

 1

Document Number: DSP0200 2

Date: 2013-08-26 3

Version: 1.4.0 4

CIM Operations over HTTP 5

Document Type: Specification 6

Document Status: DMTF Standard 7

Document Language: en-US 8

 9

CIM Operations over HTTP DSP0200

2 DMTF Standard Version 1.4.0

Copyright Notice 10

Copyright © 1999-2013 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 12
management and interoperability. Members and non-members may reproduce DMTF specifications and 13
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 14
time, the particular version and release date should always be noted. 15

Implementation of certain elements of this standard or proposed standard may be subject to third party 16
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 17
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 18
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 19
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 20
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 21
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 22
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 23
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 24
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 25
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 26
implementing the standard from any and all claims of infringement by a patent owner for such 27
implementations. 28

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 29
such patent may relate to or impact implementations of DMTF standards, visit 30
http://www.dmtf.org/about/policies/disclosures.php. 31

 32

http://www.dmtf.org/about/policies/disclosures.php

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 3

CONTENTS 33

Foreword ... 7 34

Introduction.. 8 35
Requirements .. 8 36

1 Scope .. 11 37

2 Normative References ... 11 38

3 Terms and Definitions ... 12 39

4 Abbreviated Terms and Document Conventions .. 14 40
4.1 Abbreviated Terms .. 14 41
4.2 Document Conventions... 14 42

5 CIM-XML Message Syntax and Semantics ... 14 43
5.1 Well-Formed, Valid, and Loosely Valid Documents ... 15 44
5.2 Operational Semantics.. 15 45
5.3 Operation Correlators ... 17 46

5.3.1 Overview .. 17 47
5.3.2 Representation ... 17 48
5.3.3 Implementation Requirements and Compatibility for Operation Messages 17 49
5.3.4 Implementation Requirements and Compatibility for Export Messages 18 50

5.4 CIM Operation Syntax and Semantics .. 18 51
5.4.1 Method Invocations .. 18 52

5.4.1.1 Simple Operations ... 19 53
5.4.1.2 Multiple Operations ... 19 54
5.4.1.3 Status Codes ... 20 55

5.4.2 Intrinsic Methods .. 22 56
5.4.2.1 GetClass .. 23 57
5.4.2.2 GetInstance ... 24 58
5.4.2.3 DeleteClass ... 26 59
5.4.2.4 DeleteInstance .. 26 60
5.4.2.5 CreateClass ... 27 61
5.4.2.6 CreateInstance .. 28 62
5.4.2.7 ModifyClass ... 29 63
5.4.2.8 ModifyInstance .. 31 64
5.4.2.9 EnumerateClasses .. 33 65
5.4.2.10 EnumerateClassNames .. 34 66
5.4.2.11 EnumerateInstances (DEPRECATED) ... 34 67
5.4.2.12 EnumerateInstanceNames (DEPRECATED) ... 36 68
5.4.2.13 ExecQuery (DEPRECATED) .. 37 69
5.4.2.14 Associators (PARTLY DEPRECATED)... 38 70
5.4.2.15 AssociatorNames (PARTLY DEPRECATED) ... 39 71
5.4.2.16 References (PARTLY DEPRECATED) ... 40 72
5.4.2.17 ReferenceNames (PARTLY DEPRECATED) ... 42 73
5.4.2.18 GetProperty (DEPRECATED) ... 43 74
5.4.2.19 SetProperty (DEPRECATED) ... 44 75
5.4.2.20 GetQualifier ... 44 76
5.4.2.21 SetQualifier .. 45 77
5.4.2.22 DeleteQualifier ... 45 78
5.4.2.23 EnumerateQualifiers ... 46 79
5.4.2.24 Pulled Enumeration Operations .. 46 80

5.4.3 Namespace Manipulation Using the CIM_Namespace Class (DEPRECATED) 67 81
5.4.3.1 Namespace Creation .. 67 82
5.4.3.2 Namespace Deletion ... 68 83
5.4.3.3 Manipulation and Query of Namespace Information............................... 68 84
5.4.3.4 Use of the __Namespace Pseudo Class (DEPRECATED) 68 85

CIM Operations over HTTP DSP0200

4 DMTF Standard Version 1.4.0

5.4.4 Functional Profiles (DEPRECATED) ... 68 86
5.4.5 Extrinsic Method Invocation ... 70 87

5.5 CIM Export Syntax and Semantics ... 71 88
5.5.1 Export Method Invocations .. 71 89

5.5.1.1 Simple Export .. 72 90
5.5.1.2 Multiple Export ... 72 91
5.5.1.3 Status Codes ... 72 92

5.5.2 Export Methods .. 73 93
5.5.2.1 ExportIndication... 75 94

5.5.3 Functional Profiles (DEPRECATED) ... 75 95

6 Encapsulation of CIM-XML Messages .. 76 96
6.1 WBEM clients, WBEM servers, and WBEM listeners ... 76 97
6.2 Use of M-POST ... 77 98

6.2.1 Use of the Ext Header ... 77 99
6.2.2 Naming of Extension Headers ... 77 100

6.3 Extension Headers Defined for CIM-XML Message Requests and Responses 78 101
6.3.1 Encoding of CIM Element Names within HTTP Headers and Trailers 78 102
6.3.2 Encoding of CIM Object Paths within HTTP Headers and Trailers 79 103
6.3.3 CIMOperation ... 80 104
6.3.4 CIMExport .. 81 105
6.3.5 CIMProtocolVersion ... 81 106
6.3.6 CIMMethod .. 82 107
6.3.7 CIMObject .. 83 108
6.3.8 CIMExportMethod .. 83 109
6.3.9 CIMBatch (DEPRECATED) ... 84 110
6.3.10 CIMExportBatch (DEPRECATED) ... 85 111
6.3.11 CIMError .. 86 112
6.3.12 CIMRoleAuthenticate ... 86 113
6.3.13 CIMRoleAuthorization .. 86 114
6.3.14 CIMStatusCodeDescription ... 87 115
6.3.15 WBEMServerResponseTime ... 87 116

7 HTTP Requirements and Usage ... 87 117
7.1 HTTP and HTTPS Support ... 87 118
7.2 Use of Standard HTTP Headers ... 88 119

7.2.1 Accept .. 88 120
7.2.2 Accept-Charset .. 88 121
7.2.3 Accept-Encoding .. 89 122
7.2.4 Accept-Language ... 89 123
7.2.5 Accept-Ranges .. 89 124
7.2.6 Allow .. 89 125
7.2.7 Authorization .. 89 126
7.2.8 Cache-Control .. 90 127
7.2.9 Connection ... 90 128
7.2.10 Content-Encoding .. 90 129
7.2.11 Content-Language ... 90 130
7.2.12 Content-Range ... 91 131
7.2.13 Content-Type ... 91 132
7.2.14 Expires ... 91 133
7.2.15 If-Range ... 91 134
7.2.16 Proxy-Authenticate... 91 135
7.2.17 Range .. 91 136
7.2.18 WWW-Authenticate.. 91 137

7.3 Errors and Status Codes .. 92 138
7.4 Security Considerations .. 93 139

7.4.1 Authentication .. 93 140
7.4.2 Message Encryption .. 94 141

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 5

7.5 Determining WBEM server Capabilities.. 95 142
7.5.1 Determining WBEM server Capabilities through CIM Classes (DEPRECATED) 95 143
7.5.2 Determining WBEM server Capabilities through the HTTP Options 97 144

7.5.2.1 CIMSupportedFunctionalGroups (DEPRECATED) 98 145
7.5.2.2 CIMSupportsMultipleOperations (DEPRECATED) 98 146
7.5.2.3 CIMSupportedQueryLanguages (DEPRECATED) 99 147
7.5.2.4 CIMValidation .. 99 148

7.6 Other HTTP Methods .. 99 149
7.7 Discovery and Addressing .. 99 150
7.8 Internationalization Considerations ... 100 151

ANNEX A (Informative) Examples of Message Exchanges .. 102 152
A.1 Retrieval of a Single Class Definition .. 102 153
A.2 Retrieval of a Single Instance Definition ... 103 154
A.3 Deletion of a Single Class Definition ... 104 155
A.4 Deletion of a Single Instance Definition .. 105 156
A.5 Creation of a Single Class Definition .. 106 157
A.6 Creation of a Single Instance Definition.. 107 158
A.7 Enumeration of Class Names ... 108 159
A.8 Enumeration of Instances ... 109 160
A.9 Retrieval of a Single Property ... 110 161
A.10 Execution of an Extrinsic Method ... 112 162
A.11 Indication Delivery Example ... 113 163
A.12 Subscription Example ... 114 164
A.13 Multiple Operations Example .. 121 165

ANNEX B (informative) LocalOnly Parameter Discussion .. 124 166
B.1 Explanation of the Deprecated 1.1 Interpretation ... 124 167
B.2 Risks of Using the 1.1 Interpretation ... 125 168
B.3 Techniques for Differentiating between the 1.0 Interpretation and 1.1 Interpretation 126 169

ANNEX C (normative) Generic Operations Mapping .. 127 170
C.1 Operations .. 127 171

C.1.1 GetInstance .. 128 172
C.1.2 DeleteInstance ... 129 173
C.1.3 ModifyInstance ... 130 174
C.1.4 CreateInstance ... 130 175
C.1.5 EnumerateInstances .. 131 176
C.1.6 EnumerateInstanceNames .. 132 177
C.1.7 Associators .. 133 178
C.1.8 AssociatorNames ... 134 179
C.1.9 References ... 135 180
C.1.10 ReferenceNames ... 136 181
C.1.11 OpenEnumerateInstances ... 137 182
C.1.12 OpenEnumerateInstancePaths .. 138 183
C.1.13 OpenAssociators.. 139 184
C.1.14 OpenAssociatorPaths .. 140 185
C.1.15 OpenReferences .. 141 186
C.1.16 OpenReferencePaths .. 142 187
C.1.17 OpenQueryInstances ... 143 188
C.1.18 PullInstancesWithPath ... 144 189
C.1.19 PullInstancePaths .. 144 190
C.1.20 PullInstances .. 145 191
C.1.21 CloseEnumeration ... 146 192
C.1.22 EnumerationCount ... 146 193
C.1.23 InvokeMethod .. 146 194
C.1.24 InvokeStaticMethod ... 147 195
C.1.25 GetClass .. 148 196

CIM Operations over HTTP DSP0200

6 DMTF Standard Version 1.4.0

C.1.26 DeleteClass .. 149 197
C.1.27 ModifyClass ... 149 198
C.1.28 CreateClass ... 150 199
C.1.29 EnumerateClasses... 150 200
C.1.30 EnumerateClassNames ... 151 201
C.1.31 AssociatorClasses ... 152 202
C.1.32 AssociatorClassPaths .. 153 203
C.1.33 ReferenceClasses.. 153 204
C.1.34 ReferenceClassPaths .. 154 205
C.1.35 GetQualifierType .. 155 206
C.1.36 DeleteQualifierType ... 156 207
C.1.37 ModifyQualifierType ... 156 208
C.1.38 CreateQualifierType ... 157 209
C.1.39 EnumerateQualifierTypes .. 158 210

ANNEX D (informative) Change Log .. 159 211

Bibliography .. 161 212

 213

Tables 214

Table 1 – Status Codes Returned by an <Error> Child element .. 21 215

Table 2 – Mapping of Intrinsic Method Pseudo-Types to XML Elements ... 23 216

Table 3 – Root-Directed Tree of Functional Profile Dependencies .. 70 217

Table 4 – Symbolic Names for Referencing Error Codes ... 73 218

Table 5 – Mapping of Export Method Pseudo-Types to XML Elements ... 75 219

Table 6 – Functional Groups of Export Methods .. 76 220

Table B-1 – Comparison of Properties Returned by GetInstance in Versions 1.0 and 1.1 125 221

Table B-2 – Comparison of Properties Returned by a Call to GetInstance in Versions 1.0 and 1.1 126 222

Table C-1 – Mapping of generic operations to CIM-XML operations ... 127 223

 224

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 7

Foreword 225

CIM Operations over HTTP (DSP0200) was prepared by the DMTF CIM-XML Working Group. 226

CIM Operations over HTTP DSP0200

8 DMTF Standard Version 1.4.0

Introduction 227

This document defines a mapping of CIM-XML messages to the Hypertext Transfer Protocol (HTTP and 228
HTTPS) so that implementations of CIM can operate in an open, standardized manner. It also defines the 229
notion of conformance in the context of this mapping, and it describes the behavior an implementation of 230
CIM shall exhibit to be a conforming CIM implementation. 231

Unless otherwise noted, the term HTTP is used in this document to mean both HTTP and HTTPS. 232

This document is structured as follows: 233

 Clause 5 describes the CIM-XML messages that form the HTTP payload using XML. It specifies 234
the syntax and semantics of the message requests and their corresponding responses. 235

 Clause 6 describes the encapsulation of these messages in HTTP request and response 236
messages, with examples of each. It also describes the extension headers used to convey 237
additional CIM-specific semantics in the HTTP Header. 238

 Clause 7 presents details of other aspects of the encapsulation: 239

– HTTP version support 240

– Use of standard HTTP headers 241

– HTTP error codes 242

– Security considerations 243

Requirements 244

There are many different ways CIM-XML messages can be represented in XML and encapsulated within 245
HTTP messages. To attain interoperability among different implementations of CIM, both the XML 246
representation and the HTTP encapsulation must be standardized. The XML representation is defined in 247
DSP0201, DSP0203, and DSP8044 define the DTD and XSD for that XML representation, for 248
convenience. This document uses that XML representation to define the HTTP encapsulation. 249

The following criteria are applied to the representation of CIM-XML messages in XML using DSP0201: 250

 Each CIM-XML message is completely described in XML; completeness is favored over 251
conciseness. 252

 The set of CIM-XML messages provides enough functionality to enable implementations of CIM 253
to communicate effectively for management purposes. This release of the mapping does not 254
provide a complete set of messages. Rather, the goal is to define the mapping so that it admits 255
straightforward extension (by the addition of further features) in future versions. 256

 (DEPRECATED) The set of CIM-XML messages is classified into functional profiles to 257
accommodate a range of implementations varying from complete support of all messages to 258
support of a minimal subset. The number of functional profiles is kept as small as possible to 259
encourage interoperability, and mechanisms provided by different CIM implementations can 260
declare their level of support. 261

The following criteria are applied to the HTTP encapsulation of CIM-XML messages herein: 262

 In recognition of the large installed base of HTTP/1.0 systems, the encapsulation is designed to 263
support both HTTP/1.0 and HTTP/1.1. However, support for HTTP/1.0 has been deprecated in 264
version 1.4 of this document (see 7.1). 265

 The encapsulation does not introduce requirements that conflict with those stated in HTTP/1.0 266
or HTTP/1.1. 267

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 9

 Use of the encapsulation should be straightforward over the current base HTTP infrastructures. 268
Some features anticipate and exploit enhancements to this base, but no aspects of the 269
encapsulation require such enhancements as mandatory. 270

 The encapsulation avoids the use of pure HTTP tunneling or URL munging (for example, the 271
use of the "?" character) in favor of a mechanism that allows existing HTTP infrastructures to 272
control content safely. 273

 The encapsulation exposes key CIM-XML message information in headers to allow efficient 274
firewall/proxy handling. The information is limited to essentials so that it does not have a 275
significant impact on the size of the header. All CIM-specific information in a header also 276
appears within the CIM-XML message. 277

 There is a clear and unambiguous encapsulation of the CIM-XML message payload within the 278
HTTP message. Conciseness of the encapsulation is of secondary importance. 279

 280

CIM Operations over HTTP DSP0200

10 DMTF Standard Version 1.4.0

 281

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 11

CIM Operations over HTTP 282

1 Scope 283

The Common Information Model (CIM) (for details, see DSP0004) is an object-oriented information model 284
defined by the Distributed Management Task Force (DMTF) that provides a conceptual framework for 285
describing management data. 286

The Hypertext Transfer Protocol (HTTP) (RFC1945, RFC2616) is an application-level protocol for 287
distributed, collaborative, hypermedia information systems. This generic stateless protocol can be used 288
for many tasks through extension of its request methods, error codes, and headers. 289

The Hypertext Transfer Protocol Secure (HTTPS) (RFC2818) is the usage of HTTP over secure sockets 290
provided by TLS. It supports encryption of the messages exchanged, secure identification of servers, and 291
secure authentication of clients. 292

NOTE: HTTPS should not be confused with Secure HTTP defined in RFC2660. 293

The Extensible Markup Language (XML) is a simplified subset of SGML that offers powerful and 294
extensible data modeling capabilities. An XML document is a collection of data represented in XML. An 295
XML schema is a grammar that describes the structure of an XML document. 296

This document defines a mapping of CIM-XML messages onto HTTP that allows implementations of CIM 297
to interoperate in an open, standardized manner. It is based on DSP0201 that defines the XML schema 298
for CIM objects and messages. 299

2 Normative References 300

The following referenced documents are indispensable for applying the information in this document while 301
developing an implementation of CIM. For dated references, only the edition cited applies. For undated 302
references, the latest edition applies, including any amendments. 303

DMTF DSP0004, Common Information Model (CIM) Infrastructure 2.7, 304
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf 305

DMTF DSP0201, Representation of CIM in XML 2.4, 306
http://www.dmtf.org/standards/published_documents/DSP0201_2.4.pdf 307

DMTF DSP0212, Filter Query Language 1.0, 308
http://www.dmtf.org/standards/published_documents/DSP0212_1.0.pdf 309

DMTF DSP0223, Generic Operations 1.0, 310
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf 311

DMTF DSP8016, WBEM Operations Message Registry 1.0, 312
http://schemas.dmtf.org/wbem/messageregistry/1/dsp8016_1.0.xml 313

IETF RFC1766, Tags for the Identification of Languages, March 1995, 314
http://www.ietf.org/rfc/rfc1766.txt 315

IETF RFC1945, Hypertext Transfer Protocol – HTTP/1.0, May 1996, 316
http://www.ietf.org/rfc/rfc1945.txt 317

IETF RFC2246, The TLS Protocol, Version 1.0, January 1999, 318
http://www.ietf.org/rfc/rfc2246.txt 319

http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf
http://www.dmtf.org/standards/published_documents/DSP0201_2.4.pdf
http://www.dmtf.org/standards/published_documents/DSP0212_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2246.txt

CIM Operations over HTTP DSP0200

12 DMTF Standard Version 1.4.0

IETF RFC2277, IETF Policy on Character Sets and Languages, January 1998, 320
http://www.ietf.org/rfc/rfc2277.txt 321

IETF RFC2279, UTF-8, a transformation format of Unicode and ISO 10646, January 1998, 322
http://www.ietf.org/rfc/rfc2279.txt 323

IETF RFC2376, XML Media Types, July 1998, 324
http://www.ietf.org/rfc/rfc2376.txt 325

IETF RFC2396, Uniform Resource Identifiers (URI): Generic Syntax, August 1998, 326
http://www.ietf.org/rfc/rfc2396.txt 327

IETF RFC2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999, 328
http://www.ietf.org/rfc/rfc2616.txt 329

IETF RFC2617, HTTP Authentication: Basic and Digest Access Authentication, June 1999, 330
http://www.ietf.org/rfc/rfc2617.txt 331

IETF RFC2774, HTTP Extension Framework, February 2000, 332
http://www.ietf.org/rfc/rfc2774.txt 333

IETF RFC2818, HTTP Over TLS, May 2000, 334
http://www.ietf.org/rfc/rfc2818.txt 335

IETF RFC4346, The Transport Layer Security (TLS) Protocol, Version 1.1, April 2006, 336
http://www.ietf.org/rfc/rfc4346.txt 337

IETF RFC5246, The Transport Layer Security (TLS) Protocol, Version 1.2, August 2008, 338
http://www.ietf.org/rfc/rfc5246.txt 339

NIST 800-57 Part 1, Recommendation for Key Management: Part 1: General (Revision 3), July 2012, 340
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf 341

NIST 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and 342
Key Lengths, January 2011, 343
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf 344

W3C Recommendation, Extensible Markup Language (XML), Version 1.0, August 2006, 345
http://www.w3.org/TR/REC-xml-names/ 346

W3C Recommendation, Namespaces in XML, January 1999, 347
http://www.w3.org/TR/1999/REC-xml-names-19990114/ 348

W3C, XML Schema Part 1: Structures, May 2001, 349
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/ 350

W3C, XSL Transformations (XSLT), Version 1.0, November 1999, 351
http://www.w3.org/TR/xslt 352

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 353
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 354

3 Terms and Definitions 355

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 356
are defined in this clause. 357

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), 358
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 359

http://www.ietf.org/rfc/rfc2277.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2774.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xslt
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 13

in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term, 360
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note 361
thatISO/IEC Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional 362
alternatives shall be interpreted in their normal English meaning. 363

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as 364
described in ISO/IEC Directives, Part 2, Clause 5. 365

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 366
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 367
not contain normative content. Notes and examples are always informative elements. 368

The terms defined in DSP0004 and DSP0201 apply to this document. The following additional terms are 369
used in this document. Some additional more detailed terms are defined throughout the subclauses of 370
this document. 371

3.1 372

CIM element 373

one of the following components of the CIM metamodel used to define a schema: Class, instance, 374
property, method, parameter, or qualifier 375

3.2 376

CIM object 377

a namespace, class, instance, or qualifier that is accessible in a WBEM server 378

 379

CIM-XML protocol 380

the WBEM protocol that uses the CIM operations over HTTP defined in this document and the 381
representation of CIM in XML defined in DSP0201 382

3.3 383

WBEM client 384

the client role in the CIM-XML protocol and in other WBEM protocols. See 6.1 for a complete definition. 385

3.4 386

WBEM listener 387

the event listener role in the CIM-XML protocol and in other WBEM protocols. See 6.1 for a complete 388
definition. 389

3.5 390

WBEM protocol 391

a communications protocol between WBEM client, WBEM server and WBEM listener 392

3.6 393

WBEM server 394

the server role in the CIM-XML protocol and in other WBEM protocols. See 6.1 for a complete definition. 395

3.7 396

XML element 397

a component of XML that is defined using the ELEMENT construct in the DTD 398

CIM Operations over HTTP DSP0200

14 DMTF Standard Version 1.4.0

4 Abbreviated Terms and Document Conventions 399

4.1 Abbreviated Terms 400

The following symbols and abbreviations are used in this document. 401

 4.1.1402

CIM 403

Common Information Model 404

 4.1.2405

DTD 406

Document Type Definition 407

 4.1.3408

HTTP 409

Hypertext Transfer Protocol 410

 4.1.4411

XML 412

Extensible Markup Language 413

4.2 Document Conventions 414

This document uses the same notational conventions and basic parsing constructs that are defined in 415
RFC2068. 416

Throughout this document, any deprecated element is indicated by one of the following labels: 417

 The “DEPRECATION NOTE:” label preceding a paragraph indicates that the paragraph 418
explains a deprecated element. 419

 The “DEPRECATED.” label before a list item indicates that the information in that list item is 420
deprecated. 421

 The “(DEPRECATED)” label after a heading applies to the entire clause for that heading. 422

 The “(DEPRECATED)” label at the end of a line in a code fragment or an example indicates that 423
the particular line of the code fragment or example is deprecated. 424

5 CIM-XML Message Syntax and Semantics 425

This document defines all interactions among CIM products as CIM-XML messages. A CIM-XML 426
message is a well-defined request or response data packet for exchanging information among CIM 427
products. The two types of CIM-XML messages are as follows: 428

 CIM-XML operation message. This type of message is used between WBEM client and WBEM 429
server to invoke an operation on the WBEM server. 430

 CIM-XML export message. This type of message is used between WBEM server and WBEM 431
listener to communicate information (typically an event) to a WBEM listener. 432

This clause describes the syntax and semantics of CIM-XML messages independently of their 433
encapsulation within a particular protocol such as HTTP. XML is used as the basis for this description, 434
and in particular the CIM Representation in XML (DSP0201). 435

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 15

Note that "CIM message" (etc.) was used for the term "CIM-XML message" (etc.) before version 1.4 of 436
this document. 437

5.1 Well-Formed, Valid, and Loosely Valid Documents 438

In this discussion, any reference to well-formed or valid XML documents has the standard meaning 439
defined in Extensible Markup Language (XML). 440

XML document type definitions (DTDs) are restricted to be either well-formed or valid. However, this 441
document also uses the term loosely valid to apply to XML that removes any attributes or elements in the 442
XML document that do not appear in the CIM XML DTD. The resulting document is valid with respect to 443
the CIM XML DTD and is therefore loosely valid. 444

In effect, a loosely valid document is valid with respect to the CIM XML DTD apart from having additional 445
attributes or elements not defined by that DTD. The concept is very similar to that of an open content 446
model as defined by the working draft on XML Schemas, expressed within the more limited scope of 447
DTDs. One corollary of this definition is that any XML document that is valid with respect to the CIM XML 448
DTD is also loosely valid. 449

The motivation for introducing the loosely valid class of XML documents is to relax the restrictions on a 450
WBEM client, WBEM server, or WBEM listener when parsing received XML documents defined within the 451
scope of this mapping. Not all clients (including their respective WBEM servers or WBEM listeners) 452
should be required to validate each received CIM-XML message response (or its respective CIM-XML 453
message request) because such a requirement would place too heavy a processing burden on the 454
validating entity at the expense of footprint and performance, most notably in communication between 455
robust and conformant implementations of this mapping. 456

Instead, the following requirements are set forth in this document. In all cases, a WBEM client has a 457
respective alternative WBEM server or WBEM listener, and a received CIM-XML message response has 458
a respective alternative CIM-XML message request: 459

 A WBEM client may include a DOCTYPE element in a CIM-XML message request. If so, an 460
external declaration should be used. In-lining of the complete DTD within a message is 461
discouraged. 462

 A WBEM client may elect to validate a received CIM-XML message response. 463

 If a WBEM client elects not to validate a received CIM-XML message, then loose validation 464
shall be enforced. 465

The behavior of a WBEM server or WBEM listener with respect to a received CIM-XML message request 466
is covered in detail in 7.3. 467

5.2 Operational Semantics 468

The CIM Representation in XML (DSP0201) defines a child element under the root <CIM> XML element 469
called <MESSAGE>, which contains one of the following XML child elements: 470

 CIM-XML operation message child elements 471

– <SIMPLEREQ> 472

– <SIMPLERSP> 473

– <MULTIREQ> 474

– <MULTIRSP> 475

 CIM-XML export message child elements 476

– <SIMPLEXPREQ> 477

CIM Operations over HTTP DSP0200

16 DMTF Standard Version 1.4.0

– <SIMPLEXPRSP> 478

– <MULTIEXPREQ> 479

– <MULTIEXPRSP> 480

In the remainder of this document, the following terms denote an XML document that is loosely valid with 481
respect to the CIM XML DTD: 482

 Operation request message. Contains under the root <CIM> node a <MESSAGE> child 483
element that has a <MULTIREQ> or <SIMPLEREQ> child element under it. 484

 Operation response message. Contains under the root <CIM> node a <MESSAGE> child 485
element that has a <MULTIRSP> or <SIMPLERSP> child element under it. 486

 Export request message. Contains under the root <CIM> node a <MESSAGE> child element 487
that has a <MULTIEXPREQ> or <SIMPLEEXPREQ> child element under it. 488

 Export response message. Contains under the root <CIM> node a <MESSAGE> child element 489
that has a <MULTIEXPRSP> or <SIMPLEEXPRSP> child element under it. 490

The phrase "CIM-XML message request" refers to either an operation request message or an export 491
request message. The phrase "CIM-XML message response" refers to either an operation response 492
message or an export response message. 493

A CIM-XML message request shall contain a non-empty value for the ID attribute of the <MESSAGE> 494
element. The corresponding CIM-XML message response shall supply the same value for that attribute. 495
Clients should employ a message ID scheme that minimizes the chance of receiving a stale CIM-XML 496
message response. 497

Any CIM-XML message conforming to this document shall have a minimum value of "1.0" and a 498

maximum value that is equal to the latest version of this document for the PROTOCOLVERSION attribute of 499

the <MESSAGE> element. 500

An operation response message sent in response to an operation request message shall specify the 501

same value for the ID attribute of the <MESSAGE> element that appears in the request message and 502

contain one of the following: 503

– A <MULTIRSP> child element, if the operation request message contains a <MULTIREQ> 504
child element. 505

– A <SIMPLERSP> child element, if the operation request message contains a 506
<SIMPLEREQ> child element. 507

A simple operation request is an operation request message that contains a <SIMPLEREQ> child 508
element. A simple operation response is an Operation Response Message that contains a 509
<SIMPLERSP> child element. 510

A multiple operation request is an operation request message that contains a <MULTIREQ> child 511
element. A multiple operation response is an operation response message that contains a <MULTIRSP> 512
child element. 513

An export response message sent in response to an export request message shall specify the same 514
value for the ID attribute of the <MESSAGE> element that appears in the export request message and 515
shall contain one of the following: 516

– A <MULTIEXPRSP> child element if the export request message contained a 517
<MULTIEXPREQ> child element, or 518

– A <SIMPLEEXPRSP> child element if the export request message contained a 519
<SIMPLEEXPREQ> child element. 520

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 17

A simple export request is an export request message that contains a <SIMPLEEXPREQ> child element. 521
A simple export response is an export response message that contains a <SIMPLEEXPRSP> child 522
element. 523

A multiple export request is an export request message that contains a <MULTIEXPREQ> child element. 524
A multiple export response is an export response message that contains a <MULTIEXPRSP> child 525
element. 526

5.3 Operation Correlators 527

5.3.1 Overview 528

WBEM servers may support maintaining a log to record certain aspects of operations requested by 529
clients. The log data can provide a record of access, activity, configuration changes or audit related 530
information. The purpose of audit related information is to identify what was done when servicing the 531
operation, when it was done, and on behalf of which end user the operation was requested. In some 532
environments, providing such audit information is a matter of regulatory compliance. 533

The credentials used for authentication with a WBEM server are not necessarily associated with the 534
identity of an end user. For example, when the client application is a management server handling 535
multiple end users, it is not uncommon to use the credentials of a system user (e.g. user "root" on Linux 536
or UNIX systems) for authentication with the WBEM server. In such environments, a log on the WBEM 537
server can only record the identity of the system user that was used for authentication, but not the identity 538
of the end user on behalf of which the operation was requested. 539

Version 1.4 of this document introduced the concept of operation correlators which are named values that 540
can be included by WBEM clients in operation request messages so that a WBEM server can add these 541
correlators to any logs it maintains. To maintain symmetry, export request messages can also include 542
operation correlators for use in any logs a WBEM listener may maintain. 543

The meaning of operation correlators is defined by the originator of the message and does not need to be 544
understood by the receiver of the message; the receiver only stores the operation correlator along with 545
any log entries about the message. 546

5.3.2 Representation 547

Operation correlators are represented in the CIM-XML protocol using the CORRELATOR element. Each 548
occurence of a CORRELATOR element represents one operation correlator. For details, see DSP0201. 549

Zero or more operation correlators may be specified in simple operation request messages and in simple 550
extrinsic request messages. Since the operations in a multiple operation may not have any semantic 551
relationship within each other, the operation correlators are specified only at the level of simple operations 552
within the multipe operation; operation correlators cannot be specified at the level of multiple operations. 553

This document defines no requirements on the number, content or meaning of operation correlators. 554

5.3.3 Implementation Requirements and Compatibility for Operation Messages 555

Supporting operation correlators for WBEM clients is optional. If a WBEM client implements support for 556
operation correlators, it may include zero or more operation correlators in a simple operation request 557
message. The number, content and meaning of operation correlators may be different in each operation. 558

Supporting operation correlators for WBEM servers for its operation messages is optional. If a WBEM 559
server implements support for operation correlators for its operation messages, it shall store the operation 560
correlators specified in a simple operation request message along with any log information about the 561
operation. If the operation itself is not logged on the server, the correlator also does not need to be 562

CIM Operations over HTTP DSP0200

18 DMTF Standard Version 1.4.0

logged. In order to avoid vulnerabilities by specification of excessive amounts of operation correlators, 563
WBEM servers may implement limits on operation correlators. 564

Since participants in the protocol defined by this document are required to ignore any unknown XML 565
elements in messages they receive, introducing support for operation correlators in WBEM clients is 566
compatible for WBEM servers that do not support them. 567

5.3.4 Implementation Requirements and Compatibility for Export Messages 568

Supporting operation correlators for WBEM servers for its export messsages is optional. If a WBEM 569
server implements support for operation correlators for its export messsages, it may include zero or more 570
operation correlators in a simple export request message. The number, content and meaning of operation 571
correlators may be different in each export message. 572

Supporting operation correlators for WBEM listeners is optional. If a WBEM listener implements support 573
for operation correlators, it shall store the operation correlators specified in a simple export request 574
message along with any log information about the export message. If the export message itself is not 575
logged on the listener, the correlator also does not need to be logged. In order to avoid vulnerabilities by 576
specification of excessive amounts of operation correlators, WBEM listeners may implement limits on 577
operation correlators. 578

Since participants in the protocol defined by this document are required to ignore any unknown XML 579
elements in messages they receive, introducing support for operation correlators in WBEM servers for its 580
export messsages is compatible for WBEM listeners that do not support them. 581

5.4 CIM Operation Syntax and Semantics 582

This clause describes method invocations, intrinsic methods, and namespace manipulation. 583

5.4.1 Method Invocations 584

All CIM-XML operation requests defined for this CIM-to-HTTP mapping are defined as invocations of one 585
or more methods. A method can be either: 586

 An intrinsic method, which is defined for the purposes of modeling a CIM operation. 587

 An extrinsic method, which is defined on a CIM class in a schema. 588

In addition, intrinsic methods are made against a CIM namespace. Extrinsic methods are invoked on a 589
CIM class (if static) or instance otherwise. Intrinsic methods are defined in 5.4.2. 590

An extrinsic method call is represented in XML by the <METHODCALL> element, and the response to 591
that call is represented by the <METHODRESPONSE> element. 592

An intrinsic method call is represented in XML by the <IMETHODCALL> element, and the response to 593
that call is represented by the <IMETHODRESPONSE> element. An input parameter has an IN qualifier 594

(with a value of true) in the method definition, and an output parameter has an OUT qualifier (with a 595

value of true). A parameter can be both an input and an output parameter. 596

The <METHODCALL> or <IMETHODCALL> element names the method to be invoked and supplies any 597
input parameters to the method call. Note the following rules about parameters: 598

 Each input parameter shall be named using the name assigned in the method definition. 599

 Input parameters may be supplied in any order. 600

 Each input parameter of the method, and no others, shall be present in the call, unless it is 601
optional. 602

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 19

The <METHODRESPONSE> or <IMETHODRESPONSE> element defines either an <ERROR> or an 603
optional return value and output parameters if it is decorated with the OUT qualifier in the method 604
definition. In the latter case, the following rules about parameters apply: 605

 Each output parameter shall be named using the name assigned in the method definition. 606

 Output parameters may be supplied in any order. 607

 Each output parameter of the method, and no others, shall be present in the response, unless it 608
is optional. 609

 The method invocation process can be thought of as the binding of the input parameter values 610
specified as child elements of the <METHODCALL> or <IMETHODCALL> element to the input 611
parameters of the method. This binding is followed by an attempt to execute the method using 612
the bound input parameters with one of the following results: 613

– If the attempt to call the method is successful, the return value and output parameters are 614
bound to the child elements of the <METHODRESPONSE> or <IMETHODRESPONSE> 615
element. 616

– If the attempt to call the method is unsuccessful, an error code and optional human-617
readable description of that code is bound to the <METHODRESPONSE> or 618
<IMETHODRESPONSE> element. 619

5.4.1.1 Simple Operations 620

A simple operation invokes a single method. A simple operation request is represented by a 621
<SIMPLEREQ> element, and a simple operation response is represented by a <SIMPLERSP> element. 622

If the method is intrinsic, then the <SIMPLEREQ> element shall contain an <IMETHODCALL> element, 623
which in turn contains a <LOCALNAMESPACEPATH> child element identifying the local CIM namespace 624
against which the method is to execute. If the method is extrinsic, then the <SIMPLEREQ> element shall 625
contain a <METHODCALL> element that in turn contains one of the following child elements: 626

 A <LOCALCLASSPATH> child element identifying the CIM class on which the method is to be 627
invoked if the method is static. 628

 A <LOCALINSTANCEPATH> child element identifying the CIM instance on which the method is 629
otherwise to be invoked. 630

5.4.1.2 Multiple Operations 631

A multiple operation requires the invocation of more than one method. A multiple operation request is 632
represented by a <MULTIREQ> element, and a multiple operation response is represented by a 633
<MULTIRSP> element. 634

A <MULTIREQ> (or its respective <MULTIRSP>) element is a sequence of two or more <SIMPLEREQ> 635
(or their respective <SIMPLERSP>) elements. 636

A <MULTIRSP> element shall contain a <SIMPLERSP> element for every <SIMPLEREQ> element in the 637
corresponding multiple operation response. These <SIMPLERSP> elements shall be in the same order 638
as their <SIMPLEREQ> counterparts so that the first <SIMPLERSP> in the response corresponds to the 639
first <SIMPLEREQ> in the request, and so forth. 640

Multiple operations conveniently allow multiple method invocations to be batched into a single HTTP 641
message. Batching reduces the number of roundtrips between a WBEM client and a WBEM server and 642
allows the WBEM server to make internal optimizations if it chooses. Note that multiple operations do not 643
confer any transactional capabilities in processing the request. For example, the WBEM server does not 644
have to guarantee that the constituent method calls either all fail or succeed, only that the entity make a 645
"best effort" to process the operation. However, servers shall finish processing each operation in a 646

CIM Operations over HTTP DSP0200

20 DMTF Standard Version 1.4.0

batched operation before executing the next one. Clients shall recognize that the order of operations 647
within a batched operation is significant. 648

Not all WBEM servers support multiple operations; the way they declare support for this feature is defined 649
in 7.5. 650

5.4.1.3 Status Codes 651

This clause defines the status codes and detailed error information that a conforming WBEM server 652
application can return. The value of an <ERROR> child element within a <METHODRESPONSE> or 653
<IMETHODRESPONSE> element includes the following parts: 654

 a mandatory status code 655

 an optional human-readable description of the status code 656

 zero or more CIM_Error instances 657

Table 1 defines the status codes that a conforming WBEM server application can return as the value of 658
the CODE attribute of an <ERROR> child element. In addition to a status code, a conforming WBEM 659
server may return zero or more <INSTANCE> child elements as part of an <ERROR> element. Each 660
<INSTANCE> child element shall be an instance of CIM_Error. For each instance of CIM_Error, the value 661
of CIMStatusCode shall comply with the definition of expected error codes for the CIM-XML operation 662
request. A WBEM client may ignore any <INSTANCE> child elements. 663

The symbolic names defined in Table 1 do not appear on the wire. They are used here solely for 664
convenient reference to an error in other parts of this document. 665

Not all methods are expected to return all the status codes listed in Table 1. For intrinsic methods, the 666
relevant clause on each method in this document defines the error codes expected to be returned. For 667
extrinsic methods, 5.4.5 specifies which of the codes in Table 1 can be used. 668

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 21

Table 1 – Status Codes Returned by an <Error> Child element 669

Symbolic Name Code Definition

CIM_ERR_FAILED 1 A general error occurred that is not
covered by a more specific error
code.

CIM_ERR_ACCESS_DENIED 2 Access to a CIM resource is not
available to the client.

CIM_ERR_INVALID_NAMESPACE 3 The target namespace does not
exist.

CIM_ERR_INVALID_PARAMETER 4 One or more parameter values
passed to the method are not valid.

CIM_ERR_INVALID_CLASS 5 The specified class does not exist.

CIM_ERR_NOT_FOUND 6 The requested object cannot be
found. The operation can be
unsupported on behalf of the WBEM
server in general or on behalf of an
implementation of a management
profile.

CIM_ERR_NOT_SUPPORTED 7 The requested operation is not
supported on behalf of the WBEM
server, or on behalf of a provided
class. If the operation is supported
for a provided class but is not
supported for particular instances of
that class, then CIM_ERR_FAILED
shall be used.

CIM_ERR_CLASS_HAS_CHILDREN 8 The operation cannot be invoked on
this class because it has subclasses.

CIM_ERR_CLASS_HAS_INSTANCES 9 The operation cannot be invoked on
this class because one or more
instances of this class exist.

CIM_ERR_INVALID_SUPERCLASS 10 The operation cannot be invoked
because the specified superclass
does not exist.

CIM_ERR_ALREADY_EXISTS 11 The operation cannot be invoked
because an object already exists.

CIM_ERR_NO_SUCH_PROPERTY 12 The specified property does not
exist.

CIM_ERR_TYPE_MISMATCH 13 The value supplied is not compatible
with the type.

CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED 14 The query language is not
recognized or supported.

CIM_ERR_INVALID_QUERY 15 The query is not valid for the
specified query language.

CIM_ERR_METHOD_NOT_AVAILABLE 16 The extrinsic method cannot be
invoked.

CIM_ERR_METHOD_NOT_FOUND 17 The specified extrinsic method does
not exist.

CIM Operations over HTTP DSP0200

22 DMTF Standard Version 1.4.0

Symbolic Name Code Definition

CIM_ERR_NAMESPACE_NOT_EMPTY 20 The specified namespace is not
empty.

CIM_ERR_INVALID_ENUMERATION_CONTEXT 21 The enumeration identified by the
specified context cannot be found, is
in a closed state, does not exist, or
is otherwise invalid.

CIM_ERR_INVALID_OPERATION_TIMEOUT 22 The specified operation timeout is
not supported by the WBEM server.

CIM_ERR_PULL_HAS_BEEN_ABANDONED 23 The Pull operation has been
abandoned due to execution of a
concurrent CloseEnumeration
operation on the same enumeration.

CIM_ERR_PULL_CANNOT_BE_ABANDONED 24 The attempt to abandon a
concurrent Pull operation on the
same enumeration failed. The
concurrent Pull operation proceeds
normally.

CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 25 Using a a filter query in pulled
enumerations is not supported by
the WBEM server.

CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 26 The WBEM server does not support
continuation on error.

CIM_ERR_SERVER_LIMITS_EXCEEDED 27 The WBEM server has failed the
operation based upon exceeding
server limits.

CIM_ERR_SERVER_IS_SHUTTING_DOWN 28 The WBEM server is shutting down
and cannot process the operation.

