
 1

 2

Document Identifier: DSP1071 3

Date: 2017-01-19 4

Version: 1.0.0 5

Multi-type System Memory Profile 6

Supersedes: None 7

Document Class: Normative 8

Document Status: Published 9

Document Language: en-US 10

DSP1071 Multi-type System Memory Profile

2 Published Version 1.0.0

Copyright Notice 11

Copyright © 2017 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 12

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 13
management and interoperability. Members and non-members may reproduce DMTF specifications and 14
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 15
time, the particular version and release date should always be noted. 16

Implementation of certain elements of this standard or proposed standard may be subject to third party 17
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 18
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 19
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 20
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 21
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 22
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 23
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 24
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 25
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 26
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 27
implementing the standard from any and all claims of infringement by a patent owner for such 28
implementations. 29

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 30
such patent may relate to or impact implementations of DMTF standards, visit 31
http://www.dmtf.org/about/policies/disclosures.php. 32

This document’s normative language is English. Translation into other languages is permitted. 33

 34

http://www.dmtf.org/about/policies/disclosures.php

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 3

Contents 35

Foreword ... 6 36

Introduction.. 7 37

1 Scope .. 8 38

2 Normative references .. 8 39

3 Terms and definitions .. 9 40

4 Symbols and abbreviated terms .. 10 41

5 Synopsis .. 11 42

6 Description .. 11 43

7 Implementation .. 13 44
7.1 Representing raw memory .. 13 45
7.2 Representing visible memory ... 13 46

7.2.1 CIM_VisibleMemory.HealthState ... 13 47
7.2.2 CIM_VisibleMemory.EnabledState .. 13 48
7.2.3 Representing memory size .. 13 49
7.2.4 CIM_VisibleMemory.AccessGranularity .. 14 50
7.2.5 CIM_VisibleMemory.Replication .. 14 51

7.3 Representing topology .. 14 52
7.3.1 CIM_MemoryController .. 14 53
7.3.2 CIM_Processor .. 14 54
7.3.3 Representing non-uniform memory access configurations ... 15 55

7.4 Representing memory configuration ... 15 56

8 Methods ... 15 57
8.1 CIM_VisibleMemory .. 15 58
8.2 CIM_RawMemory ... 16 59
8.3 CIM_MemoryController ... 16 60
8.4 CIM_Processor ... 17 61
8.5 CIM_ConcreteDependency .. 17 62
8.6 CIM_AssociatedMemory ... 17 63
8.7 CIM_BasedOn .. 18 64

9 Use cases .. 18 65
9.1 Advertising profile conformance ... 18 66
9.2 Single visible memory extent .. 19 67
9.3 Two visible memory extents ... 19 68
9.4 Uniform memory access extents .. 20 69
9.5 Non-Uniform Memory Access (NUMA) extents .. 21 70
9.6 Determine persistent memory capacity .. 22 71
9.7 Determine total installed memory capacity ... 22 72
9.8 Determine capacity by processor affinity .. 22 73
9.9 Determine processor affinity for visible memory ... 23 74

10 CIM Elements .. 23 75
10.1 CIM_RegisteredProfile .. 23 76
10.2 CIM_VisibleMemory .. 24 77
10.3 CIM_RawMemory ... 24 78
10.4 CIM_MemoryController ... 24 79
10.5 CIM_Processor ... 25 80
10.6 CIM_ConcreteDependency .. 25 81
10.7 CIM_SystemDevice .. 26 82

10.7.1 Relating CIM_Processor to CIM_ComputerSystem .. 26 83
10.7.2 Relating CIM_VisibleMemory to CIM_ComputerSystem ... 26 84

10.8 CIM_AssociatedMemory ... 27 85

DSP1071 Multi-type System Memory Profile

4 Published Version 1.0.0

10.9 CIM_BasedOn .. 27 86

ANNEX A (informative) SNIA Memory Configuration Profile ... 28 87

ANNEX B (informative) Change log ... 30 88

 89

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 5

Figures 90

Figure 1 – Multi-type System Memory: Class diagram ... 12 91

Figure 2 – Registered Profile object diagram... 18 92

Figure 3 – Single visible memory extent object diagram .. 19 93

Figure 4 – Distinct visible memory extents object diagram ... 20 94

Figure 5 – UMA configuration object diagram ... 21 95

Figure 6 – NUMA configuration object diagram .. 22 96

Figure 7 – Memory Configuration Profile .. 28 97

 98

Tables 99

Table 1 – Related profiles ... 11 100

Table 2 – Operations: CIM_VisibleMemory .. 15 101

Table 3 – Operations: CIM_RawMemory .. 16 102

Table 4 – Operations: CIM_MemoryController ... 16 103

Table 5 – Operations: CIM_Processor .. 17 104

Table 6 – Operations: CIM_ConcreteDependency ... 17 105

Table 7 – Operations: CIM_AssociatedMemory ... 18 106

Table 8 – Operations: CIM_BasedOn ... 18 107

Table 9 – CIM Elements – Multi-type System Memory Profile ... 23 108

Table 10 – Class: CIM_RegisteredProfile ... 23 109

Table 11 – Class: CIM_VisibleMemory ... 24 110

Table 12 – Class: CIM_RawMemory .. 24 111

Table 13 – Class: CIM_MemoryController .. 25 112

Table 14 – Class: CIM_Processor .. 25 113

Table 15 – Class: CIM_ConcreteDependency.. 26 114

Table 16 – Class: CIM_SystemDevice – use 1... 26 115

Table 17 – Class: CIM_SystemDevice – use 2... 26 116

Table 18 – Class: CIM_AssociatedMemory .. 27 117

Table 19 – Class: CIM_BasedOn ... 27 118

 119

 120

DSP1071 Multi-type System Memory Profile

6 Published Version 1.0.0

Foreword 121

The Multi-type System Memory Profile (DSP1071) was prepared by the CIM Profiles for Platforms and 122
Services Working Group. 123

