1

2 Document Number: DSP0201
3 Date: 2014-01-16
4 Version: 2.4.0

s Representation of CIM in XML

6 Document Type: Specification
7 Document Status: DMTF Standard

8 Document Language: en-US

10

11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

31

Representation of CIM in XML DSP0201

Copyright Notice
Copyright © 1999-2014 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php.

2 DMTF Standard Version 2.4.0

http://www.dmtf.org/about/policies/disclosures.php

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

DSP0201 Representation of CIM in XML

CONTENTS
o] 1117 o] (o SRR PPPP 6
T o] (oo 18 o3 1 o] o PPN 7
A Note 0N RENAENING t0 MOio i s e e e e e s r e e e e e s st e e e e e e e e e ssntnraeeeeaeeeaanns 7
FAN o] (=30 TNV F= T] o] o [O g U0 o7 TSRO PPEPRR 7
S Tt 0] o1 TP 9
2 NOIMMALIVE REFEIEINCES. ... eieiie ittt s sttt e ettt e s sttt e e e e bbb e e e e nnbbeeeennbaeeeennees 9
3 Terms and DEfINITIONSeiiiiiiiiie ittt e sttt e e e st e e s et e e e s ebbe e e e e nnbeeeeennbaeeeennees 9
4 Symbols and ADDreviated TeIMMSuiiiiiieie ittt e e e e e e st e e e e e e s s nbneaeeeaaeeeaanns 11
5 CIM-XML SChema REEIENCE ...ttt e et e e e e e s et aeeeeaaeeeenes 12
LT R 7= o =1 - | PP PRPRPRPPRt 12
5.1.1 Escaping, Whitespace Handling, Character REPErtOIrecccccoevevvvvereeeeeiiiiiiinneeeenn, 12
5.11.1 XML Clarifications and AMeNndmMENtS.........coovviiieeiiiiiee e 12
5.1.1.2 Character-preserving Elements and Attributes...............ccccooo oo, 13
5.1.1.3 Whitespace-tolerant Elements and Attributes..........ccccccevivivi 13
5.1.1.4 Escaping of element content and attribute valuesccccccvviviiiiiiinnnnns 13
5.1.1.5 Character REPEIOINe........ccooie e 18
5.2 ENLItY DESCHPLIONSeeiiiiiiiiie ittt ettt ettt t et e sttt e s bttt e s bbe e e e s eabn e e e s nnnneeas 18
L0 R O 11V = T o = S 18
I A O 11 Y/ o1 ST TP PP 18
R B O 10 - 11111 =Y o S 18
Y N O 1= =T o | P PO OUPPRPP 18
B5.25 Propagated ... 19
B.2.6 AITAYSIZE oo 19
B.2.7 SUPEICIASS ..cieiiieiiie e 19
B5.2.8 CIASSNAIME ...t e e e s e e e e e e e e e aneeae s 19
5.2.9 REfEIENCECIASS ...oiiiiiiiiiietee ettt e et e e e e e e b eeeeeeas 19
LI O T == U= 1 o I 1Y 1T PSSP 20
5.2.11 EmMDeddedODJECEccoiiiiiiiiiiie e 20
5.3 EIEMENt DESCIIPLIONS ...ceiiiitiiiieitiiie ettt ettt e ettt et e e s bt e e skt n e e e s aabn e e e s annneeas 20
5.3.1 Top-LeVel EIeMeENnt: CIM ..ottt e 20
5.3.2 Declaration EIBMENTS.........ouiiiiiiiiiiiieiee et e e e e s et a e e e s e eee s 21
5.3.2.1)] = O I Y AN I 0] N 21
5.3.2.2 DECLGROUP ...ttt e e e e et 21
5.3.2.3 DECLGROUP.WITHNAMEccoiiiiiieiiiiiee ittt sieee e 21
5.3.24 DECLGROUP.WITHPATH. ..ottt 21
5.3.2.5 QUALIFIER.DECLARATION.ttt 22
5.3.2.6 SCOPKE ..t 22
5.3.3 VAIUE EIBMENLSciiiiiiiiieeie et e e e e e e e 23
5.3.3.1 VALUE . ..o ittt ettt e e et e e e sttt e e e s bt e e e s tbe e e e e nnaeaeeans 23
5.3.3.2 VALUE. ARRAY ottt e e e e e e et e e e e s 24
5.3.3.3 VALUE.REFERENCE ...t 25
5.3.34 VALUE.REFARRAY ...ttt e e e e e e et e e e e s 25
5.3.35 VALUE.OBUIECT ...ttt e e et e e e e e 25
5.3.3.6 VALUE.NAMEDINSTANCE ..ot 25
5.3.3.7 VALUE.NAMEDOBUIECToviiiiiiiiieeiiiieeeiiiiee s steeeessieeeesstaeeesssaeeessnsnesesans 25
5.3.3.8 VALUE.OBJECTWITHPATH ..ottt 25
5.3.3.9 VALUE.OBJECTWITHLOCALPATHooiiiiiii ettt eieee e 26
5.3.3.10 VALUENULL ...ttt ettt e e st e e e s ntbee e e snaeeaeennaeaeean 26
5.3.3.11 VALUE.INSTANCEWITHPATH ...ooiiiiiiie ettt 26
5.3.4 Naming and Location EIEMENTS............ooiiiiiiiiiiie e 26
5.34.1 NAMESPACEPATH ...t e e 26
5.3.4.2 LOCALNAMESPACEPRATH ..o 26

Version 2.4.0 DMTF Standard 3

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134

Representation of CIM in XML DSP0201

5.3.4.3 [(1 PP 26
5.34.4 NAMESPAGCEottt st e e e e s sneeeas 27
5.3.4.5 CLASSPATH ...t st e e st neee 27
5.3.4.6 LOCALCLASSPATH ...ttt ettt ettt 27
5.3.4.7 CLASSNAME ..ottt e e st be e e e et ae e e e etaeaeeenees 27
5.3.4.8 INSTANCEPATH ..ooiiiiiiie ettt st e e e eanee s 28
5.3.4.9 LOCALINSTANCEPATH. ...ttt ettt 28
5.3.4.10 INSTANCENAME ...ttt ittt e e e e s e e s ae e e eanee s 28
5.3.4.11 OBJIECTPATH oottt ettt e e e tae e e s tae e e e e 28
5.3.4.12 KEYBINDINGotiiiiiiiiiie ettt sttt e et e e nnneee s 28
5.3.4.13 KEYVALUE ..ottt snaee e 28
5.3.5 Object Definition EIEMENLScccoi it e e e s rnne e e e 29
5.35.1 (O I F USRS 29
5.35.2 INSTANCEooiiiiiiiie ittt e st e e s snbe e e s snbe e e s snneeeas 30
5.3.5.3 QUALIFIER ...ttt ettt e e 30
5.3.5.4 [@] o I PSR 30
5.355 PROPERTY.ARRAY ..ottt e e e e et e 31
5.35.6 PROPERTY.REFERENCEcci oot 32
5.35.7 1 I 0] U 33
5.35.8 PARAMETER ... oo eeaa s 33
5.35.9 PARAMETER.REFERENCE.........cooiiiii e 33
5.3.5.10 PARAMETER.ARRAY ..ottt 34
5.3.5.11 PARAMETER.REFARRAY ...oooiiiiiiiie ittt 34
5.3.6 Message EIeMEeNtS ... 34
5.3.6.1 IMESSAGEcii ittt ettt ettt e e s 34
5.3.6.2 MULTIREQ ... etitiiitiiee ittt sttt ettt et e e st e e s smta e e s nnsae e e e snneeaesnnnneeas 35
5.3.6.3 SIMPLEREQ ..oueniiiieeei ettt e e et e e aaaaa 35
5.3.6.4 METHODGCALL ..ottt et e e e e e e e e e et e 35
5.3.6.5 PARAMVYALUE e 35
5.3.6.6 IMETHODGCALL ...ttt e e e e e e e et 37
5.3.6.7 IPARAMYALUE ... e e e s 37
5.3.6.8 MULTIRSP ..ot e e e e e e e e e e et e eeas 37
5.3.6.9 SIMPLERSP ...t 38
5.3.6.10 METHODRESPONSE ..ottt ittt seee e 38
5.3.6.11 IMETHODRESPONSEcttiitiiiiiiee ittt snaee e s 38
5.3.6.12 S (O] = PP 38
5.3.6.13 RETURNVALUEooiiiiiiiie ittt sttt st sntaee e e e s 39
5.3.6.14 IRETURNVALUEoooitiiiie ettt e e 40
5.3.6.15 L 1 I T = O 40
5.3.6.16 SIMPLEEXPREQ ... ittt e e e e et e e e e e e annaaans 40
5.3.6.17 [Y I = [7 A 40
5.3.6.18 MULTIEXPRSP ...ttt e e e e e et 41
5.3.6.19 SIMPLEEXPRSP ...t 41
5.3.6.20 EXPMETHODRESPONSEoooiiiiiiiiiiiiiee it 41
5.3.6.21 EXPPARAMVALUE ..ottt 41
5.3.6.22 ENUMERATIONCONTEXT (removed)ccuvvieiiiiieeiiiiieesniieeessiieee e 41
5.3.6.23 CORRELATOR .ottt ettt e tae e e e ntae e e e 41
ANNEX A (informative) Change HISTOIYcoiuiiiiiiiiiei ettt e e e e e sbneeeean 43
L1110 = o)Y/ S 44
4 DMTF Standard Version 2.4.0

135

136
137
138

DSP0201 Representation of CIM in XML
Tables

Table 1 - Requirements for PARAMVALUE when used in METHODCALL or METHODRESPONSE 36
Table 2 - Requirements for RETURNVALUE ...ttt 39
Version 2.4.0 DMTF Standard 5

139

140

141
142

Representation of CIM in XML

Foreword

DSP0201

The Representation of CIM in XML (DSP0201) was prepared by the DMTF CIM-XML Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability.

DMTF Standard

Version 2.4.0

143

144
145
146

147
148

149
150
151
152

153
154
155
156

157
158

159
160
161
162
163
164

165

166
167
168

169
170
171
172
173

174
175
176

177

178

179
180
181
182
183
184
185

DSP0201 Representation of CIM in XML
Introduction

This document defines an XML grammar, written in document type definition (DTD), which can be used to
represent both Common Information Model (CIM) declarations (classes, instances and qualifiers) and
CIM-XML messages for use by DSP0200 (CIM Operations over HTTP).

For convenience, the complete unannotated DTD is available as a separate document (DSP0203).

The same XML grammar is also described using XSD as DSP8044.

CIM information could be represented within XML in many different ways. In the interest of interoperability
between different implementations of CIM, there is an obvious requirement for standardization of this
representation. The following criteria have been applied in the design of the representation presented
here:

e Fully standardized technologies are used wherever possible, in preference to Working Drafts.
Where use is made of a Working Draft, the intention is to track the changes to the Working Draft
in this specification.

e Completeness is favored over conciseness (all aspects of CIM should be modeled).

Although this document makes no restrictions on the use of this mapping, a number of possible usage
scenarios exist for which the mapping should provide:

¢ XML documents conforming to this mapping that express CIM-XML declarations should be
capable of being rendered or transformed using standard techniques into other formats. In
particular, the mapping should contain sufficient information to be rendered into Managed
Object Format (MOF) syntax (DSP0004).

e The mapping should be applicable to the wire-level representation of CIM-XML messages
defined by DSP0200.

A Note on Rendering to MOF

The subset of the DTD for CIM presented in this specification that concerns object declarations (identified
by the element DECLARATION) is intended to allow expression of CIM objects in XML sufficient for
rendering into a number of formats, including MOF.

The semantic content of a MOF file is fully captured by the DTD presented herein, which makes it
possible to express any MOF conformant to DSP0004 in an equivalent XML representation using this
DTD. This includes the ability to express any of the standard MOF pragmas defined in DSP0004, with the
exception of the 1ocale and instancelocale pragmas (which are subjects for further study in the
context of localization support within CIM).

Note that the Processing Instruction mechanism defined by XML is the means by which bespoke
pragmas may be added to an XML document in an analogous manner to the #pragma extension
mechanism defined for MOF. The format of such Pls is necessarily outside the scope of this document.

A Note on Mapping Choices

There are two fundamentally different models for mapping CIM in XML:

e A Schema Mapping is one in which the XML schema is used to describe the CIM classes, and
CIM Instances are mapped to valid XML documents for that schema. (Essentially this means
that each CIM class generates its own DTD fragment, the XML element names of which are
taken directly from the corresponding CIM element names.)

e A Metaschema Mapping is one in which the XML schema is used to describe the CIM
metaschema, and both CIM classes and instances are valid XML documents for that schema.
(In other words, the DTD is used to describe in a generic fashion the notion of a CIM class or

Version 2.4.0 DMTF Standard 7

186
187

188
189
190

1901
192
193
194
195

196
197
198
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215

Representation of CIM in XML DSP0201

instance. CIM element names are mapped to XML attribute or element values rather than XML
element names.)

Although employing a schema mapping has obvious benefits (more validation power and a slightly more
intuitive representation of CIM in XML), the metaschema mapping is adopted here for the following

reasons:

It requires only one standardized metaschema DTD for CIM rather than an unbounded number
of DTDs. This considerably reduces the complexity of management and administration of XML
mappings.

