
1

2

3

Document Identifier:

DSP2058 Date: 2020-09-04

 Version: 1.0.0

4 Security Protocol and Data Model (SPDM)
Architecture White Paper

5
6
7
8
9
10

11
12

13

14

Supersedes: None

Document Class: Informative

Document Status: Published

Document Language: en-US

16 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

17 Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

18 For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

19 This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

15 Copyright © 2020 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

2 Published Version 1.0.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

20 CONTENTS

1 Foreword . 5

1.1 Acknowledgments . 5

2 Abstract . 7

3 References. 8

4 Terms and definitions . 9

5 Introduction . 10

5.1 Typographical conventions . 10

5.2 Authentication . 10

5.3 Security Platform and Data Model (SPDM) architecture . 10

5.4 Threat model . 11

6 SPDM concepts . 15

6.1 PMCI stack . 15

6.2 Other bindings . 16

7 Certificates . 17

7.1 Certificate requirements . 18

7.2 Example leaf certificate . 19

7.3 Certificate provisioning . 20

7.4 Certificate slots . 21

7.5 Device key pair . 21

7.5.1 Key provisioning . 21

7.5.1.1 Internal key generation . 22

7.5.1.2 External key provisioning . 22

7.5.2 Key protection . 22

8 SPDM messages . 24

8.1 Message details. 24

8.1.1 GET_VERSION and VERSION exchange . 24

8.1.2 GET_CAPABILITIES and CAPABILITIES exchange . 24

8.1.2.1 CAPABILITIES flags . 24

8.1.3 NEGOTIATE_ALGORITHMS and ALGORITHMS exchange . 25

8.1.4 GET_DIGESTS and DIGESTS exchange. 25

8.1.5 GET_CERTIFICATE and CERTIFICATE exchange . 26

8.1.6 CHALLENGE and CHALLENGE_AUTH exchange . 26

8.1.7 GET_MEASUREMENTS and MEASUREMENTS exchange . 26

8.1.7.1 Summary measurements . 27

8.1.7.2 Firmware debug indication . 27

8.1.8 VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE exchange 27

8.1.9 RESPOND_IF_READY sequence . 27

8.2 Message exchanges . 28

8.2.1 Multiple Requesters . 28

8.2.2 Message timeouts and retries . 29

9 Attestation and security policies. 30

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 3

9.1 Certificate authorization policy. 30

9.2 Measurement. 31

9.3 Firmware provisioning . 32

9.4 Roots of trust . 32

10 PMCI standards overview . 33

10.1 SPDM . 33

11 Change log . 34

12 Bibliography . 35

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

4 Published Version 1.0.0

21 1 Foreword

22

23

24

25

The Platform Management Components Intercommunications (PMCI) Working Group of the DMTF prepared the
Security Protocol and Data Model (SPDM) Architecture White Paper (DSP2058).

DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and
interoperability. For information about the DMTF, see DMTF.

The PMCI Working Group defines standards to address inside the box communication interfaces among the
components of the platform-management subsystem.

1.1 Acknowledgments

26

27

The DMTF acknowledges the following individuals for their contributions to this document.

 Editors:

• Brett Henning — Broadcom Inc.

• Masoud Manoo — Lenovo

• Viswanath Ponnuru — Dell Technologies

28 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Lee Ballard — Dell Technologies

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yuval Itkin — Mellanox Technologies

• Theo Koulouris — Hewlett Packard Enterprise

• Luis Luciani — Hewlett Packard Enterprise

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Edward Newman — Hewlett Packard Enterprise

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 5

https://www.dmtf.org/

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

6 Published Version 1.0.0

29 2 Abstract

30 This white paper presents an overview of the SPDM architecture, its goals, and a high-level summary of its use within
a larger solution. The intended target audience for this white paper includes readers interested in understanding the
use of the SPDM to facilitate security of the communications among components of platform management
subsystems.

31 Note: This white paper refers to this architecture as the Security Protocol and Data Model (SPDM) architecture,
or SPDM.

32 The PMCI architecture focuses on intercommunications among different platform-management subsystem
components in a standards-based manner across any management component implementation, independent of the
operating system state. The SPDM architecture focuses on security relative to these communications.

33 Servers, desktop systems, mobile systems, thin clients, bladed systems, and other types of devices might contain a
platform management subsystem. This white paper is not a replacement for the individual SPDM Specifications, but
provides an overview of how the specifications operate within a larger solution.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 7

34 3 References

35 The following referenced documents are indispensable for the application of this white paper. For dated or versioned
references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without
a date or version, the latest published edition of the referenced document, including any corrigenda or DMTF update
versions, applies.

• DMTF DSP0236, MCTP Base Specification 1.3.0

• DMTF DSP0274, Security Protocol and Data Model (SPDM) Specification 1.0.0

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification 1.0.0

• DMTF DSP2015, Platform Management Component Intercommunication (PMCI) Architecture White Paper 2.0.0

• NIST SP 800-57, NIST SP 800-57 Part 1 Rev. 4, Recommendation for Key Management, Part 1: General

• NIST SP 800-90, NIST SP 800-90A Rev. 1, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators

• NIST SP 800-193, NIST SP 800-193, Platform Firmware Resiliency Guidelines

• RFC5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

8 Published Version 1.0.0

https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0275_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP2015_2.0.0.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://tools.ietf.org/html/rfc5280
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip

36 4 Terms and definitions

37 This white paper uses the terms that Security Protocol and Data Model (SPDM) Specification 1.0.0 and Security Protocol
and Data Model (SPDM) over MCTP Binding Specification 1.0.0 describe.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 9

38 5 Introduction

39 5.1 Typographical conventions

• Document titles are marked in italics.