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 124
management and interoperability. 125

Acknowledgments 126

The DMTF acknowledges the following individuals for their contributions to this document: 127

Editor: 128

 Scott Kirvan – Intel 129

Contributors: 130

 Paul von Behren – Intel 131

 Barbara Craig – Hewlett-Packard 132

 John Leung – Intel 133

 134

 135

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 7

Introduction 136

This specification describes a management profile including the CIM model and associated behavior for 137
computer system memory. Specifically, it addresses uni- and multi-processor systems with one or more 138
individually managed memory extents. 139

The information in this specification should be sufficient for a provider or consumer of this data to 140
unambiguously identify the classes, properties, methods, and values that shall be instantiated to 141
subscribe, advertise, produce, or consume an indication using the DMTF Common Information Model 142
(CIM) Schema. 143

The target audience for this specification is implementers who are writing CIM-based providers or 144
consumers of management interfaces that represent the components described in this document. 145

DSP1071 Multi-type System Memory Profile

8 Published Version 1.0.0

Multi-type System Memory Profile 146

1 Scope 147

The Multi-type System Memory Profile extends the management capabilities of referencing profiles by 148
adding the ability to detect and monitor individual memory extents in a computer system. Logical memory 149
extents are modeled in the context of related profiles including those that: 1) model the memory’s physical 150
aspects; 2) identify the hosting system; 3) allow for configuration; and 4) define registration information. 151
This profile would generally be used instead of the System Memory Profile (DSP1026) rather than in 152
conjunction with it. 153

2 Normative references 154

The following referenced documents are indispensable for the application of this document. For dated or 155
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 156
For references without a date or version, the latest published edition of the referenced document 157
(including any corrigenda or DMTF update versions) applies. 158

DMTF DSP0004, CIM Infrastructure Specification 2.7, 159
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf 160

DMTF DSP0215, Server Management Managed Element Addressing Specification 1.0, 161
http://www.dmtf.org/standards/published_documents/DSP0215_1.0.pdf 162

DMTF DSP0223, Generic Operations 1.0, 163
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf 164

DMTF DSP0228, Message Registry XML Schema 1.0, 165
http://schemas.dmtf.org/wbem/messageregistry/1/dsp0228_1.0.1.xsd 166

DMTF DSP1001, Management Profile Specification Usage Guide 1.1, 167
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf 168

DMTF DSP1033, Profile Registration Profile 1.1, 169
http://dmtf.org/sites/default/files/standards/documents/DSP1033_1.1.0.pdf 170

DMTF DSP1011, Physical Asset Profile 171
http://dmtf.org/sites/default/files/standards/documents/DSP1011_1.0.2.pdf 172

DMTF DSP1022, CPU Profile 173
http://dmtf.org/sites/default/files/standards/documents/DSP1022_1.0.1.pdf 174

DMTF DSP8016, WBEM Operations Message Registry 1.0, 175
http://schemas.dmtf.org/wbem/messageregistry/1/dsp8016_1.0.xml 176

DMTF DSP8020, Standard Metrics Schema 1.0, 177
http://schemas.dmtf.org/wbem/metricregistry/1/dsp8020_1.0.xsd 178

IETF RFC5234, ABNF: Augmented BNF for Syntax Specifications, January 2008, 179
http://tools.ietf.org/html/rfc5234 180

http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf
http://www.dmtf.org/standards/published_documents/DSP0215_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf
http://schemas.dmtf.org/wbem/messageregistry/1/dsp0228_1.0.1.xsd
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1033_1.1.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1011_1.0.2.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1022_1.0.1.pdf
http://schemas.dmtf.org/wbem/messageregistry/1/dsp8016_1.0.xml
http://schemas.dmtf.org/wbem/metricregistry/1/dsp8020_1.0.xsd
http://tools.ietf.org/html/rfc5234

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 9

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 181
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 182

The Open Group, "Regular Expressions" in The Single UNIX ® Specification, Version 2, 183
http://www.opengroup.org/onlinepubs/7908799/xbd/re.html 184

3 Terms and definitions 185

3.1 186

can 187

used for statements of possibility and capability, whether material, physical, or causal 188

3.2 189

cannot 190

used for statements of possibility and capability, whether material, physical, or causal 191

3.3 192

conditional 193

used to indicate requirements strictly to be followed, in order to conform to the document when the 194
specified conditions are met 195

3.4 196

mandatory 197

used to indicate requirements strictly to be followed, in order to conform to the document and from which 198
no deviation is permitted 199

3.5 200

may 201

used to indicate a course of action permissible within the limits of the document 202

3.6 203

memory extent 204

used generically to indicate a range of memory addresses that can participate in management operations 205

3.7 206

memory module 207

non-technology specific term for a circuit board hosting memory integrated circuits 208

3.8 209

need not 210

used to indicate a course of action permissible within the limits of the document 211

3.9 212

optional 213

used to indicate a course of action permissible within the limits of the document 214

3.10 215

persistent memory 216

byte addressable memory which retains its contents across system power cycles 217

http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.opengroup.org/onlinepubs/7908799/xbd/re.html

DSP1071 Multi-type System Memory Profile

10 Published Version 1.0.0

3.11 218

referencing profile 219

indicates a profile that owns the definition of a class used, but not defined, in this document and can be 220
included in the “Referenced Profiles” table 221

3.12 222

shall 223

used to indicate requirements strictly to be followed, in order to conform to the document and from which 224
no deviation is permitted 225

3.13 226

shall not 227

used to indicate requirements strictly to be followed, in order to conform to the document and from which 228
no deviation is permitted 229

3.14 230

should 231

used to indicate that among several possibilities, one is recommended as particularly suitable, without 232
mentioning or excluding others, or that a certain course of action is preferred but not necessarily required 233

3.15 234

should not 235

used to indicate that a certain possibility or course of action is deprecated but not prohibited 236