An XML DTD does not allow an unordered list of elements. In a static mapping, this restriction

would require one of the following actions:

— Fixing an arbitrary order for property, method, and qualifier lists (making it harder for a
receiving application to process)

— Defining a very unwieldy mapping that accounts for all list orderings explicitly (and whose
size would grow exponentially with the number of list elements)

In a schema mapping, the names of CIM schema elements (class, property, qualifier, and
method names) populate the XML element namespace. To replicate the scoping rules on CIM
element names within an XML DTD, it would be necessary to employ XML hamespaces to
define XML schema to a per-property level of granularity. This would be extremely cumbersome
to administer and process. A metaschema mapping introduces only a small, fixed number of
terms into the XML element namespace (such as Class, Instance, Property, and so on). As an
alternative to the introduction of additional XML namespaces, some renaming of CIM elements
could be used (for example, prefixing a qualifier name with the name of its owning property and
its owning class), but this would result in XML documents that are verbose and difficult to
understand.

Although a schema mapping could allow XML-based validation of instances against classes,
this would be possible only if the entire class hierarchy were flattened prior to mapping the CIM
class to an XML schema. If this flattening was not performed, inherited properties might be
absent from the DTD, which would cause validation to fail against an instance that included the
value of an inherited property.

DMTF Standard Version 2.4.0

216

217

218
219
220
221

222
223

224

225

226
227
228

229
230

231
232

233
234

235
236

237
238

239
240

241
242

243
244

245
246

247

248
249

250
251

DSP0201 Representation of CIM in XML

Representation of CIM in XML

1 Scope

The Extensible Markup Language (XML) is a simplified subset of SGML that offers powerful and
extensible data modeling capabilities. An XML document is a collection of data represented in XML. An
XML schema is a grammar that describes the format of an XML document. An XML document is
described as valid if it has an associated XML schema to which it conforms.

The Common Information Model (CIM) is an object-oriented information model defined by the DMTF that
provides a conceptual framework for describing management data.

This document defines a standard for the representation of CIM elements and messages in XML.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ANSI/IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, August 1985,
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=30711

DMTF DSP0004, Common Information Model (CIM) Infrastructure 2.7,
http://www.dmtf.org/standards/published documents/DSP0004 2.7.pdf

DMTF DSP0200, CIM Operations over HTTP 1.4,
http://www.dmtf.org/standards/published documents/DSP0200 1.4.pdf

IETF RFC1034 Domain Names - Concepts and Facilities, November 1987,
http://tools.ietf.org/html/rfc1034

IETF RFC3986, Uniform Resource Identifiers (URI): Generic Syntax, August 1998 344
http://tools.ietf.org/html/rfc2396

ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS),
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921 ISO IEC 10646 2003(E).zip

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=II&objld=4230456 &objAction=browse&sort=subtype

W3C Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C Recommendation, September 2006,
http://www.w3.0rg/TR/2006/REC-xmlI-20060816/

W3C Namespaces in XML 1.0 (Second Edition), W3C Recommendation, August 2006,
http://www.w3.0rg/TR/REC-xml-names/

3 Terms and Definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
are defined in this clause.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),

"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described

Version 2.4.0 DMTF Standard 9

http://www.w3.org/TR/REC-xml
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=30711
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf
http://www.dmtf.org/standards/published_documents/DSP0200_1.4.pdf
http://tools.ietf.org/html/rfc1034
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/REC-xml-names/

252
253
254
255

256
257

258
259
260

261
262
263

264
265

266
267

268
269

270
271

272
273
274

275
276

277
278
279
280

281
282
283
284

285
286
287
288

289
290

201
292

Representation of CIM in XML DSP0201

in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term,
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that
ISO/IEC Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional
alternatives shall be interpreted in their normal English meaning.

The terms "clause”, "subclause”, "paragraph”, and "annex" in this document are to be interpreted as
described in ISO/IEC Directives, Part 2, Clause 5.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do
not contain normative content. Notes and examples are always informative elements.

The terms defined in DSP0004 and DSP0200 apply to this document. The following additional terms are
used in this document. Some additional more detailed terms are defined throughout the subclauses of
this document.

3.1
CIM element

one of the following components of the CIM metamodel used to define a schema: Class, instance,
property, method, parameter, or qualifier

3.2
CIM object

a namespace, class, instance, or qualifier that is defined in a CIM-XML declaration or accessible in a
WBEM server.

3.3
CIM-XML declaration
a declaration of CIM objects (classes, instances and qualifiers), using the DECLARATION element

defined in this specification. Note that "CIM declaration” was used for this term before version 2.4 of this
specification.

3.4

CIM-XML message

a request or response message in the CIM-XML protocol, using the MESSAGE element defined in this
specification. Note that "CIM message" was used for this term before version 2.4 of this specification.

3.5

CIM-XML consumer

a WBEM server, client or listener that receives a CIM-XML message, or a program that consumes a CIM-
XML declaration

3.6

CIM-XML producer

a WBEM server, client or listener that sends a CIM-XML message, or a program that produces a CIM-
XML declaration

3.7
CIM-XML protocol

the WBEM protocol that uses the CIM operations over HTTP defined in DSP0200 and the representation
of CIM in XML defined in this specification

10 DMTF Standard Version 2.4.0

293
294

295

296
297

298
299
300

301
302
303
304

305
306

307
308
309

310
311

312

313
314

315
316

317

318
319

320

321
322

323

324
325

326

327
328

329

DSP0201 Representation of CIM in XML

3.8
CIM-XML schema

the XML schema for representing CIM in XML, defined by this specification

3.9
numeric character reference
an escaped UCS character, as defined in clause 4.1 of the W3C XML specification as character

reference, using the hexadecimal or decimal representation of its UCS code point. Examples are
"s#x0D; " for the carriage return character or "s#65; " for the character "aA".

3.10
UCS character

A character from the Universal Multiple-Octet Coded Character Set (UCS) defined in ISO/IEC 10646. Also
known as Unicode character. For an overview on UCS characters in CIM, see DSP0004.

3.11
whitespace
one or more consecutive occurrences of any of the characters space (U+0020), carriage return

(U+000D), line feed (U+000A) or horizontal tab (U+0009), consistent with the whitespace definition in the
W3C XML specification.

3.12
XML element

a component of XML that is defined using the ELEMENT construct in the DTD

4 Symbols and Abbreviated Terms
The following symbols and abbreviations are used in this document.

4.1
CIM

Common Information Model, defined in DSP0004

4.2

DTD

Document Type Definition, defined in the W3C XML specification

4.3
MOF

Managed Object Format, defined in DSP0004

4.4

XML

Extensible Markup Language, defined in the W3C XML specification

4.5
XSD

XML Schema Definition, defined in the W3C XSD specifications

Version 2.4.0 DMTF Standard 11

330

331
332

333
334

335

336
337

338
339
340
341

342

343
344

345
346

347
348
349

350
351
352
353
354

355
356
357
358

359
360
361
362

363

364
365
366
367

368

Representation of CIM in XML DSP0201

5 CIM-XML Schema Reference

This clause describes the CIM-XML schema using DTD. DSP0203 defines the same DTD as this
specification without any annotations. DSP8044 defines the CIM-XML schema using XSD.

In case of differences between these three documents, this specification (DSP0201) overrules the other
two.

5.1 General

5.1.1 Escaping, Whitespace Handling, Character Repertoire
This clause defines the rules for escaping of CIM values in CIM-XML.

This clause uses the term "CIM value" to refer to values at the CIM level (e.g. the value of a property of a
CIM instance). Values at the level of XML elements and attributes are referred to as "content of the
element" or "attribute value", consistent with the W3C XML specification (for example, the content of a
VALUE element may represent the value of a property of a CIM instance).

5.1.1.1 XML Clarifications and Amendments

The rules for escaping and handling of whitespace defined in the W3C XML specification apply to this
specification, with the following clarifications and amendments:

e The W3C XML specification uses the terms "XML processor" and "application". CIM-XML does
not distinguish software layers within a WBEM client, server or listener.

In this specification, any definitions in the W3C XML specification that use these two terms shall
be interpreted as if both of these software layers were within the WBEM client, server or
listener.

e The W3C XML specification defines in clause 2.10 that any whitespace not in XML markup shall
be passed by the XML processor to the application. Further, it defines in clause 2.10 that all
characters shall be preserved. In clause 2.11, it defines that carriage return characters
(U+000D) with and without directly following line feed characters (U+000A) shall be converted
into line feed characters when processing external parsed entities (that is, XML files).

This specification defines certain elements and attributes or certain uses thereof as character-
preserving or whitespace-tolerant. Clauses 5.1.1.2 and 5.1.1.3 define the escaping and
whitespace handling rules for character-preserving and whitespace-tolerant elements and
attributes.

e The W3C XML specification defines in clause 2.4 provisions for escaping. It does not explicitly
state how those provisions apply in the context of a protocol that uses XML in its payload., and
it does not explicitly state whether any character may be escaped using numeric character
references (vs. just certain special characters).

This specification defines rules on escaping in 5.1.1.4.

e The W3C XML specification defines in clause 2.7 that character data may be represented using
CDATA sections (<! [CDATA[... 11>),butitis not clear from the text whether attribute
values are considered character data for this purpose. The syntax in its BNF rule [10] clarifies
that attribute values cannot be represented using CDATA sections.

This specification points that out in 5.1.1.4.3.

12 DMTF Standard Version 2.4.0

369
370

371

372
373

374

375
376

377

378
379
380

381

382
383

384

385
386

387

388
389
390
391

392

393

394
395

396

397

398
399
400
401
402

403

404

405
406

DSP0201 Representation of CIM in XML

5.1.1.2 Character-preserving Elements and Attributes
This specification defines certain XML elements and attributes or uses thereof to be character-preserving.

For character-preserving elements, attributes, or uses thereof, the following applies:

e CIM-XML producers shall set the content of the element or the value of the attribute from the
CIM value with only the following transformation:

1) Escaping as defined in 5.1.1.4.

° CIM-XML consumers shall set the CIM value from the content of the element or the value of the
attribute with only the following transformation:

1) Unescaping as defined in 5.1.1.4.

NOTE: For character-preserving elements and attributes, all characters are preserved, including any kind of
whitespace characters and specifically including any carriage return characters (U+000D), regardless of their position
within a string (that is, even if they are followed by line feed, U+000A).

5.1.1.3 Whitespace-tolerant Elements and Attributes

Any XML elements, attributes, or uses thereof not explicitly defined to be character-preserving (see
5.1.1.2) are considered whitespace-tolerant.

For whitespace-tolerant elements, attributes, or uses thereof, the following applies:

e CIM-XML producers shall set the content of the element or the value of the attribute from the
CIM value with only the following transformations, in the stated order:

DEPRECATED

1) Adding zero or more leading or trailing whitespace characters of the following set of
characters: U+0009 (horizontal tab), U+000A (line feed), U+0020 (space). Adding
such leading or trailing characters is discouraged and is described only for
compatibility with implementations of earlier versions of this specification.

DEPRECATED

2) Escaping as defined in 5.1.1.4.

. CIM-XML consumers shall set the CIM value from the content of the element or the value of the
attribute with only the following transformations, in the stated order:

1) Unescaping as defined in 5.1.1.4.

DEPRECATED

2) Removing any leading or trailing characters from the set of whitespace characters
defined in the previous list item about CIM-XML producers. For compatibility with
implementations of earlier versions of this specification, such removal is
recommended for an implementation even if the addition of such leading or trailing
characters is not performed by that implementation.

DEPRECATED

5.1.1.4 Escaping of element content and attribute values

The provisions (that is, keywords like "shall", etc.) about escaping defined in clause 2.4 of the W3C XML
specification shall be interpreted to apply to CIM-XML producers.

Version 2.4.0 DMTF Standard 13

407
408

409

410
411
412

413
414

415

416
417
418

419
420
421
422
423

424

425
426
427

428
429

430
431
432
433

434

435
436
437
438
439
440

441

442

443
444

445

Representation of CIM in XML DSP0201

CIM-XML consumers shall support the unescaping of all forms of escaping permissible for CIM-XML
producers, as defined in the W3C XML specification and in this specification.

5.1.1.4.1 Use of XML numeric character references

Clarifying clause 2.4 of the W3C XML specification, CIM-XML producers may escape any characters in
the content of any elements and in the value of any attributes using XML numeric character references
(e.0. s#x26; or &).

Note that this includes all UCS characters valid for the element or attribute in question, not just those that
may be escaped using XML entity references (see 5.1.1.4.2).

5.1.1.4.2 Use of XML entity references

Clarifying clause 2.4 of the W3C XML specification, CIM-XML producers may escape the respective
characters in the content of any elements (except when within a CDATA section) and in the value of any
attributes using the XML entity references defined in that clause:

&
<
>
'

"
5.1.1.4.3 Use of CDATA sections

Restricting clause 2.7 of the W3C XML specification, CDATA sections may be used by CIM-XML
producers only for representing all or part of the content of any elements defined as #PCDATA. CDATA
sections shall not be used in the content of any other elements or in the value of any attributes.

Note that some CIM-XML elements are defined as #PCDATA but do not represent string-typed CIM
values (for example, VALUE and KEYVALUE elements for boolean and numeric CIM values, or HOST).

Note that the W3C XML specification permits the use of multiple non-nested CDATA sections in the
content of a single element, and the use of CDATA sections that cover only a subset of the element
content. Using multiple CDATA sections may occur for example in the presence of nested embedded
instances (see 5.1.1.4.5).

5.1.1.4.4 Combining different escaping mechanisms

Note that the W3C XML specification permits the combined use of numeric character references, entity
references and CDATA sections in the content of the same element. Note that entity and character
references can only be combined with CDATA sections if the CDATA section covers a subset of the
character data and the references are used in the portion of the character data that is outside of the
CDATA section. Entity and character references that occur in CDATA sections are not invalid, but they
are interpreted as a sequence of characters, rather than a character reference.