• Important terms that are used for the first time are marked in italics.

• ABNF rules are in a mono-spaced font.

40 5.2 Authentication

41 Enterprise computer platforms include many devices that contain mutable components. Each mutable component
presents a potential vector for attack against the device itself or even the use of a device to attack another device in
the computer. To defend against these attacks, the Security Protocol and Data Model (SPDM) Specification enables
industry-standard implementations to challenge a device to prove its identity and the correctness of its mutable
component configuration.

42 An SPDM-compliant device generates, or is provisioned with, an asymmetric device key pair. The device uses the
device private key to sign requests, which proves knowledge of the private key. The Requester uses the device public
key to authenticate the device-generated signature. For more details about the message exchanges, see SPDM
messages.

43 5.3 Security Platform and Data Model (SPDM) architecture

44 A platform management subsystem in a modern enterprise computer platform is comprised of a set of components,
which communicate to perform management functions within the platform. In many cases, these communications
occur between components that are comprised of one or more mutable elements, such as firmware or software, re-
programmable logic (FPGA), and re-programmable microcode. Further, a computer platform might contain
immutable components, which are comprised of fixed logic or fixed firmware or software.

45 In such a platform management subsystem, stakeholders have a desire to establish trust, and to reestablish trust over
time, with a component before you can securely communicate with that component.

46 The DMTF SPDM provides an authentication mechanism to establish trust, which uses proven cryptographic methods
that protect the authentication process.

47 For the purposes of this white paper, a component can encompass a number of device types, including PCIe
adapters, Baseboard Management Controllers, purpose built authentication devices, Central Processing Units,
platform components that are attached over I2C, and more. Each of these components represents a potential attack
vector, through the insertion of counterfeit devices, the compromise of firmware, or other attacks.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

10 Published Version 1.0.0

48 The SPDM enables these mechanisms to authenticate a component:

1. The retrieval of a signed measurement payload of mutable components from a component. These
measurements can represent a firmware revision, component configuration, the Root of Trust for
Measurements, hardware integrity, and more.

2. A certificate authority (CA) provisions and manages the retrieval of a device certificate, which provides
a protocol to CHALLENGE a component to prove that it is the device that provided the certificate.

49 Finally, SPDM includes provisions for future expansion, by adding operations and capabilities while maintaining
compatibility with existing deployments.

50 5.4 Threat model

51 The risk assessment identifies threats and vulnerabilities related to the SPDM interactions between device endpoints.
Figure 1 — SPDM threat model shows the SPDM interaction between device endpoints.

52 Figure 1 — SPDM threat model

53

54 Scope of this risk assessment:

55 The scope of this assessment includes security controls of device comprises data model security, authentication
and authorization. Any limitations of the physical I2C, I3C, PCIe, GenZ, or CXL network channel shall not apply to
this threat assessment.

56

57

Table 1 — Threat modeling assessment and mitigations describes the threat modeling assessment and mitigations:

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 11

Item number Description STRIDE category Justification mitigation

1

Packets or messages without sequence numbers or timestamps can be
captured and replayed in a wide variety of ways. Implement or use a
communication protocol that supports anti-replay techniques, which
investigate sequence numbers before timers, and strong integrity.

Tampering

To prevent replay attacks, the
Requester and Responder shall
use the nonce of a random
number.

2

58 Attackers who can send a series of packets or messages might overlap
data.

59 For example, packet 1 might be 100 bytes starting at offset 0.

60 Packet 2 might be 100 bytes starting at offset 25. Packet 2 overwrites 75
bytes of packet 1.

61 Ensure that you both reassemble data before filtering it and explicitly
handle these sorts of cases.

Tampering

62 To prevent intruders from
tampering with exchanged
data, use one or more of these
strategies:

• Strong authorization
schemes

• Hashes

• Message authentication
codes

• Digital signatures

3

Custom authentication schemes are susceptible to common weaknesses,
such as weak credential change management, credential equivalence,
easily guessable credentials, absent credentials, downgrade
authentication, or a weak credential change management system.
Consider the impact and potential mitigations for your custom
authentication scheme.

Information
Disclosure

63 To prevent attacks, use one or
more of these strategies as
supported by the endpoint
devices:

• Stronger authentication
schemes

• Versions

• Cryptographic algorithms

4
Requester or Responder might be able to impersonate the context of
the Requester or Responder to gain additional privilege.

Elevation of
Privilege

Out of scope. The endpoint that
receives the request or
response must mitigate this
activity. The contents of the
message are not interpreted at
the MCTP layer.

5
Requester or Responder claims that it did not receive data from a source
outside the trust boundary. Consider using logging or auditing to record
the source, time, and summary of the received data.

Repudiation

64 To mitigate attacks, use one or
more of these strategies:

• Digital signatures

• Timestamps

• Audit trails

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

12 Published Version 1.0.0

Table 1 — Threat modeling assessment and mitigations

Item number Description STRIDE category Justification mitigation

6

65 Credentials on the wire are often subject to sniffing by an attacker. Are
the credentials re-usable or re-playable? Are the credentials included in
a message? For example, sending a ZIP file with the password in the
email.

66 Use strong cryptography for the transmission of credentials. Use the OS
libraries, if possible, and consider cryptographic algorithm agility rather
than hard-coding a choice.

