolute and often must rely on heuristics because different MDRs typically know about
different characteristics of an entity and thus establish different sets of identifying properties that
characterize the entities they handle. Further, the determination may change as additional information is
discovered and MDRs add, subtract, or change identifying properties as systems evolve.

5.5 Data Elements Overview 525

Subsequent clauses provide an overview of the elements used to organize the data in MDRs and
federating CMDBs.

5.5.1 Managed Data 528

The architecture defines three elements that organize the data that repositories exchange: item,
relationship, and record.

The data contained in an MDR or federating CMDB is a graph where the items are nodes and the
relationships are links. The graph is not necessarily connected. (In other words, there may not be a
relationship trail from any item to any other item.) The query interface described below allows queries to
be constructed based on aspects of the graph (for example, existence of a relationship between two
items) and based on properties of the items and relationships (for example, requirements for a certain
value of a given record property or a certain type for the item and relationship).

 537

538

540
541
542

543
544

 After an ID has been assigned to an item, it may be used in any situation requiring an ID. 545

Figure 5 – Data and Services Overview

5.5.1.1 Item 539

An item represents a managed resource (for example, computer systems, application software, and
buildings) or a process artifact (for example, an incident record and request for change form). With this
definition, "item" is a superset of the "configuration item" term defined in ITIL. Formally:

 Each item shall have at least one ID that is unique within the scope of the MDR that contains it
and that serves as a key.

Configuration Management Database (CMDB) Federation Specification DSP0252

20 DMTF Standard Version 1.0.0

 After an ID has been assigned to an item, it shall never refer to anything except the original 546
547

tance ID of an item is the composition of the unique MDR ID and the unique item ID 548
549
550

E m might have multiple IDs include when an item is reconciled across several 551
 552

553
554

ue ID within the group of federated repositories, and that each MDR 555
 ID 556

557
558

n unambiguous identifier for the representation of the item held by the MDR that assigned 559
560

on of the instance ID identifies the MDR that assigned the instance ID. A client 561
562
563
564
565

566

 a connection from a source item to a target item. Examples include software
568
569
570

ks exactly two items, one the source and one the target, and provides 571
572

gh the relationship XML schema does not formally 573
574

t 575
576

577

ip are not equivalent. In the general case, items at these endpoints play
579
580
581

 are no semantics 582
an 583

584
585

586

roperties that describe an item or relationship. Records have the following
588

rd is associated with exactly one item or relationship. 589

item.

 An ins
assigned by that MDR. The instance ID is therefore unique within the group of federated
repositories.

xamples of when an ite
MDRs and the federating CMDB knows it by all of the IDs that have been assigned by different MDRs;
when two items are thought to be different but are later reconciled to the same item; or when an ID
changes for any other reason.

Given that each MDR has a uniq
assigns a unique ID within its own scope, the combination of the MDR ID and the MDR-assigned item
results in an instance ID that is unique within the group of federated repositories. This instance ID serves
two purposes:

 It is a
the instance ID.

 The MDR ID porti
may introspect the instance ID to extract the MDR ID. The client may then use the MDR ID to
acquire the Query Service address for this MDR. For example, the MDR ID might be the key in
a registry that contains the service addresses for each MDR. The client may then issue a query
to this address to retrieve the representation of the item.

5.5.1.2 Relationship

A relationship represents567
"runs" on an operating system, an operating system is "installed" on a computer system, an incident
record "affects" a computer system, and service "uses" (another) service. Relationships have the
following characteristics:

 A relationship lin
information pertaining to that relationship.

 A relationship is a subclass of an item (thou
extend the item XML schema), and has all the characteristics of an item. For example, each
relationship shall have an ID that is unique within the scope of the MDR that contains it and tha
serves as a key, and a reconciled relationship may have more than one ID.

5.5.1.2.1 Relationship Roles

The two endpoints of a relationsh578
different roles in the relationship. Some relationships may not have any such semantic distinction
because they are symmetrical (e.g. "sibling"), but this is not the general case. An example of the general
case is an "employment" relationship which links an "employer" to an "employee".

CMDBf designates the endpoints as "source" and "target" to distinguish them. There
attached to these terms, other than a convention that when a relationship is represented graphically by
arrow, the arrow goes from the source to the target. The relationship record type (see 5.5.1.3)
documentation should describe the role semantics of the "source" and "target" endpoints.

5.5.1.3 Record

A record contains p587
characteristics:

 A reco

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 21

 A record may contain properties that are useful to identify the item or relationship, or it may 590
591

with the same item or 592
593

 other records for various reasons, including types of data (for example, asset 594
ted 595

596
597
598

perties that describe the record itself (as opposed to 599
600

ts associated item or relationship and that serves as a 601
602

603

d (authorized) configuration baseline this 604
605

ed to indicate the configuration observations this record 606
607

cord type". Note that a record type may extend one or more other record 608
609

ship. 610

e an item or relationship. The properties 611
612

it the items or relationships returned by a query 613
614
615

y also be the QName of the first child of a record element in a query response. 616

617

ral places to identify an item or relationship. It is described
619

620
621

contain other properties that describe the item or relationship.

 Several records, possibly of various types, may be associated
relationship.

Records may differ from
versus configuration), different sets of properties from different providers, different versions, and expec
versus observed data. A record is similar to a row in a SQL view. It is a projection of properties. The same
property may appear in multiple records for the same item or relationship. The record may have no
properties, in which case it serves as a marker.

Each record may have the following metadata pro
properties that describe the item or relationship):

 an ID that is unique within the scope of i
key (optional if there is only one record for the item or relationship)

 the date/time the record was last modified (optional)

 a baseline ID that may be used to indicate the expecte
record represents (optional)

 a snapshot ID that may be us
represents (optional)

Each record has exactly one "re
types, as described in 8.2.2.3. A record type is:

 A characterization of an item or relation

 A collection of properties that can be used to describ
may be simple or complex XML elements.

 A record type may be used in a query to lim
operation to instances with a record considered by the query service to be of the requested
type.

A record type ma

5.5.2 Common Data Element Types

The cmdbf:MdrScopedIdType is used in seve618
here for convenience so other sections of this document may refer to it without repeating the definition.

The <instanceId> element is of the type of cmdbf:MdrScopedIdType. The pseudo-schema of the
<instanceId> element is as follows:

<instanceId> 622
 <mdrId>xs:anyURI</mdrId> 623
 <localId>xs:anyURI</localId> 624
</instanceId> 625

iated in a pseudo schema as the following: 626 This can be abbrev

<instanceId>cmdbf:MdrScopedIdType</instanceId> 627

Is. The first URI, <mdrId>, is the ID of the 628
ely 629

630
631

The cmdbf:MdrScopedIdType is composed of a pair of UR
MDR that assigned this instance ID to the instance. The second URI, <localId>, is the ID that uniqu
identifies the instance within the MDR. The combination of these two URIs identifies the instance in a
globally unique way. There is no expectation that these two URIs are able to be de-referenced.

Configuration Management Database (CMDB) Federation Specification DSP0252

22 DMTF Standard Version 1.0.0

Every <record> element has exactly one child element of unrestricted content (which is typically used
describe the item or relationship with which the record is associated), followed by an optional (if

 to 632
there is 633

634
635

636

R. If there is more than one record for an item or 637
638

639
640

641
ates that this record is not part of any baseline configuration. 642

on 643
644
645

lso 646
647

e 648

The Query Service can be provided by MDRs and federating CMDBs (see Table 1 – Service Usage 650
). It provides a way to access the items and relationships that the provider (MDR or

federating CMDB) has access to, whether this provider actually holds the data or federates the source of 652
653
654

655
ships) in that graph to further refine 656

657
658

659
660

661

t that contains <itemTemplate> and
t selectors and constraints can be used inside

664

ate> 665
hanism) 666

667

668

only one record associated with the item or relationship <recordMetadata> element that contains
common information about the record itself.

The <recordMetadata> element may contain these properties:

 recordId: the unique ID of the record in the MD
a relationship, the recordId is required.

 lastModified: the time/date the record was last modified in ISO 8601 format. The applicable time
zone or UTC shall be indicated.

 baselineId: the name or other identifier used to group records into a particular baseline
configuration. A value of "0" indic

 snapshotId: the name or other identifier used to group records observed in a configurati
snapshot (discovery). A value of "0" indicates that this record is not part of any snapshot
configuration.

 extensibility elements: additional metadata elements not defined by the specification may a
be included

6 Query Servic

6.1 Overview 649

Patterns on page 18651

the data. The Query Service contains a GraphQuery operation that can be used for anything from a
simple instance query to a much more complex topological query.

A GraphQuery request describes the items and relationships of interest in the form of a graph.
Constraints can be applied to the nodes (items) and edges (relation
them. The GraphQuery response contains the items and relationships that, through their combination,
compose a graph that satisfies the constraints of the graph in the query.

The subsequent subclauses provide a more complete description of the request and response messages
for the GraphQuery operation. Examples are provided in ANNEX D.

6.2 GraphQuery Operation Outline

A GraphQuery request consists of a <query> elemen662
<relationshipTemplate> elements. Conten663
<itemTemplate> or <relationshipTemplate> elements, and have the same form in both.

In addition to constraints, <relationshipTemplate> elements also contain a <sourceTempl
and a <targetTemplate> element. These elements each point (using the xs:ID/xs:IDREF mec
to an <itemTemplate>.

The pseudo-schema for the payload of a GraphQuery request is as follows:

<query> 669
 <itemTemplate id="xs:ID" suppressFromResult="xs:boolean" ?> 670
 (<contentSelector ...>...</contentSelector> ? 671
 <instanceIdConstraint>...</instanceIdConstraint> ? 672

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 23

 <recordConstraint> 673
 <recordType ... /> * 674
 <propertyValue ...>...</propertyValue> * 675
 <xpathConstraint>...</xpathConstraint> ? 676
 </recordConstraint> *) 677
 xs:any 678
 </itemTemplate> * 679
 <relationshipTemplate id="xs:ID" suppressFromResult="xs:boolean" ?> 680
 (<contentSelector ...>...</contentSelector> ? 681
 <instanceIdConstraint>...</instanceIdConstraint> ? 682
 <recordConstraint> 683
 <recordType>...</recordType> * 684
 <propertyValue>...</propertyValue> * 685
 <xpathConstraint>...</xpathConstraint> ? 686
 </recordConstraint> *) 687
 <sourceTemplate ref="xs:IDREF" minimum="xs:int"? 688
 maximum="xs:int"?/> ? 689
 <targetTemplate ref="xs:IDREF" minimum="xs:int"? 690
 maximum="xs:int"?/> ? 691
 <depthLimit ... /> ? 692
 xs:any 693
 </relationshipTemplate> * 694
</query> 695

onstraint element are provided in later clauses (for 696
dConstraint> see 6.4.1, for <propertyValue> see 6.4.2.2, for <recordType> see 697

 item or 698
r 699

700

701

702
t. 703

ates in 704
 705

706
707
708
709

710

mTemplate> if and only if all of the following provisions are true:

n implicit 712
713

714
elationship matching this <relationshipTemplate> that has the 715

716

The syntax a
<instanceI

nd semantics for each c

6.4.2.1, and for <xpathConstraint> see 6.4.2.3). The evaluation of a constraint on an
relationship returns a Boolean expression. If the value of the Boolean expression is true, then the item o
relationship is deemed to satisfy the defined constraint.

Templates are used to identify matching items and relationships to be returned in the graph response.

The optional “suppressFromResult” attribute, if present and set to true, indicates that the items or
relationships that correspond to the template carrying the attribute should be suppressed from the resul
Templates with this attribute set to true are still meaningful in that it may help constrain other templ
the query. For example, in order to retrieve all items that have a “dependsOn” relationship with application
“foo”, the query may set this attribute to true on the template for the “foo” item and the template for the
“dependsOn” relationship but not on the template for the items on which “foo” depends. Only the latter
items would appear in the response. If the “suppressFromResult” attribute is not present or set to false on
a template, then all the selected instances for this template are returned in the query result.

6.2.1 itemTemplate

An item matches an <ite711

 The item satisfies all the constraints defined by the <itemTemplate>. (In effect, a
AND joins the constraints.)

 For every <relationshipTemplate> that points to the <itemTemplate> as its
sourceTemplate, there is a r
item as its source.

Configuration Management Database (CMDB) Federation Specification DSP0252

24 DMTF Standard Version 1.0.0

 For every <relationshipTemplate> that points to the <itemTemplate> as its
targetTemplate, there is a relationship matching this <relationshipTemplate> that has the
item as its target.

717
718
719

720
721
722

723

725
726

727
728

729
730

731
732

733
734

735
736

737

739
740
741

742
743

744
745
746
747
748

749
750

752
753
754
755

An item can match more than one <itemTemplate> inside a given query. When this is the case, the
item appears in the response once for each matching <itemTemplate> (unless suppressed by the
"suppressFromResult" attribute).

An item template will not return relationship instances.

6.2.2 relationshipTemplate 724

A relationship matches a <relationshipTemplate> if and only if all of the following provisions are
true:

 The relationship meets all the constraints in the <relationshipTemplate>. (In effect, an
implicit AND joins the constraints.)

 The source item of the relationship matches the <itemTemplate> referenced as
<sourceTemplate> by the <relationshipTemplate>.

 The target item of the relationship matches the <itemTemplate> referenced as
<targetTemplate> by the <relationshipTemplate>.

 The cardinality conditions on the <sourceTemplate> and <targetTemplate> elements are
satisfied, as defined by the @minimum and @maximum attributes defined 6.2.2.1.

 The depth, or the number of edges between source and target nodes in the graph, satisfies the
<depthLimit> condition defined in 6.2.2.2.

Items, which do not have a source or target, cannot match a <relationshipTemplate>.

6.2.2.1 relationshipTemplate/sourceTemplate and relationshipTemplate/targetTemplate 738

The <sourceTemplate> and <targetTemplate> elements each refer to an <itemTemplate>
element using the required @ref attribute. The value of the @ref attribute shall match the value of the @id
attribute of an <itemTemplate> element in the query.

Additionally, <sourceTemplate> and <targetTemplate> elements may have the following optional
attributes:

@minimum – If n is the value of the @minimum attribute, there shall be at least n relationships
matching the <relationshipTemplate> that share the same source or target item. For example,
a query to find computers that at least five services depend upon might specify minimum="5" on a
<sourceTemplate> that selects services, combined with a <targetTemplate> that selects
computers and other constraints that select a 'dependsOn' relationship.

@maximum – If n is the value of the @maximum attribute, there may be at most n relationships
matching the <relationshipTemplate> that share the same source or target item.

6.2.2.2 relationshipTemplate/depthLimit 751

The <depthLimit> element is used to extend the relationship template to traverse multiple edges and
nodes. For example, this element may be used to find all the components of an aggregate system, or all
the dependencies of a business service, even if these items are not directly related to the item in
question. This extended relationship is also called a "relationship chain."

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 25

The pseudo-schema of the <depthLimit> element is as follows: 756

<depthLimit maxIntermediateItems="xs:positiveInteger" ? 757
 intermediateItemTemplate="xs:IDREF" /> 758

759
760
761
762

763
764
765
766

768
769
770
771

772
773
774
775
776

777

@maxIntermediateItems – The maximum number of intermediate items in the relationship chain
between source and target items. A value of 1 indicates that the <relationshipTemplate> can
traverse one intermediate item between the source item and target item. This attribute is optional. If it
is not present, then the number of intermediate items between the source and the target is unlimited.

