Document Identifier: DSP2066

Date: 2025-12-04

Version: 1.1.0

Redfish Fabrics White Paper

Supersedes: 1.0.0
Document Class: Informational
Document Status: Published

Document Language: en-US

Redfish Fabrics White Paper DSP2066

Copyright Notice
Copyright © 2022-2025 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified DMTF that, in their opinion, such
patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/
policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

2 Published Version 1.1.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

DSP2066 Redfish Fabrics White Paper

CONTENTS

FOreWOId. . . . 4
ACKNOWIEAgMENtSo 4

T IntrodUuCtion 5
2 Fabric representation 6
B ENAPOINtS e 8
4 CoNNECHIVItY . . . o 11
4.1 SWItCNES . . oo 12
A2 POt S . o 12
4. 8 POt MEtriCS . . 13
4.4 Network and fabric adapters 15

5 Fabric configuration and routing 16
B ZONES. . . 17
5.2 AdAress POOISo 20
5.3 CONNECHONS. . . o ottt 20

6 Fabric management flows e 22
6.1 Generic fabric management flows 22
6.1.1 Initiator systems diSCOVErY 22

6.1.2 Target systems diSCOVEery e 24

6.1.3 Switch system discovery 26

6.1.4 Connection establishment. 28

6.1.5 Connection termination e 33

7 Fabric management flows for CXL Type 3devices e 40
7.1 Pooled memory system discovery (targetsystem) 40
7.2 Host system discovery (initiator system) 42
7.3 CXL switch system diSCOVErYo 43
7.4 Connection establishment 45
7.5 Connection termination 51

8 Representing different types of fabrics 58
8.1 Ethernet. 58

B 2 S S 59
8.3 P I, . o 60

B XL e 61
8.4.1 Physical topologyo 62

8.4.2 ROULING . . .ot 63

8.4, 3 ACCESS. . ottt 64

8.0 GN-Z .o 65

9 Fabric model and composability 69
10 Appendix A: REfEreNCESo 70
11 Appendix B: Change l0g 71

Version 1.1.0 Published 3

Redfish Fabrics White Paper DSP2066

Foreword

The Redfish Fabrics White Paper was prepared by DMTF's Redfish Forum.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about DMTF, see http://www.dmtf.org.

Acknowledgments

DMTF acknowledges the following individuals for their contributions to this document:

» Martin Halstead — Hewlett Packard Enterprise
» John Mayfield — Hewlett Packard Enterprise

» Slawek Putyrski — Intel Corporation

» Michael Raineri — Dell Technologies

» Shesha Sreenivasamurthy — Marvell Technology, Inc.

4 Published Version 1.1.0

http://www.dmtf.org/

DSP2066 Redfish Fabrics White Paper

1 Introduction

Modern datacenters consist of hundreds to thousands of different server and storage resources used for different
purposes. Often a portion of these resources are grouped into clusters that are used to work together on specific
workloads. High-speed fabrics are typically used to transfer data among clustered resources to optimally satisfy the
needs of the workload. Clustered resources within a datacenter can be used for a single workload or can be utilized
for multiple workloads. In order to configure and manage clustered resources, Redfish has a common data model
that describes fabrics to management clients. The fabric data model contains methods to configure, manage, and
support the lifecycle of intra-fabric connectivity of clusters of resources.

The fabric data model describes the physical topology of the cluster, connectivity constraints, and isolation as well as
zones to define sub-domains within a larger fabric. This paper describes the common fabric data model and provides
examples for common types of fabrics.

Version 1.1.0 Published 5

Redfish Fabrics White Paper DSP2066

2 Fabric representation

The Fabrics property found in the service root contains a set collection of Fabric resources. Each Fabric
resource represents a fabric that is managed by the Redfish service and can contain the following information:

* FabricType : Describes the type of protocol sent over the fabric.

* switches : Contains the switches and their connectivity information for the fabric. See Switches and Ports for
more information.

* Endpoints : Contains the logical representation for devices on a fabric. See Endpoints for more information.
» Zones : Contains communication constraints for endpoints within a fabric. See Zones for more information.

* Connections : Contains rules for the types of resources an initiator endpoint is allowed to access when
connecting to a target endpoint. See Connections for more information.

* AddressPools : Contains addressing rules for the fabric. See Address pools for more information.

Example Fabric resource:

{
"@odata.id": "/redfish/v1/Fabrics/Ethernet”,
"@odata.type": "#Fabric.vl_4 0.Fabric",
"Id": "Ethernet",
"Name": "Ethernet Fabric",
"FabricType": "Ethernet",
"Description": "An Ethernet Based Fabric",
"Status": {
"State": "Enabled",
"Health": "OK"
})
"Zones": {
"@odata.id": "/redfish/vl1/Fabrics/Ethernet/Zones"
¥
"Endpoints": {
"@odata.id": "/redfish/v1l/Fabrics/Ethernet/Endpoints"
s
"Switches": {
"@odata.id": "/redfish/v1l/Fabrics/Ethernet/Switches"
})
"AddressPools": {
"@odata.id": "/redfish/v1/Fabrics/Ethernet/AddressPools™”
}
}

The value of the FabricType property contains information about the modelled fabric technology. The FabricType
property can contain the following values.

6 Published Version 1.1.0

DSP2066

Value
CXL
Ethernet
FC
GenZ
InfiniBand
iScsI
NVMeOverFabrics
PCIe

SAS

Redfish Fabrics White Paper

Description

A fabric compliant with the Compute Express Link Specification.

A fabric compliant with the IEEE 802.3 Ethernet Specification.

A fabric compliant with the T11 Fibre Channel Physical and Signaling Interface Specification.

A fabric compliant with the Gen-Z Core Specification.

A fabric compliant with the InfiniBand Architecture Specification.

A fabric compliant with the IETF Internet Small Computer Systems Interface (iISCSI) Specification.
A fabric compliant with the the NVM Express over Fabrics Specification.

A fabric compliant with the PCI-SIG PCI Express Base Specification.

A fabric compliant with the T10 SAS Protocol Layer Specification.

Version 1.1.0

Published 7

Redfish Fabrics White Paper DSP2066

3 Endpoints

The Endpoint resource represents an addressable entity, a single device, or a set of devices where traffic enters or
exits a fabric. Traffic on a fabric flows from one endpoint to another endpoint, and the configuration of the fabric
dictates routing and addressability rules for the endpoints. Systems, switches, adapters, and other components
connected to a fabric might contain multiple endpoints to represent the different signifying an ingress and egress
points on a fabric.

Endpoints can represent varying types of entities on a fabric, some physical and some logical. The
ConnectedEntities property describes the type of entity on the fabric and how it links to other areas of the Redfish
model. ConnectedEntities is an array to allow for multiple Redfish resources to be referenced if they work together
to form an endpoint on a fabric. Each member of the Connectedentities array can contain the following properties:

Property Description

EntityType The type of the entity on the fabric. See the next table for more information on the values.

Describes whether the endpoint acts as an initiator, target, or both on the fabric. Initiator endpoints

EntityRole . .
produce traffic to access resources exposed by target endpoints.
A link to another resource in the Redfish data model that provides more information about the endpoint.
EntityLink This property might not be present if the Endpoint resource represents an entity that is not managed by
the service.
Identifiers The globally unique identifier for the entity.

The value of the EntityType property gives guidance for the type of resource that can be found with the EntityLink
property. The EntityType property can contain the following values.
Value Description EntityLink resource

A member of
StorageControllers in

StorageInitiator A storage initiator Storage Or a
StorageController
resource

RootComplex A PCl(e) root complex ComputerSystem
NetworkDeviceFunction

NetworkController A network controller

Oor EthernetInterface

Drive A drive Drive

8 Published Version 1.1.0

DSP2066

Value
StorageExpander
DisplayController
Bridge
Processor
Volume
AccelerationFunction
MemoryChunk
Switch
FabricBridge
Manager
StorageSubsystem
Memory

CXLDevice

Description

A storage expander

A display controller

A PCl(e) bridge

A processor

A volume

An acceleration function realized through a device, such as an FPGA.

A memory chunk

A switch

A fabric bridge

A manager

A storage subsystem
A memory device

A CXL Logical Device

Redfish Fabrics White Paper

EntityLink resource

Chassis

N/A

N/A

Processor

Volume

AccelerationFunction

MemoryChunk

Switch

FabricAdapter

Manager

Storage

Memory

CXLLogicalDevice

Endpoints with IP connectivity can report their IP addresses with the 1PTransportDetails property.

