
 1

 2

Document Identifier: DSP1071 3

Date: 2014-11-04 4

Version: 1.0.0a 5

Multi-type System Memory Profile 6

Document Type: Specification 7

Document Status: Work in Progress 8

Document Language: en-US 9

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the
DMTF or all of its members. Because this document is a Work in Progress, it may still change,
perhaps profoundly. This document is available for public review and comment until the stated
expiration date.

It expires on:

Provide any comments through the DMTF Feedback Portal:
http://www.dmtf.org/standards/feedback

DSP1071 Multi-type System Memory Profile

2 Work in Progress – Not a DMTF Standard Version 1.0.0a

Copyright Notice 10

Copyright © 2014 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 12
management and interoperability. Members and non-members may reproduce DMTF specifications and 13
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 14
time, the particular version and release date should always be noted. 15

Implementation of certain elements of this standard or proposed standard may be subject to third party 16
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 17
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 18
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 19
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 20
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 21
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 22
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 23
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 24
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 25
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 26
implementing the standard from any and all claims of infringement by a patent owner for such 27
implementations. 28

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 29
such patent may relate to or impact implementations of DMTF standards, visit 30
http://www.dmtf.org/about/policies/disclosures.php. 31

 32

Contents 33

Foreword.. 5	
 34
Introduction .. 6	
 35
1	
 Scope ... 7	
 36
2	
 Normative References ... 7	
 37

2.1	
 Approved References .. 7	
 38
3	
 Terms and Definitions .. 8	
 39
4	
 Symbols and Abbreviated Terms ... 9	
 40
5	
 Synopsis... 9	
 41
6	
 Description ... 10	
 42
7	
 Implementation... 12	
 43

7.1	
 Representing Raw Memory ... 12	
 44
7.2	
 Representing Visible Memory .. 12	
 45
7.3	
 Representing Memory Configuration ... 14	
 46
7.4	
 Representing Topology.. 13	
 47

8	
 Methods ... 14	
 48
8.1	
 CIM_VisibleMemory... 14	
 49
8.2	
 CIM_RawMemory .. 14	
 50
8.3	
 CIM_MemoryController.. 15	
 51
8.4	
 CIM_Processor .. 15	
 52
8.5	
 CIM_ConcreteDependency.. 15	
 53
8.6	
 CIM_AssociatedMemory.. 16	
 54
8.7	
 CIM_BasedOn ... 16	
 55

9	
 Use Cases.. 16	
 56
9.1	
 Advertising Profile Conformance ... 16	
 57
9.2	
 Single Visible Memory Extent .. 17	
 58
9.3	
 Two Visible Memory Extents.. 17	
 59
9.4	
 Uniform Memory Access Extents... 18	
 60
9.5	
 Non-uniform Memory Access Extents.. 19	
 61
9.6	
 Determine Persistent Memory Capacity .. 20	
 62
9.7	
 Determine Total Installed Memory Capacity .. 20	
 63
9.8	
 Determine Capacity by Processor Affinity.. 20	
 64
9.9	
 Determine Processor Affinity for Visible Memory... 20	
 65

10	
 CIM Elements... 21	
 66
10.1	
 CIM_RegisteredProfile... 21	
 67
10.2	
 CIM_VisibleMemory... 22	
 68
10.3	
 CIM_RawMemory .. 22	
 69
10.4	
 CIM_MemoryController.. 22	
 70
10.5	
 CIM_Processor .. 23	
 71
10.6	
 CIM_ConcreteDependency.. 23	
 72
10.7	
 CIM_SystemDevice ... 24	
 73
10.8	
 CIM_AssociatedMemory.. 25	
 74
10.9	
 CIM_BasedOn ... 25	
 75

ANNEX A (informative) Change Log... 26	
 76
ANNEX B ... 27	
 77

 78

List of Figures 79

Figure 6-1 – Multi-type System Memory: Class Diagram .. 11	
 80
Figure 9-1 – Registered Profile .. 17	
 81
Figure 9-3 UMA Configuration Object Diagram ... Error! Bookmark not defined.	
 82
 83

DSP1071 Multi-type System Memory Profile

4 Work in Progress – Not a DMTF Standard Version 1.0.0a

List of Tables 84

Table 1 – Related Profiles.. 10	
 85
Table 2 – Operations: CIM_VisibleMemory ... 14	
 86
Table 3 – Operations: CIM_RawMemory... 15	
 87
Table 4 – Operations: CIM_MemoryController .. 15	
 88
Table 5 – Operations: CIM_Processor... 15	
 89
Table 6 – Operations: CIM_ConcreteDependency .. 16	
 90
Table 7 – Operations: CIM_AssociatedMemory .. 16	
 91
Table 8 – Operations: CIM_BasedOn.. 16	
 92
Table 9 CIM Elements – Multi-type System Memory Profile.. 21	
 93
Table 10 – Class: CIM_RegisteredProfile .. 21	
 94
Table 11 – Class: CIM_VisibleMemory.. 22	
 95
Table 12 – Class: CIM_RawMemory ... 22	
 96
Table 13 – Class: CIM_MemoryController ... 23	
 97
Table 14 – Class: CIM_Processor ... 23	
 98
Table 15 – Class: CIM_ConcreteDependency... 24	
 99
Table 16 – Class: CIM_SystemDevice –use 1... 24	
 100
Table 17 – Class: CIM_SystemDevice –use 2... 24	
 101
Table 18 – Class: CIM_AssociatedMemory... 25	
 102
Table 19 – Class: CIM_BasedOn .. 25	
 103