@intermediateItemTemplate – The value of the intermediateItemTemplate corresponds to the @id
attribute of an <itemTemplate> element that is used as a prototype for intermediate items in the
relationship chain. The value of the @intermediateItemTemplate attribute is also used to represent
the intermediate items in the <nodes> element of the query response.

6.3 Content Selection 767

The <contentSelector> element determines how instances matching the template are returned in the
response. If a template does not contain a <contentSelector> element, all matching instances and
associated records are returned in the response. The term "instance" means either an item or a
relationship.

If a template contains a <contentSelector> element, the records and properties returned for the
instances that match this template are limited to those explicitly selected. Records and properties are
explicitly selected by specifying their namespace and local name in the <selectedRecordType>
element or an XPath expression in the <xpathSelector> element. The use of
<selectedRecordType> and <xpathSelector> are mutually exclusive per content selector.

The pseudo-schema of the <contentSelector> element is as follows:

<contentSelector> 778
 (<selectedRecordType namespace="xs:anyURI" localName="xs:NCName" > 779
 <selectedProperty namespace="xs:anyURI" localName="xs:NCName" /> * 780
 </selectedRecordType> * | 781
 <xpathSelector dialect="xs:anyURI"> 782
 <prefixMapping prefix="xs:NCName" namespace="xs:anyURI"/> * 783
 <expression>xs:string</expression> 784
 </xpathSelector> ?) 785
</contentSelector> 786

788
789

790

791
792

794
795

796
797

6.3.1 contentSelector 787

The use of the <contentSelector> element affects the contents of the matching instances in the
response as follows:

 <contentSelector /> (empty element)

The instances matching this template are returned with no record content in the response. This may
be useful if all that is required is the instanceId of instances matching this template.

6.3.1.1 contentSelector/selectedRecordType 793

If <selectedRecordType> is used without any <selectedProperty> child elements, all properties
(child elements) of all records of the selected type are returned in the response.

At the discretion of the query service, the response may contain a record type that is an extension (as
described in 8.2.2.3) of the selected record type. For example, the following query limits the response to

Configuration Management Database (CMDB) Federation Specification DSP0252

26 DMTF Standard Version 1.0.0

records with a record type with namespace="http://example.com/models" and
localName="Computer".

798
799

<query> 800
 <itemTemplate id="computers"> 801
 <contentSelector> 802
 <selectedRecordType namespace="http://example.com/models" 803
 localName="Computer"> 804
 </selectedRecordType> 805
 </contentSelector> 806
 </itemTemplate> 807
</query> 808

809
810
811
812

814
815

816
817

A valid response to this query could contain records with a record type of
namespace="http://example.com/models" and localName="LinuxComputer", as long as the
record type with localName="LinuxComputer" is defined as an extension of the record type with
localName="Computer" using the mechanism described in 8.2.2.3.

6.3.1.1.1 contentSelector/selectedRecordType/selectedProperty 813

If <selectedProperty> elements are included in a <selectedRecordType> element, only the
selected properties of the selected record types are returned in the response.

EXAMPLE: In the following example, only the "name" and "telephone" properties in the
http://example.com/models/people namespace get returned for the items that match the "user" <itemTemplate>.

<query> 818
 <itemTemplate id="user"> 819
 <contentSelector> 820
 <selectedRecordType namespace="http://example.com/models" 821
 localName="people"> 822
 <selectedProperty namespace="http://example.com/models/people" 823
 localName="name"/> 824
 <selectedProperty namespace="http://example.com/models/people" 825
 localName="telephone"/> 826
 </selectedRecordType> 827
 </contentSelector> 828
 ... 829
 </itemTemplate> 830
</query> 831

832
833
834

Whether or not individual properties are selected, the contents of an item or relationship in the response
are always in the form of <record> elements, as follows, or in a <propertySet>element, which is
described in 6.6.1:

<record> 835
 <recordTypeQName> 836
 <propertyQName>xs:any</propertyQName> * 837
 </recordTypeQName> 838
 <recordMetadata> 839
 <recordId>xs:any</recordId> 840
 ... 841
 </recordMetadata> 842
</record> * 843

http://example.com/models
http://example.com/models

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 27

A record type may extend multiple record types, as shown in the example on the right hand side of 844
845
846
847
848
849
850
851
852

854
855

Figure 6 in 8.2.2.3. For each record of an item, regardless of how many record types may describe a
subset of the record properties and regardless of how many
<contentSelector>/<selectedRecordType> elements select all or part of this record, the query
response shall contain at most one record or property set (see 6.6.1 for a description of a property set).
The record type of the returned record or property set shall be a record type that contains all the
properties to be returned. Using the same example on the right hand side of Figure 6, a query that selects
the faxNumber property of FaxMachine could be satisfied by returning either a FaxMachine or
MultiFunctionPrinter record or property set.

6.3.1.2 contentSelector/xpathSelector 853

The use of the <xpathSelector> element may be used to selects parts of complex models or for
complex selection criteria. For example, an item template has matched an item with the following record:

<record> 856
 <ex:ComputerSystem xmlns:ex=”http://www.example.org/cs”> 857
 ... 858
 <ex:NetworkInterfaces> 859
 <ex:ip>1.2.3.4</ex:ip> 860
 <ex:ip>2.3.4.5</ex:ip> 861
 </ex:NetworkInterfaces> 862
 ... 863
 </ex:ComputerSystem> 864
 ... 865
</record> 866

867 If the <xpathSelector> is as follows:

<xpathSelector 868
 dialect=”http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1”> 869
 <prefixMapping prefix=”ex” namespace=”http://www.example.org/cs” /> 870
 <expression> 871
 /ex:ComputerSystem/ex:NetworkInterfaces/ex:ip 872
 </expression> 873
</xpathSelector> 874

875 The record returned would be:

<record> 876
 <ex:ip>1.2.3.4</ex:ip> 877
 <ex:ip>2.3.4.5</ex:ip> 878
</record> 879

881
882

884
885
886
887
888

6.3.1.2.1 contentSelector/xpathSelector/@dialect 880

The dialect corresponds to a particular version or profile of XPath represented by the URI value. See 6.5
for more information on XPath dialects.

6.3.1.2.2 contentSelector/xpathSelector/prefixMapping 883

Each <prefixMapping> child element of the <xpathConstraint> element defines a namespace
declaration for the XPath evaluation. The prefix for this declaration is provided by the
<prefixMapping>/@prefix attribute and the namespace URI is provided by the
<prefixMapping>/@namespace attribute. These prefix-namespace pairings shall be added to the
namespace declarations of the XPath processor.

Configuration Management Database (CMDB) Federation Specification DSP0252

28 DMTF Standard Version 1.0.0

6.3.1.2.3 contentSelector/xpathSelector/expression 889

The <expression> element contains an XPath expression to be evaluated according to the chosen
dialect against each <record> element contained in an item or relationship that has satisfied all of the
constraints. The evaluation result is then transformed and normalized into a single DOM node according
to the mechanism prescribed by the dialect. See

890
891
892
893

894
895

897
898

900
901

6.5 for more information on XPath normalization.

If that response DOM node has any children, then the record is selected and those children are appended
to the <record> element.

6.4 Constraints 896

Constraints are used to restrict the instances returned based on properties of the instances and
associated records.

6.4.1 instanceIdConstraint 899

The <instanceIdConstraint> element is used to point to specific instances by instance ID. The
pseudo-schema of this element is as follows:

<instanceIdConstraint> 902
 <instanceId>cmdbf:MdrScopedIdType</instanceId> + 903
</instanceIdConstraint> 904

905
906

907
908
909

910
911

913
914

915

There can be at most one <instanceIdConstraint> in an <itemTemplate> or a
<relationshipTemplate> element.

More than one instance ID may be attached to one instance. For example, a federating CMDB may know,
for a given reconciled instance, instance IDs provided by each of the MDRs that have content about the
instance, plus possibly an additional instance ID for the instance assigned by the federating CMDB itself.

The constraint is satisfied if one of the known instance IDs for the instance matches one of the requested
values (that is, if both the <mdrId> and the <localId> match using string comparison).

6.4.2 recordConstraint 912

The <recordConstraint> element is used to point to specific record types and related properties to be
evaluated.

The pseudo-schema of this element is as follows:

<recordConstraint> 916
 <recordType namespace="xs:anyURI" 917
 localName="xs:NCName"/> * 918
 <propertyValue> ... </propertyValue> * 919
 <xpathConstraint> ... </xpathConstraint> ? 920
 xs:any 921
</recordConstraint> 922

923
924

926
927

The <recordConstraint> element can appear any number of times inside an <itemTemplate> or a
<relationshipTemplate>.

6.4.2.1 recordConstraint/recordType 925

The <recordType> element can appear any number of times inside a <recordConstraint>
element.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 29

One way for this constraint to be satisfied is if the instance has a record of that type. More specifically, if
the instance contains a record element that has, as the first child element, an element in the namespace
corresponding to the value of the <recordType>/@namespace attribute and where the local name of
that first child element is the value of the <recordType>/@localName attribute. The constraint could
also be satisfied by an instance with a record that is an extension of that QName, as described in

928
929
930
931
932
933

935
936
937
938

939

940

8.2.2.3.
(For example, comp:Linux might be defined as an extension of comp:OperatingSystem.)

6.4.2.2 recordConstraint/propertyValue 934

Each instance is associated with zero or more records. These records contain properties whose values
are accessible through an XML representation of the instance. The <propertyValue> element can only
be used on properties that have a type that is a subtype of the xs:anySimpleType type. While the type
must be known, it is not required that an XML schema definition of the property be available.

The <propertyValue> element is not applicable to properties that are defined as a complex type.

The pseudo-schema of this element is as follows:

<propertyValue namespace="xs:anyURI" 941
 localName="xs:NCName" 942
 recordMetadata="xs:boolean" ? 943
 matchAny="xs:boolean" ? > 944
 <equal caseSensitive="xs:boolean"? negate="xs:boolean"? > 945
 xs:anySimpleType 946
 </equal> * 947
 <less negate="xs:boolean"? >xs:anySimpleType</less> ? 948
 <lessOrEqual negate="xs:boolean"? >xs:anySimpleType</lessOrEqual> ? 949
 <greater negate="xs:boolean"? >xs:anySimpleType</greater> ? 950
 <greaterOrEqual negate="xs:boolean"?> 951
 xs:anySimpleType 952
 </greaterOrEqual> ? 953
 <contains caseSensitive="xs:boolean"? negate="xs:boolean"? > 954
 xs:string 955
 </contains> * 956
 <like caseSensitive="xs:boolean"? negate="xs:boolean"? > 957
 xs:string 958
 </like> * 959
 <isNull negate="xs:boolean"? /> ? 960
 xs:any 961
</propertyValue> 962

963
964
965
966
967

968
969
970

The <propertyValue> element can appear any number of times in <recordConstraint>. Its
namespace and localName attributes define the QName of the property being tested. If there are one or
more <recordType> elements in the enclosing <recordConstraint>, they define the record types
against which to evaluate the constraint. If there are no <recordType> elements, the
<propertyValue> element is evaluated against all record types.

The child elements of <propertyValue> are called operators. A <propertyValue> constraint is
considered to be satisfied if the operators return a positive (true) result for one or more records
associated with the instance (logical OR across the records).

The operators are largely defined in terms of XPath 2.0 comparison operators. This does not require that
an

971
XPath 2.0 implementation be used but only that the operators be evaluated in a way that is consistent

with the
972

XPath 2.0 definitions, as described in 6.4.2.3. 973

Configuration Management Database (CMDB) Federation Specification DSP0252

30 DMTF Standard Version 1.0.0

@recordMetadata – The value of this attribute indicates that the property to be evaluated is in the
<recordMetadata> element of the record.

974
975

976
977
978
979
980
981
982
983

@matchAny – The value of this attribute defines whether the operators inside that element are
logically AND-ed or OR-ed. The default value for the matchAny attribute is false. If the value of the
matchAny attribute is false, the constraint returns a positive result for an instance if the instance has
a record that contains the property identified by the QName and if the value of that property satisfies
all the operators in the constraint (logical AND). If the value of the matchAny attribute is true, the
constraint returns a positive result for an instance if the instance has a record that contains the
property identified by the QName and if the value of that property satisfies at least one of the
operators in the constraint (logical OR).

6.4.2.2.1 recordConstraint/propertyValue/equal 984

This operator is defined in terms of the XPath 2.0 value comparison operator "eq". To evaluate, the
operand on the left is the property value from the record and the operand on the right is the value of the
constraint from the query. The type of the value of the constraint shall be interpreted to be of the same
type as the value from the property in the record. This operator is valid for properties of any simple type.
A list of comparison behaviors is available in

985
986
987
988

XPath 2.0, "Appendix B.2 – Operator Mappings". 989

991
992
993

6.4.2.2.2 recordConstraint/propertyValue/less, 990
recordConstraint/propertyValue/lessOrEqual,
recordConstraint/propertyValue/greater, and
recordConstraint/propertyValue/greaterOrEqual

These operators are defined in terms of the XPath 2.0 value comparison operators "lt", "le", "gt", and "ge",
respectively. To evaluate, the operand on the left is the property value from the record and the operand
on the right is the value of the constraint from the query. The type of the value of the constraint shall be
interpreted to be of the same type as the value from the property in the record. These operators are valid
only for properties that are numerals, dates, and strings. A list of comparison behaviors is available in

994
995
996
997
998

XPath 2.0, "Appendix B.2 – Operator Mappings". For example, if a property is of type date, the operator
<less>2000-01-01T00:00:00</less> returns true if the property value is a date before the year
2000. If the property value is a string, then "2000-01-01T00:00:00" is interpreted as a string and
compared with the property value using string comparison.

999
1000
1001
1002

6.4.2.2.3 recordConstraint/propertyValue/contains 1003

This operator is mapped to the XPath 2.0 function fn:contains(). It is valid only for properties of type string
and used to test whether the property value contains the specified string as a substring. The result of the
contains operator is as if the fn:contains() function were executed with the first parameter being the
property value and the second parameter being the string specified.

1004
1005
1006
1007

1009
1010

1011

1012

1013
1014
1015
1016

6.4.2.2.4 recordConstraint/propertyValue/like 1008

This operator is similar in functionality to the SQL LIKE clause. The operator works like the equal operator
with the inclusion of the following two special characters:

 The underscore character ("_ ") acts as a wild card for any single character.

 The percent sign ("% ") acts as a wild card for zero or more characters.

To escape the wild cards, the backslash ("\ ") can be used. For example,
<like>Joe_Smith%</like> tests whether the property value starts with the string "Joe_Smith" and
would match values such as "Joe_Smith", "Joe_Smith123", and "Joe_Smith_JR". It would not match
"JoeHSmith123". A double backslash ("\\") represents the single backslash string ("\").

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 31

6.4.2.2.5 recordConstraint/propertyValue/isNull 1017

This operator tests whether the element corresponding to the property is "nilled". It is equivalent to the
result of applying the

1018
XPath 2.0 "fn:nilled" function on the element corresponding to the property. 1019

1021

1022
1023
1024

6.4.2.2.6 Additional Attributes 1020

The following additional attributes are defined for operator elements:

@caseSensitive – This is an optional attribute for the equal, contains, and like operators. The
default value is true. If the property value of the record is an instance of xs:string and the
caseSensitive attribute is false, the string comparison is case-insensitive. More precisely, the result
of the comparison is as if the XPath 2.0 function fn:upper-case() was called on both the property
value and the string value before comparison. If the property value of the record is not an instance of
a xs:string, the caseSensitive attribute has no impact on the comparison.

