Network Management - Tunnel Management Profile

Supersedes: None

Document Class: Normative

Document Status: Published

Document Language: en-US
Copyright Notice

Copyright © 2018 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. Members and non-members may reproduce DMTF specifications and documents, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third party patent right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or identify any such third party patent rights, or for such party's reliance on the standard or incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any party implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is withdrawn or modified after publication, and shall be indemnified and held harmless by any party implementing the standard from any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion, such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/policies/disclosures.php.

This document’s normative language is English. Translation into other languages is permitted.
CONTENTS

36 Foreword ... 5
37 Introduction ... 6
38 1 Scope .. 7
39 2 Normative references ... 7
40 3 Terms and definitions ... 8
41 4 Symbols and abbreviated terms ... 9
42 5 Synopsis ... 10
43 6 Description .. 10
44 6.1 Class diagram .. 10
45 6.2 Tunneling protocol variants ... 11
46 6.3 IPEncapsulationInterface .. 11
47 6.4 CIM_EncapsulationMappingSettingData ... 11
48 6.5 CIM_IPEncapsulationManagementService .. 12
49 7 Implementation .. 12
50 7.1 Representing IP encapsulation management services 12
51 7.1.1 CIM_IPEncapsulationManagementService .. 12
52 7.2 CIM_IPEncapsulationInterface .. 12
53 7.3 Representing the Protocol Endpoints of an encapsulation gateway 12
54 7.4 Representing an encapsulation mapping table .. 13
55 7.4.1 CIM_EncapsulationMappingSettingData ... 13
56 8 Methods .. 13
57 8.1 Extrinsic methods .. 13
58 8.1.1 Job parameter ... 14
59 8.1.2 CIM_IPConfigurationService.AddIPEncapsulationInterface() 14
60 8.1.3 CIM_IPConfigurationService.AddIPEncapsulationMappings() 15
61 8.1.4 CIM_IPConfigurationService.RemoveIPEncapsulationInterface() 16
62 8.1.5 CIM_IPConfigurationService.RemoveIPEncapsulationMappings() 16
63 8.2 Profile conventions for operations .. 17
64 8.3 CIM_GatewayEndpoint ... 17
65 8.4 CIM_BindsTo .. 18
66 8.5 CIM_HostedService ... 18
67 8.6 CIM_HostedIPInterface .. 18
68 8.7 CIM_IPEncapsulationManagementService ... 19
69 8.8 IPEncapsulationInterface .. 19
70 9 Use cases .. 20
71 9.1 Profile Registration .. 20
72 9.2 L2 NVGRE tunnel gateway .. 21
73 9.3 Routed NVGRE tunnel gateway .. 22
74 10 CIM Elements .. 24
75 10.1 CIM_BindsToLANEndpoint ... 25
76 10.2 CIM_BindsTo .. 25
77 10.3 CIM_EncapsulationMappingSettingData .. 25
78 10.4 CIM_HostedService .. 26
79 10.5 CIM_IPEncapsulationManagementService .. 26
80 10.6 CIM_IPProtocolEndpoint .. 26
81 10.7 CIM_IPEncapsulationInterface ... 27
82 10.8 CIM_RegisteredProfile .. 28
83 ANNEX A (informative) Change log ... 29
84
Figures

Figure 1 – Network Management - Tunnel Management Profile ... 11

Tables

Table 1 – Referenced profiles ... 10
Table 2 – AddPEncapsulationInterface() Method: Parameters .. 14
Table 3 – AddIPEncapsulationMappings() Method: Parameters .. 15
Table 4 – RemoveIPEncapsulationInterface() Method: Parameters .. 16
Table 5 – RemoveIPEncapsulationMappings() Method: Parameters .. 17
Table 6 – Operations: CIM_GatewayEndpoint .. 17
Table 7 – Operations: CIM_BindsToLANEndpoint .. 18
Table 8 – Operations: CIM_HostedService ... 18
Table 9 – Operations: CIM_HostedIPInterface .. 18
Table 10 – CIM Elements: Network Management – Tunnel Management Profile 24
Table 11 – Class: CIM_BindsToLANEndpoint .. 25
Table 12 – Class: CIM_BindsTo .. 25
Table 13 – Class: CIM_EncapsulationMappingSettingData ... 25
Table 14 – Class: CIM_HostedService ... 26
Table 15 – Class: CIM_IPEncapsulationManagementService .. 26
Table 16 – Class: CIM_IPProtocolEndpoint .. 26
Table 17 – Class: CIM_IPEncapsulationInterface .. 27
Table 18 – Class: CIM_RegisteredProfile ... 28
Foreword

The Network Management - Tunnel Management Profile (DSP1120) was prepared by the Network Services Management Working Group of the DMTF. DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability.

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:

Editors:

- John Parchem – DMTF Fellow

Contributors:

- John Crandall – Brocade Communications System
- Bhumip Khasnabish - ZTE Corporation
- Lawrence Lamers – VMware
- John Parchem – DMTF Fellow
- Shishir Pardikar – Citrix
- Hemal Shah – Broadcom Corporation
- Eric Wells – Hitachi
- Alex Zhdankin – Cisco Systems
Introduction

The information in this specification should be sufficient for a provider or consumer of this data to identify unambiguously the classes, properties, methods, and values that shall be instantiated and manipulated to represent and manage Network Services and the associated configuration information. The target audience for this specification is implementers who are writing CIM-based providers or consumers of management interfaces that represent the component described in this document.

