

2 Document Number: DSP1008

Date: 2009-06-17

Version: 1.0.0

# Modular System Profile

6 **Document Type: Specification** 

7 Document Status: DMTF Standard

8 Document Language: E

1

3

#### 10 Copyright Notice

11 Copyright © 2006, 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

- 12 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
- 13 management and interoperability. Members and non-members may reproduce DMTF specifications and
- documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
- time, the particular version and release date should always be noted.
- 16 Implementation of certain elements of this standard or proposed standard may be subject to third party
- 17 patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
- 18 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
- or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
- inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
- any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
- disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
- 23 incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
- 24 party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
- owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
- 26 withdrawn or modified after publication, and shall be indemnified and held harmless by any party
- implementing the standard from any and all claims of infringement by a patent owner for such
- 28 implementations.
- 29 For information about patents held by third-parties which have notified the DMTF that, in their opinion,
- 30 such patent may relate to or impact implementations of DMTF standards, visit
- 31 http://www.dmtf.org/about/policies/disclosures.php.

## 32 CONTENTS

| 33             |       |            |                                                        |    |
|----------------|-------|------------|--------------------------------------------------------|----|
| 34             | Intro | oductio    | on                                                     | 6  |
| 35             | 1     | Scop       | e                                                      | 7  |
| 36             | 2     | Norm       | ative References                                       | 7  |
| 37             |       | 2.1        | Approved References                                    |    |
| 38             |       | 2.2        | Other References                                       |    |
| 39             | 3     | Term       | s and Definitions                                      |    |
| 40             | 4     |            | ools and Abbreviated Terms                             |    |
| 41             | 5     | •          | psis                                                   |    |
| <del>4</del> 1 |       |            | ription                                                |    |
|                | 6     |            | ·                                                      |    |
| 43             | 7     |            | mentation                                              |    |
| 44<br>45       |       | 7.1        | Representing the Modular System                        |    |
| 45<br>40       |       | 7.2        | Physical Model                                         |    |
| 46<br>47       |       | 7.3        | Processor Blades                                       |    |
| 47<br>48       |       | 7.4        | Service Processor Profile (Optional)                   |    |
| 40<br>49       |       | 7.5<br>7.6 | Power Supply Profile (Optional)                        |    |
| 49<br>50       |       | 7.0<br>7.7 | Fan Profile (Optional)                                 |    |
| 50<br>51       |       | 7.7<br>7.8 | Cooling Domains (Optional)                             |    |
| 52             |       | 7.8<br>7.9 | Device Tray Profile (Optional)                         |    |
| 52<br>53       |       | 7.10       | Pass-Through Module Profile (Optional)                 |    |
| 54             |       | 7.10       | Sensor Profile (Optional)                              |    |
| 55             | 8     |            | ods                                                    |    |
| 56             | O     | 8.1        | Profile Conventions for Operations                     |    |
| 57             |       | 8.2        | CIM AdminDomain                                        |    |
| 58             |       | 8.3        | CIM_ComputerSystem                                     |    |
| 59             |       | 8.4        | CIM_ConcreteDependency                                 |    |
| 60             |       | 8.5        | CIM_SystemComponent                                    |    |
| 61             | 9     |            | Cases                                                  |    |
| 62             | 3     | 9.1        | Object Diagrams                                        |    |
| 63             |       | 9.2        | Find the CIM_ComputerSystem Instance for the Enclosure |    |
| 64             |       | 9.3        | Query Chassis Capacity                                 |    |
| 65             |       | 9.4        | Query Chassis Component Presence                       |    |
| 66             |       | 9.5        | Query Chassis Manager Presence                         |    |
| 67             |       | 9.6        | Find All Power Domains for the Modular System          |    |
| 68             |       | 9.7        | Determine the Power Supply for a Component             |    |
| 69             |       | 9.8        | Find All Cooling Domains for the Modular System        |    |
| 70             |       | 9.9        | Determine the Fan for a Component                      |    |
| 71             | 10    | CIM E      | Elements                                               |    |
| 72             |       | 10.1       | CIM AdminDomain—Power Domain                           |    |
| 73             |       | 10.2       | <del>-</del>                                           |    |
| 74             |       | 10.3       |                                                        |    |
| 75             |       | 10.4       | CIM_ComputerSystem                                     | 27 |
| 76             |       | 10.5       | = · · ·                                                |    |
| 77             |       | 10.6       | CIM_ConcreteDependency                                 | 28 |
| 78             |       | 10.7       | CIM_PhysicalPackage                                    |    |
| 79             |       | 10.8       | CIM_RegisteredProfile                                  | 28 |
| 80             |       | 10.9       | CIM_SystemComponent—Cooling Domains                    | 29 |
| 81             |       |            | CIM_SystemComponent—Power Domains                      |    |
| 82             |       |            | CIM_SystemComponent—Chassis Manager                    |    |
| 83             |       |            | ? CIM_SystemComponent—Processor Blades                 |    |
| 84             | ANI   | NEX A      | (informative) Change Log                               | 31 |

| ᅂ  |  |
|----|--|
| oo |  |

| F | ia | u | re | S |
|---|----|---|----|---|
| - |    | _ |    | _ |

| 86 | rigures                                                       |    |
|----|---------------------------------------------------------------|----|
| 87 | Figure 1 – Modular System Profile: Class Diagram              | 11 |
| 88 | Figure 2 – Logical and Physical Topology                      | 17 |
| 89 | Figure 3 – Chassis Capacity and Compatibility                 | 18 |
| 90 | Figure 4 – Power Domain                                       | 19 |
| 91 | Figure 5 – Power Management Hosted on Chassis Manager         | 20 |
| 92 | Figure 6 – Text Console Redirection Hosted on Chassis Manager | 21 |
| 93 | Figure 7 – Registered Profile                                 | 22 |
| 94 |                                                               |    |
| 95 | Tables                                                        |    |
| 96 | Table 1 – Referenced Profiles                                 | 10 |
| 97 | Table 2 – Operations: CIM_ConcreteDependency                  | 16 |
| 98 | Table 3 – Operations: CIM_SystemComponent                     | 16 |
| 99 | Table 4 – Required CIM Elements: Modular System Profile       | 26 |
| 00 | Table 5 – Class: CIM_AdminDomain – Power Domain               | 26 |
| 01 | Table 6 - Class: CIM_AdminDomain - Cooling Domain             | 26 |
| 02 | Table 7 – Class: CIM_Chassis                                  | 27 |
| 03 | Table 8 – Class: CIM_ComputerSystem                           | 27 |
| 04 | Table 9 – Class: CIM_ComputerSystemPackage                    | 27 |
| 05 | Table 10 – Class: CIM_ConcreteDependency                      | 28 |
| 06 | Table 11 – Class: CIM_PhysicalPackage                         | 28 |
| 07 | Table 12 – Class: CIM_RegisteredProfile                       | 28 |
| 80 | Table 13 – Class: CIM_SystemComponent – Cooling Domains       | 29 |
| 09 | Table 14 – Class: CIM_SystemComponent – Power Domains         | 29 |
| 10 | Table 15 – Class: CIM_SystemComponent – Chassis Manager       | 29 |
| 11 | Table 16 – Class: CIM_SystemComponent – Processor Blades      | 30 |
|    |                                                               |    |