Example:

The following VALUE element:

<VALUE>XML-escaped: & < & <![CDATA[CDATA section escaped: & <
&]1]1></VALUE>

has the following CIM value after unescaping:

14 DMTF Standard Version 2.4.0

446

447

448
449
450

451
452
453
454

455
456
457

458
459
460
461
462
463
464
465
466
467

468

469

470
471
472
473
474
475
476
477
478
479
480
481
482

DSP0201 Representation of CIM in XML

XML-escaped: & < & CDATA section escaped: & < &

5.1.1.4.5 Nested embedded objects

An embedded object in the value of a property in an embedded instance is termed "nested embedded
object". Such nesting may occur with arbitrary depth, whereby the non-leaf levels always are embedded
instances and the leaf level may be an embedded instance or an embedded class.

Each level of nested embedded objects shall be escaped separately, treating the result of the previous
escaping as input to the next level of escaping. What is escaped at each level, is always the value of the
string-typed property defined as the embedded object or embedded instance, that is, the content of the
VALUE element representing that property value, as described in 5.3.3.1.1.

Nested escaping using XML numeric character references (see 5.1.1.4.1) or entity references (see
5.1.1.4.2) works automatically by applying the escaping rules on the string-typed property value
representing the embedded object.

Escaping using CDATA sections (see 5.1.1.4.3) requires a specific approach in order for it to work with
nested embedded objects, because CDATA sections cannot simply be nested within each other. The
character data that needs to be escaped again in context of an outer embedded instance already
contains the CDATA section of the inner embedded object. One approach that works in this situation is to
use two adjacent CDATA sections for the outer escaping that split each end marker (11>) of the inner
CDATA section such that its first portion (for example 1]) goes into the first (outer) CDATA section and
its remainder (in this case >) goes into the second (outer) CDATA section. This prevents the end parker
of an inner CDATA section to end an outer CDATA section. The unchanged start marker of an inner
CDATA section does not hurt, because once in the outer CDATA section, the inner start marker is
encountered but is treated as normal character data.

Example with a nesting level of two:

Class definitions in MOF:

class A {
[EmbeddedInstance ("B")]
string InstanceOfB;

i

class B {
[EmbeddedInstance ("C")]
string InstanceOfC;

i

class C {
string PropC;
bi

Version 2.4.0 DMTF Standard 15

483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

Representation of CIM in XML DSP0201

Representation of an instance of class A using escaping with XML entity references. The color
scheme indicates the levels of nesting. One can see that the number of nested applications of XML-
escaping matches the nesting level of the instances:

<INSTANCE CLASSNAME="A">

<PROPERTY NAME="InstanceOfB" TYPE="string" EmbeddedObject="instance">
<VALUE>
&1t; INSTANCE CLASSNAME="B">

&1t ; PROPERTY NAME="InstanceOfC" TYPE="string"
EmbeddedObject="instance">
&1t;VALUE&QL;
& 1t; INSTANCE CLASSNAME="B"&gt;

& 1t; PROPERTY NAME="PropC" TYPE="string"&gt;
& 1t; VALUE&gt;a string&lt; /VALUE&gt;
& 1t; /PROPERTY& gt;

& 1t; /INSTANCE& gt;
&1t; /VALUE&Qt;
&1lt; /PROPERTY>

&1t; /INSTANCE>
</VALUE>

</PROPERTY>

</INSTANCE>

16 DMTF Standard Version 2.4.0

510
511
512
513
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

551

552
553

554
555

DSP0201 Representation of CIM in XML

Representation of an instance of class A using escaping with CDATA sections. One can see that the
usage of the CDATA section for escaping the embedded instance of B in property A.InstanceOfB
uses one simple application of CDATA escaping. However, an end marker was found in the data to
be escaped. Therefore, two adjacent CDATA sections are used when escaping the value of property
A.InstanceofB, whose boundary cuts the inner end marker into two parts.

<INSTANCE CLASSNAME="A">

<PROPERTY NAME="InstanceOfB" TYPE="string" EmbeddedObject="instance">
<VALUE>
<! [CDATA[<- start marker of first outer
CDATA section
<INSTANCE CLASSNAME="B">

<PROPERTY NAME="InstanceOfC" TYPE="string"
EmbeddedObject="instance">
<VALUE>
<! [CDATA[<- start marker of inner CDATA
section
<INSTANCE CLASSNAME="B">

<PROPERTY NAME="PropC" TYPE="string">
<VALUE>a string</VALUE>

</PROPERTY>
</INSTANCE>
end marker of inner CDATA
1l ! <- section, cut into two parts
1111><! [CDATA[>
N O A <- end marker of first and
start marker of second
outer CDATA section
</VALUE>
</PROPERTY>
</INSTANCE>
11> <- end marker of second outer

CDATA section
</VALUE>
</PROPERTY>

</INSTANCE>
5.1.1.4.6 Requirements for escaping

For better interoperability, the following rules on escaping apply to CIM-XML producers, in addition to the
rules defined in the W3C XML specification:

e UCS characters in the range of U+0000 to U+001F should be escaped, using any of the
escaping mechanisms described in 5.1.1.

Version 2.4.0 DMTF Standard 17

556

557
558

559
560
561

562

563
564

565
566
567

568
569
570

571

572
573

574

575
576

577

578

579
580

581
582
583

584

585

586
587

588
589
590
591

592
593

Representation of CIM in XML DSP0201

5.1.1.5 Character Repertoire

The following rules about the repertoire of UCS characters apply for representing the CIM-XML payload:
e If the XML declaration of the CIM-XML payload specifies version="1.0"

— The valid UCS characters in the range of U+0020 to U+10FFFF may be used.
— The UCS characters U+0009, U+000A, U+000D may be used.
— The other UCS characters in the range of U+0000 to U+001F shall not be used.

e If the XML declaration of the CIM-XML payload specifies version="1.1":

— The valid UCS characters in the range of U+0001 to U+10FFFF may be used.
— The UCS character U+0000 shall not be used.

Note that these rules are consistent with the W3C XML specification; XML 1.0 only supports
representation of the UCS characters U+0009, U+000A, U+000D in the range of U+0000 to U+001F.
XML 1.1 extends the support for that range to all characters except U+0000.

Note that DSP0004 permits string and charl6 typed values to use all UCS characters in the range of
U+0000 to U+001F. Thus, CIM-XML supports only a subset of that range, depending on the XML version
used.

5.2 Entity Descriptions

This subclause describes each of the parameter entities used in the CIM-XML schema vocabulary. The
use of parameter entities has been adopted to highlight common features of the DTD.

5.2.1 CIMName

The CIMName entity describes the name of a CIM element (class, instance, method, property, qualifier,
or parameter). The value shall be a legal CIM element name (DSP0004).

<!ENTITY % CIMName "NAME CDATA #REQUIRED">

5.2.2 CIMType

The CIMType entity describes the allowed type descriptions for a non-reference CIM property, CIM
qualifier, or non-reference CIM method parameter.

<!ENTITY % CIMType "TYPE
(boolean | string | charl6 | uint8 | sint8 | uintl6 | sintl6 | uint32 |
sint32 | uint64 | sint64 | datetime | real32 | realocd)">

5.2.3 QualifierFlavor

The QualifierFlavor entity describes the flavor settings for a CIM qualifier, modeled as XML attributes.

DEPRECATION NOTE: The TOINSTANCE attribute is deprecated and may be removed from the QualifierFlavor
entity in a future version of this document. Use of this qualifier is discouraged.

<!ENTITY % QualifierFlavor "OVERRIDABLE (true|false) 'true'
TOSUBCLASS (truel| false) 'true'
TOINSTANCE (truel| false) 'false'
TRANSLATABLE (true|false) 'false'">

5.2.4 ClassOrigin

The ClassOrigin entity describes the originating class of a CIM property or method.

18 DMTF Standard Version 2.4.0

594
595

596
597

598

599

600
601

602
603
604

605

606

607
608
609
610

611

612
613

614
615

616

617
618

619
620

621

622
623

624

625

626
627

DSP0201 Representation of CIM in XML
The originating class of a CIM property or method for the purpose of the ClassOrigin entity is the leaf-
most class that defines or overrides the property or method.

The CLASSORIGIN attribute defines the name of the originating class of the CIM element represented by
the XML element to which the attribute is attached.

<!ENTITY % ClassOrigin "CLASSORIGIN CDATA #IMPLIED">

5.2.5 Propagated

The Propagated entity is a convenient shorthand for the PROPAGATED attribute, which may apply to a
CIM property, method, or qualifier.

This attribute indicates whether the definition of the CIM property, qualifier, or method is local to the CIM
class (respectively, instance) in which it appears, or was propagated without modification from the
underlying subclass (respectively, class), as defined by the DSP0004.

<!ENTITY % Propagated "PROPAGATED (true]|false) 'false'">

Uses of the PROPAGATED attribute include:

e To facilitate the rendering of CIM-XML declarations into MOF syntax, which by convention only
describes local overrides in a CIM subclass or instance

e Tofilter XML representations of CIM classes or instances so that they can be returned as
responses to CIM operation requests (DSP0200), which require only local elements

5.2.6 ArraySize

The ArraySize entity is a convenient shorthand for the ARRAYSIZE attribute.

<!ENTITY % ArraySize "ARRAYSIZE CDATA #IMPLIED">

The ARRAYSIZE attribute defines the size of the array when it is a fixed-length array (see DSP0004).
The value of this attribute (if it is present) shall be a positive integer.

5.2.7 SuperClass

The SuperClass entity is a convenient shorthand for the SUPERCLASS attribute.

<!ENTITY % SuperClass "SUPERCLASS CDATA #IMPLIED">

This attribute defines the name of the superclass. Where it is omitted, it shall be inferred that the owning
element has no superclass.

5.2.8 ClassName

The ClassName entity is a convenient shorthand for the CLASSNAME attribute. The value shall be a
legal CIM class name (DSP0004).

<!ENTITY % ClassName "CLASSNAME CDATA #REQUIRED">

5.2.9 ReferenceClass

The ReferenceClass entity is a convenient shorthand for the REFERENCECLASS attribute. If this entity is
present, the value shall be a legal CIM class name (DSP0004).

Version 2.4.0 DMTF Standard 19

628

629
630
631

632

633

634
635
636
637

638
639

640

641
642

643

644
645

646
647
648

649
650
651

652
653

654
655

656
657
658

659
660
661
662

663
664
665
666

Representation of CIM in XML DSP0201

<!ENTITY % ReferenceClass "REFERENCECLASS CDATA #IMPLIED">

The value defines the class name for the reference, and the requirement for the existence of this attribute
depends on the element in which it is used. The expected behavior is that the REFERENCECLASS
attribute shall exist for classes and should not exist for instances.

5.2.10 ParamType

The ParamType entity describes the allowed type descriptions for parameter values or return values.

<!ENTITY % ParamType "PARAMTYPE

(boolean | string | charl6 | uint8 | sint8 | uintl6 | sintl6 | uint32 |
sint32 | uinto64 | sint64 | datetime | real32 | realocd | reference |
object | instance) ">

DEPRECATED: The values "object™" and "instance" have been deprecated in version 2.4.0 of this
specification because they are not used.

5.2.11 EmbeddedObject

The EmbeddedObiject entity defines an embedded object or an embedded instance. This entity may be
applied only to entities that have the Type string.

<!ENTITY % EmbeddedObject " (object | instance) #IMPLIED">

This attribute is to be used to represent the existence of an EMBEDDEDINSTANCE or
EMBEDDEDOBJECT qualifier on the corresponding metadata (method, parameter, or property).

If the EMBEDDEDOBJECT qualifier is defined for the method, parameter, or property, the
EmbeddedObiject attribute shall be attached to the corresponding PROPERTY in any instance,
PARAMVALUE, or RETURNVALUE with the value "object".

If the EMBEDDEDINSTANCE qualifier exists for the method, parameter, or property, the
EmbeddedObiject attribute shall be attached to the corresponding PROPERTY in any instance,
PARAMVALUE, or RETURNVALUE with the value "instance".

5.3 Element Descriptions

This subclause describes each of the elements in the CIM-XML schema.

5.3.1 Top-Level Element: CIM
The CIM element is the root element of every XML document that is valid with respect to this schema.

Each document takes one of two forms: it contains a single MESSAGE element that defines a CIM-XML
message (to be used in DSP0200), or it contains a DECLARATION element that is used to declare a set
of CIM objects.

<!ELEMENT CIM (MESSAGE | DECLARATION) >
<!ATTLIST CIM
CIMVERSION CDATA #REQUIRED
DTDVERSION CDATA #REQUIRED>

The CIMVERSION attribute defines the version of the DSP0004 to which the XML document conforms. It
shall be in the form of "M.N.U", where M is the major version of the specification, N is the minor version of
the specification, and U is the update version of the specification, each in their decimal representation
without leading zeros. Any draft letter in the version of the specification shall not be represented in the

20 DMTF Standard Version 2.4.0

http://www.dmtf.org/viewvc/documents/specifications/DSP0201/DSP0201.html?view=co#SecMESSAGE
http://www.dmtf.org/viewvc/documents/specifications/DSP0201/DSP0201.html?view=co#SecDECLARATION

667
668
669

670
671
672
673
674
675
676

677

678
679

680

681
682

683
684

685

686
687
688

689
690
691

692

693
694
695

696

697
698

699
700
701

702

703
704

705
706

DSP0201 Representation of CIM in XML

attribute (for example, 2.3.0, 2.4.0). Implementations need to validate only the major version, as all minor
and update versions are backward compatible. Implementations may look at the minor or update version
to determine additional capabilities.