Information
Disclosure

To mitigate this attack, use
stronger authentication
schemes and cryptographic
algorithms.

7
Requester or Responder crashes, halts, stops, or runs slowly. In all cases,
an availability metric is violated.

Denial of Service

Out of Scope. To address
uncorrectable errors or any type
of crash, the Requester or
Responder shall implement
recovery mechanisms.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 13

Item number Description STRIDE category Justification mitigation

8
External agent interrupts data flowing across a trust boundary in either
direction.

Denial of Service

67 If physical access is possible
and the Start of Message and
End of Message bits are not
protected, a message can be
dropped for one of the
following reasons:

a.68 Receipt of the
end packet for
a message.

b.69 Receipt of a
new start
packet.

c.70 Timeout
waiting for a
packet.

d.71 Out-of-
sequence
packet
sequence
number.

e.72 Incorrect
transmission
unit.

f.73 Bad message
integrity check.

74 Only the whole MCTP message
is secure. The individual MCTP
packets are not secure.

9
Requester or Responder might be able to remotely execute code for the
Responder.

Elevation of
Privilege

Out of scope. The endpoint that
receives the request or
response must mitigate this
activity. The contents of the
message are not interpreted at
the MCTP layer.

10
Attacker might pass data into The Requester or Responder to change
the flow of program execution within Requester or Responder to the
attacker's choosing.

Elevation of
Privilege

Out of scope. The endpoint that
receives the request or
response must mitigate this
activity. The contents of the
message are not interpreted at
the MCTP layer.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

14 Published Version 1.0.0

75 6 SPDM concepts

76 6.1 PMCI stack

77 Figure 2 — SPDM over MCTP shows the relationship among SPDM messages and other messages that use MCTP.
Messages that the SPDM Specification defines use MCTP message type 5, and might be used in conjunction with
other MCTP message types. Messages that provide authentication support use MCTP message type 5. MCTP message
type 6 is reserved for future versions of the SPDM Specification.

78 Figure 2 — SPDM over MCTP

79

80 The Security Protocol and Data Model Specification (DSP0274) defines the contents of the messages, supported
exchanges, and requirements.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 15

81 The Security Protocol and Data Model (SPDM) over MCTP Binding Specification (DSP0275) defines the method for
transporting SPDM messages over an MCTP transport.

82 For details on the relationships among PMCI specifications, see the Platform Management Component
Intercommunications (PMCI) Architecture White Paper (DSP2015).

83 6.2 Other bindings

84 Other standards bodies can create binding specifications that enable SPDM on transports other than those defined
by DMTF. While many of the concepts in this white paper might apply to those implementations, the details of non-
DMTF SPDM bindings are beyond the scope of this white paper. For links to other binding specifications, see Other
binding specifications.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

16 Published Version 1.0.0

85 7 Certificates

86 If a Responder supports the certificate-related SPDM GET_DIGESTS , GET_CERTIFICATE , and CHALLENGE requests, the
Responder must be provisioned with at least one certificate chain. If a Responder only supports GET_MEASUREMENTS , it
does not require a certificate chain or need to comply with the rest of this clause.

87 SPDM supports the concept of certificate slots, where each certificate slot can contain a different certificate chain.
SPDM 1.0 supports up to eight certificate slots, though only slot 0 is required.

88 The certificate chain in slot 0 has a special role in the system because it is provisioned during manufacturing. The
certificate chain in slot 0 represents the manufacturer, and this certificate chain is immutable and cannot be changed.
This certificate chain is also known as the manufacturer’s certificate chain.

89 During the certificate-related SPDM request sequence, the Requester attempts to determine the identity of the
Responder based on the certificate chain that the Responder returns. To report its identity, the Responder returns a
chain of linked certificates that include at least a device certificate and a certificate that the Requester trusts. The
certificate that the Requester trusts could be a root certificate or an intermediate certificate.

90 Figure 3 — Example certificate chain shows an example certificate chain:

91 Figure 3 — Example certificate chain

92

Root Certificate

Intermediate
Certificate(s)

Device Certificate

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 17

93 Table 2 — Certificate chain elements summarizes the roles of the elements that Figure 3 — Example certificate chain
shows.

94 Table 2 — Certificate chain elements

Certificate chain element Description

Root certificate First, or highest, certificate in the chain. Contains a record of the issuing authority and is self-signed.

Intermediate certificate
Certificate chain typically contains one or more of these certificates, which protect the root certificate because
the root certificate might be kept offline. Also, enables a more complex hierarchy of certificates; for instance,
enables the allocation of separate intermediate certificates to different product divisions within a company.

Device certificate
Identifies the component. Should not change over the life of a component, unless the component is re-
provisioned.

95 Each certificate in the chain can be verified by checking the signature in the certificate, because the private key of the
certificate above it in the chain signs each certificate, working its way back to the root certificate. If each certificate in
the chain verifies correctly, the individual certificates in the chain may be trusted. By performing this verification
process, the Requester can determine whether the device certificate has been tampered with, and by extension,
whether the Responder is the expected individual component. Additional details related to certificate chain validation
are found in USB Authentication.

96 Slot 0 is typically immutable but can be cleared with a re-provisioning command (out of scope), after which it must
be loaded with a new certificate chain.

97 7.1 Certificate requirements

98 Certificate chains follow the X.509 v3 format, and are DER-encoded. Certificate chains can be long compared to other
SPDM messages, so Requesters should ensure that buffers are large enough to receive them.