Endpoints that represent a logical entity on a fabric can report an additional Identifiers property at the root of the
resource to show the globally unique identifier for the endpoint.

The following example shows an Endpoint resource for a SAS drive. The EndpointProtocol property contains SAs

to reflect the protocol accepted by the endpoint. Connectedentities references the prive resource that the
endpoint represents. ConnectedPorts within Links shows the switch ports to which the endpoint is connected.

"@odata.id": "/redfish/v1/Fabrics/SAS/Endpoints/Drivel”,
"@odata.type": "#Endpoint.vl_8_2.Endpoint"”,

"Id": "Drivel"”,

"Name": "SAS Drive",

"Description”: "The SAS Drive in Enclosure 2 Bay 0",
"EndpointProtocol”: "SAS",
"ConnectedEntities": [

{

"EntityType": "Drive",
"EntityRole": "Target",
"EntityLink": {

Version 1.1.0

Published

Redfish Fabrics White Paper

"@odata.id": "/redfish/v1/Chassis/2/Drives/@"

DSP2066

¥
"Identifiers": [
{
"DurableNameFormat": "NAA",
"DurableName": "32ADF365C6C1B7C3"
¥
1
}
])
"Links": {
"ConnectedPorts": [
{
"@odata.id": "/redfish/v1/Fabrics/SAS/Switches/Switchl/Ports/8"
¥
{
"@odata.id": "/redfish/v1/Fabrics/SAS/Switches/Switch2/Ports/8"
¥
]
}
}
10 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

4 Connectivity

Redfish describes the physical topology of a fabric using the switch and Port resources. The Port resources
subordinate to the switch resource show how a fabric switch provides connectivity to other devices in the
infrastructure. Other resources that represent devices on a fabric, such as FabricAdapter and NetworkAdapter ,
contain their own Port resources to show connectivity to the fabric. These resources can be used to configure
routing information, virtual channel information, virtual LAN information, and congestion information based on the
customer's desired topology. A client can verify the topology and port map by following the links contained in the
ConnectedPorts and AssociatedEndpoints properties from the various pPort resources. Clients can discover these
resources from the Fabrics , Chassis , and System properties off the service root. Figure 1 shows an example
connectivity diagram with two fabrics named Ethernet and Gen-z .

Collection resource

Singleton resource

+00

Subordinate resource

----® Related resource

Corone 5T > 20

NetworkAdapters

Figure 1 — Fabric connectivity example

Version 1.1.0 Published 11

Redfish Fabrics White Paper DSP2066

4.1 Switches

The switch resource represents a single, generic switch. It contains information about the switch, such as its
manufacturer, model, and part number. It also provides a link to the collection of ports on the switch.

Example switch resource:

{
"@odata.id": "/redfish/v1l/Fabrics/Ethernet/Switches/Switchl",
"@odata.type": "#Switch.vl_10_0.Switch",
"Id": "Switch1i",
"Name": "Ethernet Switch",
"SwitchType": "Ethernet",
"Manufacturer": "Contoso",
"Model": "8320",
"SKu": "67B",
"SerialNumber": "2M220100SL",
"PartNumber": "76-88883",
"Ports": {

"@odata.id": "/redfish/vl1/Fabrics/Ethernet/Switches/Switchl/Ports"

}

}

4.2 Ports

The port resource represent the physical interface of an adapter or switch to a fabric. Resources such as switch ,

FabricAdapter , NetworkAdapter , and Processor contain their own collection of Port resources to represent their
respective interfaces for the device. The pPort resource describes the port's attributes, such as the interface speed
and link status.

The Pport resource contains several properties within Links to describe how the port is connected to other ports or
devices in a fabric. Clients can follow the following properties within Links for building the topology of a fabric.
Property Description

ConnectedSwitches Switches connected to the port.

Switch ports connected to the port. The members should be subordinate to the switches found in
ConnectedSwitches . If the connected port is a device port, use ConnectedPorts instead.

ConnectedSwitchPorts

Device ports connected to the port. The members should not reference ports on switches. If the connected

ConnectedPorts .) .
port is a switch port, use Connectedswitchports instead.

12 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Property Description

Endpoints connected to the port. This property can be used for fabrics where Endpoint resources

AssociatedEndpoints . .)
represent physical devices and ConnectedPorts is not applicable.

Example port resource:

"@odata.id": "/redfish/v1/Fabrics/Ethernet/Switches/Switchl/Ports/1",
"@odata.type": "#Port.vl_16_60.Port",
"Id": "1",
"Name": "Ethernet Port 1",
"Description": "Ethernet Port 1",
"Status": {

"State": "Enabled",

"Health": "OK"
1
"PortId": "1",
"PortProtocol": "Ethernet",
"PortType": "BidirectionalPort",
"CurrentSpeedGbps": 25,
"Width": 4,
"MaxSpeedGbps": 25,
"Links": {

"ConnectedPorts": [

{
"@odata.id": "/redfish/v1/Chassis/1/NetworkAdapters/3/Ports/1"

4.3 Port metrics

Many devices capture the metrics associated with their ports. For example, Ethernet devices can capture metrics
such as received frames, transmitted broadcast frames, transmitted multicast frames, frame alignment errors, and
collision errors. This provides clients an indication of the health of the port at a particular point in time. The
PortMetrics resource contains these metrics.

Example PortMetrics resource:

"@odata.type": "#PortMetrics.vl_7_0.PortMetrics",
"RXBytes": 567027413,

Version 1.1.0 Published 13

Redfish Fabrics White Paper

"TXBytes": 6620140961,
"RXErrors": 0,
"TXErrors": 0,
"Networking": {

}J

"RXFrames": 3356710,
"RXUnicastFrames": 3354717,
"RXMulticastFrames": 204,
"RXBroadcastFrames": 1789,
"TXFrames": 14358417,
"TXUnicastFrames": 14357401,
"TXMulticastFrames": 670,
"TXBroadcastFrames": 346,
"RXDiscards": 498455,
"RXFrameAlignmentErrors": 0,
"RXFCSErrors": 0,
"RXFalseCarrierErrors": 0,
"RXOversizeFrames": 0,
"RXUndersizeFrames": 0,
"TXDiscards": 0,
"TXExcessiveCollisions": @,
"TXLateCollisions": 9,
"TXMultipleCollisions": 0,
"TXSingleCollisions": 0,
"RXPFCFrames": 0,
"TXPFCFrames": 0,
"RXPauseXOFFFrames": 0,
"RXPauseXONFrames": @,
"TXPauseXOFFFrames": 0,
"TXPauseXONFrames": 0,
"RDMARXBytes": @,
"RDMARXRequests": 9,
"RDMAProtectionErrors": 0,
"RDMAProtocolErrors": 0,
"RDMATXBytes": @,
"RDMATXRequests": 0,
"RDMATXReadRequests": 0@,
"RDMATXSendRequests": @,
"RDMATXWriteRequests": ©

"Transceivers": [

{
"RXInputPowerMilliWatts": ©.06,
"TXBiasCurrentMilliAmps": 49.01,
"TXOutputPowerMilliWatts": 1.263,
"SupplyVoltage": 4.21

DSP2066

14

Published

Version 1.1.0

DSP2066 Redfish Fabrics White Paper

4.4 Network and fabric adapters

The NetworkAdapter and FabricAdapter resources contain a collection of Port resources to express physical
connectivity to a fabric or other adapters. These adapters support specific types of fabrics. For example, a device on
an Ethernet fabric would use a NetworkAdapter resource and a device on a CXL fabric would use a FabricAdapter
resource. These adapters describe the physical endpoint of the node on the fabric along with the adapter capabilities.

The FabricAdapter resource provides additional fabric-related settings, such as routing information, congestion
management, embedded switch configuration, and Virtual Channel/Traffic Class management.

Chassis-level and system-level connectivity is determined using the port resources found on the chassis's or
system's related adapters. The cComputerSystem resource and Chassis resource contain a FabricAdapters property
to represent the set of available fabric adapters. The chassis resource contains a NetworkAdapters property to
represent the set of available network adapters. The computerSystem resource contains NetworkInterfaces property
to represent the set of available partitions of network adapters.

Version 1.1.0 Published 15

Redfish Fabrics White Paper DSP2066

5 Fabric configuration and routing

The zone , Connection, and AddressPool resources model communication intent across fabrics. The following
sections describe the relationships between these resources and the Endpoint resource for managing routing and
other networking configurations for a fabric.