3.16 237

unspecified 238

indicates that this profile does not define any constraints for the referenced CIM element or operation 239

4 Symbols and abbreviated terms 240

4.1 241

NUMA 242

Non-Uniform Memory Access 243

4.2 244

NVM 245

Non-Volatile Memory 246

4.3 247

PM 248

Persistent Memory 249

4.4 250

QoS 251

Quality of Service 252

4.5 253

UMA 254

Uniform Memory Access 255

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 11

5 Synopsis 256

Profile Name: Multi-type System Memory 257

Version: 1.0.0a 258

Organization: DMTF 259

CIM Schema Version: 2.41 260

Central Class: CIM_VisibleMemory 261

Scoping Class: CIM_ComputerSystem 262

System memory devices have traditional been physical device whose only purpose was a volatile 263
memory (e.g., DRAM, SRAM, Cache memory). These memory devices have a fixed size. The 264
manageability these types of memory is specified in the DSP1026 (System Memory Profile). 265

There also exist system memory devices, whose characteristics can be configured. The characteristics 266
include size, affinity, and quality of service. This type of system memory is called multi-type system 267
memory. 268

The Multi-type Memory Profile extends the management capabilities of the referencing profiles by adding 269
the capability to represent and manage multiple types of memory within a managed system. The profile 270
supports systems with one or more memory regions where each region can be individually managed. 271

Table 1 identifies profiles on which this profile has a dependency. 272

CIM_VisibleMemory shall be the Central Class of this profile. 273

CIM_ComputerSystem shall be the Scoping Class of this profile. The instance of CIM_ComputerSystem 274
with which the Central Instance is associated through an instance of CIM_SystemDevice shall be the 275
Scoping Instance of this profile. 276

Table 1 – Related profiles 277

Profile Name Organization Version Relationship

Physical Asset DMTF 1.0.2 Mandatory

Profile Registration DMTF 1.1.0 Mandatory

CPU DMTF 1.0.1 Conditional

Memory Configuration Profile SNIA 1.0.0a Conditional

6 Description 278

The Multi-type System Memory Profile describes the elements which allow multiple types of memory to be 279
represented and managed. 280

This profile can be used to manage the following capabilities of memory regions in a system with multiple 281
types of memory. 282

 A memory region can have specific quality of service (QoS) characteristics, such a persistence, 283
redundancy, block access. 284

 A memory region can be configured from a pool of raw memory. 285

DSP1071 Multi-type System Memory Profile

12 Published Version 1.0.0

 The characteristics of a memory region can be configured. 286

 A memory region can be visible to, or have affinity with, specific processors and memory 287
controllers. 288

 A memory region can be visible to one or more processors (shared). 289

Figure 1 shows the Multi-type System Memory Profile class hierarchy. For simplicity, the prefix CIM_ has 290
been removed from the names of the classes. 291

VisibleMemory

RawMemory

1..*

1..*

BasedOn

MemoryResources

(SNIA:Memory Configuration
Profile)

1..*

1

ElementAllocatedFromPool

Physical Memory

(Physical Asset Profile)

1

1

Realizes

ComputerSystem

(See Referencing
Profile)

1

1..*

SystemDevice

MemoryController

1..*

1..*
AssociatedMemory

Processor

(CPU Profile)

MemoryAllocationSettings

(SNIA:Memory Configuration
Profile)

1 1
ElementSettingData

1

1..*
SystemDevice

1..*

1..*

ConcreteDependency

11..*
ConcreteComponent

RegisteredProfile

(See Profile Registration Profile)

1

1
ElementConformsToProfile

1

1..*
ElementConformsToProfile

 292

Figure 1 – Multi-type System Memory: Class diagram 293

Each memory region visible to the computer system is modeled by an instance of CIM_VisibleMemory. 294

Each physical memory region is associated with its logical counterpart, a raw memory region. Raw 295
memory is not visible to the computer system. Raw memory is modeled by an instance of 296
CIM_RawMemory and its relationship to the visible memory region is modeled by the CIM_BasedOn 297
association. 298

A memory controller configures raw memory to create the visible memory regions. Memory controllers are 299
represented by instances of CIM_MemoryController and their relationship to the raw memory region is 300
modeled by the CIM_AssociatedMemory association. 301

In multi-processor systems, memory extents can have an affinity to a specific processor and memory 302
controller. An affinity relationship between memory and a processor/controller can indicate exclusive or 303
preferential access to the memory by that processor. The Multi-type System Memory Profile models a 304
relationship between raw memory extents and their controller and processor such that a management 305
application can determine memory affinity and the physical memory topology. 306

The SNIA Memory Configuration Profile may be used to model memory regions. That profile includes the 307
CIM_MemoryResources and CIM_MemoryAllocationSetting elements. 308

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 13

The CIM_ElementSettingData and CIM_ElementAllocatedFromPool associations are used to model the 309
relationship between the elements of these two profiles. 310

7 Implementation 311

This clause details the requirements related to the arrangement of instances and their most important 312
properties. Class methods are discussed in clause 8; a comprehensive treatment of properties is left to 313
clause 10. 314

7.1 Representing raw memory 315

An instance of CIM_RawMemory shall represent a memory region which is realized by physical memory, 316
but not visible to the computer system. Instances of CIM_RawMemory shall be associated with an 317
instance of CIM_PhysicalMemory with an instance of CIM_Realizes. 318

There shall be at least one instance of CIM_RawMemory. 319

If SMBIOS structure table models a memory device (Type 17), then CIM_RawMemory instance shall 320
correspond to a structure in the SMBIOS table. For a corresponding memory device, the values of the 321
BlockSize and NumberOfBlocks properties of the CIM_RawMemory instance shall be equal to the values 322
in the corresponding SMBIOS Memory Device (Type 17) structure. 323