DSP1008 Modular System Profile

| 113        | Foreword                                                                                                                                                      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 114<br>115 | The <i>Modular System Profile</i> (DSP1008) was prepared by the Server Management Working Group and the Physical Platform Profiles Working Group of the DMTF. |
| 116<br>117 | DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability.                       |
| 118<br>119 | Acknowledgments                                                                                                                                               |
| 120        | The authors wish to acknowledge the following people.                                                                                                         |
| 121        | Editor:                                                                                                                                                       |
| 122        | Aaron Merkin – IBM                                                                                                                                            |
| 123        | Contributors:                                                                                                                                                 |
| 124        | Jon Hass – Dell                                                                                                                                               |
| 125        | Khachatur Papanyan – Dell                                                                                                                                     |
| 126        | Enoch Suen – Dell                                                                                                                                             |
| 127        | Jeff Hilland – HP                                                                                                                                             |
| 128        | Christina Shaw – HP                                                                                                                                           |
| 129        | Aaron Merkin – IBM                                                                                                                                            |
| 130        | Gary Shippy – IBM                                                                                                                                             |
| 131        | Perry Vincent – Intel                                                                                                                                         |
| 132        | John Leung – Intel                                                                                                                                            |
| 133        | Arvind Kumar – Intel                                                                                                                                          |

| 135                      | Introduction                                                                                                                                                                                                                                                                                                                        |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 136<br>137<br>138<br>139 | The information in this specification should be sufficient for a provider or consumer of this data to identify unambiguously the classes, properties, methods, and values that shall be instantiated and manipulated to represent and manage a blade system that is modeled using the DMTF CIM core and extended model definitions. |  |  |  |
| 140                      | The target audience for this specification is implementers who are writing CIM-based providers or                                                                                                                                                                                                                                   |  |  |  |

| 143 <b>1 Scop</b> ( |
|---------------------|
|---------------------|

144 The Modular System Profile is an autonomous profile for modeling blade systems.

#### 145 2 Normative References

- 146 The following referenced documents are indispensable for the application of this document. For dated
- references, only the edition cited applies. For undated references, the latest edition of the referenced
- 148 document (including any amendments) applies.

#### 149 **2.1 Approved References**

- 150 DMTF DSP0004, CIM Infrastructure Specification 2.3.
- 151 <a href="http://www.dmtf.org/standards/published\_documents/DSP0004\_2.3.pdf">http://www.dmtf.org/standards/published\_documents/DSP0004\_2.3.pdf</a>
- 152 DMTF DSP0200, CIM Operations over HTTP 1.2,
- 153 http://www.dmtf.org/standards/published documents/DSP0200 1.2.pdf
- DMTF DSP1001, Management Profile Specification Usage Guide 1.0,
- http://www.dmtf.org/standards/published\_documents/DSP1001\_1.0.pdf
- 156 DMTF DSP1004, Base Server Profile 1.0,
- 157 <a href="http://www.dmtf.org/standards/published">http://www.dmtf.org/standards/published</a> documents/DSP1004 1.0.pdf
- 158 DMTF DSP1009, Sensors Profile 1.0,
- 159 http://www.dmtf.org/standards/published\_documents/DSP1009\_1.0.pdf
- 160 DMTF DSP1011, Physical Asset Profile 1.0,
- http://www.dmtf.org/standards/published\_documents/DSP1011\_1.0.pdf
- 162 DMTF DSP1012, Boot Control Profile 1.0,
- http://www.dmtf.org/standards/published\_documents/DSP1012\_1.0.pdf
- 164 DMTF DSP1013, Fan Profile 1.0,
- http://www.dmtf.org/standards/published\_documents/DSP1013\_1.0.pdf
- 166 DMTF DSP1015, Power Supply Profile 1.0,
- 167 http://www.dmtf.org/standards/published\_documents/DSP1015\_1.0.pdf
- 168 DMTF DSP1018, Service Processor Profile 1.0,
- http://www.dmtf.org/standards/published\_documents/DSP1018\_1.0.pdf
- 170 DMTF DSP1019, Device Tray Profile 1.0,
- 171 http://www.dmtf.org/standards/published\_documents/DSP1019\_1.0.pdf
- 172 DMTF DSP1020, Pass-Through Module Profile 1.0,
- http://www.dmtf.org/standards/published\_documents/DSP1020\_1.0.pdf
- 174 DMTF DSP1021, Shared Device Management Profile 1.0,
- 175 http://www.dmtf.org/standards/published\_documents/DSP1021\_1.0.pdf
- 176 DMTF DSP1023, Firmware Inventory Profile 1.0,
- 177 http://www.dmtf.org/standards/published\_documents/DSP1023\_1.0.pdf

- 178 DMTF DSP1024, Text Console Redirection Profile 1.0,
- 179 http://www.dmtf.org/standards/published\_documents/DSP1024\_1.0.pdf
- 180 DMTF DSP1025, Firmware Update Profile 1.0,
- 181 <a href="http://www.dmtf.org/standards/published">http://www.dmtf.org/standards/published</a> documents/DSP1025 1.0.pdf
- 182 DMTF DSP1027, Server Power State Management Profile 1.0,
- 183 <a href="http://www.dmtf.org/standards/published\_documents/DSP1027\_1.0.pdf">http://www.dmtf.org/standards/published\_documents/DSP1027\_1.0.pdf</a>
- 184 DMTF DSP1033, Profile Registration Profile 1.0,
- http://www.dmtf.org/standards/published\_documents/DSP1033\_1.0.pdf

#### 186 2.2 Other References

- 187 ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
- 188 http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

#### 189 3 Terms and Definitions

- 190 For the purposes of this document, the terms and definitions in DSP1033 and DSP1001 and the following
- 191 apply.
- 192 **3.1**
- 193 can
- 194 used for statements of possibility and capability, whether material, physical, or causal
- 195 **3.2**
- 196 cannot
- 197 used for statements of possibility and capability, whether material, physical, or causal
- 198 **3.3**
- 199 conditional
- 200 indicates requirements to be followed strictly to conform to the document when the specified conditions
- 201 are met
- 202 3.4
- 203 mandatory
- 204 indicates requirements to be followed strictly to conform to the document and from which no deviation is
- 205 permitted
- 206 **3.5**
- 207 **may**
- 208 indicates a course of action permissible within the limits of the document
- 209 **3.6**
- 210 need not
- 211 indicates a course of action permissible within the limits of the document
- 212 **3.7**
- 213 optional
- 214 indicates a course of action permissible within the limits of the document
- 215 3.8
- 216 referencing profile
- indicates a profile that owns the definition of this class and can include a reference to this profile in its
- 218 "Referenced Profiles" table

- 219 **3.9**
- 220 shall
- 221 indicates requirements to be followed strictly to conform to the document and from which no deviation is
- 222 permitted
- 223 **3.10**
- 224 shall not
- 225 indicates requirements strictly to be followed in order to conform to the document and from which no
- 226 deviation is permitted
- 227 **3.11**
- 228 should
- 229 indicates that among several possibilities, one is recommended as particularly suitable, without
- 230 mentioning or excluding others, or that a certain course of action is preferred but not necessarily required
- 231 **3.12**
- 232 should not
- 233 indicates that a certain possibility or course of action is deprecated but not prohibited
- 234 **3.13**
- 235 unspecified
- 236 indicates that this profile does not define any constraints for the referenced CIM element or operation
- 237 3.14
- 238 blade
- a physical package that contains one or more operational aspects of a datacenter such as storage,
- 240 network, or computational functionality, while relying on the containing modular system for infrastructure
- 241 such as power and cooling
- 242 **3.15**
- 243 blade expansion
- a physical package that provides additional operational aspects of a computer system to a blade, yet
- contains insufficient functionality to support an operating system on its own
- 246 **3.16**
- 247 cooling domain
- 248 the set of systems and components that share a given cooling source that consists of one or more cooling
- 249 devices
- 250 **3.17**
- 251 modular enclosure
- the physical packaging of a modular system
- 253 **3.18**
- 254 power domain
- 255 the set of systems and components that receive power from a given power source that consists of one or
- 256 more power supplies
- 257 **3.19**
- 258 processor blade
- a specific type of blade designed to provide processing capability in support of an operating system
- 260 **3.20**
- 261 storage blade
- 262 a specific type of blade designed to provide storage media or access

**DSP1008** Modular System Profile

### Symbols and Abbreviated Terms

264 None.

263

277

278

281

282

#### **Synopsis** 5 265

266 Profile Name: Modular System

267 Version: 1.0.0

268 **Organization: DMTF** 

269 CIM Schema Version: 2.18

270 Central Class: CIM ComputerSystem

271 Scoping Class: CIM\_ComputerSystem

272 The Modular System Profile extends management capability to include support for blade architectures. The Central Class of the Modular System Profile shall be CIM\_ComputerSystem. The Central Instance of 273 274 the Modular System Profile shall be the instance of CIM ComputerSystem that represents the modular

275 system. The Scoping Class for the Modular System Profile shall be CIM\_ComputerSystem. The Scoping 276

Instance for the Modular System Profile shall be the Central Instance.