 104

 105

Foreword 106

The Multi-type System Memory Profile (DSP1071) was prepared by the Server Desktop Mobile Platforms 107
Working Group. 108

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 109
management and interoperability. 110

Acknowledgments 111

The authors wish to acknowledge the following people. 112

Editor: 113

• Scott Kirvan – Intel 114

Contributors: 115

• John Leung – Intel 116

• Paul von Behren – Intel 117

• Barbara Craig -- HP 118

 119

DSP1071 Multi-type System Memory Profile

6 Work in Progress – Not a DMTF Standard Version 1.0.0a

Introduction 120

This specification describes a management profile including the CIM model and associated behavior for 121
computer system memory. Specifically, it addresses uni- and multi-processor systems with one or more 122
individually managed memory extents. 123

The information in this specification should be sufficient for a provider or consumer of this data to 124
unambiguously identify the classes, properties, methods, and values that shall be instantiated to 125
subscribe, advertise, produce, or consume an indication using the DMTF Common Information Model 126
(CIM) Schema. 127

The target audience for this specification is implementers who are writing CIM-based providers or 128
consumers of management interfaces that represent the components described in this document. 129

Multi-type System Memory Profile 130

1 Scope 131

The Multi-type System Memory Profile extends the management capabilities of referencing profiles by 132
adding the ability to detect and monitor individual memory extents in a computer system. Logical memory 133
extents are modeled in the context of related profiles including those that: 1) model the memory’s physical 134
aspects; 2) identify the hosting system; 3) allow for configuration; and 4) define registration information. 135
This profile would generally be used instead of the System Memory Profile (DSP1026) rather than in 136
conjunction with it. 137

2 Normative References 138

The following referenced documents are indispensable for the application of this document. For dated 139
references, only the edition cited applies. For undated references, the latest edition of the referenced 140
document (including any amendments) applies. 141

2.1 Approved References 142

DMTF DSP0004, CIM Infrastructure Specification 2.7, 143
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf 144

DMTF DSP0215, Server Management Managed Element Addressing Specification 1.0, 145
http://www.dmtf.org/standards/published_documents/DSP0215_1.0.pdf 146

DMTF DSP0223, Generic Operations 1.0, 147
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf 148

DMTF DSP0228, Message Registry XML Schema 1.0, 149
http://www.dmtf.org/standards/published_documents/DSP0228_1.0.pdf 150

DMTF DSP1001, Management Profile Specification Usage Guide 1.1, 151
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf 152

DMTF DSP1033, Profile Registration Profile 1.1, 153
http://dmtf.org/sites/default/files/standards/documents/DSP1033_1.1.0.pdf 154

DMTF DSP1011, Physical Asset Profile 155
http://dmtf.org/sites/default/files/standards/documents/DSP1011_1.0.2.pdf 156

DMTF DSP1022, CPU Profile 157
http://dmtf.org/sites/default/files/standards/documents/DSP1022_1.0.1.pdf 158

DMTF DSP8016, WBEM Operations Message Registry 1.0, 159
http://schemas.dmtf.org/wbem/messageregistry/1/dsp8016_1.0.xml 160

DMTF DSP8020, Message Registry XML Schema Specification 1.0, 161
http://www.dmtf.org/standards/published_documents/DSP8020_1.0.xsd 162

IETF RFC5234, ABNF: Augmented BNF for Syntax Specifications, January 2008, 163
http://tools.ietf.org/html/rfc5234 164

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 165
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 166

DSP1071 Multi-type System Memory Profile

8 Work in Progress – Not a DMTF Standard Version 1.0.0a

The Open Group, "Regular Expressions" in The Single UNIX ® Specification, Version 2, 167
http://www.opengroup.org/onlinepubs/7908799/xbd/re.html 168

3 Terms and Definitions 169

3.1 170
can 171
used for statements of possibility and capability, whether material, physical, or causal 172

3.2 173
cannot 174
used for statements of possibility and capability, whether material, physical, or causal 175

3.3 176
conditional 177
used to indicate requirements strictly to be followed, in order to conform to the document when the 178
specified conditions are met 179

3.4 180
mandatory 181
used to indicate requirements strictly to be followed, in order to conform to the document and from which 182
no deviation is permitted 183

3.5 184
may 185
used to indicate a course of action permissible within the limits of the document 186

3.6 187
memory extent 188
used generically to indicate a range of memory addresses that can participate in management operations 189

3.7 190
memory module 191
non-technology specific term for a circuit board hosting memory integrated circuits 192

3.8 193
need not 194
used to indicate a course of action permissible within the limits of the document 195

3.9 196
optional 197
used to indicate a course of action permissible within the limits of the document 198