The DTDVERSION attribute defines the version of DSP0201 (this document) to which the XML document
conforms. It shall be in the form of "M.N.U", where M is the major version of the specification, N is the
minor version of the specification, and U is the update version of the specification, each in their decimal
representation without leading zeros. Any draft letter in the version of the specification shall not

be represented in the attribute (for example, 2.2.0, 2.3.0). Implementations need to validate only the
major version, as all minor and update versions are backward compatible. Implementations may look at
the minor or update version to determine additional capabilities.

5.3.2 Declaration Elements

This subclause defines those XML elements that are concerned with expressing the declaration of CIM
objects.

5.3.2.1 DECLARATION

The DECLARATION element defines a set of one or more declarations of CIM objects. These are
partitioned into logical declaration subsets.

<!ELEMENT DECLARATION
(DECLGROUP | DECLGROUP.WITHNAME | DECLGROUP.WITHPATH) +>

5.3.2.2 DECLGROUP

The DECLGROUP element defines a set of CIM class, instance, and qualifier declarations. It may
optionally include a NAMESPACEPATH or LOCALNAMESPACEPATH element, which, if present, defines
the common namespace in which all objects within the group are declared.

The objects within the group are CIM classes, instances, and qualifiers.

<!ELEMENT DECLGROUP
((LOCALNAMESPACEPATH |[NAMESPACEPATH) ?, QUALIFIER.DECLARATION*, VALUE.OBJECT*)>

5.3.2.3 DECLGROUP.WITHNAME

The DECLGROUP.WITHNAME element defines a set of CIM class, instance, and qualifier declarations. It
may optionally include a NAMESPACEPATH or LOCALNAMESPACEPATH element, which, if present,
defines the common namespace in which all objects within the group are declared.

The objects within the group are CIM classes, instances, and qualifiers.

The DECLGROUP.WITHNAME element extends the DECLGROUP element in the sense that any
instance declaration contains an explicit instance name (that is, a model path in the terms of DSP0004).

<!ELEMENT DECLGROUP.WITHNAME
((LOCALNAMESPACEPATH | NAMESPACEPATH)?, QUALIFIER.DECLARATION*,
VALUE . NAMEDOBJECT*) >

5.3.2.4 DECLGROUP.WITHPATH

The DECLGROUP.WITHPATH element defines a set of CIM class and instance declarations. Each object
is declared with its own independent naming and location information.

<!ELEMENT DECLGROUP.WITHPATH
(VALUE.OBJECTWITHPATH | VALUE.OBJECTWITHLOCALPATH) *>

Version 2.4.0 DMTF Standard 21

707
708

709
710
711
712

713
714
715

716
717
718
719
720
721
722
723

724
725

726
727
728
729
730

731
732
733

734
735

736

737
738

739
740
741
742
743
744
745
746
747

748
749

Representation of CIM in XML DSP0201

5.3.2.5 QUALIFIER.DECLARATION
The QUALIFIER.DECLARATION element defines a single CIM qualifier declaration.

A VALUE or a VALUE.ARRAY subelement shall be present if the qualifier declaration has a non-NULL
default value defined. A VALUE subelement is used if the qualifier has a non-array type. A
VALUE.ARRAY subelement is used if the qualifier has an array type. Absence of the VALUE and
VALUE.ARRAY subelements shall be interpreted as a default value of NULL.

The SCOPE subelement, if present, defines the valid set of scopes for this qualifier. Absence of the
SCOPE subelement implies that there is no restriction on the scope at which the qualifier may be applied
(so that it has “any” scope in the terminology of DSP0004).

<!ELEMENT QUALIFIER.DECLARATION
(SCOPE?, (VALUE | VALUE.ARRAY)?)>
<!ATTLIST QUALIFIER.DECLARATION

$CIMName;

$SCIMType; #REQUIRED
ISARRAY (truel| false) #IMPLIED
$ArraySize;

%$QualifierFlavor;>

The NAME attribute (defined by the CIMName entity) defines the name of the qualifier, and the TYPE
attribute (defined by the CIMType entity) and ISARRAY attributes together define the CIM type.

The ISARRAY attribute shall be present if the qualifier declares no default value, in order to infer whether
the qualifier has an array type. The ISARRAY attribute should be absent if the qualifier declares a non-
NULL default value; in this case, whether the qualifier has an array type can be deduced from whether a
VALUE or VALUE.ARRAY element is used to declare that default. If the ISARRAY attribute is present, its
value shall be consistent with the declared qualifier default value.

The ARRAYSIZE attribute (defined by the ArraySize entity) shall not be present. Its use on this element
has been deprecated in version 2.4 of this document. Note that DSP0004 defines that qualifier types that
are arrays need to be variable-length arrays.

The flavor attributes declared using the QualifierFlavor entity define the propagation and override
semantics for the qualifier.

53.2.6 SCOPE

The SCOPE element defines the scope of a QUALIFIER.DECLARATION when there are restrictions on
the scope of the qualifier declaration.

<!ELEMENT SCOPE EMPTY>
<!ATTLIST SCOPE

CLASS (true| false) "false"
ASSOCIATION (true|false) "false"
REFERENCE (true| false) "false"
PROPERTY (true| false) "false"
METHOD (true| false) "false"
PARAMETER (true| false) "false"
INDICATION (true|false) "false">

The attributes define which scopes are valid. A SCOPE element shall declare at least one attribute with a
true value. (Otherwise, the qualifier would have no applicable scope.)

22 DMTF Standard Version 2.4.0

750
751

752

753
754

755
756
757
758
759

760

761
762
763
764
765
766
767

768
769

770
771
772
773
774
775

776
777

778
779
780

781
782
783
784

785
786
787

788
789
790

DSP0201 Representation of CIM in XML

5.3.3 Value Elements

This subclause defines those XML elements that are concerned with expressing CIM-typed values.

5.3.3.1 VALUE

The VALUE element is used to define a single (non-array), non-reference, non-NULL CIM value.

<!ELEMENT VALUE (#PCDATA)>

Because the same element is used for values of all CIM types, the CIM type determines the format of the
content of the VALUE element, as defined in the following subclauses of this clause. These subclauses
also define when the VALUE element is character-preserving (see 5.1.1.2). In most cases, the CIM type
is provided using the TYPE or PARAMTY PE attributes of the direct or an indirect parent element of the
VALUE element.

5.3.3.1.1 String Values

If the CIM type is string, the content of the VALUE element shall be a sequence of zero or more UCS
characters that represent the CIM value. An empty content of the VALUE element value represents an
empty string (that is, ™ in MOF). The character repertoire defined for the CIM string type shall be
supported as defined in DSP0004 and 5.1.1.5. The content of the VALUE element shall not have
additional surrounding string delimiter characters (such as double-quote or single-quote characters)
compared to the CIM value. The actual representation of UCS characters depends on the encoding
attribute defined in the XML declaration (<?xml ... 2>).

This use of the VALUE element is character-preserving (see 5.1.1.2).
5.3.3.1.2 Character Values

If the CIM type is charle6, the content of the VALUE element shall be a single UCS character that
represents the CIM value. The character repertoire defined for the CIM charl6 type shall be supported as
defined in DSP0004 and 5.1.1.5. The content of the VALUE element shall not have additional surrounding
string delimiter characters (such as double-quote or single-quote characters) compared to the CIM value.
The actual representation of the UCS character depends on the encoding attribute defined in the XML
declaration (<?xml ... 2>).

This use of the VALUE element is character-preserving (see 5.1.1.2).
5.3.3.1.3 Real Values

If the CIM type is real32 or real64, the content of the VALUE element shall conform to the format
defined by the following ABNF rules and shall represent the CIM value, where decimalDigit is any
character from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

["+" / "-"] *decimalDigit "." l*decimalDigit [("e" / "E") ["+" / "-"]
l*decimalDigit] / specialState

specialState = "INF" / "-INF" / "NaN"

The basis for the exponent shall be 10. The significand shall be represented with a precision of at least 9
decimal digits for real32 and at least 17 digits for real64. Trailing zeros in the fractional part and leading
zeros in the whole part of the significand may be omitted. Leading zeros in the exponent may be omitted.

NOTE: This definition of a minimum precision guarantees that the value of CIM real types in their binary
representation (defined by IEEE 754) does not change when converting it to the decimal representation and back to
the binary representation.

Version 2.4.0 DMTF Standard 23

791
792
793
794
795
796

797
798

799
800
801

802
803

804
805

806
807

808
809
810

811
812

813
814

815
816
817
818

819
820
821

822
823

824

825
826

827
828

Representation of CIM in XML DSP0201

The special states for floating point numbers defined by IEEE 754, +Infinity, -Infinity, and the NaN states,
shall be represented by the literals "INF", "-INF", and "NaN", respectively (consistent with the XML
datatypes xs: float and xs:double defined in XML Schema, Part 2). The NaN states shall all be
represented by the same string, "NaN". These literals shall be produced with the lexical case as stated;
they shall be consumed using case insensitive parsing, for backward compatibility with existing
implementations.

This use of the VALUE element is whitespace-tolerant (see 5.1.1.3).
5.3.3.1.4 Boolean Values

If the CIM type is boolean, the content of the VALUE element shall be either TRUE or FALSE and shall
represent the CIM value. These values shall be treated as case-insensitive by CIM-XML consumers. CIM-
XML producers should use upper case.

This use of the VALUE element is whitespace-tolerant (see 5.1.1.3).
5.3.3.1.5 Integer Values

If the CIM type belongs to the set {uint8, uint16, uint32, uinte64}, the content of the VALUE element
shall be a valid unsigned decimal or hexadecimal value that represents the CIM value.

If the CIM type belongs to the set{sint8, sint16, sint32, sint64}, the content of the VALUE element
shall be a valid signed decimal or hexadecimal value that represents the CIM value.

Decimal values have the format defined by the following ABNF rule, where decimalDigit is any
character from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and positiveDecimalDigit is any decimal digit
other than 0:

["+" / "-"] (positiveDecimalDigit *decimalDigit / "O0")
The leading sign character shall not be used when the CIM type is unsigned.

Hexadecimal values have the format defined by the following ABNF rule, where hexDigit is either a
decimalDigit or a character from the set{a, A, b, B, ¢, C,d, D, e, E, £, F}

["+" / "="] ("0x" / "0X") l*hexDigit
The leading sign character shall not be used when the CIM type is unsigned.
This use of the VALUE element is whitespace-tolerant (see 5.1.1.3).
5.3.3.1.6 Datetime Values

If the CIM type is datetime, the content of the VALUE element shall be a valid datetime value that
represents the CIM value, as defined in detail by DSP0004. (For interval values, the format is
ddddddddhhmmss . mmmmmm : 000; for absolute values, the format is yyyymmddhhmmss . mmmmmmsutc.)

The value shall not be surrounded by string delimiter characters (such as double-quote or single-quote
characters).

This use of the VALUE element is character-preserving (see 5.1.1.2).

NOTE: This use of the VALUE element needs to be character-preserving in order to properly handle the
case where a key property has datetime type and its TYPE attribute is not provided (see KEYVALUE).

5.3.3.2 VALUE.ARRAY

The VALUE.ARRAY element is used to represent a CIM value of array type.

24 DMTF Standard Version 2.4.0

829
830
831

832
833

834
835

836
837

838
839
840

841
842
843

844
845

846
847

848
849

850
851

852
853

854

855

856
857

858

859

860
861

862
863

864
865

DSP0201 Representation of CIM in XML

CIM arrays are classified as "Bag", "Ordered", or "Indexed" (refer to DSP0004) using the ARRAYTYPE
qualifier. If the array is Ordered or Indexed, the subelements of VALUE.ARRAY shall appear in the order
of the array entries.

If the value of an array entry is NULL, the VALUE.NULL subelement shall be used to represent the array
entry. Otherwise, the VALUE subelement shall be used.

NOTE: For string datatypes, a VALUE element with an empty PCDATA value indicates an empty string (that is, ™).

<!ELEMENT VALUE.ARRAY (VALUE | VALUE.NULL) *>

5.3.3.3 VALUE.REFERENCE
The VALUE.REFERENCE element is used to define a single CIM reference property value.

If a LOCALCLASSPATH or LOCALINSTANCEPATH subelement is used, the target object is assumed to
be on the same host. If a CLASSNAME or INSTANCENAME subelement is used, the target object is
assumed to be in the same namespace.

<!ELEMENT VALUE.REFERENCE
(CLASSPATH | LOCALCLASSPATH | CLASSNAME | INSTANCEPATH | LOCALINSTANCEPATH |
INSTANCENAME) >

5.3.3.4 VALUE.REFARRAY
The VALUE.REFARRAY element is used to represent the value of an array of CIM references.

CIM arrays are classified as "Bag", "Ordered", or "Indexed" (refer to DSP0004) using the ARRAYTYPE
qualifier. If the array is Ordered or Indexed, the subelements shall appear in the order of the array entries.

If the value of an array entry is NULL, the VALUE.NULL subelement shall be used to represent the array
entry. Otherwise, the VALUE.REFERENCE subelement shall be used.

<!ELEMENT VALUE.REFARRAY (VALUE.REFERENCE | VALUE.NULL) *>

5.3.3.5 VALUE.OBJECT

The VALUE.OBJECT element is used to define a value that comprises a single CIM class or instance
definition.

<!ELEMENT VALUE.OBJECT (CLASS | INSTANCE)>

5.3.3.6 VALUE.NAMEDINSTANCE

The VALUE.NAMEDINSTANCE element is used to define a value that comprises a single named CIM
instance definition.

<!ELEMENT VALUE.NAMEDINSTANCE (INSTANCENAME, INSTANCE)>

5.3.3.7 VALUE.NAMEDOBJECT

The VALUE.NAMEDOBJECT element is used to define a value that comprises a single named CIM class
or instance definition.