99 The leaf certificate in the certificate chains must conform to the SPDM Specification, clause 8.2.3 format. The
certificate format guidance in SPDM is based on RFC5280. Table 3 — Optional leaf certificate attributes describes the
leaf certificate attributes that the SPDM Specification specifies as optional.

100 Table 3 — Optional leaf certificate attributes

Attribute Description

Validity (notBefore)
If present, it is recommended that the notBefore field of the Validity attribute should be set to
19700101000000Z , which is the minimum Validity date. As most Requester and Responder pairs do not contain a

real-time clock, the use of the minimum Validity date ensures that the Requester ignores the notBefore field.

Validity (notAfter)
If present, it is recommended that the notAfter field of the Validity attribute should be set to 99991231235959Z ,
which is the maximum Validity date. As most Requester and Responder pairs do not contain a real-time clock,
the use of the maximum Validity date ensures that the Requester ignores the notAfter field.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

18 Published Version 1.0.0

Attribute Description

Subject Alternative

Name
Recommended. It enables reporting of more detailed and standardized component identification.

101 The SPDM Specification details the Subject Alternative Name for components that use a DMTF-specified transport
mechanism. Bodies that create additional binding specifications for SPDM should specify appropriate guidelines for
the Subject Alternative Name and Common Name fields. All bodies that use the SPDM Specification should retain
the Serial Number field in the certificate definition.

102 A certificate should use the Other Name field in the Subject Alternative Name to provide information about the
manufacturer, product, and serial number.

103 The OID in the othername field is 1.3.6.1.4.1.412.274.1.0 . This value represents a UTF8String in the
<manufacturer>:<product>:<serialNumber> format.

104 The X.509v3 certificates can include the Authority Key Identifier , which assists authentication of the certificate
chain, which is especially important for the certificate that is immediately below the root certificate because the
Authority Key Identifier can help the Requester locate the root certificate in its trust store.

105 The following example string shows the format:

othername:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

106 7.2 Example leaf certificate

107 The following example shows a leaf certificate:

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 8 (0x8)

Signature Algorithm: ecdsa-with-SHA256

Issuer: C = CA, ST = NC, L = city, O = ACME, OU = ACME Devices, CN = CA

Validity

Not Before: Jan 1 00:00:00 1970 GMT

Not After : Dec 31 23:59:59 9999 GMT

Subject: C = US, ST = NC, O = ACME Widget Manufacturing, OU = ACME Widget Manufacturing Unit, CN = w0123456789

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 19

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:

e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:

5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:

ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:

23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:

52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:

a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:

1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:

ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:

98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:

a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:

95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:

70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:

a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:

2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:

66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:

01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:

e8:67

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

X509v3 Key Usage:

Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:

othername:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256

Signature Value:

30:45:02:21:00:fc:8f:b0:ad:6f:2d:c3:2a:7e:92:6d:29:1d:

c7:fc:0d:48:b0:c6:39:5e:c8:76:d6:40:9a:12:46:c3:39:0e:

36:02:20:1a:ea:3a:59:ca:1e:bc:6d:6e:61:79:af:a2:05:7c:

7d:da:41:a9:45:6d:cb:04:49:43:e6:0b:a8:8d:cd:da:e

108 7.3 Certificate provisioning

109 If a component supports the SPDM certificate related commands, the manufacturing process for that component
must provision a certificate chain to each component instance.

110 Some methods to create a certificate chain include:

• Generate a certificate signing request (CSR) by using a component’s firmware.

• Export the information required to form a CSR to an external utility, which generates the CSR.

• If a component uses an externally provisioned key, generate the necessary certificate as part of the external key-
generation process and load the generated key and certificate chain into the component. See Key provisioning.

111 Any approach for generating a certificate chain should occur in a secure facility. Keep intermediate certificates above

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

20 Published Version 1.0.0

the device certificate in a secure environment that is not directly accessible to the component so that the component
cannot sign a device CSR.

112 7.4 Certificate slots

113 In a component, each certificate chain occupies a slot and the certificate chain that is stored in slot 0 is provisioned
by the component manufacturer.

114 Some use cases use certificate slots 1 to 7. For instance, an administrator can claim ownership of a component by
installing a certificate chain belonging to the component owner in one or more of the additional slots (certificate slots
1 to 7). The use of these additional slots would allow the administrator to authenticate the component using a
certificate chain that is owned and managed by the administrator.

115 A certificate chain is implicitly tied to a pairing of BaseAsymAlgo and BaseHashAlgo , as the ALGORITHMS message
exchange defines. The negotiated BaseAsymAlgo and BaseHashAlgo fields must match the algorithms used to create
the certificate chain on the Responder. For compatibility purposes, a component vendor can provision a component
with certificate chains that correspond to multiple BaseAsymAlgo and BaseHashAlgo pairings. For instance, a
component can have one set of certificate chain slots that it uses to pair TPM_ALG_ECDSA_ECC_NIST_P384 and
TPM_ALG_SHA3_384 , and another set of certificate chain slots that it uses to pair TPM_ALG_RSASSA_3072 and
TPM_ALG_SHA_256 .

116 The mechanisms to provision a certificate chain to any slot or to manage multiple sets of certificate chain slots are
beyond the scope of this white paper and are not part of the SPDM.

117 7.5 Device key pair

118 Each component must contain a public and private key pair, or the device key pair, that is statistically unique to that
component.