1025
1026
1027

1028
1029

1030
1031

1032

@negate – This is an optional attribute for all operators. The default value is false. When the negate
attribute is true, the result of the comparison is negated.

Table 2 summarizes which operators are supported for the various XSD built-in datatypes. Unless
explicitly specified, the caseSensitive attribute is not supported.

Table 2 – Operators Supported for XSD Built-in Datatypes

Built-in Datatypes equal isNull

less,
lessOrEqual,
greater,
greaterOrEqual contains like

"String-related types"
(String, anyURI, and
types derived from string)

Yes, including
the optional
caseSensitive
attribute

Yes Yes Yes, including
the optional
caseSensitive
attribute

Yes, including
the optional
caseSensitive
attribute

"Time-related and
numeric types" (duration,
dateTime, time, date,
gYearMonth, gYear,
gMonthDay, gDay,
gMonth, float, double,
decimals, and all types
derived from decimals)

Yes Yes Yes No No

"Others" (Boolean,
QName, NOTATION,
base64Binary, and
hexBinary)

Yes Yes No No No

If more than one property uses the same QName, the comparison has to hold true for only one of the
property values.

1033
1034

1035 EXAMPLE 1: Consider the following example for a computer with three IP addresses:

<comp:ComputerConfig xmlns:comp="http://example.com/computers"> 1036
 ... 1037
 <comp:ip>1.2.3.4</comp:ip> 1038
 <comp:ip>1.2.3.5</comp:ip> 1039
 <comp:ip>1.2.3.6</comp:ip> 1040
 ... 1041
</comp:ComputerConfig> 1042

Configuration Management Database (CMDB) Federation Specification DSP0252

32 DMTF Standard Version 1.0.0

The following property constraint would return a positive result: 1043

<recordConstraint> 1044
 <propertyValue namespace="http://example.com/computers" 1045
 localName="ip"> 1046
 <equal>1.2.3.5</equal> 1047
 </propertyValue> 1048
</recordConstraint> 1049

1050
1051
1052

1053

When the negate attribute is used on a list of properties, the negation is taken after the operator
executes. When negating the equal operator, a positive result is returned when none of the properties are
equal to the given value.

EXAMPLE 2: For example, on the same computer with three IP addresses:

<recordConstraint> 1054
 <propertyValue namespace="http://example.com/computers" 1055
 localName="ip"> 1056
 <equal negate="true">1.2.3.5</equal> 1057
 </propertyValue> 1058
</recordConstraint> 1059

1060
1061

1062
1063
1064
1065
1066

1067
1068
1069

The property constraint would remove the item above from the result set because the equality comparison matches
one IP address in the list.

Similarly, <less negate="true">12</less> is equivalent to
<greaterOrEqual>12</greaterOrEqual> if there is only one instance of the property being tested.
But if there is more than one instance of the property, then the first operator is true if all of the instances
have a value of more than 12, while the second one is true if at least one of the instances has a value of
more than 12.

EXAMPLE 3: The following is a simple example of using <propertyValue>. "Manufacturer" is a property defined
in the "http://example.com/Computer" namespace. The constraint is testing whether the instance has a record
containing this property and where the value of the property is "HP".

<recordConstraint> 1070
 <propertyValue namespace="http://example.com/Computer" 1071
 localName="Manufacturer" > 1072
 <equal>HP</equal> 1073
 </propertyValue> 1074
</recordConstraint> 1075

1076
1077
1078
1079

EXAMPLE 4: The following is a more complex example. The <itemTemplate> matches any item that has a
CPUCount greater than or equal to 2, for which the OSName property contains "Linux" (with that exact mix of upper
and lower case letters), and for which the OSName property also contains either "ubuntu" or "debian" (irrespective of
case).

<itemTemplate id="linuxMachine"> 1080
 <recordConstraint> 1081
 <propertyValue namespace="http://example.com/computers" 1082
 localName="CPUCount"> 1083
 <greaterOrEqual>2</greaterOrEqual> 1084
 </propertyValue> 1085
 <propertyValue namespace="http://example.com/computers" 1086
 localName="OSName"> 1087
 <contains>Linux</contains> 1088
 </propertyValue> 1089
 <propertyValue namespace="http://example.com/computers" 1090

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 33

 localName="OSName" 1091
 matchAny="true"> 1092
 <contains caseSensitive="false">ubuntu</contains> 1093
 <contains caseSensitive="false">debian</contains> 1094
 </propertyValue> 1095
 <recordConstraint/> 1096
</itemTemplate> 1097

1099
1100

6.4.2.3 recordConstraint/xpathConstraint 1098

The <xpathConstraint> element provides an alternate mechanism to constrain items and
relationships. The pseudo-schema of this element is as follows:

<xpathConstraint dialect="xs:anyURI"> 1101
 <prefixMapping prefix="xs:NCName" namespace="xs:anyURI"/> * 1102
 <expression>xs:string</expression> 1103
</xpathConstraint> 1104

1105
1106
1107
1108
1109
1110
1111
1112
1113

1115
1116

1118
1119
1120
1121
1122

1124
1125

1126
1127
1128

1129
1130
1131

The <xpathConstraint> element may appear once inside a <recordConstraint> inside an
<itemTemplate> or <relationshipTemplate> element. It can only be used in conjunction with a
<propertyValue> constraint if the <propertyValue> constraint in question applies to record
metadata. In other words, if a <recordConstraint> contains a <xpathConstraint> then it can only
contain <propertyValue> elements, which have the recordMetadata attribute set to true. When
such metadata-related <propertyValue> elements are used together with a <xpathConstraint>
element, they are all ANDed together: to be selected, an item or relationship shall have a record for which
the metadata meets all the constraints in the <propertyValue> elements and the record content
satisfies the XPath constraint.

6.4.2.3.1 recordConstraint/xpathConstraint/@dialect 1114

The dialect corresponds to a particular version or profile of XPath represented by the URI value. See 6.5
for more information on XPath dialects.

6.4.2.3.2 recordConstraint/xpathConstraint /prefixMapping 1117

Each <prefixMapping> child element of the <xpathConstraint> element defines a namespace
declaration for the XPath evaluation. The prefix for this declaration is provided by the
<prefixMapping>/@prefix attribute and the namespace URI is provided by the
<prefixMapping>/@namespace attribute. These prefix-namespace pairings shall be added to the
namespace declarations of the XPath processor.

6.4.2.3.3 recordConstraint/xpathConstraint/expression 1123

The <expression> element contains an XPath expression to be evaluated according to the specified
dialect.

The <xpathConstraint> is satisfied if the evaluation result’s boolean value is true. The boolean value
of the evaluation result is the same result as running the XPath 1 function boolean() on the results of a
XPath 1 evaluation or the XPath 2 function fn:boolean() on the results of a XPath 2 evaluation.

EXAMPLE: In the following example, "name" is a property defined in the "http://example.com/people" namespace.
The constraint tests whether the instance has a record containing this property where the value of the
property is "Pete the Lab Tech". In this example, no metadata is selected by the expression.

<itemTemplate> 1132
 <recordConstraint> 1133
 <xpathConstraint 1134

Configuration Management Database (CMDB) Federation Specification DSP0252

34 DMTF Standard Version 1.0.0

 dialect=" http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1"> 1135
 <prefixMapping prefix="hr" value="http://example.com/people"/> 1136
 <expression>/hr:ContactInfo[hr:name = "Pete the Lab Tech"] 1137
 </expression> 1138
 </xpathConstraint> 1139
 </recordConstraint> 1140
</itemTemplate> 1141

1143
1144
1145
1146
1147

6.5 XPath Expressions and Normalization 1142

XPath may be used as a more flexible way to constrain what items/relationships are matched in a query
and/or to select the record content returned for selected items/relationships. When used as a selector and
a constraint, the client and server need to have a common understanding of how they will interpret and
process the XPath expression. This is done through specifying an XPath dialects and a corresponding
URI. This specification defines two dialects that may be used as either a selector or as a constraint:

 “http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1” indicates that the expression
corresponds to an XPath 1.0 expression.

1148
1149

 “http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath2” indicates that the expression
corresponds to an XPath 2.0 expression.

1150
1151

1152

1153

1154
1155
1156
1157
1158

1159
1160
1161
1162
1163

Other dialects may be defined in future versions of this specification or in other specifications.

Implementations are free to provide its own URI for a dialect that is not defined in the specification.

To enable serialization and to simplify the processing of the XPath selector, the XPath selector evaluation
result is run through a transformation and then a normalization process. The transformation process
transforms attribute nodes into element nodes; this allows them to be serialized later on. Next, this result
is run through the normalization process which creates a single DOM node with the selection result nodes
as children.

The normalization process shall throw a cmdbf:XPathSerializationFault fault if there is unsupported
serialization input from the transformation process. For the XPath 1.0 normalization process, the
serialization input shall either be a simple value or a nodeset made up of only element nodes. For the
XPath 2.0 normalization process, the serialization input shall not contain any namespace, comment, or
processing instruction nodes.

6.5.1 XPath 1.0 Dialect 1164

This dialect indicated by the URI of http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1 is specified for
XPath 1.0 support, subject to the conditions described in

1165
1166

1167

6.5.3 and 6.5.4.

The XPath expression is evaluated in the following context:

Component Value

Context Node The first child of the <record> element

Context Position 1

Context Size 1

Variable Binding None

Function Libraries Core function library

Namespace Declarations Prefixes bound via <prefixMapping> element

http://www.dmtf.org/cmdbf/W3C-xpath-19991116
http://www.dmtf.org/cmdbf/W3C-xpath-20070123
http://www.dmtf.org/cmdbf/W3C-xpath-19991116

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 35

6.5.2 XPath 2.0 Dialect 1168

This dialect indicated by the URI of http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath2 is specified for
XPath 2.0 support, subject to the conditions described in

1169
1170

1171

6.5.3 and 6.5.5.

The XPath expression is evaluated in the following context:

Component Value

XPath 1.0 Compatibility Mode False

Statically known namespaces Prefixes bound via <prefixMapping> element

Default element/type
namespace

None

Default function namespace None

In-scope variables None

Context item static type element([namespace of this specification], record)

Function signatures Functions defined in XQuery 1.0 and XPath 2.0 Functions and Operators

Context item The first child of the <record> element

Context position 1

Context size 1

Current date and time Time on server when request was made

6.5.3 XPath Selector Transformation 1172

The transformation allows for selecting XML attributes. This is done through mapping an XML attribute to
a <attributeNode> element:

1173
1174

1175

1176

1177

1178

 The XML attribute value is mapped to the @value of the <attributeNode>.

 The XML attribute local name is mapped to the @localName of the <attributeNode>.

 The XML attribute namespace is mapped to the @namespace of the <attributeNode>.

The pseudo schem of <attributeNode> looks like:

<cmdbf:attributeNode namespace="xs:anyUri" 1179
 localName="xs:NCName" value="xs:anySimpleType" /> 1180

1181 The result is as if the following XSLT template was matched to the selection result:

<xsl:template match="@*"> 1182
 <cmdbf:attributeNode> 1183
 <xsl:attribute name="namespace"> 1184
 <xsl:value-of select="namespace-uri(.)" /></xsl:attribute> 1185
 <xsl:attribute name="localName"> 1186
 <xsl:value-of select="local-name(.)" /></xsl:attribute> 1187
 <xsl:attribute name="value"> 1188
 <xsl:value-of select="." /></xsl:attribute> 1189
 </cmdbf:attributeNode> 1190
</xsl:template> 1191

Configuration Management Database (CMDB) Federation Specification DSP0252

36 DMTF Standard Version 1.0.0

The “xsl” prefix is bound to XSL 1.0 or 2.0 depending on whether an XPath 1 or XPath 2 evaluation result
was input.

1192
1193

1194 Here's an example of how an attribute would be mapped. If the record is:

<hr:ContactInfo xmlns:hr="http://example.com/hr" changeby="jsmith"> 1195
... 1196
</hr:ContactInfo> <cmdbf:attributeNode> 1197

1198
1199

The result of the content selector with an XPath selector with the expression "hr:ContactInfo/@changeby"
would be:

<cmdbf:attributeNode namespace="" 1200
 localName="changeby" 1201
 value="jsmith" /> 1202

1204

1205

1206
1207
1208
1209
1210

1211
1212

1213

1215

6.5.4 XPath 1.0 Normalization 1203

The selection evaluation result set for XPath 1.0 is then normalized:

Create a new sequence S.

If the result set is empty, then add a zero length string to the sequence S. If the result set contains a
string, a number, or a boolean, run the XPath string() on the item to get the string value and add this
string value to the sequence S. If the result set is a node set and contains any node other then a element
node, throw a cmdbf:XPathSerializationFault; if the result is a node set and only contains nodes of type
element, then add these nodes to the sequence S.

Create a new DocumentFragment named DF. For each item in S, if the item is a string, create a text node
and add the text node to DF. Or, if the item is an element node, add the element node to DF.

The result of this normalization process is a DocumentFragment named DF.

6.5.5 XPath 2.0 Normalization 1214

The selection result set for XPath 2.0 results is then normalized as defined in Section 2 "Sequence
Normalization" of the XSLT 2.0 and XQuery 1.0 Serialization specification. If the serialization input
contains any namespace, comment, or processing instruction nodes, or any other serialization error
occurs, cmdbf:XPathSerializationFault shall be thrown. The serialization error definition is from

1216
1217
1218

http://www.w3.org/TR/xslt-xquery-serialization/#serial-err. 1219

1221

6.6 GraphQuery Response 1220

The pseudo-schema for the GraphQuery response message is as follows:

<queryResult> 1222
 <nodes templateId="xs:ID"> 1223
 <item> 1224
 <record> 1225
 xs:any 1226
 <recordMetadata> 1227
 <recordId>...</recordId> ? 1228
 <lastModified>...</lastModified> ? 1229
 <baselineId>...</baselineId> ? 1230
 <snapshotId>...</snapshotId> ? 1231
 xs:any 1232
 </recordMetadata> ? 1233

http://www.w3.org/TR/xslt-xquery-serialization/#serial-err

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 37

 </record> * 1234
 <instanceId> 1235
 <mdrId>xs:anyURI</mdrId> 1236
 <localId>xs:anyURI</localId> 1237
 </instanceId> + 1238
 <additionalRecordType namespace="xs:anyURI" 1239
 localName="xs:NCName"/> * 1240
 </item> + 1241
 </nodes> * 1242
 <edges templateId="xs:ID"> 1243
 <relationship> 1244
 <source> 1245
 <mdrId>xs:anyURI</mdrId> 1246
 <localId>xs:anyURI</localId> 1247
 </source> 1248
 <target> 1249
 <mdrId>xs:anyURI</mdrId> 1250
 <localId>xs:anyURI</localId> 1251
 </target> 1252
 <record> 1253
 xs:any 1254
 <recordMetadata> 1255
 <recordId>...</recordId> ? 1256
 <lastModified>...</lastModified> ? 1257
 <baselineId>...</baselineId> ? 1258
 <snapshotId>...</snapshotId> ? 1259
 </recordMetadata> ? 1260
 </record> * 1261
 <instanceId> 1262
 <mdrId>xs:anyURI</mdrId> 1263
 <localId>xs:anyURI</localId> 1264
 </instanceId> + 1265
 <additionalRecordType namespace="xs:anyURI" 1266
 localName="xs:NCName"/> * 1267
 </relationship> + 1268
 </edges> * 1269
</queryResult> 1270

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280

Each time an item matches an <itemTemplate>, an <item> element appears inside a <nodes>
element in the <queryResult> (unless the itemTemplate has the attribute "suppressFromResults" set to
true). Note that for an item to "match" an <itemTemplate> it needs to not just meet the conditions inside
the <itemTemplate> but also any <relationshipTemplate> that references the
<itemTemplate> as described in 6.2.2. The templateId attribute of the response <nodes> element
containing the item has the same value as the id attribute of the corresponding <itemTemplate> in the
original request. If the item matches more than one <itemTemplate>, the <item> will be contained in
the <nodes> for each <itemTemplate> matched by the item that doesn't have the
"suppressFromResults" attribute set to true (each <nodes> element with the appropriate value for its
templateId attribute).