Document conventions

Typographical conventions

The following typographical conventions are used in this document:

- Document titles are marked in italics.
- ABNF rules are in monospaced font.
Network Management - Tunnel Management Profile

1 Scope

The Network Management - Tunnel Management Profile is a profile that will specify the CIM schema and use cases associated with the general and common aspects of tunneling management. In general, the tunnel interface includes switch virtual interface and loopback interface.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated or versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions) applies.

DMTF DSP0004, CIM Infrastructure Specification 2.6,

DMTF DSP0200, CIM Operations over HTTP 1.3,
http://www.dmtf.org/sites/default/files/standards/documents/DSP0200_1.3.pdf

DMTF DSP0223, Generic Operations 1.0,
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf

DMTF DSP1001, Management Profile Specification Usage Guide 1.0,
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf

DMTF DSP1033, Profile Registration Profile 1.0,
http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf

DMTF DSP1097, Virtual Ethernet Switch Profile 1.1,
http://dmtf.org/sites/default/files/standards/documents/DSP1097_1.1.0.pdf

DMTF DSP1036 IP Interface Profile 1.1.1,

IETF WG, Network Virtualization Overlays (NVO3), Sept. 2011,
https://datatracker.ietf.org/wg/nvo3/charter/

IETF Draft, A Stateless Transport Tunneling (STT) Protocol, April 2014,

IETF Draft, Network Virtualization using Generic Routing Encapsulation (NVGRE), July 2014,

IETF RFC 7348, Virtual eXtensible Local Area Network (VXLAN), August 2014,

IETF Draft, Generic Network Virtualization Encapsulation (Geneve), August 2014,

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
3 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms are defined in this clause.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may," "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term, for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in ISO/IEC Directives, Part 2, Clause 5.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative content. Notes and examples are always informative elements.

The terms defined in DSP0004, DSP0223, and DSP1001 apply to this document. The following additional terms are used in this document.

3.1 conditional
indicates requirements to be followed strictly to conform to the document when the specified conditions are met

3.2 mandatory
indicates requirements to be followed strictly to conform to the document and from which no deviation is permitted

3.3 optional
indicates a course of action permissible within the limits of the document

3.4 pending configuration
indicates the configuration that will be applied to an IP network connection the next time the IP network connection accepts a configuration

3.5 referencing profile
indicates a profile that owns the definition of this class and can include a reference to this profile in its "Referenced Profiles" table

3.6 unspecified
indicates that this profile does not define any constraints for the referenced CIM element or operation
4 Symbols and abbreviated terms

The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document. The following additional abbreviations are used in this document.

4.1 Customer Network

The customer network in an overlay is the network as seen by a virtual machines or a physical server. In an overlay network the customer network traffic is the encapsulated payload in a packet on the provider network.

4.2 IP

Internet Protocol

4.3 Gateway

Interconnects networks with different network protocol technologies or separate IP address networks by performing the required protocol or IP address mapping conversions.

IP Gateway

Uses the IP protocol as an underlay protocol to tunnel non-routable network segments, allowing the traffic to be routed on an IP network.

4.4 Tunnel

A Tunnel is a path across non-routable network segments. These can be segments on different IP networks or networks using different protocols.

4.5 IP Encapsulation

A method of creating IP packets in which logically separate networks are abstracted from their underlying structures by inclusion of inside network packet within higher level network packet.

4.6 Overlay Network/Customer

A network containing non-encapsulated network traffic from the perspective of the encapsulation gateways specified in this profile.

4.7 Provider Network

The underlay network of a tunnel. The network containing the encapsulated network traffic from the perspective of the encapsulation gateways specified in this profile.

4.8 Network Overlay/Underlay

Network overlay/underlay allows encapsulation of one packet into another using "packet-in-a-packet" technique. The encapsulated packet is forwarded to an endpoint where it is decapsulated. Network overlay/underlay is commonly used to (a) support secure multi-tenancy and (b) extend one network across another.
5 Synopsis

Profile name: Network Management - Tunnel Management Profile
Version: 1.0.0
Organization: DMTF
CIM Schema version: 2.52
Central class: CIM_IPEncapsulationManagementService
Scoping class: CIM_ComputerSystem

The Network Management - Tunnel Management Profile is a profile that specifies the CIM schema and use cases associated with Tunneling Management where a layer 2 or layer 3 overlay network is carried over a tunnel where layer 3 is used as the tunnel underlay. This profile includes a specification of the IPEncapsulationInterface and the associated setting data among others.

Table 1 identifies profiles on which this profile has a dependency.

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>Organization</th>
<th>Version</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Registration</td>
<td>DMTF</td>
<td>1.0</td>
<td>Mandatory</td>
<td>None</td>
</tr>
<tr>
<td>Network Management</td>
<td>DMTF</td>
<td>1.0</td>
<td>Mandatory</td>
<td>None</td>
</tr>
</tbody>
</table>

6 Description

The Network Management - Tunnel Management Profile is a profile that will specify the CIM schema and use cases associated with the general and common aspects of Tunneling Management. This profile includes a specification of the CIM_IPEncapsulationManagementService and a set of associated CIM classes to configure and manage a Tunnel gateway.