119 The component must retain the same device key pair for the life of the component. Any operation that alters the
device key pair invalidates any certificate chain that uses it, which causes the component to fail any authentication
request that depends on the current certificate chain. The SPDM Specification details support for up to eight
certificate chain storage slots.

120 Only one device key pair should be used for any of the occupied certificate chain storage slots. The SPDM
Specification supports multiple encryption and hashing algorithms. The component manufacturer chooses the
algorithm from the available list in accordance with the manufacturer’s needs.

121 7.5.1 Key provisioning

122 There are two primary options for provisioning a device key pair to a component, though there are multiple

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 21

mechanisms available to accomplish each of the options. Any component that supports SPDM certificate or
measurement-related command sets must provision device key pairs.

123 7.5.1.1 Internal key generation

124 If capable, a component should generate its own device key pair. This process must be a repeatable process that
always results in the generation of the same device key pair, as this is the foundation of the component’s identity. A
component that generates its own device key pair can follow a model, such as the Trusted Computing Group’s DICE
model, that results in a key pair of similar quality.

125 A component that generates its own device key pair must:

• Be provisioned with or generate and retain a cryptographically strong random number that can be used as the
Unique Device Secret (UDS).

• Have sufficient processing power or hardware support to generate a key pair by using the chosen algorithm.

• Be able to protect some, or all, source data that the key generation process uses.

• Have a sufficiently strong source of entropy, if using an ECDSA algorithm.

126 7.5.1.2 External key provisioning

127 If a component cannot meet the requirements for internal key generation, it must use an external provisioning
process. The external provisioning process allows the component manufacturer to rely on external tools and
components, such as a Hardware Security Module (HSM) to meet requirements that the component cannot meet on
its own. It is also possible to use the external tools and components to meet the portion of the requirements that the
component cannot meet. For instance, a manufacturer can use an external tool to provide a true random number to a
component that cannot generate sufficient entropy on its own, and use the component to complete the rest of the
process.

128 External key provisioning has a trade-off because the component is in an open state until the component is
provisioned with the device key pair. To maintain trust in the component, the supply chain and manufacturing
facilities must be highly secure.

129 Any random number used as part of the key generation process should be generated in a manner that complies with
the NIST SP800-90 standards.

130 7.5.2 Key protection

131 When using SPDM, the device key pair forms the foundation for proof of identity, and the device private key must be
protected from disclosure to an unauthorized party. A component should ensure that the foundation for the device
key pair cannot be accessed or replicated if an attacker gains access to the component. The protection mechanisms
should protect the secret values from access through debug ports, an API, or other interfaces.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

22 Published Version 1.0.0

• The basis of the device identity.

• The device private key.

• Any values that were used to derive or store the protected values.

133 When the device private key is in decrypted form, it should only be stored in a component’s internal memory. To
protect the device private key, the component should clear it from memory as soon as it is no longer needed. A
component can use non-volatile memory to store its device key pair but the non-volatile memory should be
protected against unauthorized access, including attempts to directly access the non-volatile memory, such as
removing a flash part.

134 This protection can be implemented through a hardware mechanism that prevents unauthorized access. If the device
key pair storage is protected through encryption, the encryption key must not be one of the device keys because this
violates the NIST SP800-57 requirement that a key is used for only one purpose.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 23

132 Some items that the component should protect are:

135 8 SPDM messages

136 8.1 Message details

137 8.1.1 GET_VERSION and VERSION exchange

138 The VERSION exchange creates agreement between the Requester and the Responder on the major SPDM version
that they use for future messages. The VERSION exchange remain backward compatible in all future version of SPDM.

139 A Requester must not issue commands that the Responder does not support. The supported command set is
determined by the agreed SPDM version and the Responder's supported capabilities.

140 8.1.2 GET_CAPABILITIES and CAPABILITIES exchange

141 The CAPABILITIES exchange enables a Requester to query the SPDM capabilities that the Responder supports. The
goals of the exchange are:

• Enable a Requester to discover which optional message exchanges and capabilities the Responder supports

• Allow a Responder to inform the Requester of its cryptographic timeout requirements

142 The CTExponent enables a Responder to return its required cryptographic operation time. Because cryptographic
operations can take longer than a non-cryptographic exchange, CTExponent enables the cryptographic timeout to
respond to the needs of the individual Responder. Because the SPDM supports a variety of component types, the
CTExponent values for separate components in a system can vary greatly.

143 A Requester must not issue commands that the Responder does not support. The supported command set is
determined by the agreed SPDM version and the Responder's supported capabilities.

144 Per the CAPABILITIES flags, most commands in the SPDM Specification are optional. These commands are optional to
allow implementation flexibility for Responders. The Requester has responsibility to ensure that the Responder
supports enough optional commands to satisfy the Requester's security policy.

145 8.1.2.1 CAPABILITIES flags

146 This clause provides background information on each of the optional capabilities in the Flags field in the
CAPABILITIES response message.

147 Table 4 — Optional Flag field capabilities describes the optional capabilities in the Flags field in the CAPABILITIES

response message:

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

24 Published Version 1.0.0

148 Table 4 — Optional Flag field capabilities

Capability Description

CACHE_CAP

If the Responder can cache certain messages through a reset, the Requester might skip issuing the cached requests after a
reset and instead rely on cached values. If a Responder that sets CACHE_CAP=1 has lost its cached values, it responds to the
next request, other than GET_VERSION , with an ERROR of UnexpectedResult , which indicates to the Requester that it is
required to restart from GET_VERSION .