3.10 199
persistent memory 200
byte addressable memory which retains its contents across system power cycles 201

3.11 202
referencing profile 203
indicates a profile that owns the definition of a class used, but not defined, in this document and can be 204
included in the “Referenced Profiles” table 205

3.12 206
shall 207
used to indicate requirements strictly to be followed, in order to conform to the document and from which 208
no deviation is permitted 209

3.13 210
shall not 211
used to indicate requirements strictly to be followed, in order to conform to the document and from which 212
no deviation is permitted 213

3.14 214
should 215
used to indicate that among several possibilities, one is recommended as particularly suitable, without 216
mentioning or excluding others, or that a certain course of action is preferred but not necessarily required 217

3.15 218
should not 219
used to indicate that a certain possibility or course of action is deprecated but not prohibited 220

3.16 221
unspecified 222
indicates that this profile does not define any constraints for the referenced CIM element or operation 223

4 Symbols and Abbreviated Terms 224

4.1 225
NUMA 226
Non-Uniform Memory Access 227

4.2 228
NVM 229
Non-Volatile Memory 230
 231
4.3 232
PM 233
Persistent Memory 234
 235
4.4 236
QoS 237
Quality of Service 238
 239
4.5 240
UMA 241
Uniform Memory Access 242

5 Synopsis 243

Profile Name: Multi-type System Memory 244

Version: 1.0.0a 245

Organization: DMTF 246

CIM Schema Version: 2.41 247

DSP1071 Multi-type System Memory Profile

10 Work in Progress – Not a DMTF Standard Version
1.0.0a

Central Class: CIM_VisibleMemory 248

Scoping Class: CIM_ComputerSystem 249

The Multi-type Memory Profile extends the management capabilities of the referencing profiles by adding 250
the capability to represent and manage multiple types of memory within a managed system. The profile 251
supports systems with one or more memory regions where each region can be individually managed. 252

Table 1 identifies profiles on which this profile has a dependency. 253

CIM_VisibleMemory shall be the Central Class of this profile. 254

CIM_ComputerSystem shall be the Scoping Class of this profile. The instance of CIM_ComputerSystem 255
with which the Central Instance is associated through an instance of CIM_SystemDevice shall be the 256
Scoping Instance of this profile. 257

Table 1 – Related Profiles 258

Profile Name Organization Version Relationship

Physical Asset DMTF 1.0.2 Mandatory

Profile Registration DMTF 1.1.0 Mandatory

CPU DMTF 1.0.1 Conditional

Memory Configuration Profile SNIA 1.0.0a Conditional

6 Description 259

The Multi-type System Memory Profile describes the elements which allow multiple types of memory to 260
be represented and managed. 261

This profile can be used to manage the following capabilities of memory regions in a system with multiple 262
types of memory. 263

• A memory region can have specific quality of service (QoS) characteristics, such a persistence, 264
redundancy, block access. 265

• A memory region can be configured from a pool of raw memory. 266

• The characteristics of a memory region can be configured. 267

• A memory region can be visible to, or have affinity with, specific processors and memory 268
controllers. 269

• A memory region can be visible to one or more processors (shared). 270

Figure 1 shows the Multi-type System Memory Profile class hierarchy. For simplicity, the prefix CIM_ has 271
been removed from the names of the classes. 272

 273
Figure 6-1 – Multi-type System Memory: Class Diagram 274

Each memory region visible to the computer system is modeled by an instance of CIM_VisibleMemory. 275

Each physical memory region is associated with its logical counterpart, a raw memory region. Raw 276
memory is not visible to the computer system. Raw memory is modeled by an instance of 277
CIM_RawMemory and its relationship to the visible memory region is modeled by the CIM_BasedOn 278
association. 279

A memory controller configures raw memory to create the visible memory regions. Memory controllers are 280
represented by instances of CIM_MemoryController and their relationship to the raw memory region is 281
modeled by the CIM_AssociatedMemory association. 282

In multi-processor systems, memory extents can have an affinity to a specific processor and memory 283
controller. An affinity relationship between memory and a processor/controller can indicate exclusive or 284
preferential access to the memory by that processor. The Multi-type System Memory Profile models a 285
relationship between raw memory extents and their controller and processor such that a management 286
application can determine memory affinity and the physical memory topology. 287

The SNIA Memory Configuration Profile may be used to model memory regions. That profile includes the 288
CIM_MemoryResources and CIM_MemoryAllocationSetting elements. 289

The CIM_ElementSettingData and CIM_ElementAllocatedFromPool associations are used to model the 290
relationship between the elements of these two profiles. 291

DSP1071 Multi-type System Memory Profile

12 Work in Progress – Not a DMTF Standard Version
1.0.0a

7 Implementation 292

This clause details the requirements related to the arrangement of instances and their most important 293
properties. Class methods are discussed in clause 8; a comprehensive treatment of properties is left to 294
clause 10. 295

7.1 Representing Raw Memory 296

An instance of CIM_RawMemory shall represent a memory region which is realized by physical memory, 297
but not visible to the computer system. Instances of CIM_RawMemory shall be associated with an 298
instance of CIM_PhysicalMemory with an instance of CIM_Realizes. 299