<!ELEMENT VALUE.NAMEDOBJECT (CLASS | (INSTANCENAME, INSTANCE)) >

5.3.3.8 VALUE.OBJECTWITHPATH

The VALUE.OBJECTWITHPATH element is used to define a value that comprises a single CIM object
(class or instance) definition with additional information that defines the absolute path to that object.

Version 2.4.0 DMTF Standard 25

866

867

868
869

870
871

872

873
874

875
876

877
878

879

880

881
882

883

884
885

886
887

888

889
890

891
892

893
894

895
896

897

898
899

Representation of CIM in XML DSP0201

<!ELEMENT VALUE.OBJECTWITHPATH ((CLASSPATH, CLASS) | (INSTANCEPATH, INSTANCE))>

5.3.3.9 VALUE.OBJECTWITHLOCALPATH

The VALUE.OBJECTWITHLOCALPATH element is used to define a value that comprises a single CIM
object (class or instance) definition with additional information that defines the local path to that object.

<!ELEMENT VALUE.OBJECTWITHLOCALPATH
((LOCALCLASSPATH, CLASS) | (LOCALINSTANCEPATH, INSTANCE))>

5.3.3.10 VALUE.NULL

The VALUE.NULL element is used to represent a NULL value.

NOTE: In some cases, omission of a subelement indicates the NULL value, instead of using VALUE.NULL.

<!ELEMENT VALUE.NULL EMPTY>

5.3.3.11 VALUE.INSTANCEWITHPATH

The VALUE.INSTANCEWITHPATH element is used to define a value that comprises a single CIM
instance definition with additional information that defines the absolute path to that object.

<!ELEMENT VALUE.INSTANCEWITHPATH (INSTANCEPATH, INSTANCE)>

5.3.4 Naming and Location Elements

This clause defines those XML elements that are concerned with expressing the name and location of
CIM objects (hamespaces, classes, instances and qualifiers).

5.3.4.1 NAMESPACEPATH

The NAMESPACEPATH element is used to define a namespace path. It consists of a HOST element and
a LOCALNAMESPACEPATH element.

The NAMESPACE elements shall appear in hierarchy order, with the root namespace appearing first.

<!ELEMENT NAMESPACEPATH (HOST, LOCALNAMESPACEPATH)>

5.3.4.2 LOCALNAMESPACEPATH

The LOCALNAMESPACEPATH element is used to define a local namespace path (one without a host
component). It consists of one or more NAMESPACE elements (one for each namespace in the path).

<!ELEMENT LOCALNAMESPACEPATH (NAMESPACE+)>

5.3.4.3 HOST

The HOST element is used to define a single host, optionally including a port number.
<!ELEMENT HOST (#PCDATA)>

The format of the content of the HOST element shall conform to the following ABNF rule:
hostport = host [":" port]

Where host and port are ABNF rules defined in REC3986.

If port is not specified, the CIM-XML consumer shall assume the port numbers registered with IANA for
the CIM-XML protocol as defaults:

26 DMTF Standard Version 2.4.0

900
901

902
903

904
905
906
907

908
909
910
911

912
913
914
915

916

917

918
919
920

921

922

923
924

925

926

927
928

929

930

931

932
933
934

935

DSP0201 Representation of CIM in XML

e port 5988, for use with CIM-XML over HTTP
e port 5989, for use with CIM-XML over HTTPS

This specification defines the following additional rules for using the ABNF rules from RFC3986 for the
content of the HOST element:

e host (and port) shall not use URI percent-encoding

e reg-name (used to specify hostnames) is restricted to conform to the syntax for DNS domain
names as defined in section 3.1 of REC1034 (that is, segments are separated by a dot, each
segment is limited to 63 characters, and the total length is limited to 255 characters)

Note that specifying zone identifiers (also known as zone indices) for IPv6 addresses does not make
sense in IPv6 addresses that are transmitted in a protocol to another host, because their meaning is
strictly local to the originating host. For this reason, the syntax defined by the IpPv6address ABNF rule
from REC3986 (which does not permit the use of zone identifiers) is sufficient.

Implementations shall support the specification of port, and the syntax defined by IPv4address and
reg-name. Implementations should in addition support the syntax defined by IPv6address.
Implementations do not need to support the syntax defined by the TPFuture ABNF rule from RFC3986
at this point.

5.3.4.4 NAMESPACE

The NAMESPACE element is used to define a single namespace component of a namespace path.

<!ELEMENT NAMESPACE EMPTY>
<!ATTLIST NAMESPACE
$CIMName; >

The NAME attribute (defined by the CIMName entity) defines the name of the namespace.

5.3.45 CLASSPATH

The CLASSPATH element defines the absolute path to a CIM class. It is formed from a hamespace path
and class name.

<!ELEMENT CLASSPATH (NAMESPACEPATH, CLASSNAME) >

53.4.6 LOCALCLASSPATH

The LOCALCLASSPATH element defines the local path to a CIM class. It is formed from a local
namespace path and class name.

<!ELEMENT LOCALCLASSPATH (LOCALNAMESPACEPATH, CLASSNAME) >

5.3.4.7 CLASSNAME

The CLASSNAME element defines the qualifying name of a CIM class.

<!ELEMENT CLASSNAME EMPTY>
<!ATTLIST CLASSNAME
$CIMName; >

The NAME attribute (defined by the CIMName entity) defines the name of the class.

Version 2.4.0 DMTF Standard 27

Representation of CIM in XML DSP0201

936 5.3.4.8 INSTANCEPATH

937 The INSTANCEPATH element defines the absolute path to a CIM instance. It comprises a namespace
938 path and an instance name (model path).

939 <!ELEMENT INSTANCEPATH (NAMESPACEPATH, INSTANCENAME)>

940 5.3.49 LOCALINSTANCEPATH

941 The LOCALINSTANCEPATH element defines the local path to a CIM instance. It comprises a local
942 namespace path and an instance name (model path).

943 <!ELEMENT LOCALINSTANCEPATH (LOCALNAMESPACEPATH, INSTANCENAME)>

944 5.3.4.10 INSTANCENAME

945 The INSTANCENAME element defines the location of a CIM instance within a namespace (it is referred
946 toin DSP0004 as a model path). It comprises a class hame and key-binding information.

947 If the class has a single key property, a single KEYVALUE or VALUE.REFERENCE subelement may be
948 used to describe the (necessarily) unique key value without a key name. Alternatively, a single
949 KEYBINDING subelement may be used instead.

950 If the class has more than one key property, a KEYBINDING subelement shall appear for each key.

951 If no key-bindings are specified, the instance is assumed to be a singleton instance of a keyless class.

952 <!ELEMENT INSTANCENAME (KEYBINDING* | KEYVALUE? | VALUE.REFERENCE?)>
953 <!ATTLIST INSTANCENAME
954 $ClassName; >

955 The CLASSNAME attribute (defined by the ClassName entity) defines the name of the class for this path.

956 5.3.4.11 OBJECTPATH

957 The OBJECTPATH element is used to define a full path to a single CIM object (class or instance).

958 <!ELEMENT OBJECTPATH (INSTANCEPATH | CLASSPATH)>

959 5.3.4.12 KEYBINDING

960 The KEYBINDING element defines a single key property value binding.

961 <!ELEMENT KEYBINDING (KEYVALUE | VALUE.REFERENCE) >
962 <!ATTLIST KEYBINDING
963 $CIMName; >

964 The NAME attribute (defined by the CIMName entity) indicates the name of the key property.

965 5.3.4.13 KEYVALUE

966 The KEYVALUE element defines the value of a (scalar) key property that has a non-reference type.

28 DMTF Standard Version 2.4.0

967
968
969
970

971
972
973

974
975
976

977
978

979
980
981
982
983

984
985
986

987
988
989
990
991
992
993
994

995
996
997
998
999
1000
1001

1002

1003
1004

1005

1006

1007
1008
1009
1010
1011

DSP0201 Representation of CIM in XML

<!ELEMENT KEYVALUE (#PCDATA)>

<!ATTLIST KEYVALUE
VALUETYPE (string | boolean | numeric) "string" (DEPRECATED)
$SCIMType; #REQUIRED>

The VALUETYPE attribute provides information regarding the data type to allow the transformation of the
key value to and from its textual equivalent (as part of a text-based CIM object path, for example as
defined in_DSP0207). The value of this attribute shall conform to the following rules:

e If the CIM type is string, datetime, or charl6, the value is string.
e Ifthe CIM type is boolean, the value is boolean.
e Otherwise, the value is numeric.

The VALUETYPE attribute has been deprecated in version 1.4 of this document. Use the TYPE attribute
instead.

The TYPE attribute (defined by the CIMType entity) identifies the CIM type of the key property. The TYPE
attribute is required to be provided by CIM-XML producers as of version 1.4 of this document. For
implementations of earlier versions of this document, it is strongly recommended that CIM-XML producers
always provide the TYPE attribute, because it supports strongly typed representations of values in CIM-
XML consumers and can be used to improve performance.

The content of the KEYVALUE element represents the property value. Note that key properties cannot be
NULL. Because the KEYVALUE element is used for key property values of all CIM types, the CIM type of
the key property determines the format of the content of the KEYVALUE element, as follows:

e CIM-XML producers shall set the content of the KEYVALUE element based on the CIM type of
the key property as defined in 5.3.3.1.

. If the TYPE attribute is provided, CIM-XML consumers shall interpret the content of the
KEYVALUE element based on the TYPE attribute as defined in 5.3.3.1.

. If the TYPE attribute is not provided (for example, when earlier versions of this specification are
implemented), CIM-XML consumers that have no knowledge about the CIM type of the key
property shall interpret the content of the KEYVALUE element based on the VALUETYPE
attribute as follows:

— If the value of the VALUETYPE attribute is string, the content of the KEYVALUE
element shall be interpreted as defined in 5.3.3.1.1.

— If the value of the VALUETYPE attribute is boolean, the content of the KEYVALUE
element shall be interpreted as defined in 5.3.3.1.4.

— If the value of the VALUETYPE attribute is numeric, the content of the KEYVALUE
element shall be interpreted as defined in 5.3.3.1.3 or 5.3.3.1.5, depending on which
syntax matches.

5.3.5 Object Definition Elements

This subclause defines those XML elements that are concerned with expressing the declaration of CIM
objects (classes, instances, and qualifiers) and their components (properties, methods, and parameters).

53.5.1 CLASS

The CLASS element defines a single CIM class.

<!ELEMENT CLASS

(QUALIFIER*, (PROPERTY | PROPERTY.ARRAY | PROPERTY.REFERENCE) *, METHOD*) >
<!ATTLIST CLASS

$CIMName;

$SuperClass; >

Version 2.4.0 DMTF Standard 29

1012

1013
1014
1015

1016
1017

1018
1019
1020
1021
1022

1023
1024
1025
1026
1027

1028
1029

1030

1031
1032
1033

1034
1035
1036

1037
1038
1039
1040
1041
1042
1043

1044
1045

1046

1047
1048

1049

Representation of CIM in XML DSP0201

The NAME attribute (defined by the CIMName entity) defines the name of the class.

The SUPERCLASS attribute (defined by the SuperClass entity), if present, defines the name of the
superclass of this class. If this attribute is absent, it should be inferred that the class in question has no
superclass.

5.3.5.2 INSTANCE
The INSTANCE element defines a single CIM instance of a CIM class.

The instance shall contain only properties defined in or inherited by the CIM class. Not all these
properties are required to be present in an instance. (This is in accordance with the requirement that CIM
instances have all properties defined in or inherited by the CIM class, because an <INSTANCE> is only a
copied representation of the CIM instance, in a particular context). Specifications using the mapping
defined in this document shall define the rules for any properties that are not present.

<!ELEMENT INSTANCE
(QUALIFIER*, (PROPERTY | PROPERTY.ARRAY | PROPERTY.REFERENCE) *)>
<!ATTLIST INSTANCE

%$ClassName;
xml:lang NMTOKEN #IMPLIED>

The CLASSNAME attribute (defined by the ClassName entity) defines the name of the CIM class of which
this is an instance.

5.3.5.3 QUALIFIER

The QUALIFIER element defines a single CIM qualifier. If the qualifier has a non-array type, it contains a
single VALUE element that represents the value of the qualifier. If the qualifier has an array type, it
contains a single VALUE.ARRAY element to represent the value.

If the qualifier has no assigned value (that is, it was specified without a value), the VALUE and
VALUE.ARRAY subelements shall be absent. DSP0004 defines how to interpret this case, dependent on
the CIM datatype.

<!ELEMENT QUALIFIER ((VALUE | VALUE.ARRAY)?)>
<!ATTLIST QUALIFIER

$CIMName;

$CIMType; #REQUIRED
$Propagated;

%$QualifierFlavor;

xml:lang NMTOKEN #IMPLIED>

The NAME attribute (defined by the CIMName entity) defines the name of the qualifier, and the TYPE
attribute (defined by the CIMType entity) defines the CIM type.

5.3.5.4 PROPERTY

The PROPERTY element defines the value in a CIM instance or the definition in a CIM class of a single
(non-array) CIM property that is not a reference.

CIM reference properties are described using the PROPERTY.REFERENCE element.

30 DMTF Standard Version 2.4.0

1050
1051
1052
1053
1054
1055
1056
1057

1058
1059
1060

1061
1062

1063
1064
1065
1066
1067

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

1078
1079

1080

1081
1082

1083
1084

1085
1086
1087
1088
1089
1090
1091
1092
1093

DSP0201 Representation of CIM in XML

<!ELEMENT PROPERTY (QUALIFIER*, VALUE?)>
<!ATTLIST PROPERTY

$CIMName;

$SCIMType; #REQUIRED

%ClassOrigin;

$Propagated;
$EmbeddedObject;
xml:lang NMTOKEN #IMPLIED>

A VALUE subelement shall be present if the property value or the default value of the
property definition is non-NULL. Absence of the VALUE subelement shall be interpreted as a value of
NULL.