CERT_CAP
GET_DIGESTS and GET_CERTIFICATE requests are related to each other. If a Responder supports CERT_CAP , it should also

support CHAL_CAP and/or MEAS_CAP .

CHAL_CAP

Support for the CHALLENGE exchange is optional because a Responder might not support the cryptographic operations or
other capabilities required for the CHALLENGE_AUTH response. A Requester might support a standalone CHALLENGE or use
MEASUREMENTS to accomplish a challenge.

MEAS_CAP

Support for Measurements is optional because a Responder might not support the cryptographic operations or other
capabilities required for the MEASUREMENTS response. A Requester might either support a standalone CHALLENGE or use
MEASUREMENTS to accomplish a challenge.

MEAS_FRESH_CAP
Indicates whether the Responder supports the ability to recompute measurements in response to a GET_MEASUREMENTS

request. The value of this capability can influence the Requester's policy.

149 8.1.3 NEGOTIATE_ALGORITHMS and ALGORITHMS exchange

150 The ALGORITHMS exchange enables the Requester and Responder to agree on the cryptographic algorithms that the
components use for subsequent exchanges. The Responder should select the strongest algorithms that the Requester
provides. After the ALGORITHMS exchange is complete, the Requester and Responder have an agreed set of
algorithms to use in subsequent message exchanges. Certain values in the response message depend on fields in the
CAPABILITIES exchange.

151 The extended ExtAsym and ExtHash algorithm fields in the ALGORITHMS exchange enable expansion to additional
algorithms to meet custom requirements. The Requester and Responder should prefer the BaseAsymAlgo and
BaseHashAlgo fields if they can agree on them.

152 If the Responder has set CERT_CAP=1 and/or CHAL_CAP=1 , the Responder must select algorithms that correspond to a
certificate chain that the Responder possesses. To ensure compatibility, the Requester should support a variety of
algorithms.

153 8.1.4 GET_DIGESTS and DIGESTS exchange

154 The DIGESTS exchange enables the Requester to retrieve the digests (hashes) of the certificate chain(s) stored on the
Responder. The Requester can use the DIGESTS exchange to determine if the certificate chain(s) stored on the
Responder have changed. The Requester should store at least the public key from the leaf certificates along with the

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 25

digest(s). The Requester can use the DIGESTS exchange as a shortcut to skip the retrieval of individual certificate
chains, as the retrieval process can be slow on slower interfaces.

155 The DIGESTS response is not signed, so it is susceptible to replay attacks. It should be followed with a CHALLENGE or
GET_MEASUREMENTS command to ensure that the Responder knows the private key.

156 8.1.5 GET_CERTIFICATE and CERTIFICATE exchange

157 The CERTIFICATE exchange enables a Requester to retrieve one or more certificate chains from the Responder. The
CERTIFICATE response is potentially very large so a Requester might use the Offset and Length fields in the
GET_CERTIFICATE request to issue multiple requests.

158 8.1.6 CHALLENGE and CHALLENGE_AUTH exchange

159 The CHALLENGE exchange enables the Requester to ensure that the Responder knows the private key associated with
a certificate chain. The CHALLENGE request and CHALLENGE_AUTH response contain several fields of note:

• Both the request and response messages contain Nonce fields, which are random numbers.

• The response contains a CertChainHash field, which the Requester can use to refute the DIGESTS or
CERTIFICATE response.

• The response might contain a MeasurementSummaryHash field, which is a measurement of the concatenation of all
elements of the TCB for the Responder.

• The OpaqueLength and OpaqueData fields are intended to be defined by a binding specification. The specific
location of these fields ensures that they are included in the CHALLENGE_AUTH signature.

• The Signature field is generated according to the signature-generation process in the CHALLENGE_AUTH

signature generation clause of the SPDM Specification. The goal of the signature is to show that the Responder is
the entity that has been responding to the Requester for earlier message exchanges, and that the Responder
knows the private key associated with the public key in the leaf certificate of the certificate chain.

160 8.1.7 GET_MEASUREMENTS and MEASUREMENTS exchange

161 The MEASUREMENTS exchange enables the Requester to query the measurements of the firmware/software or
configuration of a Responder.

162 In the GET_CAPABILITIES and GET_MEASUREMENTS requests, the signature is optional. In some cases, Responders might
not be able to create signatures, but can still return measurements. A paranoid Requester might refuse to operate
with a Responder that does not support signed measurements. When specified, the MEASUREMENTS response is
signed, showing that the Responder originated all MEASUREMENTS responses and has knowledge of the private key
that is associated with the public key in the leaf certificate of the specified certificate chain.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

26 Published Version 1.0.0

163 8.1.7.1 Summary measurements

164 The MEASUREMENTS exchange does not support a mechanism to request a summary measurement option, meaning
that a Requester cannot request that a Responder hash all its measurements into a single hash of those
measurements. A Requester might use such a mechanism to periodically check for changes in the underlying
measurements, potentially triggering a policy response. If a Requester requires a summary measurement capability,
the Requester should assemble its own summary measurement from the MEASUREMENTS responses from a Responder.
The Requester can check the stored summary by issuing one or more new GET_MEASUREMENTS requests, regenerating
the summary measurement and checking the new summary measurement against the previous summary
measurement.