Table 1 - Referenced Profiles

| Profile Name         | Organization | Version | Relationship | Description       |
|----------------------|--------------|---------|--------------|-------------------|
| Base Server          | DMTF         | 1.0     | Optional     | See section 7.3.  |
| Service Processor    | DMTF         | 1.0     | Optional     | See section 7.4.  |
| Device Tray          | DMTF         | 1.0     | Optional     | See section 7.9.  |
| <u>Fan</u>           | DMTF         | 1.0     | Optional     | See section 7.7.  |
| Pass-Through Module  | DMTF         | 1.0     | Optional     | See section 7.10. |
| Physical Asset       | DMTF         | 1.0     | Mandatory    | See section 7.2.  |
| Power Supply         | DMTF         | 1.0     | Optional     | See section 7.5.  |
| Profile Registration | DMTF         | 1.0     | Mandatory    | None.             |
| <u>Sensors</u>       | DMTF         | 1.0     | Optional     | See section 7.11. |

### **Description**

The Modular System Profile describes blade systems. Its scope is limited to defining those classes or 279 behaviors that are unique to blade systems. This profile includes support for the following functionality: 280

- representing modular systems, including topology
- representing the physical packaging of modular systems, including topology
- modeling power domains of modular systems 283
- 284 modeling cooling domains of modular systems

286

287

288

289

290

291

294

298

299

300 301

302

303

304

Figure 1 represents the class schema for the *Modular System Profile*. For simplicity, the prefix CIM\_ has been removed from the names of the classes.

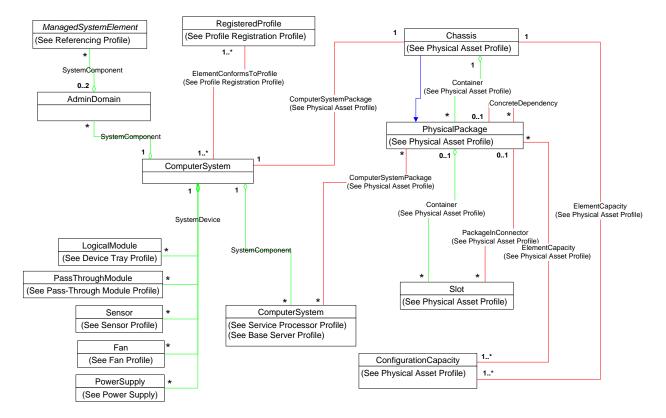



Figure 1 - Modular System Profile: Class Diagram

### 7 Implementation

- This section details the requirements related to the arrangement of instances and their properties for implementations of the *Modular System Profile*.
- The list of all required extrinsic methods and intrinsic operations can be found in section 8 and properties in section 10.

### 7.1 Representing the Modular System

The modular system shall be modeled with an instance of CIM\_ComputerSystem. It is possible that the only logical element instrumented will be the Central Instance when no modular components are installed in the modular system.

#### 7.1.1 Modular Enclosure

A System Chassis, as defined in the <u>Physical Asset Profile</u>, shall represent the modular enclosure. An instance of CIM\_ComputerSystemPackage shall reference the CIM\_Chassis instance and the Central Instance.

#### 7.1.2 Scoping a Logical Device

When the implementation uses CIM\_LogicalDevice to model a device that is installed into the modular enclosure and provides function to other components installed in the enclosure, the CIM\_LogicalDevice

- 305 instance shall be associated with the CIM\_ComputerSystem instance that represents the modular
- 306 enclosure through an instance of CIM\_SystemDevice.
- 307 When the instrumentation uses CIM\_LogicalDevice to model a component that is part of a chassis
- 308 manager or processor blade, the CIM\_LogicalDevice instance shall be associated with the instance of
- 309 CIM\_ComputerSystem that represents the chassis manager or processor blade through an instance of
- 310 CIM SystemDevice.
- 311 When the instrumentation models a multi-component device that aggregates other devices in the modular
- 312 enclosure, the multi-component device shall be modeled with an instance of CIM\_LogicalModule.

#### 313 7.2 Physical Model

- 314 This section details the requirements for modeling physical aspects of the modular system. The
- 315 instrumentation shall be conformant with the *Physical Asset Profile*.
- 316 One or more instances of CIM ConfigurationCapacity shall model the capacity of the modular system to
- 317 contain modular components.
- 318 An instance of CIM\_Slot should exist for each slot or bay of the modular enclosure.

#### 319 7.3 Processor Blades

- 320 The instrumentation of a processor blade shall be conformant with the Base Server Profile. An instance of
- 321 CIM\_SystemComponent shall exist in which the GroupComponent reference is to the Central Instance of
- 322 this profile and the PartComponent reference is to the Central Instance of the <u>Base Server Profile</u>.

#### 323 7.3.1 Blade and Blade Expansion Packaging

- 324 Implementations shall create at least one instance of CIM\_PhysicalPackage for each processor blade
- installed in the modular chassis. The existence of CIM\_PhysicalPackage is conditional on the
- instrumentation of a CIM\_ComputerSystem instance for a processor blade.

#### 327 7.3.1.1 Blade Physical Package

- 328 Implementations shall assign a value of 16 (Blade) to the PackageType property of an instance of
- 329 CIM\_PhysicalPackage when the instance is being used to model a module that can be inserted into a
- 330 modular chassis and host an operating system.

#### 331 7.3.1.2 Blade Expansion Physical Package

- 332 Implementations shall assign a value of 17 (BladeExpansion) to the PackageType property of an instance
- of CIM\_PhysicalPackage when the instance is being used to model a module that is not stand-alone, is
- attached to a "Blade" module prior to inserting both modules into the modular chassis, and is an external
- 335 expansion of the "Blade" module.

336

341

#### 7.3.1.3 Relationship between Physical Packages and Slots

- When a CIM\_PhysicalPackage instance is created to represent a blade module installed in the chassis,
- 338 the CIM PhysicalPackage instance should be associated with one instance of CIM Slot through the
- 339 CIM\_PackageInConnector association. Implementations may associate the CIM\_PhysicalPackage
- instance with more than one instance of CIM\_Slot.

#### 7.3.1.4 Relationship between Blade and Blade Expansion

- 342 If a CIM\_PhysicalPackage instance is created to represent a blade expansion module and the module is
- 343 connected to a blade module, the implementation shall associate the CIM\_PhysicalPackage that
- represents the blade expansion to the CIM PhysicalPackage that represents the blade through an

| 345 | instance of CIM_ConcreteDependency. The existence of an instance of CIM_ConcreteDependency is  |
|-----|------------------------------------------------------------------------------------------------|
| 346 | conditional on the existence of an instance of CIM_PhysicalPackage to model a blade expansion. |

#### 7.4 Service Processor Profile (Optional)

- 348 A modular system may contain one or more chassis managers. When the instrumentation includes
- 349 support for chassis managers, the chassis managers shall be instrumented compliant with the Service
- 350 Processor Profile.