The NAME attribute (defined by the CIMName entity) defines the name of the property, and the TYPE
attribute (defined by the CIMType entity) defines the CIM type.

If the class definition for the property has the EMBEDDEDOBJECT or EMBEDDEDINSTANCE qualifier
attached, the EmbeddedObiject attribute (defined by the EmbeddedObiject entity) shall be provided on
PROPERTY elements representing properties in instances of that class, as follows. The
EmbeddedObject attribute shall not be provided on PROPERTY elements representing properties in
class definitions.

e A property that is defined in the class as an embedded object by attaching the
EMBEDDEDOBJECT qualifier on the property shall be represented using the EmbeddedObject
attribute with a value of "object". The (string-typed) property value shall be a valid
INSTANCE element, defining a single CIM instance of a CIM class or a valid CLASS element;
where these elements shall be escaped as defined in 5.1.1.4.5.

e A property that is defined in the class as an embedded instance by attaching the
EMBEDDEDINSTANCE qualifier on the property shall be represented using the
EmbeddedObject attribute with a value of "instance". The (string-typed) property value shall
be a valid INSTANCE element, defining a single CIM instance of the CIM class specified in the
EMBEDDEDINSTANCE qualifier; where this element shall be escaped as defined in 5.1.1.4.5.

As a result, if an embedded instance has properties that are again embedded objects, each such level of
embedding will be escaped separately, and thus, recursively.

5.3.5.5 PROPERTY.ARRAY

The PROPERTY.ARRAY element defines the value in a CIM instance or the definition in a CIM class of a
single CIM property with an array type.

There is no element to model a property that contains an array of references because this is not a valid
property type according to DSP0004.

<!ELEMENT PROPERTY.ARRAY (QUALIFIER*, VALUE.ARRAY?)>
<!ATTLIST PROPERTY.ARRAY

$CIMName;

$CIMType; #REQUIRED

$ArraySize;

%$ClassOrigin;

$Propagated;

$EmbeddedObject;

xml:lang NMTOKEN #IMPLIED>

Version 2.4.0 DMTF Standard 31

http://www.dmtf.org/viewvc/documents/specifications/DSP0201/DSP0201.html?view=co#SecVALUEARRAY

1094
1095
1096

1097
1098

1099
1100
1101

1102
1103
1104
1105

1106
1107
1108
1109
1110

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

1121
1122

1123

1124
1125
1126

1127
1128
1129
1130
1131
1132

1133
1134
1135

1136

1137
1138

Representation of CIM in XML DSP0201

A VALUE.ARRAY subelement shall be present if the property value (that is, the array itself) or the default
value of the property definition (that is, the array itself) is non-NULL. Absence of the VALUE.ARRAY
subelement shall be interpreted as a value of NULL.

The NAME attribute (defined by the CIMName entity) defines the name of the property, and the TYPE
attribute (defined by the CIMType entity) defines the CIM type.

On a PROPERTY.ARRAY element within a containing CLASS element, the ARRAYSIZE attribute
(defined by the ArraySize entity) shall be present if the array is a fixed-length array, and shall be absent if
the array is a variable-length array.

On a PROPERTY.ARRAY element within a containing INSTANCE element, the ARRAYSIZE attribute
should be absent, and the presence or absence of the ARRAYSIZE attribute shall not be interpreted as
meaning that the property type is a fixed-length or variable-length array (that is, the CLASS definition is
always authoritative in this respect).

If the class definition for the property has the EMBEDDEDOBJECT or EMBEDDEDINSTANCE qualifier
attached, the EmbeddedObiject attribute (defined by the EmbeddedObiject entity) shall be provided on
PROPERTY.ARRAY elements representing properties in instances of that class, as follows. The
EmbeddedObiject attribute shall not be provided on PROPERTY.ARRAY elements representing
properties in class definitions.

e A property that is defined in the class as an embedded object by attaching the
EMBEDDEDOBJECT qualifier on the property shall be represented using the EmbeddedObject
attribute with a value of "object". The (string-typed) property value shall be a valid
INSTANCE element, defining a single CIM instance of a CIM class or a valid CLASS element;
where these elements shall be escaped as defined in 5.1.1.4.5.

e A property that is defined in the class as an embedded instance by attaching the
EMBEDDEDINSTANCE qualifier on the property shall be represented using the
EmbeddedObject attribute with a value of "instance™. The (string-typed) property value shall
be a valid INSTANCE element, defining a single CIM instance of the CIM class specified in the
EMBEDDEDINSTANCE qualifier; where this element shall be escaped as defined in 5.1.1.4.5.

As a result, if an embedded instance has properties that are again embedded objects, each such level of
embedding will be escaped separately, and thus, recursively.

5.3.5.6 PROPERTY.REFERENCE

The PROPERTY.REFERENCE element defines the value in a CIM instance or the definition in a CIM
class of a single CIM property with reference semantics. In the future, the features of XML Linking may be
used to identify linking elements within the XML document.

<!ELEMENT PROPERTY.REFERENCE (QUALIFIER*, VALUE.REFERENCE?)>
<!ATTLIST PROPERTY.REFERENCE
$CIMName;

$ReferenceClass;

%$ClassOrigin;

$Propagated; >

The VALUE.REFERENCE subelement shall be present if the property value or the default value of the
property definition is non-NULL. Absence of the VALUE.REFERENCE subelement shall be interpreted as
a value of NULL.

The NAME attribute (defined by the CIMName entity) defines the name of the property.

The REFERENCECLASS attribute (defined by the ReferenceClass entity), if present, defines the strong
type of the reference. The absence of this attribute indicates that this reference is not strongly typed. The

32 DMTF Standard Version 2.4.0

1139
1140
1141

1142

1143

1144
1145

1146
1147

1148
1149
1150
1151
1152
1153
1154
1155

1156

1157
1158
1159

1160

1161
1162

1163
1164
1165
1166

1167
1168

1169

1170
1171

1172
1173
1174
1175

1176

1177
1178
1179

DSP0201 Representation of CIM in XML

expected behavior is that the REFERENCECLASS attribute shall exist for PROPERTY.REFERENCE
usage in class entities and should not exist for instance entities because the reference class name should
be defined in the property value.

The ClassOrigin and Propagated entities are used in the same manner as for other CIM properties.

5.3.5.7 METHOD

The METHOD element defines a single CIM method. It may have qualifiers, and zero or more
parameters.

The order of the PARAMETER, PARAMETER.REFERENCE, PARAMETER.ARRAY and
PARAMETER.REFARRAY subelements is not significant.

<!ELEMENT METHOD
(QUALIFIER*, (PARAMETER | PARAMETER.REFERENCE | PARAMETER.ARRAY |
PARAMETER.REFARRAY) *) >
<!ATTLIST METHOD
$CIMName;
$CIMType; #IMPLIED

%ClassOrigin;

$Propagated;>
The NAME attribute (defined by the CIMName entity) defines the name of the method.

The TYPE attribute (defined by the CIMType entity) defines the method return type, if the method returns
a value. If this attribute is absent, the method shall return no value (that is, it has the special return type
void).

5.3.5.8 PARAMETER

The PARAMETER element defines a single (non-array, non-reference) parameter to a CIM method. The
parameter may have zero or more qualifiers.

<!ELEMENT PARAMETER (QUALIFIER*)>
<!ATTLIST PARAMETER

3CIMName;

$CIMType; #REQUIRED>

The NAME attribute (defined by the CIMName entity) defines the name of the parameter. The TYPE
attribute (defined by the CIMType entity) defines the CIM type of the parameter.

5.3.5.9 PARAMETER.REFERENCE

The PARAMETER.REFERENCE element defines a single reference parameter to a CIM method. The
parameter may have zero or more qualifiers.

<!ELEMENT PARAMETER.REFERENCE (QUALIFIER*)>
<!ATTLIST PARAMETER.REFERENCE
$CIMName;

%ReferenceClass; >

The NAME attribute (defined by the CIMName entity) defines the name of the parameter.

The REFERENCECLASS attribute (defined by the ReferenceClass entity), if present, defines the strong
type of the reference. If this attribute is absent, the parameter is assumed to be a reference that is not
strongly typed.

Version 2.4.0 DMTF Standard 33

1180
1181

1182

1183
1184

1185
1186
1187
1188
1189

1190
1191

1192
1193

1194

1195
1196

1197
1198
1199
1200
1201

1202

1203
1204
1205

1206
1207

1208

1209
1210

1211

1212
1213

1214
1215
1216
1217
1218
1219

Representation of CIM in XML DSP0201

The expected behavior is that the REFERENCECLASS attribute shall exist for
PARAMETER.REFERENCE entities.

5.3.5.10 PARAMETER.ARRAY

The PARAMETER.ARRAY element defines a single parameter to a CIM method that has an array type.
The parameter may have zero or more qualifiers.

<!ELEMENT PARAMETER.ARRAY (QUALIFIERY*)>
<!ATTLIST PARAMETER.ARRAY

$CIMName;

$CIMType; #REQUIRED

$ArraySize;>

The NAME attribute (defined by the CIMName entity) defines the name of the parameter. The TYPE
attribute (defined by the CIMType entity) defines the CIM type of the parameter.

The ARRAYSIZE attribute (defined by the ArraySize entity) shall be present if the array is a fixed-length
array, and shall be absent if the array is a variable-length array.

5.3.5.11 PARAMETER.REFARRAY

The PARAMETER.REFARRAY element defines a single parameter to a CIM method that has an array of
references type. The parameter may have zero or more qualifiers.

<!ELEMENT PARAMETER.REFARRAY (QUALIFIER*)>
<!ATTLIST PARAMETER.REFARRAY
$CIMName;

$ReferenceClass;

$ArraySize;>
The NAME attribute (defined by the CIMName entity) defines the name of the parameter.

The REFERENCECLASS attribute (defined by the ReferenceClass entity) defines the strong type of a
reference. If this attribute is absent, the parameter is not a strongly typed reference. The expected
behavior is that the REFERENCECLASS attribute shall exist for PARAMETER.REFARRAY entities.

The ARRAYSIZE attribute (defined by the ArraySize entity) shall be present if the array is a fixed-length
array, and shall be absent if the array is a variable-length array.

5.3.6 Message Elements

This subclause defines those XML elements that are concerned with expressing CIM-XML messages for
DSP0200.

53.6.1 MESSAGE

The MESSAGE element models a single CIM-XML message. This element is used as the basis for CIM
Operation Messages and CIM Export Messages.

<!ELEMENT MESSAGE
(SIMPLEREQ | MULTIREQ | SIMPLERSP | MULTIRSP |
SIMPLEEXPREQ | MULTIEXPREQ | SIMPLEEXPRSP | MULTIEXPRSP)>
<!ATTLIST MESSAGE
ID CDATA #REQUIRED
PROTOCOLVERSION CDATA #REQUIRED>

34 DMTF Standard Version 2.4.0

1220
1221
1222

1223
1224
1225
1226
1227

1228

1229

1230
1231

1232

1233

1234
1235

1236
1237

1238

1239

1240
1241
1242

1243
1244
1245

1246

1247

1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258

1259
1260

DSP0201 Representation of CIM in XML

The 1D attribute defines an identifier for the MESSAGE element. The content of the value is not
constrained by this specification, but the intention is that 1D attribute be used as a correlation mechanism
between two CIM entities.

The PROTOCOLVERSION attribute defines the version of DSP0200 to which this message conforms. It
shall be in the form of "M.N", where M is the major version of the specification in numeric form, and N is
the minor version of the specification in numeric form (for example, 1.0, 1.1). Implementations shall
validate only the major version because all minor versions are backward compatible. Implementations
may look at the minor version to determine additional capabilities.

DSP0200 provides more details on the values that these attributes may take.

5.3.6.2 MULTIREQ

The MULTIREQ element defines a multiple CIM operation request. It contains two or more subelements
that define the SIMPLEREQ elements that make up this multiple request.

<!ELEMENT MULTIREQ (SIMPLEREQ, SIMPLEREQ+)>

5.3.6.3 SIMPLEREQ

The SIMPLEREQ element defines a simple CIM operation request. It contains either a METHODCALL
(extrinsic method) element or an IMETHODCALL (intrinsic method) element.

In addition, it contains zero or more CORRELATOR elements, each representing a client-defined
operation correlator. For details on operation correlators, see DSP0200.

<!ELEMENT SIMPLEREQ (CORRELATOR*, (METHODCALL | IMETHODCALL))>

5.3.6.4 METHODCALL

The METHODCALL element defines a single method invocation on a class or instance. It specifies the
local path of the target class or instance, followed by zero or more PARAMVALUE subelements as the
parameter values to be passed to the method.

<!ELEMENT METHODCALL ((LOCALCLASSPATH | LOCALINSTANCEPATH), PARAMVALUEY*)>
<!ATTLIST METHODCALL
$CIMName; >

The NAME attribute (defined by the CIMName entity) defines the name of the method to be invoked.

5.3.6.5 PARAMVALUE

The PARAMVALUE element defines the value of an input or output parameter of an extrinsic method call,
or the value of an output parameter of an intrinsic method call. Note that input parameters of intrinsic
method calls are represented by the IPARAMVALUE element; this inconsistency for intrinsic methods has
historical reasons.

<!ELEMENT PARAMVALUE (

VALUE | VALUE.REFERENCE | VALUE.ARRAY | VALUE.REFARRAY |

CLASSNAME | INSTANCENAME | CLASS | INSTANCE | VALUE.NAMEDINSTANCE) ?>
<!ATTLIST PARAMVALUE

$CIMName;

$ParamType; #IMPLIED

$EmbeddedObject; >

The child element of the PARAMVALUE element represents the parameter value. The absence of a child
element indicates that the parameter value is NULL.

