
Document Number: DSP1033

Date: 2014-05-22

Version: 1.1.0

Profile Registration Profile

Document Type: Specification

Document Status: DMTF Standard

Document Language: en-US

12

3

4

5

6

7

8

9

10

Copyright notice

Copyright © 2006-2014 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php.

11

12

13

14

Profile Registration Profile DSP1033

2 DMTF Standard Version 1.1.0

CONTENTS
Foreword .. 6
Introduction ... 7
1 Scope ... 8
2 Normative references ... 8
3 Terms and definitions ... 8

3.1 General ... 8
4 Symbols and abbreviated terms ... 11
5 Synopsis ... 11
6 Description ... 13

6.1 Profile relationships ... 13
6.2 DMTF adaptation class diagram ... 14
6.3 Central and scoping class concept ... 16

6.3.1 General .. 16
6.3.2 Central class methodology .. 18
6.3.3 Scoping class methodology ... 19
6.3.4 GetCentralInstances methodology .. 21

6.4 WBEM server requirements on CIM namespaces .. 22
6.4.1 Interop namespace .. 22
6.4.2 Implementation namespaces ... 23
6.4.3 Relationship between Interop and implementation namespaces 23
6.4.4 Cross-namespace associations ... 24

7 Implementation ... 24
7.1 Features .. 24

7.1.1 Feature: CentralClassMethodology ... 24
7.1.2 Feature: GetCentralInstancesMethodology ... 25
7.1.3 Feature: SoftwareIdentity .. 25

7.2 Adaptations ... 26
7.2.1 Conventions ... 26
7.2.2 Adaptation: RegisteredProfile: CIM_RegisteredProfile .. 26
7.2.3 Adaptation: ElementConformsToProfile: CIM_ElementConformsToProfile 28
7.2.4 Adaptation: ScopingElement: CIM_ManagedElement .. 29
7.2.5 Adaptation: CentralElement: CIM_ManagedElement .. 30
7.2.6 Adaptation: ReferencedProfile: CIM_ReferencedProfile ... 30
7.2.7 Adaptation: ReferencedRegisteredProfile: CIM_RegisteredProfile 31
7.2.8 Adaptation: SoftwareIdentity: CIM_SoftwareIdentity ... 32
7.2.9 Adaptation: ElementSoftwareIdentity: CIM_ElementSoftwareIdentity 33

8 Use cases and state descriptions ... 34
8.1 State description: SimpleStateDescription .. 34
8.2 Use case: RetrieveProfileInformationForComputerSystem .. 39
8.3 Use case: RetrieveProfileVersionForFan .. 39

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 3

8.4 Use case: RetrieveProfileVersionForPowerSupply ... 40
8.5 Use case: AlgorithmForRetrievingProfileInformation .. 41
8.6 Use case: DetermineConformingInstances .. 42
8.7 Use case: AlgorithmForDeterminingAdvertisedProfiles .. 44
8.8 Use case: AlgorithmForDeterminingTopLevelProfiles ... 44
8.9 Use case: DetermineCentralInstancesForFan .. 45
8.10 Use case: DetermineCentralInstancesForPowerSupply ... 45
8.11 Use case: AlgorithmForDeterminingCentralInstancesOfProfile .. 46
8.12 Use case: AlgorithmForDeterminingCentral ... 47
8.13 State description: PeerComponentProfileStateDescription .. 48
8.14 State description: ProfileComplianceHierarchyStateDescription .. 49
8.15 State description: ProfileDerivationStateDescription .. 50

ANNEX A (informative) Change log .. 52
Bibliography .. 54

Figures

Figure 1 – Profile relationships example .. 13
Figure 2 – Profile relationships example with Profile Registration advertisement 14
Figure 3 – DMTF adaptation class diagram ... 15
Figure 4 – Central class methodology example ... 19
Figure 5 – Scoping class methodology example .. 20
Figure 6 – GetCentralInstances methodology example ... 22
Figure 7 – Simple object diagram ... 38
Figure 8 – Redundant fans object diagram .. 43
Figure 9 – Referencing component profiles object diagram ... 49
Figure 10 – Profile compliance hierarchy object diagram .. 50
Figure 11 – Object diagram for profile derivation .. 51

Tables

Table 1 – Profile references .. 12
Table 2 – Features .. 12
Table 3 – Adaptations ... 12
Table 4 – Use cases and state descriptions ... 12
Table 5 – RegisteredProfile: Element requirements ... 26
Table 6 – GetCentralInstances(): Parameter requirements ... 28
Table 7 – ElementConformsToProfile: Element requirements .. 29
Table 8 – CentralElement: Element requirements .. 30
Table 9 – ReferencedProfile: Element requirements .. 30
Table 10 – ReferencedRegisteredProfile: Element requirements .. 31
Table 11 – SoftwareIdentity: Element requirements ... 32
Table 12 – ElementSoftwareIdentity: Element requirements .. 33
Table 13 – Profiles in the SimpleStateDescription scenario ... 35

15

16

Profile Registration Profile DSP1033

4 DMTF Standard Version 1.1.0

Table 14 – Adaptations in the SimpleStateDescription scenario .. 35
Table 15 – Profile related implementation parts in the SimpleStateDescription scenario 36
Table 16 – Implemented classes in the SimpleStateDescription scenario ... 36

17

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 5

Foreword
This document was prepared by the DMTF Architecture Working Group

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Acknowledgements

DMTF acknowledges the following individuals for their contributions to this document:

• Andreas Maier, IBM (editor of this version)

• Jim Davis, WBEM Solutions

• George Ericson, EMC

• Steve Hand, Symantec

• Jon Hass, Dell Inc. (editor of prior versions)

• John Leung, Intel

• Aaron Merkin, IBM

• Khachatur Papanyan, Dell

• Karl Schopmeyer, Inova

• Christina Shaw, Hewlett-Packard Company

• Paul von Behren, Symantec

• Mike Walker, IBM

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Profile Registration Profile DSP1033

6 DMTF Standard Version 1.1.0

Introduction
This document defines the CIM model for discovering implemented profiles in a managed environment.
The information in this document is intended to be sufficient for a provider or consumer of this data to
identify unambiguously the classes, properties, methods, and values that need to be instantiated and
manipulated.

The target audience for this specification is implementers who are writing CIM-based providers or
consumers of management interfaces that represent the components described in this document.

Document conventions

Typographical conventions

The following typographical conventions are used in this document:

• Document titles are marked in italics.

• Important terms that are used for the first time are marked in italics.

• Terms include a link to the term definition in the "Terms and definitions" clause, enabling easy
navigation to the term definition.

OCL usage conventions

Constraints in this document are specified using OCL (see OCL 2.0).

OCL statements are in monospaced font.

Deprecated material

Deprecated material is not recommended for use in new development efforts. Existing and new
implementations may use this material, but they shall move to the favored approach as soon as possible.
CIM services shall implement any deprecated elements as required by this document in order to achieve
backwards compatibility. Although CIM clients may use deprecated elements, they are directed to use the
favored elements instead.

Deprecated material should contain references to the last published version that included the deprecated
material as normative material and to a description of the favored approach.

The following typographical convention indicates deprecated material:

DEPRECATED

Deprecated material appears here.

DEPRECATED

In places where this typographical convention cannot be used (for example, tables or figures), the
"DEPRECATED" label is used alone.

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 7

Profile Registration Profile

1 Scope
The Profile Registration profile extends the management capabilities of referencing profiles by adding the
capabilities to advertise conformance of the implementation to the referencing profiles, and to discover
instances for which conformance to the referencing profile is advertised.

2 Normative references
The following referenced documents are indispensable for the application of this document. For dated or
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.
For references without a date or version, the latest published edition of the referenced document
(including any corrigenda or DMTF update versions) applies.

DMTF DSP0004, CIM Infrastructure Specification 2.7,
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf

DMTF DSP0223, Generic Operations 1.0,
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf

DMTF DSP1001, Management Profile Specification Usage Guide 1.0,
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf

DMTF DSP1023, Software Inventory Profile 1.0,
http://www.dmtf.org/standards/published_documents/DSP1023_1.0.pdf

OMG formal/06-05-01, Object Constraint Language 2.0,
http://www.omg.org/spec/OCL/2.0/

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype

3 Terms and definitions
In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
are defined in this clause.

3.1 General

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described
in ISO/IEC Directives, Part2, Annex H. The terms in parenthesis are alternatives for the preceding term,
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that
ISO/IEC Directives, Part2, Annex H specifies additional alternatives. Occurrences of such additional
alternatives shall be interpreted in their normal English meaning in this document.

The terms "clause", "subclause", "paragraph", "annex" in this document are to be interpreted as described
in ISO/IEC Directives, Part2, Clause 5.

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Profile Registration Profile DSP1033

8 DMTF Standard Version 1.1.0

http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1023_1.0.pdf
http://www.omg.org/spec/OCL/2.0/
http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC
Directives, Part2, Clause 3. In this document, clauses, subclauses or annexes indicated with
"(informative)" as well as notes and examples do not contain normative content.

The terms defined in DSP0004, DSP0223, and DSP1001 apply to this document.

The following additional terms are defined in this document.

3.2
autonomous profile

A profile that addresses an autonomous and self-contained management domain. For a complete
definition, see DSP1001.

DSP1001 defines that in autonomous profiles, the central class adaptation and scoping class adaptation
are the same. Thus, autonomous profiles cannot be scoped by other profiles. With the exception of this
profile, autonomous profiles do not need to be referenced in order to be implemented, and can therefore
be implemented alone. Autonomous profiles may reference component profiles and autonomous profiles
(including themselves) and may scope component profiles. See also term "component profile".

3.3
central class adaptation
A class adaptation whose instances act as an algorithmic focal point for advertising conformance of an
implementation to a profile. For a more general definition, see DSP1001. See also term "scoping class
adaptation".

3.4
central class methodology
An algorithm for advertising profile conformance that uses the central instances of the registered profile
as an algorithmic focal point. For a complete definition, see 6.3.2. See also term "scoping class
methodology".

3.5
central element
The managed object type modeled by a central class adaptation. See also term "scoping element".

3.6
central instance
An instance of the central class adaptation. See also term "scoping instance".

3.7
component profile

A profile that addresses a subset of a management domain. For a complete definition, see DSP1001.

DSP1001 defines that in component profiles, the central class adaptation and scoping class adaptation
are not the same. Component profiles need to be scoped by one or more scoping profiles to be
implemented, and can be implemented only together with one of their scoping profiles. Component
profiles may reference autonomous profiles and component profiles (including themselves) and may
scope other component profiles. See also term "autonomous profile".

3.8
Interop namespace

A role of a CIM namespace for the purpose of providing a common and well-known place for clients to
discover modeled entities, such as the profiles to which an implementation advertises conformance. The

70

71

72
73

74

75

76

77

78

79

80

81

82

83

84
85

86

87

88
89

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 9

term is also used for namespaces that assume that role. For a complete definition, see 6.4.1. See also
term "implementation namespace".

3.9
implementation namespace

A role of a CIM namespace for the purpose of providing a place for CIM objects for which no specific
namespace requirements are defined. The term is also used for namespaces that assume that role. For a
complete definition, see 6.4.2. See also term "Interop namespace".