347

360

376

- Each instance of CIM ComputerSystem that represents a chassis manager shall be associated to the
- 352 Central Instance through the CIM\_SystemComponent association. The GroupComponent property shall
- 353 be a reference to the Central Instance. The PartComponent property shall be a reference to the
- 354 CIM ComputerSystem instance that represents the chassis manager.

#### 355 7.5 Power Supply Profile (Optional)

- When an implementation instruments CIM PowerSupply to model a power supply in the blade system,
- 357 the instrumentation shall conform to the *Power Supply Profile*. When the optional behavior specified in
- 358 section 7.6 is implemented, for all instances of CIM\_SuppliesPower the Dependent reference shall be an
- 359 instance of CIM AdminDomain.

#### 7.6 Power Domains (Optional)

- A modular system may be responsible for providing power to the modular components installed in it.
- When a modular system supplies power to modular components, the components may be members of
- one or more power domains. The power domains of the modular system should be modeled. When the
- power domains of a modular system are modeled, the requirements detailed in the following subclauses
- 365 shall be met.

#### 366 7.6.1 Representing a Power Domain

- 367 Exactly one instance of CIM\_AdminDomain shall exist for each power domain in the modular system. The
- instance of CIM AdminDomain shall be associated with the Central Instance through an instance of
- 369 CIM SystemComponent, where the value of the GroupComponent property is the Central Instance and
- the value of the PartComponent property is the CIM\_AdminDomain instance.

#### 371 **7.6.2 Power Supplies in Domain**

- 372 Each power supply that provides power to the power domain shall be associated with the
- 373 CIM AdminDomain instance through an instance of CIM SuppliesPower. When more than one power
- 374 supply is able to supply power to the domain, the optional behavior in the "Modeling Power Supply
- 375 Redundancy" section of the Base Server Profile should be supported.

#### 7.6.3 Representing Components in a Power Domain

- A component is considered to be in a power domain if it receives power from a power supply in the
- domain. Each instance of a subclass of CIM\_LogicalElement that represents a component in a power
- domain shall be associated with the CIM\_AdminDomain instance that represents the domain through the
- 380 CIM SystemComponent association. The Central Instance may be associated with the
- 381 CIM\_AdminDomain instance through the CIM\_SystemComponent, where the Central Instance is the
- 382 PartComponent reference. This indicates that components within the modular enclosure that are not
- 383 explicitly modeled receive power from the domain represented by the CIM\_AdminDomain instance.

#### 384 7.6.4 Representing Slots in a Power Domain

The slots or bays of the modular enclosure that are within a particular power domain may be modeled. A slot or bay is considered to be within a power domain if a component installed in the slot would receive

387 power from the power supply or supplies for the domain. Each instance of CIM\_Slot that represents a slot

- that is in a power domain shall be associated with the CIM AdminDomain that represents the power
- 389 domain through the CIM SystemComponent association.

#### 7.7 Fan Profile (Optional)

- 391 If an implementation instruments CIM\_Fan to model the cooling functionality of a blade system, the
- implementation shall conform to the *Fan Profile*. When the optional behavior specified in section 7.8 is
- 393 implemented, for each instance of CIM\_AssociatedCooling the Dependent reference shall be an instance
- 394 of CIM\_AdminDomain.

#### 7.8 Cooling Domains (Optional)

- 396 A modular system may be responsible for providing cooling to the modular components installed in it.
- When a modular system supplies cooling to modular components, the components may be members of
- 398 one or more cooling domains. The cooling domains of the modular system should be modeled. When the
- 399 cooling domains of a modular system are modeled, the requirements detailed in the following subclauses
- 400 shall be met.

390

395

401

426

#### 7.8.1 Representing a Cooling Domain

- 402 Exactly one instance of CIM AdminDomain shall exist for each cooling domain in the modular system.
- 403 The instance of CIM\_AdminDomain shall be associated with the Central Instance through the
- 404 CIM\_SystemComponent association, where the value of the GroupComponent property is the Central
- Instance and the value of the PartComponent property is the CIM AdminDomain instance.

#### 406 **7.8.2 Fans in Domain**

- 407 Each instance of CIM\_Fan that represents a fan that provides cooling to the cooling domain shall be
- 408 associated with the CIM\_AdminDomain instance through the CIM\_AssociatedCooling association. When
- 409 more than one fan is able to supply cooling to the domain, the optional behavior in the "Modeling Fan
- 410 Redundancy" section of the *Fan Profile* should be supported.

#### 7.8.3 Representing Components in a Cooling Domain

- A component is considered to be in a cooling domain if it receives cooling from a fan in the domain. Each
- 413 instance of a subclass of CIM\_LogicalElement that represents a component in a cooling domain shall be
- 414 associated with the CIM AdminDomain instance that represents the domain through the
- 415 CIM\_SystemComponent association. The Central Instance may be associated with the
- 416 CIM\_AdminDomain instance through the CIM\_SystemComponent association, where the value of the
- 417 PartComponent property is the Central Instance. This indicates that components within the modular
- 418 enclosure that are not explicitly modeled receive cooling from the domain represented by the
- 419 CIM AdminDomain instance.

#### 420 7.8.4 Representing Slots in a Cooling Domain

- 421 The slots or bays of the modular enclosure that are within a particular cooling domain may be modeled. A
- 422 slot or bay is considered to be within a cooling domain if a component installed in the slot would receive
- 423 cooling from the fan or supplies for the domain. Each instance of CIM\_Slot that represents a slot that is in
- 424 a cooling domain shall be associated with the instance of CIM AdminDomain that represents the cooling
- domain through the CIM SystemComponent association.

#### 7.9 Device Tray Profile (Optional)

- 427 A modular system may include one or more device trays. When a device tray is modeled, the
- instrumentation shall be conformant with the <u>Device Tray Profile</u>.

| 429 ' | 7.10 | Pass-Through | Module | <b>Profile</b> | (0 | ptional |
|-------|------|--------------|--------|----------------|----|---------|
|       |      |              |        |                |    |         |

- 430 A modular system may include one or more pass-through modules. When a pass-through module is
- 431 modeled, the instrumentation shall be in accordance with the requirements specified in the *Pass-Through*
- 432 Module Profile.

#### 433 7.11 Sensor Profile (Optional)

- 434 If the instrumentation includes support for modeling sensors, the instrumentation shall be conformant with
- 435 the Sensors Profile.

#### 436 7.11.1 Component Presence Sensors

- Presence sensors used to determine whether components are installed in slots in the modular system
- 438 may be modeled using CIM\_Sensor. When an instance of CIM\_Sensor is used to model a presence
- sensor for a slot, the CIM\_Sensor.SensorType property shall have the value 11 (Presence) and shall be
- 440 associated with the CIM\_Slot instance through the CIM\_AssociatedSensor association.

#### 441 8 Methods

- This section details the requirements for supporting intrinsic operations for the CIM elements defined by
- this profile. No extrinsic methods exist for the CIM elements specified by this profile.

#### 444 8.1 Profile Conventions for Operations

- 445 For each profile class (including associations), the implementation requirements for operations, including
- those in the following default list, are specified in class-specific subclauses of this clause.
- The default list of operations is as follows:
- 448
   GetInstance
- 449
   Associators
- 450 AssociatorNames
- References
- ReferenceNames
- EnumerateInstances
- 454
   EnumerateInstanceNames

#### 455 **8.2 CIM AdminDomain**

- 456 All operations in the default list in 8.1 shall be implemented as defined in DSP0200.
- 457 NOTE: Related profiles may define additional requirements on operations for the profile class.

#### 458 **8.3 CIM ComputerSystem**

- 459 All operations in the default list in 8.1 shall be implemented as defined in DSP0200.
- NOTE: Related profiles may define additional requirements on operations for the profile class.