5.4.2 Intrinsic Methods 670

This clause describes the Intrinsic methods defined outside the schema for CIM operations. These 671
methods can only be called on a CIM namespace, rather than on a CIM class or instance. 672

The notation used in the following subclauses to define the signatures of the intrinsic methods is a 673
pseudo-MOF notation that extends the standard MOF BNF (DSP0004) for describing CIM methods with 674
several pseudo-parameter types enclosed within angle brackets (< and >). 675

This notation decorates the parameters with pseudo-qualifiers (IN, OUT, OPTIONAL, and NULL) to define 676
their invocation semantics. These qualifiers are for description purposes only within the scope of this 677
document; in particular, a WBEM client shall not specify them in intrinsic method invocations. 678

This notation uses the IN qualifier to denote that the parameter is an input parameter. 679

This notation uses the OUT qualifier to denote that the parameter is an output parameter. 680

A WBEM client may omit an optional parameter by not specifying an <IPARAMVALUE> element for that 681
parameter if the required value is the specified default. It shall not omit a parameter that is not marked as 682
optional. A WBEM server may omit support for an optional parameter. Any attempt to call a method with 683
an optional parameter that is not supported shall return either CIM_ERR_NOT_SUPPORTED or 684
CIM_ERR_INVALID_PARAMETER. 685

This notation uses the NULL qualifier for parameters whose values can be specified as NULL in a method 686
call. A NULL (unassigned) value for a parameter is specified by an <IPARAMVALUE> or 687

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 23

<PARAMVALUE> element with no child element. For parameters without the NULL qualifier, the WBEM 688
client shall specify a value by including a suitable child element for the <IPARAMVALUE> or 689
<PARAMVALUE> element. 690

All parameters shall be uniquely named and shall correspond to a valid parameter name for that method 691
as described by this document. The order of the parameters is not significant. 692

The non-NULL values of intrinsic method parameters or return values modeled as standard CIM types 693
(such as string and Boolean or arrays thereof) are represented as follows: 694

 Simple values use the <VALUE> child element within an <IPARAMETER> element for method 695
parameters or within an <IRETURNVALUE> element for method return values. 696

 Array values use the <VALUE.ARRAY> child element within an <IPARAMETER> element for 697
method parameters or within an <IRETURNVALUE> element for method return values. 698

Table 2 shows how each pseudo-type used by the intrinsic methods shall be mapped to an XML element 699
described in DSP0201 in the context of both a parameter value (child element of <IPARAMVALUE>) and 700
a return value (child element of <IRETURNVALUE>). 701

Table 2 – Mapping of Intrinsic Method Pseudo-Types to XML Elements 702

Type XML Element

<object> (VALUE.OBJECT|VALUE.OBJECTWITHLOCALPATH|VALUE.OBJECTWITHPATH)

<class> CLASS

<instance> INSTANCE

<className> CLASSNAME

<namedInstance> VALUE.NAMEDINSTANCE

<instanceName> INSTANCENAME

<instancePath> INSTANCEPATH

<objectWithPath> VALUE.OBJECTWITHPATH

<instanceWithPath> VALUE.INSTANCEWITHPATH

<objectName> (CLASSNAME|INSTANCENAME)

<objectPath> OBJECTPATH

<propertyValue> (VALUE|VALUE.ARRAY|VALUE.REFERENCE)

<qualifierDecl> QUALIFIER.DECLARATION

5.4.2.1 GetClass 703

The GetClass operation returns a single CIM class from the target namespace: 704

<class> GetClass (705

 [IN] <className> ClassName, 706

 [IN,OPTIONAL] boolean LocalOnly = true, 707

 [IN,OPTIONAL] boolean IncludeQualifiers = true, 708

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 709

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 710
) 711

The ClassName input parameter defines the name of the class to be retrieved. 712

CIM Operations over HTTP DSP0200

24 DMTF Standard Version 1.4.0

If the LocalOnly input parameter is true, any CIM elements (properties, methods, and qualifiers), 713

except those added or overridden in the class as specified in the classname input parameter, shall not be 714
included in the returned class. If it is false, no additional filtering is defined. 715

If the IncludeQualifiers input parameter is true, all qualifiers for that class (including qualifiers on 716

the class and on any returned properties, methods, or method parameters) shall be included as 717

<QUALIFIER> XML elements in the response. If it is false, no <QUALIFIER> XML elements are present 718

in the returned class. 719

If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute shall be present on 720

all appropriate elements in the returned class. If it is false, no CLASSORIGIN attributes are present in 721

the returned class. 722

If the PropertyList input parameter is not NULL, the members of the array define one or more property 723

names. The returned class shall not include any properties missing from this list. Note that if LocalOnly 724

is specified as true, it acts as an additional filter on the set of properties returned. For example, if 725

property A is included in PropertyList but LocalOnly is set to true and A is not local to the 726

requested class, it is not included in the response. If the PropertyList input parameter is an empty 727

array, no properties are included in the response. If the PropertyList input parameter is NULL, no 728

additional filtering is defined. 729

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 730

process the request normally. If PropertyList contains property names that are invalid for the target 731

class, the WBEM server shall ignore them but otherwise process the request normally. 732

If GetClass is successful, the return value is a single CIM class that shall include all CIM elements 733
(properties, methods, and qualifiers) defined in or inherited by that class, reduced by any elements 734

excluded as a result of using the LocalOnly or PropertyList filters. 735

If GetClass is unsuccessful, this method shall return one of the following status codes, where the error 736
returned is the first applicable error in the list, starting with the first element and working down. Any 737
additional method-specific interpretation of the error is enclosed in parentheses: 738

 CIM_ERR_ACCESS_DENIED 739

 CIM_ERR_INVALID_NAMESPACE 740

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise 741
incorrect parameters) 742

 CIM_ERR_NOT_FOUND (The request CIM class does not exist in the specified namespace.) 743

 CIM_ERR_FAILED (Some other unspecified error occurred.) 744

5.4.2.2 GetInstance 745

The GetInstance operation returns a single CIM instance from the target namespace: 746

<instance> GetInstance (747

 [IN] <instanceName> InstanceName, 748

 [IN,OPTIONAL] boolean LocalOnly = true, (DEPRECATED) 749

 [IN,OPTIONAL] boolean IncludeQualifiers = false, (DEPRECATED) 750

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, (DEPRECATED) 751

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 752

) 753

The InstanceName input parameter defines the name of the instance to be retrieved. 754

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 25

DEPRECATION NOTE: With version 1.2 of this document, the LocalOnly parameter is DEPRECATED. 755

LocalOnly filtering, as defined in 1.1, will not be supported in the next major revision of this document. 756

In version 1.1 of this document, the definition of the LocalOnly parameter was incorrectly modified. This 757

change introduced a number of interoperability and backward compatibility problems for WBEM clients 758

using the LocalOnly parameter to filter the set of properties returned. The DMTF strongly recommends 759

that WBEM clients set LocalOnly to false and do not use this parameter to filter the set of properties 760

returned. To minimize the impact of this recommendation on WBEM clients, a WBEM server may choose 761

to treat the value of the LocalOnly parameter as false for all requests. A WBEM server shall 762

consistently support a single interpretation of the LocalOnly parameter. Refer to ANNEX B for additional 763

details. 764

DEPRECATION NOTE: The use of the IncludeQualifiers parameter is DEPRECATED and it may 765

be removed in a future version of this document. The IncludeQualifiers parameter definition is 766

ambiguous and when it is set to true, WBEM clients cannot be assured that any qualifiers will be 767

returned. A WBEM client should always set IncludeQualifiers to false. To minimize the impact of 768

this recommendation on WBEM clients, a WBEM server may choose to treat the value of the 769

IncludeQualifiers parameter as false for all requests. The preferred behavior is to use the class 770

operations to receive qualifier information and not depend on any qualifiers existing in this response. If 771

the IncludeQualifiers input parameter is true, all qualifiers for that instance (including qualifiers on 772

the instance and on any returned properties) shall be included as <QUALIFIER> XML elements in the 773

response. If it is false, no <QUALIFIER> XML elements are present. 774

DEPRECATION NOTE: In version 1.4 of this document, the IncludeClassOrigin parameter is 775

DEPRECATED. A WBEM server may choose to treat the value of IncludeClassOrigin parameter as 776

false for all requests, otherwise the implementation shall support the original behavior as defined in the 777

rest of this paragraph.If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute 778

shall be present on all appropriate elements in the returned instance. If it is false, no CLASSORIGIN 779

attributes are present. 780

If the PropertyList input parameter is not NULL, the members of the array define one or more property 781

names. The returned instance shall not include any properties missing from this list. Note that if 782

LocalOnly is true, this acts as an additional filter on the set of properties returned. For example, if 783

property A is included in PropertyList but LocalOnly is set to true and A is not local to the 784

requested instance, it is not included in the response. If the PropertyList input parameter is an empty 785

array, no properties are included in the response. If the PropertyList input parameter is NULL, no 786

additional filtering is defined. 787

If PropertyList contains duplicate property names, the WBEM server shall ignore the duplicates but 788

otherwise process the request normally. If PropertyList contains property names that are invalid for 789

the target instance, the WBEM server shall ignore them but otherwise process the request normally. 790

Properties with the NULL value may be omitted from the response, even if the WBEM client has not 791

requested the exclusion of the property through the LocalOnly or PropertyList filters. The WBEM 792

client shall interpret such omitted properties as NULL. Note that the WBEM client cannot make any 793

assumptions about properties omitted as a result of using LocalOnly or PropertyList filters. 794

If GetInstance is successful, the return value is a single CIM instance with all properties defined in and 795

inherited by its class reduced by any properties excluded as a result of using the LocalOnly or 796

PropertyList filters and further reduced by any NULL valued properties omitted from the response. 797

If GetInstance is unsuccessful, the method shall return one of the following status codes where the error 798
returned is the first applicable error in the list, starting with the first element and working down. Any 799
additional method-specific interpretation of the error is enclosed in parentheses: 800

 CIM_ERR_ACCESS_DENIED 801

CIM Operations over HTTP DSP0200

26 DMTF Standard Version 1.4.0

 CIM_ERR_INVALID_NAMESPACE 802

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 803
incorrect parameters) 804

 CIM_ERR_INVALID_CLASS (The CIM class does not exist in the specified namespace.) 805

 CIM_ERR_NOT_FOUND (The CIM class does exist, but the requested CIM instance does not 806
exist in the specified namespace.) 807

 CIM_ERR_FAILED (some other unspecified error occurred) 808

5.4.2.3 DeleteClass 809

The DeleteClass operation deletes a single CIM class from the target namespace: 810

void DeleteClass (811

 [IN] <className> ClassName 812

) 813

The ClassName input parameter defines the name of the class to be deleted. 814

If DeleteClass is successful, the WBEM server removes the specified class, including any subclasses and 815
any instances. The operation shall fail if any one of these objects cannot be deleted. 816

If DeleteClass is unsuccessful, this method shall return one of the following status codes, where the error 817
returned is the first applicable error in the list, starting with the first element and working down. Any 818
additional method-specific interpretation of the error is enclosed in parentheses: 819

 CIM_ERR_ACCESS_DENIED 820

 CIM_ERR_NOT_SUPPORTED 821

 CIM_ERR_INVALID_NAMESPACE 822

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 823
incorrect parameters) 824

 CIM_ERR_NOT_FOUND (The CIM class to be deleted does not exist.) 825

 CIM_ERR_CLASS_HAS_CHILDREN (The CIM class has one or more subclasses that cannot 826
be deleted.) 827

 CIM_ERR_CLASS_HAS_INSTANCES (The CIM class has one or more instances that cannot 828
be deleted.) 829

 CIM_ERR_FAILED (Some other unspecified error occurred.) 830

5.4.2.4 DeleteInstance 831

The DeleteInstance operation deletes a single CIM instance from the target namespace. 832

void DeleteInstance (833

 [IN] <instanceName> InstanceName 834

) 835

The InstanceName input parameter defines the name (model path) of the instance to be deleted. 836

Deleting the instance may or may not cause the automatic deletion of additional instances. For example, 837
the deletion of an instance may cause the automatic deletion of all associations that reference that 838
instance. Or the deletion of an instance may cause the automatic deletion of instances (and their 839
associations) that have a Min(1) relationship to that instance. 840

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 27

If DeleteInstance is successful, the WBEM server removes the specified instance. 841

If DeleteInstance is unsuccessful, this method shall return one of the following status codes, where the 842
error returned is the first applicable error in the list, starting with the first element and working down. Any 843
additional method-specific interpretation of the error is enclosed in parentheses. 844

 CIM_ERR_ACCESS_DENIED 845

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 846

 CIM_ERR_INVALID_NAMESPACE 847

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 848
incorrect parameters) 849

 CIM_ERR_INVALID_CLASS (The CIM class does not exist in the specified namespace.) 850

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 851
instance, if provided.) 852

 CIM_ERR_NOT_FOUND (The CIM class does exist, but the requested CIM instance does not 853
exist in the specified namespace.) 854

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 855
unspecified error occurred.) 856

5.4.2.5 CreateClass 857

The CreateClass operation creates a single CIM class in the target namespace. The class shall not 858
already exist: 859

void CreateClass (860

 [IN] <class> NewClass 861

) 862

The NewClass input parameter defines the new class. The proposed definition shall be a correct class 863

definition according to DSP0004. 864

In processing the creation of the new class, the WBEM server shall conform to the following rules: 865

 The server shall ignore any CLASSORIGIN and PROPAGATED XML attributes in the new 866
class. 867

 If the new class has no superclass, the NewClass parameter defines a new superclass. The 868

server shall ensure that all properties and methods of the new class have a CLASSORIGIN 869
attribute whose value is the name of the new class. 870

 If the new class has a superclass, the NewClass parameter defines a new subclass of that 871

superclass. The superclass shall exist. The server shall ensure that the following conditions are 872
met: 873

– Any properties, methods, or qualifiers in the subclass not defined in the superclass are 874
created as new elements of the subclass. In particular, the server shall set the 875
CLASSORIGIN XML attribute on the new properties and methods to the name of the 876
subclass and ensure that all others preserve their CLASSORIGIN attribute value from that 877
defined in the superclass. 878

– If a property is defined in the superclass and in the subclass, the value assigned to that 879
property in the subclass (including NULL) becomes the default value of the property for the 880
subclass. 881

– If a property or method of the superclass is not specified in the subclass, then it is inherited 882
without modification by the subclass. 883

CIM Operations over HTTP DSP0200

28 DMTF Standard Version 1.4.0

– Any qualifiers defined in the superclass with a TOSUBCLASS attribute value of true shall 884

appear in the resulting subclass. Qualifiers in the superclass with a TOSUBCLASS 885

attribute value of false shall not be propagated to the subclass. 886

– Any qualifier propagated from the superclass cannot be modified in the subclass if the 887

OVERRIDABLE attribute of that qualifier is set to false in the superclass. It is a client 888

error to specify such a qualifier in the new class with a definition different than that in the 889
superclass (where definition encompasses the name, type, and flavor attribute settings of 890
the <QUALIFIER> XML element and the value of the qualifier). 891

If CreateClass is successful, the WBEM server creates the specified class. 892

If CreateClass is unsuccessful, this method shall return one of the following status codes, where the error 893
returned is the first applicable error in the list, starting with the first element and working down. Any 894
additional method-specific interpretation of the error is enclosed in parentheses. 895

 CIM_ERR_ACCESS_DENIED 896

 CIM_ERR_NOT_SUPPORTED 897

 CIM_ERR_INVALID_NAMESPACE 898

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 899
incorrect parameters) 900

 CIM_ERR_ALREADY_EXISTS (The CIM class already exists.) 901

 CIM_ERR_INVALID_SUPERCLASS (The putative CIM class declares a non-existent 902
superclass.) 903

 CIM_ERR_FAILED (Some other unspecified error occurred.) 904

5.4.2.6 CreateInstance 905

The CreateInstance operation creates a single CIM Instance in the target namespace. The instance shall 906
not already exist: 907

<instanceName> CreateInstance (908

 [IN] <instance> NewInstance 909

) 910

DEPRECATION NOTE: The use of qualifiers on instances is DEPRECATED and may be removed in a 911
future version of this document. A WBEM client cannot rely on any qualifiers included in the 912

NewInstance to have any impact on the operation. It is recommended that the WBEM server ignore any 913

qualifiers included in the instance. The NewInstance input parameter defines the new instance. The 914

proposed definition shall be a correct instance definition for the underlying CIM class according to 915
DSP0004. 916

In creating the new instance, the WBEM server shall conform to the following rules and ensure that they 917
are applied: 918

 The server shall ignore any CLASSORIGIN and PROPAGATED XML attributes in the 919

NewInstance. 920

 DEPRECATED. Any qualifiers in the instance not defined in the class are created as new 921
elements of the instance. 922

 All properties of the instance preserve their CLASSORIGIN attribute value from that defined in 923
the class. 924

 The designated initial value for any property in the CIM instance to be created shall be the 925

property value (including NULL) specified in the NewInstance parameter, or if the property is 926

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 29

not specified in the NewInstance parameter, the default value (including NULL) defined in the 927

property declaration, or if the property does not define a default value, there is no designated 928
initial value for the property. 929

If there is a designated initial value for a property, the server shall either initialize the property to 930
that value, or reject the request. If there is no designated initial value for a property, the server 931
may initialize the property to any value (including NULL). Further considerations for accepting or 932
rejecting creation requests based on the properties requested to be initialized are out of scope 933
for this document; CIM model definitions are expected to cover that. 934

 If the NewInstance parameter specifies properties that are not exposed by the class specified 935

in the NewInstance parameter, the server shall reject the request. 936

 DEPRECATION NOTE: Use of the TOINSTANCE attribute is DEPRECATED. Servers may 937
choose to ignore TOINSTANCE. Servers that do not ignore TOINSTANCE shall interpret it so 938

that any qualifiers defined in the class with a TOINSTANCE attribute value of true appear in 939

the instance. Qualifiers in the class with a value of false shall not be propagated to the 940

instance. 941

 DEPRECATED. Any Qualifier propagated from the class cannot be modified in the instance if 942

the OVERRIDABLE attribute of that qualifier is set to false in the class. It is a client error to 943

specify such a qualifier in the NewInstance with a definition different than that in the class 944

(where definition encompasses the name, type, and flavor attribute settings of the 945
<QUALIFIER> XML element and the value of the qualifier). 946

If CreateInstance is successful, the new CIM instance has been created as described in this subclause, 947
and the return value defines the object path of the new CIM instance relative to the target namespace 948
created by the WBEM server (that is, the model path as defined by DSP0004). It is returned if one or 949
more of the new keys of the instance are dynamically allocated during creation rather than specified in the 950
request. 951

If CreateInstance is unsuccessful, this method shall return one of the following status codes, where the 952
error returned is the first applicable error in the list, starting with the first element and working down. Any 953
additional method-specific interpretation of the error is enclosed in parentheses. 954

 CIM_ERR_ACCESS_DENIED 955

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 956

 CIM_ERR_INVALID_NAMESPACE 957

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 958
incorrect parameters) 959

 CIM_ERR_INVALID_CLASS (The CIM class for the new instance does not exist.) 960

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 961
instance, if provided.) 962

 CIM_ERR_ALREADY_EXISTS (The CIM instance already exists.) 963

 CIM_ERR_FAILED (This operation is not supported for the specified instance or some other 964
unspecified error occurred.) 965

5.4.2.7 ModifyClass 966

The ModifyClass operation modifies an existing CIM class in the target namespace. The class shall 967
already exist: 968

void ModifyClass (969

 [IN] <class> ModifiedClass 970

CIM Operations over HTTP DSP0200

30 DMTF Standard Version 1.4.0

) 971

The ModifiedClass input parameter defines the set of changes to be made to the current class 972

definition, which shall be correct amendments to the CIM class as defined by DSP0004. 973

In modifying the class, the WBEM server shall conform to the following rules: 974

 The WBEM server shall ignore any CLASSORIGIN and PROPAGATED XML attributes in the 975

ModifiedClass. 976

 If the modified class has no superclass, the ModifiedClass parameter defines modifications to a 977
superclass. The server shall ensure that the following conditions are met: 978

– All properties and methods of the modified class have a CLASSORIGIN attribute whose 979
value is the name of this class. 980

– Any properties, methods, or qualifiers in the existing class definition that do not appear in 981

the ModifiedClass parameter are removed from the resulting modified class. 982

 If the modified class has a superclass, the ModifiedClass parameter defines modifications to 983

a subclass of that superclass. The superclass shall exist, and the client shall not change the 984
name of the superclass in the modified subclass. The server shall ensure that the following 985
conditions are met: 986

– Any properties, methods, or qualifiers in the subclass not defined in the superclass are 987
created as elements of the subclass. In particular, the server shall set the CLASSORIGIN 988
attribute on the new properties and methods to the name of the subclass and shall ensure 989
that all other others preserve their CLASSORIGIN attribute value from that defined in the 990
superclass. 991

– Any property, method, or qualifier previously defined in the subclass but not defined in the 992

superclass, and which is not present in the ModifiedClass parameter, is removed from 993

the subclass. 994

– If a property is specified in the ModifiedClass parameter, the value assigned to that 995

property (including NULL) becomes the default value of the property for the subclass. 996

– If a property or method of the superclass is not specified in the subclass, then the subclass 997
inherits it without modification. Any previous changes to such an element in the subclass 998
are lost. 999

– If a qualifier in the superclass is not specified in the subclass and the qualifier is defined in 1000

the superclass with a TOSUBCLASS attribute value of true, then the qualifier shall still be 1001

present in the resulting modified subclass. A propagated qualifier cannot be removed from 1002
a subclass. 1003

– Any qualifier propagated from the superclass cannot be modified in the subclass if the 1004

OVERRIDABLE attribute of that qualifier is set to false in the superclass. It is a client 1005

error to specify such a qualifier in the ModifiedClass with a definition different than that in 1006
the superclass (where definition encompasses the name, type, and flavor attribute settings 1007
of the <QUALIFIER> XML element and the value of the qualifier). 1008

– Any qualifiers defined in the superclass with a TOSUBCLASS attribute value of false 1009

shall not be propagated to the subclass. 1010

If ModifyClass is successful, the WBEM server updates the specified class. The request to modify the 1011
class shall fail if the server cannot consistently update any existing subclasses or instances of that class. 1012

If ModifyClass is unsuccessful, this method shall return one of the following status codes, where the error 1013
returned is the first applicable error in the list, starting with the first element and working down. Any 1014
additional method-specific interpretation of the error is enclosed in parentheses. 1015

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 31

 CIM_ERR_ACCESS_DENIED 1016

 CIM_ERR_NOT_SUPPORTED 1017

 CIM_ERR_INVALID_NAMESPACE 1018

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1019
incorrect parameters) 1020

 CIM_ERR_NOT_FOUND (The CIM class does not exist.) 1021

 CIM_ERR_INVALID_SUPERCLASS (The putative CIM class declares a non-existent or 1022
incorrect superclass.) 1023

 CIM_ERR_CLASS_HAS_CHILDREN (The modification could not be performed because the 1024
subclasses of the class could not be updated consistently.) 1025

 CIM_ERR_CLASS_HAS_INSTANCES (The modification could not be performed because the 1026
instances of the class could not be updated consistently.) 1027

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1028

5.4.2.8 ModifyInstance 1029

The ModifyInstance operation modifies an existing CIM instance in the target namespace. The instance 1030
shall already exist: 1031

void ModifyInstance (1032

 [IN] <namedInstance> ModifiedInstance, 1033

 [IN, OPTIONAL] boolean IncludeQualifiers = true, (DEPRECATED) 1034

 [IN, OPTIONAL, NULL] string PropertyList[] = NULL 1035

) 1036

The ModifiedInstance input parameter identifies the name of the instance to be modified and 1037

provides the new property values. 1038

DEPRECATION NOTE: Use of the IncludeQualifiers parameter is DEPRECATED, and it may be 1039

removed in a future version of this document. The behavior of the IncludeQualifiers parameter is 1040

not specified. A WBEM client cannot rely on IncludeQualifiers to have any impact on the operation. 1041

It is recommended that the WBEM server ignore any qualifiers included in ModifiedInstance. If the 1042

IncludeQualifiers input parameter is true, the qualifiers are modified as specified in 1043

ModifiedInstance. If the parameter is false, qualifiers in ModifiedInstance are ignored and no 1044

qualifiers are explicitly modified. 1045

The set of properties designated to be modified shall be determined as follows: 1046

If the PropertyList input parameter is not NULL, the members of the array define one or more 1047

property names. The properties specified in PropertyList are designated to be modified. Properties of 1048

the ModifiedInstance that are missing from PropertyList are not designated to be modified. If 1049

PropertyList is an empty array, no properties are designated to be modified. If PropertyList is 1050

NULL, the properties of ModifiedInstance with values different from the current values in the instance 1051

are designated to be modified. 1052

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 1053

process the request normally. If PropertyList contains property names that are invalid for the instance 1054

to be modified, the WBEM server shall reject the request. 1055

If a property is designated to be modified, the WBEM server shall either modify the property, or reject the 1056
request. The server shall reject modification requests for key properties. Further considerations for 1057
accepting or rejecting modification requests based on the properties requested to be modified are out of 1058

CIM Operations over HTTP DSP0200

32 DMTF Standard Version 1.4.0

scope for this document; CIM model definitions are expected to cover that. Note that the WRITE qualifier 1059
on a property is considered to be in the area of CIM models; specifically, a value of True for the WRITE 1060
qualifier does not guarantee modifiability of that property, and a value of False does not prevent 1061
modifiability. 1062

If a property is not designated to be modified, the server shall not modify its value. However, note that 1063
properties may change their values as a result of other changes. 1064

In modifying the instance, the WBEM server shall conform to the following rules and ensure their 1065
application: 1066

 The server shall ignore any CLASSORIGIN and PROPAGATED attributes in the 1067
ModifiedInstance. 1068

 The class shall exist, and the client shall not change its name in the instance to be modified. 1069

 DEPRECATED. Any qualifiers in the instance not defined in the class are created as new 1070

elements of the instance if IncludeQualifiers is true. 1071

 All properties of the instance to be modified preserve their CLASSORIGIN attribute value from 1072
that defined in the class. 1073

 DEPRECATED. Any qualifier previously defined in the instance to be modified but not defined 1074

in the class, and which is not present in the ModifiedInstance parameter, is removed from 1075

the instance if IncludeQualifiers is true. 1076

 If a property is to be modified as previously defined, the designated new value for that property 1077
in the CIM instance shall be the property value (including NULL) specified in the 1078

ModifiedInstance parameter, or if the property is not specified in the ModifiedInstance 1079

parameter, the default value (including NULL) defined in the property declaration, or if the 1080
property does not define a default value, there is no designated new value for the property. 1081

If there is a designated new value for a property, the server shall either update the property to 1082
that value, or reject the request. If there is no designated new value for a property, the server 1083
may update the property to any value (including NULL). Further determinations about this 1084
decision are out of scope for this document; CIM model definitions are expected to cover that.. 1085

 DEPRECATION NOTE: The use of the TOINSTANCE qualifier attribute is DEPRECATED. 1086
Servers may choose to ignore TOINSTANCE. Servers that do not ignore TOINSTANCE shall 1087
interpret it so that any qualifiers defined in the class with a TOINSTANCE attribute value of true 1088
appear in the instance. A propagated qualifier cannot be removed from an instance. qualifiers in 1089

the class with a TOINSTANCE attribute value of false shall not be propagated to the instance 1090

 DEPRECATED. Any qualifier propagated from the class cannot be modified in the instance if 1091
the OVERRIDABLE attribute of that qualifier is set to false in the class. It is a client error to 1092

specify such a qualifier in ModifiedInstance with a definition different than that in the class 1093

(where definition encompasses the name, type, and flavor attribute settings of the 1094
<QUALIFIER> XML element and the value of the qualifier). 1095

If ModifyInstance is successful, the specified CIM instance has been updated as described in this 1096
subclause. 1097

If ModifyInstance is unsuccessful, the specified Instance is not updated, and the method shall return one 1098
of the following status codes, where the error returned is the first applicable error in the list, starting with 1099
the first element and working down. Any additional interpretation of the error is enclosed in parentheses. 1100

 CIM_ERR_ACCESS_DENIED 1101

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1102

 CIM_ERR_INVALID_NAMESPACE 1103

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 33

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1104
incorrect parameters and invalid properties to be modified) 1105

 CIM_ERR_INVALID_CLASS (The CIM class of the instance to be modified does not exist.) 1106

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1107
instance, if provided.) 1108

 CIM_ERR_NOT_FOUND (The CIM instance to be modified does not exist.) 1109

 CIM_ERR_FAILED (This operation is not supported for the specified instance or some other 1110
unspecified error occurred, including a request for non-writable properties to be modified or a 1111
property that cannot be modified at this time.) 1112

5.4.2.9 EnumerateClasses 1113

The EnumerateClasses operation enumerates subclasses of a CIM class in the target namespace: 1114

<class>* EnumerateClasses (1115

 [IN,OPTIONAL,NULL] <className> ClassName=NULL, 1116

 [IN,OPTIONAL] boolean DeepInheritance = false, 1117

 [IN,OPTIONAL] boolean LocalOnly = true, 1118

 [IN,OPTIONAL] boolean IncludeQualifiers = true, 1119

 [IN,OPTIONAL] boolean IncludeClassOrigin = false 1120

) 1121

The ClassName input parameter defines the class that is the basis for the enumeration. 1122

If the DeepInheritance input parameter is true, all subclasses of the specified class should be 1123

returned. If the ClassName input parameter is absent, this implies that all classes in the target 1124

namespace should be returned. If DeepInheritance is false, only immediate child subclasses are 1125

returned. If the ClassName input parameter is NULL, this implies that all top-level classes (that is, 1126

classes with no superclass) in the target namespace should be returned. This definition of 1127

DeepInheritance applies only to the EnumerateClasses and EnumerateClassName operations. 1128

If the LocalOnly input parameter is true, any CIM elements (properties, methods, and qualifiers) 1129

except those added or overridden in the class as specified in the classname input parameter shall not be 1130

included in the returned class. If it is false, this parameter defines no additional filtering. 1131

If the IncludeQualifiers input parameter is true, all qualifiers for each class (including qualifiers on 1132

the class and on any returned properties, methods, or method parameters) shall be included as 1133

<QUALIFIER> XML elements in the response. If it is false, no <QUALIFIER> XML elements are 1134

present. 1135

If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute shall be present on 1136

all appropriate elements in each returned class. If it is false, no CLASSORIGIN attributes are present. 1137

If EnumerateClasses is successful, the method returns zero or more classes that meet the required 1138
criteria. These classes shall include all CIM elements (properties, methods, and qualifiers) defined in or 1139

inherited by each class, reduced by any elements excluded as a result of using the LocalOnly filter. 1140

If EnumerateClasses is unsuccessful, this method shall return one of the following status codes, where 1141
the error returned is the first applicable error in the list, starting with the first element and working down. 1142
Any additional method-specific interpretation of the error is enclosed in parentheses. 1143

 CIM_ERR_ACCESS_DENIED 1144

 CIM_ERR_NOT_SUPPORTED 1145

CIM Operations over HTTP DSP0200

34 DMTF Standard Version 1.4.0

 CIM_ERR_INVALID_NAMESPACE 1146

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1147
incorrect parameters) 1148

 CIM_ERR_INVALID_CLASS (The CIM class for this enumeration does not exist.) 1149

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1150

5.4.2.10 EnumerateClassNames 1151

The EnumerateClassNames operation enumerates the names of subclasses of a CIM class in the target 1152
namespace: 1153

<className>* EnumerateClassNames (1154

 [IN,OPTIONAL,NULL] <className> ClassName = NULL, 1155

 [IN,OPTIONAL] boolean DeepInheritance = false 1156

) 1157

The ClassName input parameter defines the class that is the basis for the enumeration. 1158

If the DeepInheritance input parameter is true, the names of all subclasses of the specified class 1159

should be returned. If the ClassName input parameter is absent, this implies that the names of all classes 1160

in the target namespace should be returned. If DeepInheritance is false, only the names of immediate 1161

child subclasses are returned. If the ClassName input parameter is NULL, this implies that the names of 1162

all top-level classes (that is, classes with no superclass) in the target namespace should be returned. This 1163

definition of DeepInheritance applies only to the EnumerateClasses and EnumerateClassName 1164

operations. 1165

If EnumerateClassNames is successful, the method returns zero or more names of classes that meet the 1166
requested criteria. 1167

If EnumerateClassNames is unsuccessful, this method returns one of the following status codes, where 1168
the error returned is the first applicable error in the list, starting with the first element and working down. 1169
Any additional method-specific interpretation of the error is enclosed in parentheses. 1170

 CIM_ERR_ACCESS_DENIED 1171

 CIM_ERR_NOT_SUPPORTED 1172

 CIM_ERR_INVALID_NAMESPACE 1173

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1174
incorrect parameters) 1175

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1176
exist.) 1177

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1178

5.4.2.11 EnumerateInstances (DEPRECATED) 1179

The EnumerateInstances operation enumerates instances of a CIM class in the target namespace, 1180
including instances in the class and any subclasses in accordance with the polymorphic nature of CIM 1181
objects: 1182

<namedInstance>* EnumerateInstances (1183

 [IN] <className> ClassName, 1184

 [IN,OPTIONAL] boolean LocalOnly = true, (DEPRECATED) 1185

 [IN,OPTIONAL] boolean DeepInheritance = true, 1186

 [IN,OPTIONAL] boolean IncludeQualifiers = false, (DEPRECATED) 1187

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 35

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, (DEPRECATED) 1188

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 1189

) 1190

DEPRECATION NOTE: The EnumerateInstances operation has been deprecated in version 1.4 of this 1191
document. Use OpenEnumerateInstances instead (see 5.4.2.24.3). 1192

The ClassName input parameter defines the class that is the basis for the enumeration. 1193

DEPRECATION NOTE: With version 1.2of this document, the LocalOnly parameter is DEPRECATED. 1194

LocalOnly filtering, as defined in 1.1, will not be supported in the next major revision of this document. 1195

In version 1.1of this document, the definition of the LocalOnly parameter was incorrectly modified. This 1196

change introduced a number of interoperability and backward compatibility problems for WBEM clients 1197

using the LocalOnly parameter to filter the set of properties returned. The DMTF strongly recommends 1198

that WBEM clients set LocalOnly to false and do not use this parameter to filter the set of properties 1199

returned. To minimize the impact of this recommendation on WBEM clients, a WBEM server may choose 1200

to treat the value of the LocalOnly parameter as false for all requests. A WBEM server shall 1201

consistently support a single interpretation of the LocalOnly parameter. Refer to ANNEX B for details. 1202

If the DeepInheritance input parameter is false, each returned instance shall not include any 1203

properties added by subclasses of the specified class. If it is true, no additional filtering is defined. 1204

DEPRECATION NOTE: The use of the IncludeQualifiers parameter is DEPRECATED and it may 1205

be removed in a future version of this document. The definition of IncludeQualifiers is ambiguous 1206

and when this parameter is set to true, WBEM clients cannot be assured that any qualifiers will be 1207

returned. A WBEM client should always set this parameter to false. To minimize the impact of this 1208

recommendation on WBEM clients, a WBEM server may choose to treat the value of 1209

IncludeQualifiers as false for all requests. The preferred behavior is to use the class operations to 1210

receive qualifier information and not depend on any qualifiers in this response. If the 1211

IncludeQualifiers input parameter is true, all qualifiers for the instance, (including qualifiers on the 1212

instance and on any returned properties, shall be included as <QUALIFIER> XML elements in the 1213

response. If it is false, no <QUALIFIER> XML elements are present in the returned instance. 1214

DEPRECATION NOTE: In version 1.4 of this document, the IncludeClassOrigin parameter is 1215

DEPRECATED. A WBEM server may choose to treat the value of IncludeClassOrigin parameter as 1216

false for all requests, otherwise the implementation shall support the original behavior as defined in the 1217

rest of this paragraph. If the IncludeClassOrigin input parameter is true, the CLASSORIGIN 1218

attribute shall be present on all appropriate elements in each returned Instance. If it is false, no 1219

CLASSORIGIN attributes are present. 1220

If the PropertyList input parameter is not NULL, the members of the array define one or more 1221

property names of the designated class. This definition may include inherited property names or property 1222
names explicitly defined in the designated class. However, it may not include property names added in 1223
subclasses of the designated class. Each returned instance shall not include any properties missing from 1224

this list. Note that PropertyList acts as an additional filter on the properties defined by the LocalOnly 1225

and DeepInheritance input parameters; if PropertyList includes a property name that is not in the 1226

set defined by the LocalOnly and DeepInheritance combination, the element for the property shall 1227

not be included in the returned instances. If PropertyList is an empty array, no properties are included 1228

in the returned instances. If PropertyList is NULL, no additional filtering is defined. 1229

If PropertyList contains duplicate property names, the WBEM server shall ignore the duplicates but 1230

otherwise process the request normally. If PropertyList contains property names that are invalid for a 1231

target instance, the WBEM server shall ignore them for that instance but otherwise process the request 1232
normally. 1233

CIM Operations over HTTP DSP0200

36 DMTF Standard Version 1.4.0

Properties with the NULL value may be omitted from the response, even if the WBEM client has not 1234

requested the exclusion of the property through the LocalOnly, DeepInheritance, or PropertyList 1235

filters. The WBEM client shall interpret such omitted properties as NULL. Note that the WBEM client 1236

cannot make any assumptions about properties omitted as a result of using any LocalOnly, 1237

DeepInheritance, or PropertyList filters. 1238

If EnumerateInstances is successful, the method returns zero or more <namedInstance> items 1239

representing named instances that meet the required criteria. These instances shall have all properties 1240
defined in and inherited by their respective classes, reduced by any properties excluded as a result of 1241

using the LocalOnly, DeepInheritance, or PropertyList filters and further reduced by any NULL-1242

valued properties omitted from the response. 1243

If EnumerateInstances is unsuccessful, this method shall return one of the following status codes, where 1244
the error returned is the first applicable error in the list, starting with the first element and working down. 1245
Any additional method-specific interpretation of the error is enclosed in parentheses. 1246

 CIM_ERR_ACCESS_DENIED 1247

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1248

 CIM_ERR_INVALID_NAMESPACE 1249

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1250
incorrect parameters) 1251

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1252
exist.) 1253

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the specified class and all 1254
of its subclasses, if provided.) 1255

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1256

5.4.2.12 EnumerateInstanceNames (DEPRECATED) 1257

The EnumerateInstanceNames operation enumerates the names (model paths) of the instances of a CIM 1258
class in the target namespace, including instances in the class and any subclasses in accordance with 1259
the polymorphic nature of CIM objects: 1260

<instanceName>* EnumerateInstanceNames (1261

 [IN] <className> ClassName 1262

) 1263

DEPRECATION NOTE: The EnumerateInstanceNames operation has been deprecated in version 1.4 of 1264
this document. Use OpenEnumerateInstancePaths instead (see 5.4.2.24.4). 1265

The ClassName input parameter defines the class that is the basis for the enumeration. 1266

If EnumerateInstanceNames is successful, the method returns zero or more <instanceName> items 1267

representing instance names (referred to in DSP0004 as a model path) that meet the requested criteria. 1268

The <instanceName> items shall specify the class from which the instance is instantiated, not any of its 1269

superclasses. Note that this class may be different from the class specified as input. 1270

If EnumerateInstanceNames is unsuccessful, this method shall return one of the following status codes, 1271
where the error returned is the first applicable error in the list, starting with the first element and working 1272
down. Any additional method-specific interpretation of the error is enclosed in parentheses. 1273

 CIM_ERR_ACCESS_DENIED 1274

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1275

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 37

 CIM_ERR_INVALID_NAMESPACE 1276

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1277
incorrect parameters) 1278

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1279
exist.) 1280

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the specified class and all 1281
of its subclasses, if provided.) 1282

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1283

5.4.2.13 ExecQuery (DEPRECATED) 1284

The ExecQuery operation executes a query against the target namespace: 1285

<object>* ExecQuery (1286

 [IN] string QueryLanguage, 1287

 [IN] string Query 1288

) 1289

DEPRECATION NOTE: The ExecQuery operation has been deprecated in version 1.4 of this document. 1290
Use OpenQueryInstances instead (see 5.4.2.24.14). 1291

The QueryLanguage input parameter defines the query language in which the query parameter is 1292

expressed. 1293

The Query input parameter defines the query to be executed. The results of the query shall be 1294

constrained to contain only CIM classes that exist in the target namespace or CIM instances whose 1295
classes exist in the target namespace. Note that any instances in the result set may or may not exist in 1296
any namespace. Note that for query languages supporting select-lists and from-clauses, this implies that 1297
all select-list entries resolve to disjoint properties exposed by one CIM class named in the from-clause. 1298
This rule does not prevent such queries from using joins. 1299

Neither the query language nor the format of the query is defined by this document. It is anticipated that 1300
query languages will be submitted to the DMTF as separate proposals. 1301

WBEM servers can declare which query languages they support (if any) using a mechanism defined in 1302
7.5. 1303

If ExecQuery is successful, the method returns zero or more <object> items representing CIM classes 1304

or instances that correspond to the results of the query. 1305

If ExecQuery is unsuccessful, the method shall return one of the following status codes, where the error 1306
returned is the first applicable error in the list, starting with the first element and working down. Any 1307
additional method-specific interpretation of the error is enclosed in parentheses. 1308

 CIM_ERR_ACCESS_DENIED 1309

 CIM_ERR_NOT_SUPPORTED 1310

 CIM_ERR_INVALID_NAMESPACE 1311

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1312
incorrect parameters) 1313

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested query language is not 1314
recognized.) 1315

 CIM_ERR_INVALID_QUERY (The query is not a valid query in the specified query language.) 1316

CIM Operations over HTTP DSP0200

38 DMTF Standard Version 1.4.0

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1317

5.4.2.14 Associators (PARTLY DEPRECATED) 1318

The Associators operation enumerates CIM objects (classes or instances) associated with a particular 1319
source CIM object: 1320

<objectWithPath>* Associators (1321

 [IN] <objectName> ObjectName, 1322

 [IN,OPTIONAL,NULL] <className> AssocClass = NULL, 1323

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1324

 [IN,OPTIONAL,NULL] string Role = NULL, 1325

 [IN,OPTIONAL,NULL] string ResultRole = NULL, 1326

 [IN,OPTIONAL] boolean IncludeQualifiers = false, (DEPRECATED) 1327

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, (DEPRECATED) 1328

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 1329

) 1330

DEPRECATION NOTE: The Associators operation for instances has been deprecated in version 1.4 of 1331
this document. Use OpenAssociatorInstances instead (see 5.4.2.24.7). The Associators operation for 1332
classes remains undeprecated. 1333

The ObjectName input parameter defines the source CIM object whose associated objects are to be 1334

returned. This may be either a class name or instance name (model path). 1335

The AssocClass input parameter, if not NULL, shall be a valid CIM association class name. It acts as a 1336

filter on the returned set of objects by mandating that each returned object shall be associated to the 1337
source object through an instance of this class or one of its subclasses. 1338

The ResultClass input parameter, if not NULL, shall be a valid CIM class name. It acts as a filter on the 1339

returned set of objects by mandating that each returned object shall be either an instance of this class (or 1340
one of its subclasses) or be this class (or one of its subclasses). 1341

The Role input parameter, if not NULL, shall be a valid property name. It acts as a filter on the returned 1342

set of objects by mandating that each returned object shall be associated with the source object through 1343
an association in which the source object plays the specified role. That is, the name of the property in the 1344
association class that refers to the source object shall match the value of this parameter. 1345

The ResultRole input parameter, if not NULL, shall be a valid property name. It acts as a filter on the 1346

returned set of objects by mandating that each returned object shall be associated to the source object 1347
through an association in which the returned object plays the specified role. That is, the name of the 1348
property in the association class that refers to the returned object shall match the value of this parameter. 1349

DEPRECATION NOTE: The use of the IncludeQualifiers parameter is DEPRECATED and it may 1350

be removed in a future version of this document. The preferred behavior is to use the class operations to 1351

receive qualifier information and not depend on any qualifiers in this response. If IncludeQualifiers 1352

is true, all qualifiers for each object (including qualifiers on the object and on any returned properties) 1353

shall be included as <QUALIFIER> XML elements in the response. If it is false, no <QUALIFIER> XML 1354

elements are present. 1355

DEPRECATION NOTE: In version 1.4 of this document, the IncludeClassOrigin parameter is 1356

DEPRECATED for instances. A WBEM server may choose to treat the value of IncludeClassOrigin 1357

parameter as false for all instance requests, otherwise the implementation shall support the original 1358

behavior as defined in the rest of this paragraph. If the IncludeClassOrigin input parameter is true, 1359

the CLASSORIGIN attribute shall be present on all appropriate elements in each returned object. If it is 1360

false, no CLASSORIGIN attributes are present. 1361

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 39

If the PropertyList input parameter is not NULL, the members of the array define one or more 1362

property names. Each returned object shall not include any properties missing from this list. If 1363

PropertyList is an empty array, no properties are included in each returned object. If it is NULL, no 1364

additional filtering is defined. 1365

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 1366

process the request normally. If PropertyList contains property names that are invalid for a target 1367

object, the WBEM server shall ignore them for that object but otherwise process the request 1368

normally.Clients should not explicitly specify properties in the PropertyList parameter unless they 1369

specify a non-NULL value for the ResultClass parameter. 1370

If instances are returned, properties with the NULL value may be omitted from the response, even if the 1371

WBEM client has not requested the exclusion of the through the PropertyList filter. The WBEM client 1372

shall interpret such omitted properties as NULL. Note that the WBEM client cannot make any 1373

assumptions about properties omitted as a result of using the PropertyList filter. If classes are 1374

returned, the WBEM server cannot make this choice, and only the WBEM client can cause properties to 1375

be excluded by using the PropertyList filter. 1376

If Associators is successful, the method returns zero or more <objectWithPath> items representing 1377

CIM classes or instances meeting the requested criteria. Because it is possible for CIM objects from 1378
different hosts or namespaces to be associated, each returned object includes location information. If the 1379

ObjectName refers to a class, then classes are returned. These classes shall have all CIM elements 1380