There shall be at least one instance of CIM_RawMemory. 300

The size given for a CIM_RawMemory instance shall be equal to that given by the SMBIOS Memory 301
Device (type 17) structure for the same memory device. 302

7.2 Representing Visible Memory 303

An instance of CIM_VisibleMemory shall represent a memory region which is visible to the computer 304
system. Instances of CIM_VisibleMemory shall be associated with the instance of CIM_ComputerSystem 305
with an instance of CIM_SystemDevice. 306

There shall be at least one instance of CIM_VisbileMemory. Additional instances of CIM_VisibleMemory 307
may exist when the system contains more than one memory region with distinct memory characteristics. 308
For example, one instance may exist for volatile memory and one for non-volatile memory. 309

The relationship between the visible memory and the raw memory can be modeled. Each instance of 310
CIM_VisibleMemory shall be associated with one or more instances of CIM_RawMemory, using the 311
CIM_BasedOn association. 312

7.2.1 CIM_VisibleMemory.HealthState 313

The CIM_VisibleMemory.HealthState property may have the values 0 (Unknown), 1 (OK) or 2 314
(Degraded). 315

7.2.2 CIM_VisibleMemory.EnabledState 316

The CIM_VisibleMemory.EnabledState property shall have a value of 2 (Enabled) when the visible 317
memory that it represents is visible to the computer system to which it’s scoped. 318

The CIM_VisibleMemory.EnabledState property shall have a value of 3 (Disabled) when the visible 319
memory, that it represents, is not visible to the computer system to which it’s scoped. 320

7.2.3 Representing Memory Size 321

The value of the CIM_VisibleMemory.BlockSize and the CIM_VisibleMemory.NumberOfBlocks properties 322
shall represent the capacity of the memory region visible to the computer system. 323

The capacity, so represented, shall be the visible (or usable) capacity of the underlying memory extent. 324
For example, memory controllers may support a mirroring feature which has the effect of cutting in half 325
the capacity that is usable by the system. The NumberOfBlocks and BlockSize values shall always take 326
into account (i.e. do not include) space utilized for replication, metadata or the like. 327

7.2.4 CIM_VisibleMemory.AccessGranularity 328

The CIM_VisibleMemory.AccessGranularity property shall have a value of 1 (Block Addressable) when 329
the modeled memory region is accessed as a block device. When the memory region is accessed using 330

load and store memory operations the value of CIM_VisibleMemory.AccessGranularity shall be 2 (Byte 331
Addressable). Vendor unique access mechanisms may be represented by values in the vendor reserved 332
range of 32768..65535. 333

The default value for CIM_VisibleMemory.AccessGranularity shall be 0 (Unknown). 334

7.2.5 CIM_VisibleMemory.Replication 335

The CIM_VisibleMemory.Replication property shall indicate whether the contents of the memory region 336
are replicated. The default value for this property shall be 1 (Not Replicated). If the contents are 337
replicated using resources on the local server the value used shall be 2 (Local Replication). If the 338
replicated region exists on a different server (e.g. using RDMA or the like) the value shall be 3 (Remote 339
Replication). Vendor specific replication mechanisms may be represented by values in the vendor 340
reserved range of 32768..65535. 341

7.3 Representing Topology 342

Multi-processor systems are common. Often such systems use a Non-Uniform Memory Access (NUMA) 343
configuration in which memory has an “affinity” to a specific processor. In such a system, memory can be 344
accessed optimally by a processor to which it has an affinity; it is more costly (often drastically so) to 345
access from other processors. 346

In addition to optimal and non-optimal access paths, the topology of memory devices within a system can 347
limit the system’s configuration options. For example a given memory controller may support mirroring 348
between memory address ranges of memory modules under its control. In this case it would be important 349
to understand which memory modules are associated with specific memory controllers. A second 350
example of the importance of topology involves memory interleaving. Memory controllers can enhance 351
overall memory performance by interleaving capacity from multiple memory modules. In a NUMA system 352
it could be advantageous to restrict interleaving to those memory modules with affinity to a specific 353
processor. In this case it would be important to understand the affinity of memory modules for a given 354
processor. 355

In a uniprocessor system all memory is accessed by a single processor. Conformant implementations 356
include topology information in this degenerate case to minimize special cases for clients attempting to 357
discover memory topology. 358

7.3.1 CIM_MemoryController 359

There shall be at least one instance of CIM_MemoryContoller. 360

An instance of CIM_MemoryController shall be associated to an instance of CIM_RawMemory, which 361
represents raw memory that the memory controller can make available to the computer system, with an 362
instance of CIM_AssociatedMemory. 363

7.3.2 CIM_Processor 364

There shall be at least one instance of CIM_Processor, which represents a processor with access to 365
managed memory regions. CIM_Processor instances utilized in this way may be those created by an 366
implementation of the CPU Profile. This is the preferred model. Optionally, CIM_Processor instances 367
may be created specifically for the Multi-type System Memory Profile. 368

The instance of CIM_Processor shall be associated to the instance of CIM_ComputerSystem, to which 369
the memory is visible, with an instance of CIM_SystemDevice. 370