6.1 Class diagram

Figure 1 represents the class schema for the Network Management - Tunnel Management Profile. For simplicity, the CIM_ prefix has been removed from the names of the classes.
6.2 Tunneling protocol variants

A variety of tunneling protocols can be utilized in (virtual) overlay networks in order to extend disparate network segments between hosts (servers) for multitenant data center networks. These include Virtual Extensible LAN (VXLAN), Network Virtualization using Generic Encapsulation (NVGRE), stateless transport tunneling (STT) and IETF Network Virtualization Overlays 3 (NVO3). Currently this profile supports VXLAN and NVGRE although the profile generically supports other L2 and L3 tunneling protocols such as STT, LISP, L2TPv3, MPLS, GRE, VXLAN-GPE, GENEVE and GUE.

6.3 IP encapsulation interface

In this profile the IP encapsulation interface is used to provide the configuration for an instance of an encapsulation service. This includes the ability to configure the endpoints that are on the provider network and the customer network and the virtual routing and forwarding tables that are to be used to determine the next hop routes required to route traffic between the two networks. An instance of IP encapsulation interface is associated with the collection of CIM_encapsulation_mapping_setting_data that is used to describe the policy to map each tunnel.

6.4 CIM_encapsulation_mapping_setting_data

CIM_encapsulation_mapping_setting_data represents a lookup record contained in a mapping table, represented by the aggregation IP encapsulation mappings. This table of records provides the required information generally indexed off of the target IP address of an incoming packet from the provider network. It provides the information required to construct the encapsulation header for the underlay network.
6.5 CIM_IPEncapsulationManagementService

The CIM_IPEncapsulationManagementService is the central class of this profile. The service has a set of extrinsic methods to control the creation and removal of the instances required to create an IP encapsulation gateway.

7 Implementation

This clause details the requirements related to the arrangement of instances and the properties of instances for implementations of this profile.

7.1 Representing IP encapsulation management services

7.1.1 CIM_IPEncapsulationManagementService

One or more instances of CIM_IPEncapsulationManagementService shall be instantiated.

These instances of CIM_IPEncapsulationManagementService shall be associated with an instance of the scoping CIM_System class through an instance of CIM_HostedService.

The instances of the CIM_IPEncapsulationManagementService class shall also be associated to each CIM_System subclass instance that may be used as the TargetInterface parameter of its AddIPEncapsulationInterface() method through an instance of CIM_ServiceAvailableToElement.

IPEncapsulationInterface instances managed by or created through the use of an instance of CIM_IPEncapsulationManagementService shall be associated to the CIM_IPEncapsulationManagementService instance through an instance of CIM_ServiceAffectsElement.

7.2 CIM_IPEncapsulationInterface

Instances of CIM_IPEncapsulationInterface created as part of the execution of AddIPEncapsulationInterface() method shall be associated with an instance of CIM_IPEncapsulationManagementService from which the method call was made through an instance of CIM_ServiceAffectsElement association.

An instance of CIM_IPEncapsulationInterface directly associated to an instance CIM_ProtocolEndpoint as configured through the CASourceEndpoint or the PASourceEndpoint property in the representative CIM_IPEncapsulationInterface instance shall be associated through an instance of a CIM_GatewayEndpoint association.

Instances of CIM_IPProtocolEndpoint created as part of the execution of AddIPEncapsulationInterface() method shall be associated to the instantiated instance of CIM_IPEncapsulationInterface from the same method call through an instance of the CIM_GatewayEndpoint association.

7.3 Representing the Protocol Endpoints of an encapsulation gateway

Each instance of CIM_EncapsulatedGateway shall have two associated instances of CIM_ProtocolEndpoint or a subclass of CIM_ProtocolEndpoint one representing an endpoint that is a part of the customer network and another representing an endpoint that is a part of the provider network.

These instances are associated through the CIM_GatewayEndpoint association instances. The association is made to these endpoints after the successful completion of a CIM_IPEncapsulationManagementService.AddIPEncapsulationInterface() method.

If an instance of CIM_IPProtocolEndpoint is instantiated through a successful completion of a CIM_IPEncapsulationManagementService.AddIPEncapsulationInterface() method where either a CAIPEndPoint or an PAIPEndPoint parameter was populated, that instance shall be associated through
an instance of CIM_HostedIPInterface to the instance CIM_System that was specified in the
TargetSystem parameter of the method call.

7.4 Representing an encapsulation mapping table

7.4.1 CIM_EncapsulationMappingSettingData

Instances of CIM_EncapsulationMappingSettingData created as a result of the
AddIPEncapsulationInterface() or AddEncapsulationMappingSettingData() method shall be associated
to the instance of CIM_IPEncapsulationInterface contained in the EncapsulationGateway parameter of
the respective method through an aggregation instance of CIM_IPEncapsulationMappings.

8 Methods

This clause details the requirements for supporting intrinsic operations and extrinsic methods for the CIM
elements defined by this profile.

8.1 Extrinsic methods

If synchronous execution of a method succeeds, the implementation shall set a return value of
0 (Completed with No Error).

If synchronous execution of a method fails, the implementation shall set a return value of 2 (Failed) or a
more specific return code as specified with the respective method.

If a method is executed as an asynchronous task, the implementation shall perform all of the following ac-
tions:

- Set a return value of 4096 (Job Started).
- Set the value of the Job output parameter to refer to an instance of the CIM_ConcreteJob class
 that represents the asynchronous task.
- Set the values of the JobState and TimeOfLastStateChange properties in that instance to repre-
 sent the state and last state change time of the asynchronous task.