165 8.1.7.2 Firmware debug indication

166 The MEASUREMENTS response includes a mechanism to return a measurement of firmware configuration. If a device
typically operates in a mode that restricts debug access, it is recommended that the device use at least one
measurement to indicate whether debug restrictions are in place. In this case, the device should alter a firmware
configuration measurement when it enters debug mode. This measurement should remain altered until the device is
reset. If the user subsequently disables debug mode, the device should continue to report an altered firmware
configuration measurement until reset to ensure that both:

167 The MEASUREMENTS exchange does not support a mechanism to request a summary measurement option, meaning
that there is not a mechanism to request that a Responder hash together all of its measurements and return a single
hash of those measurements. A Requester may wish to implement a summary measurement mechanism on its own
to periodically check for changes in the underlying measurements, such as firmware configuration changes that
happen outside of the purview of Requester. A Requester can also use a summary measurement mechanism to
monitor a component for firmware updates that happen outside of the purview of the Requester, though a firmware
update and component reset also causes the component to return ErrorCode = RequestResync . Note, periodic
polling for measurements and use of summary measurements are optional behaviors.

168 If a Requester requires a summary measurement capability, the Requester should assemble its own summary
measurement from the MEASUREMENTS responses from a given Responder. The Requester can check the stored
summary by issuing one or more new GET_MEASUREMENTS requests, regenerating the summary measurement, and
checking the new summary measurement against the previous summary measurement.

169 8.1.8 VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE exchange

170 The VENDOR_DEFINED_RESPONSE exchange enables a Requester and Responder pair to exchange information that the
SPDM Specification does not otherwise cover.

171 8.1.9 RESPOND_IF_READY sequence

172 The RESPOND_IF_READY sequence allows for situations when the Responder cannot respond it a reasonable time. The

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 27

time to a final response, which fulfills a RESPOND_IF_READY request, is still bound by the timing parameters that the
SPDM defines.

173 The design intent of the RESPOND_IF_READY sequence is to enable components to cooperate with a larger system
while performing long operations, such as signing. One reason to use RESPOND_IF_READY during a long operation is
to release a shared bus to enable other components to use the bus during the operation.

174 8.2 Message exchanges

175 The SPDM specifies ordering rules for message exchanges and the transcript hash that is generated from those
message exchanges. To reduce the complexity associated with message sequencing, the SPDM Specification defines
valid sequences including options for use cases that cache certain responses.

176 During the SPDM message exchanges, the Requester can drop communication with a Responder if the Responder
violates a policy that the Requester holds, such as when the Responder negotiates too low of a version or the
Responder returns too many errors.

177 The SPDM Specification defines some messages as optional, such as CHALLENGE , which permits a variety of
implementation permutations. Ultimately, the Requester implementation controls the policy that it wishes to use and
the SPDM Specification grants the Requester some degree of implementation latitude. For instance, a paranoid
Requester might reissue all requests on every reset while a more permissive Requester might cache certificate digests
and skip the CHALLENGE on each reset. The Responder should make no assumptions about the security policy of the
Requester.

178 8.2.1 Multiple Requesters

179 The tracking for message sequences are on a Requester and Responder pair, and a Responder can optionally support
more than one Requester and Responder pair. If a Responder receives requests from Requesters A and B, for instance,
the Responder must track message payloads for the successful message exchanges with both Requester A and
Requester B. A Responder has limited resources for tracking message exchanges, and might take steps to both limit
the number of supported Requesters and reclaim resources that it has used to track exchanges with a given
Requester. The exact mechanisms to do so are outside of the scope of the SPDM Specification.

180 If a Responder supports communication with only a single Requester at a time, the Responder does not need to track
the Requesters because communication with a new Requester starts with the GET_VERSION request and causes the
Responder to discard any existing tracked messages. This type of implementation can cause problems in complex
environments due to constantly restarting message sequences.

181 For implementations that use an MCTP transport, the MCTP endpoint ID is the recommended method for tracking
the Requester. For other binding specifications, the binding specification should document the method.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

28 Published Version 1.0.0

182 8.2.2 Message timeouts and retries

183 The Timing specification for SPDM Messages table in the SPDM Specification lists a number of interrelated timeout
values. The RTT value is the worst-case value for a message round trip based on the transport. The RTT value might
be less than the CT value. If so, the Responder must respond with ErrorCode = ResponseNotReady within the RTT-
specified time.

184 This mechanism ensures that Responders release the bus in a timely manner. After a Responder returns
ErrorCode = ResponseNotReady , the Requester can issue a request to another Responder or wait for the time specified

by RDTExponent and issue RESPOND_IF_READY . During this time, the Requester should not issue any request to the
Responder other than RESPOND_IF_READY .

185 The SPDM Specification allows for retries of messages after a timeout has occurred. In a retry scenario, a Requester
retries the same request as before. Specifically, a retry of a CHALLENGE or GET_MEASUREMENTS request reuses the same
nonce as the request that timed out so that the transcript hash calculation is not disrupted. A paranoid Requester can
choose to not retry a request and instead return to GET_VERSION and restart the message sequence.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 29

186 9 Attestation and security policies

187 This clause provides guidelines on:

• Possible attestation policies that can be implemented by using SPDM 1.0.

• Security policies that can accompany such an implementation.

188 This clause is not exhaustive and should be considered informative.

189 9.1 Certificate authorization policy

190 Trusting the device certificate and its security policy is confined to the authentication initiator's security policies. The
SPDM authentication process involves retrieving the device certificate digests first and comparing them with the
cached digests, or the trust store database. If not found in the cached trust store database, the Requester sends the
GET_CERTIFICATE request. The responder returns the certificate based on the requested length and offset, as Figure 4

— Example certificate authentication policy shows. It is recommended that the Requester perform certificate
verification procedures before storing the corresponding digest to the trust store.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

30 Published Version 1.0.0

192

193 The following initiator security policies can verify device certificates:

1. Generate warnings for components that do not support the SPDM.

2. Generate warnings for components that have certificate chains where root CA is not in the initiator's
trust store database.