#### 8.4 CIM\_ConcreteDependency

462 Table 2 lists implementation requirements for operations. If implemented, these operations shall be

implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 2, all operations in

- the default list in 8.1 shall be implemented as defined in DSP0200.
- 465 NOTE: Related profiles may define additional requirements on operations for the profile class.

466

461

Table 2 – Operations: CIM\_ConcreteDependency

| Operation       | Requirement | Messages |
|-----------------|-------------|----------|
| Associators     | Unspecified | None     |
| AssociatorNames | Unspecified | None     |
| References      | Unspecified | None     |
| ReferenceNames  | Unspecified | None     |

#### 467 8.5 CIM\_SystemComponent

Table 3 lists implementation requirements for operations. If implemented, these operations shall be

implemented as defined in <u>DSP0200</u>. In addition, and unless otherwise stated in Table 3, all operations in

470 the default list in 8.1 shall be implemented as defined in DSP0200.

471 NOTE: Related profiles may define additional requirements on operations for the profile class.

472

477

482

Table 3 – Operations: CIM\_SystemComponent

| Operation       | Requirement | Messages |
|-----------------|-------------|----------|
| Associators     | Unspecified | None     |
| AssociatorNames | Unspecified | None     |
| References      | Unspecified | None     |
| ReferenceNames  | Unspecified | None     |

#### 473 9 Use Cases

This section outlines the use cases specific to modular systems. Use cases for functionality that is not

specific to modular systems are documented in the profiles for that functionality. Use cases are

informative and are not intended to define the requirements for conformance.

### 9.1 Object Diagrams

478 Figure 2 through Figure 7 are object diagrams that represent a possible instantiation of the *Modular* 

479 System Profile.

Figure 2 shows the high-level topology of a modular system. The following components are currently

- 481 installed in the enclosure:
  - four blade servers
- three power supplies
- 484 two fans
- one chassis manager

Blade servers blade1, blade2, and blade4 each consist of a single package installed in a single slot in the enclosure. blade9 consists of two packages and occupies two slots in the enclosure.

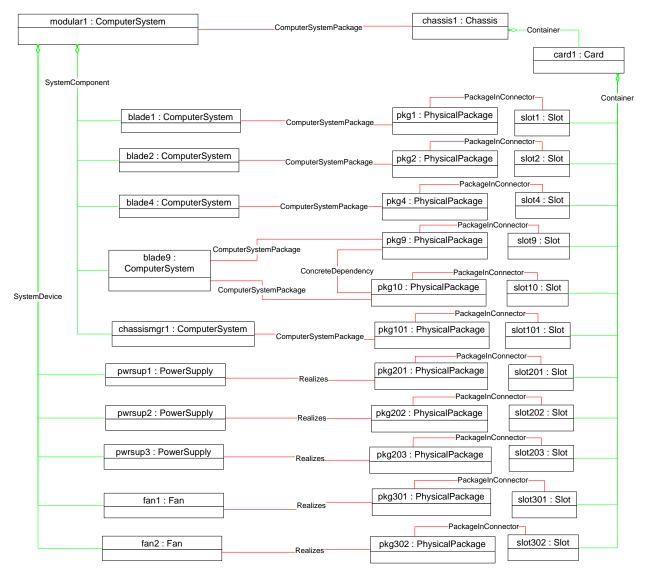



Figure 2 - Logical and Physical Topology

Figure 3 shows the capacity and compatibility of the modular enclosure. Each type of slot is identified with a unique value for the VendorCompatibilityStrings property of an instance of CIM\_Slot, which corresponds to the value of the VendorCompatibilityStrings property of one of the instances of CIM\_ConfigurationCapacity. For example, the VendorCompatibilityStrings properties of slot1 and cap1 have identical values. Note that an instance of CIM\_Slot is not shown in the object diagram for each possible slot as indicated by the MaximumCapacity property of the instances of CIM\_ConfigurationCapacity. The corresponding instances of CIM\_Slot actually exist in the instrumentation; however, they are not shown to reduce clutter in the diagram. As indicated in Figure 2, blade9 consists of two packages and occupies two slots in the enclosure. pkg10 is a BladeExpansion (PackageType = 17) attached to pkg9 (PackageType = 16). An instance of CIM\_ConcreteDependency associates the two instances.

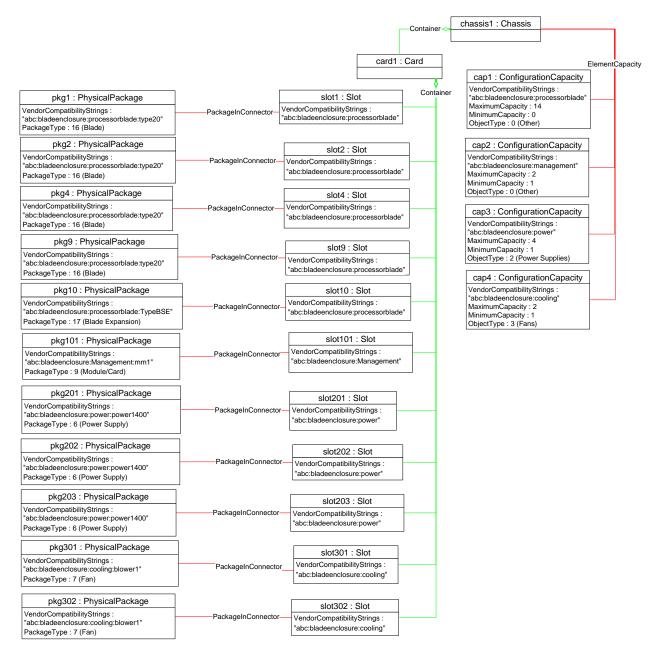
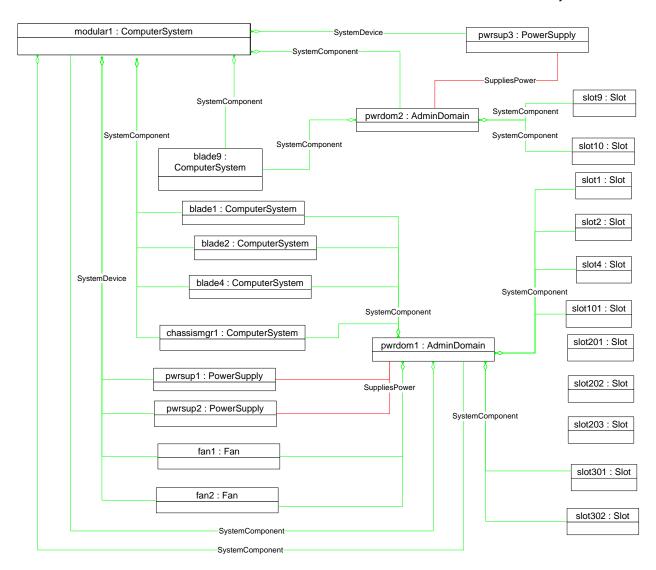




Figure 3 - Chassis Capacity and Compatibility

Figure 4 illustrates the modeling of power domains in the modular system. Two power domains are modeled, pwrdom1 and pwrdom2. Components in pwrdom1 receive power from power supplies pwrsup1 and pwrsup2, which is indicated by the instances of CIM\_SuppliesPower that associate pwrsup1 and pwrsup2 with pwrdom1. Components in pwrdom2 receive power from pwrsup3. Slots that can hold power supplies are not associated with any power domain. The CIM\_Slot instances for slots that receive power from the supplies in the domain are always associated with the CIM\_AdminDomain instance for the domain through the CIM\_SystemComponent association, even when a component has been installed in the slot and is itself associated with the domain.



