
Security Protocol and Data Model (SPDM)
Authorization Specification

Version: 1.0.0WIP99

Document Identifier: DSP0289

Date: 2025-10-10

Version History: https://www.dmtf.org/dsp/DSP0289

Supersedes: None

Document Class: Normative

Document Status: Work in Progress

Document Language: en-US

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of DMTF or its

members. Because this document is a Work in Progress, this document may still change, perhaps

profoundly and without notice. This document is available for public review and comment until

superseded.

Provide any comments through the DMTF Feedback Portal: https://www.dmtf.org/standards/

feedback

3

4

1

2

5

6

7

8

9

10

11

https://www.dmtf.org/standards/feedback
https://www.dmtf.org/standards/feedback
https://www.dmtf.org/dsp/DSP0289

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF

specifications may be revised from time to time, the particular version and release date should always be

noted.

Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations

to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or

identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation

thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standards, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2025 DMTF. All rights reserved.

12

13

14

15

SPDM Authorization Specification DSP0289

2 Work in Progress Version 1.0.0WIP99

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

CONTENTS

1 Foreword . 7

1.1 Acknowledgments . 7

2 Introduction . 8

2.1 Document conventions . 8

2.1.1 Reserved and unassigned values . 8

2.1.2 Byte ordering. 8

2.1.2.1 Default byte order . 8

2.1.2.2 Octet string byte order . 8

2.1.2.3 Signature byte order . 9

2.1.2.3.1 ECDSA signatures byte order . 9

2.1.2.3.2 SM2 signatures byte order . 9

2.1.3 Text or string encoding . 9

2.1.4 Other conventions . 10

3 Scope. 11

4 Normative references. 12

5 Terms and definitions . 14

6 Symbols and abbreviated terms . 16

7 Notations . 17

8 Authorization architecture . 19

8.1 Architecture overview . 19

8.2 Authorization version . 19

8.3 Authorization flows . 20

8.3.1 Credential provisioning overview . 20

8.3.2 Authorization overview . 20

8.4 Credentials . 21

8.4.1 Identifying the Authorization initiator . 21

8.4.2 Credential structure. 22

8.4.3 Credential attributes . 23

8.4.3.1 Locking and unlocking attributes . 23

8.4.4 Credential change requirements . 24

8.5 Authorization policies. 24

8.5.1 DSP0289 Authorization policy. 26

8.5.1.1 DSP0289 Authorization policy changes requirements . 29

8.5.1.2 DSP0289 additional Authorization policy requirements . 29

8.5.2 Policy attributes. 29

8.6 Initial provisioning . 30

8.6.1 Supply chain provisioning . 30

8.6.2 Default state . 30

8.6.3 Default state and additional supply chain requirements . 30

8.6.4 Taking ownership . 31

8.6.5 Other provisioning considerations. 31

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 3

8.7 Discovery. 32

8.8 Authorization process . 33

8.8.1 User-Specific Authorization Process (USAP) . 33

8.8.1.1 General USAP error handling, requirements, and notes . 35

8.8.1.2 USAS continuation . 36

8.8.2 SPDM Endpoint Authorization Process (SEAP) . 37

8.8.2.1 SEAP error handling, requirements, and notes . 40

8.8.3 Terminating Authorization process . 40

8.8.4 Other error handling, requirements, and notes . 40

8.9 Authorization record . 41

8.9.1 Authorization record on the transport . 42

8.9.2 Authorization types . 42

8.9.2.1 Authorization record in Authorization process . 42

8.9.2.1.1 USAP Authorization record . 42

8.9.2.1.2 SEAP Authorization record. 43

8.9.2.2 Authorization record Failures . 43

8.10 Authorization tag . 44

8.10.1 SEAP Authorization tag. 44

8.10.2 USAP Authorization tag . 44

8.10.2.1 USAP Authorization tag format . 44

8.10.2.2 USAP Authorization tag signature generation and verification . 45

9 Authorization messages. 47

9.1 Authorization messages overview . 47

9.1.1 Bi-directional Authorization message processing . 47

9.1.2 Requirements for Authorization initiators . 47

9.1.3 Requirements for Authorization targets. 48

9.1.4 Authorization messages bits-to-bytes mapping . 48

9.1.5 Version encoding. 48

9.1.6 Generic Authorization message format . 50

9.2 Authorization message definitions. 50

9.2.1 Authorization message request codes . 50

9.2.2 Authorization message response codes . 52

9.2.3 Authorization Message Validity . 53

9.2.4 Common variable names . 54

9.2.5 Error handling . 54

9.2.5.1 AUTH_ERROR response message . 54

9.2.6 Discovery message. 58

9.2.6.1 GET_AUTH_VERSION request and AUTH_VERSION response messages 58

9.2.6.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response

messages . 59

9.2.6.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages. . 60

9.2.7 Credential provisioning . 64

9.2.7.1 SET_CRED_ID_PARAMS request and SET_CRED_ID_PARAMS_DONE response

SPDM Authorization Specification DSP0289

4 Work in Progress Version 1.0.0WIP99

messages . 64

9.2.7.1.1 Additional requirements on SET_CRED_ID_PARAMS . 66

9.2.7.2 GET_CRED_ID_PARAMS request and CRED_ID_PARAMS response messages. 66

9.2.7.3 Credential provisioning authorization requirements . 67

9.2.8 Authorization policy provisioning and management . 67