In addition, the implementation may present state change indications as task state changes occur.

If the method execution as an asynchronous task succeeds, the implementation shall perform all of the
following actions:

- Set the value of the JobState property to 7 (Completed).
- Provide an instance of the CIM_AffectedJobEntity association with property values set as fol-
lows:
 - The value of the AffectedElement property shall refer to the object that represents the top-
 level entity that was created or modified by the asynchronous task. For example, for the
 CIM_IPConfigurationService. AddIPProtocolEndpoint() method, this is an instance of the
 CIM_IPProtocolEndpoint class
 - The value of the AffectingElement property shall refer to the instance of the
 CIM_ConcreteJob class that represents the completed asynchronous task.
 - The value of the first element in the ElementEffects[] array property (ElementEffects[0])
 shall be set to 5 (Create) for the CIM_IPConfigurationService. AddIPProtocolEndpoint()
 method. Otherwise, this value shall be 0 (Unknown).

If the method execution as an asynchronous task fails, the implementation shall set the value of the
JobState property to 9 (Killed) or 10 (Exception).
8.1.1 Job parameter

The implementation shall set the value of the Job parameter as a result of an asynchronous execution of a method of the CIM_IPConfigurationService as follows:

- If the method execution is performed synchronously, the implementation shall set the value to NULL.
- If the method execution is performed asynchronously, the implementation shall set the value to refer to the instance of the CIM_ConcreteJob class that represents the asynchronous task.

8.1.2 CIM_IPConfigurationService.AddIPEncapsulationInterface()

The implementation of the AddIPEncapsulationInterface() method is optional, the provisions in this subclause apply in addition to behavior applicable to all extrinsic methods as specified in 8.1.

The successful execution of the AddIPEncapsulationInterface() method shall create an instance of the class or a subclass of CIM_IPEncapsulationInterface and any required associations as described in the subclasses 7.2 required to instantiate a complete encapsulation interface. In addition if the optional method parameter EncapsulationMappings is populated with corresponding instances of the embedded CIM_EncapsulationMappingSettingData classes the instantiated instances should be associated with the newly instantiated IPEncapsulationInterface through an instance of CIM_IPEncapsulationMappings. If the optional method parameters PAIPEndpoint or CAIPEndpoint are populated with corresponding instances of the embedded CIM_IPProtocolEndpoint classes the instantiated instances shall be associated with the newly instantiated IPEncapsulationInterface through an instance of CIM_GatewayEndpoint.

Table 2 contains requirements for parameters of this method.

<table>
<thead>
<tr>
<th>Qualifiers</th>
<th>Name</th>
<th>Type</th>
<th>Description/Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>TargetSystem</td>
<td>CIM_System REF</td>
<td>See 8.1.2.1</td>
</tr>
<tr>
<td>IN</td>
<td>EncapsulationGateway</td>
<td>String</td>
<td>See 8.1.2.2</td>
</tr>
<tr>
<td>IN</td>
<td>PAIPEndpoint</td>
<td>String</td>
<td>See 8.1.2.2</td>
</tr>
<tr>
<td>IN</td>
<td>CAIPEndpoint</td>
<td>String</td>
<td>See 8.1.2.4</td>
</tr>
<tr>
<td>IN</td>
<td>EncapsulationMappings</td>
<td>String[]</td>
<td>See 8.1.2.5</td>
</tr>
<tr>
<td>OUT</td>
<td>ResultingGateway</td>
<td>IPEncapsulationInterface REF</td>
<td>See 8.1.2.5</td>
</tr>
<tr>
<td>OUT</td>
<td>Job</td>
<td>CIM_ConcreteJob REF</td>
<td>See 8.1.1</td>
</tr>
</tbody>
</table>

8.1.2.1 TargetSystem

A required reference to a system or network. The supported target interfaces for a CIM_IPEncapsulationInterface class or subclass shall be as described in the subclauses of 7.2.

8.1.2.2 EncapsulationGateway

A required string containing an embedded instance of the class or subclass of CIM_IPEncapsulationInterface describes the initial configuration of the resulting CIM_IPEncapsulationInterface instance. The populated properties of the embedded instance should not contain key properties, and any key property values may be ignored.
8.1.2.3 PAIPEndpoint

An optional string containing an embedded instance of the class or subclass of CIM_IPProtocolEndpoint that describes the initial configuration of a CIM_IPProtocolEndpoint that is on the provider network. The populated properties of the embedded instance should not contain key properties, and any key property values may be ignored.

8.1.2.4 CAIPEndpoint

An optional string containing an embedded instances of the class or subclass of CIM_IPProtocolEndpoint that describes the initial configuration of an CIM_IPProtocolEndpoint that is on the customer network. The populated properties of the embedded instance should not contain key properties, and any key property values may be ignored.

8.1.2.5 EncapsulationMapping[]

An optional array of strings containing embedded instances of the class or subclass of CIM_EncapsulationMappingSettingData that describes entries in a mapping table used by the encapsulation gateway to provide the encapsulation header information used by the gateway. The populated properties of the embedded CIM_EncapsulationMappingSettingData instances should not contain key properties, and any key property values may be ignored.

8.1.2.6 ResultingInterface

If the creation of the CIM_IPEncapsulationInterface is successful, the instance of the class CIM_IPEncapsulationInterface that represents the instantiated instance of CIM_IPEncapsulationInterface is returned.