7.2 Representing visible memory 324

An instance of CIM_VisibleMemory shall represent a memory region which is visible to the computer 325
system. Instances of CIM_VisibleMemory shall be associated with the instance of CIM_ComputerSystem 326
with an instance of CIM_SystemDevice. 327

There shall be at least one instance of CIM_VisbileMemory. Additional instances of CIM_VisibleMemory 328
may exist when the system contains more than one memory region with distinct memory characteristics. 329
For example, one instance may exist for volatile memory and one for non-volatile memory. 330

Each instance of CIM_VisibleMemory shall be associated with one or more instances of 331
CIM_RawMemory, using the CIM_BasedOn association. 332

7.2.1 CIM_VisibleMemory.HealthState 333

The CIM_VisibleMemory.HealthState property may have the values 0 (Unknown), 1 (OK) or 2 334
(Degraded). 335

7.2.2 CIM_VisibleMemory.EnabledState 336

The CIM_VisibleMemory.EnabledState property shall have a value of 2 (Enabled) when the visible 337
memory that it represents is visible to the computer system to which it’s scoped. 338

The CIM_VisibleMemory.EnabledState property shall have a value of 3 (Disabled) when the visible 339
memory, that it represents, is not visible to the computer system to which it’s scoped. 340

7.2.3 Representing memory size 341

The value of the CIM_VisibleMemory.BlockSize and the CIM_VisibleMemory.NumberOfBlocks properties 342
shall represent the capacity of the memory region visible to the computer system. 343

The capacity, so represented, shall be the visible (or usable) capacity of the underlying memory extent. 344
For example, memory controllers may support a mirroring feature which has the effect of cutting in half 345

DSP1071 Multi-type System Memory Profile

14 Published Version 1.0.0

the capacity that is usable by the system. The NumberOfBlocks and BlockSize values shall always take 346
into account (i.e., do not include) space utilized for replication, metadata or the like. 347

7.2.4 CIM_VisibleMemory.AccessGranularity 348

The CIM_VisibleMemory.AccessGranularity property shall have a value of 1 (Block Addressable) when 349
the modeled memory region is accessed as a block device. When the memory region is accessed using 350
load and store memory operations the value of CIM_VisibleMemory.AccessGranularity shall be 2 (Byte 351
Addressable). Vendor unique access mechanisms may be represented by values in the vendor reserved 352
range of 32768..65535. 353

When the access granularity of a memory device modeled by an instance of CIM_VisibleMemory is not 354
known, then CIM_VisibleMemory.AccessGranularity shall be set to 0 (Unknown)." 355

7.2.5 CIM_VisibleMemory.Replication 356

The CIM_VisibleMemory.Replication property shall indicate whether the contents of the memory region 357
are replicated. The default value for this property shall be 1 (Not Replicated). If the contents are replicated 358
using resources on the local server the value used shall be 2 (Local Replication). If the replicated region 359
exists on a different server (e.g., using RDMA or the like) the value shall be 3 (Remote Replication). 360
Vendor specific replication mechanisms may be represented by values in the vendor reserved range of 361
32768..65535. 362

7.3 Representing topology 363

Multi-processor systems are common. Often such systems use a Non-Uniform Memory Access (NUMA) 364
configuration in which memory has an “affinity” to a specific processor. In such a system, memory can be 365
accessed optimally by a processor to which it has an affinity; it is more costly (often drastically so) to 366
access from other processors. 367

In addition to optimal and non-optimal access paths, the topology of memory devices within a system can 368
limit the system’s configuration options. For example a given memory controller may support mirroring 369
between memory address ranges of memory modules under its control. In this case it would be important 370
to understand which memory modules are associated with specific memory controllers. A second 371
example of the importance of topology involves memory interleaving. Memory controllers can enhance 372
overall memory performance by interleaving capacity from multiple memory modules. In a NUMA system 373
it could be advantageous to restrict interleaving to those memory modules with affinity to a specific 374
processor. In this case it would be important to understand the affinity of memory modules for a given 375
processor. 376

In a uniprocessor system all memory is accessed by a single processor. Conformant implementations 377
include topology information in this degenerate case to minimize special cases for clients attempting to 378
discover memory topology. 379

7.3.1 CIM_MemoryController 380

There may be an instance of CIM_MemoryContoller. 381

When an instance of CIM_MemoryController exists, it shall be associated to an instance of 382
CIM_RawMemory, which represents raw memory that the memory controller can make available to the 383
computer system, with an instance of CIM_AssociatedMemory. 384

7.3.2 CIM_Processor 385

There may be an instance of CIM_Processor, which represents a processor with access to managed 386
memory regions. CIM_Processor instances utilized in this way may be those created by an 387

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 15

implementation of the CPU Profile. This is the preferred model. Optionally, CIM_Processor instances may 388
be created specifically for the Multi-type System Memory Profile. 389

When an instance of CIM_Processor exists, it shall be associated to the instance of 390
CIM_ComputerSystem, to which the memory is visible, with an instance of CIM_SystemDevice. 391

7.3.3 Representing non-uniform memory access configurations 392

The instances of CIM_Processor shall be associated to one or more instances of CIM_MemoryController 393
with an instance of CIM_ConcreteDependency. 394

The instances of CIM_MemoryController shall be associated to one or more instances of 395
CIM_RawMemory with an instance of CIM_AssociatedMemory. 396

This path from processor to memory controller to raw memory extent describes the NUMA affinity of a 397
given memory extent to a given processor. 398

Additionally, the CIM_VisibleMemory.ProcessorAffinity property may optionally be used to indicate a 399
preferential relationship between a memory region and a processor. A NUMA relationship is an example 400
of such a preferential relationship. When a NUMA relationship exists between a memory region as 401
modeled by a CIM_VisibleMemory instance and a processor given by CIM_Processor the 402
CIM_VisibleMemory.ProcessorAffinity property is conditionally set to the DeviceID of the processor 403
instance. When no affinity exists or this property is not used it shall be set to an empty string. 404