(properties, methods, and qualifiers) defined in and inherited by that class, reduced by any properties 1381

excluded as a result of using the PropertyList filter. If the ObjectName refers to an instance, then 1382

instances are returned. These instances shall have all properties defined in and inherited by its class, 1383

reduced by any properties excluded as a result of using the PropertyList filter and further reduced by 1384

any NULL valued properties omitted from the response. 1385

If Associators is unsuccessful, this method shall return one of the following status codes, where the error 1386
returned is the first applicable error in the list, starting with the first element and working down. Any 1387
additional method-specific interpretation of the error is enclosed in parentheses. 1388

 CIM_ERR_ACCESS_DENIED 1389

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1390

 CIM_ERR_INVALID_NAMESPACE 1391

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1392
incorrect parameters) 1393

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1394
instance, if provided.) 1395

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1396
unspecified error occurred.) 1397

5.4.2.15 AssociatorNames (PARTLY DEPRECATED) 1398

The AssociatorNames operation enumerates the names of CIM Objects (classes or instances) that are 1399
associated with a particular source CIM object: 1400

<objectPath>* AssociatorNames (1401

 [IN] <objectName> ObjectName, 1402

 [IN,OPTIONAL,NULL] <className> AssocClass = NULL, 1403

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1404

 [IN,OPTIONAL,NULL] string Role = NULL, 1405

 [IN,OPTIONAL,NULL] string ResultRole = NULL 1406

CIM Operations over HTTP DSP0200

40 DMTF Standard Version 1.4.0

) 1407

DEPRECATION NOTE: The AssociatorNames operation has been deprecated in version 1.4 of this 1408
document. Use OpenAssociatorInstancePaths instead (see 5.4.2.24.8). The AssociatorNames operation 1409
for classes remains undeprecated. 1410

The ObjectName input parameter defines the source CIM object whose associated names are to be 1411

returned. This is either a class or instance name (model path). 1412

The AssocClass input parameter, if not NULL, shall be a valid CIM association class name. It acts as a 1413

filter on the returned set of names by mandating that each returned name identify an object that shall be 1414
associated to the source object through an instance of this class or one of its subclasses. 1415

The ResultClass input parameter, if not NULL, shall be a valid CIM class name. It acts as a filter on the 1416

returned set of names by mandating that each returned name identify an object that shall be either an 1417
instance of this class (or one of its subclasses) or be this class (or one of its subclasses). 1418

The Role input parameter, if not NULL, shall be a valid property name. It acts as a filter on the returned 1419

set of names by mandating that each returned name identify an object that shall be associated to the 1420
source object through an association in which the source object plays the specified role. That is, the 1421
name of the property in the association class that refers to the source object shall match the value of this 1422
parameter. 1423

The ResultRole input parameter, if not NULL, shall be a valid property name. It acts as a filter on the 1424

returned set of names by mandating that each returned name identify an object that shall be associated 1425
to the source object through an association in which the named returned object plays the specified role. 1426
That is, the name of the property in the association class that refers to the returned object shall match the 1427
value of this parameter. 1428

If AssociatorNames is successful, the method returns zero or more <objectPath> items representing 1429

CIM class paths or instance paths meeting the requested criteria. Because CIM objects from different 1430
hosts or namespaces can be associated, each returned object includes location information. If the 1431

ObjectName refers to a class path, then class paths are returned. Otherwise, the ObjectName refers to 1432

an instance path, and instance paths are returned. 1433

If AssociatorNames is unsuccessful, one of the following status codes shall be returned by this method, 1434
where the first applicable error in the list (starting with the first element of the list, and working down) is 1435
the error returned. Any additional method-specific interpretation of the error is given in parentheses. 1436

 CIM_ERR_ACCESS_DENIED 1437

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1438

 CIM_ERR_INVALID_NAMESPACE 1439

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise 1440
incorrect parameters) 1441

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1442
instance, if provided.) 1443

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1444
unspecified error occurred.) 1445

5.4.2.16 References (PARTLY DEPRECATED) 1446

The References operation enumerates the association objects that refer to a particular target CIM object 1447
(class or instance). 1448

<objectWithPath>* References (1449

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 41

 [IN] <objectName> ObjectName, 1450

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1451

 [IN,OPTIONAL,NULL] string Role = NULL, 1452

 [IN,OPTIONAL] boolean IncludeQualifiers = false, (DEPRECATED) 1453

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, (DEPRECATED) 1454

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 1455

) 1456

DEPRECATION NOTE: The References operation has been deprecated in version 1.4 of this document. 1457
Use OpenReferenceInstances instead (see 5.4.2.24.5). The References operation for classes remains 1458
undeprecated. 1459

The ObjectName input parameter defines the target CIM object whose referring objects are to be 1460

returned. This is either a class or instance name (model path). 1461

The ResultClass input parameter, if not NULL, shall be a valid CIM class name. It acts as a filter on the 1462

returned set of objects by mandating that each returned object shall be an instance of this class (or one of 1463
its subclasses) or this class (or one of its subclasses). 1464

The Role input parameter, if not NULL, shall be a valid property name. It acts as a filter on the returned 1465

set of objects by mandating that each returned object shall refer to the target object through a property 1466
with a name that matches the value of this parameter. 1467

DEPRECATION NOTE: The use of the IncludeQualifiers parameter is DEPRECATED and it may 1468

be removed in a future version of this document. The preferred behavior is to use the class operations to 1469

receive qualifier information and not depend on any qualifiers in this response. If IncludeQualifiers 1470

is true, all qualifiers for each object (including qualifiers on the object and on any returned properties) 1471

shall be included as <QUALIFIER> XML elements in the response. If this parameter is false, no 1472

<QUALIFIER> XML elements are present in each returned Object. 1473

DEPRECATION NOTE: In version 1.4 of this document, the IncludeClassOrigin parameter is 1474

DEPRECATED for instances. A WBEM server may choose to treat the value of IncludeClassOrigin 1475

parameter as false for all instance requests, otherwise the implementation shall support the original 1476

behavior as defined in the rest of this paragraph. If the IncludeClassOrigin input parameter is true, 1477

the CLASSORIGIN attribute shall be present on all appropriate elements in each returned object. If it is 1478

false, no CLASSORIGIN attributes are present. 1479

If the PropertyList input parameter is not NULL, the members of the array define one or more 1480

property names. Each returned object shall not include any properties missing from this list. If 1481

PropertyList is an empty array, no properties are included in each returned object. If PropertyList 1482

is NULL, no additional filtering is defined. 1483

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 1484

process the request normally. If PropertyList contains property names that are invalid for a target 1485

object, the WBEM server shall ignore them for that object but otherwise process the request normally. 1486

Clients should not explicitly specify properties in the PropertyList parameter unless they specify a 1487

non-NULL value for the ResultClass parameter. 1488

If instances are returned, properties with the NULL value may be omitted from the response, even if the 1489

WBEM client has not requested the exclusion of the property through the PropertyList filter. The 1490

WBEM client must interpret such omitted properties as NULL. Note that the WBEM client cannot make 1491

any assumptions about properties omitted as a result of using the PropertyList filter. If classes are 1492

returned, the WBEM server cannot make this choice, and only the WBEM client can cause properties to 1493

be excluded by using the PropertyList filter. 1494

CIM Operations over HTTP DSP0200

42 DMTF Standard Version 1.4.0

If References is successful, the method returns zero or more <objectWithPath> items representing 1495

CIM classes or instances meeting the requested criteria. Because CIM objects from different hosts or 1496

namespaces can be associated, each returned object includes location information. If the ObjectName 1497

refers to a class, then classes are returned. These classes shall have all CIM elements (properties, 1498
methods, and qualifiers) defined in and inherited by that class, reduced by any properties excluded as a 1499

result of using the PropertyList filter. If the ObjectName refers to an instance, then instances are 1500

returned. These instances shall have all properties defined in and inherited by their respective classes, 1501

reduced by any properties excluded as a result of using the PropertyList filter and further reduced by 1502

any NULL valued properties omitted from the response. 1503

If References is unsuccessful, this method shall return one of the following status codes, where the error 1504
returned is the first applicable error in the list, starting with the first element and working down. Any 1505
additional method-specific interpretation of the error is enclosed in parentheses. 1506

 CIM_ERR_ACCESS_DENIED 1507

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1508

 CIM_ERR_INVALID_NAMESPACE 1509

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1510
incorrect parameters) 1511

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1512
instance, if provided.) 1513

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1514
unspecified error occurred.) 1515

5.4.2.17 ReferenceNames (PARTLY DEPRECATED) 1516

The ReferenceNames operation enumerates the association objects that refer to a particular target CIM 1517
object (class or instance): 1518

<objectPath>* ReferenceNames (1519

 [IN] <objectName> ObjectName, 1520

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1521

 [IN,OPTIONAL,NULL] string Role = NULL 1522

) 1523

DEPRECATION NOTE: The ReferenceNames operation has been deprecated in version 1.4 of this 1524
document. Use OpenReferenceInstancePaths instead (see 5.4.2.24.6). The ReferenceNames operation 1525
for classes remains undeprecated. 1526

The ObjectName input parameter defines the target CIM object with the referring object names to be 1527

returned. It may be either a class or an instance name (model path). 1528

The ResultClass input parameter, if not NULL, shall be a valid CIM class name. It acts as a filter on the 1529

returned set of object names by mandating that each returned Object Name identify an instance of this 1530
class (or one of its subclasses) or this class (or one of its subclasses). 1531

The Role input parameter, if not NULL, shall be a valid property name. It acts as a filter on the returned 1532

set of object names by mandating that each returned object name shall identify an object that refers to the 1533
target instance through a property with a name that matches the value of this parameter. 1534

If ReferenceNames is successful, the method returns zero or more <objectPath> items representing 1535

CIM class paths or instance paths meeting the requested criteria. Because CIM objects from different 1536
hosts or namespaces can be associated, each returned object includes location information. If the 1537

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 43

ObjectName refers to a class path, then class paths are returned. Otherwise, the ObjectName refers to 1538

an instance path, and instance paths are returned. 1539

If ReferenceNames is unsuccessful, this method shall return one of the following status codes, where the 1540
error returned is the first applicable error in the list, starting with the first element and working down. Any 1541
additional method-specific interpretation of the error is enclosed in parentheses. 1542

 CIM_ERR_ACCESS_DENIED 1543

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1544

 CIM_ERR_INVALID_NAMESPACE 1545

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1546
incorrect parameters) 1547

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1548
instance, if provided.) 1549

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1550
unspecified error occurred.) 1551

5.4.2.18 GetProperty (DEPRECATED) 1552

The GetProperty operation retrieves a single property value from a CIM instance in the target 1553
namespace: 1554

<propertyValue> GetProperty (1555

 [IN] <instanceName> InstanceName, 1556

 [IN] string PropertyName 1557

) 1558

DEPRECATION NOTE: The GetProperty operation has been deprecated in version 1.4 of this document. 1559
Use GetInstance instead (see 5.4.2.2). 1560

The InstanceName input parameter specifies the name of the instance (model path) from which the 1561

property value is requested. 1562

The PropertyName input parameter specifies the name of the property with the value to be returned. 1563

If GetProperty is successful, the return value specifies the value of the requested property. If the value is 1564
NULL, no element is returned. 1565

If GetProperty is unsuccessful, this method shall return one of the following status codes, where the error 1566
returned is the first applicable error in the list, starting with the first element and working down. Any 1567
additional method-specific interpretation of the error is enclosed in parentheses. 1568

 CIM_ERR_ACCESS_DENIED 1569

 CIM_ERR_INVALID_NAMESPACE 1570

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1571
incorrect parameters) 1572

 CIM_ERR_INVALID_CLASS (The CIM class does not exist in the specified namespace.) 1573

 CIM_ERR_NOT_FOUND (The CIM class exists, but the requested CIM instance does not exist 1574
in the specified namespace.) 1575

 CIM_ERR_NO_SUCH_PROPERTY (The CIM instance exists, but the requested property does 1576
not.) 1577

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1578

CIM Operations over HTTP DSP0200

44 DMTF Standard Version 1.4.0

5.4.2.19 SetProperty (DEPRECATED) 1579

The SetProperty operation sets a single property value in a CIM instance in the target namespace: 1580

void SetProperty (1581

 [IN] <instanceName> InstanceName, 1582

 [IN] string PropertyName, 1583

 [IN,OPTIONAL,NULL] <propertyValue> NewValue = NULL 1584

) 1585

DEPRECATION NOTE: The SetProperty operation has been deprecated in version 1.4 of this document. 1586
Use ModifyInstance instead (see 5.4.2.8). 1587

The InstanceName input parameter specifies the name of the instance (model path) with the property 1588

value to be updated. 1589

The PropertyName input parameter specifies the name of the property with the value to be updated. 1590

The NewValue input parameter specifies the new value for the property (which may be NULL). 1591

If SetProperty is unsuccessful, this method shall return one of the following status codes, where the error 1592
returned is the first applicable error in the list, starting with the first element and working down. Any 1593
additional method-specific interpretation of the error is enclosed in parentheses. 1594

 CIM_ERR_ACCESS_DENIED 1595

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1596

 CIM_ERR_INVALID_NAMESPACE 1597

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1598
incorrect parameters) 1599

 CIM_ERR_INVALID_CLASS (The CIM class does not exist in the specified namespace.) 1600

 CIM_ERR_NOT_FOUND (The CIM class exists, but the requested CIM instance does not exist 1601
in the specified namespace.) 1602

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1603
instance, if provided.) 1604

 CIM_ERR_NO_SUCH_PROPERTY (The CIM instance exists, but the requested property does 1605
not.) 1606

 CIM_ERR_TYPE_MISMATCH (The supplied value is incompatible with the type of the 1607
property.) 1608

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1609
unspecified error occurred.) 1610

5.4.2.20 GetQualifier 1611

The GetQualifier operation retrieves a single qualifier declaration from the target namespace. 1612

<qualifierDecl> GetQualifier (1613

 [IN] string QualifierName 1614

) 1615

The QualifierName input parameter identifies the qualifier with the declaration to be retrieved. 1616

If GetQualifier is successful, the method returns the qualifier declaration for the named qualifier. 1617

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 45

If GetQualifier is unsuccessful, this method shall return one of the following status codes, where the error 1618
returned is the first applicable error in the list, starting with the first element and working down. Any 1619
additional method-specific interpretation of the error is enclosed in parentheses. 1620

 CIM_ERR_ACCESS_DENIED 1621

 CIM_ERR_NOT_SUPPORTED 1622

 CIM_ERR_INVALID_NAMESPACE 1623

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1624
incorrect parameters) 1625

 CIM_ERR_NOT_FOUND (The requested qualifier declaration does not exist.) 1626

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1627

5.4.2.21 SetQualifier 1628

The SetQualifier operation creates or updates a single qualifier declaration in the target namespace. If the 1629
qualifier declaration already exists, it is overwritten: 1630

void SetQualifier (1631

 [IN] <qualifierDecl> QualifierDeclaration 1632

) 1633

The QualifierDeclaration input parameter defines the qualifier declaration to add to the 1634

namespace. 1635

If SetQualifier is successful, the qualifier declaration is added to the target namespace. If a qualifier 1636
declaration with the same qualifier name already exists, the new declaration replaces it. 1637

If SetQualifier is unsuccessful, this method returns one of the following status codes, where the error 1638
returned is the first applicable error in the list, starting with the first element and working down. Any 1639
additional method-specific interpretation of the error is enclosed in parentheses. 1640

 CIM_ERR_ACCESS_DENIED 1641

 CIM_ERR_NOT_SUPPORTED 1642

 CIM_ERR_INVALID_NAMESPACE 1643

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1644
incorrect parameters) 1645

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1646

5.4.2.22 DeleteQualifier 1647

The DeleteQualifier operation deletes a single qualifier declaration from the target namespace. 1648

void DeleteQualifier (1649

 [IN] string QualifierName 1650

) 1651

The QualifierName input parameter identifies the qualifier with the declaration to be deleted. 1652

If DeleteQualifier is successful, the specified qualifier declaration is deleted from the namespace. 1653

If DeleteQualifier is unsuccessful, this method shall return one of the following status codes, where the 1654
error returned is the first applicable error in the list, starting with the first element and working down. Any 1655
additional method-specific interpretation of the error is enclosed in parentheses. 1656

CIM Operations over HTTP DSP0200

46 DMTF Standard Version 1.4.0

 CIM_ERR_ACCESS_DENIED 1657

 CIM_ERR_NOT_SUPPORTED 1658

 CIM_ERR_INVALID_NAMESPACE 1659

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1660
incorrect parameters) 1661

 CIM_ERR_NOT_FOUND (The requested qualifier declaration does not exist.) 1662

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1663

5.4.2.23 EnumerateQualifiers 1664

The EnumerateQualifiers operation enumerates qualifier declarations from the target namespace. 1665

<qualifierDecl>* EnumerateQualifiers (1666

) 1667

If EnumerateQualifiers is successful, the method returns zero or more <qualifierDecl> items 1668

representing qualifier declarations. 1669

If EnumerateQualifiers is unsuccessful, this method shall return one of the following status codes, where 1670
the error returned is the first applicable error in the list, starting with the first element and working down. 1671
Any additional method-specific interpretation of the error is enclosed in parentheses. 1672

 CIM_ERR_ACCESS_DENIED 1673

 CIM_ERR_NOT_SUPPORTED 1674

 CIM_ERR_INVALID_NAMESPACE 1675

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1676
incorrect parameters) 1677

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1678

5.4.2.24 Pulled Enumeration Operations 1679

This clause defines a set of operations that return CIM instances or instance paths in portions controlled 1680
by the WBEM client. These operations are called pulled enumerations. Usually, an enumeration session 1681
is established through an Open operation, and subsequent repeated executions of a Pull operation on the 1682
enumeration session are used to retrieve them. Optionally, the Open operation can also pull a first set of 1683
items. 1684

Pulled enumeration operations consist of the following individual operations: 1685

 Open operations open an enumeration of the following instances or instance paths: 1686

– OpenEnumerateInstances (instances of a class) 1687

– OpenEnumerateInstancePaths (instance paths of instances of a class) 1688

– OpenReferenceInstances (association instances referencing a target instance) 1689

– OpenReferenceInstancePaths (the instance paths of association instances referencing a 1690
target instance) 1691

– OpenAssociatorInstances (instances associated with a source instance) 1692

– OpenAssociatorInstancePaths (the instance paths of instances associated to a source 1693
instance) 1694

– OpenQueryInstances (the rows resulting from a query) 1695

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 47

 Pull operations are for the following cases: 1696

– PullInstances (Instances are enumerated, and instance paths are either not available, for 1697
example as in for OpenQueryInstances, or not desired.) 1698

– PullInstancesWithPath (Instances with paths are enumerated.) 1699

– PullInstancePaths (Instance paths are enumerated.) 1700

 Other operations are as follows: 1701

– CloseEnumeration (closes an open enumeration) 1702

– EnumerationCount (estimates the number of items in an open enumeration) 1703

5.4.2.24.1 Behavioral Rules for Pulled Enumeration Operations 1704

A central concept of pulled enumeration operations is the "enumeration session," which provides a 1705
context in which the operations perform their work and which determines the set of instances or instance 1706
paths to be returned. To process the operations of an enumeration session, some parameters of the 1707
Open operation need to be maintained as long as the enumeration session is open. In addition, some 1708
state data about where the enumeration session is with regard to instances or instance paths already 1709
returned must be maintained. 1710

From a WBEM client perspective, an enumeration session is an enumeration context value. A successful 1711
Open operation establishes the enumeration session and returns an enumeration context value 1712
representing it. This value is used as an input/output parameter in subsequent Pull operations on that 1713
enumeration session. The enumeration context value shall uniquely identify the open enumeration 1714
session within the target CIM namespace of the Open operation that established the enumeration 1715
session. It is valid for a WBEM server to use NULL as an enumeration context value representing a 1716
closed enumeration session, but a WBEM client shall not rely on that. 1717

Defining the enumeration context value in Pull operations as both an input parameter and an output 1718
parameter allows the WBEM server to change the enumeration context value during the execution of a 1719
pull operation. This ability to change allows different implementation approaches on the WBEM server 1720
side, which are transparent for the WBEM client. Example approaches are as follows: 1721

 Maintain any state data describing the enumeration session internally in the WBEM server. The 1722
enumeration context value does not need to change in subsequent Pull operations. The WBEM 1723
server uses this value only to identify the internal state data for the open enumeration session. It 1724
does not use the value to store any state data. A variation of this approach is to hand back 1725
modified enumeration context values for additional WBEM server-side sequence checking. 1726

 Maintain any state data describing the enumeration session only on the WBEM client side. All 1727
state data is stored in the enumeration context value, and the WBEM server does not maintain 1728
any state data about the enumeration session, essentially being completely stateless with 1729
regard to the enumeration session. 1730

 A combination of the two previous approaches. 1731

A WBEM server may support keeping enumeration sessions open across connection terminations and 1732
shutdowns of the server. Objects may be created, deleted, or modified concurrently with an enumeration 1733
session that involves these objects. Such changes may or may not be reflected in the enumeration set. 1734
Therefore, there is no guarantee to the WBEM client that the enumeration set represents a consistent 1735
snapshot of its instances at a point in time. However, the WBEM server should make a best effort attempt 1736
for the returned enumeration set to represent a consistent snapshot of its instances at a point in time. The 1737
order of instances in the enumeration set is undefined. 1738

This document does not restrict the number of enumeration sessions that can be established or executed 1739
concurrently in the same WBEM server or client. This remains true even if the enumeration sets of such 1740
concurrently established enumeration sessions contain the same instances. 1741

CIM Operations over HTTP DSP0200

48 DMTF Standard Version 1.4.0

Except for CloseEnumeration, all operations on a particular enumeration session shall be executed 1742
sequentially. An enumeration session can be open or closed. It is considered open if operations using its 1743
enumeration context value as an input parameter can be executed successfully. It is opened by the 1744
successful completion of an Open operation and closed by one of the following events: 1745

 Successful completion of a CloseEnumeration operation 1746

 Successful completion of an open or pull operation with the EndOfSequence output parameter 1747

set to true 1748

 Unsuccessful completion of a pull operation when ContinueOnError is not requested 1749

 WBEM server-side decision to close the enumeration session based upon an operation timeout 1750

 WBEM server-side decision to close an enumeration session during an operation on that 1751
enumeration session based upon exceeding server limits 1752

A conformant WBEM server may support closure of enumeration sessions based upon exceeding server 1753
limits. Example situations for such a decision are: 1754

 Pull operations with no objects requested that are repeated with a high frequency on the same 1755
enumeration session 1756

 EnumerationCount operations repeated with a high frequency on the same enumeration 1757
session 1758

A mechanism by which WBEM servers can declare support for closure of enumeration sessions based 1759
upon exceeding server limits is defined in 7.5. If a WBEM server supports such closure of enumeration 1760
sessions, it shall make the decision to close during an operation on that enumeration session. There is no 1761
way to indicate the reason for the closure if the decision is made elsewhere. If a WBEM server closes an 1762
enumeration session based upon exceeding server limits, it shall return failure on the operation on that 1763
enumeration session with the status code CIM_ERR_SERVER_LIMITS_EXCEEDED. 1764

5.4.2.24.2 Common Parameters for the Open Operations 1765

This clause defines commonly used parameters for the Open operations. The description of the individual 1766
Open operations references these parameters as appropriate. Note that not every Open operation uses 1767
every one of these common parameters: 1768

 EnumerationContext 1769

– This output parameter is the enumeration context value representing the enumeration 1770

session. If the EndOfSequence is true, the EnumerationContext value may be NULL. 1771

– The representation of an enumeration context value uses a string type. In version 1.3 of 1772
this document, enumeration context values were represented using the 1773
ENUMERATIONCONTEXT XML element. The representation was changed to using a 1774
string type in version 1.4 of this document, because it had turned out that all known 1775
implementations had implemented the enumeration context value using a string type. 1776

 EndOfSequence 1777

– This output parameter indicates to the WBEM client whether the enumeration session is 1778

exhausted. If EndOfSequence is true upon successful completion of an Open operation, 1779

no more instances are available and the WBEM server closes the enumeration session, 1780
releasing any allocated resources related to the enumeration session. If the enumeration 1781

set is empty, it is valid for a WBEM server to set EndOfSequence to true, even if 1782

MaxObjectCount is 0. In this case, the enumeration session is closed upon successful 1783

completion of the Open operation. If EndOfSequence is false, additional instances may 1784

be available and the WBEM server shall not close the enumeration session. 1785

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 49

 IncludeClassOrigin (DEPRECATED) 1786

– DEPRECATION NOTE: In version 1.4 of this document, the IncludeClassOrigin 1787

parameter is DEPRECATED. A WBEM server may choose to treat the value of 1788

IncludeClassOrigin parameter as false for all requests, otherwise the implementation 1789

shall support the original behavior as defined in the rest of this paragraph. This input 1790
parameter is used only on Open operations that enumerate CIM instances. It controls 1791
whether information about the class origin of properties, references or methods is included 1792

in any enumerated CIM instances. If IncludeClassOrigin is true, the CLASSORIGIN 1793

attribute shall be present on all appropriate elements in each CIM instance returned by any 1794
subsequent PullInstance operations on this enumeration session. If 1795

IncludeClassOrigin is false, any CLASSORIGIN attributes shall not be present in 1796

any enumerated instances. 1797

 FilterQueryLanguage and FilterQuery 1798

– These input parameters specify a filter query that acts as an additional restricting filter on 1799
the set of enumerated instances. 1800

– WBEM servers shall support filter queries in pulled enumerations and shall support the 1801
DMTF Filter Query Language (FQL, see DSP0212) as a query language for such filter 1802
queries. WBEM servers may support additional query languages for pulled enumerations. 1803
A mechanism by which WBEM servers can declare the query languages they support for 1804
pulled enumerations is not defined in this document; it is anticipated that a CIM model 1805
based approach for declaring supported query languages is developed. 1806

Note that before version 1.4 of this document, support for filter queries in pulled 1807
enumerations was optional and no particular query language was required. As a 1808
consequence of this change, the status code 1809
CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED is no longer used in CIM-1810
XML. 1811

– If FilterQueryLanguage is not NULL, it shall specify a query language and 1812

FilterQuery shall be a valid query in that query language. 1813

If the query language specified in FilterQueryLanguage is not supported by the WBEM 1814

server, it shall return an error with status code 1815
CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED. 1816

If the query language specified in FilterQueryLanguage is supported by the WBEM 1817

server, it shall process the filter query specified by the FilterQuery and 1818

FilterQueryLanguage parameters, and shall either restrict the set of enumerated 1819

instances as specified by the query language, or return an error. 1820

WBEM servers shall support the Filter Query Language (see DSP0212) as a query 1821
language for pulled enumerations. WBEM servers may support additional query languages 1822
for pulled enumerations. 1823

– The query specified in FilterQuery shall conform to the following: 1824

 If the query language supports specifying a set of classes the query applies to (for 1825

example, CQL in its FROM list), only the class named in the ClassName parameter 1826

shall be specified. 1827

 If the query language supports specifying a result list (for example, CQL in its 1828
SELECT list), a result list may be specified in the query, but the result list shall be 1829
ignored. 1830

 The query shall not define any ordering criteria or any grouping of objects. 1831

CIM Operations over HTTP DSP0200

50 DMTF Standard Version 1.4.0

If the query does not satisfy these rules or if the query is invalid according to the definition 1832
of the query language, the WBEM server shall return an error with status code 1833
CIM_ERR_INVALID_QUERY. The Filter Query Language (see DSP0212) automatically 1834
satisfies these rules. 1835

 OperationTimeout 1836

– This input parameter determines the minimum time the WBEM server shall maintain the 1837
open enumeration session after the last Open or Pull operation (unless the enumeration 1838
session is closed during the last operation). If the operation timeout is exceeded, the 1839
WBEM server may close the enumeration session at any time, releasing any resources 1840
allocated to the enumeration session. 1841

– An OperationTimeout of 0 means that there is no operation timeout. That is, the 1842

enumeration session is never closed based on time. 1843

– If OperationTimeout is NULL, the WBEM server shall choose an operation timeout. 1844

– All other values for OperationTimeout specify the operation timeout in seconds. 1845

– A WBEM server may restrict the set of allowable values for OperationTimeout. 1846

Specifically, the WBEM server may not allow 0 (no timeout). If the specified value is not an 1847
allowable value, the WBEM server shall return failure with the status code 1848
CIM_ERR_INVALID_OPERATION_TIMEOUT. A mechanism by which WBEM servers can 1849

declare the allowable values for OperationTimeout is defined in 7.5. 1850

 ContinueOnError 1851

– This input parameter, if true, requests a continuation on error, which is the ability to 1852
resume an enumeration session successfully after a Pull operation returns an error. A 1853
mechanism by which conformant WBEM servers can declare support for continuation on 1854
error is defined in 7.5. 1855

– If a WBEM server does not support continuation on error and ContinueOnError is true, 1856

it shall return a failure with the status code 1857
CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED. 1858

– If a WBEM server supports continuation on error and ContinueOnError is true, the 1859

enumeration session shall remain open when a Pull operation fails, and any subsequent 1860
successful Pull operations shall return the set of instances or instance paths that would 1861
have been returned if the failing Pull operations were successful. This behavior is subject 1862

to the consistency rules defined for pulled enumerations. If ContinueOnError is false, 1863

the enumeration session shall be closed when a Pull operation returns a failure. 1864

 MaxObjectCount 1865

– This input parameter defines the maximum number of instances or instance paths that this 1866
Open operation can return. Any uint32 number is valid, including 0. The WBEM server may 1867

deliver any number of instances or instance paths up to MaxObjectCount but shall not 1868

deliver more than MaxObjectCount elements. A conformant WBEM server 1869

implementation may choose to never return any instances or instance paths during an 1870

Open operation, regardless of the value of MaxObjectCount. Note that a WBEM client 1871

can use a MaxObjectCount value of 0 to specify that it does not want to retrieve any 1872

instances in the Open operation. 1873

 Return Value (array of enumerated elements) 1874

– The return value of a successful Open operation is an array of enumerated elements with a 1875

number of entries from 0 up to a maximum defined by MaxObjectCount. These entries 1876

meet the criteria defined in the Open operation. Note that returning no entries in the array 1877

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 51

does not imply that the enumeration session is exhausted. Only the EndOfSequence 1878

output parameter indicates whether the enumeration session is exhausted. 1879

5.4.2.24.3 OpenEnumerateInstances 1880

The OpenEnumerateInstances operation establishes and opens an enumeration session of the instances 1881
of a CIM class (including instances of its subclasses) in the target namespace. Optionally, it retrieves a 1882
first set of instances. 1883

<instanceWithPath>* OpenEnumerateInstances (1884

 [OUT] string EnumerationContext, 1885

 [OUT] Boolean EndOfSequence, 1886

 [IN] <className> ClassName, 1887

 [IN,OPTIONAL] boolean DeepInheritance = true, 1888

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, (DEPRECATED) 1889

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL, 1890

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 1891

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 1892

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 1893

 [IN,OPTIONAL] Boolean ContinueOnError = false, 1894

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 1895

) 1896

The OpenEnumerateInstances operation shall comply with the behavior defined in 5.4.2.24.1. 1897

The EnumerationContext output parameter is defined in 5.4.2.24.2. 1898

The EndOfSequence output parameter is defined in 5.4.2.24.2. 1899

The ClassName input parameter defines the class that is the basis for the enumeration. The enumeration 1900

set shall consist of all instances of that specified class, including any instances of any of its subclasses, in 1901
accordance with the polymorphic nature of CIM objects. 1902

The DeepInheritance input parameter acts as a filter on the properties included in any enumerated 1903

CIM instances. If the DeepInheritance input parameter is true, all properties of each enumerated 1904

instance of the class shall be present (subject to constraints imposed by the other parameters), including 1905

any added by subclassing the specified class. If DeepInheritance is false, each enumerated 1906

instance includes only properties defined for the class specified by ClassName. 1907

(DEPRECATED) The IncludeClassOrigin input parameter is defined in 5.4.2.24.2. 1908

The PropertyList input parameter acts as a filter on the properties in any enumerated CIM 1909

instances. If PropertyList is not NULL, the members of the array define zero or more property names 1910

of the specified class. This array may include inherited property names or property names explicitly 1911
defined in the specified class. However, it shall not include property names defined in subclasses of the 1912
specified class. Each enumerated instance shall not include any properties missing from this list. Note 1913

that PropertyList acts as an additional filter on the properties defined by the DeepInheritance input 1914

parameter. If PropertyList includes a property that is not in the set defined by DeepInheritance, 1915

the element for the property shall not be included. If PropertyList is an empty array, no properties are 1916

included in the enumerated instances. If PropertyList is NULL, no additional filtering is defined. 1917

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 1918

process the request normally. If PropertyList contains property names that are invalid for a target 1919

instance, the WBEM server shall ignore them for that instance but otherwise process the request 1920
normally. 1921

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 1922

CIM Operations over HTTP DSP0200

52 DMTF Standard Version 1.4.0

The OperationTimeout input parameter is defined in 5.4.2.24.2. 1923

The ContinueOnError input parameter is defined in 5.4.2.24.2. 1924

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 1925

If OpenEnumerateInstances is successful, the return value shall be an array of <instanceWithPath> 1926

items representing enumerated instances as defined in 5.4.2.24.2. 1927

The PullInstancesWithPath operation shall be used to pull instances for an enumeration session opened 1928
using OpenEnumerateInstances. If any other operation is used to pull instances, the WBEM server shall 1929
return failure with the status code CIM_ERR_FAILED. 1930

If OpenEnumerateInstances is unsuccessful, this operation shall return one of the following status codes, 1931
where the error returned is the first applicable error in the list, starting with the first element and working 1932
down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 1933

 CIM_ERR_ACCESS_DENIED 1934

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 1935

 CIM_ERR_NOT_SUPPORTED 1936

 CIM_ERR_INVALID_NAMESPACE 1937

 CIM_ERR_INVALID_OPERATION_TIMEOUT 1938

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 1939

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1940
incorrect parameters) 1941

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1942
exist.) 1943

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 1944

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 1945
not recognized.) 1946

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 1947
language.) 1948

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1949

5.4.2.24.4 OpenEnumerateInstancePaths 1950

The OpenEnumerateInstancePaths operation establishes and opens an enumeration session of the 1951
instance paths of the instances of a CIM class (including instances of its subclasses) in the target 1952
namespace. Optionally, it retrieves a first set of instance paths: 1953

<instancePath>* OpenEnumerateInstancePaths (1954

 [OUT] string EnumerationContext, 1955

 [OUT] Boolean EndOfSequence, 1956

 [IN] <className> ClassName, 1957

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 1958

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 1959

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 1960

 [IN,OPTIONAL] Boolean ContinueOnError = false, 1961

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 1962

) 1963

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 53

The OpenEnumerateInstancePaths operation shall comply with the behavior defined in 5.4.2.24.1. 1964

The EnumerationContext output parameter is defined in 5.4.2.24.2. 1965

The EndOfSequence output parameter is defined in 5.4.2.24.2. 1966

The ClassName input parameter defines the class that is the basis for the enumeration. The 1967

enumeration set shall consist of the instance paths of all instances of the specified class, including any 1968
instances of any of its subclasses, in accordance with the polymorphic nature of CIM objects. 1969

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 1970

The OperationTimeout input parameter is defined in 5.4.2.24.2. 1971

The ContinueOnError input parameter is defined in 5.4.2.24.2. 1972

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 1973

If OpenEnumerateInstancePaths is successful, the return value shall be an array of <instancePath> 1974

items representing enumerated instance paths as defined in 5.4.2.24.2. 1975

The PullInstancePaths operation shall be used to pull instances for an enumeration session opened using 1976
OpenEnumerateInstancePaths. If any other operation is used to pull instances, the WBEM server shall 1977
return failure with the status code CIM_ERR_FAILED. 1978

If OpenEnumerateInstancePaths is unsuccessful, this operation shall return one of the following status 1979
codes, where the error returned is the first applicable error in the list, starting with the first element and 1980
working down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 1981

 CIM_ERR_ACCESS_DENIED 1982

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 1983

 CIM_ERR_NOT_SUPPORTED 1984

 CIM_ERR_INVALID_NAMESPACE 1985

 CIM_ERR_INVALID_OPERATION_TIMEOUT 1986

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 1987

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1988
incorrect parameters) 1989

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1990
exist.) 1991

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 1992

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 1993
not recognized.) 1994

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 1995
language.) 1996

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1997

CIM Operations over HTTP DSP0200

54 DMTF Standard Version 1.4.0

5.4.2.24.5 OpenReferenceInstances 1998

The OpenReferenceInstances operation establishes and opens the enumeration session of association 1999
instances that refer to a particular target CIM instance in the target namespace. Optionally, it retrieves a 2000
first set of instances: 2001

<instanceWithPath>* OpenReferenceInstances (2002

 [OUT] string EnumerationContext, 2003

 [OUT] Boolean EndOfSequence, 2004

 [IN] <instanceName> InstanceName, 2005

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 2006

 [IN,OPTIONAL,NULL] string Role = NULL, 2007

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, (DEPRECATED) 2008

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL, 2009

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 2010

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 2011

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2012

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2013

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 2014

) 2015

The OpenReferenceInstances operation shall comply with the behavior defined in 5.4.2.24.1. 2016

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2017

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2018

The InstanceName input parameter specifies an instance name (model path) that identifies the target 2019

CIM instance with the referring association instances to be enumerated. Unless restricted by any of the 2020
filter parameters of this operation, the enumeration set shall consist of all association instances that 2021
reference the target instance. 2022

The ResultClass input parameter, if not NULL, shall be a CIM class name. It acts as a filter on the 2023

enumerated set of instances by mandating that each enumerated instance shall be an instance of this 2024

class or one of its subclasses. The WBEM server shall not return an error if the ResultClass input 2025

parameter value is an invalid class name or if the class does not exist in the target namespace, 2026

The Role input parameter, if not NULL, shall be a property name. It acts as a filter on the enumerated set 2027

of instances by mandating that each enumerated instance shall refer to the target instance through a 2028
property with a name that matches the value of this parameter. The WBEM server shall not return an 2029

error if the Role input parameter value is an invalid property name or if the property does not exist, 2030

(DEPRECATED) The IncludeClassOrigin input parameter is defined in 5.4.2.24.2. 2031

The PropertyList input parameter acts as a filter on the properties included in any enumerated CIM 2032

instances. If PropertyList is not NULL, the members of the array define zero or more property names. 2033

Each enumerated instance shall not include any properties missing from this list. If PropertyList is an 2034

empty array, no properties are included in each enumerated instance. If PropertyList is NULL, all 2035

properties are included in each enumerated instance, subject to the conditions expressed by the other 2036

parameters. If PropertyList contains duplicate property names, the WBEM server shall ignore them 2037

but otherwise process the request normally. If PropertyList contains property names that are invalid 2038

for a target instance, the WBEM server shall ignore them for that instance but otherwise process the 2039

request normally. WBEM clients should not specify properties in PropertyList unless they specify a 2040

non-NULL value for the ResultClass parameter. 2041

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 2042

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 55

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2043

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2044

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2045

If OpenReferenceInstances is successful, the return value shall be an array of <instanceWithPath> 2046

items representing enumerated instances as defined in 5.4.2.24.2. 2047

The PullInstancesWithPath operation shall be used to pull instances for an enumeration session opened 2048
using OpenReferenceInstances. If any other operation is used to pull instances, the WBEM server shall 2049
return failure with the status code CIM_ERR_FAILED. 2050

If OpenReferenceInstances is unsuccessful, this operation shall return one of the following status codes, 2051
where the error returned is the first applicable error in the list, starting with the first element of and working 2052
down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2053

 CIM_ERR_ACCESS_DENIED 2054

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2055

 CIM_ERR_NOT_SUPPORTED 2056

 CIM_ERR_INVALID_NAMESPACE 2057

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2058

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2059

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise 2060
incorrect parameters) 2061

 CIM_ERR_NOT_FOUND (The target instance was not found.) 2062

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 2063

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2064
not recognized.) 2065

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 2066
language.) 2067

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2068

5.4.2.24.6 OpenReferenceInstancePaths 2069

The OpenReferenceInstancePaths operation establishes and opens an enumeration session of the 2070
instance paths of the association instances that refer to a particular target CIM instance in the target 2071
namespace. Optionally, it retrieves a first set of instance paths. 2072

<instancePath>* OpenReferenceInstancePaths (2073

 [OUT] string EnumerationContext, 2074

 [OUT] Boolean EndOfSequence, 2075

 [IN] <instanceName> InstanceName, 2076

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 2077

 [IN,OPTIONAL,NULL] string Role = NULL, 2078

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 2079

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 2080

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2081

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2082

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 2083

) 2084

CIM Operations over HTTP DSP0200

56 DMTF Standard Version 1.4.0

The OpenReferenceInstancePaths operation shall comply with the behavior defined in 5.4.2.24.1. 2085

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2086

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2087

The InstanceName input parameter specifies an instance name (model path) that identifies the target 2088

CIM instance with the referring association instances (respectively, their instance paths) to be 2089
enumerated. Unless restricted by any filter parameters of this operation, the enumeration set shall consist 2090
of the instance paths of all association instances that reference the target instance. 2091

The ResultClass input parameter, if not NULL, shall be a CIM class name. It acts as a filter on the 2092

enumerated set of instance paths by mandating that each enumerated instance path shall identify an 2093
instance of this class or one of its subclasses. The WBEM server shall not return an error if the 2094

ResultClass input parameter value is an invalid class name or if the class does not exist in the target 2095

namespace. 2096

The Role input parameter, if not NULL, shall be a property name. It acts as a filter on the enumerated set 2097

of instance paths by mandating that each enumerated instance path shall identify an instance that refers 2098
to the target instance through a property with a name that matches the value of this parameter. The 2099

WBEM server shall not return an error if the Role input parameter value is an invalid property name or if 2100

the property does not exist, 2101

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 2102

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2103

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2104

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2105

If OpenReferenceInstancePaths is successful, the return value shall be an array of <instancePath> 2106

items representing enumerated instance paths as defined in 5.4.2.24.2. 2107

The PullInstancePaths operation shall be used to pull instances for an enumeration session opened using 2108
OpenReferenceInstancePaths. If any other operation is used to pull instances, the WBEM server shall 2109
return failure with the status code CIM_ERR_FAILED. 2110

If OpenReferenceInstancePaths is unsuccessful, this operation shall return one of the following status 2111
codes, where the error returned is the first applicable error in the list, starting with the first element and 2112
working down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2113

 CIM_ERR_ACCESS_DENIED 2114

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2115

 CIM_ERR_NOT_SUPPORTED 2116

 CIM_ERR_INVALID_NAMESPACE 2117

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2118

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2119

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2120
incorrect parameters) 2121

 CIM_ERR_NOT_FOUND (The target instance was not found.) 2122

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 2123

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 57

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2124
not recognized.) 2125

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 2126
language.) 2127

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2128

5.4.2.24.7 OpenAssociatorInstances 2129

The OpenAssociatorInstances operation establishes and opens an enumeration session of the instances 2130
associated with a particular source CIM instance in the target namespace. Optionally, it retrieves a first 2131
set of instances. 2132

<instanceWithPath>* OpenAssociatorInstances (2133

 [OUT] string EnumerationContext, 2134

 [OUT] Boolean EndOfSequence, 2135

 [IN] <instanceName> InstanceName, 2136

 [IN,OPTIONAL,NULL] <className> AssocClass = NULL, 2137

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 2138

 [IN,OPTIONAL,NULL] string Role = NULL, 2139

 [IN,OPTIONAL,NULL] string ResultRole = NULL, 2140

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, (DEPRECATED) 2141

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL, 2142

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 2143

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 2144

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2145

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2146

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 2147

) 2148

The OpenAssociatorInstances operation shall comply with the behavior defined in 5.4.2.24.1. 2149

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2150

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2151

The InstanceName input parameter specifies an instance name (model path) that identifies the source 2152

CIM instance with the associated instances to be enumerated. Unless restricted by any filter parameters 2153
of this operation, the enumeration set shall consist of all instances associated with the source instance. 2154