8.1.2.7 Job

See 8.1.1

8.1.3 CIM_IPConfigurationService.AddIPEncapsulationMappings()

The implementation of the AddIPEncapsulationMappings() method is optional, the provisions in this subclause apply in addition to behavior applicable to all extrinsic methods as specified in 8.1.

The successful execution of the AddIPEncapsulationMappings() method shall create or add to an array of instances of the CIM_EncapsulationMappingSettingData. The added instances of CIM_EncapsulationMappingSettingData shall be associated to the target IIPEncapsulationInterface through an instance of CIM_IPEncapsulationMappings.

Table 3 contains requirements for parameters of this method.

<table>
<thead>
<tr>
<th>Qualifiers</th>
<th>Name</th>
<th>Type</th>
<th>Description/Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>TargetInterface</td>
<td>CIM_IPEncapsulationInterface REF</td>
<td>See 8.1.3.1</td>
</tr>
<tr>
<td>IN</td>
<td>EncapsulationMappings</td>
<td>String[]</td>
<td>See 8.1.3.2</td>
</tr>
<tr>
<td>OUT</td>
<td>Job</td>
<td>CIM_ConcreteJob REF</td>
<td>See 8.1.3.3</td>
</tr>
</tbody>
</table>

8.1.3.1 TargetInterface

A required reference to an instance of IIPEncapsulationInterface class or subclass.
8.1.3.2 EncapsulationMapping[]

An optional array of strings containing embedded instances of the class or subclass of
CIM_EncapsulationMappingSettingData that describes entries in a mapping table used by the
encapsulation interface to provide the encapsulation header for the resultant IPP encapsulationInterface.
The populated properties of the embedded CIM_EncapsulationMappingSettingData instances should not
contain key properties, and any key property values may be ignored. The resulting
IPP encapsulationInterface instance shall be associated with the target instance of
CIM_IPEncapsulationMapping configured in the EncapsulationGateway parameter through an instance of
CIM_IPEncapsulationMapping.

8.1.3.3 Job

See 8.1.1

8.1.4 CIM_IPConfigurationService.RemoveIPEncapsulationInterface()

The implementation of the RemoveIPEncapsulationInterface() method is optional, the provisions in this
subclause apply in addition to behavior applicable to all extrinsic methods as specified in 8.1.
The successful execution of the RemoveIPEncapsulationInterface() method shall remove the instances
referenced in the methods Gateway parameter and shall remove any associated CIM_SettingData
instances.

Table 4 contains requirements for parameters of this method.

Table 4 – RemoveIPEncapsulationInterface() Method: Parameters

<table>
<thead>
<tr>
<th>Qualifiers</th>
<th>Name</th>
<th>Type</th>
<th>Description/Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>Gateway</td>
<td>CIM_IPEncapsulationInterface REF[]</td>
<td>See 8.1.4.1</td>
</tr>
<tr>
<td>OUT</td>
<td>Job</td>
<td>CIM_ConcreteJob REF</td>
<td>See 8.1.1</td>
</tr>
</tbody>
</table>

8.1.4.1 Endpoint

An array of references to the pair of the class CIM_IPIIP EncapsulationInterface instances that shall be
removed.

8.1.4.2 Job

See 8.1.1

8.1.5 CIM_IPConfigurationService.RemoveIPEncapsulationMappings()

The implementation of the RemoveIPEncapsulationMappings() method is optional, the provisions in this
subclause apply in addition to behavior applicable to all extrinsic methods as specified in 8.1.
The successful execution of the RemoveIPEncapsulationMappings() method shall remove the instances
referenced in the methods EncapsulationMapping parameter.

Table 5 contains requirements for parameters of this method.
Table 5 – RemoveIPEncapsulationMappings() Method: Parameters

<table>
<thead>
<tr>
<th>Qualifiers</th>
<th>Name</th>
<th>Type</th>
<th>Description/Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>EncapsulationMappings</td>
<td>CIM_EncapsulationMappingSettingData REF[]</td>
<td>See 8.1.5.1</td>
</tr>
<tr>
<td>OUT</td>
<td>Job</td>
<td>CIM_ConcreteJob REF</td>
<td>See 8.1.5.2</td>
</tr>
</tbody>
</table>

8.1.5.1 EncapsulationMappings
An array of references to the set of CIM_EncapsulationMappingSettingData instances that shall be removed.

8.1.5.2 Job
See 8.1.1

8.2 Profile conventions for operations
For each profile class (including associations), the implementation requirements for operations, including those in the following default list, are specified in class-specific subclauses of this clause.

The default list of operations is as follows:

- GetInstance
- EnumerateInstances
- EnumerateInstanceNames
- Associators
- AssociatorNames
- References
- ReferenceNames

8.3 CIM_GatewayEndpoint

Table 6 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 6, all operations in the default list in 8.2 shall be implemented as defined in DSP0200.

NOTE Related profiles may define additional requirements on operations for the profile class.

Table 6 – Operations: CIM_GatewayEndpoint

<table>
<thead>
<tr>
<th>Operation</th>
<th>Requirement</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associators</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>AssociatorNames</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>References</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>ReferenceNames</td>
<td>Unspecified</td>
<td>None</td>
</tr>
</tbody>
</table>
8.4 CIM_BindsTo

Table 7 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 7, all operations in the default list in 8.2 shall be implemented as defined in DSP0200.

NOTE Related profiles may define additional requirements on operations for the profile class.