Configuration Management Database (CMDB) Federation Specification DSP0252

38 DMTF Standard Version 1.0.0

Similarly, each time a relationship matches a <relationshipTemplate>, a <relationship>
element appears inside an <edges> element in the <queryResult>. The templateId attribute of this
element contains the same value as the ID attribute of the <relationshipTemplate> in the original
request. If the relationship matches more than one <relationshipTemplate>, the <relationship>
is contained in the <edges> for each <relationshipTemplate> matched by the relationship (each
one with the appropriate value for its templateId attribute).

1281
1282
1283
1284
1285
1286

1287
1288

1289
1290
1291
1292
1293
1294

1295
1296
1297
1298
1299

1300
1301

1302
1303

1305
1306
1307
1308
1309

1310

If no item is part of the response, there are no <nodes> elements. If no relationship is part of the
response, there are no <edges> elements.

Items and relationships can contain any number of records. Each is represented by a <record> element.
Each record element contains one or two child elements. The first child is an element whose QName is a
recordType supported by the Query Service or a <propertySet> element (see 6.6.1), which would
contain a subset of the properties of the recordType.. The children of that child are the properties
associated with the record. The optional second child is a <recordMetadata> element that contains
information about the record itself.

Items and relationships shall contain at least one <instanceId> element. The instance ID, through a
combination of two URIs (<mdrId> to represent the MDR that assigned the ID and <localId> to
uniquely represent the item or relationship inside this MDR), uniquely and globally identifies the item or
relationship. There can be more than one <instanceId> element, in the case where the item or
relationship has been reconciled from a more fragmented view.

The <source> child element of a relationship identifies the item that is the source of the relationship. The
format of this element matches the format of the <instanceId> element on the item.

The <target> child element of a relationship identifies the item that is the target of the relationship. The
format of this element matches the format of the <instanceId> element on the item.

6.6.1 propertySet 1304

A query may use <contentSelector>/<selectedRecordType>/<selectedProperty> or
<contentSelector>/<xpathSelector> to request a subset of the properties of a record type. In that
case, rather than sending the record as a potentially pared down version of the original record element,
the query processor shall place the requested properties inside a <propertySet> element, to indicate
that the returned result is a filtered version and to prevent schema violations.

The pseudo-schema of this element is as follows:

<propertySet namespace="xs:anyURI" localName="xs:NCName"> 1311
 xs:any 1312
</propertySet> 1313

1314

1315

1316

1317
1318

1320
1321
1322

The attributes are:

@namespace – The namespace of the QName of the record type.

@localName – The localName of the QName of the record type.

The child elements of <propertySet> are each child elements of the record type whose QName is
constructed from the namespace and localName attributes.

6.7 GraphQuery Faults 1319

The faults defined in this section are generated if the condition stated in the preamble is met. Faults are
targeted at a destination endpoint according to the fault-handling rules defined by the Web service
binding.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 39

The definitions of faults in this section use the following properties: 1323

1324

1325

1326

1327

1329
1330
1331

1332

1333

1334

1335

 [Code] The fault code.

 [Subcode] The fault subcode.

 [Reason] The English language reason element.

 [Detail] The detail element. If absent, no detail element is defined for the fault.

6.7.1 Unknown Template ID 1328

This fault occurs when a <relationshipTemplate> includes an ID that refers to a
<sourceTemplate>, <targetTemplate>, or <intermediateItemTemplate> that was not included
in the query.

The properties are as follows:

 [Code] Sender

 [Subcode] cmdbf:UnkownTemplateIDFault

 [Reason] The graph template ID was not declared.

 [Detail] <cmdbf:graphId> xs:ID </cdmbf:graphId> 1336

1338
1339
1340
1341

1342

1343

1344

1345

6.7.2 Property Type Mismatch 1337

This fault occurs when the value in a constraint is invalid for the type of the property as defined by the
schema for the property. For example, this fault occurs when the property is a date and the query
includes a parameter to compare to the date that is a string that cannot be cast to a date, such as
"foobar."

The properties are as follows:

 [Code] Sender

 [Subcode] cmdbf:InvalidPropertyTypeFault

 [Reason] The property value being compared is not valid.

 [Detail] <cmdbf:propertyName namespace="xs:anyURI" localname="xs:NCName" /> 1346

6.7.3 XPath Processing Error 1347

This fault occurs when the XPath expression processing results in an error. See XPath 2.0 for details on
the cmdbf:xpathErrorCode.

1348
1349

1350

1351

1352

1353

The properties are as follows:

 [Code] Sender

 [Subcode] cmdbf:XPathErrorFault

 [Reason] The XPath expression was not processed successfully.

 [Detail] <cmdbf:expression> xs:string </cmdbf:expression> 1354
 <cmdbf:xpathErrorCode> [xpath error code] </cmdbf:xpathErrorCode> 1355

1357

6.7.4 Unsupported Constraint 1356

A constraint element in the template was specified that is not supported by this MDR.

Configuration Management Database (CMDB) Federation Specification DSP0252

40 DMTF Standard Version 1.0.0

The properties are as follows: 1358

1359

1360

1361

 [Code] Receiver

 [Subcode] cmdbf:UnsupportedConstraintFault

 [Reason] The constraint specified is unsupported.

 [Detail] <cmdbf:constraint namespace="xs:anyURI" localname="xs:NCName" /> 1362

1364

1365

1366

1367

1368

6.7.5 Unsupported Selector 1363

A selector element in the template was specified that is not supported by this MDR.

The properties are as follows:

 [Code] Receiver

 [Subcode] cmdbf:UnsupportedSelectorFault

 [Reason] The selector specified is unsupported.

 [Detail] <cmdbf:selector namespace="xs:anyURI" localname="xs:NCName" /> 1369

1371
1372
1373

1374

1375

1376

1377
1378

6.7.6 Expensive Query Error 1370

The query was valid, but the server determined that the query is too expensive to execute or that it would
return a result set that is too large to return. The requestor is invited to retry, using a simpler and/or more
constrained query. What constitutes “too expensive” or “too large” is determined by the server.

The properties are as follows:

 [Code] Receiver

 [Subcode] cmdbf:ExpensiveQueryErrorFault

 [Reason] The query in the request is too expensive for the server to process or returns a
 result set that is too large to return.

 [Detail] xs:any 1379

1381
1382

1383

1384

1385

1386

6.7.7 Query Error 1380

The query was valid, but there was an error while performing the query. When the query includes an
XPath expression, this error may be used to indicate that the specific XPath dialect is not supported.

The properties are as follows:

 [Code] Receiver

 [Subcode] cmdbf:QueryErrorFault

 [Reason] An error occurred while processing the request.

 [Detail] xs:any 1387

1390

7 Registration Service 1388

7.1 Overview 1389

The Registration Service is used in push mode federation, as described in 5.3.2.1.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 41

The fundamentals of push mode federation are: 1391

1392
1393
1394
1395

1396
1397

1398
1399
1400
1401
1402

1403
1404
1405
1406
1407

1408
1409
1410

1411
1412

1413

1414

1415

1416
1417
1418
1419
1420
1421

1422
1423

1424

1425

1426
1427
1428

1429
1430
1431

1432
1433
1434

1435
1436

 The MDR invokes the Register operation for items or relationships that it wishes to register.
Each item or relationship shall be associated with at least one record type supported by the
Registration Service. The MDR may register a subset of the data records it has about any item
or relationship.

 The Registration Service responds with the registration status for each item or relationship
named in the Register operation. The status is either accepted or declined.

– If the return status is accepted, the Registration Service returns the ID that identifies the
item or relationship within the Registration Service. For accepted data, the MDR is
expected to update the Registration Service whenever any of the registered data changes.
This specification does not stipulate how soon after the data changes the update must
occur — this would typically be determined by local policy.

– If the return status is declined, the Registration Service presumably does not maintain the
registration data and no updates to that data are accepted. For previously accepted data, a
return status of declined indicates that the Registration Service no longer wishes to be
updated about this item. The client would typically deregister the item's ID or attempt to re-
register the item, perhaps with new data.

 This specification does not stipulate what the Registration Service should or shall do with the
registered data. The semantics of accepted and declined have meaning only with respect to the
obligations of the MDR to update the Registration Service when the data changes.

 The MDR also uses the Register operation to update registered data. An update may consist of
any combination of the following actions:

– Changing existing data, such as a property value

– Registering an additional record type for this item or relationship

– Deregistering a previously registered record type for this item or relationship

– The MDR uses the Deregister operation to remove an existing registration for an item or
relationship. For example, if the item or relationship is deleted, the MDR would typically
delete its own records and deregister the previous registration. Another example of when
Deregister would be used is if an administrator decides to stop federating the data about
this item or relationship, even though the item or relationship still exists and the MDR still
maintains data about it.

– This specification does not stipulate what the Registration Service should or shall do after a
Deregister operation.

EXAMPLE:

The following examples show how the Registration Service might handle a deregister operation:

– If the Registration Service has the same data from another MDR that this MDR deregisters,
it might disassociate the data with the deregistering MDR, while maintaining the existing
data.

– If the Registration Service has data from another MDR about the deregistered item or
relationship, it might delete the deregistered data while maintaining the data from the other
MDR.

– If the Registration Service has the same data from another MDR, but it considers the
deregistering MDR the authoritative source, it might mark the item or relationship as
deleted.

– If the deregistering MDR is the only source of data about the item or relationship, it might
delete all knowledge of the item or relationship.

Configuration Management Database (CMDB) Federation Specification DSP0252

42 DMTF Standard Version 1.0.0

7.2 Register 1437

The Register operation is used by an MDR to notify a Registration Service that new items have been
discovered or updated and data is now available in the MDR.

1438
1439

1441

7.2.1 Register Operation 1440

The pseudo-schema for the Register operation is as follows:

<registerRequest> 1442
 <mdrId>xs:anyURI</mdrId> 1443
 <itemList> 1444
 <item> 1445
 <record> 1446
 xs:any 1447
 <recordMetadata>...</recordMetadata> ? 1448
 </record> * 1449
 <instanceId>cmdbf:MdrScopedIdType</instanceId> + 1450
 <additionalRecordType namespace="xs:anyURI" 1451
 localName="xs:NCName"/> * 1452
 </item> + 1453
 <itemList> ? 1454
 <relationshipList> 1455
 <relationship> 1456
 <source>cmdbf:MdrScopedIdType</source> 1457
 <target>cmdbf:MdrScopedIdType</target> 1458
 <record> 1459
 xs:any 1460
 <recordMetadata>...</recordMetadata> ? 1461
 </record> * 1462
 <instanceId>cmdbf:MdrScopedIdType</instanceId> + 1463
 <additionalRecordType namespace="xs:anyURI" 1464
 localName="xs:NCName"/> * 1465
 </relationship> + 1466
 <relationshipList> ? 1467
</registerRequest> 1468

1469

1471
1472

1474
1475
1476

1478

The following subclauses describe additional constraints on the Register operation pseudo-schema.

7.2.1.1 mdrId 1470

The <mdrID> element is the ID of the MDR registering its data. This ID shall be unique among all of the
MDRs and federating CMDBs that are federated together.

7.2.1.2 itemList 1473

The <itemList> element lists the items being registered. The list contains any number of <item>
elements. However, if the list contains zero <item> elements, including the <itemList> element serves
no purpose. An <item> should not be repeated in the list.

7.2.1.3 itemList/item 1477

The <item> element indicates some or all of the contents of an <item>.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 43

7.2.1.4 itemList/item/instanceId 1479

The <instanceId> serves as a unique key for the <item>. There shall be at least one for each
<item>. The <instanceId> shall contain the values that would select the <item> in a query using an
<instanceIdConstraint>.

1480
1481
1482

1484

1485
1486
1487

1488

1489
1490

1491
1492
1493
1494
1495

1497
1498
1499
1500
1501
1502

1503
1504
1505
1506

1508
1509
1510

1512

1514
1515
1516

7.2.1.5 itemList/item/record 1483

Each <item> contains any number of <record> elements.

The <record> element shall contain exactly one child element of unrestricted type, followed by a
<recordMetadata> element. The namespace and local name of the first child element together are the
record type.

The <record> type shall be supported by the Registration Service.

The MDR may support queries for <record> types that it chooses to not federate through the
Registration Service.

There may be multiple <record> elements. The set of passed elements will be considered a complete
replacement if the Registration Service already has data from this MDR about this <item>. For example,
if the MDR had previously registered this <item> with ComputerConfiguration and ComputerAsset
records, and another registration call is made for the same item with only the ComputerConfiguration
record, then it will be treated as a deletion of the ComputerAsset record from the federation.

7.2.1.6 itemList/item/additionalRecordType 1496

An MDR may support through its query interface record types for an item that are not included in the
registerRequest message. If so, it may indicate the record types for the item by including one or more
<additionalRecordType> elements. The <additionalRecordType>/@namespace and
<additionalRecordType>/@localName attributes together represent the record type. In each
<item> the same record type should not appear in both an <additionalRecordType> and a
<record> element.

EXAMPLE: For queries, the MDR may support ComputerIdentification, ComputerConfiguration, and ComputerAsset
records. If the registerRequest message includes only the ComputerIdentification record contents in the
<record> element, the MDR may provide in <additionalRecordType> elements the localName
and namespace URIs for the ComputerConfiguration and ComputerAsset records.

7.2.1.7 relationshipList 1507

The <relationshipList> item indicates the list of relationships being registered. The list contains any
number of <relationship> elements. However, if the list contains zero <relationship> elements,
including the <relationshipList> element serves no purpose.

7.2.1.8 relationshipList/relationship 1511

The <relationship> element includes some or all of the contents of a <relationship>.

7.2.1.9 relationshipList/relationship/instanceId 1513

The <instanceId> serves as a unique key for the <relationship>. There shall be at least one
<instanceId> for each <relationship> element. The <instanceId> shall contain the values that
would select the <relationship> in a query using an <instanceIdConstraint>.

Configuration Management Database (CMDB) Federation Specification DSP0252

44 DMTF Standard Version 1.0.0

7.2.1.10 relationshipList/relationship/source 1517

The <source> element is the <instanceId> that serves as a unique key for the <item> referenced by
the source side of a relationship. There shall be exactly one <instanceId> for each
<relationship>. The <instanceId> shall contain one of the values that would select the source
<item> in a query using an <instanceIdConstraint>.

1518
1519
1520
1521

1523
1524
1525
1526

1528
1529

1530
1531

1532
1533

1534
1535
1536

1538
1539
1540
1541
1542
1543

1545

7.2.1.11 relationshipList/relationship/target 1522

The <target> element is the <instanceId> that serves as a unique key for the <item> referenced by
the target side of a relationship. There shall be exactly one <instanceId> for each <relationship>.
The <instanceId> shall contain one of the values that would select the target <item> in a query using
an <instanceIdConstraint>.