16 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Switchl Switch2

Switch3

AddressPooll

AddressPool2 AddressPool3

ZoneOfZones
(Zonel)

ZoneQfEndpoints

Figure 2 — Fabric configuration

5.1 Zones

The zone resource constrains communications by subdividing a fabric into a series of regions or subnets, either for

Version 1.1.0 Published 17

Redfish Fabrics White Paper DSP2066

the entire data center fabric or for multi-tenant access to it. The zoneType property describes the usage of the zone
in the fabric and can contain the following values.

Value Description

The zone is associated with the entire fabric. Newly created endpoints appear in this zone until additional

Default
configurations are made by a client to assign the endpoint to another zone.

ZoneOfEndpoints The zone contains a set of endpoints where routing is enabled for traffic to flow between the endpoints.
The zone contains other zones for scalability. In Ethernet fabrics, this signifies one or more virtual routing
domain or virtual routing (VRF) instances. Zones referenced by this zone will contain zoneoftndpoints for

ZoneOfZones their zoneType property. Endpoints that are within one zone of type zoneofzones can overlap with
endpoints that are in a different zone of type Zzoneofzones . This construct emulates multi-tenancy across
fabrics.

The zone represents a set of resource blocks that can be composed together. This value is specific to

ZoneOfResourceBlocks

composability and does not apply to fabrics.

Each Fabric resource should contain a zone resource whose ZzoneType property contains the value Default . This
is a well-known location for clients to understand default routing policies for endpoints that have not been assigned to
a zone. The DefaultRoutingEnabled property controls whether traffic is allowed between the endpoints in this zone.

Zones of type zone0fzones are prohibited from containing other zones of type zone0fzones . This is to prevent
complexities with nesting zones within zones within zones and also prevents creating circular zoning situations.

The Links property can contain the following properties to show additional configuration of the zone and
components that are in the zone.

* Endpoints : The endpoints that belong in this zone. This only applies when ZzoneType contains Default or
ZoneOfEndpoints .

* Containszones : The zones that belong in this zone. This only applies when ZoneType contains ZoneOfzones .

* ContainedByzones : The zone that contains this zone. This only applies when ZzoneType contains
ZoneOfEndpoints .

* AddressPools : Additional networking configuration for this zone.

* InvolvedSwitches : The switches that are used by this zone.

* ResourceBlocks : The resource blocks that belong in this zone. This only applies when zoneType contains
ZoneOfResourceBlocks and does not apply to fabrics.

Figure 3 shows a sample set of zones and endpoints. There are 16 endpoints grouped into four zones of type
ZoneOfEndpoints . There are also two zones of type zoneofzones that provide further groupings. The endpoints that
belong in the same zone of type zoneOfEndpoints , such as zone3 , are hosts on the same network, therefore traffic
is bridged across the fabric between these endpoints. Endpoints that belong to different zones of type
ZoneOfEndpoints , but are contained in the same zone of type zone0fzones , such as zones Zzone3 and Zone4 , are
on different networks where the fabric is configured to route traffic between the endpoints. Endpoints that do not

18 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

belong in any common zones, such as the endpoints in zones zone3 and zoneé , are not configured to have any
routing between the endpoints. If routing is required between zone3 and Zzoneé6 , @ new zone of type ZoneOfZones
would need to be created with zone3 and zonee as part of the new zone.

ZoneQfZones
(Zonel)

ZoneOfEndpoints

ZoneOfZones
(ZoneZ)

Endpaint
Endpoint
Endpaint
Endpoint

ZoneOfEndpoints

Figure 3 — Redfish zones

By automating these interrelationships, it should be possible to configure any fabric to accommodate those
addressing and connectivity requirements. This allows for a multi-vendor and fully standards-based method to
uniformly configure distributed fabrics in tandem with compute and storage infrastructure inside the data center.

Version 1.1.0 Published 19

Redfish Fabrics White Paper DSP2066

5.2 Address pools

The AddressPool resource constrains control plane specific pools of addressing for setting up fabric-wide
communications as well as host network address pools. Address pools can be applied to particular zones in a fabric
in order to configure zone-specific networking.

In an Ethernet fabric, an address pool can contain subnet, default gateway, VLAN, BGP underlay, EVPN control
plane, and other networking configurations.

In a Gen-Z fabric, an address pool can specify Global Component Identifier information.

In Figure 2, there are three example address pools that belong to an Ethernet fabric. AddressPooll contains cross
Ethernet fabric addressing settings such as EBGP underlay addressing, EVPN address pools, and BGP timers.
AddressPool2 and AddressPool3 contain subnet settings such as IP network ranges, gateways, and VLANSs for that
network.

5.3 Connections

The connection resource contains access permissions for resources accessible via a target endpoint once two
endpoints establish a communication channel. This differs from Zzone resources in that zones describe the routing
for the communication channel itself.

Connection resources contain a ConnectionType property to describe the type of resources target endpoints can
expose to the connecting initiator endpoints and can contain the following values.

Value Description
Storage The target endpoints are able to provide storage-related resources, such as volumes.
Memory The target endpoints are able to provide memory-related resources, such as memory chunks.

Based on the value of connectionType , one of the following properties will be present to provide the information
about the specific resources made available to initiator endpoints.

* VolumeInfo : An array containing references to one or more Vvolume resources along with access capabilities,
such as whether the volumes are read-only or read-write for the connecting initiators.

* MemoryInfo : An array containing references to one or more MemoryChunk resources along with access
capabilities, such as whether the volumes are read-only or read-write for the connecting initiators.

The connectionkeys property may also be present for fabrics that require specifying access keys, such as with Gen-
Z fabrics.

20 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

The Links property contains references to the endpoints affected by the connection. Initiators can be referenced
with the InitiatorEndpoints oOr InitiatorEndpointGroups properties, and targets can be referenced by the
TargetEndpoints Or TargetEndpointGroups properties. When a referenced initiator establishes a connection over the
fabric with one of the referenced targets, it's able to access the resources specified by other properties, such as

VolumeInfo .

Figure 4 shows a sample NVMe-oF fabric. The endpoints Hostl and Host2 act as initiator endpoints on the fabric,
and endpoint Target1 is the NVMe-oF target. The connection conn1 specifies that both Host1 and Host2 are
given access to the volume Ns1 when they establish a connection with Target1 .

e €0
\ 4 !

Sy - ’

] \ TargetEndpoints
\ \ ! (::) Collection resource

A Y !; (:) Singleton resource

b, X N % . —» Subordinate resource
L ~ - + ----» Related resource
L - InitiatorEndpoints
B S — -

Figure 4 — Redfish connections

Version 1.1.0 Published 21

Redfish Fabrics White Paper DSP2066

6 Fabric management flows

The Redfish fabric model provides a unified, standards-based API for managing a wide range of fabric technologies
in data centers, including PCle, CXL, and NVMe over Fabrics. It enables administrators to perform the following key
fabric management operations:

» Systems capabilities discovery: Identify and enumerate the features and capabilities of connected systems
across different fabrics.

» Physical connectivity configuration: Define and adjust the physical connections and topologies between fabric
connected systems.

» Connection establishment: Initiate and manage the operational connections that enable communication and data
flow between fabric endpoints representing resources in initiator and target systems.

» Connection termination: Safely disconnect and decommission operational connections between fabric endpoints,
ensuring resources are released and network integrity is maintained.

The following sections outline the management flows for each key operation mentioned above. Step-by-step
guidance is provided for systems capabilities discovery, physical connectivity configuration, and connection
establishment, helping administrators efficiently manage fabric resources with the Redfish fabric model.

6.1 Generic fabric management flows

This section presents a set of generic management flows that are universally applicable to any fabric technology. By
abstracting away technology-specific details, these flows serve as a foundational guide for data center administrators
seeking to manage fabric resources efficiently and consistently. The outlined processes include initiator systems
discovery, target systems discovery, switch system discovery, connection establishment, and connection termination.
Each flow is accompanied by an illustrative diagram to provide a clear, conceptual understanding of the management
steps involved.

6.1.1 Initiator systems discovery

Initiator systems discovery involves identifying all endpoints within the fabric that are capable of initiating
connections. Administrators use this flow to enumerate initiator devices and assess their readiness and available
capabilities for establishing fabric connections. This process ensures that all potential initiator resources are visible
and manageable within the fabric management domain.

Figure 5 shows the detailed initiator system fabric capabilities discovery flow.