The AssocClass input parameter, if not NULL, shall be a CIM association class name. It acts as a filter 2155

on the enumerated set of instances by mandating that each enumerated instance shall be associated with 2156
the source instance through an instance of this class or one of its subclasses. The WBEM server shall not 2157

return an error if the AssocClass input parameter value is an invalid class name or if the class does not 2158

exist in the target namespace. 2159

The ResultClass input parameter, if not NULL, must be a CIM class name. It acts as a filter on the 2160

enumerated set of instances by mandating that each enumerated instance shall be an instance of this 2161

class or one of its subclasses. The WBEM server shall not return an error if the ResultClass input 2162

parameter value is an invalid class name or if the class does not exist in the target namespace. 2163

The Role input parameter, if not NULL, shall be a property name. It acts as a filter on the enumerated set 2164

of instances by mandating that each enumerated instance shall be associated with the source instance 2165
through an association in which the source instance plays the specified role. That is, the name of the 2166
property in the association class that refers to the source instance shall match the value of this 2167

CIM Operations over HTTP DSP0200

58 DMTF Standard Version 1.4.0

parameter. The WBEM server shall not return an error if the Role input parameter value is an invalid 2168

property name or if the property does not exist. 2169

The ResultRole input parameter, if not NULL, shall be a property name. It acts as a filter on the 2170

enumerated set of instances by mandating that each enumerated instance shall be associated with the 2171
source instance through an association in which the enumerated instance plays the specified role. That 2172
is, the name of the property in the association class that refers to the enumerated instance shall match 2173

the value of this parameter. The WBEM server shall not return an error if the ResultRole input 2174

parameter value is an invalid property name or if the property does not exist. 2175

(DEPRECATED) The IncludeClassOrigin input parameter is defined in 5.4.2.24.2. 2176

The PropertyList input parameter acts as a filter on the properties included in any enumerated CIM 2177

instances. If PropertyList is not NULL, the members of the array define zero or more property names. 2178

Each enumerated instance shall not include any properties missing from this list. If PropertyList is an 2179

empty array, no properties are included in each enumerated instance. If PropertyList is NULL, all 2180

properties are included in each enumerated instance, subject to the conditions expressed by the other 2181

parameters. If PropertyList contains duplicate property names, the WBEM server shall ignore them 2182

but otherwise process the request normally. If PropertyList contains property names that are invalid 2183

for a target instance, the WBEM server shall ignore them for that instance but otherwise process the 2184

request normally. WBEM clients should not specify properties in PropertyList unless they specify a 2185

non-NULL value for the ResultClass parameter. 2186

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 2187

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2188

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2189

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2190

If OpenAssociatorInstances is successful, the return value shall be an array of <instanceWithPath> 2191

items representing enumerated instances as defined in 5.4.2.24.2. 2192

The PullInstancesWithPath operation shall be used to pull instances for an enumeration session opened 2193
using OpenAssociatorInstances. If any other operation is used to pull instances, the WBEM server shall 2194
return failure with the status code CIM_ERR_FAILED. 2195

If OpenAssociatorInstances is unsuccessful, this operation shall return one of the following status codes, 2196
where the error returned is the first applicable error in the list, starting with the first element and working 2197
down. Any additional operation-specific interpretation of the error is given in parentheses. 2198

 CIM_ERR_ACCESS_DENIED 2199

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2200

 CIM_ERR_NOT_SUPPORTED 2201

 CIM_ERR_INVALID_NAMESPACE 2202

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2203

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2204

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2205
incorrect parameters) 2206

 CIM_ERR_NOT_FOUND (The source instance was not found.) 2207

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 2208

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 59

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2209
not recognized.) 2210

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 2211
language.) 2212

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2213

5.4.2.24.8 OpenAssociatorInstancePaths 2214

The OpenAssociatorInstancePaths operation establishes and opens an enumeration session of the 2215
instance paths of the instances associated with a particular source CIM instance in the target namespace. 2216
Optionally, it retrieves a first set of instance paths. 2217

<instancePath>* OpenAssociatorInstancePaths (2218

 [OUT] string EnumerationContext, 2219

 [OUT] Boolean EndOfSequence, 2220

 [IN] <instanceName> InstanceName, 2221

 [IN,OPTIONAL,NULL] <className> AssocClass= NULL, 2222

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 2223

 [IN,OPTIONAL,NULL] string Role = NULL, 2224

 [IN,OPTIONAL,NULL] string ResultRole = NULL, 2225

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 2226

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 2227

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2228

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2229

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 2230

) 2231

This operation shall comply with the behavior defined in 5.4.2.24.1. 2232

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2233

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2234

The InstanceName input parameter specifies an instance name (model path) that identifies the source 2235

CIM instance with the associated instances (respectively, their instance paths) to be enumerated. Unless 2236
restricted by any filter parameters of this operation, the enumeration set shall consist of the instance 2237
paths of all instances associated with the source instance. 2238

The AssocClass input parameter, if not NULL, shall be a CIM association class name. It acts as a filter 2239

on the enumerated set of instance paths by mandating that each instance path identify an instance that 2240
shall be associated with the source instance through an instance of this class or one of its subclasses. 2241

The WBEM server shall not return an error if the AssocClass input parameter value is an invalid class 2242

name or if the class does not exist in the target namespace. 2243

The ResultClass input parameter, if not NULL, shall be a CIM class name. It acts as a filter on the 2244

enumerated set of instance paths by mandating that each instance path identify an instance that shall be 2245
an instance of this class or one of its subclasses. The WBEM server shall not return an error if the 2246

ResultClass input parameter value is an invalid class name or if the class does not exist in the target 2247

namespace. 2248

The Role input parameter, if not NULL, shall be a property name. It acts as a filter on the enumerated set 2249

of instance paths by mandating that each instance path identify an instance that shall be associated with 2250
the source instance through an association in which the source instance plays the specified role. That is, 2251
the name of the property in the association class that refers to the source instance shall match the value 2252

CIM Operations over HTTP DSP0200

60 DMTF Standard Version 1.4.0

of this parameter. The WBEM server shall not return an error if the Role input parameter value is an 2253

invalid property name or if the property does not exist. 2254

The ResultRole input parameter, if not NULL, shall be a property name. It acts as a filter on the 2255

enumerated set of instance paths by mandating that each instance path identify an instance that shall be 2256
associated with the source instance through an association in which the instance identified by 2257
the enumerated instance path plays the specified role. That is, the name of the property in the association 2258
class that refers to the instance identified by the enumerated instance path shall match the value of this 2259

parameter. The WBEM server shall not return an error if the ResultRole input parameter value is an 2260

invalid property name or if the property does not exist. 2261

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 2262

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2263

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2264

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2265

If OpenAssociatorInstancePaths is successful, the return value shall be an array of <instancePath> 2266

items representing enumerated instance paths as defined in 5.4.2.24.2. 2267

The PullInstancePaths operation shall be used to pull instances for an enumeration session opened using 2268
OpenAssociatorInstancePaths. If any other operation is used to pull instances, the WBEM server shall 2269
return failure with the status code CIM_ERR_FAILED. 2270

If OpenAssociatorInstancePaths is unsuccessful, this operation shall return one of the following status 2271
codes, where the error returned is the first applicable error in the list, starting with the first element and 2272
working down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2273

 CIM_ERR_ACCESS_DENIED 2274

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2275

 CIM_ERR_NOT_SUPPORTED 2276

 CIM_ERR_INVALID_NAMESPACE 2277

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2278

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2279

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2280
incorrect parameters) 2281

 CIM_ERR_NOT_FOUND (The source instance was not found.) 2282

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 2283

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2284
not recognized.) 2285

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter 2286
language.) 2287

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2288

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 61

5.4.2.24.9 Common Parameters for the Pull Operations 2289

This clause defines commonly used parameters for the Pull operations. The description of the individual 2290
Pull operations references these parameters as appropriate. Note that not every Pull operation uses 2291
every one of these common parameters. 2292

 EnumerationContext 2293

– This parameter is the enumeration context value representing the enumeration session to 2294
be used. 2295

– The representation of an enumeration context value uses a string type. In version 1.3 of 2296
this document, enumeration context values were represented using the 2297
ENUMERATIONCONTEXT XML element. The representation was changed to using a 2298
string type in version 1.4 of this document, because it had turned out that all known 2299
implementations had implemented the enumeration context value using a string type. 2300

– When the Pull operation is invoked, the enumeration session represented by the 2301

EnumerationContext input parameter shall be open. The first enumeration session shall 2302

use one of the Open operations with a type of enumerated object that matches the Pull 2303
operation. For the first Pull operation on an enumeration session, the value of the 2304

EnumerationContext input parameter shall be the enumeration context value returned 2305

by a successful Open operation. For subsequent Pull operations on that enumeration 2306

session, the value of the EnumerationContext input parameter shall be the value of the 2307

EnumerationContext output parameter returned by the previous Pull operation on the 2308

same enumeration session. 2309

– After the Pull operation is completed, the enumeration session represented by the 2310

EnumerationContext output parameter shall be open or closed. 2311

 EndOfSequence 2312

– This output parameter indicates to the WBEM client whether the enumeration session is 2313

exhausted. If EndOfSequence is true upon successful completion of a Pull operation, no 2314

more instances or instance paths are available and the WBEM server shall close the 2315
enumeration session, releasing any allocated resources related to the session. If 2316

EndOfSequence is false, additional instances or instance paths may be available, and 2317

the WBEM server shall not close the session. 2318

 MaxObjectCount 2319

– This input parameter defines the maximum number of instances or instance paths that may 2320
be returned by this Pull operation. Any uint32 number is valid, including 0. The WBEM 2321

server may deliver any number of instances or instance paths up to MaxObjectCount but 2322

shall not deliver more than MaxObjectCount. The WBEM client may use a 2323

MaxObjectCount value of 0 to restart the operation timeout for the enumeration session 2324

when it does not need to not retrieve any instances or instance paths. 2325

 Return Value (array of enumerated elements) 2326

– The return value of a Pull operation upon successful completion is an array of enumerated 2327
instances or instance paths with a number of entries from 0 up to a maximum defined by 2328

MaxObjectCount. These entries meet the criteria defined in the Open operation that 2329

established this enumeration session. Note that returning no entries in the array does not 2330

imply that the enumeration session is exhausted. Only the EndOfSequence output 2331

parameter indicates whether the enumeration session is exhausted. 2332

CIM Operations over HTTP DSP0200

62 DMTF Standard Version 1.4.0

5.4.2.24.10 PullInstancesWithPath 2333

The PullInstancesWithPath operation retrieves instances including their instance paths from an open 2334
enumeration session represented by an enumeration context value: 2335

<instanceWithPath>* PullInstancesWithPath (2336

 [IN,OUT] string EnumerationContext, 2337

 [OUT] Boolean EndOfSequence, 2338

 [IN] uint32 MaxObjectCount 2339

) 2340

The PullInstancesWithPath operation shall comply with the behavior defined in 5.4.2.24.1. 2341

The EnumerationContext input/output parameter is defined in 5.4.2.24.9. The enumeration session 2342

shall be established using one of the OpenEnumerateInstances, OpenReferenceInstances, or 2343
OpenAssociatorInstances operations. 2344

The EndOfSequence output parameter is defined in 5.4.2.24.9. 2345

The MaxObjectCount input parameter is defined in 5.4.2.24.9. 2346

If PullInstancesWithPath is successful, the return value shall be an array of <instanceWithPath> 2347

items representing enumerated instances including their instance paths as defined in 5.4.2.24.9. 2348

If PullInstancesWithPath is unsuccessful, this operation shall return one of the following status codes, 2349
where the error returned is the first applicable error in the list, starting with the first element and working 2350
down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2351

 CIM_ERR_ACCESS_DENIED 2352

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2353

 CIM_ERR_NOT_SUPPORTED 2354

 CIM_ERR_INVALID_NAMESPACE 2355

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2356
incorrect parameters) 2357

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2358

 CIM_ERR_PULL_HAS_BEEN_ABANDONED 2359

 CIM_ERR_SERVER_LIMITS_EXCEEDED 2360

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2361

5.4.2.24.11 PullInstancePaths 2362

The PullInstancePaths operation retrieves instance paths from an open enumeration session represented 2363
by an enumeration context value: 2364

<instancePath>* PullInstancePaths (2365

 [IN,OUT] string EnumerationContext, 2366

 [OUT] Boolean EndOfSequence, 2367

 [IN] uint32 MaxObjectCount 2368

) 2369

The PullInstancePaths operation shall comply with the behavior defined in 5.4.2.24.1. 2370

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 63

The EnumerationContext input/output parameter is defined in 5.4.2.24.9. The enumeration session 2371

shall have been established using one of the OpenEnumerateInstancePaths, 2372
OpenReferenceInstancePaths, or OpenAssociatorInstancePaths operations. 2373

The EndOfSequence output parameter is defined in 5.4.2.24.9. 2374

The MaxObjectCount input parameter is defined in 5.4.2.24.9. 2375

If PullInstancePaths is successful, the return value shall be an array of <instancePath> items 2376

representing enumerated instance paths as defined in 5.4.2.24.9. 2377

If PullInstancePaths is unsuccessful, this operation shall return one of the following status codes, where 2378
the error returned is the first applicable error in the list, starting with the first element and working down. 2379
Any additional operation-specific interpretation of the error is enclosed in parentheses. 2380

 CIM_ERR_ACCESS_DENIED 2381

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2382

 CIM_ERR_NOT_SUPPORTED 2383

 CIM_ERR_INVALID_NAMESPACE 2384

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2385
incorrect parameters) 2386

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2387

 CIM_ERR_SERVER_LIMITS_EXCEEDED 2388

 CIM_ERR_PULL_HAS_BEEN_ABANDONED 2389

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2390

5.4.2.24.12 CloseEnumeration 2391

The CloseEnumeration operation closes an open enumeration session, performing an early termination of 2392
an enumeration sequence: 2393

void CloseEnumeration (2394

 [IN] string EnumerationContext 2395

) 2396

The EnumerationContext parameter is the value representing the enumeration session to be closed. 2397

The enumeration session shall be open and shall be established using one of the Open operations. This 2398
implies that this operation is not to close an enumeration sequence already indicated by 2399

EndOfSequence because the sequence has already been closed. The value of the 2400

EnumerationContext parameter shall be the value of the EnumerationContext output parameter 2401

returned by the previous Pull operation on the enumeration session to be closed. 2402

If CloseEnumeration is successful, the WBEM server shall close the enumeration session represented by 2403

EnumerationContext, releasing any allocated resources. Any subsequent use of the 2404

EnumerationContext value is unsuccessful. 2405

CloseEnumeration may be executed concurrently with a Pull operation or an EnumerationCount operation 2406
on the same enumeration session. If a WBEM server receives a CloseEnumeration operation request 2407
while it is processing a Pull operation on the same enumeration session, the WBEM server shall attempt 2408
to abandon that Pull operation. If the Pull operation can be abandoned, it shall return a failure with the 2409
status code CIM_ERR_PULL_HAS_BEEN_ABANDONED and the CloseEnumeration operation shall 2410
return success. If the Pull operation cannot be abandoned, it shall proceed as if the CloseEnumeration 2411

CIM Operations over HTTP DSP0200

64 DMTF Standard Version 1.4.0

operation has not been issued, and the CloseEnumeration operation shall return a failure with the status 2412
code CIM_ERR_PULL_CANNOT_BE_ABANDONED. 2413

If CloseEnumeration is unsuccessful, this operation shall return one of the following status codes, where 2414
the error returned is the first applicable error in the list, starting with the first element and working down. 2415
Any additional operation-specific interpretation of the error is enclosed in parentheses. 2416

 CIM_ERR_ACCESS_DENIED 2417

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2418

 CIM_ERR_NOT_SUPPORTED 2419

 CIM_ERR_INVALID_NAMESPACE 2420

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2421
incorrect parameters) 2422

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2423

 CIM_ERR_PULL_CANNOT_BE_ABANDONED 2424

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2425

5.4.2.24.13 EnumerationCount 2426

The EnumerationCount operation provides an estimated count of the total number of objects in an open 2427
enumeration session represented by an EnumerationContext: 2428

uint64 EnumerationCount (2429

 [IN] string EnumerationContext 2430

) 2431

The EnumerationContext parameter identifies the enumeration session for the EnumerationCount 2432

operation. It shall be established using any of the Open operations and shall be open at the time of the 2433
CloseEnumeration request. A conformant WBEM server may support this operation. A WBEM server that 2434
does not support this operation should respond with the CIM_ERR_NOT_SUPPORTED status. 2435

If EnumerationCount is successful, the operation returns an approximate count of the number of objects 2436
in the enumeration session. This is the number of items remaining to be sent with subsequent Pull 2437
operations. Thus, executing this operation immediately after the open may provide an approximate 2438
estimate of the total number of objects to be returned in the enumeration set. The returned count is only 2439
an estimate of the number of objects to be pulled in the enumeration sequence. This mechanism is 2440
intended to assist WBEM clients in determining the overall size of an enumeration set and the number of 2441

objects remaining in the enumeration session. It should not be used instead of the EndOfSequence 2442

parameter to determine the end of an enumeration sequence. 2443

If the WBEM server cannot or will not return an estimate of the number of objects to be returned for the 2444
enumeration context, it may return success and the NULL value. 2445

If EnumerationCount is unsuccessful, this operation shall return one of the following status codes, where 2446
the error returned is the first applicable error in the list, starting with the first element and working down. 2447
Any additional operation-specific interpretation of the error is enclosed in parentheses. 2448

 CIM_ERR_ACCESS_DENIED 2449

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2450

 CIM_ERR_NOT_SUPPORTED 2451

 CIM_ERR_INVALID_NAMESPACE 2452

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 65

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2453
incorrect parameters) 2454

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2455

 CIM_ERR_SERVER_LIMITS_EXCEEDED 2456

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2457

5.4.2.24.14 OpenQueryInstances 2458

The OpenQueryInstances operation establishes and opens an enumeration session of the instances of a 2459
CIM class (including instances of its subclasses) in the target namespace. Optionally, it retrieves a first 2460
set of instances: 2461

<instance>* OpenQueryInstances (2462

 [IN] string FilterQuery, 2463

 [IN] string FilterQueryLanguage, 2464

 [IN,OPTIONAL] Boolean ReturnQueryResultClass = false, 2465

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2466

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2467

 [IN,OPTIONAL] uint32 MaxObjectCount = 0, 2468

 [OUT, OPTIONAL, NULL] <class> QueryResultClass, 2469

 [OUT] string EnumerationContext, 2470

 [OUT] Boolean EndOfSequence 2471

) 2472

The OpenQueryInstances shall comply with the behavior defined in 5.4.2.24.1. 2473

The FilterQuery and FilterQueryLanguage input parameters specify the set of enumerated 2474

instances. 2475

FilterQueryLanguage shall specify a query language and the value of FilterQuery shall be a valid 2476

query in that query language. This document defines neither the query language nor the format of the 2477
query. It is anticipated that query languages will be submitted to the DMTF as separate proposals. A 2478
mechanism by which WBEM servers can declare the query languages they support for filtering in Pulled 2479
enumerations (if any) is defined in 7.5. 2480

The ReturnQueryResultClass input parameter controls whether a class definition is returned in 2481

QueryResultClass. If it is set to false, QueryResultClass shall be set to NULL on output. If it is 2482

set to true, the value of the QueryResultClass on output shall be a class definition that defines the 2483

properties (columns) of each row of the query result. 2484

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2485

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2486

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2487

The QueryResultClass output parameter shall be set to NULL if the ReturnQueryResultClass 2488

input parameter is set to false. Otherwise, it shall return a class definition where each property of the 2489

class corresponds to one entry of the query select list. The class definition corresponds to one row of the 2490
query result. The class name of this returned class shall be "CIM_QueryResult.” This class definition is 2491
valid only in the context of this enumeration. 2492

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2493

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2494

CIM Operations over HTTP DSP0200

66 DMTF Standard Version 1.4.0

If OpenQueryInstances is successful, the return value shall be an array of <instance> items 2495

representing enumerated instances as defined in 5.4.2.24.2. Such instances are available only in the 2496
context of the enumeration and do not return an instance path. The PullInstancesWithPath operation may 2497
not be used to continue an enumeration started by the OpenQueryInstances operation. 2498

The PullInstances operation shall be used to pull instances for an enumeration session opened using If 2499
OpenQueryInstances. If any other operation is used to pull instances, the WBEM server shall return 2500
failure with the status code CIM_ERR_FAILED. 2501

If OpenQueryInstances is unsuccessful, this operation shall return one of the following status codes, 2502
where the error returned is the first applicable error in the list, starting with the first element and working 2503
down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2504

 CIM_ERR_ACCESS_DENIED 2505

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2506

 CIM_ERR_NOT_SUPPORTED 2507

 CIM_ERR_INVALID_NAMESPACE 2508

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2509

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2510

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2511
incorrect parameters) 2512

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2513
not recognized.) 2514

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 2515
language.) 2516

 CIM_ERR_QUERY_FEATURE_NOT_SUPPORTED (The query requires support for features 2517
that are not supported.) 2518

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2519

5.4.2.24.15 PullInstances 2520

The PullInstances operation retrieves instances from an OpenQueryInstances session represented by an 2521
enumeration context value: 2522

<instance>* PullInstances (2523

 [IN,OUT] string EnumerationContext, 2524

 [OUT] Boolean EndOfSequence, 2525

 [IN] uint32 MaxObjectCount 2526

) 2527

The PullInstances operation shall comply with the behavior defined in 5.4.2.24.1. 2528

The EnumerationContext input/output parameter is defined in 5.4.2.24.9. The enumeration session 2529

shall be established using the OpenQueryInstances operation. 2530

The EndOfSequence output parameter is defined in 5.4.2.24.9. 2531

The MaxObjectCount input parameter is defined in 5.4.2.24.9. 2532

If PullInstances is successful, the return value shall be an array of <instance> items representing 2533

enumerated instances as defined in 5.4.2.24.9. 2534

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 67

If PullInstances is unsuccessful, this operation shall return one of the following status codes, where the 2535
error returned is the first applicable error in the list, starting with the first element and working down. Any 2536
additional operation-specific interpretation of the error is enclosed in parentheses. 2537

 CIM_ERR_ACCESS_DENIED 2538

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2539

 CIM_ERR_NOT_SUPPORTED 2540

 CIM_ERR_INVALID_NAMESPACE 2541

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2542
incorrect parameters) 2543

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2544

 CIM_ERR_SERVER_LIMITS_EXCEEDED 2545

 CIM_ERR_PULL_HAS_BEEN_ABANDONED 2546

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2547

5.4.3 Namespace Manipulation Using the CIM_Namespace Class (DEPRECATED) 2548

DEPRECATION NOTE: This section was deprecated in version 1.4 of this document because it 2549
was determined this was outside the scope of this specification. The DMTF WBEM Server profile 2550
contains the functionality for manipulating namespaces. 2551

No intrinsic methods are defined specifically to manipulate namespaces. Namespaces shall be 2552
manipulated using intrinsic methods on the CIM_Namespace class. 2553

5.4.3.1 Namespace Creation 2554

A namespace is created by calling the intrinsic method CreateInstance for the CIM_Namespace class. A 2555
value is specified for the new instance parameter that defines a valid instance of the CIM_Namespace 2556
class and that has a name property that is the desired name of the new namespace. 2557

The proposed definition shall be a correct namespace definition according to DSP0004. Despite the 2558
naming conventions used in the CIM specifications (use of / in namespaces such as root/CIMV2 and 2559
root/CIMV2/test), there is no hierarchy implied among different namespaces. Each namespace is 2560
independent of all others. The namespaces are to be considered flat, and there is no defined behavior for 2561
navigating namespaces. 2562

In creating the new namespace, the WBEM server shall conform to the following rules: 2563

 The namespace defined by name property shall not already exist in the WBEM server. 2564

 The <LOCALNAMESPACEPATH> defined for the operation defines the namespace in which 2565
the CIM_Namespace instance associated with this new namespace is created. 2566

It is recommended that instances of CIM_Namespace be created in root unless there is a specific reason 2567
to define them in another namespace. The inclusion of a CIM_Namespace instance within a namespace 2568
other than root is allowed. 2569

In addition to creating instances of CIM_Namespace, compliant implementations shall also create an 2570
instance of the association class CIM_NamespaceInManager defining the linking of the namespace 2571
created to the current CIM_ObjectManager. 2572

CIM Operations over HTTP DSP0200

68 DMTF Standard Version 1.4.0

If CreateInstance is successful, the WBEM server creates the specified namespace. In addition, the 2573
WBEM server shall return information about the namespace as an instance of the class CIM_Namespace 2574
and of returning instances of the association class CIM_NamespaceInManager for each 2575
CIM_Namespace instance created. 2576

5.4.3.2 Namespace Deletion 2577

If the WBEM server supports the CIM_Namespace class, all valid namespaces shall be represented by 2578
an instance of the CIM_Namespace class. A namespace is deleted using the intrinsic method 2579
DeleteInstance to delete the instance of the class CIM_Namespace that represents the namespace. The 2580
namespace to be deleted shall exist. 2581

If DeleteInstance is successful, the WBEM server shall remove the specified CIM_Namespace instance. 2582

If DeleteInstance is unsuccessful, one of the status codes defined for the DeleteInstance operation shall 2583
be returned. A WBEM server may return CIM_ERR_FAILED if a non-empty namespace cannot 2584
successfully be deleted. 2585

5.4.3.3 Manipulation and Query of Namespace Information 2586

The query of namespaces is provided through the following means: 2587

 Query of the CIM_Namespace class on an individual namespace 2588

 Use of the CIM_NamespaceInManager association to link the target CIM_ObjectManager and 2589
the instances of CIM_Namespace representing all namespaces defined in the target 2590
CIM_ObjectManager 2591

5.4.3.4 Use of the __Namespace Pseudo Class (DEPRECATED) 2592

In previous versions of this document, namespaces were manipulated through the pseudo class 2593
__Namespace as follows: 2594

No intrinsic methods are specifically defined for manipulating CIM namespaces. However, modeling a 2595
CIM namespace using class __Namespace, together with the requirement that the root namespace be 2596
supported by all WBEM servers, implies that all namespace operations can be supported. 2597

For example, all child namespaces of a particular namespace are enumerated by calling the intrinsic 2598
method EnumerateInstanceNames against the parent namespace, specifying a value for the ClassName 2599
parameter of __Namespace. A child namespace is created by calling the intrinsic method CreateInstance 2600
against the parent namespace, specifying a value for the NewInstance parameter that defines a valid 2601
instance of the class __Namespace and that has a name property that is the desired name of the new 2602
namespace. 2603

DEPRECATION NOTE: The use of the __Namespace class is DEPRECATED. In its place, use the 2604
CIM_Namespace class. 2605

5.4.4 Functional Profiles (DEPRECATED) 2606

DEPRECATION NOTE: This section was deprecated in version 1.4 of this document and there is 2607
no replacement. 2608

To establish conformance, this clause partitions the intrinsic methods into functional groups. 2609

Support for a particular group does not guarantee that all invocations of a method in that group will 2610
succeed. Rather, the exclusion of a group is a declaration that any attempt to call a method in that group 2611
always returns CIM_ERR_NOT_SUPPORTED. 2612

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 69

Mechanisms by which a WBEM server may declare the functional groups that it supports are defined in 2613
7.5. 2614

To limit the number of different profiles that a WBEM server may support, each functional group has a 2615
dependency on another group (with the exception of the Basic Read functional group). If functional group 2616
G1 has a dependency on functional group G2, then a WBEM server that supports G1 shall also support 2617
G2. 2618

The dependency relation is transitive, so if G1 depends on G2, and G2 depends on G3, then G1 depends 2619
on G3. It is also anti-symmetric, so if G1 depends on G2, then G2 cannot depend on G1. 2620

Using these rules, Table 3 defines a rooted-directed tree of dependencies with the Basic Read 2621
dependency representing the root node. 2622

For example, a WBEM server that supports the Schema Manipulation functional group shall also support 2623
the Instance Manipulation, Basic Write, and Basic Read. 2624

A WBEM server shall support the Basic Read functional group. 2625

CIM Operations over HTTP DSP0200

70 DMTF Standard Version 1.4.0

Table 3 – Root-Directed Tree of Functional Profile Dependencies 2626

Functional Group Dependency Methods

Basic Read none GetClass

EnumerateClasses

EnumerateClassNames

GetInstance

EnumerateInstances (DEPRECATED)

EnumerateInstanceNames (DEPRECATED)

GetProperty (DEPRECATED)

Pulled Read Basic Read OpenEnumerateInstances

OpenEnumerateInstancePaths

OpenReferenceInstances

OpenReferenceInstancePaths

OpenAssociatorInstances

OpenAssociatorInstancePaths

PullInstancesWithPath

PullInstancePaths

CloseEnumeration

PulledReadCount Pulled Read EnumerationCount

Pulled Query Execution Pulled Read OpenQueryInstances

PullInstances

Basic Write Basic Read SetProperty (DEPRECATED)

Schema Manipulation Instance Manipulation CreateClass

ModifyClass

DeleteClass

Instance Manipulation Basic Write CreateInstance

ModifyInstance

DeleteInstance

Association Traversal Basic Read Associators (PARTLY DEPRECATED)

AssociatorNames (PARTLY DEPRECATED)

References (PARTLY DEPRECATED)

ReferenceNames (PARTLY DEPRECATED)

Query Execution Basic Read ExecQuery

Qualifier Declaration Schema Manipulation GetQualifier

SetQualifier

DeleteQualifier

EnumerateQualifiers

5.4.5 Extrinsic Method Invocation 2627

Any WBEM server is assumed to support extrinsic methods, which are defined by the schema supported 2628
by the WBEM server. If a WBEM server does not support extrinsic method invocations, it shall return the 2629
error code CIM_ERR_NOT_SUPPORTED to any request to execute an extrinsic method (subject to the 2630

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 71

considerations described in the rest of this clause). This allows a WBEM client to determine that all 2631
attempts to execute extrinsic methods will fail. 2632

If the WBEM server cannot invoke extrinsic methods, it shall return one of the following status codes, 2633
where the error returned is the first applicable error in the list, starting with the first element and working 2634
down. Any additional specific interpretation of the error is enclosed in parentheses. 2635

 CIM_ERR_ACCESS_DENIED 2636

 CIM_ERR_NOT_SUPPORTED (The WBEM server does not support extrinsic method 2637
invocations.) 2638

 CIM_ERR_INVALID_NAMESPACE 2639

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2640
incorrect parameters) 2641

 CIM_ERR_NOT_FOUND (The target CIM class or instance does not exist in the specified 2642
namespace.) 2643

 CIM_ERR_METHOD_NOT_FOUND 2644

 CIM_ERR_METHOD_NOT_AVAILABLE (The WBEM server is unable to honor the invocation 2645
request.) 2646

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2647

5.5 CIM Export Syntax and Semantics 2648

This clause focuses on export methods and their invocation, as well as on functional profiles. 2649

5.5.1 Export Method Invocations 2650

All CIM-XML export message requests defined for the CIM-to-HTTP mapping are invocations of one or 2651
more export methods. Export methods do not operate against CIM namespaces. 2652

An export method call is represented in XML by the <EXPMETHODCALL> element, and the response to 2653
that call is represented by the <EXPMETHODRESPONSE> element. 2654

An input parameter has an IN qualifier with value true in the method definition. An output parameter has 2655

an OUT qualifier with value true in the method definition. A parameter may be both an input parameter 2656

and an output parameter. 2657

The <EXPMETHODCALL> element names the method to be invoked and supplies any input parameters 2658
to the export method call: 2659

 Each input parameter shall be named using the name assigned in the method definition. 2660

 Input parameters may be supplied in any order. 2661

 Each input parameter of the method, and no others, shall be present in the call unless it is 2662
optional. 2663

The <EXPMETHODRESPONSE> element defines either an <ERROR> or a (possibly optional) return 2664
value and output parameters, which are decorated with the OUT qualifier in the method definition. In the 2665
latter case, the following rules apply: 2666

 Each output parameter shall be named using the name assigned in the method definition. 2667

 Output parameters may be supplied in any order. 2668

 Each output parameter of the method, and no others, shall be present in the response, unless it 2669
is optional. 2670

CIM Operations over HTTP DSP0200

72 DMTF Standard Version 1.4.0

The method invocation process may be thought of as a two-part process: 2671

 Binding the input parameter values specified as child elements of the <EXPMETHODCALL> 2672
element to the input parameters of the method. 2673

 Attempting to execute the method using the bound input parameters, with one of the following 2674
results: 2675

– If the attempt to call the method is successful, the return value and output parameters are 2676
bound to the child elements of the <EXPMETHODRESPONSE> element. 2677

– If the attempt to call the method is unsuccessful, an error code and (optional) human-2678
readable description of that code is bound to the <EXPMETHODRESPONSE> element. 2679

5.5.1.1 Simple Export 2680

A simple export requires the invocation of a single export method. A simple export request is represented 2681
by a <SIMPLEEXPREQ> element, and a simple export response is represented by a <SIMPLEEXPRSP> 2682
element. 2683

A <SIMPLEEXPREQ> shall contain a <EXPMETHODCALL> element. 2684

5.5.1.2 Multiple Export 2685

A multiple export requires the invocation of more than one export method. A multiple export request is 2686
represented by a <MULTIEXPREQ> element, and a multiple export response is represented by a 2687
<MULTIEXPRSP> element. 2688

A <MULTIEXPREQ> (or its respective <MULTIEXPRSP>) element is a sequence of two or more 2689
<SIMPLEEXPREQ> (or its respective <SIMPLEEXPRSP>) elements. 2690

A <MULTIEXPRSP> element shall contain a <SIMPLEEXPRSP> element for every <SIMPLEEXPREQ> 2691
element in the corresponding multiple export response. These <SIMPLEEXPRSP> elements shall be in 2692
the same order as their <SIMPLEEXPREQ> counterparts. The first <SIMPLEEXPRSP> in the response 2693
corresponds to the first <SIMPLEEXPREQ> in the request, and so forth. 2694

Multiple exports conveniently batch the delivery of multiple export method invocations into a single HTTP 2695
message, reducing the number of roundtrips between a WBEM client and a WBEM listener and allowing 2696
the WBEM listener to make certain internal optimizations. Note that multiple exports do not confer any 2697
transactional capabilities in processing the request. For example, the WBEM listener does not have to 2698
guarantee that the constituent export method calls either all failed or all succeeded. The WBEM listener 2699
must only make a "best effort" to process the operation. However, WBEM listeners shall finish processing 2700
each method invocation in a batched message before executing the next method invocation in the batch. 2701
Clients shall recognize that the order of method calls within a batched message is significant. 2702

Not all WBEM listeners support multiple exports. If a WBEM listener does not support multiple exports, it 2703
shall return the status code CIM_ERR_NOT_SUPPORTED. 2704

5.5.1.3 Status Codes 2705

This clause defines the status codes and detailed error information that a conforming WBEM listener may 2706
return. 2707

The value of an <ERROR> child element within a <EXPMETHODRESPONSE> element includes the 2708
following parts: 2709

 mandatory status code 2710

 optional human-readable description of the status code 2711

 zero or more CIM_Error instances 2712

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 73

The symbolic names defined in Table 4 do not appear on the wire. They are used here solely for 2713
convenient reference to an error in other parts of this document. Not all methods are expected to return 2714
all these status codes. 2715

In addition to returning a status code, a conforming WBEM listener may return zero or more 2716
<INSTANCE> child elements as part of an <ERROR> element. Each <INSTANCE> child element shall 2717
be an instance of CIM_Error, and the value of CIMStatusCode shall comply with the definition of expected 2718
error codes for the CIM-XML export request. A WBEM client may ignore any <INSTANCE> child 2719
elements. 2720

Table 4 – Symbolic Names for Referencing Error Codes 2721

Symbolic Name Code Definition

CIM_ERR_FAILED 1 A general error occurred that is not covered by a more specific
error code.

CIM_ERR_ACCESS_DENIED 2 Access was not available to the client.

CIM_ERR_NOT_SUPPORTED 7 The requested operation is not supported.

CIM_ERR_TYPE_MISMATCH 13 The value supplied is incompatible with the type.

5.5.2 Export Methods 2722

This clause describes the methods that can be defined within a CIM-XML export message. These 2723
methods operate only on an external data representation of a CIM entity, namespace, or element. 2724
Specifically, export methods do not operate on CIM namespaces or elements. The export method defined 2725
in this document is Export an Indication. 2726

The notation used in the following subclauses to define the signatures of the export methods is a pseudo-2727
MOF notation that extends the standard MOF BNF (DSP0004) for describing CIM export methods with a 2728
number of pseudo parameter types. The pseudo parameter types are enclosed in angle brackets (< >). 2729

This notation allows parameters to be decorated with pseudo-qualifiers (IN, OPTIONAL, and NULL) to 2730
define their invocation semantics. Note that these qualifiers are for description purposes only within the 2731
scope of this document. In particular, a WBEM client shall not specify them in export method invocations. 2732

This notation uses the IN qualifier for input parameters. 2733

A WBEM client may omit an optional parameter if the required value is the specified default by not 2734
specifying an <EXPPARAMVALUE> element for the parameter. It shall not omit a parameter that is not 2735
optional. 2736

The NULL qualifier indicates parameters with values that may be specified as NULL in an export method 2737
call. A NULL (unassigned) value for a parameter is specified by an <EXPPARAMVALUE> element with 2738
no child element. The WBEM client shall specify a value for parameters without the NULL qualifier by 2739
including a suitable child element for the <EXPPARAMVALUE> element. 2740

All parameters shall be uniquely named and shall correspond to a valid parameter name for that method 2741
as described by this document. The order of the parameters is not significant. 2742

The non-NULL values of export method parameters or return values that are modeled as standard CIM 2743
types (such as string and Boolean, or arrays thereof) are represented as follows: 2744

 Simple values shall be represented by the <VALUE> child element in an <EXPPARAMVALUE> 2745
element (for export method parameters) or in an <IRETURNVALUE> element (for export 2746
method return values). 2747

CIM Operations over HTTP DSP0200

74 DMTF Standard Version 1.4.0

 Array values shall be represented by the <VALUE.ARRAY> child element in an 2748
<EXPPARAMVALUE> element (for export method parameters) or in an <IRETURNVALUE> 2749
element (for export method return values). 2750

Table 5 shows how each pseudo-type used by the export methods shall be mapped to an XML element 2751
described in DSP0201 in the context of both a parameter value (child element of <EXPPARAMVALUE>) 2752
and a return value (child element of <IRETURNVALUE>). 2753

2754

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 75

Table 5 – Mapping of Export Method Pseudo-Types to XML Elements 2755

Type XML Element

<object> (VALUE.OBJECT|VALUE.OBJECTWITHLOCALPATH|VALUE.OBJECTWITHPATH)

<class> CLASS

<instance> INSTANCE

<className> CLASSNAME

<namedInstance> VALUE.NAMEDINSTANCE

<instanceName> INSTANCENAME

<objectWithPath> VALUE.OBJECTWITHPATH

<objectName> (CLASSNAME|INSTANCENAME)

<propertyValue> (VALUE|VALUE.ARRAY|VALUE.REFERENCE)

<qualifierDecl> QUALIFIER.DECLARATION

5.5.2.1 ExportIndication 2756

The ExportIndication operation exports a single CIM indication to the destination WBEM listener: 2757

void ExportIndication (2758

 [IN] <instance> NewIndication 2759

) 2760

The NewIndication input parameter defines the indication to be exported. The proposed definition 2761

should be a correct instance definition for the underlying CIM indication class according to the CIM 2762
specification. 2763

If ExportIndication is unsuccessful, this method shall return one of the following status codes, where the 2764
error returned is the first applicable error in the list, starting with the first element and working down. Any 2765
additional method-specific interpretation of the error is enclosed in parentheses. 2766

 CIM_ERR_ACCESS_DENIED 2767

 CIM_ERR_NOT_SUPPORTED 2768

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2769
incorrect parameters) 2770

 CIM_ERR_INVALID_CLASS (The CIM class of which this is to be a new instance does not 2771
exist.) 2772
DEPRECATED: The use of CIM_ERR_INVALID_CLASS has been deprecated in version 1.4 of 2773
this document because a WBEM listener has no notion about existing classes. Listeners should 2774
not use this status code anymore, and WBEM servers receiving this status code should treat it 2775
like CIM_ERR_FAILED. 2776

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2777

5.5.3 Functional Profiles (DEPRECATED) 2778

DEPRECATION NOTE: This section was deprecated in version 1.4 of this document and there is 2779
no replacement. 2780

This clause partitions the export methods into functional groups to establish conformance. See Table 6. 2781

CIM Operations over HTTP DSP0200

76 DMTF Standard Version 1.4.0

Support for a particular group does not guarantee that all invocations of an export method in that group 2782
will succeed. Rather, the exclusion of a group is a declaration that any attempt to call an export method in 2783
that group always returns CIM_ERR_NOT_SUPPORTED. 2784

The dependency relation is transitive, so if group G1 depends on G2, and G2 depends on G3, then G1 2785
depends on G3. It is also anti-symmetric, so if G1 depends on G2, then G2 cannot depend on G1. 2786

Table 6 – Functional Groups of Export Methods 2787

Functional Group Dependency Method

Indication None ExportIndication

6 Encapsulation of CIM-XML Messages 2788

This clause describes how to use CIM-XML messages in HTTP. CIM-XML message requests may be 2789
used with or without the HTTP Extension Framework. 2790

Although CIM-XML messages can be used in combination with a variety of HTTP request methods, this 2791
document defines CIM-XML messages only within HTTP POST requests. (M-POST may be used in place 2792
of POST. For details on how to use CIM-XML messages with the HTTP Extension Framework, see 6.2.) 2793

All CIM-XML message responses are carried in the corresponding HTTP response. In the remaining 2794
discussion, the following terms are used as convenient shorthand for the definitions provided here: 2795

 CIM-XML operation request. An HTTP POST request message with an XML entity body that 2796
defines an operation request message. 2797

 CIM-XML operation response. An HTTP response message, issued in response to a CIM-XML 2798
operation request, with an entity body that defines an operation response message. 2799

 CIM-XML export request. An HTTP POST request message with an XML entity body that 2800
defines an export request message. 2801

 CIM-XML export response. An HTTP response message, issued in response to a CIM-XML 2802
export message request, with an entity body that defines an export response message. 2803

 CIM-XML message request. An HTTP POST request message with an XML entity body that 2804
defines either an operation request message or an export request message. 2805

 CIM-XML message response. An HTTP response message, issued in response to a CIM-XML 2806
message request, with an entity body that defines either an operation response message or an 2807
export response message. 2808

Note that an HTTP response to a CIM request is not always a CIM response. For example, a "505 HTTP 2809
Version Not Supported" response is not a CIM response. 2810

6.1 WBEM clients, WBEM servers, and WBEM listeners 2811

A CIM product is any product that can supply and/or consume management information using the CIM 2812
schema. In particular, WBEM clients, WBEM servers, and WBEM listeners are examples of CIM products: 2813

 A WBEM client issues CIM-XML operation requests and receives and processes CIM-XML 2814
operation responses. 2815

 A WBEM server receives and processes CIM-XML operation requests and issues CIM-XML 2816
operation responses. A WBEM server also issues CIM-XML export requests and receives and 2817
processes CIM-XML export responses. 2818

http://www.ietf.org/rfc/rfc2774.txt

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 77

 A WBEM listener is a server that receives and processes CIM-XML export requests and issues 2819
CIM-XML export responses. 2820

Throughout this document, the terms WBEM client, WBEM server, WBEM listener, and CIM product are 2821
used as convenient shorthand to refer to the subset of CIM products that conform to this document. 2822

Note that "WBEM client" (server, listener) was used for the term "WBEM client" (server, listener) before 2823
version 1.4 of this document. 2824

6.2 Use of M-POST 2825

A WBEM client attempting to invoke a CIM-XML message using the HTTP Extension Framework method 2826
"M-POST" shall follow these steps: 2827

 If the M-POST invocation fails with an HTTP status of "501 Not Implemented" or "510 Not 2828
Extended," the client should retry the request using the HTTP method "POST" with the 2829
appropriate modifications (described in 6.2.2). 2830

 If the M-POST invocation fails with an HTTP status of "405 Method Not Allowed," the client 2831
should fail the request. 2832

 For all other status codes, the client shall act in accordance with standard HTTP (see 7.1). 2833

This extended invocation mechanism gives Internet proxies and firewalls greater filtering control and 2834
administrative flexibility over CIM-XML message invocations. 2835