7.3.3 Representing Non-Uniform Memory Access Configurations 371

The instances of CIM_Processor shall be associated to one or more instances of CIM_MemoryController 372
with an instance of CIM_ConcreteDependency. 373

The instances of CIM_MemoryController shall be associated to one or more instances of 374
CIM_RawMemory with an instance of CIM_AssociatedMemory. 375

DSP1071 Multi-type System Memory Profile

14 Work in Progress – Not a DMTF Standard Version
1.0.0a

This path from processor to memory controller to raw memory extent describes the NUMA affinity of a 376
given memory extent to a given processor. 377

Additionally, the CIM_VisibleMemory.ProcessorAffinity property may optionally be used to indicate a 378
preferential relationship between a memory region and a processor. A NUMA relationship is an example 379
of such a preferential relationship. When a NUMA relationship exists between a memory region as 380
modeled by a CIM_VisibleMemory instance and a processor given by CIM_Processor the 381
CIM_VisibleMemory.ProcessorAffinity property is conditionally set to the DeviceID of the processor 382
instance. When no affinity exists or this property is not used it shall be set to an empty string. 383

When a memory controller has an exclusive or preferential access relationship with a processor this 384
relationship may be represented by setting the CIM_MemoryController.ProcessorAffinity property to the 385
DeviceID of the CIM_Processor instance. When no such relationship exists or the property is not used 386
the CIM_MemoryController.ProcessorAffinity property shall be set to an empty string. 387

7.4 Representing Memory Configuration 388

The Multi-type System Memory Profile models the static configuration of memory within a system. For 389
systems that support a configuration process which results in CIM_VisibleMemory instances this profile 390
references the SNIA Memory Configuration Profile, specifically the MemoryAllocationSettings and 391
MemoryResources classes and the associations which link them to the Multi-type System Memory 392
Profile. See Annex B for more information. 393

8 Methods 394

This clause details the requirements for supporting intrinsic operations for the CIM elements defined by 395
this profile. No extrinsic methods are defined by this profile. 396

8.1 CIM_VisibleMemory 397

Conformant implementations of this profile shall support the operations listed in Table 2 for 398
CIM_VisibleMemory. Each operation shall be supported as defined in DSP0200. 399

Table 2 – Operations: CIM_VisibleMemory 400

Operation Requirement Messages

GetInstance Mandatory None

Associators Mandatory None

AssociatorNames Mandatory None

References Mandatory None

ReferenceNames Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.2 CIM_RawMemory 401

Conformant implementations of this profile shall support the operations listed in Table 3 for the 402
CIM_RawMemory class. Each operation shall be supported as defined in DSP0200. 403

Table 3 – Operations: CIM_RawMemory 404

Operation Requirement Messages

GetInstance Mandatory None

Associators Mandatory None

AssociatorNames Mandatory None

References Mandatory None

ReferenceNames Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.3 CIM_MemoryController 405

Conformant implementations of this profile shall support the operations listed in Table 4 for the 406
CIM_MemoryController class. Each operation shall be supported as defined in DSP0200. 407

Table 4 – Operations: CIM_MemoryController 408

Operation Requirement Messages

GetInstance Mandatory None

Associators Mandatory None

AssociatorNames Mandatory None

References Mandatory None

ReferenceNames Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.4 CIM_Processor 409

Conformant implementations of this profile shall support the operations listed in Table 5 for the 410
CIM_memoryController class. Each operation shall be supported as defined in DSP0200. 411

Table 5 – Operations: CIM_Processor 412

Operation Requirement Messages

GetInstance Mandatory None

Associators Mandatory None

AssociatorNames Mandatory None

References Mandatory None

ReferenceNames Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.5 CIM_ConcreteDependency 413

Conformant implementations of this profile shall support the operations listed in Table 6 for the 414
CIM_ConcreteDependency class. Each operation shall be supported as defined in DSP0200. 415

DSP1071 Multi-type System Memory Profile

16 Work in Progress – Not a DMTF Standard Version
1.0.0a

Table 6 – Operations: CIM_ConcreteDependency 416

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.6 CIM_AssociatedMemory 417

Conformant implementations of this profile shall support the operations listed in Table 7 for the 418
CIM_AssociatedMemory class. Each operation shall be supported as defined in DSP0200. 419

Table 7 – Operations: CIM_AssociatedMemory 420

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.7 CIM_BasedOn 421

Conformant implementations of this profile shall support the operations listed in Table 8 for the 422
CIM_BasedOn class. Each operation shall be supported as defined in DSP0200. 423

Table 8 – Operations: CIM_BasedOn 424

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

9 Use Cases 425

This clause contains object diagrams and use cases for the Multi-type System Memory Profile. 426

9.1 Advertising Profile Conformance 427

Figure 9-1 shows how an instance of CIM_RegisteredProfile is used to indicate the presence of a 428
conforming implementation of the Multi-type System Memory Profile and to identify instances of its central 429
class CIM_VisibleMemory. 430

 431

Figure 9-1 – Registered Profile 432

9.2 Single Visible Memory Extent 433

Figure 9-2 shows the simplest possible configuration with a single memory module (dimm1) contributing 434
its full capacity to a single memory extent (memory1). 435