22 Published Version 1.1.0

DSP2066

Version 1.1.0

Initiator system discovery

Fabric Manager

Redfish Fabrics White Paper

Initiator BMC

GET ServiceRoot

g
e HTTP 200 (ServiceRoot)

SET Fabric

>
TP 200 (Fabrac) ...

GET System

HTTP 200 (System)

loop

[All Processors]

SET Processor

I E AN Pracassor) ...

loop

[All Ports]
GET Port

Ll Ll i) SO

alt

~abric Adapter exist]
GET FabricAdapter

>
HTTP 200 (FabricAdapter)

loop

[All Ports]
SET Pert

HTTP 200 (Port)
{.._...__...__...__...__...__...__..._...._....

Fabric Manager

’ Initiator BMC ‘

Published

23

Redfish Fabrics White Paper DSP2066

Figure 5 — Initiator system fabric capabilities discovery flow

6.1.2 Target systems discovery

Target systems discovery focuses on identifying endpoints that can accept connections from initiators. This
management flow allows administrators to enumerate target devices, verify their operational status, and determine
their connectivity options. A clear inventory of target systems enables effective resource allocation and connection
planning across the fabric.

Figure 6 shows the detailed target system fabric capabilities discovery flow.

24 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Target system discovery

Fabric Manager Pool BMC

GET ServiceRoot

>
» HTTP 200 (ServiceRoot)
GET Fabric
>
. HITE X0 (Fabicac)
Ch i
GET assis %
| HTTP 200 (Chassis)
GET FabricAdapter
>

» HTTP 200 (FabricAdapter)

loop 4 [AllPorts]

5ET Pert g

L SILIE JUORBEE). oo
loop 4 [All Devices]

GET Device 5

Device could be anything exposed by
the pooled system over fabric
(storage volume, memory chunk, processor, etc.)

PR e s S

Fabric Manager Pool BMC

Version 1.1.0 Published 25

Redfish Fabrics White Paper DSP2066

Figure 6 — Target system fabric capabilities discovery flow

6.1.3 Switch system discovery

Switch system discovery is the process of identifying intermediary fabric devices that facilitate data routing between
initiator and target systems. Through this flow, administrators can map out available switches, understand their
topological roles, and optimize data paths within the fabric. Comprehensive switch discovery supports robust and
flexible fabric design.

Figure 7 shows the detailed switch system fabric capabilities discovery flow.

26 Published Version 1.1.0

DSP2066

Version 1.1.0

Switch system discovery

Fabric Manager ‘

Redfish Fabrics White Paper

Switch BMC ‘

GET serviceRoot

L HTTP 200 (ServiceRoot)

Fabri
GET Fabric -
| HTTP 200(Fabric)
loop 4 | [All Switches]
GET Switch
>
TR 200 (Swateh) & .
loop A [All Switch Ports]
GET Port
>
HTTP 200 (Port)
-q':.:.._...._...._...._...._...._..............
alt

GET Switch Details

Switch details depend on the fabric type &

AL 200 [SwiEeh Datalie),

Determine physical
connections topology

<

Update all Port objects
with link to remote port

< |

bped

Fabric Manager ‘

_

Switch BMC ‘

Published

27

Redfish Fabrics White Paper DSP2066

Figure 7 — Switch system fabric capabilities discovery flow

6.1.4 Connection establishment

Connection establishment consists of two distinct phases: first, the creation of physical connectivity, and second, the
establishment of operational links between initiator and target resources. In the physical connectivity creation phase,
the necessary pathways—often involving one or more switches—are provisioned to ensure that initiator and target
endpoints can communicate. Following this, the process moves to establishing the connection itself, where
connection parameters are negotiated, required resources are allocated, and data paths are activated. Efficiently
performing both phases is essential for enabling seamless data exchange within the fabric. The following figures
show consecutive phases of the detailed fabric connection establishing flow.

Figure 8 shows the flow of the target system setup phase.

28 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Setup target system for new connection

Fabric Manager ‘ Target BMC ‘ Initiator BMC ‘ ‘ Switch BMC ‘

Determine connection feasibility
and available resources

< |

POST TargetEndpoint

Y

Create Endpoint Object

« |

Update Device Object
{(Endpaint Link)

Update Port Object
(Endpoint Link)

POST InitiatorEndpoint -

InitiatorEndpoint is created to inform
target system about an initiator allowed

to connect to target device represented

by TargetEndpoint

Create Endpoint Object

HTTP 201
.ﬁ.........-....-...............-.....-.....-......

POST Zone

Configure Device access
rights for Initiator

<

Create Zone Object

<« |

HTTP 201
- {..

Fabric Manager Target BMC [Initiator BMC } [Switch BMC ‘

Version 1.1.0 Published 29

Redfish Fabrics White Paper DSP2066

Figure 8 — Setup target system phase flow

Figure 9 shows the flow of the initiator system setup phase.

30 Published Version 1.1.0

DSP2066

Redfish Fabrics White Paper

Setup initiator system for new connection

Fabric Manager ‘ { Target BMC ‘ { Initiator BMC

POST Initiat

o

rEndpoint

HTTP 201

{ ______________________ -

POST TargetE

Y

Create Endpoint Object

Update ComputerSystem Dbje{:t
(Endpoint Link)

HTTP 201
.{....-..............-.. S

POST Zone

HTTP 201
e s

L

Update Poert Object
{(Endpoint Link)

Create Endpoint Object

<« |

Create Zone Object

p—

Switch BMC

Fabric Manager ‘ ‘ Target BMC ‘ ‘ Initiator BMC ‘

Figure 9 — Setup initiator system phase flow

Figure 10 shows the flow of the switch system setup phase.

Switch BMC

Version 1.1.0

Published

31

Redfish Fabrics White Paper DSP2066

Setup switch system for new connection

Fabric Manager ‘ l Target BMC ‘ I Initiator BMC ‘ ‘ Switch BMCJ

POST TargetEndpoint)
Create Endpoint Object
Update DownstreamPeort Object
(Endpoint Link)

POST InitiatjoprEndpeoint |
Create Endpoint Object
Update UpstreamPort Object
{(Endpaint Link)

HTTP 201
*...--...--...--...--.. [" T R —————

POST Zone -
Configure Switch
Create Zone Object

Fabric Manager ‘ ‘ Target BMC ‘ ‘ Initiator BMC ‘ ’ Switch BMC ‘

Figure 10 — Setup switch system phase flow

Figure 11 shows the flow of the new connection establishing phase.

32 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Connection establishment

Fabric Manager Target BMC Initiator BMC Switch BMC

POST Connection

v

Connection is created to inform
target system about expected
connection form an initiator

Create Connection Object

Update TargetEndpoint Object
{Connection)

Update InitiatorEndpoint QObject
(Connection)

HTTP 201
. LLEETT TR TEIERETTRRTEPRPPEP R

POST Connection

Connect to target device

I

Create Connection Object

I

Update TargetEndpoint Object
(Connection)

I

Update InitiatorEndpoint Object
(Connection)

I

TR0t

Fabric Manager | Target BMC Initiator BMC Switch BMC

Figure 11 — New connection establishing phase flow

H.

6.1.5 Connection termination

Connection termination involves two main steps to ensure an orderly disconnection of fabric endpoints. First, the
administrator deactivates an active connection between resources in initiator and target systems, which includes
disabling data paths and releasing resources directly associated with those operational links. Second, administrators
proceed to terminate the overall fabric connectivity between systems—this step is performed only when no active

Version 1.1.0 Published 33

Redfish Fabrics White Paper DSP2066

connections remain. At this stage, management systems are updated to reflect the new topology, and any additional
resources linked to the underlying fabric pathways are released. Following these steps is crucial for maintaining
fabric integrity and ensuring optimal resource utilization. The following figures show consecutive phases of the

detailed fabric connection termination flow.

Figure 12 shows the flow of the connection termination phase phase.

Connection termination

Fabric Manager Target BMC Initiator BMC Switch BMC

Y
I

DELETE Connection

Terminate connection

I

Update TargetEndpeoint Object
(Connection)

I

Update InitiatorEndpoint Object
(Connection)

I

Delete Connection Object

I

DELETE Connection |

Connection js deleted to inform
target system that connection
has been terminated

Update TargetEndpoint Object
(Connection)

Update InitiatorEndpoint Object
(Connection)

Delete Connection Object

|

H

Fabric Manager Target BMC Initiator BMC Switch BMC

Figure 12 — Existing connection termination phase flow

34 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Figure 13 shows the flow of optional phase of the switch system configuration clearing. This phase is performed
when no active connection remains between the initiator system and the target system.