7.2.1.12 relationshipList/relationship/record 1527

Each <relationship> contains any number of <record> elements. The <record> type shall be
supported by the Registration Service.

The MDR may support queries for <record> types that it chooses not to federate through the
Registration Service.

There may be multiple <record> elements. The set of passed elements will be considered a complete
replacement if the Registration Service already has data from this MDR about this <relationship>.

EXAMPLE: If the MDR had previously registered this <relationship> with a RunsOn and DependsOn record,
and another registration call is made for the same item with only the RunsOn record, then it will be
treated as a deletion of the DependsOn record from the federation.

7.2.1.13 relationshipList/relationship/additionalRecordType 1537

An MDR may support through its query interface more record types for a relationship than it federates
through the Registration Service. If so, it may indicate the record types per relationship instance by
including one or more <additionalRecordType> elements. The
<additionalRecordType>/@namespace and <additionalRecordType/@localName attributes
together represent the record type. The MDR should not include an <additionalRecordType> if for
the same record type it includes a <record>.

7.2.2 Register Response 1544

The pseudo-schema for the response to a Register operation is as follows:

<registerResponse> 1546
 <RegisterInstanceResponse> 1547
 <instanceId>cmdbf:MdrScopedIdType</instanceId> 1548
 <accepted> 1549
 <alternateInstanceId> 1550
 cmdbf:MdrScopedIdType 1551
 </alternateInstanceId> * 1552
 </accepted> ? 1553
 <declined> 1554
 <reason>xs:string</reason> * 1555
 </declined> ? 1556
 <RegisterInstanceResponse> * 1557
</registerResponse> 1558

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 45

The following subclauses describe additional constraints on the Register response pseudo-schema. 1559

1561
1562
1563
1564

1566

1568

1569

1571
1572
1573

1575

1576

1578
1579

1581
1582
1583

1584

1585

1586

1587

1588

1590
1591
1592

7.2.2.1 registerInstanceResponse 1560

The <registerInstanceResponse> element indicates the action taken for one item or relationship in
the Register request. There can be any number of <registerInstanceResponse> elements. There
should be exactly one <registerInstanceResponse> element per item or relationship in the Register
request.

7.2.2.2 registerInstanceResponse/instanceId 1565

The <instanceId> element is one of the elements from the Register request for an item or relationship.

7.2.2.3 registerInstanceResponse/accepted 1567

The <accepted> element indicates that the item or relationship instance was accepted.

Exactly one of either the <accepted> or <declined> elements shall be present.

7.2.2.4 registerInstanceResponse/accepted/alternateInstanceId 1570

The <alternateInstanceId> element indicates zero or more elements that contain other IDs by
which the item or relationship is known, each one of which is acceptable as a key to select the item or
relationship in a query.

7.2.2.5 registerInstanceResponse/declined 1574

The <declined> element indicates that the item or relationship instance was declined.

Exactly one of either the <accepted> or <declined> elements shall be present.

7.2.2.6 registerInstanceResponse/declined/reason 1577

The <reason> element is zero or more strings that contain the reasons why the registration was
declined.

7.2.3 Register Operation Faults 1580

The faults defined in this section are generated if the condition stated in the preamble is met. Faults are
targeted at a destination endpoint according to the fault-handling rules defined by the Web service
binding.

The definitions of faults in this section use the following properties:

 [Code] The fault code.

 [Subcode] The fault subcode.

 [Reason] The English language reason element.

 [Detail] The detail element. If absent, no detail element is defined for the fault.

7.2.3.1 Invalid Record 1589

The record does not correspond to the schema specifying the data model. This fault occurs when a
required property does not exist, an extension property is used when the data model does not allow for
extensions, and so on.

Configuration Management Database (CMDB) Federation Specification DSP0252

46 DMTF Standard Version 1.0.0

The properties are as follows: 1593

1594

1595

1596

 [Code] Sender

 [Subcode] cmdbf:InvalidRecordFault

 [Reason] The record is invalid.

 [Detail] <cmdbf:recordId> xs:anyURI </cmdbf:recordId> 1597

1599

1600

1601

1602

1603

7.2.3.2 Unsupported Record Type 1598

A record of an unsupported record type was attempted to be registered.

The properties are as follows:

 [Code] Sender

 [Subcode] cmdbf:UnsupportedRecordTypeFault

 [Reason] The record type is not supported.

 [Detail] <cmdbf:recordType namespace="xs:anyURI" localname="xs:NCName" /> 1604

1606

1607

1608

1609

1610

7.2.3.3 Invalid MDR ID 1605

The MDR ID specified on an item is not recognized.

The properties are as follows:

 [Code] Sender

 [Subcode] cmdbf:InvalidMDRFault

 [Reason] The MDR is not registered.

 [Detail] <cmdbf:mdrId> xs:anyURI </cmdbf:mdrId> 1611

1613

1614

1615

1616

1617

7.2.3.4 Registration Error 1612

There was a problem with registering the items or relationships.

The properties are as follows:

 [Code] Sender

 [Subcode] cmdbf:RegistrationErrorFault

 [Reason] An error occurred while registering.

 [Detail] <cmdbf:recordId> xs:anyURI </cmdbf:recordId> 1618

1620
1621
1622
1623

7.3 Deregister 1619

The Deregister operation is used by an MDR to notify the Registration Service that the data that an MDR
has about an item or relationship will no longer be registered. Each item or relationship needs to be
deregistered only once, regardless of the number of <instanceId> elements provided in the register
request.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 47

7.3.1 Deregister Operation 1624

The pseudo-schema for the Deregister operation is as follows: 1625

<deregisterRequest> 1626
 <mdrId>xs:anyURI</mdrId> 1627
 <itemIdList> 1628
 <instanceId>cmdbf:MdrScopedIdType</instanceId> * 1629
 <itemIdList> ? 1630
 <relationshipIdList> 1631
 <instanceId>cmdbf:MdrScopedIdType</instanceId> * 1632
 <relationshipIdList> ? 1633
</deregisterRequest> 1634

1635

1637
1638

1640
1641
1642

1644
1645
1646

1648
1649
1650

1652
1653
1654

1656

The following subclauses describe additional constraints on the Deregister operation pseudo-schema.

7.3.1.1 mdrId 1636

The <mdrId> is the ID of the MDR deregistering its data. This ID shall be the ID used when the data was
registered using the Register request.

7.3.1.2 itemIdList 1639

The <itemIdList> element lists items being deregistered. The list contains any number of
<instanceId> elements. However, if the list contains zero <instanceId> elements, including the
<itemIdList> element serves no purpose.

7.3.1.3 itemIdList/instanceId 1643

The <instanceId> serves as a key for the <item>. The <instanceId> shall be either the
<instanceId> from the Register request or an <alternateInstanceId> from a
<registerResponse>. An <instanceId> should not be repeated in the list.

7.3.1.4 relationshipIdList 1647

The <relationshipIdList> element lists the relationships being deregistered. The list contains any
number of <instanceId> elements. However, if the list contains zero <instanceId> elements,
including the <relationshipIdList> element serves no purpose.

7.3.1.5 relationshipIdList/instanceId 1651

The <instanceId> serves as a key for the <relationship>. The <instanceId> shall be either the
<instanceId> from the Register request or an <alternateInstanceId> from a
<registerResponse>. An <instanceId> should not be repeated in the list.

7.3.2 Deregister Response 1655

The pseudo-schema for the response to a Deregister operation is as follows:

<deregisterResponse> 1657
 <deregisterInstanceResponse> 1658
 <instanceId>cmdbf:MdrScopedIdType</instanceId> 1659
 <accepted /> ? 1660
 <declined> 1661
 <reason>xs:string</reason> * 1662

Configuration Management Database (CMDB) Federation Specification DSP0252

48 DMTF Standard Version 1.0.0

 </declined> ? 1663
 <deregisterInstanceResponse> * 1664
</deregisterResponse> 1665

1666

1668
1669
1670
1671

1673

1675

1676

1678
1679
1680

1681

1683
1684

1686
1687
1688

1689

1690

1691

1692

1693

1695

The following subclauses describe additional constraints on the Deregister response pseudo-schema.

7.3.2.1 deregisterInstanceResponse 1667

The <deregisterInstanceResponse> element indicates the action taken for one item or relationship
in the Deregister request. There can be any number of <deregisterInstanceResponse> elements.
There should be exactly one <deregisterInstanceResponse> element per item or relationship in the
Register request.

7.3.2.2 deregisterInstanceResponse/instanceId 1672

The <instanceId> element provides the ID from the Deregister request for an item or relationship.

7.3.2.3 deregisterInstanceResponse/accepted 1674

The <accepted> element indicates that the item or relationship instance was accepted.

Exactly one of either the <accepted> or <declined> elements shall be present.

7.3.2.4 deregisterInstanceResponse/declined 1677

The <declined> element indicates that the deregistration of the item or relationship instance was
declined. An example of when a Deregister request might be declined is when the Registration Service
does not recognize <instanceId> in the Deregister request.

Exactly one of either the <accepted> or <declined> elements shall be present.

7.3.2.5 deregisterInstanceResponse/declined/reason 1682

The <reason> element includes zero or more strings that contain the reasons that the deregistration was
declined.

7.3.3 Deregister Operation Faults 1685

The faults defined in this section are generated if the condition stated in the preamble is met. Faults are
targeted at a destination endpoint according to the fault-handling rules defined by the Web service
binding.

The definitions of faults in this section use the following properties:

 [Code] The fault code.

 [Subcode] The fault subcode.

 [Reason] The English language reason element.

 [Detail] The detail element. If absent, no detail element is defined for the fault.

7.3.3.1 Invalid MDR Id 1694

The MDR ID specified on an item is not recognized.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 49

The properties are as follows: 1696

1697

1698

1699

 [Code] Sender

 [Subcode] cmdbf:InvalidMDRFault

 [Reason] The MDR is not registered.

 [Detail] <cmdbf:mdrId> xs:anyURI </cmdbf:mdrId> 1700

1702

1703

1704

1705

1706

7.3.3.2 Deregistration Error 1701

There was a problem with deregistering the items or relationships.

The properties are as follows:

 [Code] Sender

 [Subcode] cmdbf:DeregistrationErrorFault

 [Reason] An error occurred while deregistering.

 [Detail] <cmdbf:recordId> xs:anyURI </cmdbf:recordId> 1707

1710
1711
1712
1713
1714
1715

1716
1717
1718
1719
1720

1721
1722

1723
1724

1725
1726
1727

1729
1730
1731

8 Service Metadata 1708

8.1 Overview 1709

The register and query operations defined in this specification have a set of optional features that may be
supported by a particular implementation. There are also a number of extensibility points in the
specification that allow for the anticipated variability in implementations. One key point of variation is the
data model or models supported for record types at a given MDR. Prior to sending register or query
messages to an MDR, it may be necessary to inspect the capabilities and data models supported by that
particular MDR.

The schema defined in this section includes two elements, <queryServiceMetadata> and
<registrationServiceMetadata>, that can be used to indicate which optional features and data
models (or record types) are supported by a particular implementation. It is recommended that each MDR
implementation include an instance of the appropriate <queryServiceMetadata> and/or
<registrationServiceMetadata> elements as part of the policies describing the implementation.

An example of how these elements can be incorporated into a WS-Policy <policy> element and then
associated with the implementation’s WSDL binding is provided in ANNEX F.

The subclauses in this section describe the service metadata schema elements
<queryServiceMetadata> and <registrationServiceMetadata> and their contents.

Any MDR supporting the GraphQuery operation shall support an <itemTemplate> with
<instanceIdConstraint> query at a minimum. Other query capabilities are optional. The service
metadata for the MDR should indicate which optional query capabilities are supported.

8.2 Common Service Metadata Elements 1728

Both <queryServiceMetadata> and <registrationServiceMetadata> elements have common
<serviceDescription> and <recordTypeList> child elements to describe the service and list the
record types supported by the service. These are described here for later reference.

Configuration Management Database (CMDB) Federation Specification DSP0252

50 DMTF Standard Version 1.0.0

8.2.1 serviceDescription 1732

The required <serviceDescription> element is used to associate the service metadata with the MDR
that is implementing this service. The <mdrId> is the only required element in the
<serviceDescription>. The other optional elements in the <serviceDescription>, including an
extensibility element, allow for further description of the service implementation.

1733
1734
1735
1736

1737 The pseudo-schema of the contents of a <serviceDescription> element is as follows:

<serviceDescription> 1738
 <mdrId>xs:anyURI</mdrId> 1739
 <serviceId>xs:anyURI</serviceId> ? 1740
 <description xml:lang=”xs:language” xs:string</description> * 1741
 xs:any * 1742
</serviceDescription> 1743

1745

1747
1748
1749

1751
1752
1753

1755
1756
1757

1758

8.2.1.1 serviceDescription/mdrId 1744

The required <mdrId> is the ID of the MDR that is providing this service.

8.2.1.2 serviceDescription/serviceId 1746

<serviceId> is optional if there is only one instance of this service type (possible service types are
query or registration) for each MDR ID. If there is more than one instance of a service type for an MDR
ID, <serviceId> is mandatory so metadata can be correctly associated with the instance.

8.2.1.3 serviceDescription/description 1750

The optional <description> element(s) may be used to describe the service in the languages of choice
for human consumption. The xml:lang attribute is required. If there are multiple <description>
elements, it is expected that each will have a different value for xml:lang.

8.2.2 recordTypeList 1754

The <recordTypeList> is used to enumerate the elements that are considered valid for use as records
in the implementation of this service. This list of supported record types may change over time and should
be kept current by the implementation.

The pseudo-schema of the contents of a <recordTypeList> element is as follows:

<recordTypeList> 1759
 <recordTypes namespace="xs:anyURI" schemaLocation="xs:anyURI" ? > 1760
 <recordType localName="xs:NCName" appliesTo="xs:string"> 1761
 <superType namespace="..." localName="..."/> * 1762
 xs:any * 1763
 </recordType> * 1764
 </recordTypes> * 1765
</recordTypeList> 1766

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 51

8.2.2.1 recordTypeList/recordTypes 1767

For each different namespace that contains record types supported by the implementation, a
<recordTypes> element should be included in the metadata that includes the namespace,
schemaLocation if appropriate, and the list of the element names from that namespace which are
supported by the implementation as <recordType> elements.

1768
1769
1770
1771

1772
1773

1774
1775
1776

1778
1779
1780

1781
1782

1783
1784
1785

1787
1788
1789

1790
1791
1792
1793

1794
1795
1796

@namespace – This mandatory attribute gives the namespace of the data model that includes XML
elements that correspond to record types supported by the implementation.

@schemaLocation – This optional attribute should be included when there is a URI that can be
resolved to an XML schema representation of the elements belonging to the namespace listed in the
namespace attribute.

8.2.2.2 recordTypeList/recordTypes/recordType 1777

A <recordType> element identifies an element that is supported as a record type in the implementation.
Each <recordType> element shall be from the namespace identified in the containing <recordTypes>
element.

@localName – The value of this attribute corresponds to the localName of a supported XML
element that is a valid record type for the implementation.

@appliesTo – This attribute shall be one of three values indicating whether this element is valid as a
record in a relationship, item, or both. The values for this attribute are from the enumeration,
"relationship", "item", or "both".

8.2.2.3 recordTypeList/recordTypes/recordType/superType 1786

Record types are often extensions of other record types. A record type is an extension of another record
type if it has all the properties of the other record type or is the source or target of a relationship that does
not apply to the other record type. Figure 6 shows two examples of extensions.