Version 2.4.0 DMTF Standard 35

1261

1262
1263

1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285

1286
1287
1288

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300
1301

1302

Representation of CIM in XML DSP0201

The NAME attribute (defined by the CIMName entity) defines the name of the parameter.

When PARAMVALUE is used in METHODCALL or METHODRESPONSE (that is, for extrinsic methods),
the following applies:

The PARAMTYPE attribute (defined by the ParamType entity) if provided identifies the CIM type
of the parameter.

If the direct child element of the PARAMVALUE element is a VALUE or VALUE.ARRAY
element, the CIM type of the parameter determines the format of the content of the VALUE child
element and CIM-XML producers shall provide the PARAMTYPE attribute with one of the
values defined in Table 1. The requirement to provide the PARAMTYPE attribute was added in
version 2.4.0 of this specification because it supports strongly typed representations of values in
CIM-XML consumers and can be used to improve performance. CIM-XML producers that
support older versions of this specification may not provide the PARAMTYPE attribute for these
direct child elements. In that case, CIM-XML consumers need to have knowledge about the CIM
type in order to interpret the value of (direct or indirect) VALUE child elements correctly (for
example, the uint8 value 3 and the string value "3" are both represented as
<VALUE>3</VALUE>). If CIM-XML consumers do not have knowledge about the CIM type, they
should assume as a default that the value is string-typed.

If the direct child element of the PARAMVALUE element is a VALUE.REFERENCE or
VALUE.REFARRAY element, CIM-XML producers should provide the PARAMTYPE attribute. If
provided, it shall have the value defined in Table 1. Because there is only one possible
PARAMTYPE value for each of these child elements, CIM-XML consumers can infer the CIM
type of the parameter from the name of the direct child element, if the PARAMTYPE attribute is
not provided.

Other direct child elements of the PARAMVALUE element are not permitted if used in
METHODCALL or METHODRESPONSE.

If the class definition for the extrinsic method parameter has the EMBEDDEDOBJECT or
EMBEDDEDINSTANCE qualifier attached, the EmbeddedObject attribute (defined by the
EmbeddedObiject entity) shall be provided, as follows.

A method parameter that is defined in the class as an embedded object by attaching the
EMBEDDEDOBJECT qualifier on the parameter shall be represented using the
EmbeddedObiject attribute with a value of "object". The (string-typed) parameter value shall
be a valid INSTANCE element, defining a single CIM instance of a CIM class or a valid CLASS
element; where these elements shall be escaped as defined in 5.1.1.4.5.

A method parameter that is defined in the class as an embedded instance by attaching the
EMBEDDEDINSTANCE qualifier on the parameter shall be represented using the
EmbeddedObiject attribute with a value of "instance". The (string-typed) parameter value
shall be a valid INSTANCE element, defining a single CIM instance of the CIM class specified in
the EMBEDDEDINSTANCE qualifier; where this element shall be escaped as defined in
5.1.1.4.5.

As a result, if an embedded instance has properties that are again embedded objects, each such level of
embedding will be escaped separately, and thus, recursively.

Table 1 - Requirements for PARAMVALUE when used in METHODCALL or METHODRESPONSE

Direct child element of | Requirement to
PARAMVALUE provide PARAMTYPE Allowed PARAMTYPE values

VALUE

shall provide boolean, string (including for embedded objects and octet
strings), charl6, uint8, sint8, uintl6, sintl6, uint32, sint32,
uint64, sint64, datetime, real32, real64

36

DMTF Standard Version 2.4.0

1303
1304

1305
1306
1307
1308
1309
1310

1311

1312
1313
1314

1315
1316
1317

1318

1319

1320

1321
1322
1323
1324
1325

1326
1327

1328

1329
1330
1331
1332

1333

1334
1335

DSP0201 Representation of CIM in XML

Direct child element of | Requirement to
PARAMVALUE provide PARAMTYPE Allowed PARAMTYPE values

VALUE.ARRAY shall provide boolean, string (including for embedded objects and octet
strings), charl6, uint8 (including for octet strings), sint8,
uint16, sintl6, uint32, sint32, uint64, sint64, datetime,
real32, real64

VALUE.REFERENCE should provide reference

VALUE.REFARRAY should provide reference

When PARAMVALUE is used in IMETHODRESPONSE (that is, for output parameters of intrinsic
methods), the following applies:

e The PARAMTYPE attribute shall not be provided by CIM-XML producers, because the child
element to be used and the datatype of the parameter value is known from the definition of the
intrinsic method. Note that IPARAMVALUE (used for input parameters of intrinsic methods)
does not provide for the specification of PARAMTYPE.

e The CIM types of intrinsic method output parameters and the child elements of PARAMVALUE
that are to be used for representing parameter values are defined in DSP0200.

5.3.6.6 IMETHODCALL

The IMETHODCALL element defines a single intrinsic method invocation. It specifies the target local
namespace, followed by zero or more IPARAMVALUE subelements as the parameter values to be
passed to the method.

<!ELEMENT IMETHODCALL (LOCALNAMESPACEPATH, IPARAMVALUEY*)>
<!ATTLIST IMETHODCALL
$CIMName; >

The NAME attribute (defined by the CIMName entity) defines the name of the method to be invoked.

5.3.6.7 IPARAMVALUE

The IPARAMVALUE element defines the value of a parameter of an intrinsic method call.

<!ELEMENT IPARAMVALUE
(VALUE | VALUE.ARRAY | VALUE.REFERENCE | CLASSNAME | INSTANCENAME |
QUALIFIER.DECLARATION | CLASS | INSTANCE | VALUE.NAMEDINSTANCE) ?>
<!ATTLIST IPARAMVALUE
$CIMName; >

The child element of the IPARAMVALUE element represents the parameter value. The absence of a child
element indicates that the parameter value is NULL.

The NAME attribute (defined by the CIMName entity) defines the name of the parameter.

The IPARAMVALUE element does not provide information about the CIM type of the parameter. CIM-
XML consumers are expected to have knowledge about the CIM types of intrinsic method parameters.
The CIM types of intrinsic method parameters and the child elements of IPARAMVALUE that are to be
used for representing parameter values are defined in DSP0200.

5.3.6.8 MULTIRSP

The MULTIRSP element defines a multiple CIM operation response. It contains two or more subelements
that define the SIMPLERSP elements that make up this multiple response.

Version 2.4.0 DMTF Standard 37

http://www.dmtf.org/viewvc/documents/specifications/DSP0201/DSP0201.html?view=co#SecSIMPLERSP

Representation of CIM in XML DSP0201

1336 <!ELEMENT MULTIRSP (SIMPLERSP, SIMPLERSP+)>

1337 5.3.6.9 SIMPLERSP

1338 The SIMPLERSP element defines a simple CIM operation response. It contains either a
1339 METHODRESPONSE (for extrinsic methods) element or an IMETHODRESPONSE (for intrinsic methods)
1340 element.

1341 <!ELEMENT SIMPLERSP (METHODRESPONSE | IMETHODRESPONSE) >

1342 5.3.6.10 METHODRESPONSE

1343 The METHODRESPONSE element defines the response to a single CIM extrinsic method invocation. It
1344 contains either an ERROR subelement (to report a fundamental error that prevented the method from
1345 executing) or a combination of an optional return value and zero or more out parameter values.

1346 <!ELEMENT METHODRESPONSE (ERROR | (RETURNVALUE?, PARAMVALUEY*))>
1347 <!ATTLIST METHODRESPONSE
1348 $CIMName; >

1349 The NAME attribute (defined by the CIMName entity) defines the name of the method that was invoked.

1350 5.3.6.11 IMETHODRESPONSE

1351 The IMETHODRESPONSE element defines the response to a single intrinsic CIM method invocation. It
1352 contains either an ERROR subelement (to report a fundamental error that prevented the method from
1353 executing) or an optional return value and zero or more out parameter values.

1354 <!ELEMENT IMETHODRESPONSE (ERROR | (IRETURNVALUE?, PARAMVALUE*))>
1355 <!ATTLIST IMETHODRESPONSE
1356 $CIMName; >

1357 The NAME attribute (defined by the CIMName entity) defines the name of the method that was invoked.

1358 5.3.6.12 ERROR

1359 The ERROR element is used to define a fundamental error that prevented a method from executing
1360 normally. It consists of a status code, an optional description, and zero or more instances that contain
1361 detailed information about the error.

1362 <!ELEMENT ERROR (INSTANCEY*)

1363 <!ATTLIST ERROR

1364 CODE CDATA #REQUIRED
1365 DESCRIPTION CDATA #IMPLIED>

1366 The CODE attribute contains a numerical status code that indicates the nature of the error. The valid
1367 status codes are defined in_DSP0200. The value of the CODE attribute is whitespace-tolerant (see
1368 5.1.1.3).

1369 The DESCRIPTION attribute, if present, provides a human-readable description of the error. The format
1370 of the value of the DESCRIPTION attribute, if provided, shall be a sequence of zero or more UCS

1371 characters and is character-preserving (see 5.1.1.2). The actual representation of UCS characters

1372 depends on the encoding attribute defined in the XML declaration (<?xml ... ?2>).

38 DMTF Standard Version 2.4.0

1373

1374

1375
1376
1377
1378

1379
1380

1381
1382

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392

1393
1394
1395
1396
1397

1398
1399
1400

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410

1411
1412

1413

DSP0201 Representation of CIM in XML

5.3.6.13 RETURNVALUE

The RETURNVALUE element specifies the (scalar) value returned from an extrinsic method call.

<!ELEMENT RETURNVALUE (VALUE | VALUE.REFERENCE) ?>
<!ATTLIST RETURNVALUE

$EmbeddedObject;

$ParamType; #IMPLIED>

The child element of the RETURNVALUE element represents the returned value. The absence of a child
element indicates that the returned value is NULL.

The PARAMTYPE attribute (defined by the ParamType entity) if provided identifies the CIM type of the
returned value.

If the direct child element of the RETURNVALUE element is a VALUE element, CIM-XML producers shall
provide the PARAMTYPE attribute with one of the values defined in Table 2. The requirement to provide
the PARAMTYPE attribute was added in version 2.4.0 of this specification because it supports strongly
typed representations of values in CIM-XML consumers and can be used to improve performance. CIM-
XML producers that support older versions of this specification may not provide the PARAMTYPE
attribute for these direct child elements. In that case, CIM-XML consumers need to have knowledge about
the CIM type in order to interpret the value of VALUE child elements correctly (for example, the uint8
value 3 and the string value "3" are both represented as <VALUE>3</VALUE>). If CIM-XML consumers
do not have knowledge about the CIM type, they should assume as a default that the value is string-
typed.

If the direct child element of the RETURNVALUE element is a VALUE.REFERENCE element, CIM-XML
producers should provide the PARAMTYPE attribute. If provided, it shall have the value defined in Table
2. Because there is only one possible PARAMTYPE value for this child element, CIM-XML consumers
can infer the CIM type of the return value from the name of the direct child element, if the PARAMTYPE
attribute is not provided.

If the class definition for the extrinsic method has the EMBEDDEDOBJECT or EMBEDDEDINSTANCE
qualifier attached, the EmbeddedObiject attribute (defined by the EmbeddedObject entity) shall be
provided, as follows.

e Areturn value that is defined in the class as an embedded object by attaching the
EMBEDDEDOBJECT qualifier on the method shall be represented using the EmbeddedObject
attribute with a value of "object". The (string-typed) return value shall be a valid INSTANCE
element, defining a single CIM instance of a CIM class or a valid CLASS element; where these
elements shall be escaped as defined in 5.1.1.4.5.

e Areturn value that is defined in the class as an embedded instance by attaching the
EMBEDDEDINSTANCE qualifier on the method shall be represented using the
EmbeddedObiject attribute with a value of "instance". The (string-typed) return value shall be
a valid INSTANCE element, defining a single CIM instance of the CIM class specified in the
EMBEDDEDINSTANCE qualifier; where this element shall be escaped as defined in 5.1.1.4.5.

As a result, if an embedded instance has properties that are again embedded objects, each such level of
embedding will be escaped separately, and thus, recursively.

Table 2 - Requirements for RETURNVALUE

Direct child element of | Requirement to
RETURNVALUE provide PARAMTYPE Allowed PARAMTYPE values

VALUE shall provide boolean, string (including for embedded objects and octet
strings), charl6, uint8, sint8, uintl6, sintl6, uint32, sint32,
uint64, sint64, datetime, real32, real64

Version 2.4.0 DMTF Standard 39

1414

1415

1416
1417

1418
1419
1420
1421
1422
1423

1424
1425

1426
1427
1428
1429

1430

1431
1432

1433

1434

1435
1436
1437

1438

1439

1440
1441

1442
1443
1444

1445
1446

Representation of CIM in XML DSP0201

Direct child element of | Requirement to
RETURNVALUE provide PARAMTYPE Allowed PARAMTYPE values

VALUE.REFERENCE should provide reference

5.3.6.14 IRETURNVALUE

The IRETURNVALUE element specifies the value returned from an intrinsic method call. The absence of
a subelement indicates that the return value has the NULL value.

<!ELEMENT IRETURNVALUE
(CLASSNAME* | INSTANCENAME* | VALUE* | VALUE.OBJECTWITHPATH* |
VALUE.OBJECTWITHLOCALPATH* | VALUE.OBJECT* | OBJECTPATH* |
QUALIFIER.DECLARATION* | VALUE.ARRAY? | VALUE.REFERENCE? |
CLASS* | INSTANCE* | INSTANCEPATH* | VALUE.NAMEDINSTANCE* |
VALUE.INSTANCEWITHPATH) >

The child elements of the IRETURNVALUE element represent the returned value. The absence of a child
element indicates that the returned value is NULL.