Version 1.1.0 Published 35

Redfish Fabrics White Paper DSP2066

Clear switch system configuration

Fabric Manager ‘ { Target BMC ‘ ‘ Initiator BMC ‘ I Switch BMC

alt [Last connection fefminated]
DELETE Zone
>
Configure Switch
Remove Zene Object
HTTP 201
{..._........._........ [S T P ————
DELETE TargetEndpeint o
Update DownstreamPort Dbjed
(Endpoint Link)
Remove Endpeint Object
HTTP 201
{7777 T
DELETE InitiptorEndpoint 2
Update UpstreamPert Object
(Endpoint Link)
Remove Endpeint Object
Hme2ot || |

Fabric Manager\ [Target BMC \ [Initiator BMC ‘ [Switch BMC

Figure 13 — Clear switch system configuration phase flow

36 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Figure 14 shows the flow of optional phase of the target system configuration clearing. This phase is performed when
no active connection remains between the initiator system and the target system.

Version 1.1.0 Published 37

Redfish Fabrics White Paper

Clear target system configuration

Fabric Manager

Target BMC

DSP2066

Initiator BMC J ‘ Switch BMC ‘

alt

[Last connection terminated]

DELETE Zone

HTTP 201
&R Lt LT TR LT PP PP PR

DELETE InitiatorEndpoint o

HTTP 201
A LLEE L T L LR LT T PR PR PR

DELETE TargetEndpoint

Y

HTTP 201

Clear Device access
rights for Initiator

<

Remove Zene Object

< |

Remove Endpeint Object

<

Update Device Object
(Endpoint Link)

-

Update Port Object
(Endpoint Link)

Remove Endpeint Object

<

{ ___

Fabric Manager

Target BMC

‘ Initiator BMC ‘ ’ Switch BMC ‘

Figure 14 — Clear target system configuration phase flow

38

Published

Version 1.1.0

DSP2066

Figure 15 shows the flow of optional phase of the initiator system configuration clearing. This phase is performed

Redfish Fabrics White Paper

when no active connection remains between the initiator system and the target system.

Clear initiator system configuration

Fabric Manager ‘ { Target BMC ‘ Initiator BMC

alt

[Last connection

DELETE Zone

e

rminated]

HTTP 201
4...--...--...--...--.. ashssassssassssannssannnaan

DELETE Initi

torEndpeoint
k.

HTTP 201

* ______________________ =9

DELETE Targe

-

Endpoint

Y

HTTP 201
o R B e T e T

Remove Zone Object

< |

Update ComputerSystem Object
(Endpoint Link)

« |

Update Port Object
(Endpoint Link)

Remove Endpoint Object

P—

Remove Endpoint Object

Pa—

L

—

Fabric Manager ‘ [Target BMC ‘ | Initiator BMC ‘

Figure 15 — Clear initiator system configuration phase flow

Switch BMC

Switch BMC

Version 1.1.0

Published

39

Redfish Fabrics White Paper DSP2066

7 Fabric management flows for CXL Type 3 devices

This section provides a comprehensive overview of the essential management workflows for pooled memory
systems, with a particular emphasis on CXL Type 3 devices operating within a CXL fabric environment. These
management flows are critical for ensuring efficient resource utilization, robust connectivity, and secure operations
across the memory fabric. The key operations described include:

* Pooled memory system discovery: The process of identifying and cataloging all available pooled memory
systems, assessing their operational status, and confirming their readiness to offer memory resources for remote
access.

* Host system discovery: The systematic identification and verification of host systems that are compatible with
CXL protocols and capable of mapping and accessing remote memory provided by pooled targets.

» CXL switch system discovery: The mapping and assessment of all CXL switches that serve as intermediaries,
ensuring that the pathways for memory access between hosts and pooled memory systems are functioning
optimally.

» Connection establishment: The coordinated steps involved in allocating memory chunks on pooled systems,
establishing physical and operational connections via CXL switches, and mapping these resources into the
host’'s address space for seamless remote access.

+ Connection Termination: The managed process of disconnecting hosts from remote memory, deallocating
memory resources as appropriate, and updating the CXL fabric topology to maintain system integrity and
resource availability.

Together, these management flows form the foundation for orchestrating resource discovery, connectivity, and
lifecycle management in CXL-based pooled memory environments, supporting both performance and scalability
objectives.

7.1 Pooled memory system discovery (target system)

In the CXL fabric, the discovery process starts with pooled memory systems, as these targets initiate connections to
eligible hosts. Administrators identify and catalog all available pooled memory systems and their associated memory
chunks, check their operational states, and ensure readiness for offering remote memory resources. This makes sure
all resources capable of establishing CXL connections are visible and manageable.

Figure 16 shows the detailed pooled memory system fabric capabilities discovery flow.

40 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Pooled Memory System Discovery

Fabric Manager ' Pool BMC
GET ServiceRoot -]
. .'.'!HE???.'[_.S._'_T s PPN,
GET Fabric ol
. HIP 200 (Fabric) ...
GET Chassis .
L e 0 (EhiaRa) s
GET FabricAdapter
>
H]TP_EQ(]_{F:hri_cﬁdaptlr] _
locop 4 [All Ponts]
GET Port
>
W LE L) S
GET MemoryDomain)
| HTTP 200 MemoryDomain)
loop A [All DIMMs]
M
GET Memory >
| HTTP 200 Memory) ...
GET PCIeDevice
>
WL L it el R
PCIeF ti
GET eFunction &
PR L ot Ll bt ed SRR
loop A4 | [ANCXL Logical Devices]
GET CXLLogicalDevice ol
. HITP 200 (CXLLogicalDevice)
loop { [AllCXL LD Regions]
GET MemeryRegion 2
<. HITP 200 (MemoryRegion)

Version 1.1.0 Fabric Manager | Published Pool BMC 41

Redfish Fabrics White Paper DSP2066

Figure 16 — Pooled memory system CXL fabric capabilities discovery flow

7.2 Host system discovery (initiator system)

Next, discovery focuses on host computer systems whose CPUs can leverage remote memory from pooled targets.
Administrators enumerate compatible hosts, verify support for CXL protocols, and ensure their capability to map and
access remote CXL memory. This step is crucial for confirming only eligible hosts participate in target-initiated
connections.

Figure 17 shows the detailed host system fabric capabilities discovery flow.

42 Published Version 1.1.0

DSP2066

Fabric Manager

Host System Discovery

Server BMC

Y
J

Redfish Fabrics White Paper

loo

—~
#1.]! Server Systems]

GET ServiceRoot

HTTP 200 (ServiceRoot)

GET Fabric

PR e ot

GET System

.
F

_HTTP200 (System)

[All Processaors]

GET Processor

HTTP 200 (Processoar)

loop

A

[All Ports]
GET Port

HTTP 200 (Port) .

Fabric Manager |

Server BMC |

Figure 17 — Host system CXL fabric capabilities discovery flow

7.3 CXL switch system discovery

Discovery of CXL switches involves identifying all intermediary devices that route memory access between pooled
memory targets and host CPUs. Administrators map these switches, assess their connectivity and function, and

confirm that memory access paths are optimized for both performance and reliability.

Figure 18 shows the detailed fabric switch system configuration discovery flow.

Version 1.1.0

Published

43

Redfish Fabrics White Paper

Fabric Manager

Switch System Discovery

—

GET ServiceRoot

>
HTTP 200 (ServieceRooat)

(GET Fabric

Switch BMC |

Mt}

| TILIE o0 (Fabe i)

|00E r

[All Switches)
GET Switch

HTTP 200 (Switch)

A [All Switch Ports]

GET Port

HTTP 200 (Port)

A [AN Switch VCSs]

GET vCs

Cs
Wi L S—

A [All Switch vPPBs]

GET vPPE

HTTP 200 (vPPB)

Figure 18 — Switch system CXL fabric capabilities discovery flow

Fabric Manager

Determine physical
connections topology

Update all Pert objects
with link to remote port

<]

Switch BMC |

DSP2066

44

Published

Version 1.1.0

DSP2066 Redfish Fabrics White Paper

7.4 Connection establishment

In CXL fabrics, establishing a connection involves three main steps:

1. Memory allocation: Allocate memory within the pooled memory system, selecting and preparing
specific chunks for remote access.

2. Physical connectivity: Set up the physical connection between the host and the pooled memory
system via a CXL switch, ensuring active data paths.

3. Operational link: Establish the operational link by negotiating parameters and mapping the memory
region into the host’s address space for remote access.