 436
Figure 9-2 Single Visible Memory Extent 437

9.3 Two Visible Memory Extents 438

Figure 9-3 models a system configuration in which memory modules and the memory controller support 439
configuring memory address ranges with unique quality of service characteristics. In this example a 440
single memory module has been configured so as to expose two CIM_VisibleMemory extents to the 441

DSP1071 Multi-type System Memory Profile

18 Work in Progress – Not a DMTF Standard Version
1.0.0a

system. The figure shows 1 extent as volatile and the other persistent; the quality of service between the 442
two extents is sufficiently different that one would likely manage and use the extents separately. 443

Exposing the relationship between CIM_RawMemory and CIM_VisibleMemory extents allows clients to 444
understand reliability and serviceability characteristics of each extent. Clients utilize the CIM_BasedOn 445
association to determine the memory module(s) which host any given CIM_VisibleMemory instance. The 446
position of any given memory module within the system is determined by following the 447
CIM_AssociatedMemory association to the CIM_MemoryController instance. 448

 449

Figure 9-3 – Distinct Visible Memory Extents Object Diagram 450

9.4 Uniform Memory Access Extents 451

Figure 9-4 shows a system with a 2 processor UMA architecture. The ProcessorAffinity attribute of the 452
CIM_VisibleMemory instance is set to an empty string indicating no specific affinity. The 453
CIM_RawMemory instance is associated to a CIM_MemoryController which services memory accesses 454
from both CIM_Processor instances. The CIM_MemoryController.ProcessorAffinity attribute is also set to 455
the empty string indicating no affinity to a specific processor. 456

 457
Figure 9-4 --UMA Configuration 458

9.5 Non-uniform Memory Access (NUMA) Extents 459

Figure 9-5 shows the model for a multi-processor system with memory extents organized to support 460
NUMA. The CIM_VisibleMemory.ProcessorAffinity property is set to indicate affinity consistent with the 461
results that can be achieved via association traversal (i.e. set to the DeviceID of the affiliated processor). 462
The CIM_MemoryController.ProcessorAffinity is likewise set to the DeviceID of the processor it supports. 463

 464

In a single processor system (essentially the left or right half of diagram 9-5 in isolation) processor affinity 465
is set to the identity of the only processor. 466

DSP1071 Multi-type System Memory Profile

20 Work in Progress – Not a DMTF Standard Version
1.0.0a

 467

Figure 9-5 – NUMA Configuration Object Diagram 468

9.6 Determine Persistent Memory Capacity 469

Determining the capacity of memory with a given QoS is determined by enumerating the 470
CIM_VisibleMemory instances with that QoS and examining the NumberOfBlocks and BlockSize 471
attributes. In figure 9-3 above there are two equally sized instances, one offers volatile memory, the other 472
persistent. Enumerating VisibleMemory instances and summing capacity for those with the Volatile 473
property set to FALSE would give the total memory capacity offering a persistent QoS. Similarly 474
summing the capacity of VisibleMemory instances whose Volatile property is set to TRUE would give the 475
total memory capacity offering a volatile QoS. 476

9.7 Determine Total Installed Memory Capacity 477

Total installed memory (in bytes) is calculated by enumerating RawMemory instances and summing the 478
product of NumberOfBlocks and BlockSize. 479

9.8 Determine Capacity by Processor Affinity 480

Capacity available to a given processor is determined by following the CIM_ConcreteDependency 481
association to find CIM_MemoryController instances and then following the AssociatedMemory 482
association to CIM_RawMemory instances. Summing the NumberOfBlocks property for the 483
CIM_RawMemory instances, so located, determines the total capacity with an affinity to the selected 484
processor. In figure 9-5, the total capacity with an affinity to the processor in socket 2 is determined by 485
summing the capacity of dimm3 and dimm4. 486

9.9 Determine Processor Affinity for Visible Memory 487

Determining whether a given CIM_VisibleMemory instance (assuming the system has a NUMA 488
architecture as given in figure 9-5) has NUMA performance characteristics is determined by following the 489
CIM_BasedOn association to the CIM_RawMemory instances. From there, the CIM_AssociatedMemory 490
association is used to verify that each instance of CIM_RawMemory is controlled by a single processor. 491

Alternatively, the ProcessorAffinity property maybe sufficient to determine affinity for implementations that 492
utilize it. 493

10 CIM Elements 494

Table 9 shows the instances of CIM Elements for this profile. Instances of the following CIM Elements 495
shall be implemented as described in Table 9. Clauses 7 (“Implementation”) and 8 (“Methods”) may 496
impose additional requirements on these elements. 497

Table 9 CIM Elements – Multi-type System Memory Profile 498

Element Name Requirement Description

CIM_RegisteredProfile Mandatory See subclause 10.1

CIM_VisibleMemory Mandatory See subclause 10.2, 7.2

CIM_RawMemory Mandatory See subclause 10.3, 7.1

CIM_MemoryController Mandatory See subclause 10.4, 7.3.1

CIM_Processor Mandatory See subclause 10.5, 7.3.2

CIM_ConcreteDependency Mandatory See subclause 10.6.