If a client receives a 501 or 510 status in response to an M-POST request, in subsequent invocations to 2836
the same HTTP server, the client may omit the attempt at M-POST invocations for a suitable period. This 2837
omission avoids the need for an extra round trip on each and every method invocation. The details of the 2838
caching strategy employed by the client are outside the scope of this document. 2839

6.2.1 Use of the Ext Header 2840

If a WBEM server or WBEM listener receives a valid M-POST request and has fulfilled all mandatory 2841
extension header declarations in the request, it shall include in the response the "Ext" header defined by 2842
RFC2774. This included header shall be protected by the appropriate Cache-Control directive. 2843

6.2.2 Naming of Extension Headers 2844

In M-POST request messages (and their responses), CIM extension headers shall be declared using the 2845
name space prefix allotted by the "Man" extension header (in accordance with RFC2774) that refers to 2846
the name space "http://www.dmtf.org/cim/mapping/http/v1.0". The full format of the "Man" header 2847
declaration for this document is: 2848

Man = "Man" ":" "http://www.dmtf.org/cim/mapping/http/v1.0" 2849

 ";" "ns" "=" header-prefix 2850

 2851

header-prefix = 2*DIGIT 2852

This header-prefix should be generated at random on a per-HTTP message basis, and should not 2853
necessarily be a specific number. 2854

In accordance with RFC2774, all POST request messages (and their responses) shall not include such a 2855
mandatory extension declaration. In POST request messages (and their responses), name space 2856
prefixes shall not be used. 2857

EXAMPLE 1: 2858

Using M-POST: 2859

file:///C:/u/am/eServer/CIM-M12/DMTF/SC-Infrastructure/CIM-XML/CIM%20Ops/1.4.0a/RFC2774

CIM Operations over HTTP DSP0200

78 DMTF Standard Version 1.4.0

M-POST /cimom HTTP/1.1 2860

Man: http://www.dmtf.org./cim/mapping/http/v1.0 ; ns=23 2861

23-CIMOperation: MethodCall 2862

... 2863

EXAMPLE 2: 2864

Using POST: 2865

POST /cimom HTTP/1.1 2866

CIMOperation: MethodCall 2867

... 2868

6.3 Extension Headers Defined for CIM-XML Message Requests and Responses 2869

A CIM-XML message contains exactly one CIM-XML operation request, CIM-XML operation response, 2870
CIM-XML export request, or CIM-XML export response. This clause describes the extension headers to 2871
specify CIM-XML message semantics in the HTTP header of a POST message. 2872

Any CIM-XML operation request or CIM-XML operation response shall, and only CIM-XML operation 2873
requests and responses may, include the following CIM extension header: 2874

 CIMOperation 2875

Any CIM-XML operation request shall, and only CIM-XML operation requests may, include one and only 2876
one of the following CIM extension header sets: 2877

 CIMMethod and CIMObject, or 2878

 CIMBatch (DEPRECATED) 2879

Any CIM-XML export request or CIM-XML export response shall, and only CIM-XML export requests and 2880
responses may, include the following CIM extension header: 2881

 CIMExport 2882

Any CIM-XML export request shall, and only CIM-XML export requests may, include one and only one of 2883
the following CIM extension headers: 2884

 CIMExportMethod 2885

 CIMExportBatch (DEPRECATED) 2886

An HTTP response with an error status code to a CIM-XML message request may include the following 2887
CIM extension header: 2888

 CIMError 2889

All CIM-XML messages may include the following CIM extension header: 2890

 CIMProtocolVersion 2891

6.3.1 Encoding of CIM Element Names within HTTP Headers and Trailers 2892

CIM element (class, property, qualifier, method, or method parameter) names are natively Unicode, and 2893
may use UCS-2 characters unsuitable for inclusion within an HTTP message header or trailer. To encode 2894
CIM element names represented in Unicode to values within HTTP headers or trailers, the following two-2895
step mapping process shall be used: 2896

 Encode the full Unicode CIM element name using UTF-8. 2897

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 79

 Using the ""%" HEX HEX" convention, apply the standard URI [RFC2396, section 2] escaping 2898
mechanism to the resulting string to escape any characters that are unsafe within an HTTP 2899
header or trailer. 2900

In this document, the token CIMIdentifier represents a CIM element name to which this transformation 2901
has been applied. 2902

One characteristic of this mapping is that CIM elements named with an ASCII representation appear in 2903
ASCII in the resulting URL. 2904

EXAMPLES: 2905

 CIM_LogicalElement is unchanged under this transformation. 2906

 The class named using the UCS-2 sequence representing the Hangul characters for the Korean 2907
word "hangugo" (D55C, AD6D, C5B4) becomes 2908

 %ED%95%9C%EA%B5%AD%EC%96%B4=10 2909

after UTF-8 transformation and escaping all characters with their % HEX HEX equivalent. 2910

6.3.2 Encoding of CIM Object Paths within HTTP Headers and Trailers 2911

This clause describes the mapping that shall be applied to represent CIM object paths, as described 2912
within an Operation Request Message using the <LOCALNAMESPACEPATH>, <LOCALCLASSPATH>, 2913
or <LOCALINSTANCEPATH> elements, in a format that is safe for representation within an HTTP header 2914
or trailer. 2915

If the element to be transformed is a <LOCALNAMESPACEPATH>, the algorithm is as follows: 2916

 For the first <NAMESPACE> child element, output the textual content of that element. 2917

 For each subsequent <NAMESPACE> child element, output the forward slash character (/) 2918
followed by the textual content of that <NAMESPACE> element. 2919

If the element to be transformed is a <LOCALCLASSPATH>, the algorithm is as follows: 2920

 Transform the <LOCALNAMESPACEPATH> child element using the rules previously 2921
described, and output a colon character (:). 2922

 Output the value of the NAME attribute of the <CLASSNAME> child element. 2923

If the element to be transformed is a <LOCALINSTANCEPATH>, the algorithm is as follows: 2924

 Transform the <LOCALNAMESPACEPATH> child element using the rules previously 2925
described, and output a colon character (:). 2926

 Output the value of the CLASSNAME attribute of the <INSTANCENAME> child element. 2927

 If there is at least one <KEYBINDING> child element under the <INSTANCENAME> child 2928
element, then for each such child element: 2929

– Output a period character (.) if this is the first <KEYBINDING> child element; otherwise, 2930
output a comma character (,). 2931

– Output the value of the NAME attribute, followed by an equal character (=). 2932

– If there is a <KEYVALUE> child element, output the textual element content of that 2933
element, subject to the following transformation: 2934

 If the VALUETYPE attribute is numeric or Boolean, the output is identical to the 2935
content of the element. 2936

CIM Operations over HTTP DSP0200

80 DMTF Standard Version 1.4.0

 If the VALUETYPE attribute is a string, the output is obtained by enclosing the content 2937
of the element in double quote (") characters and escaping any double quote 2938
characters or backslash character within the value with a preceding backslash (\) 2939
character. 2940

– If there is a <VALUE.REFERENCE> child element 2941

 Output a double quote character ("). 2942

 Apply the process recursively to the <CLASSPATH> or <INSTANCEPATH> child 2943
element of the <VALUE.REFERENCE> element, escaping any double quote or 2944
backslash character thereby generated with a preceding backslash (\) character. 2945

 Output a closing double quote character ("). 2946

 If there is no <KEYBINDING> child element but there is a <KEYVALUE> or 2947
<VALUE.REFERENCE> child element under the <INSTANCENAME> child element, then: 2948

– Output an equal character (=). 2949

– Output the transformed value of the <KEYVALUE> or <VALUE.REFERENCE> using the 2950
previously-described rules. 2951

 If there are no <KEYBINDING> child elements or no <KEYVALUE> or <VALUE.REFERENCE> 2952
child element, then indicate a singleton instance by outputting the string "=@" under the 2953
<INSTANCENAME> child element. 2954

Finally, after applying these rules to the <LOCALNAMESPACEPATH>, <LOCALCLASSPATH>, or 2955
<LOCALINSTANCEPATH> element, transform the entire output string into URI-safe format in the 2956
following two-step procedure: 2957

 Encode the string using UTF-8 [RFC2279] if it is not already in this format. 2958

 Using the ""%" HEX HEX" convention, apply the standard URI [RFC2396, section 2] escaping 2959
mechanism to the resulting string to escape any characters that are unsafe within an HTTP 2960
header or trailer. 2961

In this document, the token CIMObjectPath represents a <LOCALNAMESPACEPATH>, 2962
<LOCALCLASSPATH>, or <LOCALINSTANCEPATH> element to which the preceding transformation 2963
has been applied. 2964

6.3.3 CIMOperation 2965

The CIMOperation header shall be present in all CIM-XML operation request and CIM-XML operation 2966
response messages. It identifies the HTTP message as carrying a CIM-XML operation request or 2967
response. 2968

CIMOperation = "CIMOperation" ":" ("MethodCall" | "MethodResponse") 2969

A WBEM client shall include this header, with the value "MethodCall," in all CIM-XML operation requests 2970
that it issues. A WBEM server shall include this header in all CIM-XML operation responses that it issues, 2971
with the value "MethodResponse". 2972

If a WBEM server receives a CIM-XML operation request with this header, but with a missing value or a 2973
value that is not "MethodCall," then it shall fail the request with status "400 Bad Request". The WBEM 2974

server shall include a CIMError header in the response with a value of unsupported-operation. 2975

If a WBEM server receives a CIM-XML operation request without this header, it shall not process it as a 2976
CIM-XML operation request. The status code returned by the WBEM server in response to such a 2977
request is outside the scope of this document. 2978

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 81

If a WBEM client receives a response to a CIM-XML operation request without this header (or if this 2979
header has a value that is not "MethodResponse"), it should discard the response and take appropriate 2980
measures to publicize that it has received an incorrect response. The details as to how this is done are 2981
outside the scope of this document. 2982

The CIMOperation header affords a simple mechanism by which firewall or proxy administrators can 2983
make global administrative decisions on all CIM operations. 2984

6.3.4 CIMExport 2985

The CIMExport header shall be present in all CIM-XML export request and response messages. It 2986
identifies the HTTP message as carrying a CIM export method request or response. 2987

CIMExport = "CIMExport" ":" ("MethodRequest" | "MethodResponse") 2988

A WBEM client shall include this header with the value "MethodRequest" in all CIM-XML export requests 2989
that it issues. A WBEM listener shall include this header in all CIM-XML export responses that it issues, 2990
with the value "MethodResponse". 2991

If a WBEM listener receives a CIM-XML export request with this header, but with a missing value or a 2992
value that is not "MethodRequest", then it shall fail the request with status "400 Bad Request". The 2993
WBEM listener shall include a CIMError header in the response with a value of unsupported-operation. 2994

If a WBEM listener receives a CIM-XML export request without this header, it shall not process it. The 2995
status code returned by the WBEM listener in response to such a request is outside of the scope of this 2996
document. 2997

If a WBEM client receives a response to a CIM-XML export request without this header (or if this header 2998
has a value that is not "MethodResponse”), it should discard the response and take appropriate 2999
measures to publicize that it has received an incorrect response. The details as to how this is done are 3000
outside the scope of this document. 3001

The CIMExport header affords a simple mechanism by which firewall or proxy administrators can make 3002
global administrative decisions on all CIM exports. 3003

6.3.5 CIMProtocolVersion 3004

The CIMProtocolVersion header may be present in any CIM-XML message. The header identifies the 3005
version of the CIM operations over the HTTP specification in use by the sending entity. 3006

CIMProtocolVersion = "CIMProtocolVersion" ":" 1*DIGIT "." 1*DIGIT 3007

If the header is omitted, then a value of 1.0 must be assumed. 3008

The major and minor revision numbers must be treated as independent integers. 3009

The CIMProtocolVersion x1.y1 is less than CIMProtocolVersion x2.y2 if and only if one of the following 3010
statements is true: 3011

 x1 is less than x2 3012

 x1 equals x2, and y1 is less than y2 3013

The CIMProtocolVersion x1.y1 is greater than CIMProtocolVersion x2.y2 if and only if one of the following 3014
statements is true: 3015

 x1 is greater than x2, 3016

 x1 equals x2, and y1 is greater than y2 3017

A CIMProtocolVersion x1.y1 is within tolerance of CIMProtocolVersion x2.y2 if: 3018

CIM Operations over HTTP DSP0200

82 DMTF Standard Version 1.4.0

 x1 equals x2, and 3019

 y1 is less than or equal to y2 3020

If the CIMProtocolVersion of the CIM-XML message received is within tolerance of the 3021
CIMProtocolVersion supported for a WBEM server or WBEM listener implementation, the receiving 3022
implementation shall accept that CIM-XML message. Equivalent CIMProtocolVersion values between 3023
WBEM server or WBEM listener and the WBEM client shall be accepted. The WBEM server or WBEM 3024
listener implementation may reject a CIM-XML message in all other cases. For information about how 3025
CIM-XML messages are rejected, see 7.3. 3026

Beyond tolerance considerations, the implementation should reject the received CIM-XML message only 3027
if the design as defined by the CIMProtocolVersion of the receiving implementation has changed in the 3028
declaration of the API, method parameters, or behavior since the design defined by the 3029
CIMProtocolVersion of the received CIM-XML message. 3030

6.3.6 CIMMethod 3031

The CIMMethod header shall be present in any CIM-XML operation request message that contains a 3032
Simple Operation Request. 3033

It shall not be present in any CIM-XML operation response message nor in any CIM-XML operation 3034
request message unless it is a simple operation request. It shall not be present in any CIM-XML export 3035
request or response message. 3036

The header identifies the name of the CIM method to be invoked, encoded in an HTTP-safe 3037
representation. Firewalls and proxies may use this header to carry out routing and forwarding decisions 3038
based on the CIM method to be invoked. 3039

The name of the CIM method within a simple operation request is the value of the NAME attribute of the 3040

<METHODCALL> or <IMETHODCALL> element. 3041

CIMMethod = "CIMMethod" ":" MethodName 3042

 3043

MethodName = CIMIdentifier 3044

If a WBEM server receives a CIM-XML operation request for which any one of the following statements is 3045
true, then it shall fail the request and return a status of "400 Bad Request". Also, it shall include a 3046

CIMError header in the response with a value of header-mismatch, subject to the considerations 3047

specified in 7.3: 3048

 The CIMMethod header is present, but it has an invalid value. 3049

 The CIMMethod header is not present, but the operation request message is a Simple 3050
Operation Request. 3051

 The CIMMethod header is present, but the operation request message is not a simple operation 3052
request. 3053

 The CIMMethod header is present and the operation request message is a simple operation 3054
request, but the CIMIdentifier value (when unencoded) does not match the unique method 3055
name within the simple operation request. 3056

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy was 3057
not acting on misleading information when it decided to forward the request based on the content of the 3058
CIMMethod header. Additional securing of HTTP messages against modification in transit (such as the 3059
encryption of the payload or appending of a digital signature thereto) would be required to provide a 3060
higher degree of integrity. 3061

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 83

6.3.7 CIMObject 3062

The CIMObject header shall be present in any CIM-XML operation request message that contains a 3063
Simple Operation Request. 3064

It shall not be present in any CIM-XML operation response message nor in any CIM-XML operation 3065
request message unless it is a simple operation Request. It shall not be present in any CIM-XML export 3066
request or response message. 3067

The header identifies the CIM object on which the method is to be invoked using a CIM object path 3068
encoded in an HTTP-safe representation. This object shall be a class or instance for an extrinsic method 3069
or a namespace for an intrinsic method. Firewalls and proxies may use this header to carry out routing 3070
and forwarding decisions based on the CIM object that is the target of a method invocation. 3071

CIMObject = "CIMObject" ":" ObjectPath 3072

 3073

ObjectPath = CIMObjectPath 3074

The ObjectPath value is constructed by applying the algorithm defined in 6.3.2 to either of the following 3075
child elements within the CIM-XML operation request: 3076

 The <LOCALNAMESPACEPATH> child element of the <IMETHODCALL> element. 3077

 The <LOCALCLASSPATH> or <LOCALINSTANCEPATH> child element of the 3078
<METHODCALL> element. 3079

If a WBEM server receives a CIM-XML operation request for which any one of the following statements is 3080
true, then it shall fail the request and return a status of "400 Bad Request". Also, it shall include a 3081

CIMError header in the response with a value of header-mismatch, subject to the considerations 3082

specified in 7.3: 3083

 The CIMObject header is present, but it has an invalid value. 3084

 The CIMObject header is not present, but the operation request message is a Simple Operation 3085
Request. 3086

 The CIMObject header is present, but the operation request message is not a simple operation 3087
request. 3088

 The CIMObject header is present and the operation request message is a simple operation 3089
request, but the ObjectPath value does not match the operation request message (where a 3090
match is defined in 6.3.2). 3091

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy is not 3092
acting on misleading information when it forwards the request based on the content of the CIMObject 3093
header. Additional securing of HTTP messages against modification in transit, such as encrypting the 3094
payload or appending a digital signature to it, would be required to provide a higher degree of integrity. 3095

6.3.8 CIMExportMethod 3096

The CIMExportMethod header shall be present in any CIM-XML export request message that contains a 3097
simple export request. 3098

This header shall not be present in any CIM-XML export response message nor in any CIM-XML export 3099
request message unless it is a simple export request. It shall not be present in any CIM-XML operation 3100
request or response message. 3101

The CIMExportMethod header identifies the name of the CIM export method to be invoked, encoded in an 3102
HTTP-safe representation. Firewalls and proxies may use this header to carry out routing and forwarding 3103
decisions based on the CIM export method to be invoked. 3104

CIM Operations over HTTP DSP0200

84 DMTF Standard Version 1.4.0

The name of the CIM export method within a simple export request is the value of the NAME attribute of 3105
the <EXPMETHODCALL> element. 3106

CIMExportMethod = "CIMExportMethod" ":" ExportMethodName 3107

 3108

ExportMethodName = CIMIdentifier 3109

If a WBEM listener receives a CIM-XML export request for which any one of the following statements is 3110
true, then it shall fail the request and return a status of "400 Bad Request". Also, it shall include a 3111
CIMError header in the response with a value of header-mismatch, subject to the considerations specified 3112
in 7.3: 3113

 The CIMExportMethod header is present, but it has an invalid value. 3114

 The CIMExportMethod header is not present, but the export request message is a simple export 3115
request. 3116

 The CIMExportMethod header is present, but the export request message is not a simple export 3117
request. 3118

 The CIMExportMethod header is present and the export request message is a simple export 3119
request, but the CIMIdentifier value (when unencoded) does not match the unique method 3120
name within the simple export request. 3121

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy is not 3122
acting on misleading information when it forwards the request based on the content of the 3123
CIMExportMethod header. Additional securing of HTTP messages against modification in transit, such as 3124
encrypting the payload or appending a digital signature to it, would be required to provide a higher degree 3125
of integrity. 3126

6.3.9 CIMBatch (DEPRECATED) 3127

DEPRECATION NOTE: This section was deprecated in version 1.4 of this document and there is 3128
no replacement. 3129

The CIMBatch header shall be present in any CIM-XML operation request message that contains a 3130
Multiple Operation Request. 3131

This header shall not be present in any CIM-XML operation response message nor in any CIM-XML 3132
operation request message unless it is a multiple operation request. It shall not be present in any CIM-3133
XML export request or response message. 3134

The CIMBatch header identifies the encapsulated operation request message as containing multiple 3135
method invocations. Firewalls and proxies may use this header to carry out routing and forwarding 3136
decisions for batched CIM method invocations. 3137

CIMBatch = "CIMBatch" ":" 3138

If a WBEM server receives a CIM-XML operation request for which any one of the following statements is 3139
true, then it must fail the request and return a status of "400 Bad Request". Also it must include a 3140

CIMError header in the response with a value of header-mismatch, subject to the considerations 3141

specified in 7.3: 3142

 The CIMBatch header is present, but it has an invalid value. 3143

 The CIMBatch header is not present, but the operation request message is a multiple operation 3144
request. 3145

 The CIMBatch header is present, but the operation request message is not a multiple operation 3146
request. 3147

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 85

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy is not 3148
acting on misleading information when it forwards the request based on the content of the CIMBatch 3149
header. Additional securing of HTTP messages against modification in transit, such as encrypting the 3150
payload or appending a digital signature to it, would be required to provide a higher degree of integrity. 3151

If a WBEM server receives a CIM-XML operation request for which the CIMBatch header is present but 3152
the server does not support multiple operations, then it shall fail the request and return a status of "501 3153
Not Implemented". Firewalls or Proxies may also employ this mechanism to compel a WBEM client to use 3154
simple operation requests rather than multiple operation requests. 3155

A WBEM client that receives a response of "501 Not Implemented" to a multiple operation request should 3156
resubmit that request as a series of simple operation requests. 3157

6.3.10 CIMExportBatch (DEPRECATED) 3158

DEPRECATION NOTE: This section was deprecated in version 1.4 of this document and there is 3159
no replacement. 3160

The CIMExportBatch header shall be present in any CIM-XML export request message that contains a 3161
multiple export request. 3162

It shall not be present in any CIM-XML operation request or response message. Also, it shall not be 3163
present in any CIM-XML export response message nor in any CIM-XML export request message unless it 3164
is a multiple export request. 3165

The header identifies the encapsulated Export Request Message as containing multiple export method 3166
invocations. Firewalls and proxies may use this header to carry out routing and forwarding decisions for 3167
batched CIM Export method invocations. 3168

CIMExportBatch = "CIMExportBatch" ":" 3169

If a WBEM listener receives a CIM-XML export request for which any one of the following statements is 3170
true, then it must fail the request and return a status of "400 Bad Request". Also, it must include a 3171
CIMError header in the response with a value of header-mismatch, subject to the considerations specified 3172
in Errors: 3173

 The CIMExportBatch header is present, but it has an invalid value. 3174

 The CIMExportBatch header is not present, but the export request message is a multiple export 3175
request. 3176

 The CIMExportBatch header is present, but the export request message is not a multiple export 3177
request. 3178

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy is not 3179
acting on misleading information when it forwards the request based on the content of the 3180
CIMExportBatch header. Additional securing of HTTP messages against modification in transit, such as 3181
encrypting the payload or appending a digital signature to it, would be required to provide a higher degree 3182
of integrity. 3183

If a WBEM listener receives a CIM-XML export request for which the CIMExportBatch header is present, 3184
but the WBEM listener does not support multiple exports, then it shall fail the request and return a status 3185
of "501 Not Implemented". Firewalls or Proxies may also employ this mechanism to compel a WBEM 3186
client to use simple rather than multiple export requests. 3187

A WBEM client that receives a response of "501 Not Implemented" to a multiple export request should 3188
resubmit that request as a series of simple export requests. 3189

CIM Operations over HTTP DSP0200

86 DMTF Standard Version 1.4.0

6.3.11 CIMError 3190

The CIMError header may be present in any HTTP response to a CIM-XML message request that is not a 3191
CIM-XML message response. 3192

It shall not be present in any CIM-XML message response or in any CIM-XML message request. 3193

The CIMError header provides further CIM-specific diagnostic information if the WBEM server or WBEM 3194
listener encounters a fundamental error during processing of the CIM-XML operation request and is 3195
intended to assist clients to further disambiguate errors with the same HTTP status code: 3196

 CIMError = "CIMError" ":" cim-error 3197

 3198

 cim-error = "unsupported-protocol-version" | 3199

 "multiple-requests-unsupported" | 3200

 "unsupported-cim-version" | 3201

 "unsupported-dtd-version" | 3202

 "request-not-valid" | 3203

 "request-not-well-formed" | 3204

 "request-not-loosely-valid" | 3205

 "header-mismatch" | 3206

 "unsupported-operation" 3207

6.3.12 CIMRoleAuthenticate 3208

A WBEM server may return a CIMRoleAuthenticate header as part of the 401 Unauthorized response 3209
along with the WWW-Authenticate header. The CIMRoleAuthenticate header must meet the challenge of 3210
indicating the WBEM server policy on role credentials. 3211

challenge = "credentialrequired" | "credentialoptional" | "credentialnotrequired" 3212

 A challenge of credentialrequired indicates that the WBEM server requires that a WBEM 3213

client must present a credential if it seeks to assume a role. 3214

 A challenge of credentialoptional indicates that the credential is optional. If a credential is 3215

not sent, the WBEM server allows the role assumption if it is permitted for the given user. 3216
However, certain operations that require the role credential may not succeed. 3217

 A challenge of credentialnotrequired indicates that no credential is required to assume 3218

the role. 3219

Absence of the CIMRoleAuthenticate header indicates that the WBEM server does not support role 3220
assumption. A WBEM client should handle each of these cases appropriately. 3221

The challenge does not contain any authorization scheme, realm, or other information. A WBEM client 3222
should extract this information from the WWW-Authenticate header. This implies that for any given 3223
request, the role credentials should use the same scheme as those required for the user credentials. 3224

A WBEM server allows role assumption to succeed only if the user is allowed to assume the role. 3225
Therefore, even if appropriate credentials are presented, role assumption can fail. If either the user 3226
authentication or role assumption fails, the entire authentication operation fails. 3227

To maintain backward compatibility, a WBEM server that supports role assumption must allow user 3228
authentication even if no role is specified. 3229

6.3.13 CIMRoleAuthorization 3230

The CIMRoleAuthorization header is supplied along with the normal authorization header that the WBEM 3231
client populates to perform user authentication. If the WBEM client needs to perform role assumption and 3232

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 87

the WBEM server challenge is credentialrequired, the CIMRoleAuthorization header must be supplied 3233
with the appropriate credentials. The credentials supplied as part of the CIMRoleAuthorization header 3234
must use the same scheme as those specified for the authorization header, as specified in RFC2617. 3235
Therefore, both Basic and Digest authentication are possible for the role credential. 3236

If the WBEM client wishes to assume a role but does not wish to supply role credentials for server 3237
challenge credentialoptional or credentialnotrequired, the CIMRoleAuthorization header must set the 3238
auth-scheme field as specified in RFC2617 to be "role". The auth-param must contain the role name. 3239

A WBEM server that supports roles must be capable of handling the presence of credentials in the 3240
CIMRoleAuthorization header (that is auth-scheme not set to "role") regardless of whether it is expecting 3241
credentials or not. It may choose to ignore these credentials. 3242

6.3.14 CIMStatusCodeDescription 3243

If a CIM product includes the CIMStatusCode trailer, it may also include the CIMStatusCodeDescription 3244
trailer. The value of this trailer is a string describing the nature of the error. A CIM product shall not 3245
include this trailer if the CIMStatusCode trailer is not present. 3246

6.3.15 WBEMServerResponseTime 3247

The WBEMServerResponseTime header may be present in any CIM response message. If it is present, 3248
the header shall contain a measure, specified in microseconds, of the elapsed time required by the 3249
WBEM server to process the request and create a response. Specifically, WBEMServerResponseTime 3250
describes the time elapsed since the WBEM server received the CIM request message and the 3251
associated CIM response message was ready to send to the WBEM client. 3252

WBEMServerResponseTime = "WBEMServerResponseTime" ":", where the response time must be 3253
representable as a 64-bit unsigned integer value. If the actual elapsed time exceeds the maximum 3254
representable value, then the maximum value shall be returned. If the actual elapsed time is less than 1 3255
microsecond, then a 0 shall be returned. 3256

Although a WBEM client may ignore the WBEMServerResponseTime header, it shall allow this header to 3257
be included in a response. 3258

7 HTTP Requirements and Usage 3259

This clause describes HTTP support and the use of standard headers. 3260

7.1 HTTP and HTTPS Support 3261

CIM products shall support CIM-XML messages in HTTP. The following applies to this case: 3262

 CIM products should support HTTP/1.1 as defined in RFC2616. 3263

DEPRECATED 3264

CIM products may support HTTP/1.0 as defined in RFC1945. 3265

 Support for HTTP/1.0 is deprecated since version 1.4 of this document; HTTP/1.1 should be 3266
supported instead. 3267

DEPRECATED 3268

CIM products should support CIM-XML messages in HTTPS. If they do, the following applies to this case: 3269

CIM Operations over HTTP DSP0200

88 DMTF Standard Version 1.4.0

 CIM products shall support HTTPS as defined in RFC2818. This includes the use of HTTP 3270
within HTTPS, as defined in RFC2818. 3271

NOTE RFC2818 describes the use of TLS 1.0 and higher but not the use of SSL 2.0 or 3.0. 3272

 Within their support of HTTPS, CIM products: 3273

– shall support TLS 1.0 (also known as SSL 3.1) as defined in RFC2246. Note that TLS 1.0 3274
implementations may be vulnerable when using CBC cipher suites 3275

– should support TLS 1.1 as defined in RFC4346 3276

– should support TLS 1.2 as defined in RFC5246 3277

– should not support SSL 2.0 or SSL 3.0 because of known security issues in these versions 3278

NOTE RFC5246 describes in Appendix E "Backward Compatibility" how the secure sockets layer can 3279
be negotiated. 3280

Requirements and considerations for authentication and encryption between CIM products are described 3281
in 7.4. 3282

CIM products that use extension headers as defined in this document shall conform to the requirements 3283
defined in RFC2774 for their use. 3284

7.2 Use of Standard HTTP Headers 3285

Unless otherwise stated in this document, CIM products shall comply with the requirements on the use of 3286
standard HTTP headers described in RFC1945 and RFC2616. This clause defines only additional 3287
requirements on CIM products with respect to the use of these standard HTTP headers in a CIM-XML 3288
message. 3289

Note that CIM products should not use HTTP headers defined in RFC2068 but deprecated in RFC2616 3290
(for example, Public, Content-Base). 3291

7.2.1 Accept 3292

If a WBEM client includes an Accept header in a request, it shall specify a value that allows the WBEM 3293
server to return an entity body of "text/xml" or "application/xml" in the response. 3294

A WBEM server or WBEM listener shall accept any value for this header stating that "text/xml" or 3295
"application/xml" is an acceptable type for a response entity. A WBEM server or WBEM listener should 3296
return "406 Not Acceptable" if the Accept header indicates that neither of these content types is 3297
acceptable. 3298

If a WBEM server or WBEM listener accepts a request to return an entity of a type other than "text/xml" or 3299
"application/xml", the nature of the response is outside the scope of this document. 3300

7.2.2 Accept-Charset 3301

If a WBEM client includes an Accept-Charset header in a request, it shall specify a value that allows the 3302
WBEM server or WBEM listener to return an entity body using the character set "UTF-8". 3303

A WBEM server or WBEM listener shall accept any value for this header asserting that "UTF-8" is an 3304
acceptable character set for a response entity. If the client does not provide an Accept-Charset, then 3305
"UTF-8" should be assumed by the WBEM server or WBEM listener. 3306

Accept-Charset: UTF-8 3307

A WBEM server or WBEM listener shall return "406 Not Acceptable" if the character set requested in the 3308
Accept-Charset header is not supported. 3309

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 89

If a WBEM server or WBEM listener accepts a request to return an entity using a character set other than 3310
"UTF-8", the behavior of the subsequent WBEM client and WBEM server interaction is outside the scope 3311
of this document. See 7.8 for details. 3312

7.2.3 Accept-Encoding 3313

If a WBEM client includes an Accept-Encoding header in a request, it shall specify a q value that allows 3314
the WBEM server or WBEM listener to use the "Identity" encoding. The value shall be greater than 0 or 3315
not specified. 3316

Accept-Encoding: Identity 3317

Accept-Encoding: Identity; q=1.0 3318

A WBEM server or WBEM listener shall accept any value for this header asserting that "Identity" is an 3319
acceptable encoding for the response entity. 3320

A WBEM server or WBEM listener shall return "406 Not Acceptable" if the Accept-Encoding header 3321
indicates that the requested encoding is not acceptable. 3322

7.2.4 Accept-Language 3323

If a WBEM client includes an Accept-Language header in a request, it shall request a language-range, 3324
special-range, or both. The WBEM client shall also allow any language to be returned if the requested 3325
languages cannot be supported. This is accomplished by including the special-range, "*". The WBEM 3326
client may request multiple languages. Each language has equal priority, unless a q value is provided. 3327

Accept-Language: zh, * 3328

Accept-Language: zh;q=1.0, en;q=.7, * 3329

Each CIM element in the response should be localized in only one language. A CIM element shall not be 3330
duplicated in the response because it is localized in more than one language. 3331

WBEM servers may support multiple languages. A CIM product shall interpret the use of the special-3332
range value, "*", as a request to return the response content using the default language defined for the 3333
target processing the request. Multiple targets, with different default language settings, may participate in 3334
the construction of a response. (See RFC2616 section 3.10 and ISO 639-1.) 3335

See 7.8 for more information. 3336

7.2.5 Accept-Ranges 3337

WBEM clients shall not include the Accept-Ranges header in a request. A WBEM server or WBEM 3338
listener shall reject a request that includes an Accept-Range header with a status of "406 Not 3339
Acceptable". 3340

7.2.6 Allow 3341

If a WBEM server or WBEM listener is returning a "405 Method Not Allowed" response to a CIM-XML 3342
message request, then the Allow header shall include either M-POST or POST. Whether it includes any 3343
other HTTP methods is outside the scope of this document. 3344

7.2.7 Authorization 3345

See 7.4 for details. 3346

http://www.loc.gov/standards/iso639-2/englangn.html

CIM Operations over HTTP DSP0200

90 DMTF Standard Version 1.4.0

7.2.8 Cache-Control 3347

Generally, a CIM-XML message request may consist of a mixture of CIM method invocations, some of 3348
which may be eminently able to cache (for example, the manufacturer label on a disk drive) and some of 3349
which may be decidedly impossible to cache (for example, format a disk drive). 3350

Furthermore, the encapsulation of such multiple method invocations in an HTTP POST or M-POST 3351
means that if a CIM-XML message request has any effect on an HTTP cache it is likely to be one of 3352
invalidating cached responses for the target WBEM server or WBEM listener. Indeed, HTTP/1.1 stipulates 3353
that by default POST responses cannot be cached unless the WBEM server indicates otherwise using an 3354
appropriate Cache-Control or Expires header. 3355

For these reasons, CIM-XML message responses should not be considered as able to be cached. A 3356
WBEM server or WBEM listener should not include a Cache-Control header in a CIM-XML message 3357
response that might indicate to a cache that the response can be cached. 3358

If the WBEM server or WBEM listener is responding to a CIM-XML message request conveyed in an M-3359
POST request, then in accordance with RFC2774 the WBEM server or WBEM listener shall include a no-3360
cache control directive to prevent inadvertent caching of the "Ext" header, as in the following example: 3361

EXAMPLE 3362

HTTP/1.1 200 OK 3363

Ext: 3364

Cache-Control: no-cache 3365

... 3366

7.2.9 Connection 3367

The following courses of action are recommended for connections: 3368

 WBEM clients should avoid the use of the "Connection: close" header unless it is known in 3369
advance that this is the only request likely to be sent out on that connection. 3370

 WBEM servers and WBEM listener support persistent connections wherever possible. 3371

Timeout mechanisms should be employed to remove idle connections on the WBEM client, WBEM 3372
server, and WBEM listener. The details of timeout mechanisms are outside the scope of this document. 3373
Clients should be cautious in retrying requests, especially if they are not idempotent (for example, method 3374
invocation). 3375

WBEM clients, WBEM servers, and WBEM listeners should support pipelining (HTTP/1.1 only, see 3376
RFC2616) if possible, but be aware of the requirements defined in RFC2616. In particular, attention is 3377
drawn to the requirement from RFC2616 that clients not pipeline requests using non-idempotent methods 3378
or non-idempotent sequences of methods. A client that needs to send a non-idempotent request should 3379
wait to send that request until it receives the response status for the previous request. 3380

7.2.10 Content-Encoding 3381

If a WBEM client includes a Content-Encoding header in a request, it should specify a value of "identity", 3382
unless there is good reason to believe that the WBEM server or WBEM listener can accept another 3383
encoding. 3384

7.2.11 Content-Language 3385

The Content-Language entity-header field of a CIM-XML message describes the natural language(s) of 3386
the intended audience of the content. 3387

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 91

A CIM-XML message may contain a Content-Language header. The value of the Content-Language 3388
header in a CIM response message shall be consistent with the Accept-Language values specified in the 3389
corresponding CIM request message. If the WBEM server cannot determine one or more of the content 3390
languages used to construct the response, then the Content-Language entity shall not be returned. 3391

Multiple targets using different Content-Language values may participate in constructing a response. The 3392
Content-Language field shall reflect all Content-Language values used to construct the response. The 3393
content of a CIM-XML message may contain elements in languages not listed in the Content-Language 3394
field. 3395

Content-Language: en 3396

See 7.8 for details. 3397

7.2.12 Content-Range 3398

WBEM clients, WBEM servers, and WBEM listeners shall not use this header. 3399

7.2.13 Content-Type 3400

WBEM clients, WBEM servers, and WBEM listeners shall specify (and accept) a media type for the 3401
Content-Type header of either "text/xml" or "application/xml" as defined in RFC2376. In addition, they 3402
may specify and shall accept a "charset" parameter as defined in RFC2616. If a "charset" parameter is 3403
specified, it shall have the value "utf-8" either with or without surrounding double quotes. The sending 3404
side should use the form without double quotes. The receiving side shall support both forms. If a "charset" 3405
parameter is not specified, the receiving side shall assume "utf-8" as a default. 3406

Examples of valid Content-Type headers are: 3407

Content-type: text/xml 3408

Content-type: text/xml; charset=utf-8 3409

Content-type: text/xml; charset="utf-8" 3410

Content-type: application/xml 3411

Content-type: application/xml; charset=utf-8 3412

Content-type: application/xml; charset="utf-8" 3413

7.2.14 Expires 3414

For the reasons described in 7.2.8, a WBEM server or WBEM listener shall not include an Expires header 3415
in a CIM-XML message response that might indicate to a cache that the response can be cached. 3416

7.2.15 If-Range 3417

WBEM clients, WBEM servers, and WBEM listeners shall not use this header. 3418

7.2.16 Proxy-Authenticate 3419

See 7.4 for details. 3420

7.2.17 Range 3421

WBEM clients, WBEM servers, and WBEM listeners shall not use this header. 3422

7.2.18 WWW-Authenticate 3423

See 7.4 for details. 3424

CIM Operations over HTTP DSP0200

92 DMTF Standard Version 1.4.0

7.3 Errors and Status Codes 3425

This clause defines how WBEM servers and WBEM listeners shall handle errors that occur in processing 3426
a CIM-XML message request. This document does not introduce any new HTTP response status codes. 3427

If there is an error in processing the HTTP Request-Line or standard HTTP headers, the WBEM server or 3428
WBEM listener shall take appropriate action as dictated by its conformance to the relevant version of 3429
HTTP (see 7.1). 3430

Otherwise, if there are any mandatory extension declarations that the WBEM server does not support it 3431
shall respond with a "510 Not Extended" status according to RFC2774. 3432

Otherwise, the request shall be processed in accordance with the relevant version of HTTP (see 7.1) and 3433
the additional rules defined in this document. 3434

Assuming that the HTTP request is otherwise correct, the WBEM server or WBEM listener shall use the 3435
following status codes when processing the CIM extension headers: 3436

 501 Not Implemented 3437

This status code indicates that one of the following situations occurred: 3438

– The CIMProtocolVersion extension header in the request specifies a version of the CIM 3439
mapping onto HTTP that is not supported by this WBEM server or WBEM listener. The 3440
WBEM server or WBEM listener shall include a CIMError header in the response with a 3441

value of unsupported-protocol-version. 3442

– (DEPRECATED) The client specified a Multiple Operation Request (or multiple Export 3443
Request), and the WBEM server (or WBEM listener) does not support such requests. The 3444
WBEM server or WBEM listener shall include a CIMError header in the response with a 3445

value of multiple-requests-unsupported. 3446

– The CIMVERSION attribute in the message request is not set to a proper value. The 3447
CIMVERSION attribute shall be in the form of "M.N", where M is the major revision of the 3448
specification in numeric form and N is the minor revision in numeric form. The version shall 3449
be at "2.0" or greater (for example, "2.0" or "2.3"). The WBEM server or WBEM listener 3450

shall include a CIMError header in the response with a value of unsupported-cim-3451

version. 3452

– The DTDVERSION attribute in the message request is not set to a proper value. The 3453
DTDVERSION attribute shall be in the form of "M.N", where M is the major revision of the 3454
specification in numeric form and N is the minor revision in numeric form. The version shall 3455
be at "2.0" or greater (for example, "2.0" or "2.1"). The WBEM server or WBEM listener 3456

shall include a CIMError header in the response with a value of unsupported-dtd-3457

version. 3458

 401 Unauthorized 3459

The WBEM server or WBEM listener is configured to require that a client authenticate itself 3460
before it can issue CIM-XML message requests to the WBEM server or WBEM listener. 3461

 403 Forbidden 3462

The WBEM server or WBEM listener does not allow the client to issue CIM-XML message 3463
requests. The WBEM server or WBEM listener may alternatively respond with a "404 Not 3464
Found" if it does not wish to reveal this information to the client. 3465

 407 Proxy Authentication Required 3466

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 93

The WBEM server or WBEM listener is configured to require that the proxy authenticate itself 3467
before it can issue CIM-XML message requests on behalf of a WBEM client to the WBEM 3468
server or WBEM listener. 3469

Assuming that the CIM extension headers are correct, a validating WBEM server or WBEM listener (one 3470
that enforces the validity of the CIM-XML message request with respect to the CIM XML DTD) shall use 3471
the following status code when processing the entity body containing the CIM-XML message request: 3472

 400 Bad Request 3473

The entity body defining the CIM-XML message request is not well-formed or not valid with 3474
respect to the CIM XML DTD. The WBEM server or WBEM listener shall include a CIMError 3475

header in the response with a value of request-not-well-formed or request-not-3476

valid (as appropriate). 3477

A loosely-validating WBEM server or WBEM listener only enforces the CIM-XML message request to be 3478
loosely valid. Therefore, it may reject a CIM-XML message request that is not loosely valid with an HTTP 3479
status code of 400 (Bad Request) before further processing. In this case, the WBEM server or WBEM 3480

listener shall include a CIMError header in the response with a value of request-not-loosely-3481

valid. 3482

A loosely-validating WBEM server or WBEM listener shall reject a CIM-XML message request that is not 3483
well-formed with an HTTP status code of 400 (Bad Request). In this case, the WBEM server or WBEM 3484

listener shall include a CIMError header in the response with a value of request-not-well-formed. 3485

A loosely-validating WBEM server or WBEM listener shall not reject an invalid CIM-XML message request 3486
that is loosely valid in the XML sense. 3487

A loosely-validating WBEM server or WBEM listener shall ultimately signal an error to the WBEM client if 3488
the CIM-XML message request is not loosely valid. That is, the request is missing required content or the 3489
required content is incorrect, such as an attribute with an invalid value according to the CIM XML DTD. It 3490
is not mandated to reject a CIM-XML message request before processing, for to do otherwise would 3491
compel the WBEM server or WBEM listener to check the complete request before processing can begin 3492
and this would be as expensive as requiring the WBEM server or WBEM listener to fully validate the 3493
request. Therefore, a loosely-validating server or listener may elect to begin processing the request and 3494
issuing a response (with an HTTP success status code) before verifying that the entire request is loosely 3495
valid. 3496

A WBEM client may use the CIMValidation header mechanism to determine whether a WBEM server or 3497
WBEM listener is validating or loosely-validating. 3498

Assuming that the CIM-XML message request is correctly formed as previously described, the WBEM 3499
server or WBEM listener shall process the request accordingly and return a CIM-XML message response. 3500

The entity body shall be a correct CIM-XML message response for that request. 3501

If the CIM-XML message response contains an entity that is a simple message response, then the 3502
response status shall be "200 OK". Otherwise, the response status shall be "207 Multistatus". 3503

7.4 Security Considerations 3504

This subclause describes requirements and considerations for authentication and message encryption 3505
between CIM products. 3506

7.4.1 Authentication 3507

This subclause describes requirements and considerations for authentication between CIM products. 3508
Specifically, authentication happens from WBEM clients to WBEM servers for CIM-XML operation 3509

CIM Operations over HTTP DSP0200

94 DMTF Standard Version 1.4.0

messages, and from WBEM servers to WBEM listeners for CIM-XML export messages. The 3510
authentication mechanisms defined in this subclause apply to both HTTP and HTTPS. 3511

CIM products may support operating without the use of authentication. This practice is not recommended 3512
and should only be done in environments where lack of network privacy is not an issue (for example, in a 3513
physically secure private network or on the same operating system). 3514