3.10
profile
A management profile, as defined in DSP1001.

3.11
profile conformance

Conformance of an implementation to one or more profiles, such that the implementation satisfies the
rules for full implementation conformance defined in subclause 5.2.2 of DSP1001.

3.12
referenced profile
A profile that is listed in the profile references table of another or the same profile. For a complete
definition, see subclause 7.9.1 of DSP1001.

3.13
referencing profile
A profile that lists the same or another profile in its profile references table. For a complete definition, see
subclause 7.9.1 of DSP1001.

3.14
registered profile

A profile to which an implementation advertises conformance. Before version 1.1 of this profile, registered
profiles were termed "subject profiles" (that term is now deprecated).

3.15
scoping class adaptation
A class adaptation that acts as an algorithmic focal point for advertising conformance of an
implementation to a profile when using the scoping class methodology. For a more general definition, see
DSP1001. See also term "central class adaptation".

3.16
scoping class methodology
An algorithm for advertising profile conformance that uses the scoping instances of the registered profile
as an algorithmic focal point. For a complete definition, see 6.3.3. See also term "central class
methodology".

3.17
scoping element
The managed object type modeled by a scoping class adaptation. See also term "central element".

90

91
92

93

94

95

96
97

98

99

100

101

102

103
104

105

106

107

108

109

110

111

Profile Registration Profile DSP1033

10 DMTF Standard Version 1.1.0

3.18
scoping instance
An instance of the scoping class adaptation. See also term "central instance".

3.19
scoping path
An association traversal path between the central class adaptation and the scoping class adaptation. For
a complete definition, see DSP1001.

3.20
scoping profile

A profile that provides a scope to a scoped profile by defining a central class adaptation that is based on
the scoping class adaptation defined in the scoped profile. For a complete definition, see DSP1001.

3.21
subject profile

DEPRECATED: The term "subject profile" has been deprecated in version 1.1 of this profile, because its
meaning as defined in this profile was different from the meaning as defined in DSP1001.

Use the term "registered profile" instead.

4 Symbols and abbreviated terms
The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

This document does not define any additional abbreviations.

5 Synopsis
Profile name: Profile Registration

Version: 1.1.0

Organization: DMTF

Abstract: No

Profile type: Autonomous

Schema: DMTF CIM 2.39

Central class adaptation: RegisteredProfile

Scoping class adaptation: RegisteredProfile

The Profile Registration profile extends the management capabilities of referencing profiles by adding the
capabilities to advertise and discover conformance of the implementation to the referencing profiles.

For historical reasons, the scoping and central class adaptations of the Profile Registration profile are the
same, which qualifies it as an autonomous profile (version 1.0 of this profile was silent about that).
Contrary to the usual ability of an autonomous profile to be implementable on its own, this profile can be
implemented only in context of its referencing profile(s).

Table 1 identifies the profile references defined in this profile.

112

113

114

115

116
117

118

119
120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 11

Table 1 – Profile references

Profile
reference
name

Profile
name

Organi-
zation Version Relation-

ship Description

SelfPRP Profile
Registration DMTF 1.1 Mandatory Used to advertise conformance of the implementation to

this profile.

RefPRP Profile
Registration DMTF 1.1 Mandatory Used to advertise conformance of the implementation to

a profile referenced by the registered profile.

Table 2 identifies the features defined in this profile.

Table 2 – Features

Feature Requirement Description

CentralClassMethodology Optional See 7.1.1.

GetCentralInstancesMethodology Optional See 7.1.2.

SoftwareIdentity Optional See 7.1.3.

Table 3 identifies the class adaptations defined in this profile.

Table 3 – Adaptations

Adaptation Elements Requirement Description

Instantiated, embedded and abstract adaptations
RegisteredProfile CIM_RegisteredProfile Mandatory See 7.2.2.

ElementConformsToProfile CIM_ElementConformsToProfile ConditionalExclusive See 7.2.3.

ScopingElement CIM_ManagedElement See derived adaptations See 7.2.4.

CentralElement CIM_ManagedElement See derived adaptations See 7.2.5.

ReferencedProfile CIM_ReferencedProfile Mandatory See 7.2.6.

ReferencedRegisteredProfile CIM_RegisteredProfile Mandatory See 7.2.7.

SoftwareIdentity CIM_SoftwareIdentity Conditional See 7.2.8.

ElementSoftwareIdentity CIM_ElementSoftwareIdentity Conditional See 7.2.9.

Indications and exceptions
This profile does not define any such adaptations.

Table 4 identifies the use cases and state descriptions defined in this profile.

Table 4 – Use cases and state descriptions

Name Description

State description: SimpleStateDescription See 8.1.

Use case: RetrieveProfileInformationForComputerSystem See 8.2.

Use case: RetrieveProfileVersionForFan See 8.3.

Use case: RetrieveProfileVersionForPowerSupply See 8.4.

Use case: AlgorithmForRetrievingProfileInformation See 8.5.

Use case: DetermineConformingInstances See 8.6.

Use case: AlgorithmForDeterminingAdvertisedProfiles See 8.7.

138

139

140

141

142

143

Profile Registration Profile DSP1033

12 DMTF Standard Version 1.1.0

Name Description

Use case: AlgorithmForDeterminingTopLevelProfiles See 8.8.

Use case: DetermineCentralInstancesForFan See 8.9.

Use case: DetermineCentralInstancesForPowerSupply See 8.10.

Use case: AlgorithmForDeterminingCentralInstancesOfProfile See 8.11.

Use case: AlgorithmForDeterminingCentral See 8.12.

State description: PeerComponentProfileStateDescription See 8.13.

State description: ProfileComplianceHierarchyStateDescription See 8.14.

State description: ProfileDerivationStateDescription See 8.15.

6 Description

6.1 Profile relationships

The example in Figure 1 shows two important relationships between profiles that are used throughout this
profile (the Profile Registration profile):

• The Fan profile (and similarly, the Sensors profile) is a registered profile from the perspective of
its Profile Registration profile; that is, it is the profile that is advertised through its Profile
Registration profile.

• The Sensors profile is a referenced profile from the perspective of the Fan profile; that is, it is
listed in the profile references table of the Fan profile.

Figure 1 – Profile relationships example

The Profile Registration profile itself is also a registered profile and is therefore advertised through its
Profile Registration profile (another implementation of the same profile). This is shown in Figure 2:

144

145

146

147

148

149

150

151

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 13

Figure 2 – Profile relationships example with Profile Registration advertisement

For simplicity, these two figures have left out that each of the Fan, Sensors and Profile Registration
profiles also references the Profile Registration profile.

6.2 DMTF adaptation class diagram

Figure 3 shows all class adaptations defined in this profile, and relevant class adaptations from
referenced profiles. Adaptation names are shown in parentheses below the class names if they differ from
the class names without schema prefix.

152

153

154

155

156

Profile Registration Profile DSP1033

14 DMTF Standard Version 1.1.0

Figure 3 – DMTF adaptation class diagram

Registered profiles (that is, profiles to which an implementation advertises conformance) are represented
by instances of the RegisteredProfile adaptation in the Interop namespace.

As defined in 6.4, the roles of an Interop namespace and of an implementation namespace can be
assumed by different namespaces or by the same namespace. Figure 3 shows the case of different
namespaces. If these namespaces are different, the class adaptations shown in the Interop namespace
may also be implemented in the implementation namespace (that is, they appear in both namespaces).

The RegisteredProfile class adaptation is the central and scoping class adaptation of this profile.

The central and scoping elements of the registered profile are represented by instances of the
CentralElement and ScopingElement adaptation, respectively.

If the ElementConformsToProfile adaptation is implemented, the registered profile supports the central
class methodology; the scoping class methodology is always supported. For a complete definition, see
6.3.

If the registered profile references any profiles, these referenced profiles are represented by instances of
the ReferencedRegisteredProfile class adaptation. These instances are associated via the
ReferencedProfile association adaptation to the instances of the RegisteredProfile class adaptation that
represent the referencing profile.

The referenced profiles also advertise their profile conformance through this profile.

157

158

159

160

161

162

163

164

165

166

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 15

If the registered profile is a component profile, it has a scoping profile. Conformance of an implementation
to the scoping profile is also advertised through a use of this profile. This configuration is not shown in the
diagram; the diagram only shows how this profile is used by the registered profile. A use of this profile for
advertising conformance of an implementation to the scoping profile results from the fact that the scoping
profile references this profile as well, so it is on the role of a registered profile and the diagram is simply
applied another time using that role.

An implementation that uses this profile to advertize a registered profile has implemented this profile and
thus also needs to advertize conformance to this profile. In other words, this profile takes on the role of a
registered profile for this purpose. The resulting profile reference is named "SelfPRP" in Table 1; and that
use of this profile is shown in Figure 3 in the adaptations "SelfPRP::RegisteredProfile" and
"SelfPRP::ElementConformsToProfile" . Conceptually, that advertisement is again an implementation of
this profile, but in order to avoid nesting this concept at arbitrary depth, it has been limited to be nested
only one level deep, so that the RegisteredProfile instance representing conformance to this profile is not
subject to further advertisement.

The SoftwareIdentity and ElementSoftwareIdentity adaptations provide support for representing the
software identity of the implementation that conforms to the registered profile; they are part of the
SoftwareIdentity feature.

6.3 Central and scoping class concept

6.3.1 General

Profiles typically define constraints and behavioral requirements for more than one CIM schema class.
The usages of CIM schema classes in the context of a profile are termed adaptations (see DSP1001). For
an implementation to conform to a profile, each of the CIM elements for which the profile defines
constraints and behavioral requirements needs to conform to these constraints and behavioral
requirements. Because profiles also define which entities in the managed environment are represented
by the model entities, conformance to a profile cannot only be limited to interface conformance (see
DSP1001), but needs to include those mapping aspects as well. Therefore, an implementation conforms
to a profile, if it satisfies the rules for full implementation conformance defined in 5.2.2 of DSP1001.

This profile establishes the concepts of a central class adaptation and a scoping class adaptation that
allow a client to perform the following tasks:

• to find the CIM instances that conform to the registered profile, given the RegisteredProfile
instance representing the registered profile

• to find - for a given CIM instance - the RegisteredProfile instance (or instances) representing the
registered profile (or profiles), to which conformance is advertised

The central class adaptation of a profile acts as an algorithmic focal point for all adaptations defined by
that profile. The central class adaptation also represents the boundary for clients between using a generic
discovery mechanism and using a priori knowledge about the profile, as follows:

• Navigation between the RegisteredProfile instance representing a registered profile and its
central instances is defined in this profile with generic discovery mechanisms called profile
advertisement methodologies; some of these do not require clients to have a priori knowledge
about the particular profile.

• Traversal between the central instances of a registered profile and the instances of adaptations
defined by that profile requires clients to have a priori knowledge about the profile; this profile
does not define generic discovery mechanisms for that purpose.

Implementations that conform to multiple profiles and implementations that conform to profiles and in
addition implement schema classes outside of the context of any profile deserve particular attention by

167

168

169

170

171

172

173

174

175

176

177

178

Profile Registration Profile DSP1033

16 DMTF Standard Version 1.1.0

clients, when navigating the network of instances, because it is possible that instances of a particular
class conform to different profiles or to no profile. This often requires clients to have a priori knowledge
about the way these multiple profiles and schema classes have been combined in the implementation.