Table 7 – Operations: CIM_BindsToLANEndpoint

<table>
<thead>
<tr>
<th>Operation</th>
<th>Requirement</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associators</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>AssociatorNames</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>References</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>ReferenceNames</td>
<td>Unspecified</td>
<td>None</td>
</tr>
</tbody>
</table>

8.5 CIM_HostedService

Table 8 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 8, all operations in the default list in 8.2 shall be implemented as defined in DSP0200.

NOTE Related profiles may define additional requirements on operations for the profile class.

Table 8 – Operations: CIM_HostedService

<table>
<thead>
<tr>
<th>Operation</th>
<th>Requirement</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associators</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>AssociatorNames</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>References</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>ReferenceNames</td>
<td>Unspecified</td>
<td>None</td>
</tr>
</tbody>
</table>

8.6 CIM_HostedIPInterface

Table 9 lists implementation requirements for operations. If implemented, these operations shall be implemented as defined in DSP0200. In addition, and unless otherwise stated in Table 9, all operations in the default list in 8.2 shall be implemented as defined in DSP0200.

NOTE Related profiles may define additional requirements on operations for the profile class.

Table 9 – Operations: CIM_HostedIPInterface

<table>
<thead>
<tr>
<th>Operation</th>
<th>Requirement</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associators</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>AssociatorNames</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>References</td>
<td>Unspecified</td>
<td>None</td>
</tr>
<tr>
<td>ReferenceNames</td>
<td>Unspecified</td>
<td>None</td>
</tr>
</tbody>
</table>
8.7 CIM_IPEncapsulationManagementService

All operations in the default list in 8.2 shall be implemented as defined in DSP0200.

8.8 IPEncapsulationInterface

All operations in the default list in 8.2 shall be implemented as defined in DSP0200.

NOTE Related profiles may define additional requirements on operations for the profile class.
9 Use cases

This clause contains object diagrams and use cases for the Network Management - Tunnel Management Profile.

9.1 Profile Registration

The object diagram in Figure 2 shows one possible method for advertising profile conformance. The instances of CIM_RegisteredProfile are used to identify the version of the Network Management - Tunnel Management Profile with which an instance of CIM_IPEncapsulationManagementService is conformant. An instance of CIM_RegisteredProfile exists for each profile that is instrumented in the system. One instance of CIM_RegisteredProfile identifies the System conforming to the Network Management Profile. The other instance identifies an instance of CIM_IPEncapsulationManagementService. The CIM_IPEncapsulationManagementService instance is scoped to an instance of CIM_System. This instance of CIM_System is conformant with the DMTF Network Management Profile version 1.0.0 as indicated by the CIM_ElementConformsToProfile association to the CIM_RegisteredProfile instance.

Figure 2 – Registered profile
9.2 L2 NVGRE tunnel gateway

The object diagram shown in Figure 3 contains the basic elements used to model a simple L2 NVGRE tunnel gateway. The gateway as shown could be an example of an NVGRE tunnel gateway as part of a virtual Ethernet switch. CIM_EthernetPort: E0/4 is a port available to a virtual computer system and CIM_EthernetPort: E1/1 is the uplink to the physical Ethernet switch. In this example the virtual system port (E0/4) would be on the customer network and the uplink port (E1/1) would be on the provider network.

This gateway takes all network traffic from CIM_EthernetPort: E0/4 and encapsulates it based on the mappings found in the instances of CIM_EncapsulationMappingSettingData and sends the encapsulated traffic out on the provider network through CIM_EthernetPort: E1/1. Any traffic from the provider network is decapsulated and sent to the virtual machine through CIM_EthernetPort: E0/4.

This is a very simple instance diagram, not shown are many of the required properties of the relative profiles for the objects shown.

The IPEncapsulationInterface was created with a CIM_IPConfigurationService.AddEncapsulationGateway() method with the following parameters.

- TargetInterface – WBEM URI reference to CIM_ComputerSystem:CS0
- EncapsulationGateway
 - Embedded Instance of IPEncapsulationInterface {
 TunnelMode=4 (NVGRE)
 CASourceInterface = WBEM URI reference to CIM_EthernetPort: E0/4
 PASourceInterface = WBEM URI reference to CIM_EthernetPort: E1/1
 }

- EncapsulationMappings
 - Embedded Instance of EncapsulationMappingSettingData {
 CustomerAddress 10.1.0.125
 ProviderAddress 198.168.56.255
 MACAddress = 01:23:45:67:89:ab
 VSID = GUID for Virtual Subnet ID.
9.3 Routed NVGRE tunnel gateway

The instance diagram shown below contains the basic elements used to model a routed NVGRE tunnel gateway. The gateway as shown could be an example of an NVGRE tunnel gateway as part of a network router. While this is a simplified instance diagram, the example shows a port E0/4 that is on the customer network and is configured with an instance of CIM_SwitchVirtualInterface an IP endpoint that is configured through VLAN encapsulation to accept traffic tagged with a specific VALN ID. Another port

e1/4 is an IP enabled port on the provider network. The customer network and the information required to determine the next hop routes are represented in the Virtual Routing and Forwarding table

VRF1_CA:VirtualRoutingAndForwarding. The provider network and the information required to determine the next hop routes for the provider network are represented in the Virtual Routing and Forwarding table

VRF0_PA:VirtualRoutingAndForwarding.