Note: In CXL fabric setup, the connection is initiated by the target system (pooled memory), not the host. This
process ensures that only available and eligible hosts get access, supporting efficient resource management
and security. The host may accept, partially accept or reject the memory offered by the device during
connection establishment.

The following figures show consecutive phases of the detailed CXL fabric connection establishing flow.

Figure 19 shows the flow of the memory system setup phase.

Version 1.1.0 Published

45

Redfish Fabrics White Paper

Setup pooled memory system for new connection

DSP2066

| Fabric Manager Pool BMC Server BMC | | Switch BMC
[Determine connection feasibility []]
and available resources
loop
POST MemoryChunks =
Create MemoryChunks Object
PATCH MemoryRegion -
Update MemoryChunks Object(s)
(Memaory Region Link)
Update MemoryRegion Object
(Memaory Chunks)
Update MemoryRegion Object
(Memary Extents)
P,
POST TargetEndpoint -
Create Endpoint Object
Update CXLLogicalDevice Object
(Endpoint Link)
Update Port Object
[En%a'nl Link})
POST InitiatorEndpoint
Create Endpoint Object
Bl
POST Zone -
Create Zone Object
=
Ll |
Fabric Manager Pool BMC Server BMC | | Switch BMC
46 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Figure 19 — Pooled memory system setup phase flow

Figure 20 shows the flow of the host system setup phase.

Version 1.1.0 Published 47

Redfish Fabrics White Paper DSP2066

Setup host system for new connection

Fabric Manager | | Pool BMC | ‘ Server BMC] [Switch BMC |

POST InitiaterEndpoint >

Create Endpoint Object

Update Processor Object
{Endpoint Link)

Update Pert Object
{Endpoint Link)

Create Memory Object

Memory object is created to represent
remote memory accessible through fabric

POST TargetEndpoint

Create Endpoint Object

]

B e S P S
POST Zone
Create Zone Object
YLl Y B O,
Fabric Manager | | Pool BMC | ‘ Server BMC ‘ Switch BMC |

Figure 20 — Host system setup phase flow

Figure 21 shows the flow of the switch system setup phase.

48 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Setup switch system for new connection

Fabric Manager | | Pool BMC | | Server BMC | | Swich BMC |

POST TII‘;E‘I:EI'II’PU int

Create Endpoint Object

Update Downstream Port Object
(Endpoint Link)

HTTP 201

POST InitiatorEndpoint

Create Endpeint Object

Update Upstream Pert Object
(Endpoint Link)

HTTP 201

POST Zone

Configure Switch
Create Zone Object

P

Update vPPB Object
{BindingStatus)

Update vPPE Object
{GCXLID)

—

Update vPPB Object
(Port)

]

HTTP 201
o ‘RECEEPEEETPPERICETEET OF EERCTTTETTTRRTTICRTE T EEREETTERTETERRCRERTT

Fabric Manager ‘ ‘ Pool BMC ‘ ‘ Server BMC ‘ ‘ Switch BMC ‘

Version 1.1.0 Published 49

Redfish Fabrics White Paper DSP2066
Figure 21 — Switch system setup phase flow
Figure 22 shows the flow of the initiator system setup phase.
Adding remote CXL memory
Fabric Manager | Pool BMC Server BMC | Switch BMC
] POST connection []]
Create Connection Object
Update TargetEndpeoint Object
{Connection)
«—
Update InitiatorEndpoint Object
(Connection)
101 SERIG] & B e N R S
POST Connection .
Creale Connection Object
Update TargetEndpoint Object
(Connection)
Update InitiatorEndpoint Object
(Connection)
Initiate Dynamic Capacity Add
Update MemoryRegion Object
(Memory Extents reflecting host acceptance)
T L L L
GET MemoryRegion o
MemoryRegion is queried to
get information about memory
capacity accepted by initiator
..;___'_'!HE 200 (MemoryRegion)
Fabric Manager | l Pool BMC] Server BMC | Switch BMC

Figure 22 — CXL memory adding phase flow

50

Published

Version 1.1.0

DSP2066 Redfish Fabrics White Paper

7.5 Connection termination

Terminating a CXL connection also unfolds in three coordinated steps:

1. Disconnect host CPU: The target pooled memory system disconnects the host CPU from the remote
memory chunk, releasing access and disabling the operational link.

2. Deallocate memory chunk: After disconnection, and if data retention is unnecessary, the pooled
memory system can deallocate the memory chunk, erase its contents, and free it for future use.

3. Update CXL topology: If no active connections remain, the administrator updates the topology by
clearing active paths in the CXL switch, ensuring resources are optimally managed and the fabric
maintains its integrity.

Note: In CXL fabric setup, the connection is terminated by the target system (pooled memory), not the host. The
host is notified during termination process and may accept, partially accept or reject the release request. The
device adjusts next steps to the response of the host.

The following figures show consecutive phases of the detailed fabric connection termination flow.

Figure 23 shows the flow of the CXL memory releasing phase flow.

Version 1.1.0 Published 51

Redfish Fabrics White Paper

DSP2066

Remote CXL memory release

Fabric Manager | Pool BMC Server BMC | Switch BMC
] DELETE Cennection] = (]]
Connection js deleted to inform initiator
system that remote memory will be removed
Update TargetEndpeint Object
{Connection)
Update InitiatorEndpoint Object
(Connection)
Remove Cennection Object
S LI L
DELETE Cennection o
Initiate Dynamic Capacity Release
Update MemoryRegion Object
(Memory Extents reflecting host releases)
Update InitiatorEndpoint Object
(Connection)
Update TargetEndpoint Object
(Connection)
Remove Connection Object
JHITP200
GET MemoryRegion e
7 . - N
MemoryRegion is queried to
get information about memory
capacity released by initiator
| HTTP 200 (MemoryRegion)
alt [If content of released memory dogs|not to be preserved]
loop A
DELETE MemoryChunk -
Update MemoryRegien Object
(Memory Chunk)
Remaove MemoryChunk Object
P20

Fabric Manager _

Pool BMC Server BMC | Switch BMC |

52

Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Figure 23 — CXL memory release phase flow

Figure 24 shows the flow of optional phase of the switch system configuration clearing. This phase is performed
when no active connection remains between the initiator system and the target system.

Version 1.1.0 Published 53

Redfish Fabrics White Paper

54

DSP2066

Clear switch system configuration

Fabric Manager‘ IF'uol BMC | Server BMC | ‘smtm BMC |

alt

[All remote CXL
DELETE Zone

- [
n'[umnry rarea:aliﬂ

E g

__ HITP201 L e
DELETE TargetEndpoint o
PPLLLE L4 SO L OO ¥ ISR
DELETE InitiatorEndpoint .

Configure Switch

Update vPPB Object
(BindingStatus)

Update vPPB Object
(GCXLIDY

]

Update vPPB Object
(Port)

]

Remove Zene Object

]

Update DewnstreamPort Object
{(Endpoint Link)

—]

Remove Endpeint Object

Update UpstreamPort Object
(Endpoint Link)

Remove Endpeint Object

Fabric Manager] [Poal BMC} | Server BMC} [Switch BMC]

Published

Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Figure 24 — Clear switch system configuration phase flow

Figure 25 shows the flow of optional phase of the target system configuration clearing. This phase is performed when
no active connection remains between the initiator system and the target system.

Clear pooled memory system configuration

Fabric Manager Pool BMC | Server BMC | | Switch BMC |
alt [All remote CXL memaory released]
DELETE Zene

Y

Remove Zone Object

]

Remove Endpoint Object

]

DELETE TargetEndpoint

Y

Update CXLLogicalDevice Object
{Endpoint Link)

Update Pert Object
(Endpoint Link)

Remove Endpeint Object

—]

Fabric Manager Pool BMC | Server BMC | | Switch BMC

Figure 25 — Clear pooled memory system configuration phase flow

Version 1.1.0 Published 55

Redfish Fabrics White Paper DSP2066

Figure 26 shows the flow of optional phase of the initiator system configuration clearing. This phase is performed
when no active connection remains between the initiator system and the target system.