CIM_SystemDevice Mandatory See subclause 10.7

CIM_AssociatedMemory Mandatory See subclause 10.8

CIM_BasedOn Mandatory See subclause 10.9

10.1 CIM_RegisteredProfile 499

CIM_RegisteredProfile identifies the Multi-type System Memory Profile in order for a client to determine 500
whether an instance of CIM_VisibleMemory is conformant with this profile. The CIM_RegisteredProfile 501
class is defined by the Profile Registration Profile. With the exception of the mandatory values specified 502
for the properties below, the behavior of the CIM_RegisteredProfile instance is per the Profile Registration 503
Profile. Table 10 contains the requirements for elements of this class. 504

Table 10 – Class: CIM_RegisteredProfile 505

Elements Requirement Notes

RegisteredName Mandatory This property shall have a value of "Multi-type System
Memory".

RegisteredVersion Mandatory This property shall have a value of "1.0.0".

RegisteredOrganization Mandatory This property shall have a value of 2 (DMTF).

DSP1071 Multi-type System Memory Profile

22 Work in Progress – Not a DMTF Standard Version
1.0.0a

10.2 CIM_VisibleMemory 506

The CIM_VisibleMemory class represents memory configured with a given set of QoS attributes. 507
Conformant implementations support attributes as given below. 508

Table 11 – Class: CIM_VisibleMemory 509

Elements Requirement Notes

CreationClassName Mandatory Key

DeviceID Mandatory Key
SystemCreationClassName Mandatory Key
SystemName Mandatory Key

Primordial Mandatory False
BlockSize Mandatory Number of bytes per block. See subclause 7.2.3

NumberOfBlocks Mandatory Block count; multiply by BlockSize to get bytes. See
subclause 7.2.3.

OperationalStatus Mandatory None

HealthState Mandatory See subclause 7.2.1

EnabledState Mandatory See subclause 7.2.2

Volatile Optional None

AccessGranularity Optional Access type. See subclause 7.2.4

ProcessorAffinity Optional Affiliated processor. See subclause 7.3.3

Replication Optional Data replication. See subclause 7.2.5

10.3 CIM_RawMemory 510

The CIM_RawMemory class represents of the capacity of a given physical memory module. Conformant 511
implementations support attributes as given below. 512

Table 12 – Class: CIM_RawMemory 513

Elements Requirement Notes

CreationClassName Mandatory Key
DeviceID Mandatory Key
SystemCreationClassName Mandatory Key

SystemName Mandatory Key
Primordial Mandatory True

BlockSize Mandatory Number of bytes per block

NumberOfBlocks Mandatory Block count; multiply by BlockSize to get bytes.

OperationalStatus Mandatory None

HealthState Mandatory None

10.4 CIM_MemoryController 514

The CIM_MemoryController class represents the controller for one or more raw memory regions. 515
Memory controller modeling is included in this profile to provide an understanding of the system memory 516
topology. Conformant implementations support attributes as given below. 517

Table 13 – Class: CIM_MemoryController 518

Elements Requirement Notes

CreationClassName Mandatory Key

DeviceID Mandatory Key
SystemCreationClassName Mandatory Key
SystemName Mandatory Key
ProtocolSupported Optional Identify controller protocol, e.g. DDR3

ProcessorAffinity Optional Processor affinity. See subclause 7.3.3

10.5 CIM_Processor 519

The CIM_Processor class models a processor with access to a visible memory region. This usage of 520
CIM_Processor includes only those properties useful in identifying a processor instance. When 521
implementing both Multi-type System Memory and the CPU Profiles, Multi-type System Memory profile 522
can refer to instances created in accordance with the CPU Profile. When only the Multi-type System 523
Memory profile is implemented the more limited version given below is used. This class is mandatory to 524
remove any ambiguity as to the NUMA/UMA nature of the memory architecture. Conformant 525
implementations support attributes as given below. 526

Table 14 – Class: CIM_Processor 527

Elements Requirement Notes

CreationClassName Mandatory Key

DeviceID Mandatory Key
SystemCreationClassName Mandatory Key
SystemName Mandatory Key
Family Optional This property supported if it can be used to determine

processor support for specific memory management
features.

OtherFamilyDescription Conditional Used if Family value is “1”.

Stepping Optional This property supported if it can be used to determine
processor support for specific memory management
features.

OtherIdentifyingInfo Optional This property supported if it can be used to determine
processor support for specific memory management
features. Recommended values: Processor Type,
Processor Model, and Processor Manufacturer.

IdentifyingDescriptions Conditional If OtherIdentifyingInfo is used.

10.6 CIM_ConcreteDependency 528

The CIM_ConcreteDependency association is used to relate an instance of CIM_MemoryController to a 529
CIM_Processor instance. Table 15 contains the requirements for elements of this class. 530

DSP1071 Multi-type System Memory Profile

24 Work in Progress – Not a DMTF Standard Version
1.0.0a

Table 15 – Class: CIM_ConcreteDependency 531

Elements Requirement Notes

Antecedent Mandatory This property shall be a reference to an instance of the
CIM_Processor class.
Cardinality is "1..*".