In the left example LinuxComputerSystem is an extension of ComputerSystem, which in turn is an
extension of ManagedElement. LinuxComputerSystem has all the properties of ComputerSystem plus
adds some other properties specific to Linux. Alternatively or in addition, LinuxComputerSystem could be
the source or target of a relationship that does not apply to all ComputerSystem instances.

In the right example MultiFunctionPrinter is an extension of both FaxMachine and Printer because it has
all the properties of FaxMachine and Printer. FaxMachine and Printer are both extensions of IODevice
because they both have the one property in IODevice.

Configuration Management Database (CMDB) Federation Specification DSP0252

52 DMTF Standard Version 1.0.0

ManagedElement

ComputerSystem

LinuxComputerSystem

IODevice

– description

FaxMachine

– description
– faxNumber

Printer

– description
– printSpeed

MultiFunctionPrinter

– description
– faxNumber
– printSpeed

 1797

1798

1799
1800
1801

1802
1803

1804

1805

1806

1807

1808

1809

1810

1812
1813
1814

1815

Figure 6 – Record Type Extension Examples

The response to a query for a record type X may contain instances of X or instances of any subtype of X,
i.e., any type that declares X to be a super type. A record type is considered a subtype of another record
type if all the following are true:

 its definition contains all the properties of the super type, and each of these is identically named
and typed,

 it is valid as the source or target of any relationship that is valid for the super type,

 the characterization of the super type applies to the subtype.

A subtype may contain other properties. A record type may have multiple super types.

The <superType> element may be used to indicate an extension relationship between record types.

The attributes are:

@namespace – The namespace of the QName of the super type.

@localName – The localName of the QName of the super type.

8.3 queryServiceMetadata 1811

An instance of the <queryServiceMetadata> includes the description of the MDR, including the ID of
the MDR implementing the Query Service, the supported query capabilities and the supported records, or
data model, for the given implementation being modeled.

The pseudo-schema of the contents of a <queryServiceMetadata> element is as follows:

<queryServiceMetadata> 1816
 <serviceDescription> ... </serviceDescription> 1817
 <supportedOptionSet>xs:anyURI</supportedOptionSet> * 1818
 <queryCapabilities> 1819
 <relationshipTemplateSupport depthLimit="xs:boolean" 1820
 minimumMaximum="xs:boolean" 1821

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 53

 xs:anyAttribute /> ? 1822
 <contentSelectorSupport recordTypeSelector="xs:boolean" 1823
 propertySelector="xs:boolean" 1824
 xs:anyAttribute /> ? 1825
 <recordConstraintSupport ...> ... </recordConstraintSupport> ? 1826
 <xpathSupport> 1827
 <dialect>xs:anyURI</dialect>* 1828
 </xpathSupport> ? 1829
 xs:any * 1830
 </queryCapabilities> ? 1831
 <recordTypeList> ... </recordTypeList> 1832
 xs:any * 1833
</queryServiceMetadata> 1834

1836
1837

1839
1840
1841
1842
1843

1844
1845
1846
1847
1848

1849
1850
1851

1852

8.3.1 queryServiceMetadata/serviceDescription 1835

The required <serviceDescription> element is used to identify this implementation of the Query
Service, as previously described.

8.3.2 queryServiceMetadata/supportedOptionSet 1838

An option set is a predefined set of query capabilities supported by the service. Each option set is
identified by a URI. Listing an option set URI in a <supportedOptionSet> element means that the
service supports all the capabilities that are part of this option set. It doesn’t imply that the service does
not support additional capabilities, just that those that are part of the option set are guaranteed to be
supported.

If the <queryServiceMetadata> element also contains a <queryCapabilities> section, the
content of the <queryCapabilities> should list a superset of all the capabilities in all the advertised
option sets. However, the mere presence of a <supportedOptionSet> element is sufficient to
advertise the corresponding capabilities, even if a follow-on <queryCapabilities> element fails to list
them.

In other words, the set of capabilities advertised by the query service is the union of all the capabilities
that are part of all the listed option sets (using <supportedOptionSet>) and all the capabilities listed in
the <queryCapabilities> section.

This specification only defines two option sets, described below.

8.3.2.1 Complete Option Set 1853

The URI for this option set is http://schemas.dmtf.org/cmdbf/1/optionSet/query-complete. 1854

1855
1856

The complete option set indicate that all query features described in this specification are supported. It is
equivalent to the following <queryCapabilities> element:

<queryCapabilities> 1857
 <relationshipTemplateSupport depthLimit="true" 1858
 minimumMaximum="true" /> 1859
 <contentSelectorSupport recordTypeSelector="true" 1860
 propertySelector="true" /> 1861
 <recordConstraintSupport recordTypeConstraint="true" 1862
 propertyValueConstraint="true"> 1863
 <propertyValuesOperators equal="true" less="true" 1864

http://schemas.dmtf.org/cmdbf/1/optionSet/query-complete

Configuration Management Database (CMDB) Federation Specification DSP0252

54 DMTF Standard Version 1.0.0

 lessOrEqual="true" greater="true" 1865
 greaterOrEqual="true" contains="true" 1866
 like="true" isNull="true" /> 1867
 </recordConstraintSupport> 1868
 <xpathSupport> 1869
 <dialect>http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1</dialect> 1870
 <dialect>http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath2</dialect> 1871
 </xpathSupport> 1872
</queryCapabilities> 1873

1875

1876
1877

1878
1879

1880

1881

1882

8.3.2.2 Base Option Set 1874

The URI for this option set is http://schemas.dmtf.org/cmdbf/1/optionSet/query-basic.

The base option set indicates that all features listed in this specification are supported with the following
exceptions:

 The @depthLimit attribute is not supported on relationship templates (relationships need to be
traversed hop by hop).

 The @minimum and @maximum attributes on relationship template are not supported.

 Xpath constraints on item templates and relationship templates are not supported.

This option set is equivalent to the following <queryCapabilities> element:

<queryCapabilities> 1883
 <relationshipTemplateSupport depthLimit="false" 1884
 minimumMaximum="false" /> 1885
 <contentSelectorSupport recordTypeSelector="true" 1886
 propertySelector="true" /> 1887
 <recordConstraintSupport recordTypeConstraint="true" 1888
 propertyValueConstraint="true"> 1889
 <propertyValuesOperators equal="true" less="true" 1890
 lessOrEqual="true" greater="true" 1891
 greaterOrEqual="true" contains="true" 1892
 like="true" isNull="true" /> 1893
 </recordConstraintSupport> 1894
 <xpathSupport/> 1895
</queryCapabilities> 1896

1898
1899
1900
1901

8.3.3 queryServiceMetadata/queryCapabilities 1897

The <queryCapabilities> element indicates which query techniques described in this specification
are supported by this particular implementation of the query operation. The <queryCapabilities>
element includes an extensibility element for representing that query extensions beyond the scope of this
specification are supported by the implementation.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 55

8.3.4 queryServiceMetadata/queryCapabilities/relationshipTemplateSupport 1902

When present, the <relationshipTemplateSupport> element indicates that the query operation of
the implementation supports queries that include <relationshipTemplate> elements.

1903
1904

1905
1906
1907

1908
1909
1910
1911

1913
1914

1915
1916
1917

1918
1919
1920

1922
1923
1924

@depthLimit – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries with a <depthLimit> element in a
<relationshipTemplate>.

@minimumMaximum – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries based on the cardinality of relationships as specified by a
@minimum or @maximum attribute on a <sourceTemplate> or <targetTemplate> element of
a <relationshipTemplate>.

8.3.5 queryServiceMetadata/queryCapabilities/contentSelectorSupport 1912

When present, the <contentSelectorSupport> element indicates that the query operation of the
implementation supports queries that include <contentSelector> elements.

@recordTypeSelector – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries with <selectedRecordType> specified in the
<contentSelector> of an <itemTemplate> or <relationshipTemplate>.

@propertyTypeSelector – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries with <selectedProperty> specified in the
<contentSelector> of an <itemTemplate> or <relationshipTemplate>.

8.3.6 queryServiceMetadata/queryCapabilities/recordConstraintSupport 1921

The <recordConstraintSupport> element indicates whether the query implementation will process
queries that use constraints in the <itemTemplate> or <relationshipTemplate>. The complete
pseudo-schema of this element is as follows:

<recordConstraintSupport recordTypeConstraint="xs:boolean" 1925
 propertyValueConstraint="xs:boolean" xs:anyAttribute > 1926
 <propertyValuesOperators equal="xs:boolean" less="xs:boolean" 1927
 lessOrEqual="xs:boolean" greater="xs:boolean" 1928
 greaterOrEqual="xs:boolean" contains="xs:boolean" 1929
 like="xs:boolean" isNull="xs:boolean" xs:anyAttribute />? 1930
</recordConstraintSupport> 1931

1932
1933
1934

1935
1936
1937
1938
1939

1941
1942
1943

@recordTypeConstraint – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries with <recordType> constraints in an <itemTemplate> or
<relationshipTemplate>.

@propertyValueConstraint – The Boolean value of this attribute indicates whether the Query
Service implementation will process queries with <propertyValue> constraints in an
<itemTemplate> or <relationshipTemplate>. When <propertyValue> constraints are
supported the metadata should also indicate which operators are supported by including the
<propertyValueOperators> element.

8.3.7 recordConstraintSupport/propertyValueOperators 1940

The <propertyValueOperators> element is used to indicate which operators are supported by the
query implementation. There is a mandatory attribute for each operator defined by this specification and
an extensibility attribute for other operators not defined by this specification.

Configuration Management Database (CMDB) Federation Specification DSP0252

56 DMTF Standard Version 1.0.0

The Boolean value of each of the following attributes indicates whether the Query Service implementation
will process queries with a property value operator of the same name as the attribute: @equal, @less,
@lessOrEqual, @greater, @greaterOrEqual, @contains, @like, and @isNull.

1944
1945
1946

1948
1949

1951
1952

1953

1954
1955

1957
1958

1960
1961
1962

1963

8.3.8 queryServiceMetadata/queryCapabilities/xpathSupport 1947

The <xpathSupport> element is used to indicate that the query implementation supports the dialects of
XPath represented by the contained <dialect> elements.

8.3.9 queryServiceMetadata/queryCapabilities/xpathSupport/dialect 1950

The <dialect> elements indicate which dialects of XPath will be processed by the query
implementation. The URI used as the value of the dialect should be either of the following:

 one of the URIs listed in this specification for XPath dialects

 a URI defined by another specification to represent an XPath dialect appropriate for use in the
query operation defined in this specification

8.3.10 queryServiceMetadata/recordTypeList 1956

The <recordTypeList> is used to list the record types that can be returned by the Query Service, as
previously described.

8.4 registrationServiceMetadata 1959

An instance of the <registrationServiceMetadata> includes the description of the MDR
implementing the Registration Service, including the ID of the MDR, and the supported records, or data
model, for the given implementation being modeled.

The pseudo-schema for the contents of a <registrationServiceMetadata> element is as follows:

<registrationServiceMetadata> 1964
 <serviceDescription> ... </serviceDescription> 1965
 <recordTypeList> ... </recordTypeList> 1966
 xs:any * 1967
</registrationServiceMetadata> 1968

1970
1971

1973
1974

8.4.1 registrationServiceMetadata/serviceDescription 1969

The required <serviceDescription> element is used to identify this implementation of the
Registration Service, as previously described.

8.4.2 registrationServiceMetadata/recordTypeList 1972

The <recordTypeList> is used to list the record types that can be accepted by the Registration
Service, as previously described.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 57

ANNEX A
(

1975

1976

1977

1978

1979

normative)

URIs and XML Namespaces

This annex lists the XML namespaces and other URIs defined in this specification.

URI Description

http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1 Represents an XPath 1 dialect that can be used in
queries (see 6.5.1).

http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath2 Represents an XPath 2 dialect that can be used in
queries (see 6.5.2).

http://schemas.dmtf.org/cmdbf/1/optionSet/query-complete Represents the set of query service options that
contains all possible capabilities (see 8.3.2.1).

http://schemas.dmtf.org/cmdbf/1/optionSet/query-basic Represents a set of query service options that
provide basic functionality for a variety of query
expressions (see 8.3.2.2).

http://schemas.dmtf.org/cmdbf/1/action/fault Represents an action in the SOAP binding for faults.

http://schemas.dmtf.org/cmdbf/1/tns/serviceData Represents the target namespace of the XML
schema used by the CMDBf Query and Registration
services.

http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata Represents the target namespace of the CMDBf
Service Description XML schema.

http://schemas.dmtf.org/cmdbf/1/tns/query Represents the target namespace in the WSDL for
the query service.

http://schemas.dmtf.org/cmdbf/1/tns/registration Represents the target namespace in the WSDL for
the registration service.

 1980

Configuration Management Database (CMDB) Federation Specification DSP0252

58 DMTF Standard Version 1.0.0

ANNEX B
(

1981

1982

1983

1984

1985
1986

normative)

CMDB Federation XSD and WSDL

Normative copies of the XML schemas for this version of this specification may be retrieved by resolving
the URLs below.

http://schemas.dmtf.org/cmdbf/1/tns/serviceData/dsp8040_1.0.0.xsd 1987
http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata/dsp8041_1.0.0.xsd 1988

1989
1990

Normative copies of the XML schemas for the current version of this specification (which is this version
unless it is superseded) may be retrieved by resolving the URLs below.

http://schemas.dmtf.org/cmdbf/1/tns/serviceData/dsp8040.xsd 1991
http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata/dsp8041.xsd 1992

1993
1994

1995
1996

Any xs:documentation content in XML schemas for this specification is informative and provided only
for convenience.

Normative copies of the WSDL for the query and registration services described in this version of this
specification may be retrieved by resolving the URLs below.

http://schemas.dmtf.org/cmdbf/1/tns/query/dsp8043_1.0.0.wsdl 1997
http://schemas.dmtf.org/cmdbf/1/tns/registration/dsp8042_1.0.0.wsdl 1998

1999
2000
2001

Normative copies of the WSDL for the query and registration services described in the current version of
this specification (which is this version unless it is superseded) may be retrieved by resolving the URLs
below.

http://schemas.dmtf.org/cmdbf/1/tns/query/dsp8043.wsdl 2002
http://schemas.dmtf.org/cmdbf/1/tns/registration/dsp8042.wsdl 2003

2004

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 59

ANNEX C
(normative)

Fault Binding to SOAP

2005

2006

2007

2008

Faults may be generated for any CMDBf operation. The bindings of faults for both SOAP 1.1 and 2009
SOAP 1.2 are described in this annex. 2010

2011

2012

2013

2014

2015
2016

2017
2018

2019

The definitions of faults use the following properties:

 [Code] The fault code.

 [Subcode] The fault subcode.

 [Reason] A language-localized readable description of the error.

 [Detail] Optional detail elements. If more than one detail element is defined for a fault,
implementations shall include the elements in the order that they are specified.

Services that generate CMDBf faults shall set the [Code] property to either "Sender" or "Receiver". These
properties are serialized into text XML as shown in Table C-1.