The scoping class adaptation of a profile is used for discovering the central instances indirectly, in cases
where there are many central instances to be expected.

In autonomous profiles, the central class adaptation and the scoping class adaptation are the same
adaptation (see DSP1001), with the same set of instances.

This profile defines three profile advertisement methodologies through which an implementation can
advertise conformance to a particular profile, and through which clients can navigate between the
RegisteredProfile instance representing the registered profile and its central instances:

• The first methodology is termed central class methodology; it is characterized by a direct
ElementConformsToProfile association adaptation between the CentralElement and
RegisteredProfile adaptations. This means, every central instance is directly associated with the
RegisteredProfile instance representing the registered profile.

See 6.3.2 for more information about the central class methodology.

• The second methodology is termed scoping class methodology; it uses the
ElementConformsToProfile association adaptation only between the ScopingElement adaptation
of the registered profile and the RegisteredProfile adaptation of the scoping profile.

The ScopingElement adaptation of the registered profile binds to the CentralElement adaptation
of the scoping profile, so this profile advertisement methodology basically delegates the traversal
of the ElementConformsToProfile association adaptation to the scoping profile.

This delegation may happen across multiple levels of scoping profiles, until some scoping profile
finally implements the central class methodology. It is typical (but not required) that that final
scoping profile is an autonomous profile.

See 6.3.3 for more information about the scoping class methodology.

• The third methodology is termed GetCentralInstances methodology; it is characterized by a
method GetCentralInstances() defined in RegisteredProfile that returns the central instances
directly. This approach is very efficient because the implementation typically knows its central
instances.

See 6.3.2 for more information about the central class methodology.

The scoping class methodology is always implemented and available for use.

The central class methodology may be implemented in addition (see feature CentralClassMethodology).
The decision about implementing the central class methodology should be left to the implementation; that
is, profiles should not normally require or prohibit this methodology to be implemented.

The GetCentralInstances methodology may be implemented in addition (see feature
GetCentralInstancesMethodology). The decision about implementing the GetCentralInstances
methodology should be left to the implementation; that is, profiles should not normally require or prohibit
this methodology to be implemented.

For autonomous profiles, the scoping class methodology effectively becomes the same as the central
class methodology, because scoping element and central element are the same.

In situations where implementations have small footprint requirements and want to reduce the number of
instances or in situations where the implementation is monolithic and only a single version of each profile
is used, the implementation may use the scoping class methodology (by not implementing the central
class methodology) to reduce the number of necessary ElementConformsToProfile instances.

179

180

181

182183

184

185186

187

188

189

190191

192

193

194

195

196

197

198

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 17

In situations where WBEM servers support multiple implementations of the same or different versions of a
profile, the central class methodology is recommended, because it provides unambiguous relationships
through ElementConformsToProfile instances between central instances and the RegisteredProfile
instances representing the registered profiles with their versions.

If such multiple implementations of the same or different versions of a profile make different decisions for
implementing the central class methodology, that can result in limitations for discovering the central
instances. For example, a client will find the central instances of those profile implementations that used
the central class methodology, but has no way to determine whether this is the complete list of central
instances (except for trying the central class methodology in addition).

An example of this scenario could be a system with two network interface cards, each from a different
vendor, and the parts of the overall implementation contributed by each vendor conform to different
versions of the Ethernet Port Profile. This scenario also shows that in multi-vendor environments, it may
be difficult to coordinate the choice of profile advertisement methodology. Using the central class
methodology puts a profile implementation on the safe side in multi-vendor environments.

6.3.2 Central class methodology

The central class profile advertisement methodology (or short: central class methodology) is based on a
straightforward approach whereby every CentralElement instance (representing the central instances of a
registered profile) is associated through ElementConformsToProfile with a RegisteredProfile instance that
represents the registered profile and version to which the profile implementation advertises conformance.

This profile advertisement methodology is straightforward because clients only need to traverse the
ElementConformsToProfile association adaptation from or to the profile's CentralElement instance to
ascertain the profiles to which the implementation advertises conformance.

Using this profile advertisement methodology is covered by the CentralClassMethodology feature.

Figure 4 is an object diagram (showing unnamed instances) that provides an example of the central class
methodology of advertising profile conformance. In the figure, the dotted line bi-directional arrows
represent the ability of a client to traverse the ElementConformsToProfile association adaptation in the
following ways:

• from a central instance of the registered profile to the RegisteredProfile instance that represents
that profile. Note that a particular CIM instance can act as a central instance for more than one
profile.

• from a RegisteredProfile instance that represents a registered profile to the central instances of
that profile.

In both cases, the traversal of the ElementConformsToProfile adaptation typically will be across
namespaces; that is not represented in Figure 4 but is described in 6.4.4.

In Figure 4, the ComputerSystem, Fan, and Sensor adaptations are defined in respective profiles; they
are all central elements in these profiles and are therefore based on the CentralElement adaptation
defined in this profile. The RegisteredProfile instances represent these three profiles. It is furthermore
assumed that for the purposes of this example, that the Sensors profile is implemented for some system
level sensor (and not for a fan sensor).

199

200

201

202

203

204

205

206

207

208

209

Profile Registration Profile DSP1033

18 DMTF Standard Version 1.1.0

Figure 4 – Central class methodology example

6.3.3 Scoping class methodology

The scoping class profile advertisement methodology (or short: scoping class methodology) is an
approach characterized by the use of the ElementConformsToProfile association adaptation not between
the central instances of a registered profile and a RegisteredProfile instance that represents that
registered profile, but instead by having that association adaptation at the next scoping profile that uses
the central class methodology for itself.

This profile advertisement methodology is always implemented and available for use (that is, even when
the central class methodology is implemented in addition).

Figure 5 is an object diagram (showing unnamed instances) that provides an example of the scoping
class methodology of advertising profile conformance with one level of scoping profiles.

210

211

212

213

214

215

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 19

Figure 5 – Scoping class methodology example

In Figure 5, a client may traverse from a Fan instance to its scoping instance (the ComputerSystem
instance) through the SystemDevice association adaptation, following the scoping path defined in the
Example Fan profile. Because the ComputerSystem instance is referenced by ElementConformsToProfile
instances, the client knows that the corresponding profile has used the central class methodology, and
can now traverse ElementConformsToProfile to a RegisteredProfile instance that represents the Example
Base Server profile, version 1.0.0, which is the scoping profile of the Example Fan profile. Finally,
ReferencedProfile is traversed to a RegisteredProfile instance that represents the Example Fan profile,
version 1.0.0, to which the implementation is advertising conformance.

The client may reverse this traversal and start from the RegisteredProfile instance that represents the
Example Fan profile to get to the instance(s) of Fan.

The concept is in both cases that the client navigates up the scoping profile hierarchy to the level where a
scoping profile uses the central class methodology (as indicated by the presence of instances of the
ElementConformsToProfile association adaptation), and then traverses from the element side to the
profile side or vice versa, and then navigates down the scoping profile hierarchy the same number of
steps.

216

217

218

219

220

221

Profile Registration Profile DSP1033

20 DMTF Standard Version 1.1.0

In both cases, the traversal of the ElementConformsToProfile adaptation typically will be across
namespaces; that is not represented in Figure 5 but is described in 6.4.4.

In Figure 5, the ComputerSystem, Fan, and Sensor adaptations are defined in respective profiles; they
are all central elements in these profiles and are therefore implicitly based on the CentralElement
adaptation defined in this profile. The RegisteredProfile instances represent these three profiles.

6.3.4 GetCentralInstances methodology

The GetCentralInstances methodology uses the GetCentralInstances() method on a RegisteredProfile
instance to return the central instances of the profile advertised by that instance.

The ElementConformsToProfile association does not need to be implemented for this methodology to
work.

However, this methodology only allows determining the central instances from the RegisteredProfile
instance, but not vice versa.

Figure 4 is an object diagram (showing unnamed instances) that provides an example of the
GetCentralInstances methodology. In the figure, the dotted line uni-directional arrows represent the ability
of a client to determine the central instances from the RegisteredProfile instance.

222

223

224

225

226

227

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 21

Figure 6 – GetCentralInstances methodology example

6.4 WBEM server requirements on CIM namespaces

This subclause defines the roles of Interop namespace and implementation namespace for CIM
namespaces, and related implementation requirements for WBEM servers.

Some of these concepts and requirements have a more general scope than this profile. For example, the
concept of an Interop namespace is also used by other profiles (e.g., DSP1054) or by WBEM SLP
discovery (see DSP0206). Another such example is the concept of cross-namespace associations.

6.4.1 Interop namespace

Interop namespace is a role of a CIM namespace for the purpose of providing a common and well-known
place for clients to discover modeled entities, such as the profiles to which an implementation advertises
conformance.

A WBEM server shall implement one CIM namespace and may implement additional CIM namespaces
that assume the role of an Interop namespace; each of these namespaces is termed an Interop
namespace.

228

229

230

231

232

233

234

235

236

Profile Registration Profile DSP1033

22 DMTF Standard Version 1.1.0

At least one Interop namespace of a WBEM server shall have one of the following standard names:

• interop (preferred)

• /interop (DEPRECATED)

• root/interop (DEPRECATED)

• /root/interop (DEPRECATED)

Clients need to be prepared to deal with any one of these standard names for the Interop namespace.

A WBEM server may expose Interop namespaces using additional implementation-defined names. This
accommodates backwards compatibility of existing WBEM server implementations. Clients should use the
standard names instead of such implementation-defined names.

If a WBEM server implements multiple Interop namespaces (using standard names or implementation-
defined names), each of those namespaces shall expose a distinct set of CIM instances (that is,
instances with a different namespace path), that represent equivalent information (that is, their property
values are the same except for different namespace paths in references).

DEPRECATED

The use of root/interop for the Interop namespace name has been deprecated in version 1.1 of this
profile.

DEPRECATED

DEPRECATED

The use of /interop and /root/interop for the Interop namespace name, and more generally the
use of leading slash (/) characters in any namespace name have been deprecated in version 1.1 of this
profile. Older WBEM implementations may have considered the slash separator character in a CIM object
path URI to be part of the namespace name and thus exposed the namespace name (e.g., in the Name
property of CIM_Namespace) with a leading slash character. DSP0004 does not permit namespace
names to begin with a slash.

Producers of Interop namespace names should not create a leading slash (/) character in the Interop
namespace name. Consumers of Interop namespace names shall ignore a leading slash character in
Interop namespace names when processing them (e.g., for comparison or identification purposes).

DEPRECATED

6.4.2 Implementation namespaces

Implementation namespace is a role of a CIM namespace for the purpose of providing a place for CIM
objects for which no specific namespace requirements are defined.

A WBEM server shall implement one or more CIM namespaces that assume the role of an
implementation namespace; each such namespace is also called an implementation namespace.

The names of implementation namespaces are implementation-defined.

6.4.3 Relationship between Interop and implementation namespaces

A CIM namespace of a WBEM server may play the roles of an implementation namespace and of an
Interop namespace at the same time.