LE_E0/4:SwitchedVirtualInterface, an IP protocol endpoint for port E0/1, is a member of the

VRF1_CA:VirtualRoutingAndForwarding table. IPE_E1/4:IPProtocolEndpoint is a member of the

VRF0_PA:VirtualRoutingAndForwarding table.

The router has an IPEncapsulationManagementService, ServiceNVGRE. This example shows the result of a AddEncapsulationGateway() method call on that service that creates a IPEncapsulationInterface with

IPProtocolEndpoint instances for both the customer and the provider networks respectively

GRETunnel0CA and GRETunnel0PA. As shown in Figure 4 these IP protocol endpoints are also members of their respective virtual routing and forwarding tables.

This example shows the method call used to add a NVGRE IPEncapsulationInterface.
The IPEncapsulationInterface was created with a
CIM_IPConfigurationService.AddEncapsulationGateway() method with the following parameters.

- **TargetInterface** – WBEM URI reference to CIM_ComputerSystem:CS0
- **EncapsulationGateway**
 - Embedded Instance of IPEncapsulationInterface {
 - **TunnelMode** = 4 (NVGRE)
 - **CASourceInterface** = null
 - **PASourceInterface** = null
 - **CAVRFContext** = WBEM URI reference to VRF1_CA:VirtualRoutingAndForwarding
 - **PAVRFContext** = WBEM URI reference to VRF0_PA:VirtualRoutingAndForwarding

- **CAEndpoint**
 - Embedded Instance of CIM_IPProtocolEndpoint {
 - **IPv4Address** = 10.1.0.0
 - **ProtocolIFType** = 4060
 }

- **PAEndpoint**
 - Embedded Instance of CIM_IPProtocolEndpoint {
 - **IPv4Address** = 198.168.0.0
 - **ProtocolIFType** = 4060
 }

- **EncapsulationMappings**
 - **CustomerAddress** 10.1.0.125
 - **ProviderAddress** 198.168.56.255
 - **MACAddress** = 01:23:45:67:89:ab
 - **VSID** = GUID for Virtual Subnet ID.
10 CIM Elements

Table 10 shows the instances of CIM Elements for this profile. Instances of the CIM Elements shall be implemented as described in Table 10. Clauses 7 (“Implementation”) and 8 (“Methods”) may impose additional requirements on these elements.

Table 10 – CIM Elements: Network Management – Tunnel Management Profile

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIM_BindsTo</td>
<td>Optional</td>
<td>See DSP1036 IP Interface Profile 1.1.1</td>
</tr>
<tr>
<td>CIM_BindsToLANEndpoint</td>
<td>Optional</td>
<td>See DSP1036 IP Interface Profile 1.1.1</td>
</tr>
<tr>
<td>CIM_HostedService</td>
<td>Conditional</td>
<td>See DSP1036 IP Interface Profile 1.1.1</td>
</tr>
<tr>
<td>CIM_HostedIPInterface</td>
<td>Conditional</td>
<td>See DSP1036 IP Interface Profile 1.1.1</td>
</tr>
<tr>
<td>CIM_IPProtocolEndpoint</td>
<td>Conditional</td>
<td>See DSP1036 IP Interface Profile 1.1.1</td>
</tr>
<tr>
<td>CIM_IPEncapsulationManagementService</td>
<td>Mandatory</td>
<td>See 7.1</td>
</tr>
</tbody>
</table>
10.1 CIM_BindsToLANEndpoint

CIM_BindsToLANEndpoint relates the CIM_IPProtocolEndpoint instance with the CIM_LANEndpoint instance on which it depends. Table 11 provides information about the properties of CIM_BindsToLANEndpoint.

Table 11 – Class: CIM_BindsToLANEndpoint

<table>
<thead>
<tr>
<th>Elements</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antecedent</td>
<td>Mandatory</td>
<td>Key: This shall be a reference to an instance of CIM_LANEndpoint. Cardinality 0..1</td>
</tr>
<tr>
<td>Dependent</td>
<td>Mandatory</td>
<td>Key: This shall be a reference to the Central Instance. Cardinality 1</td>
</tr>
</tbody>
</table>

10.2 CIM_BindsTo

CIM_BindsTo relates two pairs of CIM_ProtocolEndpoints together. Table 12 provides information about the properties of CIM_BindsTo.

Table 12 – Class: CIM_BindsTo

<table>
<thead>
<tr>
<th>Elements</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antecedent</td>
<td>Mandatory</td>
<td>Key: This shall be a reference to an instance of CIM_EncapsulationGateways. Cardinality 1</td>
</tr>
<tr>
<td>Dependent</td>
<td>Mandatory</td>
<td>Key: This shall be a reference to the paired CIM_EncapsulationGateways 1</td>
</tr>
</tbody>
</table>

10.3 CIM_EncapsulationMappingSettingData

Contains one mapping lookup record for an IP encapsulation gateway. Table 13 provides information about the properties of CIM_EncapsulationMappingSettingData.