3. Quarantine components that have certificate chains where the root CA certificate is not in the trust
store database.

194 9.2 Measurement

195 In addition to providing the hardware identity through a certificate, an authenticated endpoint could also be queried
to provide the firmware identity. The firmware identity in this case is a term that is used to refer to firmware code and
configuration data. The value provided by the endpoint is called a measurement. Using the GET_MEASUREMENTS

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 31

191 Figure 3 — Example certificate authentication policy

command, the Requester can ask for an individual measurement or all the measurements with a single command. The
returned values could be in form of a hash value or a bit stream and the requester can specify if the measurements
need to be signed to verify that the measurements originated with the Responder endpoint.

196 The Requester can, in turn, compare the returned measurements to a known value. The Requester can either compare
the measurements locally or use a remote attestation server to validate the results.

197 9.3 Firmware provisioning

198 Care must be taken when the component firmware is being updated. As NIST SP800-193 indicates, the

199 ...central tenet to the firmware protection guidelines is ensuring that only authentic and authorized firmware
update images may be applied to platform devices.

200 The update process should follow procedures to ensure that only authenticated firmware is installed.

201 9.4 Roots of trust

202 The foundation of component trust relies on the internal security of the component. During the component-boot
process, measurement of each firmware stage must be done to ensure that the firmware is authenticate and no
malicious code has been injected into the firmware image. Examples of how to accomplish this task include using a
static root of trust that can measure subsequent stages of the boot process. If the signature verification fails during
the boot process, the component must halt or boot to a recovery partition that also conforms to the measured
signatures.

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

32 Published Version 1.0.0

203 10 PMCI standards overview

204 The PMCI standards are composed of technologies defined in a suite of standard specifications.

205 10.1 SPDM

206 SPDM specifies a method for managed device authentication, firmware measurement, and certificate management.
SPDM defines the formats for both request and response messages that enable the end-to-end security features
among the platform-management components.

207 The SPDM Specifications include:

• Security Protocol and Data Model (SPDM) Specification 1.0.0

• Security Protocol and Data Model (SPDM) over MCTP Binding Specification 1.0.0

208 DMTF partners with other standards bodies to enable those bodies to create SPDM bindings for their specifications.
Other binding specifications should provide the following guidance:

• Alterations to the Subject Alternative Name and Common Name fields in the certificate.

• Guidance on the vendor identification in the certificate.

• Bus timing and timeout requirements, including RTT.

• Use of OpaqueData fields in CHALLENGE_AUTH and MEASUREMENTS responses.

• Method to track messages from multiple Requesters.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 33

209 11 Change log

Version Date Description

1.0.0 2020-05-13

Security Protocol and Data Model (SPDM) Architecture White Paper DSP2058

34 Published Version 1.0.0

210 12 Bibliography

211 DMTF DSP4004, DMTF Release Process 2.4, https://www.dmtf.org/sites/default/files/standards/documents/
DSP4004_2.4.pdf.

DSP2058 Security Protocol and Data Model (SPDM) Architecture White Paper

Version 1.0.0 Published 35

https://www.dmtf.org/sites/default/files/standards/documents/DSP4004_2.4.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP4004_2.4.pdf

	Security Protocol and Data Model (SPDM) Architecture White Paper
	1 Foreword
	1.1 Acknowledgments
	2 Abstract
	3 References
	4 Terms and definitions
	5 Introduction
	5.1 Typographical conventions
	5.2 Authentication
	5.3 Security Platform and Data Model (SPDM) architecture
	5.4 Threat model
	6 SPDM concepts
	6.1 PMCI stack
	6.2 Other bindings
	7 Certificates
	7.1 Certificate requirements
	7.2 Example leaf certificate
	7.3 Certificate provisioning
	7.4 Certificate slots
	7.5 Device key pair
	7.5.1 Key provisioning
	7.5.1.1 Internal key generation
	7.5.1.2 External key provisioning

	7.5.2 Key protection

	8 SPDM messages
	8.1 Message details
	8.1.1 GET_VERSION and VERSION exchange
	8.1.2 GET_CAPABILITIES and CAPABILITIES exchange
	8.1.2.1 CAPABILITIES flags

	8.1.3 NEGOTIATE_ALGORITHMS and ALGORITHMS exchange
	8.1.4 GET_DIGESTS and DIGESTS exchange
	8.1.5 GET_CERTIFICATE and CERTIFICATE exchange
	8.1.6 CHALLENGE and CHALLENGE_AUTH exchange
	8.1.7 GET_MEASUREMENTS and MEASUREMENTS exchange
	8.1.7.1 Summary measurements
	8.1.7.2 Firmware debug indication

	8.1.8 VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE exchange
	8.1.9 RESPOND_IF_READY sequence

	8.2 Message exchanges
	8.2.1 Multiple Requesters
	8.2.2 Message timeouts and retries

	9 Attestation and security policies
	9.1 Certificate authorization policy
	9.2 Measurement
	9.3 Firmware provisioning
	9.4 Roots of trust
	10 PMCI standards overview
	10.1 SPDM
	11 Change log
	12 Bibliography

