
Document Identifier: DSP2050

Date: 2017-06-30

Version: 1.0.0

Redfish Composability White Paper

Supersedes: None

Document Class: Informative

Document Status: Published

Document Language: en-US

Copyright Notice

Copyright © 2017 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

Redfish Composability White Paper DSP2050

2 Published Version 1.0.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1. Composition Service .. 8

2. Resource Blocks .. 8

3. Resource Zones ... 10

4. Collection Capabilities .. 12

4.1. Collection Capabilities Annotation .. 12

4.2. Collection Capabilities Object ... 13

5. Specific Composition .. 16

6. General Workflow for a Client... 18

6.1. Identify Whether Redfish Service Supports Composition ... 18

6.2. Read the List of Resources Available for Composition ... 18

6.3. Create a Composed Resource ... 22

6.4. Update a Composed Resource... 24

6.5. Delete a Composed Resource.. 24

7. References ... 25

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 3

Foreword

The Redfish Composability White Paper was prepared by the Scalable Platforms Management Forum of

the DMTF.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Redfish Composability White Paper DSP2050

4 Published Version 1.0.0

http://www.dmtf.org/

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:

• Rafiq Ahamed K - Hewlett Packard Enterprise

• Jeff Autor - Hewlett Packard Enterprise

• Michael Du - Lenovo

• Jeff Hilland - Hewlett Packard Enterprise

• John Leung - Intel Corporation

• Steve Lyle - Hewlett Packard Enterprise

• Michael Raineri - Dell Inc.

• Paul von Behren - Intel Corporation

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 5

Introduction

As the world is transitioning to a software-defined paradigm, there is a need for hardware management

capabilities to evolve to address that shift in the data center. In the context of disaggregated hardware,

management software needs the ability to conjoin the independent pieces of hardware, such as trays,

modules, silicon, etc., together to create a composed logical system. These logical systems function just

like traditional industry standard rackmount systems. This allows users to dynamically configure their

hardware to meet the needs of their workloads. In addition, users are able to manage the life cycle of their

systems, such as adding more compute to their logical system, without having to physically move any

equipment.

Redfish is an evolving hardware management standard that is designed to be flexible, extensible, and

interoperable. Redfish contains a data model that is used to describe composable hardware, as well as

an interface for clients to manage their compositions. This document helps implementers and clients

understand the Redfish Composability data model as well as how composition requests are expected to

be formed.

Redfish Composability White Paper DSP2050

6 Published Version 1.0.0

Modeling for Composability

If a Redfish service supports Composability, the Service Root resource will contain the

CompositionService property. Within the Composition Service, a client will find the inventory of all

components that can be composed into new things (Resource Blocks), descriptors containing the binding

restrictions of the different components (Resource Zones), and annotations informing the client as to how

to form composition requests (Collection Capabilities). The following sections detail how these things are

reported by a Redfish service.

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 7

1. Composition Service

The Composition Service is the top level resource for all things related to Composability. It contains status

and control indicator properties such as Status and ServiceEnabled. These are common properties

found on various Redfish service instances. It also contains links to its collections of Resource Blocks and

Resource Zones through the properties ResourceBlocks and ResourceZones respectively. Resource

Blocks are described in the Resource Blocks section, and Resource Zones are described in the Resource

Zones section.

Example Composition Service Resource:

{

"@odata.context": "/redfish/v1/$metadata#CompositionService.CompositionService",

"@odata.type": "#CompositionService.v1_0_0.CompositionService",

"@odata.id": "/redfish/v1/CompositionService",

"Id": "CompositionService",

"Name": "Composition Service",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"ServiceEnabled": true,

"ResourceBlocks": {

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks"

},

"ResourceZones": {

"@odata.id": "/redfish/v1/CompositionService/ResourceZones"

}

}

2. Resource Blocks

Resource Blocks are the lowest level building blocks for composition requests. Resource Blocks contain

status and control information about the Resource Block instance. They also contain the list of

components found within the Resource Block instance. For example, if a Resource Block contains one

Processor and four DIMMs, all of those components will be part of the same composition request, even if

only one of them is needed. In a completely disaggregated system, a client would likely find one

component instance within each Resource Block. Resource Blocks, and their components, are not in a

state where system software is able to use them until they belong in a composition. For example, if a

Resource Block contains a Drive instance, the Drive will not belong to any given Computer System until a

composition request is made that makes use of its Resource Block.