512 Figure 4 – Power Domain

Figure 5 illustrates power management of the modular system and installed blades that are available through the installed chassis manager. The modular system and installed blades are all receiving trickle (flea) power as indicated by the value of the PowerState property for each of the instances of CIM\_AssociatedPowerManagementService. The power management functionality supplied by the chassis manager is the same for the installed processor blades but distinct for the modular system itself. Thus, two instances of CIM\_PowerManagementService exist, with associated instances of CIM\_PowerManagementCapabilities indicating the functionality available.

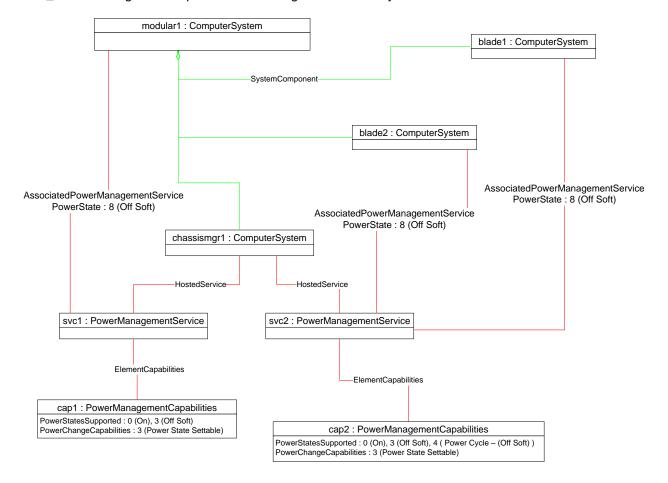



Figure 5 – Power Management Hosted on Chassis Manager

20 DMTF Standard Version 1.0.0

Figure 6 represents the ability of the chassis manager to provide text redirection for the processor blades.
The availability of the function from the chassis manager is indicated by the CIM\_HostedService
association between svc1 and chassismgr1. The availability of the function to the processor blades is
indicated by the instances of CIM\_SAPAvailableForElement that associate sap1 and sap2 to blade1 and
blade2, respectively.

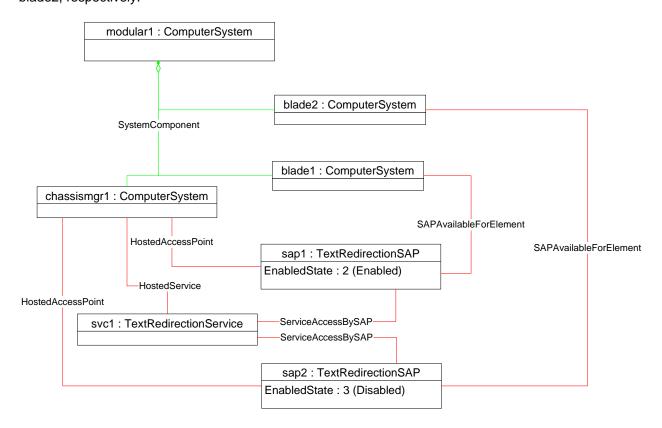



Figure 6 - Text Console Redirection Hosted on Chassis Manager

528

Figure 7 indicates how an implementation would advertise the implementation of the *Modular System Profile*. The instances of CIM\_RegisteredProfile are created in the Interop namespace while the other instances are created in an Implementation namespace. The *Modular System Profile* and the <u>Service Processor Profile</u> are autonomous profiles. Thus the Central Class Methodology is used. The <u>Server Power State Management Profile</u> is a component profile, and, in this instance, the Scoping Class Methodology is used.

529

530

531

532

533

534

535

536

537

538

539 540

541

542

543

544

545

546

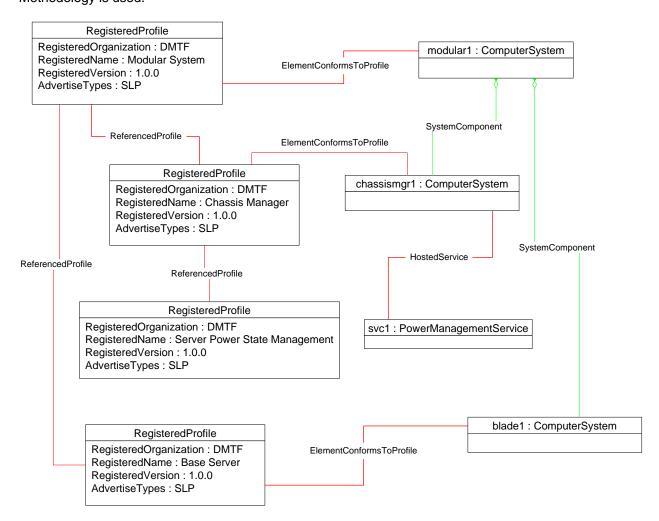



Figure 7 - Registered Profile

#### 9.2 Find the CIM\_ComputerSystem Instance for the Enclosure

A client can determine whether a modular enclosure is modeled as follows:

- Look in the Interop namespace for an instance of CIM\_RegisteredProfile that represents this
  profile specification.
- 2) Look for instances of the CIM\_ElementConformsToProfile association that reference the CIM\_RegisteredProfile instance.
- 3) Find the CIM\_ComputerSystem instance that represents the modular enclosure by traversing each instance of the CIM\_ElementConformsToProfile association to an instance of CIM\_ComputerSystem. These referenced CIM\_ComputerSystem instances model modular enclosures.

DSP1008 Modular System Profile

#### 9.3 Query Chassis Capacity

547

549

550

551 552

553554

555

556 557

558

559

560

561

562

563

564

565 566

567

568

569

570

571 572

573

576 577

578 579

580

581

583

584

585 586

587

Clients can determine the capacity of the chassis for components of a particular type as follows:

- 1) Starting at the CIM\_ComputerSystem instance that represents the modular enclosure as found in section 9.2, traverse the CIM\_ComputerSystemPackage association to the instance of CIM\_Chassis that is the physical side of the model for the modular enclosure.
- 2) Use the CIM\_ElementCapacity association to find each instance of CIM\_ConfigurationCapacity that is associated with the CIM\_Chassis instance.
  - Query the ObjectType and VendorCompatibilityStrings properties of each CIM\_ConfigurationCapacity instance to find the instance that represents the component type of interest.
  - 4) Query the MinimumCapacity and MaximumCapacity properties to determine the capacity of the enclosure for the component type.

#### 9.4 Query Chassis Component Presence

A client can determine which components are currently installed in the chassis as follows:

- 1) Find the CIM\_ComputerSystem instance that represents the modular enclosure as specified in section 9.2.
- 2) Find all instances of the CIM\_SystemComponent association (or subclass) that reference the CIM\_ComputerSystem instance, where a reference to the CIM\_ComputerSystem instance is the value of the GroupComponent.
- 3) Traverse each association instance to the referenced CIM\_ManagedSystemElement. The referenced CIM\_ManagedSystemElement represents a component installed in the enclosure.
- 4) For components that have a corresponding physical presence, if the implementation has instrumented the physical side of the model, find instances of the CIM\_Realizes association that reference the CIM\_ManagedSystemElement instance.
- 5) Traverse the instance of CIM\_Realizes to the CIM\_PhysicalPackage (or subclass) instance.
- 6) If an instance of CIM\_PackageInConnector (or subclass) references this instance, determine the slot or connector in which the component is installed.

#### 574 9.5 Query Chassis Manager Presence

575 A client can determine if a Chassis Manager is installed as follows:

- 1) Find the CIM\_ComputerSystem instance that represents the modular enclosure as described in section 9.2.
- 2) Use the steps described in section 9.4 to determine which components are installed in the enclosure, and look for an instance of CIM\_ComputerSystem whose Dedicated property contains a value of 29 (Chassis Manager).

#### 9.6 Find All Power Domains for the Modular System

A client can find all of the power domains for the modular system as follows:

- 1) Find instances of CIM\_AdminDomain that are associated with the Central Instance through an instance of CIM\_SystemComponent whose PartComponent property references the CIM\_AdminDomain instance.
- 2) For each instance of CIM\_AdminDomain, determine if the ElementName property matches "Power Domain".