Dependency Mandatory This property shall be a reference to an instance of a
concrete subclass of the CIM_MemoryController class.
Cardinality is "1..*".

10.7 CIM_SystemDevice 532

10.7.1 Relating CIM_Processor to CIM_ComputerSystem 533

CIM_SystemDevice association is used to relate an instance of CIM_Processor with an instance of 534
CIM_ComputerSystem. Table 16 contains the requirements for elements of this class. 535

Table 16 – Class: CIM_SystemDevice –use 1 536

Elements Requirement Notes

GroupComponent Mandatory This property shall be a reference to an instance of
CIM_ComputerSystem.
Cardinality is "1".

PartComponent Mandatory This property shall be a reference to an instance of
CIM_Processor.
Cardinality is "1..*".

10.7.2 Relating CIM_VisibleMemory to CIM_ComputerSystem 537

CIM_SystemDevice association is used to relate an instance of CIM_VisibleMemory with an instance of 538
CIM_ComputerSystem. Table 16 contains the requirements for elements of this class. 539

Table 17 – Class: CIM_SystemDevice –use 2 540

Elements Requirement Notes

GroupComponent Mandatory This property shall be a reference to an instance of
CIM_ComputerSystem.
Cardinality is "1".

PartComponent Mandatory This property shall be a reference to an instance of
CIM_VisibleMemory.
Cardinality is "1..*".

10.8 CIM_AssociatedMemory 541

The CIM_AssociatedMemory association is used to relate the CIM_MemoryController instance to the 542
CIM_RawMemory instance to which it applies. Table 18 contains the requirements for elements of this 543
class. 544

Table 18 – Class: CIM_AssociatedMemory 545

Elements Requirement Notes

Antecedent Mandatory This property shall be a reference to an instance of the
CIM_RawMemory class.
Cardinality is "1..*".

Dependent Mandatory This property shall be a reference to an instance of the
CIM_MemoryController class.
Cardinality is "1..*".

10.9 CIM_BasedOn 546

The CIM_BasedOn association is used to relate the CIM_VisibleMemory to the CIM_RawMemory on 547
which it is hosted. Table 19 contains the requirements for elements of this class. 548

Table 19 – Class: CIM_BasedOn 549

Elements Requirement Notes

Antecedent Mandatory This property shall be a reference to an instance of the
CIM_RawMemory class.
Cardinality is "1".

Dependent Mandatory This property shall be a reference to an instance of the
CIM_VisibleMemory.
Cardinality is "1".

DSP1071 Multi-type System Memory Profile

26 Work in Progress – Not a DMTF Standard Version
1.0.0a

ANNEX A 550
(informative) 551

 552
Change Log 553

Version Date Description
1.0.0a 9/29/2014 Draft Standard

ANNEX B 554

SNIA	
 Memory	
 Configuration	
 Profile	
 555

This profile, the Multi-type System Memory Profile is being pursued with the DMTF while a closely related 556
profile tentatively named the Memory Configuration Profile is being pursued with SNIA. Since memory 557
management has been the purview of the DMTF it was felt that the static view defined by the Multi-type 558
System Memory Profile was best pursued with the DMTF as a follow-on to the existing System Memory 559
Profile. The management of memory configuration is being pursued with SNIA for similar reasons, its 560
similarity to existing SNIA profiles and the blurring of the typical roles played by memory and storage. 561
Indeed, the primary motivation for updating memory management profiles at this time is the recent 562
introduction of non-volatile memory technologies that use typical memory form factors (e.g. DIMM) and 563
typical memory interconnects (e.g. DDR3) but have features/characteristics usually associated with 564
storage. 565

The SNIA Memory Configuration Profile is conceived as building upon the Multi-type System Memory 566
Profile. As such its detailed definition is trailing the definition provided in this document. That said, some 567
high-level definition has occurred and may be useful in putting the Multi-type System Memory Profile in 568
context. Figure B-1 below identifies key classes in the Memory Configuration Profile focusing on those 569
that associate with Multi-type System Memory Profile classes. 570

 571
Figure B-1 Memory Configuration Profile 572

• ComputerSystem –from the referencing profile 573

• VisibleMemory –the central class of the Multi-type System Memory Profile. A system visible 574
memory resource. 575

• RawMemory –referenced from the Multi-type System Memory Profile, a primordial memory 576
extent associated with a specific memory module. 577

• MemoryAllocationSettings –the settings provided during the provisioning process that resulted 578
in a given VisibleMemory instance. Also used as input to the provisioning extrinsic method. 579

• MemoryAllocationService –provides extrinsic methods for memory configuration. These 580
methods result in the allocation or return of resources to the MemoryResources pool and the 581
creation or destruction of VisibleMemory instances. 582

DSP1071 Multi-type System Memory Profile

28 Work in Progress – Not a DMTF Standard Version
1.0.0a

• MemoryConfigurationCapabilities –describes the supported extrinsic method support available 583
from the MemoryAllocationService. 584

• MemoryCapabilities –describes the configurable features of the resources aggregated under the 585
MemoryResources pool. 586