Redfish Composability White Paper DSP2050

8 Published Version 1.0.0

The property ResourceBlockType contains classification information about the types of components

found on the Resource Block that can be used to help clients quickly identify a Resource Block. Each

ResourceBlockType is associated with specific schema elements that will be contained within that

Resource Block. For example, if the value Storage was found in this property, a client would know that

this particular Resource Block contains storage related devices, such as storage controllers or drives,

without having to drill into the individual component resources. The value Compute has special meaning;

this is used to describe Resource Blocks that have bound processor and memory components that

operate together as a compute subsystem.

The property CompositionStatus is an object that contains two properties: CompositionState and

Reserved. CompositionState is used to inform the client of the state of this Resource Block

regarding its use in a composition. Reserved is a writeable flag that clients can use to help convey that

this Resource Block has been identified by a client, and that the client will be using it for a composition. If

a second client that is attempting to identify resources for a composition sees the Reserved flag set to

true, the second client should consider it allocated and not use it; the second client should move on to the

next Resource Block for further processing. The Redfish service does not provide any sort of protection

with the Reserved flag; any client can change its state and it is up to clients to behave fairly.

There are several arrays of links to various component types, such as the Processors, Memory, and

Storage arrays. These links ultimately go to the individual components that are within the Resource

Block. These components are made available to the new composition after a composition request is

made. The ComputerSystems array is used when a Resource Block contains one or more whole

Computer Systems. This gives the client the ablity to create a single composed Computer System from a

set of smaller Computer Systems.

The Links property contains references to related resources. The Chassis array contains the Chassis

instances that contain the resources within the Resource Block. The ComputerSystems array contains

the Computer System instances that are consuming the Resource Block as part of a composition. The

Zones array contains links to the Resource Zones that contain the Resource Block.

Example Resource Block Resource:

{

"@odata.context": "/redfish/v1/$metadata#ResourceBlock.ResourceBlock",

"@odata.type": "#ResourceBlock.v1_0_0.ResourceBlock",

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock3",

"Id": "DriveBlock3",

"Name": "Drive Block 3",

"ResourceBlockType": ["Storage"],

"Status": {

"State": "Enabled",

"Health": "OK"

},

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 9

"CompositionStatus": {

"Reserved": false,

"CompositionState": "Composed"

},

"Processors": [],

"Memory": [],

"Storage": [

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock3/

Storage/Block3NVMe"

}

],

"Links": {

"ComputerSystems": [

{

"@odata.id": "/redfish/v1/Systems/ComposedSystem"

}

],

"Chassis": [

{

"@odata.id": "/redfish/v1/Chassis/ComposableModule3"

}

],

"Zones": [

{

"@odata.id": "/redfish/v1/CompositionService/ResourceZones/1"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceZones/2"

}

]

}

}

In the above example, the Resource Block is of type Storage, and it contains a single storage entity.

From the CompositionStatus, it is noted that the Resource Block is currently used in a composition,

and in the Links section, it is being used by the Computer System ComposedSystem.

3. Resource Zones

Resource Zones describe to the client the different composition restrictions of the Resource Blocks

reported by the service; Resource Blocks that are reported in the same Resource Zone are allowed to be

composed together. This prevents clients from having to perform try-and-fail logic to figure out the

different restrictions that are in place for a given implementation. In addition, each Resource Zone

Redfish Composability White Paper DSP2050

10 Published Version 1.0.0

leverages the Collection Capabilities annotation to describe what each Resource Zone is able to

compose. This is described in more detail in the Collection Capabilities section.