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 23

Thus, a simple implementation of a WBEM server can expose a single CIM namespace that plays both
roles. Of course, that single CIM namespace needs to satisfy the requirements for its name as defined in
6.4.1.

A typical implementation of a WBEM server will expose a single Interop namespace and multiple
implementation namespaces, each of which is a distinct namespace implementation.

The part of an implementation that conforms to a particular single profile may span multiple namespaces,
including multiple implementation namespaces.

6.4.4 Cross-namespace associations

Some association adaptations defined in this profile may cross CIM namespaces (within the same WBEM
server).

Associations that cross CIM namespaces shall be instantiated in both namespaces. The rationale for this
is to support association traversal from either namespace to the other.

Each of these association instances shall have their creation class exist in the same namespace as the
association instance. The versions of these association classes in each of the two namespaces may be
different; this is needed in order to allow that the implementation namespaces within a WBEM server can
be used for objects from different versions of the CIM schema.

7 Implementation

7.1 Features

7.1.1 Feature: CentralClassMethodology

Requirement level: Optional

Implementing this feature for a registered profile provides support for advertising conformance of an
implementation to that registered profile using the central class methodology. For details, see 6.3.2.

This feature shall be implemented for autonomous profiles. Note that the Profile Registration profile (this
profile) is an autonomous profile.

Note that the scoping class methodology is always implemented and available for use.

This feature can be made available to clients at the granularity of RegisteredProfile instances.

It can be concluded that the feature is available for a RegisteredProfile instance if:

• The following OCL derivation constraint evaluates to a Boolean value of True.

OCL context: A RegisteredProfile instance.
derive: self->CIM_ElementConformsToProfile->size() > 0

Explanation:

At least one ElementConformsToProfile instance exists that references the
RegisteredProfile instance representing the registered profile.

This discovery mechanism only works if at least one central instance exists and if all
implementations of the registered profile in a particular WBEM server use the same
methodology.

Otherwise, it can be concluded that the feature is not available.

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273274

275

276

277

278

279

280

281

Profile Registration Profile DSP1033

24 DMTF Standard Version 1.1.0

7.1.2 Feature: GetCentralInstancesMethodology

Requirement level: Optional

Implementing this feature for a registered profile provides support for advertising conformance of an
implementation to that registered profile using the GetCentralInstances() method. For details, see 6.3.4.

This feature can be made available to clients at the granularity of RegisteredProfile instances.

Availability of this feature cannot be discovered by clients (other than trying the functionality provided by
the feature).

7.1.3 Feature: SoftwareIdentity

Requirement level: Optional

Implementing this feature for a registered profile provides support for representing the software identity of
an implementation that conforms to that profile. That software identity is represented using the
SoftwareIdentity adaptation which is associated to the RegisteredProfile adaptation representing
conformance to the registered profile via the ElementSoftwareIdentity adaptation.

A particular SoftwareIdentity instance represents the software identity of one implementation and can be
related to one or more registered profiles.

A particular registered profile can have more than one software identity, each represented by a
SoftwareIdentity instance. For example, this can happen if the core functionality of a profile is in one
implementation, and a second implementation adds support for an optional feature of that profile.

The SoftwareIdentity and ElementSoftwareIdentity adaptations defined in this profile have been designed
to conform to the CIM_SoftwareIdentity and CIM_ElementSoftwareIdentity classes, respectively, that are
used in the Software Inventory Profile (DSP1023).

Nevertheless, the Software Identity Profile is not referenced by this profile for several reasons:

• the Software Identity Profile defines CIM_System as its scoping class, but this profile is an
autonomous profile that does not define CIM_System

• the reference circle between the Software Inventory Profile and this profile would have been
complex to handle, particularly considering the usage of this profile by itself

The disadvantage of this approach is that the conformance of this feature to the Software Identity Profile
cannot be discovered by clients. However, it is possible to reuse CIM_SoftwareIdentity instances that are
implemented as part of the Software Inventory Profile also for this profile. If that is done, note that the
SoftwareIdentity and ElementSoftwareIdentity adaptations define constraints in addition to the
CIM_SoftwareIdentity and CIM_ElementSoftwareIdentity classes that are used in the Software Inventory
Profile.

This feature can be made available to clients at the granularity of RegisteredProfile instances.

It can be concluded that the feature is available for a RegisteredProfile instance if:

• The following OCL derivation constraint evaluates to a Boolean value of True.

OCL context: A RegisteredProfile instance.
derive: self->CIM_ElementSoftwareIdentity->size() > 0

Explanation:

A SoftwareIdentity instance exists that is associated to the RegisteredProfile instance via
the ElementSoftwareIdentity association.

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298299

300

301

302

303

304

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 25

Otherwise, it can be concluded that the feature is not available.

7.2 Adaptations

7.2.1 Conventions

This profile defines operation requirements based on DSP0223.

For adaptations of ordinary classes and of associations, the requirements for operations are defined in
adaptation-specific subclauses of subclause 7.2.

For association traversal operation requirements that are specified only in the elements table of an
adaptation (i.e., without operation-specific subclauses), the names of the association adaptations to be
traversed are listed in the elements table.

The default initialization requirement level for property requirements is optional.

The default modification requirement level for property requirements is optional.

This profile repeats the effective values of certain Boolean qualifiers as part of property, method
parameter, or method return value requirements. The following convention is established: If the name of a
qualifier is listed, its effective value is True; if the qualifier name is not listed, its effective value is False.
The convention is applied in the following cases:

• In: indicates that the parameter is an input parameter

• Out: indicates that the parameter is an output parameter

• Key: indicates that the property is a key (that is, its value is part of the instance path)

• Required: indicates that the element value shall be non-Null

• Null OK: indicates explicitly that the element value may be Null for mandatory, conditional or
conditional exclusive properties. This information is not specified as a qualifier in the schema but
as an indicator in the profile.

7.2.2 Adaptation: RegisteredProfile: CIM_RegisteredProfile

7.2.2.1 General

Adaptation type: Ordinary class

Implementation type: Instantiated

Requirement level: Mandatory

This adaptation models registered profiles (that is, profiles to which an implementation advertises
conformance).

It is important to understand that this adaptation does not model "profile implementations" that could be
distinguished within an overall implementation. The overall implementation may be a mix of components
from different vendors, each of which may have implemented a profile, but these different parts are not
necessarily distinguishable within the overall implementation. Only the conformance of the overall
implementation to a profile is modeled with this adaptation.

Table 5 – RegisteredProfile: Element requirements

Element Requirement Description

Properties
InstanceID Mandatory Key

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

Profile Registration Profile DSP1033

26 DMTF Standard Version 1.1.0

Element Requirement Description

RegisteredOrganization Mandatory Required

RegisteredName Mandatory Required

RegisteredVersion Mandatory Required

AdvertiseTypes Mandatory Required

OtherRegisteredOrganization Conditional See 7.2.2.2

AdvertiseTypeDescriptions Conditional See 7.2.2.3

SpecificationType Mandatory See 7.2.2.4

ImplementedFeatures Mandatory

Methods
GetCentralInstances() Conditional See 7.2.2.5

Operations
GetInstance() Mandatory

EnumerateInstances() Mandatory

EnumerateInstanceNames() Mandatory

OpenEnumerateInstances() Optional

Associators() Mandatory

AssociatorNames() Mandatory

OpenAssociators() Optional

References() Mandatory

ReferenceNames() Mandatory

OpenReferences() Optional

7.2.2.2 Property: OtherRegisteredOrganization

Requirement level: Conditional

Condition:

The following OCL statement evaluates to true in the context of a RegisteredProfile instance:
self.RegisteredOrganization = 1 /* Other */

7.2.2.3 Property: AdvertiseTypeDescriptions

Requirement level: Conditional

Condition:

The following OCL statement evaluates to true in the context of a RegisteredProfile instance:
self.AdvertiseTypes->exists(value | value = 1 /* Other */)

Explanation:

The AdvertiseTypes array property has at least one array entry with a value of 1 (Other).

Constraint:

OCL constraint in the context of a RegisteredProfile instance:

326

327

328

329

330

331332

333

334

335

336

337

338339

340

341

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 27

inv: Sequence { 1 .. self.AdvertiseTypes->size() }->
forAll(i |

self.AdvertiseTypes.at(i) = 1 /* Other */
implies self.AdvertiseTypeDescriptions.at(i) != null

)

Explanation:

For each array entry of AdvertiseTypes that has a value of 1 (Other), the corresponding
array entry of AdvertiseTypeDescriptions shall be non-Null.

Note that this constraint leaves the value of array entries of AdvertiseTypeDescriptions
undefined, including the possibility of being Null or not present (after any non-Null array
entries). As a result, if no array entry of AdvertiseTypes has a value of 1 (Other), the
AdvertiseTypeDescriptions property is entirely undefined, including the possibility of it being
Null.

7.2.2.4 Property: SpecificationType

Requirement level: Mandatory

Constraint:

OCL constraint in the context of a RegisteredProfile instance:
inv: self.SpecificationType = 2 /* Profile */

7.2.2.5 Method: GetCentralInstances()

Requirement level: Conditional

Condition:

The GetCentralInstancesMethodology feature is implemented.

Table 6 – GetCentralInstances(): Parameter requirements

Parameter Description

CentralInstances Out, see 7.2.2.5.1

7.2.2.5.1 Parameter: CentralInstances

Constraint:

Referenced instances shall be of class adaptation CentralElement.

7.2.3 Adaptation: ElementConformsToProfile: CIM_ElementConformsToProfile

7.2.3.1 General

Adaptation type: Association class

Implementation type: Instantiated

Requirement level: Conditional exclusive

Condition:

The CentralClassMethodology feature is implemented.

342

343

344

345

346

347

348

349

350

351

352

353354

355

356

357

358

359

360

361

362

363

Profile Registration Profile DSP1033

28 DMTF Standard Version 1.1.0

Note that if the CentralClassMethodology feature is not implemented, traversal between RegisteredProfile
and CentralElement instances is delegated to the level of the scoping profile, as described in 6.3.

This adaptation models the relationship between registered profiles and their central instances.

Table 7 – ElementConformsToProfile: Element requirements

Element Requirement Description

Properties
ConformantStandard Mandatory Key, see 7.2.3.2

ManagedElement Mandatory Key, see 7.2.3.3

Operations
GetInstance() Mandatory

EnumerateInstances() Mandatory

EnumerateInstanceNames() Mandatory

OpenEnumerateInstances() Optional

7.2.3.2 Property: ConformantStandard

Requirement level: Mandatory

Reference kind: REF-typed

Constraint:

Referenced instances shall be of class adaptation RegisteredProfile.

The multiplicity of this association end is 0 .. *

7.2.3.3 Property: ManagedElement

Requirement level: Mandatory

Reference kind: REF-typed

Constraint:

Referenced instances shall be of class adaptation CentralElement.

The multiplicity of this association end is 0 .. *

7.2.4 Adaptation: ScopingElement: CIM_ManagedElement

This adaptation models scoping elements of registered profiles.

This adaptation shall be (implicitly) applied as a base adaptation to the scoping class adaptation of the
registered profile; that is, that adaptation does not need to specify this adaptation is its base adaptation,
but is still considered a derived adaptation of this adaptation.