Table C-1 – [Code] Properties

SOAP Version Sender Receiver

SOAP 1.1 S11:Client S11:Server

SOAP 1.2 S:Sender S:Receiver

The properties in Table C-1 bind to a SOAP 1.2 fault as follows: 2020

<S:Envelope> 2021
 <S:Header> 2022
 <wsa:Action> 2023
 http://schemas.dmtf.org/cmdbf/1/action/fault 2024
 </wsa:Action> 2025
 <!-- Headers elided for brevity. --> 2026
 </S:Header> 2027
 <S:Body> 2028
 <S:Fault> 2029
 <S:Code> 2030
 <S:Value> [Code] </S:Value> 2031
 <S:Subcode> 2032
 <S:Value> [Subcode] </S:Value> 2033
 </S:Subcode> 2034
 </S:Code> 2035
 <S:Reason> 2036
 <S:Text xml:lang="en"> [Reason] </S:Text> 2037
 </S:Reason> 2038
 <S:Detail> 2039
 [Detail] 2040
 ... 2041

Configuration Management Database (CMDB) Federation Specification DSP0252

60 DMTF Standard Version 1.0.0

 </S:Detail> 2042
 </S:Fault> 2043
 </S:Body> 2044
</S:Envelope> 2045

The properties in Table C-1 bind to a SOAP 1.1 fault as follows when the fault is generated as a result of
processing a CMDBf request message:

2046
2047

<S11:Envelope> 2048
 <S11:Header> 2049
 <cmdbf:fault> 2050
 <cmdbf:faultCode> [Subcode] </cmdbf:faultCode> 2051
 <cmdbf:detail> [Detail] </cmdbf:detail> 2052
 ... 2053
 </cmdbf:fault> 2054
 <!-- Headers elided for brevity. --> 2055
 </S11:Header> 2056
 <S11:Body> 2057
 <S11:Fault> 2058
 <S11:faultcode> [Code] </S11:faultcode> 2059
 <S11:faultstring> [Reason] </S11:faultstring> 2060
 </S11:Fault> 2061
 </S11:Body> 2062
</S11:Envelope> 2063

2064
2065

When binding to a CMDBf operation that supports WS-Addressing, the fault message shall include the
following action URI as the [action] property:

http://schemas.dmtf.org/cmdbf/1/action/fault 2066

Fault handling rules for operations using WS-Addressing are defined in section 6 of WS-Addressing 2067
SOAP Binding. 2068

2069

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 61

ANNEX D
(informative)

Query Examples

2070

2071

2072

2073

2074

2076
2077
2078

This annex contains two extended GraphQuery examples.

D.1 GraphQuery Example 1 2075

Let us assume that an MDR contains two types of items (people and computers) and one type of
relationship (a person "uses" a computer). The following simple query request selects all computers that
are used by a person located in California:

<query> 2079
 <itemTemplate id="user"> 2080
 <recordConstraint> 2081
 <recordType namespace="http://example.com/people" 2082
 localName="person"/> 2083
 <propertyValue namespace="http://example.com/people" 2084
 localName="state"> 2085
 <equal>CA</equal> 2086
 </propertyValue> 2087
 </recordConstraint> 2088
 </itemTemplate> 2089
 2090
 <itemTemplate id="computer"> 2091
 <recordConstraint> 2092
 <recordType namespace="http://example.com/computer" 2093
 localName="computer"/> 2094
 </recordConstraint> 2095
 </itemTemplate> 2096
 2097
 <relationshipTemplate id="usage"> 2098
 <recordConstraint> 2099
 <recordType namespace="http://example.com/computer" 2100
 localName="uses"/> 2101
 </recordConstraint> 2102
 <sourceTemplate ref="user"/> 2103
 <targetTemplate ref="computer"/> 2104
 </relationshipTemplate> 2105
 2106
</query> 2107

2108
2109

2110

2111
2112

2113

The detailed syntax and semantics of the XML elements were described in the body of this specification,
but the following summary describes the items and relationships that are returned by this query:

The <itemTemplate> called "user" (line 02) matches all items that:

 have a record with a property called "state" (in the http://example.com/people namespace) for
which the value is "CA"

 have a record named "person" (defined in the namespace "http://example.com/people")

Configuration Management Database (CMDB) Federation Specification DSP0252

62 DMTF Standard Version 1.0.0

 are the source of a relationship that matches the <relationshipTemplate> called "usage"
(line 11)

2114
2115

2116

2117

2118
2119

2120

2121

2122

2123

2124
2125

2126

The <itemTemplate> called "computer" (line 08) matches all items that:

 have a record named "computer" (defined in the namespace "http://example.com/computer")

 are the target of a relationship that matches the <relationshipTemplate> called "usage"
(line 11)

The <relationshipTemplate> called "usage" (line 11) matches all relationships that:

 have a record named "uses" (defined in the namespace "http://example.com/computer")

 have a source that matches the <itemTemplate> called "user" (line 02)

 have a target that matches the <itemTemplate> called "computer" (line 08)

As a result, if a user item does not "use" a computer, it will not be part of the response, whether or not the
user is located in California.

The following is a graphical representation of the query:

“user” itemTemplate
-State=“CA”
-Type=“person”

“computer” itemTemplate
-Type=“computer”

“usage”
relationshipTemplate

 2127

2128
2129
2130

A user in California who happens to "use" two computers is represented in the response by three items
(one for the user and one for each computer) and two relationships (from the user to each of his or her
computers). The following is a graphical representation of this response:

“user” item
<person>

<name>Joe</name>
<state>CA</state>
<city>Palo Alto</city>

</person>

“computer” item #1
<computer>

<manuf>HP</manuf>
<serial>123456789</serial>

</computer>

“usage”
relationship #1

“computer” item #2
<computer>

<manuf>Dell</manuf>
<serial>987654321</serial>

</computer>

“usage”
relationship #2

 2131

2132
2133
2134
2135

2136
2137
2138
2139

In effect, the response contains two graphs (each made of a user, a computer, and the relationship
between the two) that both meet the constraints of the query graph. In this example, the two graphs in the
response happen to overlap (they share the same "user"), but in another example they could be disjoint
(for example, if the second computer were instead "used" by another user also located in California).

If the <relationshipTemplate> element (line 11) were not part of the query, the semantics of the
query would be very different. The query would return all the items of type "person" that are in California
and all the items of type "computer". It would not return the relationships between users and computers.
The existence of these relationships would have no bearing on what items are returned.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 63

The GraphQuery operation can also use relationships to qualify instances, even when the result of the
query does not include relationships. In the previous example, suppose that we are interested only in the
computers used by people in California, not the users themselves. We can add suppressFromResult=true
to the "user" and "usage" templates in the previous query. The query result is simply the two computers
listed above.

2140
2141
2142
2143
2144

<query> 2145
 <itemTemplate id="user" suppressFromResult="true"> 2146
 <recordConstraint> 2147
 <recordType namespace="http://example.com/people" 2148
 localName="person"/> 2149
 <propertyValue namespace="http://example.com/people" 2150
 localName="state"> 2151
 <equal>CA</equal> 2152
 </propertyValue> 2153
 </recordConstraint> 2154
 </itemTemplate> 2155
 <itemTemplate id="computer"> 2156
 <recordConstraint> 2157
 <recordType namespace="http://example.com/computer" 2158
 localName="computer"/> 2159
 </recordConstraint> 2160
 </itemTemplate> 2161
 <relationshipTemplate id="usage" suppressFromResult="true"> 2162
 <recordConstraint> 2163
 <recordType namespace="http://example.com/computer" 2164
 localName="uses"/> 2165
 </recordConstraint> 2166
 <sourceTemplate ref="user"/> 2167
 <targetTemplate ref="computer"/> 2168
 </relationshipTemplate> 2169
</query> 2170

2172
2173
2174

2175
2176
2177

2178

2179

D.2 GraphQuery Example 2 2171

In this example, the data model contains item records of type ContactInfo and ComputerConfig and
relationship records of type "administers". ComputerConfigs are related to ContactInfo through the
"administers" relationship to allow for modeling logic, such as "UserA administers ComputerB."

This example queries the graph of the computers that are administered by "Pete the Lab Tech" and
returns all items and relationships involved in this graph. The response shows two computers
administrated by one user.

The data the query is executed against are as follows:

Table D-1 – "User (ContactInfo)" Data

Name Phone employeeNumber

Pete the Lab Tech 111-111-1111 109

Joe the Manager 111-111-4567 12

Frank the CEO 111-111-9999 1

Configuration Management Database (CMDB) Federation Specification DSP0252

64 DMTF Standard Version 1.0.0

Table D-2 – "Computer (ComputerConfig)" Data 2180

Name primaryMACAddress CPUType assetTag

LabMachineA 00A4B49D2F41 AMD Athlon 64 XYZ9753

LabMachineB 00A4B49D2F42 AMD Athlon 64 XYZ9876

LabMachineC 00A4B49D2H11 Intel Pentium 4 XYZ9900

LabMachineD 00A4B49D2H53 Intel Pentium 4 XYZ9912

Table D-3 – "Administers" Data 2181

"User" Name "Computer" Name adminSupportHours

Pete the Lab Tech LabMachineA 24/7

Pete the Lab Tech LabMachineB business hours only

Joe the Manager LabMachineD 24/7

The following example involves a relationship traversal: 2182

<query> 2183
 <itemTemplate id="user"> 2184
 <recordConstraint> 2185

 <recordType namespace=http://example.com/people 2186
 localName="ContactInfo"/> 2187

 <propertyValue namespace=http://example.com/people 2188
 localName="name"> 2189
 <equal>Pete the Lab Tech</equal> 2190
 </propertyValue> 2191
 </recordConstraint> 2192
 </itemTemplate> 2193
 <itemTemplate id="computer"> 2194
 <recordConstraint> 2195
 <recordType 2196

 namespace=http://example.com/computerModel 2197
 localName="ComputerConfig"/> 2198
 </recordConstraint> 2199
 </itemTemplate> 2200
 <relationshipTemplate id="administers"> 2201
 <recordConstraint> 2202
 <recordType 2203

 namespace=http://example.com/computerModel 2204
 localName="administers"/> 2205
 </recordConstraint> 2206
 <sourceTemplate ref="user"/> 2207
 <targetTemplate ref="computer"/> 2208
 </relationshipTemplate> 2209
</query> 2210

http://example.com/people
http://example.com/people
http://example.com/people
http://example.com/people
http://example.com/computerModel
http://example.com/computerModel
http://example.com/computerModel
http://example.com/computerModel

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 65

The following is a response to the GraphQuery: 2211

<queryResult> 2212
 <nodes templateId="user"> 2213
 <item> 2214
 <record xmlns:hr="http://example.com/people"> 2215
 <hr:ContactInfo> 2216
 <hr:name>Pete the Lab Tech</hr:name> 2217
 <hr:phone>111-111-1111</hr:phone> 2218
 <hr:employeeNumber>109</hr:employeeNumber> 2219
 </hr:ContactInfo> 2220
 <recordMetadata> 2221
 <recordId>http://example.com/109/Current</recordId> 2222
 </recordMetadata> 2223
 </record> 2224
 <instanceId> 2225
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2226
 <localId>http://example.com/PeteTheLabTech</localId> 2227
 </instanceId> 2228
 </item> 2229
 </nodes> 2230
 <nodes templateId="computer"> 2231
 <item> 2232
 <record xmlns:comp="http://example.com/computerModel"> 2233
 <comp:ComputerConfig> 2234
 <comp:CPUType>AMD Athlon 64</comp:CPUType> 2235
 <comp:assetTag>XYZ9753</comp:assetTag> 2236
 <comp:primaryMACAddress> 2237
 00A4B49D2F41 2238
 </comp:primaryMACAddress> 2239
 <comp:name>LabMachineA</comp:name> 2240
 ... 2241
 </comp:ComputerConfig> 2242
 <recordMetadata> 2243
 <recordId> 2244
 http://example.com/machines/XYZ9753/scanned 2245
 </recordId> 2246
 </recordMetadata> 2247
 </record> 2248
 <instanceId> 2249
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2250
 <localId>http://example.com/machines/XYZ9753</localId> 2251
 </instanceId> 2252
 </item> 2253
 <item> 2254
 <record xmlns:comp="http://example.com/computerModel"> 2255
 <comp:ComputerConfig> 2256
 <comp:CPUType>AMD Athlon 64</comp:CPUType> 2257
 <comp:assetTag>XYZ9876</comp:assetTag> 2258
 <comp:primaryMACAddress> 2259

Configuration Management Database (CMDB) Federation Specification DSP0252

66 DMTF Standard Version 1.0.0

 00A4B49D2F42 2260
 </comp:primaryMACAddress> 2261
 <comp:name>LabMachineB</comp:name> 2262
 ... 2263
 </comp:ComputerConfig> 2264
 <recordMetadata> 2265
 <recordId> 2266
 http://example.com/machines/XYZ9876/scanned 2267
 </recordId> 2268
 </recordMetadata> 2269
 </record> 2270
 <instanceId> 2271
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2272
 <localId>http://example.com/machines/XYZ9876</localId> 2273
 </instanceId> 2274
 </item> 2275
 </nodes> 2276
 <edges templateId="administers"> 2277
 <relationship> 2278
 <source> 2279
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2280
 <localId>http://example.com/PeteTheLabTech</localId> 2281
 </source> 2282
 <target> 2283
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2284
 <localId>http://example.com/machines/XYZ9876</localId> 2285
 </target> 2286
 <record xmlns:foo="http://example.com/computerModel"> 2287
 <foo:administers> 2288
 <foo:adminSupportHours> 2289
 business hours only 2290
 </foo:adminSupportHours> 2291
 </foo:administers> 2292
 <recordMetadata> 2293
 <recordId>adm10001</recordId> 2294
 </recordMetadata> 2295
 </record> 2296
 <instanceId> 2297
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2298
 <localId> 2299
 http://example.com/administers/PeteTheLabTechToLabMachineB 2300
 </localId> 2301
 </instanceId> 2302
 </relationship> 2303
 <relationship> 2304
 <source> 2305
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2306
 <localId>http://example.com/PeteTheLabTech</localId> 2307
 </source> 2308

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 67

 <target> 2309
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2310
 <localId>http://example.com/machines/XYZ9753</localId> 2311
 </target> 2312
 <record xmlns:foo="http://example.com/computerModel"> 2313
 <foo:administers> 2314
 <foo:adminSupportHours>24/7</foo:adminSupportHours> 2315
 </foo:administers> 2316
 <recordMetadata> 2317
 <recordId>adm10002</recordId> 2318
 </recordMetadata> 2319
 </record> 2320
 <instanceId> 2321
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2322
 <localId> 2323
 http://example.com/administers/PeteTheLabTechToLabMachineA 2324
 </localId> 2325
 </instanceId> 2326
 </relationship> 2327
 </edges> 2328
</queryResult> 2329

2330

Configuration Management Database (CMDB) Federation Specification DSP0252

68 DMTF Standard Version 1.0.0

ANNEX E
(informative)

Detailed UML Class Diagrams

2331

2332

2333

2334

 2335

2336 Figure E-1 – UML Class Diagrams

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 69

ANNEX F
(informative)

Sample WSDL Binding

2337

2338

2339

2340

2341
2342
2343

The following example illustrates how the interfaces defined in this specification should be described in a
Web service binding that implements the interfaces. This example also illustrates how the CMDBf service
metadata should be associated with a particular implementation of a CMDBf interface.