56 Published Version 1.1.0

DSP2066

Redfish Fabrics White Paper

Clear host system configuration
' Fabric Manager] Pool BMC ' Server BMC | | Switch BMC
- £ H -
alt [All remote CXL rr‘emuryr released]
DELETE Zone
>
Remove Zone Object
HTTP 201
DELETE InitiatorEndpoint
Update Processor Object
(Endpoint Link)
Update Port Object
(Endpoint Link})
%ﬂe Memory Object
Memery was created to represent B
remote memory accessible through fabric
Remove Endpoint Object
TR0 L
DELETE TargetEndpoint N
Remove Endpoint Object
HTTP 201
Fabric Manager J Pool BMC J Server BMC Switch BMC

Figure 26 — Clear host system configuration phase flow

Version 1.1.0

Published

57

Redfish Fabrics White Paper DSP2066

8 Representing different types of fabrics

The following sections contain diagrams for representing different types of fabrics with Redfish.

8.1 Ethernet

Figure 27 shows a sample Ethernet fabric and how the chassis and Fabric resources are related. The sample
fabric contains the following components.

+ Chassis 1 : An enclosure with a network adapter containing a single function and port.
» Chassis 2 : A second enclosure with a network adapter containing a single function and port.

» Fabric Ethernet : The representation of the Ethernet fabric with its switches and configurations.

The ports for the network adapters in chassis 1 and 2 are connected to the ports on the switch found in fabric
Ethernet . The ports for each network adapter also show a relationship to a network device function to show the port
usage of the functions.

Endpoints Ep1 and EP2 are within fabric Ethernet to represent the fabric-view of the network device functions
found in chassis 1 and 2 . Both of these endpoints belong to zone 1, signifying routing is enabled between them.
Zone 1 is also associated with address pool 1 , which contains networking configurations applied to the endpoints
in the zone.

58 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Collection resocurce Service
Root

° ° Ethernet AddressPools °
MetworkAdapters Metworkadapters !

—r
??@? .

Singleton resource

+00

Subordinate resource
---- Related resource

C e e’

'
b Py
k. - : - 1 e e - ”

‘ — -

- - —-“—h— - - -- - -

e T e -
- - _ -
" — s 2%
Figure 27 — An example Ethernet fabric

Figure 28 shows a sample Serial Attached SCSI (SAS) fabric and how the ComputerSystem , Chassis , and Fabric
resources are related. The sample fabric contains the following components.

+ System 1 : A system with a storage controller to access the SAS fabric.
» Chassis 1 : An enclosure containing drives that are accessible over a SAS fabric.

» Fabric sAs : The representation of the SAS fabric with its switches and configurations.

System 1 contains a single storage subsystem with one storage controller. The storage controller is represented in
the fabric as endpoint 1nitiator . The storage controller shows its port is connected to port 3 on the switch found in
fabric sas .

Chassis 1 contains two drives, D1 and D2 . Each drive is represented in the fabric as endpoints p1 and D2 .
These endpoints show connectivity to switch ports 1 and 2.

Version 1.1.0 Published 59

Redfish Fabrics White Paper DSP2066

Fabric sas contains a single zone with all endpoints belonging to the zone. This signifies routing is enabled between
all three endpoints.

Collection resource
Service

Root

Come
<> EDTE s O
== o)
N -

\
™
S ER N O
StorageControllrs _f - wraCmor > (2 (5)
—
-
(1 ==="" o 3
-

Singleton resource

+00

Subordinate resource
----» Related resource

Figure 28 — An example SAS fabric

8.3 PCle

Figure 29 below shows a sample PCI Express(PCle) fabric and how the Fabric resources are related to other types
of resources. The sample fabric contains the following components.

+ System 1 : A system with a storage controller and NIC connected to a PCle switch.

» Fabric pcIe : The representation of the PCle fabric with its switches and configurations.

System 1 contains an Ethernet interface and is represented in the fabric as endpoint NIci . The endpoint shows
connectivity to switch port Down1 .

60 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

System 1 also contains a single storage subsystem with one storage controller. The storage controller is
represented in the fabric as endpoint sAs-HBA . The endpoint shows connectivity to switch port Down2 .

Fabric pcre contains an additional endpoint named Root and represents the PCle root port for system 1. The
endpoint also shows connectivity to switch port up . The fabric also contains a single zone with all endpoints
belonging to the zone. This signifies routing is enabled between all three endpoints.

Service
Root

(1 =
-
S

-y
S

Collection resource

Singleton resource

+00

Subordinate resource
Related resource

v

b

A
Ethernetinterfaces |
=) & 1

e
€

N

Endpoints
StorageControllers 7 : N
S Ly - - SAS-HBA m

(e S D

Figure 29 — An example PCle fabric

8.4 CXL

A Compute Express Link (CXL) fabric is defined in Redfish using the Fabric , Chassis , and ComputerSystem
resources. This section shows the physical topology of an example CXL-based system, the routing of packets
through a CXL switch, access to resources in a CXL fabric, device identification, logical device creation, and how
memory domains and memory chunks are utilized. The CXL to Redfish Mapping Specification provides a mapping of
CXL CCI and FMAPI commands to Redfish resources and properties.

Version 1.1.0 Published 61

Redfish Fabrics White Paper DSP2066

8.4.1 Physical topology

The following figure shows an example Compute Express Link (CXL) fabric consisting of a host CPU with CXL
capabilities, a CXL switch, and a multi-logical device (MLD) connected to the switch.

» System 1 : A Host system containing processors with CXL ports that enables it to be attached to a CXL fabric.

» Fabric cxL : This represents a set of CXL switches and their configurations. The switch can be configured to be
in hierarchy-based routing (HBR) mode or port-based routing (PBR) mode.

» Chassis cxL-MLD1 : A representation of a CXL MLD device with 2 logical devices.

Host Switch Device

CXL-MLD1

- e
-

-
B -

) 4 - Pe
le
= Memory .
SIen. Devices
(1 =D :
-~——-

! 1
! \ Memory
o)) Y
/
INED,
= N
‘Connected * ‘Connected =< , ’ ‘
Port Port
I |
&5 \
AY

o N ~ Links _

||
|
Processors m @ ______ - ———
(o)

PCle
Functions

Figure 30 — CXL physical representation

Figure 30 shows the physical connectivity between different components of the CXL fabric. In a CXL fabric, the
processors should be CXL capabile, i.e., processors should contain CXL ports. Therefore, a fabric adapter is not
required to attach the host to the fabric as the processor itself acts as a fabric adapter. This can be observed on the
left hand side of Figure 30 under Host.

62 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

The far right of Figure 30 represents a CXL memory device. Unlike the host, physical connectivity of the memory
devices to the fabric require a fabric adapter to connect the device to the fabric as observed under Device. The
device chassis cxL-MLD1 represents a multi-logical device (MLD) with two logical devices (LDs), represented by 1
and 6 inthe diagram. A CXL device is also a PCle device and each PCle function corresponds to an LD as shown
in Figure 30. Therefore, the LDs are linked with corresponding PCle functions. If the cxL-MLD1 chassis contain
multiple MLD devices, there will be multiple FabricAdapter resources, MemoryDomain resources, and PCIeDevice
resources associated with each instance of an MLD device. Therefore, the links between the FabricAdapter ,
MemoryDomain , and PCIeDevice resources represent the memory domains and PCle devices that can be reached
from the fabric adapter.

A CXL device can also be directly attached to a host. However, to build a system with large number of devices, it is
typical to use a CXL switch for additional capacity. Additionally, it will be beneficial to use a CXL switch if a CXL
device being connected is an MLD or a multi-headed device (MHD). The CXL switch contains a set of upstream ports
(U1) to which hosts are physically connected, and a set of downstream ports (D1) to which CXL devices are
physically connected.

To summarize, Figure 30 represents a host CPU with a CXL port (1) connected to a CXL switch (cxL1) upstream
port (U1). The CXL switch could have multiple downstream ports of which b1 shown here is connected to a CXL
MLD device cxL-MLD1 . The CXL device is connected to the CXL fabric via a fabric adapter (cxL). The CXL device ia
a PCle device (1) that contains logical devices (LDs) 1 and 6, internally represented as PCle functions 1 and 6
respectively. The cxL-MLD1 chassis contains memory domains and memory chunks that are assignable to different
hosts.

8.4.2 Routing

Figure 31 below shows the routing configuration for fabric cxL1 . The fabric cxL1 can contain two types of
endpoints: initiators and targets. The processors from where a CXL transaction originates can be described as
initiators. The CXL logical device (LD) where CXL transactions terminate can be described as targets. Note that in
advanced configurations, a CXL device can also initiate transactions. This is not covered in this white paper. All
endpoints belong to a zone of type ZzoneofEndpoints . The traffic can flow between any pair of endpoints present
within this zone.