Basic authentication is described in RFC1945 and RFC2068. Digest authentication is defined in 3515
RFC2069. Both authentication schemes are covered in a consolidated document (RFC2617), which also 3516
makes a number of improvements to the original specification of digest authentication. This document 3517
requires conformance to RFC2617 but not to the earlier documents. 3518

Basic authentication provides a very rudimentary level of authentication, with the major weakness that the 3519
client password is sent over the wire in unencrypted form (unless HTTPS is used).. 3520

CIM products may support basic authentication as defined in RFC2617. Basic authentication without 3521
HTTPS should only be used in environments where lack of network privacy is not an issue. 3522

Digest authentication verifies that both parties share a common secret without having to send that secret. 3523

CIM products should support digest authentication as defined in RFC2617. 3524

CIM products may support authentication mechanisms not covered by RFC2617. One example are public 3525
key certificates as defined in X.509. 3526

WBEM servers and WBEM listeners should require that WBEM clients and WBEM servers, respectively, 3527
authenticate themselves. This document does not mandate this because it is recognized that in some 3528
circumstances the WBEM server or WBEM listener may not require or wish the overhead of employing 3529
authentication. WBEM servers and WBEM listeners should carefully consider the performance/security 3530
tradeoffs in determining how often to issue challenges to WBEM clients and WBEM servers, respectively. 3531

A WBEM server or WBEM listener that returns a "401 Unauthorized" response to a CIM message request 3532
shall include one WWW-Authenticate response-header indicating one supported authentication 3533
mechanism. This document does not mandate use of basic or digest authentication because it is 3534
recognized that in some circumstances the WBEM server or WBEM listener may use bespoke 3535
authentication mechanisms not covered by RFC2617. Similar considerations apply to the use of the 3536
Proxy-Authenticate response-header in "407 Proxy Authentication Required". 3537

7.4.2 Message Encryption 3538

Encryption of messages between CIM products is supported by the use of HTTPS in the communication 3539
between CIM products. Requirements for the use of HTTPS and its underlying secure sockets are 3540
defined in 7.1. 3541

The following requirements on cipher suites apply to CIM products that support HTTPS: 3542

 The TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite (hexadecimal value 0x0013) 3543
shall be supported when using TLS 1.0. Note that RFC2246 defines this cipher suite to be 3544
mandatory for TLS 1.0 3545

 The TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite (hexadecimal value 0x000A) shall 3546
be supported when using TLS 1.1. Note that RFC4346 defines this cipher suite to be mandatory 3547
for TLS 1.1 3548

 The TLS_RSA_WITH_AES_128_CBC_SHA cipher suite (hexadecimal value 0x002F) shall be 3549
supported when using TLS 1.2. Note that RFC5246 defines this cipher suite to be mandatory for 3550
TLS 1.2 3551

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 95

 The TLS_RSA_WITH_AES_128_CBC_SHA256 cipher suite (hexadecimal value 0x003C) 3552
should be supported when using TLS 1.2, in order to meet the transition to a security strength of 3553
112 bits (guidance is provided in NIST 800-57 and NIST 800-131A) 3554

 Any additional cipher suites may be supported 3555

7.5 Determining WBEM server Capabilities 3556

If a WBEM server can return capabilities information, there are two techniques for returning this 3557
information as defined in this document: 3558

 The preferred technique is through the use of the classes defined in 7.5.1. 3559

 Alternatively, use of the HTTP OPTIONS method as defined in 7.5.2 is allowed because 3560
historically it is the original technique defined for requesting capabilities information. 3561

Use of the CIM classes defined in 7.5.1 is strongly encouraged and it is expected that this method will be 3562
enhanced and extended in the future to provide more capabilities information. The future use of the HTTP 3563
OPTIONS method to determine capabilities of WBEM servers is discouraged. It will probably not be 3564
expanded significantly and may be reviewed for possible deprecation in the next major revision of this 3565
document. 3566

7.5.1 Determining WBEM server Capabilities through CIM Classes (DEPRECATED) 3567

DEPRECATION NOTE: This section was deprecated in version 1.4 of this document because it 3568
was determined that this is outside the scope of this document. The WBEM Server Profile and 3569
SNIA CIM Server Profile contain the same type of information. 3570

A set of CIM classes is defined specifically to return WBEM server capabilities information as follows: 3571

 CIM_ObjectManager 3572

This class is a type of CIM_Service that defines the capabilities of the target WBEM server. 3573

 CIM_ObjectManagerCommunicationMechanism 3574

This class describes access to the target WBEM server. It defines the capabilities of the WBEM 3575
server that are available through the target Object Manager Communication mechanism. A 3576
WBEM server is allowed to support different capabilities through different communication 3577
mechanisms. 3578

 CIM_CIMXMLCommunicationMechanism 3579

This class specializes on ObjectManagerCommunicationMechanism, adding properties specific 3580
to the CIM-XML encoding and protocol. 3581

 CIM_CommMechanismForManager 3582

This association between CIM_ObjectManager and 3583
CIM_ObjectManagerCommunicationMechanism defines the communications protocols (and 3584
corresponding capabilities) available on the target WBEM server through the 3585
ObjectManagerCommunicationMechanism instances. 3586

A WBEM client may use instances of these CIM classes to determine the CIM capabilities (if any) of the 3587
target WBEM server. A WBEM server that supports capabilities determination through these classes shall 3588
support at least the Enumerate Instance and Get Instance operations for the classes. The use of other 3589
methods of the basic read profile is optional. A WBEM server that does not support the determination of 3590
CIM capabilities through these classes shall return CIM_ERR_NOT_FOUND to any instance or class 3591
request on these classes. These classes shall not be used for reporting any other information than 3592
capabilities of the target WBEM server. 3593

CIM Operations over HTTP DSP0200

96 DMTF Standard Version 1.4.0

To provide interoperability, the CIM object manager classes shall exist in a well-known namespace. 3594
Because there is no discovery mechanism that can define this well-known namespace to a WBEM client, 3595
it shall be one or more predefined namespaces. Therefore, to ensure interoperability, we recommend that 3596
pending future extensions of the WBEM specifications include discovery tools that define a namespace 3597
for these classes in a WBEM server; these predefined namespaces should exist in either the root 3598
namespace or in the /root/CIMV2 namespace. 3599

A WBEM server that supports capabilities reporting through these classes shall correctly report the 3600
current actual capabilities of the target WBEM server and shall report on all capabilities defined. A WBEM 3601
server is allowed to report "none" if the capability does not exist or "unknown" if the status of the capability 3602
is unknown at the time of the request for those properties where these choices exist in the properties 3603
definition. Because the CIM_ObjectManager object provides information on the target WBEM server, only 3604
a single instance of this class may exist in a WBEM server. 3605

The capabilities to be reported through the CIM_ObjectManagerCommunicationMechanism are as 3606
follows: 3607

 CommunicationMechanism property, which defines the communication protocol for the 3608
CommunicationMechanism object. A compliant WBEM server shall include the CIM-XML 3609
protocol for at least one ObjectManagerCommunicationMechanism instance. 3610

 ProfilesSupported property, which defines the functional profiles supported as defined in clause 3611
5.4.4. All WBEM servers shall support the basic-read functional group. All WBEM clients may 3612
assume that any WBEM server supports the basic-read functional group. The list of functional 3613
groups returned by a WBEM server shall contain the basic-read group and shall not contain 3614
duplicates. WBEM clients shall ignore duplicate entries in the functional-group list. If a functional 3615
group is included in the list, the WBEM client shall assume that all other groups on which it 3616
depends (according to the rules defined in 5.4.4) are also supported. A WBEM server should 3617
not explicitly include a functional group in the list whose presence may be inferred implicitly by a 3618
dependency. Support for a functional group does not imply that any method from that group will 3619
always succeed. Rather, the absence of the functional group from this list (whether explicit or 3620
implied) indicates to the WBEM client that methods in that group will never succeed. 3621

 MultipleOperationsSupported property, which defines whether the target WBEM server supports 3622

multiple operation requests as defined in 5.4.2. True in this property indicates that the WBEM 3623

server can accept and process multiple operation requests. False indicates that the WBEM 3624

server can accept only single operation requests. 3625

 AuthenticationMechanismsSupported property, which defines the authentication mechanisms 3626
supported by the target WBEM server as defined in 7.4. 3627

 PulledEnumerationClosureOnExceedingServerLimits property, which indicates whether the 3628
WBEM server supports closure of Pulled Enumeration sessions based upon exceeding server 3629
limits. 3630

 PulledEnumerationContinuationOnErrorSupported property, which indicates whether the WBEM 3631
server supports continuation on error for Pulled enumerations. 3632

 PulledEnumerationMinimumOperationTimeout (PulledEnumerationMaximumOperationTimeout) 3633
property, which indicates the minimum (maximum) operation timeout allowed by the WBEM 3634
server for Pulled enumerations. 3635

Compliant WBEM servers may report additional capabilities for the CommunicationMechanism Functional 3636
Profiles, QueryLanguageSupported, and AuthenticationMechanismSupported by defining the "other" 3637
enumeration in the property and returning additional information in the associated "additional capabilities" 3638
property. 3639

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 97

7.5.2 Determining WBEM server Capabilities through the HTTP Options 3640

A WBEM client may use the OPTIONS method to determine the CIM capabilities (if any) of the target 3641
server. A WBEM server may support the OPTIONS method (for example, WBEM servers supporting only 3642
HTTP/1.0 would not support OPTIONS). 3643

To support the ability for a WBEM server to declare its CIM capabilities independently of HTTP, the DMTF 3644
intends to publish a CIM schema (in a separate document) describing such capabilities. In particular, this 3645
mechanism would allow servers that do not support the OPTIONS method to declare their capabilities to 3646
a client. 3647

If a WBEM server supports the OPTIONS method, it should return the following headers in the response: 3648

 CIM Extension Header CIMProtocolVersion, which provides a way for a client to discover the 3649
version of the CIM HTTP mapping supported by the WBEM server. 3650

 (DEPRECATED) CIM Extension Header CIMSupportedFunctionalGroups, which provides a 3651
way for a client to discover the CIM operations supported by the WBEM server. 3652

 (DEPRECATED) CIM Extension Header CIMSupportsMultipleOperations, which provides a way 3653
for the client to discover whether the WBEM server can support Multiple Operation Requests. 3654

In addition, if the WBEM server supports one or more query languages for the ExecQuery operation (see 3655
5.4.2.13), it should return the following header in the response: 3656

 CIM Extension Header CIMSupportedQueryLanguages, which allows the client to discover the 3657
query languages supported by the WBEM server for the ExecQuery operation. 3658

In addition, if the WBEM server runs in a fixed validation mode, it should return the following header in the 3659
response: 3660

 CIM Extension Header CIMValidation, which allows the client to determine whether the WBEM 3661
server is strictly validating or loosely validating. 3662

If the CIMProtocolVersion, CIMSupportedFunctionalGroups(DEPRECATED), 3663
CIMSupportsMultipleOperations(DEPRECATED), CIMValidation, or CIMSupportedQueryLanguages 3664
extension headers are included in the response, the WBEM server shall declare them as optional 3665
extension headers using the "Opt" header defined in RFC2774. 3666

The full format of the "Opt" header declaration for this document is: 3667

Opt = "Opt" ":" "http://www.dmtf.org/cim/mapping/http/v1.0" 3668

 ";" "ns" "=" header-prefix 3669

 3670

header-prefix = 2*DIGIT 3671

This header-prefix should be generated at random on a per-HTTP message basis and should not 3672
necessarily be a specific number. 3673

EXAMPLE: The following is a fragment of a legitimate OPTIONS response from a WBEM server: 3674

HTTP/1.1 200 OK 3675

Opt: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=77 3676

77-CIMProtocolVersion: 1.0 3677

77-CIMSupportedFunctionalGroups: basic-read 3678

77-CIMBatch 3679

77-CIMSupportedQueryLanguages: wql 3680

... 3681

CIM Operations over HTTP DSP0200

98 DMTF Standard Version 1.4.0

7.5.2.1 CIMSupportedFunctionalGroups (DEPRECATED) 3682

DEPRECATION NOTE: This section was deprecated in version 1.4 of this document and there is 3683
no replacement. 3684

The CIMSupportedFunctionalGroups extension header should be returned by a WBEM server in any 3685
OPTIONS response. It shall not be returned in any other scenario. 3686

This header is defined as follows: 3687

CIMSupportedFunctionalGroups = "CIMSupportedFunctionalGroups" ":" 3688

 1#functional-group 3689

 3690

functional-group = "basic-read" | 3691

 "basic-write" | 3692

 "schema-manipulation" | 3693

 "instance-manipulation" | 3694

 "qualifier-declaration" | 3695

 "association-traversal" | 3696

 "query-execution" 3697

The functional group definitions correspond directly to those listed in 5.5.3. All WBEM servers shall 3698
support the basic-read functional group. All WBEM clients may assume that any WBEM server supports 3699
the basic-read functional group. 3700

The list of functional groups returned by a WBEM server shall contain the basic-read group and shall not 3701
contain any duplicates. WBEM clients shall ignore any duplicate entries in the functional-group list. 3702

If a functional group is included in the list, the WBEM client shall assume that all other groups on which it 3703
depends (according to the rules defined in 5.5.3) are also supported. A WBEM server should not explicitly 3704
include a functional group in the list if the presence of the group may be implied by a dependency. 3705

EXAMPLE: The following HTTP response message indicates that the WBEM server supports instance-3706
manipulation, association-traversal, basic-write, and basic-read. 3707

HTTP/1.1 200 OK 3708

Opt: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=77 3709

77-CIMProtocolVersion: 1.0 3710

77-CIMSupportedFunctionalGroups: association-traversal, instance-manipulation 3711

... 3712

Support for a functional group does not imply that any method from that group will always succeed. 3713
Rather, the absence (whether explicit or implied) of the functional group from this header is an indication 3714
to the WBEM client that methods in that group will never succeed. 3715

7.5.2.2 CIMSupportsMultipleOperations (DEPRECATED) 3716

DEPRECATION NOTE: This section was deprecated in version 1.4 of this document and there is 3717
no replacement. 3718

The CIMSupportsMultipleOperations extension header shall be returned in an OPTIONS response by any 3719
WBEM server that supports Multiple Operation Requests. It shall not be returned in any other 3720
circumstances. 3721

This header is defined as follows: 3722

CIMSupportsMultipleOperations = "CIMSupportsMultipleOperations" 3723

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 99

The presence of this header indicates that the WBEM server can accept and process multiple operation 3724
requests. The absence of this header indicates that the WBEM server can only accept and process 3725
Simple Operation Requests. 3726

7.5.2.3 CIMSupportedQueryLanguages (DEPRECATED) 3727

The CIMSupportedQueryLanguages extension header identifies the query languages supported by the 3728
WBEM server for the ExecQuery operation (see 5.4.2.13). 3729

DEPRECATION NOTE: The CIMSupportedQueryLanguages extension header has been deprecated in 3730
version 1.4 of this document, because it was used only for the ExecQuery operation. 3731

The CIMSupportedQueryLanguages extension header should be returned in any OPTIONS response by 3732
a WBEM server that supports at least one such query language. It shall not be returned in any other 3733
scenario. 3734

This header is defined as follows (token has the meaning conferred by RFC1945 and RFC2616): 3735

CIMSupportedQueryLanguages = "CIMSupportedQueryLanguages" ":" 1#query-language 3736

 3737

query-language = token 3738

The query-language value shall be treated as case-insensitive. It is anticipated that query languages 3739

will be submitted for approval to the DMTF, and each submission will define a value for this token to 3740
enable it to be specified in this header. 3741

7.5.2.4 CIMValidation 3742

The CIMValidation extension header may be returned by a WBEM server to provide information about the 3743
level of validation of CIM-XML operation request messages. 3744

This header is defined as follows: 3745

CIMValidation = "CIMValidation" ":" validation-level 3746

 3747

validation-level = "validating" | "loosely-validating" 3748

A validation-level of validating indicates that the WBEM server always applies strict validation of each 3749

CIM-XML operation request. A validation-level of loosely-validating indicates that the WBEM 3750

server applies loose validation of each CIM-XML operation request. 3751

In the absence of this header, a WBEM client should assume that the WBEM server operates in strict 3752
validation mode. 3753

7.6 Other HTTP Methods 3754

This document does not in any way define or constrain the way a WBEM client, WBEM server, or WBEM 3755
listener uses any HTTP method other than those explicitly cited. 3756

7.7 Discovery and Addressing 3757

The target URI of the CIM-XML operation request is defined as the location of the WBEM server. This 3758
document does not constrain the format of this URI other than it should be a valid URI (RFC2396) for 3759
describing an HTTP-addressable resource. 3760

An HTTP server that supports the CIM mapping defined in this document, and which supports the 3761
OPTIONS method, should include the following CIM extension header in an OPTIONS response: 3762

CIM Operations over HTTP DSP0200

100 DMTF Standard Version 1.4.0

 CIMOM 3763

This header is defined as follows: 3764

CIMOM = "CIMOM" ":" (absoluteURI | relativeURI) 3765

The terms absoluteURI and relativeURI are taken from RFC2616; they indicate the location of the 3766

WBEM server for this HTTP server. 3767

If the CIMOM extension header is included in the response, the WBEM server shall declare it an optional 3768
extension header as described in 7.5. 3769

A WBEM client that needs to communicate with a WBEM server on an HTTP server should try an 3770
OPTIONS request to that HTTP server. If the OPTIONS request fails or the response does not include the 3771
CIM-CIMOM extension header, the WBEM client may assume that the value of CIM-CIMOM is the 3772

relative URI cimom. 3773

The DMTF recommends the use of the following well-known IP ports in compliant WBEM servers. This is 3774
a recommendation and not a requirement. The DMTF has registered these port addresses with IANA, so 3775
they are for the exclusive use of the DMTF. 3776

 CIM-XML (HTTP) 5988/tcp 3777

 CIM-XML (HTTP) 5988/udp 3778

 CIM-XML (HTTPS) 5989/tcp 3779

 CIM-XML (HTTPS) 5989/udp 3780

Other discovery mechanisms are outside the scope of this version of the specification. 3781

EXAMPLE 1: 3782

This example shows an HTTP server located at http://www.dmtf.org/ issuing an OPTIONS response 3783
to an HTTP client to indicate that its WBEM server is located at http://www.dmtf.org/access/cimom. 3784

 HTTP/1.1 200 OK 3785

 Opt: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=48 3786

 48-CIMOM: /access/cimom 3787

 ... 3788

EXAMPLE 2: 3789

If an HTTP server located at http://www.dmtf.org/ responds with a "501 Not Implemented" to an 3790
OPTIONS request from a WBEM client, the WBEM client may then try to contact the WBEM server 3791
at http://www.dmtf.org/cimom. 3792

7.8 Internationalization Considerations 3793

This clause defines the capabilities of the CIM HTTP mapping with respect to IETF policy guidelines on 3794
character sets and languages (RFC2277). 3795

In this document, human-readable fields are contained within a response or request entity body. In all 3796
cases, a human-readable content is encoded using XML (which explicitly provides for character set 3797
tagging and encoding) and requires that XML processors read XML elements encoded, at minimum, 3798
using the UTF-8 (RFC2279) encoding of the ISO 10646 multilingual plane. 3799

Properties that are not of type string or string array shall not be localized. 3800

Because keys are writeable only on instantiation, key values shall not be localized. See DSP0004 for 3801
details. 3802

http://www.dmtf.org/
http://www.dmtf.org/

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 101

XML examples in this document demonstrate the use of the charset parameter of the Content-Type 3803
header, as defined in RFC2616, as well as the XML attribute on the <?xml> processing instruction, which 3804
together provide charset identification information for MIME and XML processors. This document 3805
mandates that conforming applications shall support at least the "UTF-8" charset encoding (RFC2277) in 3806

the Content-Type header and shall support the "UTF-8" value for the XML encoding attribute. 3807

XML also provides a language tagging capability for specifying the language of the contents of a 3808
particular XML element, based on use of IANA registered language tags (RFC1766) in combination with 3809
ISO 639-1, in the xml:lang attribute of an XML element to identify the language of its content and 3810
attributes. Section 3.10 of RFC2616 defines how the two-character ISO 639-1 language code is used as 3811
the primary-tag. The language-tag shall be registered by IANA. 3812

DSP0201 declares this attribute on any XML elements. Therefore, conforming applications should use 3813
this attribute when specifying the language in which a particular element is encoded for string and string 3814
array attributes and qualifiers. See the usage rules on this element, which are defined by the World Wide 3815
Web Consortium in XML 1.0, second edition. The attribute may be scoped by the instance or a class and 3816
should not be scoped by a property because instances or classes should be localized in one language. 3817

This document defines several names of HTTP headers and their values. These names are constructed 3818
using standard encoding practices so that they always have an HTTP-safe ASCII representation. 3819
Because these headers are not usually visible to users, they do not need to support encoding in multiple 3820
character sets. 3821

DSP0201 introduces several XML element names. Similarly, these names are not visible to an end user 3822
and do not need to support multiple character set encodings. 3823

The CIM model (DSP0004) defines the subset of the Unicode character set that can be used to name 3824
CIM elements (classes, instances, methods, properties, qualifiers, and method parameters). In general, 3825
these characters appear as the value of XML attributes or as element content and are not displayed to 3826
end users. 3827

Negotiation and notification of language settings is effected in this mapping using the standard Accept-3828
Language and Content-Language headers defined in RFC1945 and RFC2616. 3829

http://www.iana.org/assignments/language-tags
http://www.loc.gov/standards/iso639-2/englangn.html
http://www.w3.org/TR/2000/REC-xml-20001006#sec-lang-tag
http://www.w3.org/TR/2000/REC-xml-20001006

CIM Operations over HTTP DSP0200

102 DMTF Standard Version 1.4.0

ANNEX A 3830

(Informative) 3831

 3832

 3833

Examples of Message Exchanges 3834

This annex illustrates the protocol defined in this document with examples of valid HTTP 3835
request/response exchanges. The examples are for illustration purposes only and are not considered part 3836
of the specification. 3837

For clarity, additional white space is included in the examples, but such white space is not an intrinsic part 3838
of such XML documents. 3839

A.1 Retrieval of a Single Class Definition 3840

The following HTTP request illustrates how a client requests the class CIM_VideoBIOSElement. 3841

M-POST /cimom HTTP/1.1 3842

HOST: http://www.myhost.com/ 3843

Content-Type: application/xml; charset=utf-8 3844

Content-Length: xxxx 3845

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3846

73-CIMOperation: MethodCall 3847

73-CIMMethod: GetClass 3848

73-CIMObject: root/cimv2 3849

 3850

<?xml version="1.0" encoding="utf-8" ?> 3851

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3852

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3853

 <SIMPLEREQ> 3854

 <IMETHODCALL NAME="GetClass"> 3855

 <LOCALNAMESPACEPATH> 3856

 <NAMESPACE NAME="root"/> 3857

 <NAMESPACE NAME="cimv2"/> 3858

 </LOCALNAMESPACEPATH> 3859

 <IPARAMVALUE NAME="ClassName"> 3860

 <CLASSNAME NAME="CIM_VideoBIOSElement"/> 3861

 </IPARAMVALUE> 3862

 <IPARAMVALUE NAME="LocalOnly"><VALUE>FALSE</VALUE></IPARAMVALUE> 3863

 </IMETHODCALL> 3864

 </SIMPLEREQ> 3865

 </MESSAGE> 3866

</CIM> 3867

Following is an HTTP response to the preceding request indicating success of the requested operation. 3868
For clarity of exposition, the complete definition of the returned <CLASS> element is not shown. 3869

HTTP/1.1 200 OK 3870

Content-Type: application/xml; charset=utf-8 3871

Content-Length: xxxx 3872

Ext: 3873

Cache-Control: no-cache 3874

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3875

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 103

73-CIMOperation: MethodResponse 3876

 3877

<?xml version="1.0" encoding="utf-8" ?> 3878

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3879

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3880

 <SIMPLERSP> 3881

 <IMETHODRESPONSE NAME="GetClass"> 3882

 <IRETURNVALUE> 3883

 <CLASS NAME="CIM_VideoBIOSElement" 3884

 SUPERCLASS="CIM_SoftwareElement"> 3885

 ... 3886

 </CLASS> 3887

 </IRETURNVALUE> 3888

 </IMETHODRESPONSE> 3889

 </SIMPLERSP> 3890

 </MESSAGE> 3891

</CIM> 3892

A.2 Retrieval of a Single Instance Definition 3893

The following HTTP request illustrates how a client requests the instance MyClass.MyKey="S3". 3894

M-POST /cimom HTTP/1.1 3895

HOST: http://www.myhost.com/ 3896

Content-Type: application/xml; charset=utf-8 3897

Content-Length: xxxx 3898

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3899

73-CIMOperation: MethodCall 3900

73-CIMMethod: GetInstance 3901

73-CIMObject: root%2FmyNamespace 3902

 3903

<?xml version="1.0" encoding="utf-8" ?> 3904

<CIM CIMVERSION="2.0" DTDVERSION="1.1"> 3905

 <MESSAGE ID="87855" PROTOCOLVERSION="1.0"> 3906

 <SIMPLEREQ> 3907

 <IMETHODCALL NAME="GetInstance"> 3908

 <LOCALNAMESPACEPATH> 3909

 <NAMESPACE NAME="root"/> 3910

 <NAMESPACE NAME="myNamespace"/> 3911

 </LOCALNAMESPACEPATH> 3912

 <IPARAMVALUE NAME="InstanceName"> 3913

 <INSTANCENAME CLASSNAME="MyClass"> 3914

 <KEYBINDING NAME="MyKey"><KEYVALUE>S3</KEYVALUE></KEYBINDING> 3915

 </INSTANCENAME> 3916

 </IPARAMVALUE> 3917

 <IPARAMVALUE NAME="LocalOnly"><VALUE>FALSE</VALUE></IPARAMVALUE> 3918

 </IMETHODCALL> 3919

 </SIMPLEREQ> 3920

 </MESSAGE> 3921

</CIM> 3922

Following is an HTTP response to the preceding request indicating an error because the specified 3923
instance is not found. 3924

CIM Operations over HTTP DSP0200

104 DMTF Standard Version 1.4.0

HTTP/1.1 200 OK 3925

Content-Type: application/xml; charset=utf-8 3926

Content-Length: xxxx 3927

Ext: 3928

Cache-Control: no-cache 3929

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3930

73-CIMOperation: MethodResponse 3931

 3932

<?xml version="1.0" encoding="utf-8" ?> 3933

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3934

 <MESSAGE ID="87885" PROTOCOLVERSION="1.0"> 3935

 <SIMPLERSP> 3936

 <IMETHODRESPONSE NAME="GetInstance"> 3937

 <ERROR CODE="6" DESCRIPTION="Instance of MyClass not found"/> 3938

 </IMETHODRESPONSE> 3939

 </SIMPLERSP> 3940

 </MESSAGE> 3941

</CIM> 3942

A.3 Deletion of a Single Class Definition 3943

The following HTTP request illustrates how a client deletes the class CIM_VideoBIOSElement. 3944

M-POST /cimom HTTP/1.1 3945

HOST: http://www.myhost.com/ 3946

Content-Type: application/xml; charset=utf-8 3947

Content-Length: xxxx 3948

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3949

73-CIMOperation: MethodCall 3950

73-CIMMethod: DeleteClass 3951

73-CIMObject: root/cimv2 3952

 3953

<?xml version="1.0" encoding="utf-8" ?> 3954

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3955

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3956

 <SIMPLEREQ> 3957

 <IMETHODCALL NAME="DeleteClass"> 3958

 <LOCALNAMESPACEPATH> 3959

 <NAMESPACE NAME="root"/> 3960

 <NAMESPACE NAME="cimv2"/> 3961

 </LOCALNAMESPACEPATH> 3962

 <IPARAMVALUE NAME="ClassName"> 3963

 <CLASSNAME NAME="CIM_VideoBIOSElement"/> 3964

 </IPARAMVALUE> 3965

 </IMETHODCALL> 3966

 </SIMPLEREQ> 3967

 </MESSAGE> 3968

</CIM> 3969

Following is an HTTP response to the preceding request indicating failure of the preceding operation due 3970
to the inability to delete instances of the class. 3971

HTTP/1.1 200 OK 3972

Content-Type: application/xml; charset=utf-8 3973

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 105

Content-Length: xxxx 3974

Ext: 3975

Cache-Control: no-cache 3976

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3977

73-CIMOperation: MethodResponse 3978

 3979

<?xml version="1.0" encoding="utf-8" ?> 3980

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3981

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3982

 <SIMPLERSP> 3983

 <IMETHODRESPONSE NAME="DeleteClass"> 3984

 <ERROR CODE="9" DESCRIPTION="Class has non-deletable instances"/> 3985

 </IMETHODRESPONSE> 3986

 </SIMPLERSP> 3987

 </MESSAGE> 3988

</CIM> 3989

A.4 Deletion of a Single Instance Definition 3990

The following HTTP request illustrates how a client deletes the instance MyClass.MyKey="S3". 3991

M-POST /cimom HTTP/1.1 3992

HOST: http://www.myhost.com/ 3993

Content-Type: application/xml; charset=utf-8 3994

Content-Length: xxxx 3995

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3996

73-CIMOperation: MethodCall 3997

73-CIMMethod: DeleteInstance 3998

73-CIMObject: root%2FmyNamespace 3999

 4000

<?xml version="1.0" encoding="utf-8" ?> 4001

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4002

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4003

 <SIMPLEREQ> 4004

 <IMETHODCALL NAME="DeleteInstance"> 4005

 <LOCALNAMESPACEPATH> 4006

 <NAMESPACE NAME="root"/> 4007

 <NAMESPACE NAME="myNamespace"/> 4008

 </LOCALNAMESPACEPATH> 4009

 <IPARAMVALUE NAME="InstanceName"> 4010

 <INSTANCENAME CLASSNAME="MyClass"> 4011

 <KEYBINDING NAME="MyKey"> 4012

 <KEYVALUE>S3</KEYVALUE> 4013

 </KEYBINDING> 4014

 </INSTANCENAME> 4015

 </IPARAMVALUE> 4016

 </IMETHODCALL> 4017

 </SIMPLEREQ> 4018

 </MESSAGE> 4019

</CIM> 4020

Following is an HTTP response to the preceding request indicating success of the preceding operation. 4021

HTTP/1.1 200 OK 4022

CIM Operations over HTTP DSP0200

106 DMTF Standard Version 1.4.0

Content-Type: application/xml; charset=utf-8 4023

Content-Length: xxxx 4024

Ext: 4025

Cache-Control: no-cache 4026

Man: http://www.dmtf.org/cim/operation ; ns=73 4027

73-CIMOperation: MethodResponse 4028

 4029

<?xml version="1.0" encoding="utf-8" ?> 4030

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4031

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4032

 <SIMPLERSP> 4033

 <IMETHODRESPONSE NAME="DeleteInstance"/> 4034

 </SIMPLERSP> 4035

 </MESSAGE> 4036

</CIM> 4037

A.5 Creation of a Single Class Definition 4038

The following HTTP request illustrates how a client creates the class MySchema_VideoBIOSElement as 4039
a subclass of CIM_VideoBIOSElement. For clarity of exposition, most of the submitted <CLASS> element 4040
is omitted from the example. 4041

M-POST /cimom HTTP/1.1 4042

HOST: http://www.myhost.com/ 4043

Content-Type: application/xml; charset=utf-8 4044

Content-Length: xxxx 4045

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4046

73-CIMOperation: MethodCall 4047

73-CIMMethod: CreateClass 4048

73-CIMObject: root/cimv2 4049

 4050

<?xml version="1.0" encoding="utf-8" ?> 4051

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4052

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4053

 <SIMPLEREQ> 4054

 <IMETHODCALL NAME="CreateClass"> 4055

 <LOCALNAMESPACEPATH> 4056

 <NAMESPACE NAME="root"/> 4057

 <NAMESPACE NAME="cimv2"/> 4058

 </LOCALNAMESPACEPATH> 4059

 <IPARAMVALUE NAME="NewClass"> 4060

 <CLASS NAME="MySchema_VideoBIOSElement" 4061

 SUPERCLASS="CIM_VideoBIOSElement"> 4062

 ... 4063

 </CLASS> 4064

 </IPARAMVALUE> 4065

 </IMETHODCALL> 4066

 </SIMPLEREQ> 4067

 </MESSAGE> 4068

</CIM> 4069

Following is an HTTP response to the preceding request indicating success of the preceding operation. 4070

HTTP/1.1 200 OK 4071

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 107

Content-Type: application/xml; charset=utf-8 4072

Content-Length: xxxx 4073

Ext: 4074

Cache-Control: no-cache 4075

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4076

73-CIMOperation: MethodResponse 4077

 4078

<?xml version="1.0" encoding="utf-8" ?> 4079

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4080

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4081

 <SIMPLERSP> 4082

 <IMETHODRESPONSE NAME="CreateClass"/> 4083

 </SIMPLERSP> 4084

 </MESSAGE> 4085

</CIM> 4086

A.6 Creation of a Single Instance Definition 4087

The following HTTP request illustrates how a client creates an instance of the class 4088
MySchema_VideoBIOSElement. For clarity of exposition, most of the submitted <INSTANCE> element is 4089
omitted from the example. 4090

M-POST /cimom HTTP/1.1 4091

HOST: http://www.myhost.com/ 4092

Content-Type: application/xml; charset=utf-8 4093

Content-Length: xxxx 4094

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4095

73-CIMOperation: MethodCall 4096

73-CIMMethod: CreateInstance 4097

73-CIMObject: root/cimv2 4098

 4099

<?xml version="1.0" encoding="utf-8" ?> 4100

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4101

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4102

 <SIMPLEREQ> 4103

 <IMETHODCALL NAME="CreateInstance"> 4104

 <LOCALNAMESPACEPATH> 4105

 <NAMESPACE NAME="root"/> 4106

 <NAMESPACE NAME="cimv2"/> 4107

 </LOCALNAMESPACEPATH> 4108

 <IPARAMVALUE NAME="NewInstance"> 4109

 <INSTANCE CLASSNAME="CIM_VideoBIOSElement"> 4110

 ... 4111

 </INSTANCE> 4112

 </IPARAMVALUE> 4113

 </IMETHODCALL> 4114

 </SIMPLEREQ> 4115

 </MESSAGE> 4116

</CIM> 4117

Following is an HTTP response to the preceding request indicating the success of the preceding 4118
operation. 4119

HTTP/1.1 200 OK 4120

CIM Operations over HTTP DSP0200

108 DMTF Standard Version 1.4.0

Content-Type: application/xml; charset=utf-8 4121

Content-Length: xxxx 4122

Ext: 4123

Cache-Control: no-cache 4124

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4125

73-CIMOperation: MethodResponse 4126

 4127

<?xml version="1.0" encoding="utf-8" ?> 4128

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4129

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4130

 <SIMPLERSP> 4131

 <IMETHODRESPONSE NAME="CreateInstance"> 4132

 <IRETURNVALUE> 4133

 <INSTANCENAME CLASSNAME="MySchema_VideoBIOSElement"> 4134

 <KEYBINDING NAME="Name"><KEYVALUE>S4</KEYVALUE></KEYBINDING> 4135

 </INSTANCENAME> 4136

 </IRETURNVALUE> 4137

 </IRETURNVALUE> 4138

 </SIMPLERSP> 4139

 </MESSAGE> 4140

</CIM> 4141

A.7 Enumeration of Class Names 4142

The following HTTP request illustrates how a client enumerates the names of all subclasses of the class 4143
CIM_SoftwareElement. 4144

M-POST /cimom HTTP/1.1 4145

HOST: http://www.myhost.com/ 4146

Content-Type: application/xml; charset=utf-8 4147

Content-Length: xxxx 4148

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4149

73-CIMOperation: MethodCall 4150

73-CIMMethod: EnumerateClassNames 4151

73-CIMObject: root/cimv2 4152

 4153

<?xml version="1.0" encoding="utf-8" ?> 4154

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4155

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4156

 <SIMPLEREQ> 4157

 <IMETHODCALL NAME="EnumerateClassNames"> 4158

 <LOCALNAMESPACEPATH> 4159

 <NAMESPACE NAME="root"/> 4160

 <NAMESPACE NAME="cimv2"/> 4161

 </LOCALNAMESPACEPATH> 4162

 <IPARAMVALUE NAME="ClassName"> 4163

 <CLASSNAME NAME="CIM_SoftwareElement"/> 4164

 </IPARAMVALUE> 4165

 <IPARAMVALUE NAME="DeepInheritance"> 4166

 <VALUE>FALSE</VALUE> 4167

 </IPARAMVALUE> 4168

 </IMETHODCALL> 4169

 </SIMPLEREQ> 4170

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 109

 </MESSAGE> 4171

</CIM> 4172

Following is an HTTP response to the preceding request indicating the success of the preceding 4173
operation and returning the names of the requested subclasses. 4174

HTTP/1.1 200 OK 4175

Content-Type: application/xml; charset=utf-8 4176

Content-Length: xxxx 4177

Ext: 4178

Cache-Control: no-cache 4179

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4180

73-CIMOperation: MethodResponse 4181

 4182

<?xml version="1.0" encoding="utf-8" ?> 4183

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4184

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4185

 <SIMPLERSP> 4186

 <IMETHODRESPONSE NAME="EnumerateClassNames"> 4187

 <IRETURNVALUE> 4188

 <CLASSNAME NAME="CIM_BIOSElement"/> 4189

 <CLASSNAME NAME="CIM_VideoBOISElement"/> 4190

 </IRETURNVALUE> 4191

 </IMETHODRESPONSE> 4192

 </SIMPLERSP> 4193

 </MESSAGE> 4194

</CIM> 4195

A.8 Enumeration of Instances 4196

The following HTTP request illustrates how a client enumerates all instances of the class 4197
CIM_LogicalDisk. For clarity of exposition, most of the returned instances are omitted from the example. 4198

M-POST /cimom HTTP/1.1 4199

HOST: http://www.myhost.com/ 4200

Content-Type: application/xml; charset=utf-8 4201

Content-Length: xxxx 4202

Man: http://www.dmtf.org/cim/operation ; ns=73 4203

73-CIMOperation: MethodCall 4204

73-CIMMethod: EnumerateInstances 4205

73-CIMObject: root/cimv2 4206

 4207

<?xml version="1.0" encoding="utf-8" ?> 4208

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4209

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4210

 <SIMPLEREQ> 4211

 <IMETHODCALL NAME="EnumerateInstances"> 4212

 <LOCALNAMESPACEPATH> 4213

 <NAMESPACE NAME="root"/> 4214

 <NAMESPACE NAME="cimv2"/> 4215

 </LOCALNAMESPACEPATH> 4216

 <IPARAMVALUE NAME="ClassName"> 4217

 <CLASSNAME NAME="CIM_LogicalDisk"/> 4218

 </IPARAMVALUE> 4219

CIM Operations over HTTP DSP0200

110 DMTF Standard Version 1.4.0

 <IPARAMVALUE NAME="LocalOnly"><VALUE>TRUE</VALUE></IPARAMVALUE> 4220

 <IPARAMVALUE NAME="DeepInheritance"><VALUE>TRUE</VALUE></IPARAMVALUE> 4221

 </IMETHODCALL> 4222

 </SIMPLEREQ> 4223

 </MESSAGE> 4224

</CIM> 4225

Following is an HTTP response to the preceding request indicating success of the preceding operation, 4226
returning the requested instances. 4227

HTTP/1.1 200 OK 4228

Content-Type: application/xml; charset=utf-8 4229

Content-Length: xxxx 4230

Ext: 4231

Cache-Control: no-cache 4232

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4233

73-CIMOperation: MethodResponse 4234

 4235

<?xml version="1.0" encoding="utf-8" ?> 4236

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4237

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4238

 <SIMPLERSP> 4239

 <IMETHODRESPONSE NAME="EnumerateInstances"> 4240

 <IRETURNVALUE> 4241

 <VALUE.NAMEDINSTANCE> 4242

 <INSTANCENAME CLASSNAME="Erewhon_LogicalDisk"> 4243

 ... 4244

 </INSTANCENAME> 4245

 <INSTANCE CLASSNAME="Erewhon_LogicalDisk"> 4246

 ... 4247

 </INSTANCE> 4248

 </VALUE.NAMEDINSTANCE> 4249

 ... 4250

 <VALUE.NAMEDINSTANCE> 4251

 <INSTANCENAME CLASSNAME="Foobar_LogicalDisk"> 4252

 ... 4253

 </INSTANCENAME> 4254

 <INSTANCE CLASSNAME="Foobar_LogicalDisk"> 4255

 ... 4256

 </INSTANCE> 4257

 </VALUE.NAMEINSTANCE> 4258

 </IRETURNVALUE> 4259

 </IMETHODRESPONSE> 4260

 </SIMPLERSP> 4261

 </MESSAGE> 4262

</CIM> 4263

A.9 Retrieval of a Single Property 4264

The following HTTP request illustrates how a client retrieves the FreeSpace property from the instance 4265
MyDisk.DeviceID="C:". This example demonstrates how to use the GetInstance operation with a property 4266
list filter instead of the deprecated GetProperty operation. 4267

M-POST /cimom HTTP/1.1 4268

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 111

HOST: http://www.myhost.com/ 4269

Content-Type: application/xml; charset=utf-8 4270

Content-Length: xxxx 4271

Man: http://www.dmtf.org/cim/operation ; ns=73 4272

73-CIMOperation: MethodCall 4273

73-CIMMethod: GetInstance 4274

73-CIMObject: root%2FmyNamespace 4275

 4276

<?xml version="1.0" encoding="utf-8" ?> 4277

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4278

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4279

 <SIMPLEREQ> 4280

 <IMETHODCALL NAME="GetInstance"> 4281

 <LOCALNAMESPACEPATH> 4282

 <NAMESPACE NAME="root"/> 4283

 <NAMESPACE NAME="myNamespace"/> 4284

 </LOCALNAMESPACEPATH> 4285

 <IPARAMVALUE NAME="InstanceName"> 4286

 <INSTANCENAME CLASSNAME="MyDisk"> 4287

 <KEYBINDING NAME="DeviceID"> 4288

 <KEYVALUE>C:</KEYVALUE> 4289

 </KEYBINDING> 4290

 </INSTANCENAME> 4291

 </IPARAMVALUE> 4292

 <IPARAMVALUE NAME="LocalOnly"><VALUE>FALSE</VALUE></IPARAMVALUE> 4293

 <IPARAMVALUE NAME="PropertyList"> 4294

 <VALUE>FreeSpace</VALUE> 4295

 </IPARAMVALUE> 4296

 </IMETHODCALL> 4297

 </SIMPLEREQ> 4298

 </MESSAGE> 4299

</CIM> 4300

Following is an HTTP response to the preceding request indicating success of the preceding operation, 4301
returning the requested instance with the requested property value. 4302

HTTP/1.1 200 OK 4303

Content-Type: application/xml; charset=utf-8 4304

Content-Length: xxxx 4305

Ext: 4306

Cache-Control: no-cache 4307

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4308

73-CIMOperation: MethodResponse 4309

 4310

<?xml version="1.0" encoding="utf-8" ?> 4311

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4312

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4313

 <SIMPLERSP> 4314

 <IMETHODRESPONSE NAME="GetInstance"> 4315

 <IRETURNVALUE> 4316

 <INSTANCE CLASSNAME="Erewhon_LogicalDisk"> 4317

 <PROPERTY NAME="FreeSpace" TYPE="uint32"> 4318

 <VALUE>6752332</VALUE> 4319

 </PROPERTY> 4320

CIM Operations over HTTP DSP0200

112 DMTF Standard Version 1.4.0

 </INSTANCE> 4321

 </IRETURNVALUE> 4322

 </IMETHODRESPONSE> 4323

 </SIMPLERSP> 4324

 </MESSAGE> 4325

</CIM> 4326

A.10 Execution of an Extrinsic Method 4327

The following HTTP request illustrates how a client executes the SetPowerState method on the instance 4328
MyDisk.DeviceID="C:". 4329