#### 9.7 Determine the Power Supply for a Component

588

592

593

594

595 596

597

598

599

600

601 602

603

604

605

606

607

608

609

610

611

612

613

614

615

616 617

618 619

620

621

622

624

625

626

627

628

589 When a component is modeled with an instance of a subclass of CIM\_ManagedSystemElement, a client 590 can determine the power supply for a component by using the following steps. Note that the algorithm 591 terminates after steps 1, 2, 3, and 4.

- Query for an instance of CIM\_SuppliesPower that references the CIM\_ManagedSystemElement instance.
  - 1.1 If one or more such instances exist, the associated instances of CIM\_PowerSupply supply power to the CIM\_ManagedSystemElement instance.
  - 2. Query for an instance of CIM\_SystemComponent that references the CIM\_ManagedSystemElement instance.
    - 2.1 If the GroupComponent reference is to an instance of CIM\_AdminDomain, query for an instance of CIM\_SuppliesPower that references the CIM\_AdminDomain instance.
    - 2.2 If one or more such instances exist, the associated instances of CIM\_PowerSupply supply power to the CIM\_ManagedSystemElement instance.
  - 3. Query for an instance of CIM\_SystemComponent (or a subclass) in which the CIM\_ManagedSystemElement instance is the value of the PartComponent reference and an instance of CIM\_ComputerSystem is the value of the GroupComponent reference.
    - 3.1 Find all instances of CIM\_PowerSupply that are associated with the CIM\_ComputerSystem instance through the CIM\_SystemDevice association.
    - 3.2 If one or more such instances exist, the associated instances of CIM\_PowerSupply supply power to the CIM\_ManagedSystemElement instance.
- If the instance of CIM\_ManagedSystemElement is an instance of CIM\_Slot, complete the following steps:
  - 4.1 Follow the CIM\_Container or CIM\_PackageInSlot associations to an instance of CIM\_PhysicalElement that represents an outer container.
    - 4.1.1 If the instance of CIM\_PhysicalElement is an instance of CIM\_PhysicalPackage or a subclass, query for an instance of CIM\_ComputerSystemPackage that references the CIM\_PhysicalPackage instance. If not, repeat step 4.1.
    - 4.1.2 If such an instance exists, select the CIM\_ComputerSystem instance and proceed to step 4.2. If not, repeat step 4.1.
  - 4.2 Find all instances of CIM\_PowerSupply that are associated with the CIM\_ComputerSystem instance through the CIM\_SystemDevice association.
  - 4.3 If one or more such instances exist, the associated instances of CIM\_PowerSupply supply power to the CIM\_ManagedSystemElement instance.

#### 9.8 Find All Cooling Domains for the Modular System

- 623 A client can find all of the cooling domains for the modular system as follows:
  - Find instances of CIM\_AdminDomain that are associated with the Central Instance through an instance of CIM\_SystemComponent whose PartComponent property references the CIM\_AdminDomain instance.
  - For each instance of CIM\_AdminDomain, determine if the ElementName property matches "Cooling Domain".

DSP1008 Modular System Profile

#### 9.9 Determine the Fan for a Component

When a component is modeled with an instance of a subclass of CIM\_ManagedSystemElement, a client

can determine the fan for a component by using the following steps. Note that the algorithm terminates

632 after steps 1, 2, 3, and 4.

629

635

636

637

638

639

640 641

642

643

644

645

646 647

648

649

650 651

652

653

654

655

656

657

658

- 1. Query for an instance of CIM\_AssociatedCooling that references the CIM\_ManagedSystemElement instance.
  - 1.1 If one or more such instances exist, the associated instances of CIM\_Fan provide cooling to the CIM\_ManagedSystemElement.
  - 2. Query for an instance of CIM\_SystemComponent that references the CIM\_ManagedSystemElement instance.
    - 2.1 If the GroupComponent reference is to an instance of CIM\_AdminDomain, query for an instance of CIM\_AssociatedCooling that references the CIM\_AdminDomain instance.
    - 2.2 If one or more such instances exist, the associated instances of CIM\_Fan provide cooling to the CIM\_ManagedSystemElement.
  - 3. Query for an instance of CIM\_SystemComponent (or a subclass) in which the CIM\_ManagedSystemElement instance is the value of the PartComponent reference and an instance of CIM\_ComputerSystem is the value of the GroupComponent reference.
    - 3.1 Find all instances of CIM\_Fan that are associated with the CIM\_ComputerSystem instance through the CIM\_SystemDevice association.
    - 3.2 If one or more such instances exist, the associated instances of CIM\_Fan provide cooling to the CIM\_ManagedSystemElement.
  - 4. If the instance of CIM\_ManagedSystemElement is an instance of CIM\_Slot, complete the following steps:
    - 4.1 Follow the CIM\_Container or CIM\_PackageInSlot associations to an instance of CIM\_PhysicalElement that represents an outer container.
      - 4.1.1 If the instance of CIM\_PhysicalElement is an instance of CIM\_PhysicalPackage or a subclass, query for an instance of CIM\_ComputerSystemPackage that references the CIM\_PhysicalPackage instance. If not, repeat step 4.1.
        - 4.1.1.1 If such an instance exists, select the CIM\_ComputerSystem instance and proceed to step 4.2. If not, repeat step 4.1.
    - 4.2 Find all instances of CIM\_Fan that are associated with the CIM\_ComputerSystem instance through the CIM\_SystemDevice association.
- 4.3 If one or more such instances exist, the associated instances of CIM\_Fan provide cooling to the CIM\_ManagedSystemElement instance.

#### **10 CIM Elements**

663

664 665

666

667

668

671

673 674

675

Table 4 shows the instances of CIM Elements for this profile. Instances of the CIM Elements shall be implemented as described in Table 4. Sections 7 ("Implementation") and 8 ("Methods") may impose additional requirements on these elements.

Table 4 – Required CIM Elements: Modular System Profile

| Element Name                 | Requirement | Description                        |
|------------------------------|-------------|------------------------------------|
| Classes                      |             |                                    |
| CIM_AdminDomain              | Optional    | See 10.1 and 10.2.                 |
| CIM_Chassis                  | Mandatory   | See 10.3.                          |
| CIM_ComputerSystem           | Mandatory   | See 10.4.                          |
| CIM_ComputerSystemPackage    | Mandatory   | See 10.5.                          |
| CIM_ConcreteDependency       | Conditional | See 7.3.1.4 and 10.6.              |
| CIM_PhysicalPackage          | Conditional | See 10.7 and 7.3.1.                |
| CIM_RegisteredProfile        | Mandatory   | See 10.8.                          |
| CIM_SystemComponent          | Conditional | See 10.9, 10.10, 10.11, and 10.12. |
| Indications                  |             |                                    |
| None defined in this profile |             |                                    |

#### 10.1 CIM\_AdminDomain—Power Domain

669 CIM\_AdminDomain represents power domains of the modular system. Table 5 contains the requirements for properties of the instance.

Table 5 – Class: CIM AdminDomain – Power Domain

| Elements          | Requirement | Notes                  |
|-------------------|-------------|------------------------|
| Name              | Mandatory   | None                   |
| CreationClassName | Mandatory   | None                   |
| ElementName       | Mandatory   | Matches "Power Domain" |

### 10.2 CIM\_AdminDomain—Cooling Domain

CIM\_AdminDomain represents cooling domains of the modular system. Table 6 contains the requirements for properties of the instance.