Adaptation type: Ordinary class

Implementation type: Abstract

Requirement level: Defined by its derived adaptations

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 29

7.2.5 Adaptation: CentralElement: CIM_ManagedElement

This adaptation models central elements of registered profiles. Note that DSP1001 requires that every
DMTF profile references this profile, and requires that referencing profiles base their central class
adaptation on this adaptation.

This adaptation shall be (implicitly) applied as a base adaptation to the central class adaptation of the
registered profile; that is, that adaptation does not need to specify this adaptation is its base adaptation,
but is still considered a derived adaptation of this adaptation.

Adaptation type: Ordinary class

Implementation type: Abstract

Requirement level: Defined by its derived adaptations

Table 8 – CentralElement: Element requirements

Element Requirement Description

Operations
Associators() Mandatory

AssociatorNames() Mandatory

OpenAssociators() Optional

References() Mandatory

ReferenceNames() Mandatory

OpenReferences() Optional

7.2.6 Adaptation: ReferencedProfile: CIM_ReferencedProfile

7.2.6.1 General

Adaptation type: Association class

Implementation type: Instantiated

Requirement level: Mandatory

This adaptation models the relationship between registered profiles and the profiles they reference and
for which conformance is advertised.

Table 9 – ReferencedProfile: Element requirements

Element Requirement Description

Properties
Antecedent Mandatory Key, see 7.2.6.2

Dependent Mandatory Key, see 7.2.6.3

Operations
GetInstance() Mandatory

EnumerateInstances() Mandatory

EnumerateInstanceNames() Mandatory

OpenEnumerateInstances() Optional

384

385

386

387

388

389

390

391

392

393

394

395

396

397

Profile Registration Profile DSP1033

30 DMTF Standard Version 1.1.0

7.2.6.2 Property: Antecedent

Requirement level: Mandatory

Reference kind: REF-typed

Constraint:

Referenced instances shall be of class adaptation ReferencedRegisteredProfile.

The multiplicity of this association end is 0 .. *

7.2.6.3 Property: Dependent

Requirement level: Mandatory

Reference kind: REF-typed

Constraint:

Referenced instances shall be of class adaptation RegisteredProfile.

The multiplicity of this association end is 0 .. *

7.2.7 Adaptation: ReferencedRegisteredProfile: CIM_RegisteredProfile

This adaptation models referenced profiles; that is, profiles that are referenced by the registered profile
(represented by the RegisteredProfile adaptation instance) and for which conformance is advertised. The
type of profile relationship can be "usage" or "derivation" (see DSP1001).

This adaptation and the ReferencedProfile adaptation together provide the ability to navigate the
relationships between profiles that are advertised. However, the type of relationship is not represented.

Note that such referenced registered profiles are also considered normal registered profiles in the context
of the referenced profile. That is expressed by the base adaptation RegisteredProfile in the referenced
profile (see the RefPRP profile reference).

Adaptation type: Ordinary class

Implementation type: Instantiated

Requirement level: Mandatory

Table 10 – ReferencedRegisteredProfile: Element requirements

Element Requirement Description

Base adaptations
RefPRP::RegisteredProfile Mandatory See RefPRP::RegisteredProfile.

Operations
Associators() Mandatory

AssociatorNames() Mandatory

OpenAssociators() Optional

References() Mandatory

ReferenceNames() Mandatory

OpenReferences() Optional

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 31

7.2.8 Adaptation: SoftwareIdentity: CIM_SoftwareIdentity

7.2.8.1 General

Adaptation type: Ordinary class

Implementation type: Instantiated

Requirement level: Conditional

Condition:

The SoftwareIdentity feature is implemented.

This adaptation models the software identity of implementations that conform to the registered profiles
represented by RegisteredProfile instances associated via ElementSoftwareIdentity.

Note that this adaptation has been designed to conform to the CIM_SoftwareIdentity class used in
DSP1023.

The algorithm for version comparison using the MajorVersion, MinorVersion, RevisionNumber, and
BuildNumber properties defined in DSP1023 shall be used for comparing versions of software identities
represented by instances of this adaptation.

Table 11 – SoftwareIdentity: Element requirements

Element Requirement Description

Properties
InstanceID Mandatory Key

IsEntity Mandatory

VersionString Optional

MajorVersion Conditional See 7.2.8.2

MinorVersion Conditional See 7.2.8.3

RevisionNumber Conditional See 7.2.8.4

BuildNumber Conditional See 7.2.8.5

Operations
GetInstance() Mandatory

EnumerateInstances() Optional

EnumerateInstanceNames() Mandatory

OpenEnumerateInstances() Optional

Associators() Mandatory

AssociatorNames() Mandatory

OpenAssociators() Optional

References() Mandatory

ReferenceNames() Mandatory

OpenReferences() Optional

7.2.8.2 Property: MajorVersion

Requirement level: Conditional

Condition:

416

417

418

419

420

421422

423

424

425

426

427

428

Profile Registration Profile DSP1033

32 DMTF Standard Version 1.1.0

The following OCL statement evaluates to true in the context of a SoftwareIdentity instance:
self.VersionString = null

7.2.8.3 Property: MinorVersion

Requirement level: Conditional

Condition:

The following OCL statement evaluates to true in the context of a SoftwareIdentity instance:
self.VersionString = null

7.2.8.4 Property: RevisionNumber

Requirement level: Conditional

Condition:

The following OCL statement evaluates to true in the context of a SoftwareIdentity instance:
self.VersionString = null

7.2.8.5 Property: BuildNumber

Requirement level: Conditional

Condition:

The following OCL statement evaluates to true in the context of a SoftwareIdentity instance:
self.VersionString = null

7.2.9 Adaptation: ElementSoftwareIdentity: CIM_ElementSoftwareIdentity

7.2.9.1 General

Adaptation type: Association class

Implementation type: Instantiated

Requirement level: Conditional

Condition:

The SoftwareIdentity feature is implemented.

This adaptation models the relationship between registered profiles and the software identity of their
implementation.

Note that this adaptation has been designed to conform to the CIM_ElementSoftwareIdentity class used
in DSP1023.

Table 12 – ElementSoftwareIdentity: Element requirements

Element Requirement Description

Properties
Antecedent Mandatory Key, see 7.2.9.2

Dependent Mandatory Key, see 7.2.9.3

ElementSoftwareStatus Mandatory See 7.2.9.4

429
430

431432

433

434

435

436

437438

439

440

441

442

443444

445

446

447

448

449450

451

452

453

454

455

456457

458

459

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 33

Element Requirement Description

Operations
GetInstance() Mandatory

EnumerateInstances() Mandatory

EnumerateInstanceNames() Mandatory

OpenEnumerateInstances() Optional

7.2.9.2 Property: Antecedent

Requirement level: Mandatory

Reference kind: REF-typed

Constraint:

Referenced instances shall be of class adaptation SoftwareIdentity.

The multiplicity of this association end is 0 .. *

7.2.9.3 Property: Dependent

Requirement level: Mandatory

Reference kind: REF-typed

Constraint:

Referenced instances shall be of class adaptation RegisteredProfile.

The multiplicity of this association end is 1 .. *

7.2.9.4 Property: ElementSoftwareStatus

Requirement level: Mandatory

Constraint:

OCL constraint in the context of a ElementSoftwareIdentity instance:
inv: self.ElementSoftwareStatus = Set { 2 /* Current */, 6 /* Installed */ }

Explanation:

The ElementSoftwareStatus array property shall contain the values 2 (Current) and 6
(Installed), in any order.

8 Use cases and state descriptions

8.1 State description: SimpleStateDescription

This state description describes a simple scenario in which an implementation conforms to three example
profiles, and advertises conformance through this profile (i.e., the Profile Registration profile). In this state
description, each implementation of this profile in turn advertises conformance to this profile itself.

Table 13 lists these four profiles, and their referenced profiles:

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

Profile Registration Profile DSP1033

34 DMTF Standard Version 1.1.0

Table 13 – Profiles in the SimpleStateDescription scenario

Profile Profile Type Referenced Profile Profile Reference Type Profile Reference Name

Profile Registration Usage PRP

Example Fan Usage SystemFanExample Base Server Autonomous

Example Power Supply Usage SystemPowerSupply

Example Fan Component Profile Registration Usage PRP

Example Power Supply Component Profile Registration Usage PRP

Profile Registration Usage SelfPRP
Profile Registration Autonomous

Profile Registration Usage RefPRP

Table 14 lists the class adaptations defined in the three example profiles and in this profile, to the extent
they are relevant for this scenario.

Table 14 – Adaptations in the SimpleStateDescription scenario

Profile Adaptation Schema Class Base
Adaptation

Profile Reference Name (of
Base Adaptation)

ScopingElement
(implied) PRP

CentralElement
(implied) PRP

System SystemFan

Example Base
Server

ComputerSystem
(central + scoping element) CIM_ComputerSystem

System SystemPowerSupply

System
(scoping element) CIM_System ScopingElement

(implied) PRP

SystemDevice CIM_SystemDeviceExample Fan

Fan
(central element) CIM_Fan CentralElement

(implied) PRP

System
(scoping element) CIM_System ScopingElement

(implied) PRP

SystemDevice CIM_SystemDeviceExample
Power Supply

PowerSupply
(central element) CIM_PowerSupply CentralElement

(implied) PRP

ScopingElement
(implied) SelfPRP

RegisteredProfile
(central + scoping element) CIM_RegisteredProfile

CentralElement
(implied) SelfPRP

ElementConformsToProfile CIM_ElementConformsToProfile

ScopingElement CIM_ManagedElement

CentralElement CIM_ManagedElement

ReferencedProfile CIM_ReferencedProfile

Profile
Registration

ReferencedRegisteredProfile CIM_RegisteredProfile RegisteredProfile RefPRP

Table 15 lists the parts of the overall implementation that corresponds to the four profiles in the scenario,
along with their profile implementation context and implemented advertisement methodology (in this
example). The profile implementation context of each such part is defined by the profile reference in the
referencing profile, and is stated as a path of named profile references relative to the top-level Example
Base Server profile.

482

483

484

485

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 35

Table 15 – Profile related implementation parts in the SimpleStateDescription scenario

Profile Corresponding to the
Implementation Part

Profile Implementation
Context

Implemented Advertisement
Methodology

Example Base Server N/A (top-level) central class methodology

Example Fan SystemFan central class methodology

Example Power Supply SystemPowerSupply scoping class methodology

Profile Registration PRP central class methodology

Profile Registration SystemFan::PRP central class methodology

Profile Registration SystemPowerSupply::PRP central class methodology

Profile Registration (1)

PRP::SelfPRP,
SystemFan::PRP::SelfPRP,
SystemPowerSupply::PRP::
SelfPRP

central class methodology

Note (1): This implementation uses an optimization for the implementation parts that correspond to this
profile. The optimization uses one single RegisteredProfile instance to advertise conformance for all three
parts; such optimizations are described in DSP1001.

Table 16 lists the implemented classes for this scenario.