When a memory controller has an exclusive or preferential access relationship with a processor this 405
relationship may be represented by setting the CIM_MemoryController.ProcessorAffinity property to the 406
DeviceID of the CIM_Processor instance. When no such relationship exists or the property is not used the 407
CIM_MemoryController.ProcessorAffinity property shall be set to an empty string. 408

7.4 Representing memory configuration 409

The Multi-type System Memory Profile models the static configuration of memory within a system. For 410
systems that support a configuration process which results in CIM_VisibleMemory instances this profile 411
references the SNIA Memory Configuration Profile, specifically the MemoryAllocationSettings and 412
MemoryResources classes and the associations which link them to the Multi-type System Memory Profile. 413
See ANNEX A for more information. 414

8 Methods 415

This clause details the requirements for supporting intrinsic operations for the CIM elements defined by 416
this profile. No extrinsic methods are defined by this profile. 417

8.1 CIM_VisibleMemory 418

Conformant implementations of this profile shall support the operations listed in Table 2 for 419
CIM_VisibleMemory. Each operation shall be supported as defined in DSP0200. 420

Table 2 – Operations: CIM_VisibleMemory 421

Operation Requirement Messages

GetInstance Mandatory None

Associators Mandatory None

AssociatorNames Mandatory None

References Mandatory None

DSP1071 Multi-type System Memory Profile

16 Published Version 1.0.0

Operation Requirement Messages

ReferenceNames Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.2 CIM_RawMemory 422

Conformant implementations of this profile shall support the operations listed in Table 3 for the 423
CIM_RawMemory class. Each operation shall be supported as defined in DSP0200. 424

Table 3 – Operations: CIM_RawMemory 425

Operation Requirement Messages

GetInstance Mandatory None

Associators Mandatory None

AssociatorNames Mandatory None

References Mandatory None

ReferenceNames Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.3 CIM_MemoryController 426

Conformant implementations of this profile shall support the operations listed in Table 4 for the 427
CIM_MemoryController class. Each operation shall be supported as defined in DSP0200. 428

Table 4 – Operations: CIM_MemoryController 429

Operation Requirement Messages

GetInstance Mandatory None

Associators Mandatory None

AssociatorNames Mandatory None

References Mandatory None

ReferenceNames Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 17

8.4 CIM_Processor 430

Conformant implementations of this profile shall support the operations listed in Table 5 for the 431
CIM_memoryController class. Each operation shall be supported as defined in DSP0200. 432

Table 5 – Operations: CIM_Processor 433

Operation Requirement Messages

GetInstance Mandatory None

Associators Mandatory None

AssociatorNames Mandatory None

References Mandatory None

ReferenceNames Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.5 CIM_ConcreteDependency 434

Conformant implementations of this profile shall support the operations listed in Table 6 for the 435
CIM_ConcreteDependency class. Each operation shall be supported as defined in DSP0200. 436

Table 6 – Operations: CIM_ConcreteDependency 437

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.6 CIM_AssociatedMemory 438

Conformant implementations of this profile shall support the operations listed in Table 7 for the 439
CIM_AssociatedMemory class. Each operation shall be supported as defined in DSP0200. 440

DSP1071 Multi-type System Memory Profile

18 Published Version 1.0.0

Table 7 – Operations: CIM_AssociatedMemory 441

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

8.7 CIM_BasedOn 442

Conformant implementations of this profile shall support the operations listed in Table 8 for the 443
CIM_BasedOn class. Each operation shall be supported as defined in DSP0200. 444

Table 8 – Operations: CIM_BasedOn 445

Operation Requirement Messages

GetInstance Mandatory None

EnumerateInstances Mandatory None

EnumerateInstanceNames Mandatory None

9 Use cases 446

This clause contains object diagrams and use cases for the Multi-type System Memory Profile. 447

9.1 Advertising profile conformance 448

Figure 2 shows how an instance of CIM_RegisteredProfile is used to indicate the presence of a 449
conforming implementation of the Multi-type System Memory Profile and to identify instances of its central 450
class CIM_VisibleMemory. 451

memory1:VisibleMemory

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName

Volatile: TRUE

CreationClassName: CIM_VisibleMemory
DeviceID: 1
NumberOfBlocks: 104857600
BlockSize: 512

system1:ComputerSystem

CreationClassName: CIM_ComputerSystem
Name: MyHostName

SystemDevice

profile1:RegisteredProfile

RegisteredOrganization: DMTF
RegisteredName: Multi-Level Memory
RegisteredVersion: 1.0.0

ElementConformsToProfile

ElementConformsToProfile

 452

Figure 2 – Registered Profile object diagram 453

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 19

9.2 Single visible memory extent 454

Figure 3 shows the simplest possible configuration with a single memory module (dimm1) contributing its 455
full capacity to a single memory extent (memory1). 456

memory1:VisibleMemory

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName

Volatile: TRUE

DeviceID: 1
NumberOfBlocks: 104857600
BlockSize: 512

system1:ComputerSystem

Name: MyHostName

SystemDevice

dimm1:RawMemory

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 1
NumberOfBlocks: 104857600
BlockSize: 512

BasedOn
imc1:MemoryController

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 1

AssociatedMemory

socket1:Processor

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 1

ConcreteDependency

SystemDevice

 457

Figure 3 – Single visible memory extent object diagram 458

9.3 Two visible memory extents 459

Figure 4 models a system configuration in which memory modules and the memory controller support 460
configuring memory address ranges with unique quality of service characteristics. In this example a single 461
memory module has been configured so as to expose two CIM_VisibleMemory extents to the system. 462
Figure 4 shows 1 extent as volatile and the other persistent; the quality of service between the two 463
extents is sufficiently different that one would likely manage and use the extents separately. 464