Table 6 - Class: CIM AdminDomain - Cooling Domain

| Elements          | Requirement | Notes                    |
|-------------------|-------------|--------------------------|
| Name              | Mandatory   | None                     |
| CreationClassName | Mandatory   | None                     |
| ElementName       | Mandatory   | Matches "Cooling Domain" |

680

683

684

685

686

687

688

#### 10.3 CIM\_Chassis

677 CIM\_Chassis is defined by the *Physical Asset Profile*. The requirements denoted in Table 7 are in addition to those mandated by the *Physical Asset Profile*.

679 Table 7 – Class: CIM\_Chassis

| Elements              | Requirement | Notes                                     |
|-----------------------|-------------|-------------------------------------------|
| MultipleSystemSupport | Mandatory   | This property shall have a value of TRUE. |

#### 10.4 CIM\_ComputerSystem

An instance of CIM\_ComputerSystem represents the modular enclosure. Table 8 contains the requirements for properties of the instance.

Table 8 – Class: CIM\_ComputerSystem

| Elements                   | Requirement | Notes             |
|----------------------------|-------------|-------------------|
| Dedicated                  | Mandatory   | Matches 0 (Other) |
| OtherDedicatedDescriptions | Mandatory   | Matches "Modular" |
| Name                       | Mandatory   | None              |
| CreationClassName          | Mandatory   | None              |
| ElementName                | Mandatory   | Pattern (".*")    |
| OperationalStatus          | Mandatory   | None              |
| HealthState                | Mandatory   | None              |

#### 10.5 CIM\_ComputerSystemPackage

CIM\_ComputerSystemPackage associates the CIM\_Chassis instance for the modular enclosure with the CIM\_ComputerSystem instance for the modular enclosure. Requirements specified in Table 9 are in addition to those specified in the *Physical Asset Profile*.

Table 9 - Class: CIM\_ComputerSystemPackage

| Elements   | Requirement | Notes                                                                                                                  |
|------------|-------------|------------------------------------------------------------------------------------------------------------------------|
| Antecedent | Mandatory   | This property shall be a reference to an instance of CIM_Chassis that represents the modular enclosure.  Cardinality 1 |
| Dependent  | Mandatory   | This property shall be a reference to the Central Instance.  Cardinality 1                                             |

#### 10.6 CIM\_ConcreteDependency

689

690

691

693

697

698

699

700

701 702

703

704

705

706

CIM\_ConcreteDependency associates a blade expansion physical package with a blade physical package. Table 10 contains the requirements for properties of the instance.

692 Table 10 – Class: CIM\_ConcreteDependency

| Elements   | Requirement | Notes                                                                                                         |
|------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Antecedent | Mandatory   | This property shall be a reference to an instance of CIM_PhysicalPackage that represents the blade.           |
|            |             | Cardinality 1                                                                                                 |
| Dependent  | Mandatory   | This property shall be a reference to an instance of CIM_PhysicalPackage that represents the blade expansion. |
|            |             | Cardinality *                                                                                                 |

#### 10.7 CIM\_PhysicalPackage

694 CIM\_PhysicalPackage is defined by the <u>Physical Asset Profile</u>. The requirements denoted in Table 11 are in addition to those mandated by the <u>Physical Asset Profile</u>.

696 Table 11 – Class: CIM\_PhysicalPackage

| Elements    | Requirement | Notes      |
|-------------|-------------|------------|
| PackageType | Mandatory   | See 7.3.1. |

#### 10.8 CIM\_RegisteredProfile

CIM\_RegisteredProfile identifies the *Modular System Profile* in order for a client to determine whether an instance of CIM\_ComputerSystem is conformant with this profile. CIM\_RegisteredProfile is defined by the *Profile Registration Profile*. With the exception of the mandatory values specified for the properties in Table 12, the behavior of the CIM\_RegisteredProfile instance is in accordance with the *Profile Registration Profile*.

Table 12 – Class: CIM\_RegisteredProfile

| Elements               | Requirement | Notes                                               |
|------------------------|-------------|-----------------------------------------------------|
| RegisteredName         | Mandatory   | This property shall have a value of Modular System. |
| RegisteredVersion      | Mandatory   | This property shall have a value of "1.0.0".        |
| RegisteredOrganization | Mandatory   | This property shall have a value of 2 (DMTF).       |

NOTE: Previous versions of this document included the suffix "Profile" for the RegisteredName value. If implementations querying for the RegisteredName value find the suffix "Profile", they should ignore the suffix, with any surrounding white spaces, before any comparison is done with the value as specified in this document.

714

715

722

729

#### 10.9 CIM\_SystemComponent—Cooling Domains

- 708 CIM\_SystemComponent associates an instance of a sub-class of CIM\_ManagedElement with an
- instance of CIM\_AdminDomain representing the cooling domain in which the element is installed. If no
- 710 cooling domains are modeled, or no elements that receive cooling are modeled, no instances of
- 711 CIM\_SystemComponent exist. Table 13 contains the requirements for properties of the instance. The
- existence of CIM\_SystemComponent in this context is conditional on the modeling of an element installed
- 713 in the cooling domain.

#### Table 13 - Class: CIM\_SystemComponent - Cooling Domains

| Elements       | Requirement | Notes    |
|----------------|-------------|----------|
| GroupComponent | Mandatory   | See 7.8. |
| PartComponent  | Mandatory   | See 7.8. |

#### 10.10 CIM\_SystemComponent—Power Domains

- 716 CIM SystemComponent associates an instance of a sub-class of CIM ManagedElement with an
- 717 instance of CIM AdminDomain representing the power domain in which the element is installed. If no
- 718 power domains are modeled, or no elements that receive power are modeled, no instances of
- 719 CIM\_SystemComponent exist. Table 14 contains the requirements for properties of the instance. The
- 720 existence of CIM\_SystemComponent in this context is conditional on the modeling of an element installed
- 721 in the power domain.

#### Table 14 – Class: CIM\_SystemComponent – Power Domains

| Elements       | Requirement | Notes    |
|----------------|-------------|----------|
| GroupComponent | Mandatory   | See 7.6. |
| PartComponent  | Mandatory   | See 7.6. |

#### 723 10.11 CIM\_SystemComponent—Chassis Manager

- 724 CIM SystemComponent associates the CIM ComputerSystem instance that represents a chassis
- 725 manager with the CIM\_ComputerSystem instance that represents the modular enclosure in which the
- 726 chassis manager is installed. If no chassis managers are modeled, no instances of
- 727 CIM\_SystemComponent exist. Table 15 contains the requirements for properties of the instance. The
- 728 existence of CIM\_SystemComponent in this context is conditional on the modeling of a chassis manager.

Table 15 - Class: CIM\_SystemComponent - Chassis Manager

| Elements       | Requirement | Notes    |
|----------------|-------------|----------|
| GroupComponent | Mandatory   | See 7.4. |
| PartComponent  | Mandatory   | See 7.4. |

#### 10.12 CIM\_SystemComponent—Processor Blades

731 CIM\_SystemComponent associates the CIM\_ComputerSystem instance that represents a processor

732 blade with the CIM\_ComputerSystem instance that represents the modular enclosure in which the

733 processor blade is installed. If no processor blades are modeled, no instances of CIM\_SystemComponent

734 exist. Table 16 contains the requirements for properties of the instance. The existence of

735 CIM\_SystemComponent in this context is conditional on the modeling of a processor blade.

#### Table 16 - Class: CIM\_SystemComponent - Processor Blades

| Elements       | Requirement | Notes    |
|----------------|-------------|----------|
| GroupComponent | Mandatory   | See 7.3. |
| PartComponent  | Mandatory   | See 7.3. |

737 738

736

DSP1008 Modular System Profile

| 739 | ANNEX A       |
|-----|---------------|
| 740 | (informative) |
| 741 |               |

742

743 Change Log

| Version | Date       | Description           |
|---------|------------|-----------------------|
| 1.0.0   | 06-17-2009 | DMTF Standard Release |