Example Resource Zone Resource:

{

"@odata.context": "/redfish/v1/$metadata#Zone.Zone",

"@odata.type": "#Zone.v1_1_0.Zone",

"@odata.id": "/redfish/v1/CompositionService/ResourceZones/1",

"Id": "1",

"Name": "Resource Zone 1",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Links": {

"ResourceBlocks": [

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

ComputeBlock1"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock3"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock4"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock5"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock6"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock7"

}

]

},

"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_0_0.CollectionCapabilities",

"Capabilities": [

{

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 11

"CapabilitiesObject": {

"@odata.id": "/redfish/v1/Systems/Capabilities"

},

"UseCase": "ComputerSystemComposition",

"Links": {

"TargetCollection": {

"@odata.id": "/redfish/v1/Systems"

}

}

}

]

}

}

In the above example, the Resource Blocks ComputeBlock1, DriveBlock3, DriveBlock4,

DriveBlock5, DriveBlock6, and DriveBlock7 are all in the same Resource Zone. In addition, the

Collection Capabilities for the Resource Zone shows that this Resource Zone is capable of producing

Computer Systems for the collection /redfish/v1/Systems.

4. Collection Capabilities

Collection Capabilities will be found on Resource Zones and on the Resource Collections themselves.

This is because Collection Capabilities can be applied to things outside of the context of Composability.

Collection Capabilities can be identified by the @Redfish.CollectionCapabilities annotation in

the response body. This annotation is used to inform the client how to form the request body for a create

(POST) operation to a given collection based on a specified Use Case, which will result in a new member

being added to the given collection.

4.1. Collection Capabilities Annotation

Within the Collection Capabilities annotation, there is a single property called Capabilities. This is an

array to identify all of the capabilities for a given Resource Zone or Resource Collection. Inside each

instance of the Capabilities array is an object to describe a particular capability.

The CapabilitiesObject property contains a URI to the underlying object instance that describes the

payload format. This is described further in the next section.

The UseCase property is used to inform the client of the context of a particular create (POST) operation.

The table below shows the different values for UseCase as used by Composability. Each value

corresponds with a specific type of resource being composed in addition to a type of composition for the

request.

Redfish Composability White Paper DSP2050

12 Published Version 1.0.0

UseCase Value Composed Resource Type of Composition

ComputerSystemComposition ComputerSystem Specific

The TargetCollection property inside the Links object contains the URI of the Resource Collection

that accepts the given capability. A client will be able to perform a create (POST) operation against this

URI as described by the contents of the CapabilitiesObject.

Example Collection Capabilities Annotation:

{

"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_0_0.CollectionCapabilities",

"Capabilities": [

{

"CapabilitiesObject": {

"@odata.id": "/redfish/v1/Systems/Capabilities"

},

"UseCase": "ComputerSystemComposition",

"Links": {

"TargetCollection": {

"@odata.id": "/redfish/v1/Systems"

}

}

}

]

},

...

}

The above annotation contains a single capability. From the UseCase, this capability describes how to

form a create (POST) request to create a new Computer System from a set of specific Resource Blocks.

In addition, the TargetCollection property indicates that a client can make the request to the

Resource Collection /redfish/v1/Systems; new instances of the resource created by the client will be

found in that collection.

4.2. Collection Capabilities Object

The Collection Capabilities Object follows the schema of the new resource a client is able to create. For

example, if the object is describing how to form a request to create a new Computer System instance, the

object's type will be ComputerSystem.vX_Y_Z.ComputerSystem, where vX_Y_Z is the version of

ComputerSystem supported by the service.

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 13

The object itself contains annotated properties the client can use in the body of the create (POST)

operation. It also lists optional properties, and any restrictions properties may have after the new resource

is created. The table below describes the different annotations used on the properties within the

Collection Capabilities Object.