Table 16 – Implemented classes in the SimpleStateDescription scenario

Implemented Class Adaptation Profile defining the
Adaptation

Implementation Context for the
Adaptation

ComputerSystem Example Base
Server Example Base Server

ScopingElement
(implied) Profile Registration Example Base Server :: PRP

CentralElement
(implied) Profile Registration Example Base Server :: PRP

System Example Fan Example Base Server :: SystemFan

ScopingElement
(implied) Profile Registration Example Base Server :: SystemFan ::

PRP

System Example Power
Supply

Example Base Server ::
SystemPowerSupply

CIM_ComputerSystem

ScopingElement
(implied) Profile Registration Example Base Server ::

SystemPowerSupply :: PRP

CIM_SystemDevice
(for CIM_Fan) SystemDevice Example Fan Example Base Server :: SystemFan

Fan Example Fan Example Base Server :: SystemFan
CIM_Fan CentralElement

(implied) Profile Registration Example Base Server :: SystemFan ::
PRP

CIM_SystemDevice
(for CIM_PowerSupply) SystemDevice Example Power

Supply
Example Base Server ::
SystemPowerSupply

PowerSupply Example Power
Supply

Example Base Server ::
SystemPowerSupply

CIM_PowerSupply
CentralElement
(implied) Profile Registration Example Base Server ::

SystemPowerSupply :: PRP

CIM_ElementConformsToProfile
(for central instances of Example
Base Server profile)

ElementConformsToProfile Profile Registration Example Base Server :: PRP

486

487

488

Profile Registration Profile DSP1033

36 DMTF Standard Version 1.1.0

Implemented Class Adaptation Profile defining the
Adaptation

Implementation Context for the
Adaptation

CIM_ElementConformsToProfile
(for central instances of Example
Fan profile)

ElementConformsToProfile Profile Registration Example Base Server :: SystemFan ::
PRP

CIM_ElementConformsToProfile
(for central instances of Profile
Registration profile)

ElementConformsToProfile Profile Registration

Example Base Server :: PRP ::
SelfPRP,
Example Base Server :: SystemFan ::
PRP :: SelfPRP,
Example Base Server ::
SystemPowerSupply :: PRP :: SelfPRP

CIM_RegisteredProfile
(for Example Base Server profile) RegisteredProfile Profile Registration Example Base Server :: PRP

ReferencedRegisteredProfile Profile Registration Example Base Server :: PRP
CIM_RegisteredProfile
(for Example Fan profile) RegisteredProfile Profile Registration Example Base Server :: SystemFan ::

PRP

ReferencedRegisteredProfile Profile Registration Example Base Server :: PRP
CIM_RegisteredProfile
(for Example Power Supply profile) RegisteredProfile Profile Registration Example Base Server ::

SystemPowerSupply :: PRP

ReferencedRegisteredProfile Profile Registration

Example Base Server :: PRP,
Example Base Server :: SystemFan ::
PRP,
Example Base Server ::
SystemPowerSupply :: PRP

CIM_RegisteredProfile
(for Profile Registration profile)

RegisteredProfile Profile Registration

Example Base Server :: PRP ::
SelfPRP,
Example Base Server :: SystemFan ::
PRP :: SelfPRP,
Example Base Server ::
SystemPowerSupply :: PRP :: SelfPRP

CIM_ReferencedProfile
(for profiles referenced by Example
Base Server profile)

ReferencedProfile Profile Registration Example Base Server :: PRP

CIM_ReferencedProfile
(for profiles referenced by Example
Fan profile)

ReferencedProfile Profile Registration Example Base Server :: SystemFan ::
PRP

CIM_ReferencedProfile
(for profiles referenced by Example
Power Supply profile)

ReferencedProfile Profile Registration Example Base Server ::
SystemPowerSupply :: PRP

CIM_ReferencedProfile
(for profiles referenced by Profile
Registration profile)

ReferencedProfile Profile Registration

Example Base Server :: PRP,
Example Base Server :: SystemFan ::
PRP,
Example Base Server ::
SystemPowerSupply :: PRP

Note (1): This implementation is an optimization that merges three separate implementations into one
implementation, as defined in DSP1001.

The object diagram in Figure 7 shows an example set of instances in this scenario. The implementation
follows the recommendation to separate the implementation namespace from the Interop namespace.

489

490

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 37

Figure 7 – Simple object diagram

491

492

493

Profile Registration Profile DSP1033

38 DMTF Standard Version 1.1.0

In this scenario, the system1 instance representing a managed system, the fan1 instance representing
a fan in that system, and the ps1 instance representing a power supply in that system are all exposed in
the implementation namespace "ABCCorp".

The Interop namespace contains four instances of CIM_RegisteredProfile that advertise conformance to
the Example Base Server, Example Fan, and Example Power Supply profiles, and to the Profile
Registration profile (that is, this profile).

Profile conformance for the ps1 instance is determined through the scoping class methodology because
that instance is not referenced by any CIM_ElementConformsToProfile instances.

Profile conformance for the fan1, system1 and the four CIM_RegisteredProfile instances is determined
through the central class methodology because these instances are referenced by the ManagedElement
end of a CIM_ElementConformsToProfile association instance.

Because some of the CIM_ElementConformsToProfile instances cross namespaces, the instances of
these associations exist in both namespaces. The associated instances exist in only one of the
namespaces. For example, the CIM_ElementConformsToProfile instance between system1 and prof1
has an instance in each of the two namespaces. In the instance in the implementation namespace,
ManagedElement is a reference to the system1 instance in the same namespace, and
ConformantStandard is a cross-namespace reference to the prof1 instance in the Interop namespace.
In the instance in the Interop namespace, ConformantStandard is a reference to the prof1 instance in
the same namespace, and ManagedElement is a cross-namespace reference to the system1 instance in
the implementation namespace. See 6.4.4 for more information about cross-namespace associations.

The scenario defined in this state description is used by some of the following use cases.

8.2 Use case: RetrieveProfileInformationForComputerSystem

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can retrieve profile information for an instance of CIM_ComputerSystem. In that scenario, the
Example Base Server profile (defining the adaptation for the CIM_ComputerSystem class) is an
autonomous profile.

This use case has the following preconditions:

• The instance path of a CIM_ComputerSystem instance (in the implementation namespace) is
known.

• It is known that the Example Base Server profile is an autonomous profile and thus the
implementation will always support the central class methodology.

The main flow for this use case consists of the following steps:

1. Invoke the Associators operation on that CIM_ComputerSystem instance, filtering on the
CIM_ElementConformsToProfile association class. The resulting CIM_RegisteredProfile
instances represent all profiles to which that CIM_ComputerSystem instance conforms.

2. Iterate through the retrieved CIM_RegisteredProfile instances and inspect their
RegisteredOrganization, RegisteredName and RegisteredVersion property values, which identify
the profiles to which the CIM_ComputerSystem instance conforms.

8.3 Use case: RetrieveProfileVersionForFan

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can retrieve the version of the Example Fan profile to which an instance of CIM_Fan conforms.
In that scenario, the Example Fan profile (defining the adaptation for the CIM_Fan class) is a component
profile and has been implemented using the central class methodology.

494

495

496

497

498

499

500

501

502503

504505

506

507508

509510

511

512

513

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 39

This use case has the following preconditions:

• The instance path of a CIM_Fan instance (in the implementation namespace) is known.

• It is known that the Example Fan profile is a component profile and that it has been implemented
using the central class methodology.

The main flow for this use case consists of the following steps:

1. Invoke the Associators operation on the given CIM_Fan instance, filtering on the
CIM_ElementConformsToProfile association. This will retrieve all CIM_RegisteredProfile
instances representing profiles to which that CIM_Fan instance conforms. In this scenario, only
one CIM_RegisteredProfile instance representing the Example Fan profile will be returned.

2. The value of its RegisteredVersion property indicates the version of the Example Fan profile to
which the given CIM_Fan instance conforms.

8.4 Use case: RetrieveProfileVersionForPowerSupply

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can retrieve the version of the Example Power Supply profile to which an instance of the
CIM_PowerSupply class conforms. In that scenario, the Example Power Supply profile (defining the
adaptation for the CIM_PowerSupply class) is a component profile and has been implemented without
implementing the central class methodology. As a result, the scoping class methodology is used.

This use case has the following preconditions:

• The instance path of a CIM_PowerSupply instance (in the implementation namespace) is
known.

• It is known that the Example Power Supply profile is a component profile and that it has been
implemented without implementing the central class methodology.

The main flow for this use case consists of the following steps:

1. Navigate the scoping path defined in the Example Power Supply profile, from the central
instance to the scoping instance, as follows:

• Invoke the Associators operation on that CIM_PowerSupply instance, filtering on the
CIM_SystemDevice association class. This will retrieve the (one)
CIM_ComputerSystem instance that is the scoping instance of the CIM_PowerSupply
instance.

2. Invoke the Associators operation on that CIM_ComputerSystem instance, filtering on the
CIM_ElementConformsToProfile association. This will retrieve all CIM_RegisteredProfile
instances representing profiles to which that CIM_ComputerSystem instance conforms. In this
scenario, only one instance representing the Example Base Server profile will be returned.

3. Invoke the Associators operation on the returned CIM_RegisteredProfile instance representing
the Example Base Server profile, filtering on the CIM_ReferencedProfile association class. This
will retrieve all CIM_RegisteredProfile instances representing profiles referenced by the Example
Base Server profile. In this scenario, three instances will be returned, representing the Example
Power Supply, Example Fan, and Profile Registration profiles.

4. Iterate through these retrieved CIM_RegisteredProfile instances and select the Example Power
Supply profile based on the values of its RegisteredOrganization and RegisteredName
properties. The value of its RegisteredVersion property indicates the version of the Example
Power supply profile to which the CIM_PowerSupply instance conforms.

514515

516517

518

519520

521522

523

524

525

526527

528529

530

531532

533534

535536

537538

539540

541

Profile Registration Profile DSP1033

40 DMTF Standard Version 1.1.0

8.5 Use case: AlgorithmForRetrievingProfileInformation

For the general case, this use case describes the algorithm for a CIM client to determine to which profiles
a central instance of a given profile conforms, when the advertisement methodology implemented for that
profile and for its scoping profiles is not known upfront.

This use case has the following preconditions:

• The instance path of a central instance of a given profile is known.

• The profile reference and scoping hierarchies between the given profile and its top-level
autonomous profile is known, including the scoping path of each of those profiles.

Note that component profiles may define scoping elements that are not the central elements of
their referencing profiles. For example, in the SimpleStateDescription scenario, the Example Fan
profile could reference an additional Example Sensors profile that defines a scoping adaptation
named System, that matches the ComputerSystem adaptation of the Example Base Server
profile.

The main flow for this use case consists of the following steps:

1. Invoke the Associators operation on the central instance, filtering on the
CIM_ElementConformsToProfile association class.

2. If this operation returns one or more CIM_RegisteredProfile instances, the central class
methodology has been implemented for the profile, and each (typically one) returned instance
represents a profile to which the central instance advertises conformance (see the limitations
described in 6.3.1).

The RegisteredOrganization, RegisteredName, and RegisteredVersion properties of the returned
instances identify these profiles.

3. If this operation returns no CIM_RegisteredProfile instances, the central class methodology has
not been implemented for the profile, and the scoping class methodology needs to be used. In
that case, follow these steps:

• Starting with the central instance, invoke the Associators operation for each segment of
the scoping path defined in the profile, filtering on the association classes and result
classes, in order to navigate to its scoping instance.