Table 13 – Class: CIM_EncapsulationMappingSettingData

<table>
<thead>
<tr>
<th>Elements</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>Mandatory</td>
<td>Key</td>
</tr>
</tbody>
</table>
10.4 CIM_HostedService

CIM_HostedService relates the CIM_IPEncapsulationManagementService instance to its scoping CIM_System instance. Table 14 provides information about the properties of CIM_HostedService.

```
Table 14 – Class: CIM_HostedService

<table>
<thead>
<tr>
<th>Elements</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antecedent</td>
<td>Mandatory</td>
<td><strong>Key:</strong> This shall be a reference to the Central Instance. Cardinality 1</td>
</tr>
<tr>
<td>Dependent</td>
<td>Mandatory</td>
<td><strong>Key:</strong> This shall be a reference to an instance of CIM_IPEncapsulationManagementService. Cardinality *</td>
</tr>
</tbody>
</table>
```

10.5 CIM_IPEncapsulationManagementService

CIM_IPEncapsulationManagementService provides the methods to create and delete an encapsulation gateway interface. Table 15 provides information about the properties of CIM_IPEncapsulationManagementService.

```
Table 15 – Class: CIM_IPEncapsulationManagementService

<table>
<thead>
<tr>
<th>Elements</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCreationClassName</td>
<td>Mandatory</td>
<td><strong>Key</strong></td>
</tr>
<tr>
<td>CreationClassName</td>
<td>Mandatory</td>
<td><strong>Key</strong></td>
</tr>
<tr>
<td>SystemName</td>
<td>Mandatory</td>
<td><strong>Key</strong></td>
</tr>
<tr>
<td>Name</td>
<td>Mandatory</td>
<td><strong>Key</strong></td>
</tr>
<tr>
<td>ElementName</td>
<td>Mandatory</td>
<td>Pattern &quot;.*&quot;</td>
</tr>
<tr>
<td>AddIPEncapsulationInterface( )</td>
<td>Optional</td>
<td>See 8.1.2.</td>
</tr>
<tr>
<td>RemoveIPEncapsulationInterface( )</td>
<td>Optional</td>
<td>See 8.1.4</td>
</tr>
<tr>
<td>AddIPEncapsulationMappings()</td>
<td>Optional</td>
<td>See 8.1.3</td>
</tr>
<tr>
<td>RemoveIPEncapsulationMappings()</td>
<td>Optional</td>
<td>See 8.1.5</td>
</tr>
</tbody>
</table>
```

10.6 CIM_IPProtocolEndpoint

CIM_IPProtocolEndpoint represents an IP interface that is associated with an IP encapsulation gateway or an Ethernet interface. Table 16 provides information about the properties of CIM_IPProtocolEndpoint.

```
Table 16 – Class: CIM_IPProtocolEndpoint

<table>
<thead>
<tr>
<th>Elements</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCreationClassName</td>
<td>Mandatory</td>
<td><strong>Key</strong></td>
</tr>
<tr>
<td>CreationClassName</td>
<td>Mandatory</td>
<td><strong>Key</strong></td>
</tr>
<tr>
<td>SystemName</td>
<td>Mandatory</td>
<td><strong>Key</strong></td>
</tr>
<tr>
<td>Name</td>
<td>Mandatory</td>
<td><strong>Key</strong></td>
</tr>
</tbody>
</table>
```
10.7 CIM_IPEncapsulationInterface

IPEncapsulationInterface represents either the encapsulation or the decapsulation IP encapsulation interface used to connect two disjoined IP networks. Table 17 provides information about the additional properties of IPEncapsulationInterface that are in addition to those in CIM_IPProtocolEndpoint, clause 10.5.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemCreationClassName</td>
<td>Mandatory</td>
<td>Key</td>
</tr>
<tr>
<td>CreationClassName</td>
<td>Mandatory</td>
<td>Key</td>
</tr>
<tr>
<td>SystemName</td>
<td>Mandatory</td>
<td>Key</td>
</tr>
<tr>
<td>Name</td>
<td>Mandatory</td>
<td>Key</td>
</tr>
<tr>
<td>ElementName</td>
<td>Mandatory</td>
<td>Pattern ".*,"</td>
</tr>
<tr>
<td>TunnelMode</td>
<td>Mandatory</td>
<td>See 8.1.2.</td>
</tr>
<tr>
<td>CAVRFCContext</td>
<td>Optional</td>
<td>See 8.1.2.</td>
</tr>
<tr>
<td>CASourceInterface</td>
<td>Required</td>
<td>See 8.1.2.</td>
</tr>
<tr>
<td>PAVRFCContext</td>
<td>Optional</td>
<td>See 8.1.2.</td>
</tr>
<tr>
<td>PASourceInterface</td>
<td>Required</td>
<td>See 8.1.2.</td>
</tr>
</tbody>
</table>
10.8 CIM_RegisteredProfile

CIM_RegisteredProfile identifies the Network Management - Tunnel Management Profile in order for a client to determine whether an instance of CIM_IPProtocolEndpoint is conformant with this profile. The CIM_RegisteredProfile class is defined by the Profile Registration Profile. With the exception of the mandatory values specified for the properties in Table 18, the behavior of the CIM_RegisteredProfile instance is in accordance with the Profile Registration Profile.

Table 18 – Class: CIM_RegisteredProfile

<table>
<thead>
<tr>
<th>Elements</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RegisteredName</td>
<td>Mandatory</td>
<td>This property shall have a value of "Tunnel Management".</td>
</tr>
<tr>
<td>RegisteredVersion</td>
<td>Mandatory</td>
<td>This property shall have a value of "1.0.0d".</td>
</tr>
<tr>
<td>RegisteredOrganization</td>
<td>Mandatory</td>
<td>This property shall have a value of "DMTF".</td>
</tr>
</tbody>
</table>
ANNEX A
(informative)

Change log

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>2018-09-07</td>
<td></td>
</tr>
</tbody>
</table>