M-POST /cimom HTTP/1.1 4330

HOST: http://www.myhost.com/ 4331

Content-Type: application/xml; charset=utf-8 4332

Content-Length: xxxx 4333

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4334

73-CIMOperation: MethodCall 4335

73-CIMMethod: SetPowerState 4336

73-CIMObject: root%2FmyNamespace%3AMyDisk.Name%3D%22C%3A%22 4337

 4338

<?xml version="1.0" encoding="utf-8" ?> 4339

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4340

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4341

 <SIMPLEREQ> 4342

 <METHODCALL NAME="SetPowerState"> 4343

 <LOCALINSTANCEPATH> 4344

 <LOCALNAMESPACEPATH> 4345

 <NAMESPACE NAME="root"/> 4346

 <NAMESPACE NAME="myNamespace"/> 4347

 </LOCALNAMESPACEPATH> 4348

 <INSTANCENAME CLASSNAME="MyDisk"> 4349

 <KEYBINDING NAME="Name"><KEYVALUE>C:</KEYVALUE></KEYBINDING> 4350

 </INSTANCENAME> 4351

 </LOCALINSTANCEPATH> 4352

 <PARAMVALUE NAME="PowerState"><VALUE>1</VALUE></PARAMVALUE> 4353

 <PARAMVALUE NAME="Time"> 4354

 <VALUE>00000001132312.000000:000</VALUE> 4355

 </PARAMVALUE> 4356

 </METHODCALL> 4357

 </SIMPLEREQ> 4358

 </MESSAGE> 4359

</CIM> 4360

Following is an HTTP response to the preceding request indicating the success of the preceding 4361
operation. 4362

HTTP/1.1 200 OK 4363

Content-Type: application/xml; charset=utf-8 4364

Content-Length: xxxx 4365

Ext: 4366

Cache-Control: no-cache 4367

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4368

73-CIMOperation: MethodResponse 4369

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 113

 4370

<?xml version="1.0" encoding="utf-8" ?> 4371

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4372

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4373

 <SIMPLERSP> 4374

 <METHODRESPONSE NAME="SetPowerState"> 4375

 <RETURNVALUE> 4376

 <VALUE>0</VALUE> 4377

 </RETURNVALUE> 4378

 </METHODRESPONSE> 4379

 </SIMPLERSP> 4380

 </MESSAGE> 4381

</CIM> 4382

A.11 Indication Delivery Example 4383

The following HTTP request illustrates the format for sending an indication of type CIM_AlertIndication to 4384
a WBEM listener. 4385

M-POST /cimlistener/browser HTTP/1.1 4386

HOST: http://www.acme.com/ 4387

Content-Type: application/xml; charset=utf-8 4388

Content-Length: XXX 4389

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=40 4390

40-CIMExport: MethodRequest 4391

40-CIMExportMethod: ExportIndication 4392

 4393

<?xml version="1.0" encoding="utf-8" ?> 4394

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4395

 <MESSAGE ID="1007" PROTOCOLVERSION="1.0"> 4396

 <SIMPLEEXPREQ> 4397

 <EXPMETHODCALL NAME="ExportIndication"> 4398

 <EXPPARAMVALUE NAME="NewIndication"> 4399

 <INSTANCE CLASSNAME="CIM_AlertIndication" > 4400

 <PROPERTY NAME="Description" TYPE="string"> 4401

 <VALUE>Sample CIM_AlertIndication indication</VALUE> 4402

 </PROPERTY> 4403

 <PROPERTY NAME="AlertType" TYPE="uint16"> 4404

 <VALUE>1</VALUE> 4405

 </PROPERTY> 4406

 <PROPERTY NAME="PerceivedSeverity" TYPE="uint16"> 4407

 <VALUE>3</VALUE> 4408

 </PROPERTY> 4409

 <PROPERTY NAME="ProbableCause" TYPE="uint16"> 4410

 <VALUE>2</VALUE> 4411

 </PROPERTY> 4412

 <PROPERTY NAME="IndicationTime" TYPE="datetime"> 4413

 <VALUE>20010515104354.000000:000</VALUE> 4414

 </PROPERTY> 4415

 </INSTANCE> 4416

 </EXPPARAMVALUE> 4417

 </EXPMETHODCALL> 4418

 </SIMPLEEXPREQ> 4419

CIM Operations over HTTP DSP0200

114 DMTF Standard Version 1.4.0

 </MESSAGE> 4420

</CIM> 4421

Following is an HTTP response to the preceding request indicating a successful receipt by the WBEM 4422
listener. 4423

HTTP/1.1 200 OK 4424

Content-Type: application/xml; charset=utf-8 4425

Content-Length: 267 4426

Ext: 4427

Cache-Control: no-cache 4428

Man: http://www.dmtf.org/cim/mapping/http/v1.0; ns=40 4429

40-CIMExport: MethodResponse 4430

 4431

<?xml version="1.0" encoding="utf-8" ?> 4432

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4433

 <MESSAGE ID="1007" PROTOCOLVERSION="1.0"> 4434

 <SIMPLEEXPRSP> 4435

 <EXPMETHODRESPONSE NAME="ExportIndication"> 4436

 <IRETURNVALUE></IRETURNVALUE> 4437

 </EXPMETHODRESPONSE> 4438

 </SIMPLEEXPRSP> 4439

 </MESSAGE> 4440

</CIM> 4441

A.12 Subscription Example 4442

A WBEM client application activates a subscription by creating an instance of the 4443
CIM_IndicationSubscription class, which defines an association between a CIM_IndicationFilter (a filter) 4444
instance and a CIM_IndicationHandler (a handler) instance. The CIM_IndicationFilter instance defines the 4445
filter criteria and data project list to describe the desired indication stream. The CIM_IndicationHandler 4446
instance defines the desired indication encoding, destination location, and protocol for delivering the 4447
indication stream. 4448

The following HTTP request illustrates how a client creates an instance of the class CIM_IndicationFilter. 4449
Note that the exact syntax of the WMI Query Language is still under review and is subject to change. 4450

Host: bryce 4451

Content-Type: application/xml; charset=utf-8 4452

Content-Length: XXXX 4453

Man: http://www.dmtf.org/cim/mapping/http/v1.0;ns=20 4454

20-CIMProtocolVersion: 1.0 4455

20-CIMOperation: MethodCall 4456

20-CIMMethod: CreateInstance 4457

20-CIMObject: root/cimv2 4458

 4459

<?xml version="1.0" encoding="utf-8"?> 4460

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4461

 <MESSAGE ID="53000" PROTOCOLVERSION="1.0"> 4462

 <SIMPLEREQ> 4463

 <IMETHODCALL NAME="CreateInstance"> 4464

 <LOCALNAMESPACEPATH> 4465

 <NAMESPACE NAME="root"/> 4466

 <NAMESPACE NAME="cimv2"/> 4467

 </LOCALNAMESPACEPATH> 4468

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 115

 <IPARAMVALUE NAME="NewInstance"> 4469

 <INSTANCE CLASSNAME="CIM_IndicationFilter"> 4470

 <PROPERTY NAME="SystemCreationClassName" TYPE="string"> 4471

 <VALUE>CIM_UnitaryComputerSystem</VALUE> 4472

 </PROPERTY> 4473

 <PROPERTY NAME="SystemName" TYPE="string"> 4474

 <VALUE>server001.acme.com</VALUE> 4475

 </PROPERTY> 4476

 <PROPERTY NAME="CreationClassName" TYPE="string"> 4477

 <VALUE>CIM_IndicationFilter</VALUE> 4478

 </PROPERTY> 4479

 <PROPERTY NAME="Name" TYPE="string"> 4480

 <VALUE>ACMESubscription12345</VALUE> 4481

 </PROPERTY> 4482

 <PROPERTY NAME="SourceNamespace" TYPE="string"> 4483

 <VALUE>root/cimv2</VALUE> 4484

 </PROPERTY> 4485

 <PROPERTY NAME="Query" TYPE="string"> 4486

 <VALUE> 4487

 SELECT Description, AlertType, PerceivedSeverity, 4488
 ProbableCause, IndicationTime 4489

 FROM CIM_AlertIndication 4490

 WHERE PerceivedSeverity = 3 4491

 </VALUE> 4492

 </PROPERTY> 4493

 <PROPERTY NAME="QueryLanguage" TYPE="string"> 4494

 <VALUE>WQL</VALUE> 4495

 </PROPERTY> 4496

 </INSTANCE> 4497

 </IPARAMVALUE> 4498

 </IMETHODCALL> 4499

 </SIMPLEREQ> 4500

 </MESSAGE> 4501

</CIM> 4502

Following is an HTTP response to the preceding request indicating success of the preceding operation. 4503

HTTP/1.1 200 OK 4504

Content-Type: application/xml; charset=utf-8 4505

Content-Length: XXX 4506

Ext: 4507

Cache-Control: no-cache 4508

Man: http://www.dmtf.org/cim/mapping/http/v1.0; ns=28 4509

28-CIMOperation: MethodResponse 4510

 4511

<?xml version="1.0" encoding="utf-8" ?> 4512

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4513

 <MESSAGE ID="53000" PROTOCOLVERSION="1.0"> 4514

 <SIMPLERSP> 4515

 <IMETHODRESPONSE NAME="CreateInstance"> 4516

 <IRETURNVALUE> 4517

 <INSTANCENAME CLASSNAME="CIM_IndicationFilter"> 4518

 <KEYBINDING NAME="SystemCreationClassName"> 4519

 <KEYVALUE VALUETYPE="string"> 4520

CIM Operations over HTTP DSP0200

116 DMTF Standard Version 1.4.0

 CIM_UnitaryComputerSystem 4521

 </KEYVALUE> 4522

 </KEYBINDING> 4523

 <KEYBINDING NAME="SystemName"> 4524

 <KEYVALUE VALUETYPE="string"> 4525

 server001.acme.com 4526

 </KEYVALUE> 4527

 </KEYBINDING> 4528

 <KEYBINDING NAME="CreationClassName"> 4529

 <KEYVALUE VALUETYPE="string"> 4530

 CIM_IndicationFilter 4531

 </KEYVALUE> 4532

 </KEYBINDING> 4533

 <KEYBINDING NAME="Name"> 4534

 <KEYVALUE VALUETYPE="string"> 4535

 ACMESubscription12345 4536

 </KEYVALUE> 4537

 </KEYBINDING> 4538

 </INSTANCENAME> 4539

 </IRETURNVALUE> 4540

 </IMETHODRESPONSE> 4541

 </SIMPLERSP> 4542

 </MESSAGE> 4543

</CIM> 4544

The following HTTP request illustrates how a client creates an instance of the class 4545
CIM_IndicationHandlerCIMXML. 4546

M-POST /cimom HTTP/1.1 4547

Host: bryce 4548

Content-Type: application/xml; charset=utf-8 4549

Content-Length: XXX 4550

Man: http://www.dmtf.org/cim/mapping/http/v1.0;ns=20 4551

20-CIMProtocolVersion: 1.0 4552

20-CIMOperation: MethodCall 4553

20-CIMMethod: CreateInstance 4554

20-CIMObject: root/cimv2 4555

 4556

<?xml version="1.0" encoding="utf-8"?> 4557

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4558

 <MESSAGE ID="54000" PROTOCOLVERSION="1.0"> 4559

 <SIMPLEREQ> 4560

 <IMETHODCALL NAME="CreateInstance"> 4561

 <LOCALNAMESPACEPATH> 4562

 <NAMESPACE NAME="root"/> 4563

 <NAMESPACE NAME="cimv2"/> 4564

 </LOCALNAMESPACEPATH> 4565

 <IPARAMVALUE NAME="NewInstance"> 4566

 <INSTANCE CLASSNAME="CIM_IndicationHandlerCIMXML"> 4567

 <PROPERTY NAME="SystemCreationClassName" TYPE="string"> 4568

 <VALUE>CIM_UnitaryComputerSystem</VALUE> 4569

 </PROPERTY> 4570

 <PROPERTY NAME="SystemName" TYPE="string"> 4571

 <VALUE>server001.acme.com</VALUE> 4572

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 117

 </PROPERTY> 4573

 <PROPERTY NAME="CreationClassName" TYPE="string"> 4574

 <VALUE>CIM_IndicationHandlerCIMXML</VALUE> 4575

 </PROPERTY> 4576

 <PROPERTY NAME="Name" TYPE="string"> 4577

 <VALUE>ACMESubscription12345</VALUE> 4578

 </PROPERTY> 4579

 <PROPERTY NAME="Owner" TYPE="string"> 4580

 <VALUE>ACMEAlertMonitoringConsole</VALUE> 4581

 </PROPERTY> 4582

 <PROPERTY NAME="Destination" TYPE="string"> 4583

 <VALUE>HTTP://www.acme.com/cimlistener/browser</VALUE> 4584

 </PROPERTY> 4585

 </INSTANCE> 4586

 </IPARAMVALUE> 4587

 </IMETHODCALL> 4588

 </SIMPLEREQ> 4589

 </MESSAGE> 4590

</CIM> 4591

Following is an HTTP response to the preceding request indicating the success of the preceding 4592
operation. 4593

HTTP/1.1 200 OK 4594

Content-Type: application/xml; charset=utf-8 4595

Content-Length: XXX 4596

Ext: 4597

Cache-Control: no-cache 4598

Man: http://www.dmtf.org/cim/mapping/http/v1.0; ns=27 4599

27-CIMOperation: MethodResponse 4600

 4601

<?xml version="1.0" encoding="utf-8" ?> 4602

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4603

 <MESSAGE ID="54000" PROTOCOLVERSION="1.0"> 4604

 <SIMPLERSP> 4605

 <IMETHODRESPONSE NAME="CreateInstance"> 4606

 <IRETURNVALUE> 4607

 <INSTANCENAME CLASSNAME="CIM_IndicationHandlerCIMXML"> 4608

 <KEYBINDING NAME="SystemCreationClassName"> 4609

 <KEYVALUE VALUETYPE="string"> 4610

 CIM_UnitaryComputerSystem 4611

 </KEYVALUE> 4612

 </KEYBINDING> 4613

 <KEYBINDING NAME="SystemName"> 4614

 <KEYVALUE VALUETYPE="string"> 4615

 server001.acme.com 4616

 </KEYVALUE> 4617

 </KEYBINDING> 4618

 <KEYBINDING NAME="CreationClassName"> 4619

 <KEYVALUE VALUETYPE="string"> 4620

 CIM_IndicationHandlerCIMXML 4621

 </KEYVALUE> 4622

 </KEYBINDING> 4623

 <KEYBINDING NAME="Name"> 4624

CIM Operations over HTTP DSP0200

118 DMTF Standard Version 1.4.0

 <KEYVALUE VALUETYPE="string"> 4625

 ACMESubscription12345 4626

 </KEYVALUE> 4627

 </KEYBINDING> 4628

 </INSTANCENAME> 4629

 </IRETURNVALUE> 4630

 </IMETHODRESPONSE> 4631

 </SIMPLERSP> 4632

 </MESSAGE> 4633

</CIM> 4634

The following HTTP request illustrates how a client creates an instance of the class 4635
CIM_IndicationSubscription. 4636

M-POST /cimom HTTP/1.1 4637

Host: bryce 4638

Content-Type: application/xml; charset=utf-8 4639

Content-Length: XXXX 4640

Man: http://www.dmtf.org/cim/mapping/http/v1.0;ns=55 4641

55-CIMProtocolVersion: 1.0 4642

55-CIMOperation: MethodCall 4643

55-CIMMethod: CreateInstance 4644

55-CIMObject: root/cimv2 4645

 4646

<?xml version="1.0" encoding="utf-8"?> 4647

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4648

 <MESSAGE ID="55000" PROTOCOLVERSION="1.0"> 4649

 <SIMPLEREQ> 4650

 <IMETHODCALL NAME="CreateInstance"> 4651

 <LOCALNAMESPACEPATH> 4652

 <NAMESPACE NAME="root"/> 4653

 <NAMESPACE NAME="cimv2"/> 4654

 </LOCALNAMESPACEPATH> 4655

 <IPARAMVALUE NAME="NewInstance"> 4656

 <INSTANCE CLASSNAME="CIM_IndicationSubscription"> 4657

 <PROPERTY.REFERENCE NAME="Filter" 4658
 REFERENCECLASS="CIM_IndicationFilter"> 4659

 <VALUE.REFERENCE> 4660

 <INSTANCENAME CLASSNAME="CIM_IndicationFilter"> 4661

 <KEYBINDING NAME="SystemCreationClassName"> 4662

 <KEYVALUE VALUETYPE="string"> 4663

 CIM_UnitaryComputerSystem 4664

 </KEYVALUE> 4665

 </KEYBINDING> 4666

 <KEYBINDING NAME="SystemName"> 4667

 <KEYVALUE VALUETYPE="string"> 4668

 server001.acme.com 4669

 </KEYVALUE> 4670

 </KEYBINDING> 4671

 <KEYBINDING NAME="CreationClassName"> 4672

 <KEYVALUE VALUETYPE="string"> 4673

 CIM_IndicationFilter 4674

 </KEYVALUE> 4675

 </KEYBINDING> 4676

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 119

 <KEYBINDING NAME="Name"> 4677

 <KEYVALUE VALUETYPE="string"> 4678

 ACMESubscription12345 4679

 </KEYVALUE> 4680

 </KEYBINDING> 4681

 </INSTANCENAME> 4682

 </VALUE.REFERENCE> 4683

 </PROPERTY.REFERENCE> 4684

 <PROPERTY.REFERENCE NAME="Handler" 4685

 REFERENCECLASS="CIM_IndicationHandler"> 4686

 <VALUE.REFERENCE> 4687

 <INSTANCENAME CLASSNAME="CIM_IndicationHandlerCIMXML"> 4688

 <KEYBINDING NAME="SystemCreationClassName"> 4689

 <KEYVALUE VALUETYPE="string"> 4690

 CIM_UnitaryComputerSystem 4691

 </KEYVALUE> 4692

 </KEYBINDING> 4693

 <KEYBINDING NAME="SystemName"> 4694

 <KEYVALUE VALUETYPE="string"> 4695

 server001.acme.com 4696

 </KEYVALUE> 4697

 </KEYBINDING> 4698

 <KEYBINDING NAME="CreationClassName"> 4699

 <KEYVALUE VALUETYPE="string"> 4700

 CIM_IndicationHandlerCIMXML 4701

 </KEYVALUE> 4702

 </KEYBINDING> 4703

 <KEYBINDING NAME="Name"> 4704

 <KEYVALUE VALUETYPE="string"> 4705

 ACMESubscription12345 4706

 </KEYVALUE> 4707

 </KEYBINDING> 4708

 </INSTANCENAME> 4709

 </VALUE.REFERENCE> 4710

 </PROPERTY.REFERENCE> 4711

 </INSTANCE> 4712

 </IPARAMVALUE> 4713

 </IMETHODCALL> 4714

 </SIMPLEREQ> 4715

 </MESSAGE> 4716

</CIM> 4717

Following is an HTTP response to the preceding request indicating the success of the preceding 4718
operation. 4719

HTTP/1.1 200 OK 4720

Content-Type: application/xml; charset=utf-8 4721

Content-Length: XXXX 4722

Ext: 4723

Cache-Control: no-cache 4724

Man: http://www.dmtf.org/cim/mapping/http/v1.0; ns=75 4725

75-CIMOperation: MethodResponse 4726

 4727

<?xml version="1.0" encoding="utf-8" ?> 4728

CIM Operations over HTTP DSP0200

120 DMTF Standard Version 1.4.0

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4729

 <MESSAGE ID="55000" PROTOCOLVERSION="1.0"> 4730

 <SIMPLERSP> 4731

 <IMETHODRESPONSE NAME="CreateInstance"> 4732

 <IRETURNVALUE> 4733

 <INSTANCENAME CLASSNAME="CIM_IndicationSubscription"> 4734

 <KEYBINDING NAME="Filter"> 4735

 <VALUE.REFERENCE> 4736

 <INSTANCENAME CLASSNAME="CIM_IndicationFilter"> 4737

 <KEYBINDING NAME="SystemCreationClassName"> 4738

 <KEYVALUE VALUETYPE="string"> 4739

 CIM_UnitaryComputerSystem 4740

 </KEYVALUE> 4741

 </KEYBINDING> 4742

 <KEYBINDING NAME="SystemName"> 4743

 <KEYVALUE VALUETYPE="string"> 4744

 server001.acme.com 4745

 </KEYVALUE> 4746

 </KEYBINDING> 4747

 <KEYBINDING NAME="CreationClassName"> 4748

 <KEYVALUE VALUETYPE="string"> 4749

 CIM_IndicationFilter 4750

 </KEYVALUE> 4751

 </KEYBINDING> 4752

 <KEYBINDING NAME="Name"> 4753

 <KEYVALUE VALUETYPE="string"> 4754

 ACMESubscription12345 4755

 </KEYVALUE> 4756

 </KEYBINDING> 4757

 </INSTANCENAME> 4758

 </VALUE.REFERENCE> 4759

 </KEYBINDING> 4760

 <KEYBINDING NAME="Handler"> 4761

 <VALUE.REFERENCE> 4762

 <INSTANCENAME CLASSNAME="CIM_IndicationHandlerCIMXML"> 4763

 <KEYBINDING NAME="SystemCreationClassName"> 4764

 <KEYVALUE VALUETYPE="string"> 4765

 CIM_UnitaryComputerSystem 4766

 </KEYVALUE> 4767

 </KEYBINDING> 4768

 <KEYBINDING NAME="SystemName"> 4769

 <KEYVALUE VALUETYPE="string"> 4770

 server001.acme.com 4771

 </KEYVALUE> 4772

 </KEYBINDING> 4773

 <KEYBINDING NAME="CreationClassName"> 4774

 <KEYVALUE VALUETYPE="string"> 4775

 CIM_IndicationHandlerCIMXML 4776

 </KEYVALUE> 4777

 </KEYBINDING> 4778

 <KEYBINDING NAME="Name"> 4779

 <KEYVALUE VALUETYPE="string"> 4780

 ACMESubscription12345 4781

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 121

 </KEYVALUE> 4782

 </KEYBINDING> 4783

 </INSTANCENAME> 4784

 </VALUE.REFERENCE> 4785

 </KEYBINDING> 4786

 </INSTANCENAME> 4787

 </IRETURNVALUE> 4788

 </IMETHODRESPONSE> 4789

 </SIMPLERSP> 4790

 </MESSAGE> 4791

</CIM> 4792

A.13 Multiple Operations Example 4793

The following HTTP request illustrates how a client performs multiple operations. This example batches a 4794
GetClass, an EnumerateInstanceNames, and an EnumerateInstance operation on 4795
CIM_ObjectManagerAdapter. 4796

POST /CIMOM1 HTTP/1.1 4797

Authorization: Basic Z3Vlc3Q6Z3Vlc3Q= 4798

Content-Length: XXX 4799

Host: localhost:5988 4800

CIMOperation: MethodCall 4801

CIMProtocolVersion: 1.0 4802

Content-Type: application/xml; charset=utf-8 4803

CIMBatch: CIMBatch 4804

<?xml version="1.0" encoding="UTF-8"?> 4805

 4806

<CIM DTDVERSION="2.0" CIMVERSION="2.0"> 4807

 <MESSAGE ID="2004:2:5:1:1:11:41:1" PROTOCOLVERSION="1.0"> 4808

 <MULTIREQ> 4809

 <SIMPLEREQ> 4810

 <IMETHODCALL NAME="GetClass"> 4811

 <LOCALNAMESPACEPATH> 4812

 <NAMESPACE NAME="interop" /> 4813

 </LOCALNAMESPACEPATH> 4814

 <IPARAMVALUE NAME="ClassName"> 4815

 <CLASSNAME NAME="CIM_ObjectManagerAdapter" /> 4816

 </IPARAMVALUE> 4817

 <IPARAMVALUE NAME="LocalOnly"> 4818

 <VALUE>FALSE</VALUE> 4819

 </IPARAMVALUE> 4820

 <IPARAMVALUE NAME="IncludeClassOrigin"> 4821

 <VALUE>TRUE</VALUE> 4822

 </IPARAMVALUE> 4823

 </IMETHODCALL> 4824

 </SIMPLEREQ> 4825

 <SIMPLEREQ> 4826

 <IMETHODCALL NAME="Associators"> 4827

 <LOCALNAMESPACEPATH> 4828

 <NAMESPACE NAME="interop" /> 4829

 </LOCALNAMESPACEPATH> 4830

 <IPARAMVALUE NAME="ObjectName"> 4831

 <CLASSNAME NAME="CIM_ObjectManagerAdapter" /> 4832

CIM Operations over HTTP DSP0200

122 DMTF Standard Version 1.4.0

 </IPARAMVALUE> 4833

 <IPARAMVALUE NAME="IncludeQualifiers"> 4834

 <VALUE>TRUE</VALUE> 4835

 </IPARAMVALUE> 4836

 <IPARAMVALUE NAME="IncludeClassOrigin"> 4837

 <VALUE>TRUE</VALUE> 4838

 </IPARAMVALUE> 4839

 </IMETHODCALL> 4840

 </SIMPLEREQ> 4841

 <SIMPLEREQ> 4842

 <IMETHODCALL NAME="EnumerateInstanceNames"> 4843

 <LOCALNAMESPACEPATH> 4844

 <NAMESPACE NAME="interop" /> 4845

 </LOCALNAMESPACEPATH> 4846

 <IPARAMVALUE NAME="ClassName"> 4847

 <CLASSNAME NAME="CIM_ObjectManagerAdapter" /> 4848

 </IPARAMVALUE> 4849

 </IMETHODCALL> 4850

 </SIMPLEREQ> 4851

 <SIMPLEREQ> 4852

 <IMETHODCALL NAME="EnumerateInstances"> 4853

 <LOCALNAMESPACEPATH> 4854

 <NAMESPACE NAME="interop" /> 4855

 </LOCALNAMESPACEPATH> 4856

 <IPARAMVALUE NAME="ClassName"> 4857

 <CLASSNAME NAME="CIM_ObjectManagerAdapter" /> 4858

 </IPARAMVALUE> 4859

 <IPARAMVALUE NAME="LocalOnly"> 4860

 <VALUE>FALSE</VALUE> 4861

 </IPARAMVALUE> 4862

 </IMETHODCALL> 4863

 </SIMPLEREQ> 4864

 </MULTIREQ> 4865

 </MESSAGE> 4866

</CIM> 4867

Following is the HTTP response to the preceding request indicating the success of the preceding 4868
operation. 4869

HTTP/1.1 200 OK 4870

CIMOperation: MethodResponse 4871

Content-Length: XXX 4872

 4873

<?xml version="1.0" encoding="UTF-8"?> 4874

<CIM DTDVERSION="2.0" CIMVERSION="2.0"> 4875

 <MESSAGE ID="2004:2:5:1:1:11:41:1" PROTOCOLVERSION="1.0"> 4876

 <MULTIRSP> 4877

 <SIMPLERSP> 4878

 <IMETHODRESPONSE NAME="GetClass"> 4879

 <IRETURNVALUE> 4880

 <CLASS SUPERCLASS="CIM_WBEMService" 4881
 NAME="CIM_ObjectManagerAdapter"> 4882

 ... 4883

 </CLASS> 4884

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 123

 </IRETURNVALUE> 4885

 </IMETHODRESPONSE> 4886

 </SIMPLERSP> 4887

 <SIMPLERSP> 4888

 <IMETHODRESPONSE NAME="Associators"> 4889

 <IRETURNVALUE> 4890

 <VALUE.OBJECTWITHPATH> 4891

 ... 4892

 </VALUE.OBJECTWITHPATH> 4893

 <VALUE.OBJECTWITHPATH> 4894

 ... 4895

 </VALUE.OBJECTWITHPATH> 4896

 ... 4897

 </IRETURNVALUE> 4898

 </IMETHODRESPONSE> 4899

 </SIMPLERSP> 4900

 <SIMPLERSP> 4901

 <IMETHODRESPONSE NAME="EnumerateInstanceNames"> 4902

 <IRETURNVALUE> 4903

 <INSTANCENAME CLASSNAME="WBEMSolutions_ObjectManagerAdapter"> 4904

 ... 4905

 </INSTANCENAME> 4906

 <INSTANCENAME CLASSNAME="WBEMSolutions_ObjectManagerAdapter"> 4907

 ... 4908

 </INSTANCENAME> 4909

 ... 4910

 </IRETURNVALUE> 4911

 </IMETHODRESPONSE> 4912

 </SIMPLERSP> 4913

 <SIMPLERSP> 4914

 <IMETHODRESPONSE NAME="EnumerateInstances"> 4915

 <IRETURNVALUE> 4916

 <VALUE.NAMEDINSTANCE> 4917

 ... 4918

 </VALUE.NAMEDINSTANCE> 4919

 <VALUE.NAMEDINSTANCE> 4920

 ... 4921

 </VALUE.NAMEDINSTANCE> 4922

 ... 4923

 </IRETURNVALUE> 4924

 </IMETHODRESPONSE> 4925

 </SIMPLERSP> 4926

 </MULTIRSP> 4927

 </MESSAGE> 4928

</CIM> 4929

CIM Operations over HTTP DSP0200

124 DMTF Standard Version 1.4.0

ANNEX B 4930

(informative) 4931

 4932

 4933

LocalOnly Parameter Discussion 4934

This annex discusses the issues associated with the 1.1 definition of the LocalOnly parameter for the 4935

GetInstance and EnumerateInstances operations. 4936

B.1 Explanation of the Deprecated 1.1 Interpretation 4937

In April 2002, two DMTF Change Requests (CRs), CR809 (EnumerateInstances) and CR815 4938
(GetInstance), were approved and incorporated into version 1.1of this document to clarify the 4939

interpretation of the LocalOnly flag for the GetInstance and EnumerateInstances operations. With these 4940

CRs, the definition of the LocalOnly flag for these operations was modified to align with the 4941

interpretation of this flag for the GetClass and EnumerateClasses operations. This change was incorrect, 4942
resulted in reduced functionality, and introduced several backward compatibility issues. 4943

To clarify the difference between the 1.0 Interpretation and the 1.1 Interpretation (CR815), consider the 4944
following example: 4945

class A { 4946

 [Key] 4947

 string name; 4948

 uint32 counter = 3; 4949

}; 4950

 4951

class B : A { 4952

 uint32 moreData = 4; 4953

}; 4954

 4955

instance of A { 4956

 name = "Roger"; 4957

}; 4958

 4959

instance of B { 4960

 name = "Karl"; 4961

 counter = 3; 4962

 moreData = 5; 4963

}; 4964

 4965

instance of B { 4966

 name = "Denise"; 4967

 counter = 5; 4968

}; 4969

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 125

Assuming PropertyList = NULL and LocalOnly = TRUE, Table B-1 shows the properties returned 4970

by a GetInstance operation. 4971

Table B-1 – Comparison of Properties Returned by GetInstance in Versions 1.0 and 1.1 4972

Instance DSP0200 1.0 Interpretation DSP0200 1.1 Interpretation

"Roger" name name, counter

"Karl" name, counter, moreData moreData

"Denise" name, counter moreData

The properties returned using the 1.0 interpretation are consistent with the properties specified in the 4973
MOF instance definitions, and the properties returned using the 1.1 Interpretation are consistent with the 4974
properties defined in the class definitions. 4975

B.2 Risks of Using the 1.1 Interpretation 4976

The risks of using the 1.1 interpretation are as follows: 4977

1) Within the DMTF, promoting a property from a class to one of its superclasses is defined as a 4978
backward-compatible change that can be made in a minor revision of the CIM schema. With the 1.1 4979
interpretation, promoting a property to a superclass can cause backward-incompatible changes. 4980

Suppose, for example, version 1.0 of the schema includes the following definitions: 4981

class A { 4982

 [Key] 4983

 string name; 4984

 uint32 counter = 3; 4985

}; 4986

 4987

class B : A { 4988

 uint32 moreData = 4; 4989

}; 4990

Now suppose that the schema is modified in version 1.1 to promote the property moreData from 4991
class B to class A. 4992

class A { 4993

 [Key] 4994

 string name; 4995

 uint32 counter = 3; 4996

 uint32 moreData = 4; 4997

}; 4998

 4999

class B : A { 5000

}; 5001

Using these examples, Table B-2 shows the properties returned by a call to GetInstance with 5002

PropertyList = NULL and LocalOnly = TRUE. With the 1.1 Interpretation, this schema 5003

change would affect the list of properties returned. When dealing with a WBEM server that complies 5004
with the 1.1 interpretation, applications must be designed to treat “promoting properties” as a 5005
backward-compatible change. 5006

CIM Operations over HTTP DSP0200

126 DMTF Standard Version 1.4.0

Table B-2 – Comparison of Properties Returned by a Call to GetInstance in Versions 1.0 and 1.1 5007

Instance Schema Version 1.0 Schema Version 1.1

of A name, counter name, counter, moreData

of B moreData none

 5008

2) The 1.1 Interpretation encourages application developers to use multiple operations to retrieve the 5009
properties of an instance. That is, a commonly-stated use model for the 1.1 interpretation is to 5010
selectively traverse subclasses getting additional properties of an instance. This practice significantly 5011
increases the risk that a client will construct an inconsistent instance. With both Interpretations, 5012
applications should be designed to ensure that dependent properties are retrieved together. 5013

B.3 Techniques for Differentiating between the 1.0 Interpretation and 1.1 5014

Interpretation 5015

For concrete classes, WBEM servers that comply with the 1.0 Interpretation return the value of all KEY 5016

properties not explicitly excluded by the PropertyList parameter. WBEM servers that comply with the 5017

1.1 interpretation return only the value of KEY properties explicitly defined in the class. Applications can 5018
use this difference to detect which interpretation is supported by a WBEM server. 5019

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 127

ANNEX C 5020

(normative) 5021

 5022

 5023

Generic Operations Mapping 5024

This annex defines a mapping of generic operations (see DSP0223) to the CIM-XML protocol described 5025
in this document. 5026

A main purpose of this mapping is to support the implementations of DMTF management profiles that 5027
define operations in terms of generic operations, by providing them a translation from the generic 5028
operation listed in the management profile, to the CIM-XML operation that actually needs to be 5029
implemented. 5030

C.1 Operations 5031

This subclause defines for each generic operation, which CIM-XML operation needs to be supported in 5032
order to support the respective generic operation. 5033

Table C-1 lists the generic operations defined in DSP0223 and for each of them, lists the name of the 5034
corresponding CIM-XML operation and a link to the description subclause. 5035

Table C-1 – Mapping of generic operations to CIM-XML operations 5036

Generic Operation CIM-XML Operation Description

GetInstance GetInstance See C.1.1

DeleteInstance DeleteInstance See C.1.2

ModifyInstance ModifyInstance See C.1.3

CreateInstance CreateInstance See C.1.4

EnumerateInstances EnumerateInstances See C.1.5

EnumerateInstanceNames EnumerateInstanceNames See C.1.6

Associators Associators (ObjectName is an instance path) See C.1.7

AssociatorNames AssociatorNames (ObjectName is an instance path) See C.1.8

References References (ObjectName is an instance path) See C.1.9

ReferenceNames ReferenceNames (ObjectName is an instance path) See C.1.10

OpenEnumerateInstances OpenEnumerateInstances See C.1.11

OpenEnumerateInstancePaths OpenEnumerateInstancePaths See C.1.12

OpenAssociators OpenAssociatorInstances See C.1.13

OpenAssociatorPaths OpenAssociatorInstanceNames See C.1.14

OpenReferences OpenReferenceInstances See C.1.15

OpenReferencePaths OpenReferenceInstanceNames See C.1.16

OpenQueryInstances OpenQueryInstances See C.1.17

PullInstancesWithPath PullInstancesWithPath See C.1.18

PullInstancePaths PullInstancePaths See C.1.19

CIM Operations over HTTP DSP0200

128 DMTF Standard Version 1.4.0

Generic Operation CIM-XML Operation Description

PullInstances PullInstances See C.1.20

CloseEnumeration CloseEnumeration See C.1.21

EnumerationCount EnumerationCount See C.1.22

InvokeMethod invocation of extrinsic non-static method See C.1.23

InvokeStaticMethod invocation of extrinsic static method See C.1.24

GetClass GetClass See C.1.25

DeleteClass DeleteClass See C.1.26

ModifyClass ModifyClass See C.1.27

CreateClass CreateClass See C.1.28

EnumerateClasses EnumerateClasses (ClassName is NULL) See C.1.29

EnumerateClassNames EnumerateClassNames (ClassName is NULL) See C.1.30

GetSubClassesWithPath EnumerateClasses (ClassName is non-NULL) See
1.1.1.1.1.1A.
1.1

GetSubClassPaths EnumerateClassNames (ClassName is non-NULL) See
1.1.1.1.1.1A.
1.1

AssociatorClasses Associators (ObjectName is a class path) See C.1.31

AssociatorClassPaths AssociatorNames (ObjectName is a class path) See C.1.32

ReferenceClasses References (ObjectName is a class path) See C.1.33

ReferenceClassPaths ReferenceNames (ObjectName is a class path) See C.1.34

GetQualifierType GetQualifier See C.1.35

DeleteQualifierType DeleteQualifier See C.1.36

ModifyQualifierType SetQualifier (Qualifier exists) See C.1.37

CreateQualifierType SetQualifier (Qualifier does not exist) See C.1.38

EnumerateQualifierTypesWithPath EnumerateQualifiers See C.1.39

In the following subclauses, the CIM-XML Type listed in the tables is either an intrinsic CIM type (e.g. 5037
"boolan"), or one of the pseudo-types defined in this document (e.g. "instanceName"). 5038

C.1.1 GetInstance 5039

CIM-XML Operation Name: GetInstance 5040

Purpose: Retrieve an instance given its instance path. 5041

Operation Input Parameters: 5042

 5043

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 129

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

N/A N/A IncludeQualifiers boolean See 2)

N/A N/A LocalOnly boolean See 3)

1) The CIM-XML parameter InstanceName includes the model path portion of the instance path of the 5044
instance. The generic parameter InstancePath corresponds to the combination of the CIM-XML 5045
parameter InstanceName and the target namespace of the CIM-XML operation. 5046

2) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5047
defined behavior of generic operation GetInstance conforms to the behavior of CIM-XML operation 5048
GetInstance with IncludeQualifiers=false, which is the recommended value to be used for CIM-XML 5049
clients since version 1.2 of this document. 5050

3) The CIM-XML parameter LocalOnly has been deprecated in version 1.2 of this document. The 5051
defined behavior of generic operation GetInstance conforms to the behavior of CIM-XML operation 5052
GetInstance with LocalOnly=false, which is the recommended value to be used for CIM-XML clients 5053
since version 1.2 of this document. 5054

Operation Output Parameters: 5055

 5056

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

Instance InstanceSpecification return value instance

Optional behavior: 5057

 CIM-XML allows implementations to optimize by not including properties in the returned 5058
instance that have a value of NULL. 5059

Deviations: None 5060

C.1.2 DeleteInstance 5061

CIM-XML Operation Name: DeleteInstance 5062

Purpose: Delete an instance given its instance path. 5063

Operation Input Parameters: 5064

 5065

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

1) The CIM-XML parameter InstanceName includes the model path portion of the instance path of the 5066
instance. The generic parameter InstancePath corresponds to the combination of the CIM-XML 5067
parameter InstanceName and the target namespace of the CIM-XML operation. 5068

CIM Operations over HTTP DSP0200

130 DMTF Standard Version 1.4.0

Operation Output Parameters: None 5069

Deviations: None 5070

C.1.3 ModifyInstance 5071

CIM-XML Operation Name: ModifyInstance 5072

Purpose: Modify property values of an instance given its instance path. 5073

Operation Input Parameters: 5074

 5075

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath target namespace N/A See 1)

ModifiedInstance namedInstance See 1)

ModifiedInstance InstanceSpecification ModifiedInstance namedInstance

IncludedProperties PropertyName [] PropertyList string []

N/A N/A IncludeQualifiers boolean See 2)

1) The CIM-XML parameter ModifiedInstance includes the model path portion of the instance path of 5076
the instance that is being modified, and the modified property values. The combination of the model 5077
path portion of the CIM-XML parameter ModifiedInstance and the target namespace of the CIM-XML 5078
operation corresponds to the generic parameter InstancePath. 5079

2) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5080
defined behavior of generic operation ModifyInstance conforms to the behavior of CIM-XML 5081
operation ModifyInstance with IncludeQualifiers=false, which is the recommended behavior for CIM-5082
XML servers since version 1.2 of this document. 5083

Operation Output Parameters: None 5084

Optional behavior: 5085

 DSP0223 permits conformant WBEM protocols to require that all properties exposed by the 5086
creation class of the instance referenced by InstancePath are supplied by the WBEM client with 5087
their modified values. CIM-XML does not require that, i.e. CIM-XML permits clients to supply 5088
modified values only for a subset of these properties and those not supplied are meant to be left 5089
unchanged by the operation. 5090

Deviations: None 5091

C.1.4 CreateInstance 5092

CIM-XML Operation Name: CreateInstance 5093

Purpose: Create a CIM instance given the class path of its creation class. 5094

Operation Input Parameters: 5095

 5096

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 131

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

NewInstance instance See 1)

NewInstance InstanceSpecification NewInstance instance

1) The generic parameter ClassPath corresponds to the combination of the class name specified in the 5097
CIM-XML parameter NewInstance and the target namespace of the CIM-XML operation. 5098

Operation Output Parameters: 5099

 5100

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath return value instanceName

Optional behavior: None 5101

Deviations: None 5102

C.1.5 EnumerateInstances 5103

CIM-XML Operation Name: EnumerateInstances 5104

Purpose: Retrieve the instances of a given class (including instances of its subclasses). The retrieved 5105
instances include their instance paths. 5106

Operation Input Parameters: 5107

 5108

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean DeepInheritance boolean See 2)

N/A N/A IncludeQualifiers boolean See 3)

N/A N/A LocalOnly boolean See 4)

1) The generic parameter EnumClassPath corresponds to the combination of the CIM-XML parameter 5109
ClassName and the target namespace of the CIM-XML operation. 5110

2) The generic parameter ExcludeSubclassProperties corresponds to the negated CIM-XML parameter 5111
DeepInheritance. 5112

3) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5113
defined behavior of generic operation EnumerateInstances conforms to the behavior of CIM-XML 5114
operation EnumerateInstances with IncludeQualifiers=false, which is the recommended value to be 5115
used for CIM-XML clients since version 1.2 of this document. 5116

CIM Operations over HTTP DSP0200

132 DMTF Standard Version 1.4.0

4) The CIM-XML parameter LocalOnly has been deprecated in version 1.2 of this document. The 5117
defined behavior of generic operation EnumerateInstances conforms to the behavior of CIM-XML 5118
operation EnumerateInstances with LocalOnly=false, which is the recommended value to be used for 5119
CIM-XML clients since version 1.2 of this document. 5120

5) The CIM-XML parameter IncludeClassOrigin has been deprecated in version 1.4 of this document. 5121
The defined behavior of generic operation EnumerateInstances conforms to the behavior of the CIM-5122
XML operations EnumerateInstances with IncludeClassOrigin=false, which is the recommended 5123
value to be used for CIM-XML clients since version 1.4 of this document. 5124

6) 5125

Operation Output Parameters: 5126

 5127

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value namedInstance [] See 1)

1) The CIM-XML return value includes the set of property values including the model paths, but without 5128
namespace paths. The generic parameter InstanceList needs to contain the instance paths in 5129
addition to the set of property values. A CIM client side mapping layer can construct the instance 5130
paths from the model paths and the CIM-XML target namespace. 5131

Optional behavior: 5132

 CIM-XML allows implementations to optimize by not including properties in the returned 5133
instances that have a value of NULL. 5134

Deviations: None 5135

C.1.6 EnumerateInstanceNames 5136

CIM-XML Operation Name: EnumerateInstanceNames 5137

Purpose: Retrieve the instance paths of the instances of a given class (including instances of its 5138
subclasses). 5139

Operation Input Parameters: 5140

 5141

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

1) The generic parameter EnumClassPath corresponds to the combination of the CIM-XML parameter 5142
ClassName and the target namespace of the CIM-XML operation. 5143

Operation Output Parameters: 5144

 5145

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instanceName [] See 1)

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 133

1) The CIM-XML return value includes the set of model paths, but without namespace paths. The 5146
generic parameter InstancePathList needs to contain the instance paths, including namespace 5147
paths. A CIM client side mapping layer can construct the instance paths from the model paths and 5148
the CIM-XML target namespace. 5149