Exposing the relationship between CIM_RawMemory and CIM_VisibleMemory extents allows clients to 465
understand reliability and serviceability characteristics of each extent. Clients utilize the CIM_BasedOn 466
association to determine the memory module(s) which host any given CIM_VisibleMemory instance. The 467
position of any given memory module within the system is determined by following the 468
CIM_AssociatedMemory association to the CIM_MemoryController instance. 469

DSP1071 Multi-type System Memory Profile

20 Published Version 1.0.0

memory1:VisibleMemory

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName

Volatile: TRUE

DeviceID: 1
NumberOfBlocks: 52428800
BlockSize: 512

system1:ComputerSystem

Name: MyHostName

SystemDevice

dimm1:RawMemory

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 1
NumberOfBlocks: 104857600
BlockSize: 512

BasedOn
imc1:MemoryController

SystemName: MyHostName
CreationClassName: CIM_MemoryController
DeviceID: 1

AssociatedMemory

socket1:Processor

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 1

ConcreteDependency

SystemDevice

memory2:VisibleMemory

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName

Volatile: FALSE

DeviceID: 2
NumberOfBlocks: 52428800
BlockSize: 512

BasedOn

SystemDevice

 470

Figure 4 – Distinct visible memory extents object diagram 471

9.4 Uniform memory access extents 472

Figure 5 shows a system with a two-processor UMA architecture. The ProcessorAffinity attribute of the 473
CIM_VisibleMemory instance is set to an empty string indicating no specific affinity. The 474
CIM_RawMemory instance is associated to a CIM_MemoryController which services memory accesses 475
from both CIM_Processor instances. The CIM_MemoryController.ProcessorAffinity attribute is also set to 476
the empty string indicating no affinity to a specific processor. 477

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 21

memory1:VisibleMemory

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName

Volatile: TRUE
Primordial: FALSE
ProcessorAffinity: ""

DeviceID: 1
NumberOfBlocks: 104857600
BlockSize: 512

system1:ComputerSystem

Name: MyHostName

SystemDevice

dimm1:RawMemory

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 1
NumberOfBlocks: 104857600
BlockSize: 512
Primordial: TRUE

BasedOn

imc1:MemoryController

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 1
ProcessorAffinity: ""

AssociatedMemory

socket1:Processor

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 1

ConcreteDependency

SystemDevice

socket2:Processor

SystemCreationClassName: CIM_ComputerSystem
SystemName: MyHostName
DeviceID: 2

ConcreteDependency

 478

Figure 5 – UMA configuration object diagram 479

9.5 Non-Uniform Memory Access (NUMA) extents 480

Figure 6 shows the model for a multi-processor system with memory extents organized to support NUMA. 481
The CIM_VisibleMemory.ProcessorAffinity property is set to indicate affinity consistent with the results 482
that can be achieved via association traversal (i.e., set to the DeviceID of the affiliated processor). The 483
CIM_MemoryController.ProcessorAffinity is likewise set to the DeviceID of the processor it supports. 484

In a single processor system (essentially the left or right half of diagram 9-5 in isolation) processor affinity 485
is set to the identity of the only processor. 486

DSP1071 Multi-type System Memory Profile

22 Published Version 1.0.0

memory1:VisibleMemory

DeviceID: 1
NumberOfBlocks: 52428800
BlockSize: 512
ProcessorAffinity: 1

system1:ComputerSystem

Name: MyHostName

SystemDevice

dimm1:RawMemory

DeviceID: 1

imc1:MemoryController

DeviceID: 1
ProcessorAffinity: 1

AssociatedMemory

socket1:Processor

DeviceID: 1

ConcreteDependency

SystemDevice

memory2:VisibleMemory

DeviceID: 2
NumberOfBlocks: 52428800
BlockSize: 512
ProcessorAffinity: 2

SystemDevice

dimm2:RawMemory

DeviceID: 2

socket2:Processor

DeviceID: 2

SystemDevice

imc2:MemoryController

DeviceID: 2
ProcessorAffinity: 2

ConcreteDependency

dimm3:RawMemory

DeviceID: 3

dimm4:RawMemory

DeviceID: 4

AssociatedMemory

BasedOn
BasedOn

 487

Figure 6 – NUMA configuration object diagram 488

9.6 Determine persistent memory capacity 489

Determining the capacity of memory with a given QoS is determined by enumerating the 490
CIM_VisibleMemory instances with that QoS and examining the NumberOfBlocks and BlockSize 491
attributes. In Figure 4 above there are two equally sized instances, one offers volatile memory, the other 492
persistent. Enumerating VisibleMemory instances and summing capacity for those with the Volatile 493
property set to FALSE would give the total memory capacity offering a persistent QoS. Similarly summing 494
the capacity of VisibleMemory instances whose Volatile property is set to TRUE would give the total 495
memory capacity offering a volatile QoS. 496

9.7 Determine total installed memory capacity 497

Total installed memory (in bytes) is calculated by enumerating RawMemory instances and summing the 498
product of NumberOfBlocks and BlockSize. 499

9.8 Determine capacity by processor affinity 500

Capacity available to a given processor is determined by following the CIM_ConcreteDependency 501
association to find CIM_MemoryController instances and then following the AssociatedMemory 502
association to CIM_RawMemory instances. Summing the NumberOfBlocks property for the 503
CIM_RawMemory instances, so located, determines the total capacity with an affinity to the selected 504
processor. In Figure 6, the total capacity with an affinity to the processor in socket 2 is determined by 505
summing the capacity of dimm3 and dimm4. 506

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 23

9.9 Determine processor affinity for visible memory 507

Determining whether a given CIM_VisibleMemory instance (assuming the system has a NUMA 508
architecture as given in Figure 6) has NUMA performance characteristics is determined by following the 509
CIM_BasedOn association to the CIM_RawMemory instances. From there, the CIM_AssociatedMemory 510
association is used to verify that each instance of CIM_RawMemory is controlled by a single processor. 511
Alternatively, the ProcessorAffinity property maybe sufficient to determine affinity for implementations that 512
utilize it. 513