• Invoke the Associators operation on that scoping instance, filtering on the
CIM_ElementConformsToProfile association class. This returns the
CIM_RegisteredProfile instances representing the profiles to which the scoping
instance advertises conformance.

• If this operation returns one or more CIM_RegisteredProfile instances, the scoping
profiles have been implemented using the central class methodology, and each
(typically one) returned instance represents a profile to which the scoping instance
advertises conformance.

Go to step 4.

• If this operation returns no CIM_RegisteredProfile instances, the scoping profiles also
have been implemented using the scoping class methodology, and step 3 needs to be
recursively repeated until a scoping instance is reached that returns such instances.
After that is reached, each (typically one) returned instance represents a profile to
which the scoping instance advertises conformance.

Go to step 4.

542

543

544545

546547

548

549

550551

552553

554

555556

557558

559560

561562

563

564565

566

567

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 41

4. At this point, at least one CIM_RegisteredProfile instances representing profiles to which the top-
most scoping instances advertise conformance.

Select the profile of those top-most profiles that directly or indirectly references the profile in
which you are interested.

5. Invoke the Associators operation on the CIM_RegisteredProfile instance representing the
selected top-most profile, filtering on the CIM_ReferencedProfile association class, and repeat
that operation recursively on its result, such that you traverse as many profile levels down as you
had to traverse profile levels up to the top-most profile in step 3. At each level, if more than one
instance is returned, select the profile that directly or indirectly references the profile in question.

The CIM_RegisteredProfile instances resulting from the last such traversal represent the profiles
to which the original central instance advertises conformance.

The RegisteredOrganization, RegisteredName, and RegisteredVersion properties of the returned
instances identify these profiles.

8.6 Use case: DetermineConformingInstances

Figure 8 is an object diagram for this use case and illustrates an implementation that conforms to the
Example Fan profile described in the SimpleStateDescription scenario. The diagram shows some
additional class adaptations defined in the Example Fan profile (compared to that scenario); schema
classes are stated in the object diagram only for these additional adaptations. The central instances of the
Example Fan profile are the two CIM_Fan instances, fan1 and fan2.

The instances of adaptations defined in a profile form a graph, where those instances can be reached by
association traversal from the central instances of that profile. Knowing the structure of this graph for the
Example Fan profile, a CIM client can navigate to all these instances starting from the central instances of
that profile, and can conclude from the existence of these instances that they conform to the Example
Fan profile.

This use case determines all instances of ordinary adaptations conforming to the Example Fan profile,
given the set of all central instances of that profile. Note that association instances conforming to the
Example Fan profile are not determined in this use case; they could be determined by using the
References operation.

568

569

570571

572

573

574

575

576

577

Profile Registration Profile DSP1033

42 DMTF Standard Version 1.1.0

Figure 8 – Redundant fans object diagram

This use case has the following preconditions:

• The instance paths of all central instances of the Example Fan profile are known.

• The navigation graph between instances of all adaptations defined in the Example Fan profile is
known.

The main flow for this use case consists of the following steps:

1. For each central instance and for each association adaptation defined in the Example Fan profile
that starts at the Fan adaptation, invoke the Associators operation on that instance, filtering on
the association class and result class of that association traversal. This will retrieve all
conforming instances of ordinary classes one hop away from the central instance; in this case,
the CIM_RedundancySet instance fanrset1 and the CIM_RegisteredProfile instance
profile2.

578

579

580

581582

583584

585

586587

588

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 43

2. Repeat step 1 recursively for its resulting instances, until there are no more traversable
adaptations defined in the Example Fan profile. This will retrieve the remaining set of conforming
instances of ordinary classes; in this case, the CIM_ComputerSystem instance system1.

8.7 Use case: AlgorithmForDeterminingAdvertisedProfiles

For the general case, this use case describes the algorithm for a CIM client to determine the set of
profiles advertised by a WBEM server.

This use case has the following preconditions:

• The namespace path of the Interop namespace of the WBEM server is known.

The main flow for this use case consists of the following steps:

1. Invoke the EnumerateInstances operation on the CIM_RegisteredProfile class in the Interop
namespace.

This will retrieve the CIM_RegisteredProfile instances representing all profiles to which the
WBEM server advertises conformance.

2. Iterate through these retrieved instances and inspect the values of their RegisteredOrganization,
RegisteredName, and RegisteredVersion properties, which identify these profiles.

8.8 Use case: AlgorithmForDeterminingTopLevelProfiles

For the general case, this use case describes the algorithm for a CIM client to determine the top-level
profiles advertised by a WBEM server. Top-level profiles of an implementation are those that are not
referenced by any other profiles to which the implementation conforms. This is accomplished by
determining which instances of CIM_RegisteredProfile are not antecedents for any
CIM_ReferencedProfile associations.

Typically, top-level profiles are autonomous profiles that represent the largest scoping of the CIM
representation of the target system and that reference component profiles. Note that autonomous profiles
may be referenced by other profiles.

This use case has the following preconditions:

• The namespace path of the Interop namespace of the WBEM server is known.

The main flow for this use case consists of the following steps:

1. Invoke the EnumerateInstances operation on the CIM_RegisteredProfile class in the Interop
namespace.

This will retrieve the CIM_RegisteredProfile instances representing all profiles to which the
WBEM server advertises conformance.

2. Invoke the AssociatorNames operation on each of these CIM_RegisteredProfile instances,
filtering on the CIM_ReferencedProfile association class and on source role Antecedent.

This will retrieve the instance paths of the CIM_RegisteredProfile instances representing all
profiles to which the WBEM server advertises conformance and that are referenced by other
such profiles.

3. Reduce the set of all profiles (retrieved in step 1) by the set of referenced profiles (retrieved in
step 2), by means of comparing the values of their RegisteredOrganization, RegisteredName,
and RegisteredVersion properties, which identify these profiles. This results in the set of all top-
level profiles to which the WBEM server advertises conformance.

589

590

591

592

593594

595

596597

598

599600

601

602

603

604

605606

607

608609

610

611612

613

614615

616

Profile Registration Profile DSP1033

44 DMTF Standard Version 1.1.0

8.9 Use case: DetermineCentralInstancesForFan

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can determine the central instances of the Example Fan profile. In that scenario, the Example
Fan profile is a component profile and has implemented the central class methodology.

This use case has the following preconditions:

• The instance paths of any CIM_RegisteredProfile instances advertising conformance of the
implementation to the Example Fan profile are known.

These instance paths can be determined as described in use case
AlgorithmForDeterminingAdvertisedProfiles. Note that an implementation may expose more than
one such instance.

The main flow for this use case consists of the following steps:

1. For each CIM_RegisteredProfile instance for the Example Fan profile, invoke the Associators
operation on that instance, filtering on the CIM_ElementConformsToProfile association class.

Because the Example Fan profile has implemented the central class methodology, the central
instances of the Example Fan profile are returned.

If no instances are returned, the profile may not currently have any central instances. For
example, the implementation may have chosen to represent pluggable fans as CIM_Fan
instances only if they are plugged in, and the system may have no fans plugged in, currently.
Note that older profiles require that an implementation exposes at least one central instance at
any time.

2. Aggregate the central instances returned from all these invocations into one set.

This set is the set of central instances of the Example Fan profile, for this implementation.

8.10 Use case: DetermineCentralInstancesForPowerSupply

For the scenario defined in the SimpleStateDescription state description, this use case describes how a
CIM client can determine the central instances of the Example Power Supply profile. In that scenario, the
Example Power Supply profile is a component profile that does not have implemented the central class
methodology. Therefore, this use case applies the scoping class methodology.

This use case has the following preconditions:

• The instance paths of any CIM_RegisteredProfile instances advertising conformance of the
implementation to the Example Power Supply profile are known.

These instance paths can be determined as described in use case
AlgorithmForDeterminingAdvertisedProfiles. Note that an implementation may expose more than
one such instance.

• It is known that the scoping profile of the profile in question is an autonomous profile (in this
scenario, the Example Base Server profile). Therefore, the central class methodology will be
supported at the level of that scoping profile.

The main flow for this use case consists of the following steps:

1. For each CIM_RegisteredProfile instance for the Example Power Supply profile, invoke the
Associators operation on that instance, filtering on the CIM_ReferencedProfile association class
and on source role Antecedent.

617

618

619620

621

622

623624

625

626

627628

629

630

631

632

633634

635

636637

638

639640

641

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 45

This will return CIM_RegisteredProfile instances for the Example Base Server profile. Aggregate
the instances returned from all these invocations into one set, and reduce the set by eliminating
any duplicate instances. Note that the resulting set may contain more than one instance.

2. For each instance in the resulting set, invoke the Associators operation on that instance, filtering
on the CIM_ElementConformsToProfile association class.

Because the Example Base Server profile is an autonomous profile, the implementation will
always use the central class methodology, and the central instances of the Example Base
Server profile (that is, CIM_ComputerSystem instances) are returned.

If no instances are returned, the Example Base Server profile may not currently have any central
instances. In this case, the Example Power Supply profile also has no central instances.

3. For each central instance of the Example Base Server profile, navigate across the scoping path
of the Example Power Supply profile to its central instances by invoking the Associators
operation on these instances, filtering on the CIM_SystemDevice association class, and on the
CIM_PowerSupply result class.

Note that the filters used in this association traversal operation are tight enough to not return any
undesired CIM_Fan instances.

4. Aggregate the CIM_PowerSupply instances returned from all these invocations into one set.

This set is the set of central instances of the Example Power Supply profile, for this
implementation.

8.11 Use case: AlgorithmForDeterminingCentralInstancesOfProfile

This use case describes for the general case the algorithm for a CIM client to determine the central
instances of a given profile that is advertised by a WBEM server, when the advertisement methodology
implemented for that profile and for its scoping profiles is not known upfront.

This use case has the following preconditions:

• The namespace path of the Interop namespace of the WBEM server is known.

• The given profile is known by its registered name, organization, and version.

• The profile reference hierarchy between the given profile and its top-level autonomous profile is
known, including the scoping path of each of those profiles.

The main flow for this use case consists of the following steps:

1. Invoke the EnumerateInstances operation on the CIM_RegisteredProfile class in the Interop
namespace.

This will retrieve the CIM_RegisteredProfile instances (and their instance paths) representing all
profiles to which the WBEM server advertises conformance.

2. Out of the returned CIM_RegisteredProfile instances, determine the subset of instances where
the values of their RegisteredOrganization, RegisteredName, and RegisteredVersion properties
match the given profile.

If that subset contains more than one instance, repeat the following steps for each such
instance. Note that there is no requirement that multiple implementations of the same profile in a
WBEM server use the same CIM_RegisteredProfile instance for advertising conformance.

3. Navigate to the CIM_RegisteredProfile instance representing the next scoping profile that has
implemented the central class methodology, by following these steps, starting from the
CIM_RegisteredProfile instance:

642643

644

645

646647

648

649650

651

652

653

654

655656

657

658659

660

661662

663

664665

666

667668

Profile Registration Profile DSP1033

46 DMTF Standard Version 1.1.0

• Invoke the Associators operation on the CIM_RegisteredProfile instance, filtering on
association class CIM_ElementConformsToProfile.