Property Annotation Description

Redfish.RequiredOnCreate
The client must provide the given property in the body of

the create (POST) request.

Redfish.OptionalOnCreate
The client may provide the property in the body of the

create (POST) request.

Redfish.SetOnlyOnCreate

If the client has a specific value needed for the property, it

must be provided in the body of the create (POST)

request; this property is likely a "Read Only" property after

the resource's creation.

Redfish.UpdatableAfterCreate
The client is allowed to update the property after the

resource is created.

Redfish.AllowableValues
The client is allowed to use any of the specified values in

the body of the create (POST) request for the given

property.

Example Collection Capabilities Object:

{

"@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",

"@odata.type": "#ComputerSystem.v1_4_0.ComputerSystem",

"@odata.id": "/redfish/v1/Systems/Capabilities",

"Id": "Capabilities",

"Name": "Capabilities for the Zone",

"Name@Redfish.RequiredOnCreate": true,

"Name@Redfish.SetOnlyOnCreate": true,

"Description@Redfish.OptionalOnCreate": true,

"Description@Redfish.SetOnlyOnCreate": true,

"HostName@Redfish.OptionalOnCreate": true,

"HostName@Redfish.UpdatableAfterCreate": true,

"Boot@Redfish.OptionalOnCreate": true,

"Boot": {

"BootSourceOverrideEnabled@Redfish.OptionalOnCreate": true,

"BootSourceOverrideEnabled@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.OptionalOnCreate": true,

"BootSourceOverrideTarget@Redfish.UpdatableAfterCreate": true,

Redfish Composability White Paper DSP2050

14 Published Version 1.0.0

"BootSourceOverrideTarget@Redfish.AllowableValues": [

"None",

"Pxe",

"Usb",

"Hdd"

]

},

"Links@Redfish.RequiredOnCreate": true,

"Links": {

"ResourceBlocks@Redfish.RequiredOnCreate": true,

"ResourceBlocks@Redfish.UpdatableAfterCreate": true

}

}

In the above example, three properties are marked with the Redfish.RequiredOnCreate annotation:

Name, Links, and ResourceBlocks inside of Links. All other properties are annotated with

Redfish.OptionalOnCreate. However, both Name and Description are annotated with

Redfish.SetOnlyOnCreate, meaning they cannot be modified after the new resource is created.

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 15

Types of Compositions

The Redfish Composability data model provides flexibility for service implementers to report different

Composition Types based on their needs. The service informs the client of the type of composition

request based on the UseCase property found in the Collection Capabilities Annotation. The existing

Redfish Composability model has defined one type called Specific Composition.

5. Specific Composition

The Specific Composition allows clients to create and manage the life cycle of composed resources

through predefined Resource Blocks and Resource Zones. Because Resource Blocks are self-contained

entities within a Resource Zone, clients are able to pick and choose specific Resource Blocks for their

composition request.

An example of choosing a Resource Block according to the binding rules and providing details of specific

Resource Blocks in the a create (POST) request can be found in the Create a Composed Resource

section.

Another industry standard server design that fits into the example of Specific Composition is defined in

the Bladed Partitions Mockup. In this example, a Multi-Blade Enclosure consisting of a disaggregated

hardware chassis can be bound together to create what are called partitioned servers. These partitions

can be composed using the Specific Composition. The Redfish service implements each blade within the

enclosure as a Resource Block with ResourceBlockType set to either Compute or Storage, and

allows the clients to combine multiple Resource Blocks to create a composed Computer System, which is

a partitioned server.