10 CIM Elements 514

Table 9 shows the instances of CIM Elements for this profile. Instances of the following CIM Elements 515
shall be implemented as described in Table 9. Clauses 7 (“Implementation”) and 8 (“Methods”) may 516
impose additional requirements on these elements. 517

Table 9 – CIM Elements – Multi-type System Memory Profile 518

Element Name Requirement Description

CIM_RegisteredProfile Mandatory See subclause 10.1

CIM_VisibleMemory Mandatory See subclause 10.2, 7.2

CIM_RawMemory Mandatory See subclause 10.3, 7.1

CIM_MemoryController Optional See subclause 10.4, 7.3.1

CIM_Processor Optional See subclause 10.5, 7.3.2

CIM_ConcreteDependency Mandatory See subclause 10.6

CIM_SystemDevice Mandatory See subclause 10.7

CIM_AssociatedMemory Mandatory See subclause 10.8

CIM_BasedOn Mandatory See subclause 10.9

10.1 CIM_RegisteredProfile 519

CIM_RegisteredProfile identifies the Multi-type System Memory Profile in order for a client to determine 520
whether an instance of CIM_VisibleMemory is conformant with this profile. The CIM_RegisteredProfile 521
class is defined by the Profile Registration Profile. With the exception of the mandatory values specified 522
for the properties below, the behavior of the CIM_RegisteredProfile instance is per the Profile Registration 523
Profile. Table 10 contains the requirements for elements of this class. 524

Table 10 – Class: CIM_RegisteredProfile 525

Elements Requirement Notes

RegisteredName Mandatory This property shall have a value of "Multi-type System
Memory".

RegisteredVersion Mandatory This property shall have a value of "1.0.0".

RegisteredOrganization Mandatory This property shall have a value of 2 (DMTF).

DSP1071 Multi-type System Memory Profile

24 Published Version 1.0.0

10.2 CIM_VisibleMemory 526

The CIM_VisibleMemory class represents memory configured with a given set of QoS attributes. 527
Conformant implementations support attributes as given below. 528

Table 11 – Class: CIM_VisibleMemory 529

Elements Requirement Notes

CreationClassName Mandatory Key

DeviceID Mandatory Key

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

Primordial Mandatory False

BlockSize Mandatory Number of bytes per block. See subclause 7.2.3

NumberOfBlocks Mandatory Block count; multiply by BlockSize to get bytes. See
subclause 7.2.3.

OperationalStatus Mandatory None

HealthState Mandatory See subclause 7.2.1

EnabledState Mandatory See subclause 7.2.2

Volatile Optional None

AccessGranularity Optional Access type. See subclause 7.2.4

ProcessorAffinity Optional Affiliated processor. See subclause 7.3.3

Replication Optional Data replication. See subclause 7.2.5

10.3 CIM_RawMemory 530

The CIM_RawMemory class represents of the capacity of a given physical memory module. Conformant 531
implementations support attributes as given below. 532

Table 12 – Class: CIM_RawMemory 533

Elements Requirement Notes

CreationClassName Mandatory Key

DeviceID Mandatory Key

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

Primordial Mandatory True

BlockSize Mandatory Number of bytes per block

NumberOfBlocks Mandatory Block count; multiply by BlockSize to get bytes.

OperationalStatus Mandatory None

HealthState Mandatory None

10.4 CIM_MemoryController 534

The CIM_MemoryController class represents the controller for one or more raw memory regions. Memory 535
controller modeling is included in this profile to provide an understanding of the system memory topology. 536
Conformant implementations support attributes as given below. 537

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 25

Table 13 – Class: CIM_MemoryController 538

Elements Requirement Notes

CreationClassName Mandatory Key

DeviceID Mandatory Key

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

ProtocolSupported Optional Identify controller protocol, e.g., DDR3

ProcessorAffinity Optional Processor affinity. See subclause 7.3.3

10.5 CIM_Processor 539

The CIM_Processor class models a processor with access to a visible memory region. This usage of 540
CIM_Processor includes only those properties useful in identifying a processor instance. When 541
implementing both Multi-type System Memory and the CPU Profiles, Multi-type System Memory profile 542
can refer to instances created in accordance with the CPU Profile. When only the Multi-type System 543
Memory profile is implemented the more limited version given below is used. This class is mandatory to 544
remove any ambiguity as to the NUMA/UMA nature of the memory architecture. Conformant 545
implementations support attributes as given below. 546

Table 14 – Class: CIM_Processor 547

Elements Requirement Notes

CreationClassName Mandatory Key

DeviceID Mandatory Key

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

Family Optional This property supported if it can be used to determine
processor support for specific memory management
features.

OtherFamilyDescription Conditional Used if Family value is “1”.

Stepping Optional This property supported if it can be used to determine
processor support for specific memory management
features.

OtherIdentifyingInfo Optional This property supported if it can be used to determine
processor support for specific memory management
features. Recommended values: Processor Type,
Processor Model, and Processor Manufacturer.

IdentifyingDescriptions Conditional If OtherIdentifyingInfo is used.

10.6 CIM_ConcreteDependency 548

The CIM_ConcreteDependency association is used to relate an instance of CIM_MemoryController to a 549
CIM_Processor instance. Table 15 contains the requirements for elements of this class. 550

DSP1071 Multi-type System Memory Profile

26 Published Version 1.0.0

Table 15 – Class: CIM_ConcreteDependency 551

Elements Requirement Notes

Antecedent Mandatory This property shall be a reference to an instance of the
CIM_Processor class.

Cardinality is "1..*".

Dependency Mandatory This property shall be a reference to an instance of a
concrete subclass of the CIM_MemoryController class.

Cardinality is "1..*".