The IRETURNVALUE element does not provide information about the CIM type of the returned value.
CIM-XML consumers are expected to have knowledge about the CIM types of intrinsic method return
values. The CIM types of intrinsic method return values and the child elements of IRETURNVALUE that
are to be used for representing return values are defined in DSP0200.

5.3.6.15 MULTIEXPREQ

The MULTIEXPREQ element defines a multiple CIM export request. It contains two or more subelements
that define the SIMPLEEXPREQ elements that make up this multiple request.

<!ELEMENT MULTIEXPREQ (SIMPLEEXPREQ, SIMPLEEXPREQ+)>

5.3.6.16 SIMPLEEXPREQ

The SIMPLEEXPREQ element defines a simple CIM export request. It contains an EXPMETHODCALL
(export method) subelement. In addition, it contains zero or more CORRELATOR elements, each
representing a server-defined operation correlator. For details on operation correlators, see DSP0200.

<!ELEMENT SIMPLEEXPREQ (CORRELATOR*, EXPMETHODCALL)>

5.3.6.17 EXPMETHODCALL

The EXPMETHODCALL element defines a single export method invocation. It specifies zero or more
EXPPARAMVALUE subelements as the parameter values to be passed to the method.

<!ELEMENT EXPMETHODCALL (EXPPARAMVALUEY*)>
<!ATTLIST EXPMETHODCALL
$CIMName; >

The NAME attribute (defined by the CIMName entity) defines the name of the export method to be
invoked.

40 DMTF Standard Version 2.4.0

1447

1448
1449

1450

1451

1452
1453

1454

1455

1456
1457
1458

1459
1460
1461

1462
1463

1464

1465
1466

1467
1468
1469

1470

1471

1472
1473
1474
1475

1476

1477
1478

1479
1480
1481
1482

1483
1484

DSP0201 Representation of CIM in XML

5.3.6.18 MULTIEXPRSP

The MULTIEXPRSP element defines a multiple CIM export response. It contains two or more
subelements that define the SIMPLEEXPRSP elements that make up this multiple response.

<!ELEMENT MULTIEXPRSP (SIMPLEEXPRSP, SIMPLEEXPRSP+)>

5.3.6.19 SIMPLEEXPRSP

The SIMPLEEXPRSP element defines a simple CIM export response. It contains an
EXPMETHODRESPONSE (for export methods) subelement.

<!ELEMENT SIMPLEEXPRSP (EXPMETHODRESPONSE)>

5.3.6.20 EXPMETHODRESPONSE

The EXPMETHODRESPONSE element defines the response to a single export method invocation. It
contains either an ERROR subelement (to report a fundamental error that prevented the method from
executing) or an optional return value.

<!ELEMENT EXPMETHODRESPONSE (ERROR | IRETURNVALUE?)>
<!ATTLIST EXPMETHODRESPONSE
$CIMName; >

The NAME attribute (defined by the CIMName entity) defines the name of the export method that was
invoked.

5.3.6.21 EXPPARAMVALUE

The EXPPARAMVALUE element defines a single export method named parameter value. The absence
of a subelement indicates that the parameter has the NULL value.

<!ELEMENT EXPPARAMVALUE (INSTANCE?)>
<!ATTLIST EXPPARAMVALUE
$CIMName; >

The NAME attribute (defined by the CIMName entity) defines the name of the parameter.

5.3.6.22 ENUMERATIONCONTEXT (removed)

In version 2.3, this specification defined an ENUMERATIONCONTEXT element for representing the
enumeration context value for pulled enumeration operations. However, that element was not used
anywhere and has therefore been removed in version 2.4.0 of this specification. Enumeration context
values are now represented like strings, as defined in DSP0200.

5.3.6.23 CORRELATOR

The CORRELATOR element defines a single operation correlator. For a description of the concept of
operation correlators, see DSP0200.

<!ELEMENT CORRELATOR (VALUE)>
<!ATTLIST CORRELATOR

$CIMName;

$CIMType; #REQUIRED>

The NAME attribute (defined using the CIMName entity) defines the name of the correlator. The correlator
name shall conform to the format defined by the following ABNF rule:

Version 2.4.0 DMTF Standard 41

1485

1486
1487
1488
1489

1490
1491
1492

Representation of CIM in XML DSP0201

correlator-name = org-id ":" local-id

org-1id shall identify the business entity owning the definition of the semantics of the correlator. org-id
shall include a copyrighted, trademarked, or otherwise unique name that is owned by that business entity
or that is a registered ID assigned to that business entity by a recognized global authority. In addition, to
ensure uniqueness, org-id shall not contain a colon (:).

local-id shall uniquely identify the correlator within org-id.
The TYPE attribute (defined using the CIMType entity) defines the CIM datatype of the correlator value.

The VALUE child element defines the value of the correlator.

42 DMTF Standard Version 2.4.0

1493
1494
1495
1496

DSP0201

Representation of CIM in XML

ANNEX A
(informative)

Change History

Version Date

Description

2.0.0 1999-06-02 Released as DMTF Final Standard

220 2007-01-11 Released as DMTF Final Standard

2.3.0 2008-11-11 Released as DMTF Standard

23.1 2009-07-29 Released as DMTF Standard

2.4.0 2014-01-16 Released as DMTF Standard, with the following changes:

Changes:
. Removed ENUMERATIONCONTEXT element because representation of
enumeration context value was changed to string in DSP0200 (see 5.3.6.22)

. Added requirement to provide the PARAMTYPE attribute of PARAMVALUE
element for certain CIM types (see 5.3.6.5)

. Added requirement to provide the TYPE attribute of the KEYVALUE element
(see 5.3.4.13)

. Updated several normative references (see clause 2)

Deprecations::

. Deprecated the use of the values "object" and "instance" for the PARAMTYPE
attribute as they were not used (see 5.2.10)

. Deprecated the VALUETYPE attribute of the KEYVALUE element; use TYPE
instead (see 5.3.4.13)

Additional functions and requirements:

. Added support for operation correlators (see 5.3.6.23)

. Added support for, respectively clarified, the representation of special values
(NaN, Infinites) for real numbers (see 5.3.3.1.3)

Clarifications:

. Clarified that PARAMVALUE (and not IPARAMVALUE) is used for output

parameters of intrinsic methods in IMETHODRESPONSE (see 5.3.6.5)

Clarified the allowed child elements of PARAMVALUE (see 5.3.6.5)

Removed ordering requirements for DECLGROUP* elements (see 5.3.2.2ff)

Clarified escaping, white space handling, and character repertoire (see 5.1.1)

Clarified XML encoding of embedded instances and objects (see 5.1.1.4.5)

Clarified that CLASSORIGIN indicates the leaf-most class (see 5.2.4)

Clarified precision requirements for real numbers (see 5.3.3.1.3)

Clarified syntax and requirements for HOST element (see 5.3.4.3)

Clarified use of the ARRAYSIZE attribute in any elements, and deprecated its

use on the QUALIFIER.DECLARATION element

Editorial changes:

. Cleaned up terminology

. Fixed incorrect normative and bibliographic references

. Fixed syntax errors in DTD

. Added the missing INSTANCEPATH and VALUE.INSTANCEWITHPATH child

element to IRETURNVALUE, in support of the PullinstancePaths,
PullinstancesWithPath and Open<XXX>Instances operations.

Version 2.4.0

DMTF Standard

43

1497
1498
1499

1500
1501

1502
1503

1504
1505

1506
1507

Representation of CIM in XML DSP0201

Bibliography

DMTF DSP0203, DTD for Representation of CIM in XML 2.4,
http://www.dmtf.org/standards/published documents/DSP0203 2.4.dtd

DMTF DSP0207, WBEM URI Mapping Specification 1.0,
http://www.dmtf.org/standards/published documents/DSP0207 1.0.pdf

DMTF DSP8044 XSD for Representation of CIM in XML 2.4,
http://schemas.dmtf.org/wbem/cim-xml/2/dsp8044 2.4.xsd

W3C XML Schema, Part O: Primer (Second Edition), W3C Recommendation, 28 October 2004,
http://www.w3.0rg/TR/2004/REC-xmlschema-0-20041028

W3C XML Schema, Part 2: Datatypes (Second Edition), W3C Recommendation, 28 October 2004,
http://www.w3.0rg/TR/2004/REC-xmIschema-2-20041028

44 DMTF Standard Version 2.4.0

http://www.dmtf.org/standards/published_documents/DSP0203_2.4.dtd
http://www.dmtf.org/standards/published_documents/DSP0207_1.0.pdf
http://schemas.dmtf.org/wbem/cim-xml/2/dsp8044_2.4.xsd
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

	A Note on Rendering to MOF
	A Note on Mapping Choices
	1 Scope
	2 Normative References
	3 Terms and Definitions
	4 Symbols and Abbreviated Terms
	5 CIM-XML Schema Reference
	5.1 General
	5.1.1 Escaping, Whitespace Handling, Character Repertoire
	5.1.1.1 XML Clarifications and Amendments
	5.1.1.2 Character-preserving Elements and Attributes
	5.1.1.3 Whitespace-tolerant Elements and Attributes
	5.1.1.4 Escaping of element content and attribute values
	5.1.1.4.1 Use of XML numeric character references
	5.1.1.4.2 Use of XML entity references
	5.1.1.4.3 Use of CDATA sections
	5.1.1.4.4 Combining different escaping mechanisms
	5.1.1.4.5 Nested embedded objects
	5.1.1.4.6 Requirements for escaping

	5.1.1.5 Character Repertoire

	5.2 Entity Descriptions
	5.2.1 CIMName
	5.2.2 CIMType
	5.2.3 QualifierFlavor
	5.2.4 ClassOrigin
	5.2.5 Propagated
	5.2.6 ArraySize
	5.2.7 SuperClass
	5.2.8 ClassName
	5.2.9 ReferenceClass
	5.2.10 ParamType
	5.2.11 EmbeddedObject

	5.3 Element Descriptions
	5.3.1 Top-Level Element: CIM
	5.3.2 Declaration Elements
	5.3.2.1 DECLARATION
	5.3.2.2 DECLGROUP
	5.3.2.3 DECLGROUP.WITHNAME
	5.3.2.4 DECLGROUP.WITHPATH
	5.3.2.5 QUALIFIER.DECLARATION
	5.3.2.6 SCOPE

	5.3.3 Value Elements
	5.3.3.1 VALUE
	5.3.3.1.1 String Values
	5.3.3.1.2 Character Values
	5.3.3.1.3 Real Values
	5.3.3.1.4 Boolean Values
	5.3.3.1.5 Integer Values
	5.3.3.1.6 Datetime Values

	5.3.3.2 VALUE.ARRAY
	5.3.3.3 VALUE.REFERENCE
	5.3.3.4 VALUE.REFARRAY
	5.3.3.5 VALUE.OBJECT
	5.3.3.6 VALUE.NAMEDINSTANCE
	5.3.3.7 VALUE.NAMEDOBJECT
	5.3.3.8 VALUE.OBJECTWITHPATH
	5.3.3.9 VALUE.OBJECTWITHLOCALPATH
	5.3.3.10 VALUE.NULL
	5.3.3.11 VALUE.INSTANCEWITHPATH

	5.3.4 Naming and Location Elements
	5.3.4.1 NAMESPACEPATH
	5.3.4.2 LOCALNAMESPACEPATH
	5.3.4.3 HOST
	5.3.4.4 NAMESPACE
	5.3.4.5 CLASSPATH
	5.3.4.6 LOCALCLASSPATH
	5.3.4.7 CLASSNAME
	5.3.4.8 INSTANCEPATH
	5.3.4.9 LOCALINSTANCEPATH
	5.3.4.10 INSTANCENAME
	5.3.4.11 OBJECTPATH
	5.3.4.12 KEYBINDING
	5.3.4.13 KEYVALUE

	5.3.5 Object Definition Elements
	5.3.5.1 CLASS
	5.3.5.2 INSTANCE
	5.3.5.3 QUALIFIER
	5.3.5.4 PROPERTY
	5.3.5.5 PROPERTY.ARRAY
	5.3.5.6 PROPERTY.REFERENCE
	5.3.5.7 METHOD
	5.3.5.8 PARAMETER
	5.3.5.9 PARAMETER.REFERENCE
	5.3.5.10 PARAMETER.ARRAY
	5.3.5.11 PARAMETER.REFARRAY

	5.3.6 Message Elements
	5.3.6.1 MESSAGE
	5.3.6.2 MULTIREQ
	5.3.6.3 SIMPLEREQ
	5.3.6.4 METHODCALL
	5.3.6.5 PARAMVALUE
	5.3.6.6 IMETHODCALL
	5.3.6.7 IPARAMVALUE
	5.3.6.8 MULTIRSP
	5.3.6.9 SIMPLERSP
	5.3.6.10 METHODRESPONSE
	5.3.6.11 IMETHODRESPONSE
	5.3.6.12 ERROR
	5.3.6.13 RETURNVALUE
	5.3.6.14 IRETURNVALUE
	5.3.6.15 MULTIEXPREQ
	5.3.6.16 SIMPLEEXPREQ
	5.3.6.17 EXPMETHODCALL
	5.3.6.18 MULTIEXPRSP
	5.3.6.19 SIMPLEEXPRSP
	5.3.6.20 EXPMETHODRESPONSE
	5.3.6.21 EXPPARAMVALUE
	5.3.6.22 ENUMERATIONCONTEXT (removed)
	5.3.6.23 CORRELATOR
	ANNEX A (informative) Change History