Optional behavior: None 5150

Deviations: None 5151

C.1.7 Associators 5152

CIM-XML Operation Name: Associators with ObjectName being an instance path 5153

Purpose: Retrieve the instances that are associated with a given source instance. The retrieved 5154
instances include their instance paths. 5155

Operation Input Parameters: 5156

 5157

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 2)

N/A N/A IncludeQualifiers boolean See 3)

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5158
parameter ObjectName and the target namespace of the CIM-XML operation. 5159

The generic operation Associators corresponds to the CIM-XML operation Associators when an 5160
instance path is passed in for its ObjectName parameter. Using the CIM-XML operation Associators 5161
with a class path for its ObjectName parameter is covered by the generic operation 5162
AssociatorClasses (see C.1.31). 5163

2) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5164
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5165
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5166
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5167
parameter has a value of true. 5168

3) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5169
defined behavior of generic operation Associators conforms to the behavior of CIM-XML operation 5170
Associators with IncludeQualifiers=false, which is the recommended value to be used for CIM-XML 5171
clients since version 1.2 of this document. 5172

CIM Operations over HTTP DSP0200

134 DMTF Standard Version 1.4.0

4) The CIM-XML parameter IncludeClassOrigin has been deprecated in version 1.4 of this document. 5173
The defined behavior of generic operation Associators conforms to the behavior of the CIM-XML 5174
operations Associators with IncludeClassOrigin=false, which is the recommended value to be used 5175
for CIM-XML clients since version 1.4 of this document. 5176

Operation Output Parameters: 5177

 5178

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value objectWithPath []

Optional behavior: 5179

 CIM-XML allows implementations to optimize by not including properties in the returned 5180
instances that have a value of NULL. 5181

Deviations: None 5182

C.1.8 AssociatorNames 5183

CIM-XML Operation Name: AssociatorNames with ObjectName being an instance path 5184

Purpose: Retrieve the instance paths of the instances that are associated with a given source instance. 5185

Operation Input Parameters: 5186

 5187

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5188
parameter ObjectName and the target namespace of the CIM-XML operation. 5189

The generic operation AssociatorNames corresponds to the CIM-XML operation AssociatorNames 5190
when an instance path is passed in for its ObjectName parameter. Using the CIM-XML operation 5191
AssociatorNames with a class path for its ObjectName parameter is covered by the generic 5192
operation AssociatorClassPaths (see C.1.32). 5193

Operation Output Parameters: 5194

 5195

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value objectPath []

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 135

Optional behavior: None 5196

Deviations: None 5197

C.1.9 References 5198

CIM-XML Operation Name: References with ObjectName being an instance path 5199

Purpose: Retrieve the association instances that reference a given source instance. The retrieved 5200
instances include their instance paths. 5201

Operation Input Parameters: 5202

 5203

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 3)

N/A N/A IncludeQualifiers boolean See 4)

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5204
parameter ObjectName and the target namespace of the CIM-XML operation. 5205

The generic operation References corresponds to the CIM-XML operation References when an 5206
instance path is passed in for its ObjectName parameter. Using the CIM-XML operation References 5207
with a class path for its ObjectName parameter is covered by the generic operation 5208
ReferenceClasses (see C.1.33). 5209

2) The CIM-XML operation References does not support a means to filter by class name or role name 5210
of the associated classes on the other ends of the associations referencing the source instance. The 5211
generic operation References does support such filtering through its parameters 5212
AssociatedClassName and AssociatedRoleName. Since the defined behavior of the CIM-XML 5213
operation will result in including association instances that these two parameters could filter out, a 5214
mapping layer on the CIM client side can implement the behavior defined by these two generic 5215
parameters by eliminating association instances if these filter parameters are used. 5216

3) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5217
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5218
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5219
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5220
parameter has a value of true. 5221

4) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5222
defined behavior of generic operation References conforms to the behavior of CIM-XML operation 5223

CIM Operations over HTTP DSP0200

136 DMTF Standard Version 1.4.0

References with IncludeQualifiers=false, which is the recommended value to be used for CIM-XML 5224
clients since in version 1.2 of this document. 5225

5) The CIM-XML parameter IncludeClassOrigin has been deprecated in version 1.4 of this document. 5226
The defined behavior of generic operation References conforms to the behavior of the CIM-XML 5227
operations References with IncludeClassOrigin=false, which is the recommended value to be used 5228
for CIM-XML clients since version 1.4 of this document. 5229

6) 5230

Operation Output Parameters: 5231

 5232

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value objectWithPath []

Optional behavior: 5233

 CIM-XML allows implementations to optimize by not including properties in the returned 5234
instances that have a value of NULL. 5235

Deviations: None 5236

C.1.10 ReferenceNames 5237

CIM-XML Operation Name: ReferenceNames with ObjectName being an instance path 5238

Purpose: Retrieve the instance paths of the association instances that reference a given source 5239
instance. 5240

Operation Input Parameters: 5241

 5242

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5243
parameter ObjectName and the target namespace of the CIM-XML operation. 5244

The generic operation ReferenceNames corresponds to the CIM-XML operation ReferenceNames 5245
when an instance path is passed in for its ObjectName parameter. Using the CIM-XML operation 5246
ReferenceNames with a class path for its ObjectName parameter is covered by the generic 5247
operation ReferenceClassPaths (see C.1.34). 5248

2) The CIM-XML operation References does not support a means to filter by class name or role name 5249
of the associated classes on the other ends of the associations referencing the source instance. The 5250

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 137

generic operation References does support such filtering through its parameters 5251
AssociatedClassName and AssociatedRoleName. Since the defined behavior of the CIM-XML 5252
operation will result in including association instances that these two parameters could filter out, a 5253
mapping layer on the CIM client side can implement the behavior defined by these two generic 5254
parameters by eliminating association instances if these filter parameters are used. 5255

Operation Output Parameters: 5256

 5257

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value objectPath []

Optional behavior: None 5258

Deviations: None 5259

C.1.11 OpenEnumerateInstances 5260

CIM-XML Operation Name: OpenEnumerateInstances 5261

Purpose: Open an enumeration session for retrieving the instances of a class (including instances of its 5262
subclasses), and optionally retrieve a first set of those instances. The retrieved instances include their 5263
instance paths. 5264

Operation Input Parameters: 5265

 5266

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 2)

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter EnumClassPath corresponds to the combination of the CIM-XML parameter 5267
ClassName and the target namespace of the CIM-XML operation. 5268

2) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5269
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5270
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5271
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5272
parameter has a value of true. 5273

CIM Operations over HTTP DSP0200

138 DMTF Standard Version 1.4.0

Operation Output Parameters: 5274

 5275

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value instanceWithPath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5276

 CIM-XML allows implementations to optimize by not including properties in the returned 5277
instances that have a value of NULL. 5278

Deviations: None 5279

C.1.12 OpenEnumerateInstancePaths 5280

CIM-XML Operation Name: OpenEnumerateInstancePaths 5281

Purpose: Open an enumeration session for retrieving the instance paths of the instances of a class 5282
(including instances of its subclasses), and optionally retrieve a first set of those instance paths. 5283

Operation Input Parameters: 5284

 5285

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter EnumClassPath corresponds to the combination of the CIM-XML parameter 5286
ClassName and the target namespace of the CIM-XML operation. 5287

Operation Output Parameters: 5288

 5289

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instancePath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: None 5290

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 139

Deviations: None 5291

C.1.13 OpenAssociators 5292

CIM-XML Operation Name: OpenAssociatorInstances 5293

Purpose: Open an enumeration session for retrieving the instances that are associated with a given 5294
source instance, and optionally retrieve a first set of those instances. The retrieved instances include their 5295
instance paths. 5296

Operation Input Parameters: 5297

 5298

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 2)

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5299
parameter InstanceName and the target namespace of the CIM-XML operation. 5300

2) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5301
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5302
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5303
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5304
parameter has a value of true. 5305

Operation Output Parameters: 5306

 5307

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value instanceWithPath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

CIM Operations over HTTP DSP0200

140 DMTF Standard Version 1.4.0

Optional behavior: 5308

 CIM-XML allows implementations to optimize by not including properties in the returned 5309
instances that have a value of NULL. 5310

Deviations: None 5311

C.1.14 OpenAssociatorPaths 5312

CIM-XML Operation Name: OpenAssociatorInstancePaths 5313

Purpose: Open an enumeration session for retrieving the instance paths of instances that are associated 5314
with a given source instance, and optionally retrieve a first set of those instance paths. 5315

Operation Input Parameters: 5316

 5317

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5318
parameter InstanceName and the target namespace of the CIM-XML operation. 5319

Operation Output Parameters: 5320

 5321

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instancePath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: None 5322

Deviations: None 5323

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 141

C.1.15 OpenReferences 5324

CIM-XML Operation Name: OpenReferenceInstances 5325

Purpose: Open an enumeration session for retrieving the association instances that reference a given 5326
source instance, and optionally retrieve a first set of those instances. The retrieved instances include their 5327
instance paths. 5328

Operation Input Parameters: 5329

 5330

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 3)

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5331
parameter InstanceName and the target namespace of the CIM-XML operation. 5332

2) The CIM-XML operation OpenReferenceInstances does not support a means to filter by class name 5333
or role name of the associated classes on the other ends of the associations referencing the source 5334
instance. The generic operation OpenReferences does support such filtering through its parameters 5335
AssociatedClassName and AssociatedRoleName. Since the defined behavior of the CIM-XML 5336
operation will result in including association instances that these two parameters could filter out, a 5337
mapping layer on the CIM client side can implement the behavior defined by these two generic 5338
parameters by eliminating association instances if these filter parameters are used. 5339

3) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5340
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5341
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5342
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5343
parameter has a value of true. 5344

CIM Operations over HTTP DSP0200

142 DMTF Standard Version 1.4.0

Operation Output Parameters: 5345

 5346

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value instanceWithPath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5347

 CIM-XML allows implementations to optimize by not including properties in the returned 5348
instances that have a value of NULL. 5349

Deviations: None 5350

C.1.16 OpenReferencePaths 5351

CIM-XML Operation Name: OpenReferenceInstancePaths 5352

Purpose: Open an enumeration session for retrieving the instance paths of association instances that 5353
reference a given source instance, and optionally retrieve a first set of those instance paths. 5354

Operation Input Parameters: 5355

 5356

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5357
parameter InstanceName and the target namespace of the CIM-XML operation. 5358

2) The CIM-XML operation OpenReferenceInstancePaths does not support a means to filter by class 5359
name or role name of the associated classes on the other ends of the associations referencing the 5360
source instance. The generic operation OpenReferencePaths does support such filtering through its 5361
parameters AssociatedClassName and AssociatedRoleName. Since the defined behavior of the 5362
CIM-XML operation will result in including association instances that these two parameters could 5363

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 143

filter out, a mapping layer on the CIM client side can implement the behavior defined by these two 5364
generic parameters by eliminating association instances if these filter parameters are used. 5365

Operation Output Parameters: 5366

 5367

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instancePath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: None 5368

Deviations: None 5369

C.1.17 OpenQueryInstances 5370

CIM-XML Operation Name: OpenQueryInstances 5371

Purpose: Open an enumeration session for retrieving the instances representing a query result, and 5372
optionally retrieve a first set of those instances. The retrieved instances are not addressable and thus do 5373
not include any instance paths. 5374

Operation Input Parameters: 5375

 5376

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

QueryString QueryString FilterQuery string

QueryLanguage QueryLanguage FilterQueryLanguage string

ReturnQueryResult-
Class

boolean ReturnQueryResult-
Class

boolean

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

Operation Output Parameters: 5377

 5378

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification
[]

return value instance []

QueryResultClass QueryResultClass class

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

CIM Operations over HTTP DSP0200

144 DMTF Standard Version 1.4.0

Optional behavior: 5379

 CIM-XML allows implementations to optimize by not including properties in the returned 5380
instances that have a value of NULL. 5381

Deviations: None 5382

C.1.18 PullInstancesWithPath 5383

CIM-XML Operation Name: PullInstancesWithPath 5384

Purpose: Retrieve the next set of instances from an open enumeration session. The retrieved instances 5385
include their instance paths. 5386

Operation Input Parameters: 5387

 5388

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

MaxObjectCount uint32 MaxObjectCount uint32

Operation Output Parameters: 5389

 5390

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value instanceWithPath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5391

 CIM-XML allows implementations to optimize by not including properties in the returned 5392
instances that have a value of NULL. 5393

Deviations: None 5394

C.1.19 PullInstancePaths 5395

CIM-XML Operation Name: PullInstancePaths 5396

Purpose: Retrieve the next set of instance paths from an open enumeration session. 5397

Operation Input Parameters: 5398

 5399

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 145

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumerationContext EnumerationContext EnumerationContext enumerationContext

MaxObjectCount uint32 MaxObjectCount uint32

Operation Output Parameters: 5400

 5401

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instancePath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: None 5402

Deviations: None 5403

C.1.20 PullInstances 5404

CIM-XML Operation Name: PullInstances 5405

Purpose: Retrieve the next set of instances from an open enumeration session. The retrieved instances 5406
do not include any instance paths. 5407

Operation Input Parameters: 5408

 5409

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

MaxObjectCount uint32 MaxObjectCount uint32

Operation Output Parameters: 5410

 5411

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification
[]

return value instance []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5412

 CIM-XML allows implementations to optimize by not including properties in the returned 5413
instances that have a value of NULL. 5414

CIM Operations over HTTP DSP0200

146 DMTF Standard Version 1.4.0

Deviations: None 5415

C.1.21 CloseEnumeration 5416

CIM-XML Operation Name: CloseEnumeration 5417

Purpose: Close an open enumeration session. 5418

Operation Input Parameters: 5419

 5420

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

Operation Output Parameters: None 5421

Optional behavior: None 5422

Deviations: None 5423

C.1.22 EnumerationCount 5424

CIM-XML Operation Name: EnumerationCount 5425

Purpose: Estimate the total number of remaining items in an open enumeration session. 5426

Operation Input Parameters: 5427

 5428

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

Operation Output Parameters: 5429

 5430

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumerationCount uint64 return value uint64

Optional behavior: None 5431

Deviations: None 5432

C.1.23 InvokeMethod 5433

CIM-XML Operation Name: The generic operation InvokeMethod corresponds to CIM-XML extrinsic 5434
method invocation on an instance. CIM-XML extrinsic method invocation on a class is covered by the 5435
generic operation InvokeStaticMethod (see C.1.24). 5436

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 147

Purpose: Invoke a method on an instance. 5437

Operation Input Parameters: 5438

This document does not define an operation name or parameters for extrinsic method invocation. 5439
DSP0201 defines the input and output parameters for extrinsic method invocation by means of the 5440
attributes and child elements of the XML elements METHODCALL and METHODRESPONSE. The table 5441
below therefore uses the names of these attributes and child elements in the mapping to generic 5442
operation parameters. 5443

 5444

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath target namespace N/A See 1)

LOCALINSTANCE-
PATH child element

N/A See 1)

MethodName MethodName NAME attribute N/A

InParmValues ParameterValue [] set of PARAMVALUE
child elements

N/A

1) The CIM-XML element LOCALINSTANCEPATH includes the model path portion of the instance path 5445
of the instance. The generic parameter InstancePath corresponds to the combination of the CIM-5446
XML element LOCALINSTANCEPATH and the target namespace of the CIM-XML operation. 5447

Operation Output Parameters: 5448

 5449

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

OutParmValues ParameterValue [] set of PARAMVALUE
child elements

N/A

ReturnValue ReturnValue RETURNVALUE child
element

N/A

Optional behavior: None 5450

Deviations: None 5451

C.1.24 InvokeStaticMethod 5452

CIM-XML Operation Name: The generic operation InvokeStaticMethod corresponds to CIM-XML 5453
extrinsic method invocation on a class. CIM-XML extrinsic method invocation on an instance is covered 5454
by the generic operation InvokeMethod (see C.1.23). 5455

Purpose: Invoke a static method on a class. 5456

Operation Input Parameters: 5457

This document does not define an operation name or parameters for extrinsic method invocation. 5458
DSP0201 defines the input and output parameters for extrinsic method invocation by means of the 5459
attributes and child elements of the XML elements METHODCALL and METHODRESPONSE. The table 5460
below therefore uses the names of these attributes and child elements in the mapping to generic 5461
operation parameters. 5462

CIM Operations over HTTP DSP0200

148 DMTF Standard Version 1.4.0

 5463

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

LOCALCLASSPATH
child element

N/A See 1)

MethodName MethodName NAME attribute N/A

InParmValues ParameterValue [] set of PARAMVALUE
child elements

N/A

1) The CIM-XML element LOCALCLASSPATH includes the model path portion of the class path of the 5464
class. The generic parameter ClassPath corresponds to the combination of the CIM-XML element 5465
LOCALCLASSPATH and the target namespace of the CIM-XML operation. 5466

Operation Output Parameters: 5467

 5468

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

OutParmValues ParameterValue [] set of PARAMVALUE
child elements

N/A

ReturnValue ReturnValue RETURNVALUE child
element

N/A

Optional behavior: None 5469

Deviations: None 5470

C.1.25 GetClass 5471

CIM-XML Operation Name: GetClass 5472

Purpose: Retrieve a class given its class path. 5473

Operation Input Parameters: 5474

 5475

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

N/A N/A LocalOnly boolean See 2)

1) The CIM-XML parameter ClassName specifies the class name. The generic parameter ClassPath 5476
corresponds to the combination of the CIM-XML parameter ClassName and the target namespace of 5477
the CIM-XML operation. 5478

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 149

2) The defined behavior of generic operation GetClass conforms to the behavior of CIM-XML operation 5479
GetClass with LocalOnly=false. 5480

Operation Output Parameters: 5481

 5482

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

Class ClassSpecification-
WithPath

return value class See 1)

1) The CIM-XML return value includes the class declaration, without any class path information. The 5483
generic parameter Class needs to contain the class path in addition to the class declaration. A CIM 5484
client side mapping layer can remember the class path provided in the generic input parameter 5485
ClassPath, and add that to the generic output parameter Class. 5486

Optional behavior: None 5487

Deviations: None 5488

C.1.26 DeleteClass 5489

CIM-XML Operation Name: DeleteClass 5490

Purpose: Delete a class given its class path. 5491

Operation Input Parameters: 5492

 5493

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

DeleteDependents boolean N/A N/A See 2)

1) The CIM-XML parameter ClassName specifies the class name. The generic parameter ClassPath 5494
corresponds to the combination of the CIM-XML parameter ClassName and the target namespace of 5495
the CIM-XML operation. 5496

2) EXPERIMENTAL: The experimental generic parameter DeleteDependents indicates whether 5497
dependent classes and instances are to be deleted as well. DSP0223 defines the generic parameter 5498
DeleteDependents as optional. CIM-XML does not support deleting dependent classes and 5499
instances. 5500

Operation Output Parameters: None 5501

Deviations: None 5502

C.1.27 ModifyClass 5503

CIM-XML Operation Name: ModifyClass 5504

Purpose: Modify a class given its class path. 5505

CIM Operations over HTTP DSP0200

150 DMTF Standard Version 1.4.0

Operation Input Parameters: 5506

 5507

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ModifiedClass class See 1)

ModifiedClass ClassSpecification ModifiedClass class

1) The CIM-XML parameter ModifiedClass includes the name of the class that is being modified, and 5508
the modified class declaration. The combination of the class name portion of the CIM-XML 5509
parameter ModifiedClass and the target namespace of the CIM-XML operation corresponds to the 5510
generic parameter ClassPath. 5511

Operation Output Parameters: None 5512

Optional behavior: None 5513

Deviations: None 5514

C.1.28 CreateClass 5515

CIM-XML Operation Name: CreateClass 5516

Purpose: Create a class. 5517

Operation Input Parameters: 5518

 5519

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

NewClass ClassSpecification NewClass class

Operation Output Parameters: None 5520

Optional behavior: None 5521

Deviations: None 5522

C.1.29 EnumerateClasses 5523

CIM-XML Operation Name: EnumerateClasses with ClassName being NULL 5524

Purpose: Retrieve the top classes (i.e., classes that have no superclasses) of a given namespace. The 5525
retrieved classes include their class paths. 5526

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 151

Operation Input Parameters: 5527

 5528

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

IncludeSubclasses boolean DeepInheritance boolean

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

N/A N/A ClassName className See 1)

N/A N/A LocalOnly boolean See 2)

1) The defined behavior of generic operation EnumerateClasses conforms to the behavior of CIM-XML 5529
operation EnumerateClasses with ClassName=NULL. 5530

2) The defined behavior of generic operation EnumerateClasses conforms to the behavior of CIM-XML 5531
operation EnumerateClasses with LocalOnly=false. 5532

Operation Output Parameters: 5533

 5534

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassList ClassSpecification-
WithPath []

return value class [] See 1)

1) The CIM-XML return value includes the set of class declarations including class names, but without a 5535
class path. The generic parameter ClassList needs to contain the class path in addition to the class 5536
declaration. A CIM client side mapping layer can construct the class paths from the class names and 5537
the CIM-XML target namespace. 5538

Optional behavior: None 5539

Deviations: None 5540

C.1.30 EnumerateClassNames 5541

CIM-XML Operation Name: EnumerateClassNames with ClassName being NULL 5542

Purpose: Retrieve the class paths of the top classes (i.e., classes that have no superclasses) of a given 5543
namespace. 5544

Operation Input Parameters: 5545

 5546

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

IncludeSubclasses boolean DeepInheritance boolean

N/A N/A ClassName className See 1)

CIM Operations over HTTP DSP0200

152 DMTF Standard Version 1.4.0

1) The defined behavior of generic operation EnumerateClassNames conforms to the behavior of CIM-5547
XML operation EnumerateClassNames with ClassName=NULL. 5548

Operation Output Parameters: 5549

 5550

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPathList ClassPath [] return value className [] See 1)

1) The CIM-XML return value includes the set of class names, but without a class path. The generic 5551
parameter ClassPathList needs to contain the class paths. A CIM client side mapping layer can 5552
construct the class paths from the class names and the CIM-XML target namespace. 5553

Optional behavior: None 5554

Deviations: None 5555

5556

5557

5558

5559

C.1.31 AssociatorClasses 5560

CIM-XML Operation Name: Associators with ObjectName being a class path 5561

Purpose: Retrieve the classes that are associated with a given source class. The retrieved classes 5562
include their class paths. 5563

Operation Input Parameters: 5564

 5565

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

RoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

1) The generic parameter ClassPath corresponds to the combination of the CIM-XML parameter 5566
ObjectName and the target namespace of the CIM-XML operation. 5567

The generic operation AssociatorClasses corresponds to the CIM-XML operation Associators when 5568
a class path is passed in for its ObjectName parameter. Using the CIM-XML operation Associators 5569
with an instance path for its ObjectName parameter is covered by the generic operation Associators 5570
(see C.1.7). 5571

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 153

Operation Output Parameters: 5572

 5573

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassList ClassSpecification-
WithPath []

return value objectWithPath []

Optional behavior: None 5574

Deviations: None 5575

C.1.32 AssociatorClassPaths 5576

CIM-XML Operation Name: AssociatorNames with ObjectName being a class path 5577

Purpose: Retrieve the class paths of the classes that are associated with a given source class. 5578

Operation Input Parameters: 5579

 5580

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

RoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

1) The generic parameter ClassPath corresponds to the combination of the CIM-XML parameter 5581
ObjectName and the target namespace of the CIM-XML operation. 5582

The generic operation AssociatorClassPaths corresponds to the CIM-XML operation 5583
AssociatorNames when a class path is passed in for its ObjectName parameter. Using the CIM-XML 5584
operation AssociatorNames with an instance path for its ObjectName parameter is covered by the 5585
generic operation AssociatorNames (see C.1.8). 5586

Operation Output Parameters: 5587

 5588

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPathList ClassPath [] return value objectPath []

Optional behavior: None 5589

Deviations: None 5590

C.1.33 ReferenceClasses 5591

CIM-XML Operation Name: References with ObjectName being a class path 5592

CIM Operations over HTTP DSP0200

154 DMTF Standard Version 1.4.0

Purpose: Retrieve the association classes that reference a given source class. The retrieved classes 5593
include their class paths. 5594

Operation Input Parameters: 5595

 5596

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

RoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

1) The generic parameter ClassPath corresponds to the combination of the CIM-XML parameter 5597
ObjectName and the target namespace of the CIM-XML operation. 5598

The generic operation ReferenceClasses corresponds to the CIM-XML operation References when a 5599
class path is passed in for its ObjectName parameter. Using the CIM-XML operation References with 5600
an instance path for its ObjectName parameter is covered by the generic operation References (see 5601
C.1.9). 5602

2) The CIM-XML operation References does not support a means to filter by class name or role name 5603
of the associated classes on the other ends of the associations referencing the source class. The 5604
generic operation ReferenceClasses does support such filtering through its parameters 5605
AssociatedClassName and AssociatedRoleName. Since the defined behavior of the CIM-XML 5606
operation will result in including association classes that these two parameters could filter out, a 5607
mapping layer on the CIM client side can implement the behavior defined by these two generic 5608
parameters by eliminating association classes if these filter parameters are used. 5609

Operation Output Parameters: 5610

 5611

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value objectWithPath []

Optional behavior: None 5612

Deviations: None 5613

C.1.34 ReferenceClassPaths 5614

CIM-XML Operation Name: ReferenceNames with ObjectName being a class path 5615

Purpose: Retrieve the class paths of the association classes that reference a given class. 5616

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 155

Operation Input Parameters: 5617

 5618

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

RoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

1) The generic parameter ClassPath corresponds to the combination of the CIM-XML parameter 5619
ObjectName and the target namespace of the CIM-XML operation. 5620

The generic operation ReferenceClassPaths corresponds to the CIM-XML operation 5621
ReferenceNames when a class path is passed in for its ObjectName parameter. Using the CIM-XML 5622
operation ReferenceNames with an instance path for its ObjectName parameter is covered by the 5623
generic operation ReferenceNames (see C.1.10). 5624

2) The CIM-XML operation References does not support a means to filter by class name or role name 5625
of the associated classes on the other ends of the associations referencing the source class. The 5626
generic operation ReferenceClassPaths does support such filtering through its parameters 5627
AssociatedClassName and AssociatedRoleName. Since the defined behavior of the CIM-XML 5628
operation will result in including association classes that these two parameters could filter out, a 5629
mapping layer on the CIM client side can implement the behavior defined by these two generic 5630
parameters by eliminating association classes if these filter parameters are used. 5631

Operation Output Parameters: 5632

 5633

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPathList ClassPath [] return value objectPath []

Optional behavior: None 5634

Deviations: None 5635

C.1.35 GetQualifierType 5636

CIM-XML Operation Name: GetQualifier 5637

Purpose: Retrieve a qualifier type given its qualifier type path. 5638

Operation Input Parameters: 5639

 5640

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypePath QualifierTypePath target namespace N/A See 1), 1)

QualifierName string See 1), 1)

CIM Operations over HTTP DSP0200

156 DMTF Standard Version 1.4.0

1) The CIM-XML parameter QualifierName specifies the name of the qualifier type. The generic 5641
parameter QualifierTypePath corresponds to the combination of the CIM-XML parameter 5642
QualifierName and the target namespace of the CIM-XML operation. 5643

Operation Output Parameters: 5644

 5645

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierType QualifierType return value qualifierDecl See 1)

1) The CIM-XML return value includes the qualifier type declaration including the qualifier type name, 5646
but without the namespace path portion of the full qualifier type path. The generic parameter 5647
QualifierType needs to contain the full qualifier type path in addition to the qualifier type declaration. 5648
A CIM client side mapping layer can remember the qualifier type path provided in the generic input 5649
parameter QualifierTypePath, and add that to the generic output parameter QualifierType. 5650

Optional behavior: None 5651

Deviations: None 5652

C.1.36 DeleteQualifierType 5653

CIM-XML Operation Name: DeleteQualifier 5654

Purpose: Delete a qualifier type given its qualifier type path. 5655

Operation Input Parameters: 5656

 5657

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypePath QualifierTypePath target namespace N/A See 1)

QualifierName string See 1)

1) The CIM-XML parameter QualifierName specifies the name of the qualifier type, i.e. the model path 5658
portion of its qualifier type path. The generic parameter QualifierTypePath corresponds to the 5659
combination of the CIM-XML parameter QualifierName and the target namespace of the CIM-XML 5660
operation. 5661

Operation Output Parameters: None 5662

Deviations: None 5663

C.1.37 ModifyQualifierType 5664

CIM-XML Operation Name: SetQualifier 5665

Purpose: Modify a qualifier type given its qualifier type path. 5666

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 157

Operation Input Parameters: 5667

 5668

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypePath QualifierTypePath target namespace N/A See 1)

QualifierDeclaration qualifierDecl See 1)

ModifiedQualifierType QualifierType QualifierDeclaration qualifierDecl

1) The CIM-XML parameter QualifierDeclaration includes the name of the qualifier type that is modified, 5669
i.e. the model path portion of its qualifier type, and the modified qualifier type declaration. The 5670
combination of the name of the qualifier type within the CIM-XML parameter QualifierDeclaration and 5671
the target namespace of the CIM-XML operation corresponds to the generic parameter 5672
QualifierTypePath. 5673

Operation Output Parameters: None 5674

Optional behavior: None 5675

Deviations: 5676

 The generic operation ModifyQualifierType is required to fail if invoked on a non-existing 5677
qualifier type. The CIM-XML operation SetQualifier creates the qualifier type in this case. This 5678
deviation covers only an error case. A CIM client side mapping layer can expose the generic 5679
operation behavior by first testing for the existence of the qualifier type using the CIM-XML 5680
operation GetQualifier, before modifying it. 5681

C.1.38 CreateQualifierType 5682

CIM-XML Operation Name: SetQualifier 5683

Purpose: Create a CIM qualifier type. 5684

Operation Input Parameters: 5685

 5686

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A See 1)

QualifierDeclaration qualifierDecl See 1)

NewQualifierType QualifierType QualifierDeclaration qualifierDecl

1) The generic parameter NamespacePath corresponds to the combination of the qualifier type name 5687
specified in the CIM-XML parameter NewQualifierType and the target namespace of the CIM-XML 5688
operation. 5689

Operation Output Parameters: 5690

 5691

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypePath QualifierTypePath return value instanceName

CIM Operations over HTTP DSP0200

158 DMTF Standard Version 1.4.0

Optional behavior: None 5692

Deviations: 5693

 The generic operation CreateQualifierType is required to fail if invoked on an existing qualifier 5694
type. The CIM-XML operation SetQualifier modifies the qualifier type in this case. This deviation 5695
covers only an error case. A CIM client side mapping layer can expose the generic operation 5696
behavior by first testing for the existence of the qualifier type using the CIM-XML operation 5697
GetQualifier, before creating it. 5698

C.1.39 EnumerateQualifierTypes 5699

CIM-XML Operation Name: EnumerateQualifiers 5700

Purpose: Retrieve the qualifier types of a given namespace. The retrieved qualifier types include their 5701
qualifier type paths. 5702

Operation Input Parameters: 5703

 5704

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

Operation Output Parameters: 5705

 5706

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypeList QualifierTypeWithPath
[]

return value qualifierDecl [] See 1)

1) The CIM-XML return value includes the set of qualifier type declarations including their names, but 5707
without namespace paths. The generic parameter QualifierTypeList needs to contain the qualifier 5708
type paths in addition to the set of qualifier type declarations. A CIM client side mapping layer can 5709
construct the qualifier type paths from the qualifier names and the CIM-XML target namespace. 5710

Optional behavior: None 5711

Deviations: None 5712

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 159

ANNEX D 5713

(informative) 5714

 5715

 5716

Change Log 5717

Version Date Description

1.0 1999-06-02

1.1 2003-01-06 DMTF Standard

1.2 2007-01-09 DMTF Standard

1.3.0 2008-10-15 DMTF Standard

1.3.1 2009-07-29 DMTF Standard

CIM Operations over HTTP DSP0200

160 DMTF Standard Version 1.4.0

Version Date Description

1.4.0 2013-08-26 DMTF Standard with the following changes:

Changes:

 Changed representation of enumeration context value from an
ENUMERATIONCONTEXT element to a string using the VALUE element (see
5.4.2.24.2)
(CRCIMXML00022.001)

 Added requirement to support DMTF Filter Query Language (FQL) in pulled
enumeration operations (see 5.4.2.24.2)
(CRCIMXML00033.001)

 Updated several normative references (see clause 2)
(multiple CRs)

 Lifted requirements in CreateInstance to initialize only with client-provided
values, and in ModifyInstance to update only with client-provided values, to leave
room for model-defined deviations (see 5.4.2.6 and 5.4.2.8).
(CRCIMXML00036.000)

Deprecations::

 Deprecated use of CIM_ERR_INVALID_CLASS on ExportIndication operation
(see 5.5.2.1)
(CRCIMXML00021.000)

 Deprecated the GetProperty and SetProperty operations (see 5.4.2.18 and
5.4.2.19)
(CRCIMXML00027.000)

 Deprecated the EnumerateInstances, EnumerateInstanceNames, ExecQuery,
and the instance-level Associators, AssociatorNames, References and
ReferenceNames operations
(CRCIMXML00030.002)

Additional Functions and Requirements:

 Added support for operation correlators (see 5.3)
(CRCIMXML00014.002)

Clarifications:

 Clarified HTTPS support (see 7.1)
(CRCIMXML00010.004)

 Clarified filter query in pulled enumerations (5.4.2.24.2)
(CRCIMXML00019.001)

 Added mapping to generic operations (see ANNEX C)
(CRCIMXML00034.000)

Editorial Changes:

 Terminology cleanup
(CRCIMXML00026.002)

Deprecate the list agreed to by the WG

Change all Generic Operation Names to match updated Generic Operations
Specification.

 5718

DSP0200 CIM Operations over HTTP

Version 1.4.0 DMTF Standard 161

Bibliography 5719

DMTF DSP0203, DTD for Representation of CIM in XML 2.4, 5720
http://www.dmtf.org/standards/published_documents/DSP0203_2.4.dtd 5721

DMTF DSP8044, XSD for Representation of CIM in XML 2.4, 5722
http://schemas.dmtf.org/wbem/wbem/cim-xml/2/dsp8044_2.4.xsd 5723

IETF RFC2068 (obsoleted by RFC2616), Hypertext Transfer Protocol – HTTP/1.1, January 1997, 5724
http://www.ietf.org/rfc/rfc2068.txt 5725

IETF RFC2069 (obsoleted by RFC2617), An Extension to HTTP: Digest Access Authentication, January 5726
1997, 5727
http://www.ietf.org/rfc/rfc2069.txt 5728

ITU-T X.509: Information technology - Open Systems Interconnection - The Directory: Public-key and 5729
attribute certificate frameworks, 5730
http://www.itu.int/rec/T-REC-X.509/en 5731

SSL 2.0, Hickman: The SSL Protocol, Draft 02, Netscape Communications Corp., February 1995, 5732
http://www.mozilla.org/projects/security/pki/nss/ssl/draft02.html 5733

SSL 3.0, Freier, Karlton, and Kocher: The SSL Protocol, Version 3.0, Final Draft, Netscape 5734
Communications Corp., November 1996, 5735
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt 5736

http://www.dmtf.org/standards/published_documents/DSP0203_2.4.dtd
http://schemas.dmtf.org/wbem/wbem/cim-xml/2/dsp8044_2.4.xsd
http://www.ietf.org/rfc/rfc2068.txt
http://www.ietf.org/rfc/rfc2069.txt
http://www.itu.int/rec/T-REC-X.509/en
http://www.mozilla.org/projects/security/pki/nss/ssl/draft02.html
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt

	Requirements
	1 Scope
	2 Normative References
	3 Terms and Definitions
	4 Abbreviated Terms and Document Conventions
	4.1 Abbreviated Terms
	4.1.1
	4.1.2
	4.1.3
	4.1.4

	4.2 Document Conventions

	5 CIM-XML Message Syntax and Semantics
	5.1 Well-Formed, Valid, and Loosely Valid Documents
	5.2 Operational Semantics
	5.3 Operation Correlators
	5.3.1 Overview
	5.3.2 Representation
	5.3.3 Implementation Requirements and Compatibility for Operation Messages
	5.3.4 Implementation Requirements and Compatibility for Export Messages

	5.4 CIM Operation Syntax and Semantics
	5.4.1 Method Invocations
	5.4.1.1 Simple Operations
	5.4.1.2 Multiple Operations
	5.4.1.3 Status Codes

	5.4.2 Intrinsic Methods
	5.4.2.1 GetClass
	5.4.2.2 GetInstance
	5.4.2.3 DeleteClass
	5.4.2.4 DeleteInstance
	5.4.2.5 CreateClass
	5.4.2.6 CreateInstance
	5.4.2.7 ModifyClass
	5.4.2.8 ModifyInstance
	5.4.2.9 EnumerateClasses
	5.4.2.10 EnumerateClassNames
	5.4.2.11 EnumerateInstances (DEPRECATED)
	5.4.2.12 EnumerateInstanceNames (DEPRECATED)
	5.4.2.13 ExecQuery (DEPRECATED)
	5.4.2.14 Associators (PARTLY DEPRECATED)
	5.4.2.15 AssociatorNames (PARTLY DEPRECATED)
	5.4.2.16 References (PARTLY DEPRECATED)
	5.4.2.17 ReferenceNames (PARTLY DEPRECATED)
	5.4.2.18 GetProperty (DEPRECATED)
	5.4.2.19 SetProperty (DEPRECATED)
	5.4.2.20 GetQualifier
	5.4.2.21 SetQualifier
	5.4.2.22 DeleteQualifier
	5.4.2.23 EnumerateQualifiers
	5.4.2.24 Pulled Enumeration Operations
	5.4.2.24.1 Behavioral Rules for Pulled Enumeration Operations
	5.4.2.24.2 Common Parameters for the Open Operations
	5.4.2.24.3 OpenEnumerateInstances
	5.4.2.24.4 OpenEnumerateInstancePaths
	5.4.2.24.5 OpenReferenceInstances
	5.4.2.24.6 OpenReferenceInstancePaths
	5.4.2.24.7 OpenAssociatorInstances
	5.4.2.24.8 OpenAssociatorInstancePaths
	5.4.2.24.9 Common Parameters for the Pull Operations
	5.4.2.24.10 PullInstancesWithPath
	5.4.2.24.11 PullInstancePaths
	5.4.2.24.12 CloseEnumeration
	5.4.2.24.13 EnumerationCount
	5.4.2.24.14 OpenQueryInstances
	5.4.2.24.15 PullInstances

	5.4.3 Namespace Manipulation Using the CIM_Namespace Class (DEPRECATED)
	5.4.3.1 Namespace Creation
	5.4.3.2 Namespace Deletion
	5.4.3.3 Manipulation and Query of Namespace Information
	5.4.3.4 Use of the __Namespace Pseudo Class (DEPRECATED)

	5.4.4 Functional Profiles (DEPRECATED)
	5.4.5 Extrinsic Method Invocation

	5.5 CIM Export Syntax and Semantics
	5.5.1 Export Method Invocations
	5.5.1.1 Simple Export
	5.5.1.2 Multiple Export
	5.5.1.3 Status Codes

	5.5.2 Export Methods
	5.5.2.1 ExportIndication

	5.5.3 Functional Profiles (DEPRECATED)

	6 Encapsulation of CIM-XML Messages
	6.1 WBEM clients, WBEM servers, and WBEM listeners
	6.2 Use of M-POST
	6.2.1 Use of the Ext Header
	6.2.2 Naming of Extension Headers

	6.3 Extension Headers Defined for CIM-XML Message Requests and Responses
	6.3.1 Encoding of CIM Element Names within HTTP Headers and Trailers
	6.3.2 Encoding of CIM Object Paths within HTTP Headers and Trailers
	6.3.3 CIMOperation
	6.3.4 CIMExport
	6.3.5 CIMProtocolVersion
	6.3.6 CIMMethod
	6.3.7 CIMObject
	6.3.8 CIMExportMethod
	6.3.9 CIMBatch (DEPRECATED)
	6.3.10 CIMExportBatch (DEPRECATED)
	6.3.11 CIMError
	6.3.12 CIMRoleAuthenticate
	6.3.13 CIMRoleAuthorization
	6.3.14 CIMStatusCodeDescription
	6.3.15 WBEMServerResponseTime

	7 HTTP Requirements and Usage
	7.1 HTTP and HTTPS Support
	7.2 Use of Standard HTTP Headers
	7.2.1 Accept
	7.2.2 Accept-Charset
	7.2.3 Accept-Encoding
	7.2.4 Accept-Language
	7.2.5 Accept-Ranges
	7.2.6 Allow
	7.2.7 Authorization
	7.2.8 Cache-Control
	7.2.9 Connection
	7.2.10 Content-Encoding
	7.2.11 Content-Language
	7.2.12 Content-Range
	7.2.13 Content-Type
	7.2.14 Expires
	7.2.15 If-Range
	7.2.16 Proxy-Authenticate
	7.2.17 Range
	7.2.18 WWW-Authenticate

	7.3 Errors and Status Codes
	7.4 Security Considerations
	7.4.1 Authentication
	7.4.2 Message Encryption

	7.5 Determining WBEM server Capabilities
	7.5.1 Determining WBEM server Capabilities through CIM Classes (DEPRECATED)
	7.5.2 Determining WBEM server Capabilities through the HTTP Options
	7.5.2.1 CIMSupportedFunctionalGroups (DEPRECATED)
	7.5.2.2 CIMSupportsMultipleOperations (DEPRECATED)
	7.5.2.3 CIMSupportedQueryLanguages (DEPRECATED)
	7.5.2.4 CIMValidation

	7.6 Other HTTP Methods
	7.7 Discovery and Addressing
	7.8 Internationalization Considerations
	ANNEX A (Informative) Examples of Message Exchanges
	A.1 Retrieval of a Single Class Definition
	A.2 Retrieval of a Single Instance Definition
	A.3 Deletion of a Single Class Definition
	A.4 Deletion of a Single Instance Definition
	A.5 Creation of a Single Class Definition
	A.6 Creation of a Single Instance Definition
	A.7 Enumeration of Class Names
	A.8 Enumeration of Instances
	A.9 Retrieval of a Single Property
	A.10 Execution of an Extrinsic Method
	A.11 Indication Delivery Example
	A.12 Subscription Example
	A.13 Multiple Operations Example

	ANNEX B (informative) LocalOnly Parameter Discussion
	B.1 Explanation of the Deprecated 1.1 Interpretation
	B.2 Risks of Using the 1.1 Interpretation
	B.3 Techniques for Differentiating between the 1.0 Interpretation and 1.1 Interpretation

	ANNEX C (normative) Generic Operations Mapping
	C.1 Operations
	C.1.1 GetInstance

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.2 DeleteInstance

	Operation Input Parameters:
	Operation Output Parameters: None
	Deviations: None
	C.1.3 ModifyInstance

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior:
	Deviations: None
	C.1.4 CreateInstance

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.5 EnumerateInstances

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.6 EnumerateInstanceNames

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.7 Associators

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.8 AssociatorNames

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.9 References

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.10 ReferenceNames

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.11 OpenEnumerateInstances

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.12 OpenEnumerateInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.13 OpenAssociators

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.14 OpenAssociatorPaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.15 OpenReferences

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.16 OpenReferencePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.17 OpenQueryInstances

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.18 PullInstancesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.19 PullInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.20 PullInstances

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.21 CloseEnumeration

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior: None
	Deviations: None
	C.1.22 EnumerationCount

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.23 InvokeMethod

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.24 InvokeStaticMethod

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.25 GetClass

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.26 DeleteClass

	Operation Input Parameters:
	Operation Output Parameters: None
	Deviations: None
	C.1.27 ModifyClass

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior: None
	Deviations: None
	C.1.28 CreateClass

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior: None
	Deviations: None
	C.1.29 EnumerateClasses

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.30 EnumerateClassNames

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	A.1.1
	C.1.31 AssociatorClasses

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.32 AssociatorClassPaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.33 ReferenceClasses

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.34 ReferenceClassPaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.35 GetQualifierType

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.36 DeleteQualifierType

	Operation Input Parameters:
	Operation Output Parameters: None
	Deviations: None
	C.1.37 ModifyQualifierType

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior: None
	Deviations:
	C.1.38 CreateQualifierType

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations:
	C.1.39 EnumerateQualifierTypes

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	ANNEX D (informative) Change Log