Example Create (POST) Body for a Specific Composition:

{

"Name": "Sample Composed System",

"Links": {

"ResourceBlocks": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

BladeComputeBlock1" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

BladeComputeBlock5" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

Redfish Composability White Paper DSP2050

16 Published Version 1.0.0

http://www.computerworld.com/article/2593387/server-partitioning.html

BladeStorageBlock8" }

]

}

}

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 17

Appendix

6. General Workflow for a Client

Here are the few operations that a client is expected to use during creation and management of

Composed Systems using the Redfish Composition models. The examples below expect the client will

have a valid Redfish session or Basic Authentication header.

6.1. Identify Whether Redfish Service Supports Composition

Application code should always start at the root: /redfish/v1/

1. Read the Service Root Resource.

1. Find the CompositionService property.

2. Perform a GET on the URI given by that property.

3. Look for the value of ServiceEnabled attribute to be true.

Client| | Redfish Service

|---- GET /redfish/v1/CompositionService ----->|

|<--- { ..., "ServiceEnabled": true, ... } <---|

6.2. Read the List of Resources Available for Composition

The client needs to understand the composition model reported by the Composition Service by reading

the Resource Blocks and Resource Zones collections. This relationship will be used to execute the

reported UseCase supported by the Redfish service described later in the Create a Composed Resource

section.

1. Read the Resource Blocks.

1. Perform a GET on the Composition Service URI.

2. Look for the ResourceBlocks property.

3. Perform a GET on that URI to get a list of all Resource Blocks.

4. For accessing details about a particular Resource Block, perform a GET on the

associated URI listed for a given entry in the Members array.

Redfish Composability White Paper DSP2050

18 Published Version 1.0.0

5. The CompositionStatus property in each Resource Block will identify the availablity

of the Resource Block in composition requests.

▪ Clients should take note of this when making decisions on what Resource

Blocks to use in a composition request.

▪ Depending on what is contained in the CompositionStatus property, a

given Resource Block may not be currently available for composition.

{

"@odata.type": "#ResourceBlockCollection.ResourceBlockCollection",

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks",

"Name": "Resource Block Collection",

"Members@odata.count": 9,

"Members": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

ComputeBlock1" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

ComputeBlock2" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock3" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock4" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock5" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock6" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock7" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

NetworkBlock8" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

OffloadBlock9" }

]

}

2. Read the Resource Zones.

1. Perform a GET on the Composition Service URI.

2. Look for the ResourceZones property.

3. Perform a GET on that URI to get a list of all Resource Zones.

4. For accessing details about a particular Resource Zone, perform a GET on the

associated URI listed for a given entry in the Members array.

{

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 19

"@odata.type": "#ZoneCollection.ZoneCollection",

"@odata.id": "/redfish/v1/CompositionService/ResourceZones",

"Name": "Resource Zone Collection",

"Members@odata.count": 2,

"Members": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceZones/1" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceZones/2" }

]

}

3. Read the Capabilities for each Resource Zone.

1. Perform a GET on each Resource Zone using the URI found in each entry of the

Members array.

2. Look for the @Redfish.CollectionCapabilities annotation in each Resource

Zone.

▪ The UseCase property will be used later when a client has determined what

type of composition to create.

▪ The TargetCollection property will be used later for making the

composition request.

{

"@odata.context": "/redfish/v1/$metadata#Zone.Zone",

"@odata.type": "#Zone.v1_1_0.Zone",

"@odata.id": "/redfish/v1/CompositionService/ResourceZones/1",

"Id": "1",

"Name": "Resource Zone 1",

"Status": {},

"Links": {},

"@Redfish.CollectionCapabilities": {

"@odata.type":

"#CollectionCapabilities.v1_0_0.CollectionCapabilities",

"Capabilities": [

{

"CapabilitiesObject": { "@odata.id": "/redfish/v1/Systems/

Capabilities" },

"UseCase":"ComputerSystemComposition",

"Links": {

"TargetCollection": { "@odata.id": "/redfish/v1/

Systems" },

"RelatedItem": [

{ "@odata.id": "/redfish/v1/CompositionService/

Redfish Composability White Paper DSP2050

20 Published Version 1.0.0

ResourceZones/1" }

]

}

}

]

}

}

4. Read each Capabilities Object.

1. Perform a GET on the URI listed in the CapabilitiesObject property for each of

the Capabilities.