10.7 CIM_SystemDevice 552

10.7.1 Relating CIM_Processor to CIM_ComputerSystem 553

CIM_SystemDevice association is used to relate an instance of CIM_Processor with an instance of 554
CIM_ComputerSystem. Table 16 contains the requirements for elements of this class. 555

Table 16 – Class: CIM_SystemDevice – use 1 556

Elements Requirement Notes

GroupComponent Mandatory This property shall be a reference to an instance of
CIM_ComputerSystem.

Cardinality is "1".

PartComponent Mandatory This property shall be a reference to an instance of
CIM_Processor.

Cardinality is "1..*".

10.7.2 Relating CIM_VisibleMemory to CIM_ComputerSystem 557

CIM_SystemDevice association is used to relate an instance of CIM_VisibleMemory with an instance of 558
CIM_ComputerSystem. Table 16 contains the requirements for elements of this class. 559

Table 17 – Class: CIM_SystemDevice – use 2 560

Elements Requirement Notes

GroupComponent Mandatory This property shall be a reference to an instance of
CIM_ComputerSystem.

Cardinality is "1".

PartComponent Mandatory This property shall be a reference to an instance of
CIM_VisibleMemory.

Cardinality is "1..*".

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 27

10.8 CIM_AssociatedMemory 561

The CIM_AssociatedMemory association is used to relate the CIM_MemoryController instance to the 562
CIM_RawMemory instance to which it applies. Table 18 contains the requirements for elements of this 563
class. 564

Table 18 – Class: CIM_AssociatedMemory 565

Elements Requirement Notes

Antecedent Mandatory This property shall be a reference to an instance of the
CIM_RawMemory class.

Cardinality is "1..*".

Dependent Mandatory This property shall be a reference to an instance of the
CIM_MemoryController class.

Cardinality is "1..*".

10.9 CIM_BasedOn 566

The CIM_BasedOn association is used to relate the CIM_VisibleMemory to the CIM_RawMemory on 567
which it is hosted. Table 19 contains the requirements for elements of this class. 568

Table 19 – Class: CIM_BasedOn 569

Elements Requirement Notes

Antecedent Mandatory This property shall be a reference to an instance of the
CIM_RawMemory class.

Cardinality is "1".

Dependent Mandatory This property shall be a reference to an instance of the
CIM_VisibleMemory.

Cardinality is "1".

DSP1071 Multi-type System Memory Profile

28 Published Version 1.0.0

ANNEX A 570

(informative) 571

 572

SNIA Memory Configuration Profile 573

This profile, the Multi-type System Memory Profile is being pursued with the DMTF while a closely related 574
profile tentatively named the Memory Configuration Profile is being pursued with SNIA. Since memory 575
management has been the purview of the DMTF it was felt that the static view defined by the Multi-type 576
System Memory Profile was best pursued with the DMTF as a follow-on to the existing System Memory 577
Profile. The management of memory configuration is being pursued with SNIA for similar reasons, its 578
similarity to existing SNIA profiles and the blurring of the typical roles played by memory and storage. 579
Indeed, the primary motivation for updating memory management profiles at this time is the recent 580
introduction of non-volatile memory technologies that use typical memory form factors (e.g., DIMM) and 581
typical memory interconnects (e.g., DDR3) but have features/characteristics usually associated with 582
storage. 583

The SNIA Memory Configuration Profile is conceived as building upon the Multi-type System Memory 584
Profile. As such its detailed definition is trailing the definition provided in this document. That said, some 585
high-level definition has occurred and may be useful in putting the Multi-type System Memory Profile in 586
context. Figure 7 below identifies key classes in the Memory Configuration Profile focusing on those that 587
associate with Multi-type System Memory Profile classes. 588

VisibleMemory

RawMemory

ComputerSystem

MemoryResources

1

1..*

ConcreteComponent

MemoryAllocationSettings

1

1
ElementSettingData

1..*

1..*

BasedOn

1

1..*

SystemDevice

MemoryConfigurationService1

1
HostedService

1..*

1
ElementAllocatedFromPool

MemoryConfigurationCapabilities

11

ElementCapabilities

1

1..*

ServiceAffectsElement

MemoryCapabilities1..*

1
ElementCapabilities

 589

Figure 7 – Memory Configuration Profile 590

 ComputerSystem – from the referencing profile 591

 VisibleMemory – the central class of the Multi-type System Memory Profile. A system visible 592
memory resource. 593

 RawMemory – referenced from the Multi-type System Memory Profile, a primordial memory 594
extent associated with a specific memory module. 595

DSP1071 Multi-type System Memory Profile

Version 1.0.0 Published 29

 MemoryAllocationSettings – the settings provided during the provisioning process that resulted 596
in a given VisibleMemory instance. Also used as input to the provisioning extrinsic method. 597

 MemoryAllocationService – provides extrinsic methods for memory configuration. These 598
methods result in the allocation or return of resources to the MemoryResources pool and the 599
creation or destruction of VisibleMemory instances. 600

 MemoryConfigurationCapabilities – describes the supported extrinsic method support available 601
from the MemoryAllocationService. 602

 MemoryCapabilities – describes the configurable features of the resources aggregated under 603
the MemoryResources pool. 604

DSP1071 Multi-type System Memory Profile

30 Published Version 1.0.0

ANNEX B 605

(informative) 606

 607

Change log 608

Version Date Description

1.0.0 2017-01-19

 609

	Ref_DMTF_DSP0004
	Ref_DMTF_DSP0215
	Ref_DMTF_DSP0223
	Ref_DMTF_DSP0228
	Ref_DMTF_DSP1001
	Ref_DMTF_DSP1033
	Ref_DMTF_DSP1054
	Ref_DMTF_DSP8016
	Ref_DMTF_DSP8020
	Ref_IETF_RFC5234
	Ref_ISO_p2
	Ref_OpenGroup_Regular_Expressions
	Term_memory_extent
	Term_memory_module
	Term_persistent_memory