Each intermediate CXL switch in the path from the initiator to the target is configured as host-based routing (HBR).
This configuration includes binding a virtual PCI-PCI Bridge (vPPB) to a downstream port through which the device is
accessible. The vPPB belongs to a virtual CXL switch (VCS) that is part of the virtual PCle hierarchy to which the
host belongs. If the CXL switches are configured as port-based routing (PBR), the appropriate PBR tables in the
intermediate CXL switches and access control lists (ACLs) of the global FAM device (GFD) should be configured
appropriately.

There is a special endpoint described in the fabric that represents a management device called fabric manager
endpoint shown inred as T3 in Figure 31. This endpoint is used to configure the device and must have LD-ID of
FFFFh . A similar endpoint is present in the CXL switch and is used to configure the CXL switch, shown in green as
T4 .

Version 1.1.0 Published 63

Redfish Fabrics White Paper DSP2066

Service
Root

Host Device

Chassis
& &
. <»(PooledCxL™<
AN Type2 ‘s
~

”

~
"-C'E”tf_‘ ns, ~

Fabric
Processors Adapters
CPU1 Domains
') 1
. \ S@ieo-o
Bhtity Link, i) ~ \ 3
Y] Y ”]
\ - 1
U \ Memory
Ports I \ Chanks
S by &5
’
\ | GexuDof - N
V| LD's \ ° 1, \\
% | connected Memory ' \
Chanks
1 1
o
N % Functions
- - Jon
- Links
N =
- e B B €
-~ ~ Entity Linke = = = = _-___,~‘ '*-..___________,f
= ~Entity Link= = = = ==~
Figure 31 — CXL fabric representation for routing
8.4.3 Access

Figure 32 shows access control to the resources in the cxL1 fabric. This is achieved by creating a Connection
resource and adding the two endpoints to be connected. Figure 32 shows this mapping with endpoints 11 and T1 .
It also assumes the physical connections between CPU and LDs represented in Figure 31 exist. The Connection
resource creation should be followed by including memory chunk 1 to the connection resource in case of static
memory allocation. However, in case of dynamic memory allocation, new memory chunks should be exposed to

cpul enabling access the memory and auto populates the memory chunk information using the extents allocated by
the device. This is described further in the CXL memory chunks section.

64 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

Host

Service
Root
Device

Switch Chassis PooledCXL
ﬂ T

Systems

- PocledCXL 7
\ Type2 Y
» g

~
~Contains ~

Fabric
Processors Adapters -
i Memory o1&
D, 45 enpors T D> o
PP B P :
arge! 1
Endpoint : \ Memory
A Connections

Initiator /
Endpoint — = z N\

Ports \ ¥ Y
\ Memory [l 1
o \ Chanks \ |
‘ (1) '
~ o ! A !
~Memory Chunk _ — \ ° o BCle
~

Information \

- ——

Figure 32 — CXL access control

8.5 Gen-Z

The following figures show a sample Gen-Z fabric and how the ComputerSystem , Chassis , and Fabric resources
are related. The sample fabric contains the following components.

+ System 1 : A system with a fabric adapter to access resources on the Gen-Z fabric.

» Chassis Gen-z : An enclosure containing memory that is partitioned into chunks that are accessible over a Gen-
Z fabric.

» Fabric Gen-z : The representation of the Gen-Z fabric with its switches and configurations.

Figure 33 shows the physical connectivity between the devices on the fabric. System 1 and chassis Gen-z both
contain a fabric adapter with one port. Fabric Gen-z contains a single switch with two ports. The ports on system 1
and chassis Gen-z connect to the ports on the switch found in the fabric Gen-z .

Version 1.1.0 Published 65

Redfish Fabrics White Paper DSP2066

. Om O O
Service e \
Root

Fabricﬁdapters I
Collection resource m
Singleton resource
e 7 MemoryChunks m

Subordinate resource
Related resource WG

— -

+00

v

Figure 33 — An example Gen-Z fabric, physical connectivity

Figure 34 shows routing and addressing configurations for the fabric Gen-z . Fabric Gen-z contains two endpoints:
one named Initiator to representthe connectivity of system 1 to the fabric, and one named Target to represent
the connectivity of chassis Gen-z to the fabric. Fabric Gen-z contains a single zone where both endpoints belong to
the zone to show that traffic is routable between endpoints Initiator and Target . Fabric Gen-z also contains a
single address pool to control Gen-Z Component Identifier and Subnet Identifier assignments to the endpoints

Initiator and Target .

66 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

. O 2O O
|
— Zones
Service e
Root

T
by -

s ~
<P < T
FabricAdapters o

Collection resource m
s

Singleton resource
Subordinate resource
Related resource m

Figure 34 — An example Gen-Z fabric, routing and addressing

+00

v

Figure 35 shows access control to resources for the fabric Gen-z . Fabric Gen-z contains one connection named
Connl . Connl is configured to allow the endpoint Initiator to access memory chunks chunkl, Chunk2 , and

chunk3 when connecting to endpoint Target over the fabric.

Version 1.1.0 Published

67

Redfish Fabrics White Paper DSP2066

GO G
i
\
H
Service e
Root
gD - e D
Fa bricAdapters ‘
n

O /i
7 n

Collection resource @ 11
Singleton resource
= J MemoryChunks m !
Subordinate resource @
----» Related resource m

Figure 35 — An example Gen-Z fabric, access control

+00

68 Published Version 1.1.0

DSP2066 Redfish Fabrics White Paper

9 Fabric model and composability

Redfish has a data model for composability where clients are able to specify components in a service and build
systems on demand. There are aspects of the fabric model that overlap concepts in composability, such as
establishing routing paths between components. While there is overlap in some of the usage, both models can
coexist on the same service. In cases where both models are present on the same service, performing requests in
one area of the model might have impacts on the other. For example, if a client performs a composition request to
build a new system, the service may perform fabric configurations and routing in order to satisfy the client's request,
which are then reflected in the fabric model.

Version 1.1.0 Published 69

Redfish Fabrics White Paper DSP2066

10 Appendix A: References

"Simple SAS Fabric" and "NVMe-oF JBOF" Mockups: redfish.dmtf.org/redfish/v1

DMTF DSP0288, CXL to Redfish Mapping Specification, https://www.dmtf.org/dsp/DSP0288

DMTF DSP2050, Redfish Composability White Paper, https://www.dmtf.org/dsp/DSP2050

"Compute Express Link Specification": computeexpresslink.org/cxl-specification

"Serial Attached SCSI Specification": www.opencompute.org/documents/datacenter-sas-sata-device-
specification-rev-1-0-pdf

"PCI Express Specification": pcisig.com/specifications/pciexpress

70

Published Version 1.1.0

http://redfish.dmtf.org/redfish/v1
https://www.dmtf.org/dsp/DSP0288
https://www.dmtf.org/dsp/DSP2050
https://computeexpresslink.org/cxl-specification
https://www.opencompute.org/documents/datacenter-sas-sata-device-specification-rev-1-0-pdf
https://www.opencompute.org/documents/datacenter-sas-sata-device-specification-rev-1-0-pdf
https://pcisig.com/specifications/pciexpress

DSP2066 Redfish Fabrics White Paper

11 Appendix B: Change log

Version Date Description
1.1.0 2025-12-04 Updated to incorporate Compute Express Link (CXL) technology.
1.0.0 2022-04-07 Initial release.

Version 1.1.0 Published 71

	Redfish Fabrics White Paper
	Foreword
	Acknowledgments
	1 Introduction
	2 Fabric representation
	3 Endpoints
	4 Connectivity
	4.1 Switches
	4.2 Ports
	4.3 Port metrics
	4.4 Network and fabric adapters
	5 Fabric configuration and routing
	5.1 Zones
	5.2 Address pools
	5.3 Connections
	6 Fabric management flows
	6.1 Generic fabric management flows
	6.1.1 Initiator systems discovery
	6.1.2 Target systems discovery
	6.1.3 Switch system discovery
	6.1.4 Connection establishment
	6.1.5 Connection termination

	7 Fabric management flows for CXL Type 3 devices
	7.1 Pooled memory system discovery (target system)
	7.2 Host system discovery (initiator system)
	7.3 CXL switch system discovery
	7.4 Connection establishment
	7.5 Connection termination
	8 Representing different types of fabrics
	8.1 Ethernet
	8.2 SAS
	8.3 PCIe
	8.4 CXL
	8.4.1 Physical topology
	8.4.2 Routing
	8.4.3 Access

	8.5 Gen-Z
	9 Fabric model and composability
	10 Appendix A: References
	11 Appendix B: Change log