{

"@odata.context": "/redfish/

v1/$metadata#ComputerSystem.ComputerSystem",

"@odata.type": "#ComputerSystem.v1_4_0.ComputerSystem",

"@odata.id": "/redfish/v1/Systems/Capabilities",

"Id": "Capabilities",

"Name": "Capabilities for the Zone",

"Name@Redfish.RequiredOnCreate": true,

"Name@Redfish.SetOnlyOnCreate": true,

"Description@Redfish.OptionalOnCreate": true,

"Description@Redfish.SetOnlyOnCreate": true,

"HostName@Redfish.OptionalOnCreate": true,

"HostName@Redfish.UpdatableAfterCreate": true,

"Boot@Redfish.OptionalOnCreate": true,

"Boot": {

"BootSourceOverrideEnabled@Redfish.OptionalOnCreate": true,

"BootSourceOverrideEnabled@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.OptionalOnCreate": true,

"BootSourceOverrideTarget@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.AllowableValues": [

"None",

"Pxe",

"Usb",

"Hdd"

]

},

"Links@Redfish.RequiredOnCreate": true,

"Links": {

"ResourceBlocks@Redfish.RequiredOnCreate": true,

"ResourceBlocks@Redfish.UpdatableAfterCreate": true

}

}

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 21

6.3. Create a Composed Resource

For building a composition request, the client can take the following steps:

1. List all Resource Blocks that belong to a particular Resource Zone by doing a GET on their

collection URIs as described in the above example.

◦ When reading the Resource Blocks, take note of the CompositionStatus property.

◦ Depending on what is contained in the CompositionStatus property, a given

Resource Block may not be currently available for composition.

2. (Optional) Reserve each Resource Block that has been identified for the composition request.

◦ Perform a PATCH on each Resource Block with Reserved set to true.

◦ This step should be done in scenarios where multiple clients may be making

composition requests.

3. Identify the needs of a specific composition UseCase.

1. Perform a GET on the desired Resource Zone.

2. Find the matching UseCase value in the @Redfish.CollectionCapabilities

annotation.

▪ For example, look for the value ComputerSystemComposition if you are

trying to compose a new Computer System from a specific list of Resource

Blocks.

3. Perform a GET on the URI found in the property CapabilitiesObject.

4. Mark down all of the properties annotated with RequiredOnCreate.

▪ These are the properties that need to be passed as part of the composition

request.

5. Mark down the TargetCollection URI.

▪ This is the where the create (POST) request for the new composition is made.

4. Using all the properties that were annotated with RequiredOnCreate, build a create (POST)

request body that will be sent to the TargetCollection URI.

◦ In step 4 of the above example, only Name and ResourceBlocks found in Links are

required.

◦ The Redfish service may accept other properties as part of the request so they do not

need to be updated later.

5. The Location HTTP header in the service response contains the URI of the composed

resource.

General Flow Diagram:

Client | |

Redfish Service

|---> GET /redfish/v1/CompositionService/ResourceZones/1 ------------>|

|<--- { ..., "UseCase": "ComputerSystemComposition", ... } <----------|

| |

Redfish Composability White Paper DSP2050

22 Published Version 1.0.0

|---> GET /redfish/v1/Systems/Capabilities -------------------------->|

| { ..., <----------|

| "Name@Redfish.RequiredOnCreate": true, |

| "ResourceBlocks@Redfish.RequiredOnCreate": true, |

| ... |

|<--- } |

| |

| (<< Identify which Resource Blocks to use >>) |

| |

|-> GET /redfish/v1/CompositionService/ResourceBlocks/ComputeBlock2 ->|

|<--- { ..., "CompositionState": "Unused", "Reserved": false ... } <--|

| |

|-> PATCH /redfish/v1/CompositionService/ResourceBlocks/ComputeBlock2 |

| { "CompositionStatus": { "Reserved": true } } ------------------->|

Client Request Example:

POST /redfish/v1/Systems HTTP/1.1

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

OData-Version: 4.0

{

"Name": "Sample Composed System",

"Links": {

"ResourceBlocks": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

ComputeBlock0" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock2"

}

]

}

}

Service Response Example:

HTTP/1.1 201 Created

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

Location: /redfish/v1/Systems/NewSystem

The above Client Request Example shows a composition request by the client being made to the

Computer System Collection found at /redfish/v1/Systems. In the request, the client is creating a

new Computer System using the Resource Blocks ComputeBlock0 and DriveBlock2. In the above

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 23

Service Response Example, the service responded with a successful 201 response, and indicated that

the new Computer System can be found at /redfish/v1/Systems/NewSystem.

6.4. Update a Composed Resource

If the Redfish service supports updating an existing composition, the client can update an already created

composition through PUT/PATCH. This can be done by updating the ResourceBlocks array found in

the composed resource. When using PATCH, the same array semantics apply as described in the

Redfish Specification.

Client Request Example:

PATCH /redfish/v1/Systems/NewSystem HTTP/1.1

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

OData-Version: 4.0

{

"Links": {

"ResourceBlocks": [

{},

{},

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

NetworkBlock8" }

]

}

}

The above example will preserve the existing Resource Blocks in the composed resource for array

elements 0 and 1, and it will add a the NetworkBlock8 Resource Block to array element 2.

6.5. Delete a Composed Resource

The client can retire or decompose an already composed resource using DELETE.

Client Request Example:

DELETE /redfish/v1/Systems/NewSystem HTTP/1.1

The above example will request that the composed system called NewSystem be retired. When this

happens, this will free the Resource Blocks being used by the system so that they can be used in future

compositions. However, the Reserved flag found in the CompositionStatus for each Resource Block

will remain in the same state; if a client is finished using the Resource Blocks, the client should set the

Redfish Composability White Paper DSP2050

24 Published Version 1.0.0

Reserved flag to false.

7. References

• "Composable System" and "Bladed Partitions" Mockups: http://redfish.dmtf.org/redfish/v1

• Composition Service Schema: http://redfish.dmtf.org/schemas/v1/CompositionService_v1.xml

• Resource Block Schema: http://redfish.dmtf.org/schemas/v1/ResourceBlock_v1.xml

• Resource Zone Schema: http://redfish.dmtf.org/schemas/v1/Zone_v1.xml

• Collection Capabilities Schema: http://redfish.dmtf.org/schemas/v1/CollectionCapabilities_v1.xml

DSP2050 Redfish Composability White Paper

Version 1.0.0 Published 25

http://redfish.dmtf.org/redfish/v1
http://redfish.dmtf.org/schemas/v1/CompositionService_v1.xml
http://redfish.dmtf.org/schemas/v1/ResourceBlock_v1.xml
http://redfish.dmtf.org/schemas/v1/Zone_v1.xml
http://redfish.dmtf.org/schemas/v1/CollectionCapabilities_v1.xml

	Redfish Composability White Paper
	Foreword
	Acknowledgments
	Introduction
	Modeling for Composability
	1. Composition Service
	2. Resource Blocks
	3. Resource Zones
	4. Collection Capabilities
	4.1. Collection Capabilities Annotation
	4.2. Collection Capabilities Object

	Types of Compositions
	5. Specific Composition
	Appendix
	6. General Workflow for a Client
	6.1. Identify Whether Redfish Service Supports Composition
	6.2. Read the List of Resources Available for Composition
	6.3. Create a Composed Resource
	6.4. Update a Composed Resource
	6.5. Delete a Composed Resource

	7. References