As shown below, this query implementation uses SOAP 1.1 over HTTP as the protocol and supports the
use of WS-Addressing if the message sender uses WS-Addressing for an asynchronous
request/response. Because this specification does not define specific WS-Addressing actions, the action
header values for WS-Addressing are determined according to the defaults described in the

2344
2345
2346
2347

WS-Addressing 1.0 – WSDL Binding specification. 2348

2349
2350
2351
2352

2353
2354

2355
2356
2357

The queryServiceMetadata element is included in a WS-Policy expression which is included by reference
in the WSDL binding to the query port type. This particular sample is of a Query Service that supports the
complete set of record constraint and selector operators defined in the specification. The metadata in the
sample also shows that XPath1 and XPath 2 are supported by the service.

The metadata for the service also includes the two record types that may be queried at this service, an
"R_ComputerSystem" data type, and a "CIM_CommonDatabase" data type.

The approach to including metadata as a policy in the WSDL is a recommended approach to creating the
WSDL documentation for the binding implementation as it allows for the file containing the WSDL binding
to completely describe the interface to the service and the options allowed by this specification.

<?xml version='1.0' encoding='UTF-8' ?> 2358

<!-- 2359

Copyright © 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 2360
DMTF is a not-for-profit association of industry members dedicated to promoting 2361
enterprise and systems management and interoperability. Members and non-members may 2362
reproduce DMTF specifications and documents provided that correct attribution is 2363
given. As DMTF specifications may be revised from time to time, the particular version 2364
and release date should always be noted. Implementation of certain elements of this 2365
standard or proposed standard may be subject to third party patent rights, including 2366
provisional patent rights (herein "patent rights"). DMTF makes no representations to 2367
users of the standard as to the existence of such rights, and is not responsible to 2368
recognize, disclose, or identify any or all such third party patent right, owners or 2369
claimants, nor for any incomplete or inaccurate identification or disclosure of such 2370
rights, owners or claimants. DMTF shall have no liability to any party, in any manner 2371
or circumstance, under any legal theory whatsoever, for failure to recognize, 2372
disclose, or identify any such third party patent rights, or for such partyâ€™s 2373
reliance on the standard or incorporation thereof in its product, protocols or testing 2374
procedures. DMTF shall have no liability to any party implementing such standard, 2375
whether such implementation is foreseeable or not, nor to any patent owner or 2376
claimant, and shall have no liability or responsibility for costs or losses incurred 2377
if a standard is withdrawn or modified after publication, and shall be indemnified and 2378
held harmless by any party implementing the standard from any and all claims of 2379
infringement by a patent owner for such implementations. For information about patents 2380
held by third-parties which have notified the DMTF that, in their opinion, such patent 2381
may relate to or impact implementations of DMTF standards, visit 2382
http://www.dmtf.org/about/policies/disclosures.php. 2383

--> 2384
 2385

Configuration Management Database (CMDB) Federation Specification DSP0252

70 DMTF Standard Version 1.0.0

<wsdl:definitions 2386
 targetNamespace="http://schemas.dmtf.org/cmdbf/1/tns/query" 2387
 xmlns:cmdbfPort="http://schemas.dmtf.org/cmdbf/1/tns/query" 2388
 xmlns:cmdbfMetadata="http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata" 2389
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 2390
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 2391
 xmlns:wsp="http://www.w3.org/ns/ws-policy" 2392
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" 2393
 xmlns:xs="http://www.w3.org/2001/XMLSchema"> 2394
 2395
 <wsdl:import location="query.wsdl" 2396
 namespace="http://schemas.dmtf.org/cmdbf/1/tns/query"> 2397
 </wsdl:import> 2398
 2399
 <!-- Subject supports WS-Addressing --> 2400
 <wsp:Policy xml:Id="SupportsWSAddressing"> 2401
 <wsam:Addressing wsp:Optional="true"> 2402
 <wsp:Policy /> 2403
 </wsam:Addressing> 2404
 </wsp:Policy> 2405
 2406
 2407
 <!-- Subject supports the referenced data model in the operations --> 2408
 <wsp:Policy xml:Id="SupportedMetadata"> 2409
 <queryServiceMetadata 2410
 xmlns="http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata"> 2411
 <serviceDescription> 2412
 <mdrId>CMDBf12345</mdrId> 2413
 </serviceDescription> 2414
 <queryCapabilities> 2415
 <contentSelectorSupport propertySelector="true" 2416
 recordTypeSelector="true" /> 2417
 <recordConstraintSupport recordTypeConstraint="true" 2418
 propertyValueConstraint="true"> 2419
 <propertyValueOperators equal="true" less="true" 2420
 greater="true" lessOrEqual="true" 2421
 greaterOrEqual="true" 2422
 contains="true" 2423
 like="false" 2424
 isNull="false" /> 2425
 </recordConstraintSupport> 2426
 <xpathSupport> 2427
 <dialect> 2428
 http://www.w3.org/TR/1999/REC-xpath-19991116 2429
 </dialect> 2430
 <dialect> 2431
 http://www.w3.org/TR/2007/REC-xpath-20070123 2432
 </dialect> 2433
 </xpathSupport> 2434

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 71

 </queryCapabilities> 2435
 2436
 <recordTypeList> 2437
 <recordTypes namespace="http://cmdbf.org" 2438
 schemaLocation="http://cmdbf.org/common_schemas/R_ComputerSystem.xsd"> 2439
 <recordType localName="R_ComputerSystem" /> 2440
 </recordTypes> 2441
 <recordTypes 2442
 namespace="http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/CIM_CommonDatabase" 2443
 schemaLocation="http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/CIM_CommonDatabase.xsd"> 2444
 <recordType localName="CIM_CommonDatabase" /> 2445
 </recordTypes> 2446
 </recordTypeList> 2447
 2448
 </queryServiceMetadata> 2449
 </wsp:Policy> 2450
 2451
 <!-- Sample Binding for SOAP 1.1 with WS-Addressing support 2452
 --> 2453
 <wsdl:binding name="QueryBinding" type="cmdbfPort:QueryPortType"> 2454
 <soap:binding style="document" 2455
 transport="http://schemas.xmlsoap.org/soap/http" /> 2456
 <wsp:PolicyReference URI="SupportsWSAddressing" /> 2457
 <wsp:PolicyReference URI="SupportedMetadata" /> 2458
 <wsdl:operation name="GraphQuery"> 2459
 <wsdl:input> 2460
 <soap:body use="literal" /> 2461
 </wsdl:input> 2462
 <wsdl:output> 2463
 <soap:body use="literal" /> 2464
 </wsdl:output> 2465
 <wsdl:fault name="UnkownTemplateID"> 2466
 <soap:fault name="UnkownTemplateID" use="literal" /> 2467
 </wsdl:fault> 2468
 <wsdl:fault name="InvalidPropertyType"> 2469
 <soap:fault name="InvalidPropertyType" use="literal" /> 2470
 </wsdl:fault> 2471
 <wsdl:fault name="XPathError"> 2472
 <soap:fault name="XPathError" use="literal" /> 2473
 </wsdl:fault> 2474
 <wsdl:fault name="UnsupportedConstraint"> 2475
 <soap:fault name="UnsupportedConstraint" use="literal" /> 2476
 </wsdl:fault> 2477
 <wsdl:fault name="UnsupportedSelector"> 2478
 <soap:fault name="UnsupportedSelector" use="literal" /> 2479
 </wsdl:fault> 2480
 <wsdl:fault name="QueryError"> 2481
 <soap:fault name="QueryError" use="literal" /> 2482
 </wsdl:fault> 2483

Configuration Management Database (CMDB) Federation Specification DSP0252

72 DMTF Standard Version 1.0.0

 </wsdl:operation> 2484
 </wsdl:binding> 2485
 2486
</wsdl:definitions> 2487

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.0 DMTF Standard 73

Bibliography 2488

2489 W3C, Web Services Addressing (WS-Addressing) 1.0: Core, May 2006,
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/ 2490

2491 W3C, Web Services Addressing 1.0 - SOAP Binding, May 2006,
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509 2492

2493 W3C, Web Services Addressing 1.0 – WSDL Binding, May 2006,
http://www.w3.org/TR/ws-addr-wsdl/ 2494

2495

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/ws-addr-wsdl/

	Foreword
	Acknowledgements
	Conventions

	Introduction
	Objectives

	Functionality
	Target IT Environment
	Out-of-Scope Implementation Details
	Technological Assumptions

	Underlying Technology
	Web Services
	Database Management Systems

	1 Scope
	2 Normative References
	2.1 Approved References
	2.2 Other References

	3 Terms and Definitions
	3.1 Requirements Terms
	3.2 Background Terminology

	4 Symbols and Abbreviated Terms
	5 Architecture
	5.1 Overview
	5.2 Roles
	5.2.1 Management Data Repository (MDR)
	5.2.2 Federating CMDB
	5.2.3 Client
	5.2.4 Administrator

	5.3 Services Overview
	5.3.1 Service Types
	5.3.1.1 Query Service
	5.3.1.2 Registration Service

	5.3.2 Federation Modes
	5.3.2.1 Push Mode
	5.3.2.2 Pull Mode

	5.3.3 Service Usage Patterns

	5.4 Identity Reconciliation
	5.5 Data Elements Overview
	5.5.1 Managed Data
	5.5.1.1 Item
	5.5.1.2 Relationship
	5.5.1.2.1 Relationship Roles

	5.5.1.3 Record

	5.5.2 Common Data Element Types

	6 Query Service
	6.1 Overview
	6.2 GraphQuery Operation Outline
	6.2.1 itemTemplate
	6.2.2 relationshipTemplate
	6.2.2.1 relationshipTemplate/sourceTemplate and relationshipTemplate/targetTemplate
	6.2.2.2 relationshipTemplate/depthLimit

	6.3 Content Selection
	6.3.1 contentSelector
	6.3.1.1 contentSelector/selectedRecordType
	6.3.1.1.1 contentSelector/selectedRecordType/selectedProperty

	6.3.1.2 contentSelector/xpathSelector
	6.3.1.2.1 contentSelector/xpathSelector/@dialect
	6.3.1.2.2 contentSelector/xpathSelector/prefixMapping
	6.3.1.2.3 contentSelector/xpathSelector/expression

	6.4 Constraints
	6.4.1 instanceIdConstraint
	6.4.2 recordConstraint
	6.4.2.1 recordConstraint/recordType
	6.4.2.2 recordConstraint/propertyValue
	6.4.2.2.1 recordConstraint/propertyValue/equal
	6.4.2.2.2 recordConstraint/propertyValue/less,recordConstraint/propertyValue/lessOrEqual,recordConstraint/propertyValue/greater, and recordConstraint/propertyValue/greaterOrEqual
	6.4.2.2.3 recordConstraint/propertyValue/contains
	6.4.2.2.4 recordConstraint/propertyValue/like
	6.4.2.2.5 recordConstraint/propertyValue/isNull
	6.4.2.2.6 Additional Attributes

	6.4.2.3 recordConstraint/xpathConstraint
	6.4.2.3.1 recordConstraint/xpathConstraint/@dialect
	6.4.2.3.2 recordConstraint/xpathConstraint /prefixMapping
	6.4.2.3.3 recordConstraint/xpathConstraint/expression

	6.5 XPath Expressions and Normalization
	6.5.1 XPath 1.0 Dialect
	6.5.2 XPath 2.0 Dialect
	6.5.3 XPath Selector Transformation
	6.5.4 XPath 1.0 Normalization
	6.5.5 XPath 2.0 Normalization

	6.6 GraphQuery Response
	6.6.1 propertySet

	6.7 GraphQuery Faults
	6.7.1 Unknown Template ID
	6.7.2 Property Type Mismatch
	6.7.3 XPath Processing Error
	6.7.4 Unsupported Constraint
	6.7.5 Unsupported Selector
	6.7.6 Expensive Query Error
	6.7.7 Query Error

	7 Registration Service
	7.1 Overview
	7.2 Register
	7.2.1 Register Operation
	7.2.1.1 mdrId
	7.2.1.2 itemList
	7.2.1.3 itemList/item
	7.2.1.4 itemList/item/instanceId
	7.2.1.5 itemList/item/record
	7.2.1.6 itemList/item/additionalRecordType
	7.2.1.7 relationshipList
	7.2.1.8 relationshipList/relationship
	7.2.1.9 relationshipList/relationship/instanceId
	7.2.1.10 relationshipList/relationship/source
	7.2.1.11 relationshipList/relationship/target
	7.2.1.12 relationshipList/relationship/record
	7.2.1.13 relationshipList/relationship/additionalRecordType

	7.2.2 Register Response
	7.2.2.1 registerInstanceResponse
	7.2.2.2 registerInstanceResponse/instanceId
	7.2.2.3 registerInstanceResponse/accepted
	7.2.2.4 registerInstanceResponse/accepted/alternateInstanceId
	7.2.2.5 registerInstanceResponse/declined
	7.2.2.6 registerInstanceResponse/declined/reason

	7.2.3 Register Operation Faults
	7.2.3.1 Invalid Record
	7.2.3.2 Unsupported Record Type
	7.2.3.3 Invalid MDR ID
	7.2.3.4 Registration Error

	7.3 Deregister
	7.3.1 Deregister Operation
	7.3.1.1 mdrId
	7.3.1.2 itemIdList
	7.3.1.3 itemIdList/instanceId
	7.3.1.4 relationshipIdList
	7.3.1.5 relationshipIdList/instanceId

	7.3.2 Deregister Response
	7.3.2.1 deregisterInstanceResponse
	7.3.2.2 deregisterInstanceResponse/instanceId
	7.3.2.3 deregisterInstanceResponse/accepted
	7.3.2.4 deregisterInstanceResponse/declined
	7.3.2.5 deregisterInstanceResponse/declined/reason

	7.3.3 Deregister Operation Faults
	7.3.3.1 Invalid MDR Id
	7.3.3.2 Deregistration Error

	8 Service Metadata
	8.1 Overview
	8.2 Common Service Metadata Elements
	8.2.1 serviceDescription
	8.2.1.1 serviceDescription/mdrId
	8.2.1.2 serviceDescription/serviceId
	8.2.1.3 serviceDescription/description

	8.2.2 recordTypeList
	8.2.2.1 recordTypeList/recordTypes
	8.2.2.2 recordTypeList/recordTypes/recordType
	8.2.2.3 recordTypeList/recordTypes/recordType/superType

	8.3 queryServiceMetadata
	8.3.1 queryServiceMetadata/serviceDescription
	8.3.2 queryServiceMetadata/supportedOptionSet
	8.3.2.1 Complete Option Set
	8.3.2.2 Base Option Set

	8.3.3 queryServiceMetadata/queryCapabilities
	8.3.4 queryServiceMetadata/queryCapabilities/relationshipTemplateSupport
	8.3.5 queryServiceMetadata/queryCapabilities/contentSelectorSupport
	8.3.6 queryServiceMetadata/queryCapabilities/recordConstraintSupport
	8.3.7 recordConstraintSupport/propertyValueOperators
	8.3.8 queryServiceMetadata/queryCapabilities/xpathSupport
	8.3.9 queryServiceMetadata/queryCapabilities/xpathSupport/dialect
	8.3.10 queryServiceMetadata/recordTypeList

	8.4 registrationServiceMetadata
	8.4.1 registrationServiceMetadata/serviceDescription
	8.4.2 registrationServiceMetadata/recordTypeList

	ANNEX A (normative)URIs and XML Namespaces
	ANNEX B (normative)CMDB Federation XSD and WSDL
	ANNEX C (normative)Fault Binding to SOAP
	ANNEX D (informative)Query Examples
	D.1 GraphQuery Example 1
	D.2 GraphQuery Example 2

	ANNEX E (informative)Detailed UML Class Diagrams
	ANNEX F (informative)Sample WSDL Binding
	Bibliography