If one or more instances are returned, the profile has implemented the central class
methodology (see the limitations described in 6.3.1); return from this recursive
invocation of step 3.

If no instances are returned, the profile did not implement the central class
methodology. In that case, the scoping class methodology can be used. To do so,
continue with the following steps.

• Invoke the Associators operation on the CIM_RegisteredProfile instance, filtering on the
result role Dependent.

This will return the CIM_RegisteredProfile instances representing the referencing
profiles of the profile.•

• Select the instance representing the scoping profile of the profile, utilizing knowledge
about the profile reference tree.

• Recursively invoke step 3 for the CIM_RegisteredProfile instance representing the scoping profile of the
profile.

2. Now that you have determined an instance of CIM_RegisteredProfile that represents the next scoping
profile that uses the central class methodology . Invoke the Associators operation on that
CIM_RegisteredProfile instance, filtering on the CIM_ElementConformsToProfile association class. This
returns the central instances of that profile.

3. Based on knowledge about the scoping paths of each profile in the chain of referencing profiles whose
CIM_RegisteredProfile instances were traversed in the previous steps, construct the effective scoping
path between the originally given profile to the next scoping profile that uses the central class
methodology.

Each of the central instances returned in step 4, is also a scoping instance in that effective scoping path.
Navigate from each of these scoping instances across the effective scoping path to the central instances.
The resulting instances are the central instances of the originally given profile.

8.1 Use case: AlgorithmForDeterminingCentral

For the general case, this use case describes the algorithm for a CIM client to determine whether a profile
represented by a given CIM_RegisteredProfile instance has been implemented using the central class
methodology.

This algorithm is based on whether CIM_ElementConformsToProfile associations are directly linked to the
given instance of CIM_RegisteredProfile.

This use case has the following preconditions:

• The instance path of a CIM_RegisteredProfile instance (in the Interop namespace) is known.

The main flow for this use case consists of the following step:

1. Invoke the Associators operation on the given CIM_RegisteredProfile instance, filtering on the
CIM_ElementConformsToProfile association class.

If one or more instances are returned, the central class methodology is implemented for the
registered profile (see the limitations described in 6.3.1).

If no instances are returned, either the central class methodology has not been implemented, or
it has been implemented but no central instance exists at this point.

669670

671

672

673674

675

676677

678679

680681

682683

684

685

686

687

688

689690

691

692693

694

695

696

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 47

Note, if the profile represented by the given CIM_RegisteredProfile instance is an autonomous
profile, the central class methodology will always be available.

8.2 State description: PeerComponentProfileStateDescription

This scenario illustrates the relationship between CIM_RegisteredProfile instances for a component
profile (Example Fan) that references another component profile (Example Sensors).

In this scenario, it is assumed that the Example Sensors profile has been implemented for speed sensors
of the fans for which the Example Fan profile has been implemented. The Example Fan profile is the
scoping profile for the Example Sensors profile, and the reference to the Example Sensors profile in the
Example Fan profile is represented using CIM_ReferencedProfile instances between the respective
CIM_RegisteredProfile instances.

697

698

699

Profile Registration Profile DSP1033

48 DMTF Standard Version 1.1.0

Figure 9 – Referencing component profiles object diagram

8.3 State description: ProfileComplianceHierarchyStateDescription

Figure 10 depicts the hierarchy of CIM_RegisteredProfile instances associated through
CIM_ReferencedProfile instances that would represent a modular system with a chassis manager and an
included blade server with RAID storage. This figure is provided as an example to illustrate the nature of
the relationships among the various autonomous and component profiles. Also depicted are the
relationships between component profiles.

700

701

702

703

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 49

Figure 10 – Profile compliance hierarchy object diagram

8.4 State description: ProfileDerivationStateDescription

The object diagram in Figure 11 shows an implementation that conforms to a base profile and its derived
profile.

704

705

706

707

Profile Registration Profile DSP1033

50 DMTF Standard Version 1.1.0

Figure 11 – Object diagram for profile derivation

This diagram assumes a Blade Server profile defined by ACME that is derived from a Base Server profile
defined by DMTF.

Conformance of the implementation to the ACME Blade Server profile is indicated by the acme_bsp
instance, and conformance to the DMTF Base Server profile is indicated by the dmtf_bsp instance.

Because both of these profiles are autonomous profiles, the central and scoping path methodologies fall
together causing the ElementConformsToProfile adaptation to be implemented for both profiles.

Because both profiles define CIM_ComputerSystem as their central element, each instance of
CIM_ComputerSystem will be targeted by CIM_ElementConformsToProfile instances for both profiles.

Note that if conformance to a derived profile is advertised, it is not required that conformance to its base
profile is also advertised. For example, the DMTF Base Server profile may in turn be derived from a
DMTF Computer System profile which was chosen not to be advertised in this particular implementation.

708

709

710

711

712

713

714

715

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 51

ANNEX A
(informative)

Change log

Version Date Description

1.0.0 2007-06-25

1.1.0 2014-05-22

Released as DMTF Standard with the following changes:

• Converted to DMTF machine readable format. This included using new concepts
from DSP1001 v1.0, such as class adaptations, features, constraints, generic
operations and DMTF adaptation diagrams. The functionality of this profile in v1.1.0
is the same as in v1.0.0, it is just now described using these new concepts.
Implementations that conformed to v1.0.0 of this profile, will also conform to v1.1.0
of this profile.

• Added ability to represent the software identity of a profile implementation, as an
optional feature.

• Deprecated the use of leading slash (/) characters in namespace names. For
producers of namespace names, tightened the permission to use a leading slash to
become a recommendation against using a leading slash.

• Deprecated the use of "root/interop" as a name for the Interop namespace.

• Removed requirements on profile authoring, since these are now covered by
DSP1001 v1.1. This caused the following v1.0 subclauses to be removed:

• "Central Class and Central Instance Identification"

• "Scoping Class and Scoping Instance Identification"

• "Association Traversal Path Existence"

• "Overlapping Profile Definitions"

• Cleaned up terms and definitions. Deprecated the term "subject profile", replacing it
with "registered profile".

• Changes in use cases and state descriptions to better communicate the important
scenarios.

• Other small clarifications.

• Changed version of CIM Schema to 2.39

• Using the new generic operations names defined in DSP0223 1.0.2

• Clarified confusing wording on the requirement to implement certain Interop
namespace names (see 6.4.1).

• Changed description of scoping methodology such that it is now described to be
always available, and the central methodology is optionally in addition.

• Simplified the definition of operation requirements for association traversal
operations to define each operation only once per adaptation, that applies to all
traversed associations starting on that adaptation.

• Added requirement to implement the References and ReferenceNames association
traversal operations.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

Profile Registration Profile DSP1033

52 DMTF Standard Version 1.1.0

Version Date Description

• Using OCL conditions for a number of conditional properties.

• Added support for determining the central instances using the
GetCentralInstances() method.

• Added overview section for profile relationships.

• Fixed the requirement level of the ReferencedProfile and
ReferencedRegisteredProfile adaptations to be Mandatory, consistent with v1.0.

• Fixed the requirement levels of the version related properties of the
SoftwareIdentity adaptation to be consistent with DSP1023 (Software Inventory
Profile)

• Changed the discovery definitions of the CentralClassMethodology and
SoftwareIdentity features from text based to OCL based description.

• Changed the requirement levels of the OtherRegisteredOrganization and
AdvertiseTypeDescriptions properties of the RegisteredProfile adaptation from
Mandatory and NullOk to Conditional with an OCLCondition that is based on the
value of the companion property, to be more consistent with PUG 1.0 profiles.

• Editorial improvements on the terms 'referenced profile' and 'referencing profile'.

737

738

739

740

741

742

743

744

DSP1033 Profile Registration Profile

Version 1.1.0 DMTF Standard 53

Bibliography
DMTF DSP0206, WBEM SLP Template 2.0,
http://www.dmtf.org/standards/published_documents/DSP0206_2.0.0.txt

DMTF DSP1054, Indications Profile 1.2,
http://www.dmtf.org/standards/published_documents/DSP1054_1.2.pdf

745

746

Profile Registration Profile DSP1033

54 DMTF Standard Version 1.1.0

http://www.dmtf.org/standards/published_documents/DSP0206_2.0.0.txt
http://www.dmtf.org/standards/published_documents/DSP1054_1.2.pdf

	Copyright notice
	CONTENTS
	Figures
	Tables

	Foreword
	Acknowledgements

	Introduction
	Document conventions
	Typographical conventions
	OCL usage conventions
	Deprecated material

	Profile Registration Profile
	Scope
	Normative references
	Terms and definitions
	General
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Symbols and abbreviated terms
	Synopsis
	Description
	Profile relationships
	DMTF adaptation class diagram
	Central and scoping class concept
	General
	Central class methodology
	Scoping class methodology
	GetCentralInstances methodology

	WBEM server requirements on CIM namespaces
	Interop namespace
	Implementation namespaces
	Relationship between Interop and implementation namespaces
	Cross-namespace associations

	Implementation
	Features
	Feature: CentralClassMethodology
	Feature: GetCentralInstancesMethodology
	Feature: SoftwareIdentity

	Adaptations
	Conventions
	Adaptation: RegisteredProfile: CIM_RegisteredProfile
	General
	Property: OtherRegisteredOrganization
	Property: AdvertiseTypeDescriptions
	Property: SpecificationType
	Method: GetCentralInstances()
	Parameter: CentralInstances

	Adaptation: ElementConformsToProfile: CIM_ElementConformsToProfile
	General
	Property: ConformantStandard
	Property: ManagedElement

	Adaptation: ScopingElement: CIM_ManagedElement
	Adaptation: CentralElement: CIM_ManagedElement
	Adaptation: ReferencedProfile: CIM_ReferencedProfile
	General
	Property: Antecedent
	Property: Dependent

	Adaptation: ReferencedRegisteredProfile: CIM_RegisteredProfile
	Adaptation: SoftwareIdentity: CIM_SoftwareIdentity
	General
	Property: MajorVersion
	Property: MinorVersion
	Property: RevisionNumber
	Property: BuildNumber

	Adaptation: ElementSoftwareIdentity: CIM_ElementSoftwareIdentity
	General
	Property: Antecedent
	Property: Dependent
	Property: ElementSoftwareStatus

	Use cases and state descriptions
	State description: SimpleStateDescription
	Use case: RetrieveProfileInformationForComputerSystem
	Use case: RetrieveProfileVersionForFan
	Use case: RetrieveProfileVersionForPowerSupply
	Use case: AlgorithmForRetrievingProfileInformation
	Use case: DetermineConformingInstances
	Use case: AlgorithmForDeterminingAdvertisedProfiles
	Use case: AlgorithmForDeterminingTopLevelProfiles
	Use case: DetermineCentralInstancesForFan
	Use case: DetermineCentralInstancesForPowerSupply
	Use case: AlgorithmForDeterminingCentralInstancesOfProfile
	Use case: AlgorithmForDeterminingCentral
	State description: PeerComponentProfileStateDescription
	State description: ProfileComplianceHierarchyStateDescription
	State description: ProfileDerivationStateDescription

	(informative)Change log
	Bibliography