9.2.8.1 SET_AUTH_POLICY request and SET_AUTH_POLICY_DONE response messages . . 67

9.2.8.1.1 Additional requirements on SET_AUTH_POLICY . 69

9.2.8.2 GET_AUTH_POLICY request and AUTH_POLICY response messages 69

9.2.8.3 Authorization requirements . 70

9.2.9 Authorization process management . 70

9.2.9.1 General Authorization process management . 70

9.2.9.1.1 GET_AUTH_PROCESSES request and AUTH_PROCESSES response

messages. 70

9.2.9.1.2 KILL_AUTH_PROCESS request and PROCESS_KILLED response messages . . 71

9.2.9.1.3 Authorization Process ID calculation . 72

9.2.9.2 USAP Management . 73

9.2.9.2.1 START_AUTH request and START_AUTH_RSP response messages 73

9.2.9.2.2 END_AUTH request and END_AUTH_RSP response messages 74

9.2.9.3 SEAP Management . 76

9.2.9.3.1 ELEVATE_PRIVILEGE request and PRIVILEGE_ELEVATED response messages 76

9.2.9.3.2 END_ELEVATED_PRIVILEGE request and ELEVATED_PRIVILEGE_ENDED

response message . 77

9.2.10 Basic management . 78

9.2.10.1 TAKE_OWNERSHIP request and OWNERSHIP_TAKEN response 78

9.2.10.2 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response . . 78

9.2.10.2.1 AUTH_RESET_TO_DEFAULT additional requirements . 80

9.3 Timing requirements . 81

9.3.1 Message transmission time. 81

9.3.2 Authorization messages timing . 81

9.3.3 All messages requiring Authorization . 81

10 Authorization Opaque Data Structures (AODS). 83

10.1 General Authorization Opaque Data Structure . 83

10.2 AODS error handling . 84

10.3 AODS IDs . 84

10.4 INVOKE_SEAP AODS . 84

10.5 SEAP_SUCCESS AODS . 85

10.6 AUTH_HELLO AODS . 85

11 Other transport requirements . 87

11.1 Authorization record over SPDM Vendor-Defined Messages (VDM). 87

11.1.1 Additional AUTH over SPDM VDM requirements . 87

12 Cryptographic operations. 88

12.1 Asymmetric algorithms . 88

12.2 Hash algorithms. 89

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 5

12.3 Signature generation and validation . 89

12.3.1 Signature algorithm references . 89

12.3.2 Signature generation. 89

12.3.2.1 RSA and ECDSA signing algorithms . 91

12.3.2.2 EdDSA signing algorithms . 91

12.3.2.2.1 Ed25519 sign . 91

12.3.2.2.2 Ed448 sign . 92

12.3.2.3 SM2 signing algorithm . 92

12.3.3 Signature verification. 92

12.3.3.1 RSA and ECDSA signature verification algorithms . 93

12.3.3.2 EdDSA signature verification algorithms . 93

12.3.3.2.1 Ed25519 verify . 93

12.3.3.2.2 Ed448 verify . 93

12.3.3.3 SM2 signature verification algorithm. 94

13 Authorization events . 95

13.1 Event type details . 95

13.1.1 Credential ID Parameters Changed Event . 95

13.2 Protecting the Authorization record . 96

13.2.1 Authorization Policy Changed Event . 96

14 ANNEX A (informative) change log . 98

14.1 Version 1.0.0 (in progress) . 98

15 Bibliography . 99

SPDM Authorization Specification DSP0289

6 Work in Progress Version 1.0.0WIP99

1 Foreword

The Security Protocols and Data Models (SPDM) Working Group of DMTF prepared the Security Protocol and Data

Model (SPDM) Authorization Specification (DSP0289).

DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and

interoperability. For information about DMTF, visit dmtf.org.

1.1 Acknowledgments

DMTF acknowledges the following individuals for their contributions to this document:

• Lee Ballard — Dell Technologies

• Steven Bellock — NVIDIA Corporation

• Daniil Egranov — Arm Limited

• Sakul Gupta — Micron Technology Inc.

• Brett Henning — Broadcom Inc.

• Eric Hibbard — Samsung

• Jeff Hilland — HPE Labs

• Guerney D H Hunt — IBM

• Raghu Krishnamurthy — NVIDIA Corporation

• Will Marone — AMD Inc.

• Jiewen Yao — Intel Corporation

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc., Axiado Corporation, Microsoft Corporation

• Xiaoyu Ruan — Intel Corporation

• Sungho Yoon — Samsung

• Wilson Young — Solidigm

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 7

https://www.dmtf.org/

2 Introduction

The SPDM Authorization Specification defines messages, data objects, and sequences for performing authorized

message exchanges. The description of message exchanges includes authorization of messages, provisioning of

authorization credentials and their policies, management of authorization state, and other related capabilities.

2.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

2.1.1 Reserved and unassigned values

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by DMTF.

Unless otherwise specified, field values marked as Reserved shall be written as zero (0), ignored when read, not

modified, and not interpreted as an error if not zero.

2.1.2 Byte ordering

This section describes different byte orderings.

2.1.2.1 Default byte order

Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit

fields is little endian (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

2.1.2.2 Octet string byte order

A string of octets is conventionally written from left to right. Also by convention, byte 0 of the octet string shall be the

leftmost byte of the octet string, byte 1 of the octet string shall be the second-leftmost byte of the octet string, and this

pattern shall continue. When placing an octet string into an Authorization field, the ith byte of the octet string shall be

placed in the ith offset of that field.

For example, if placing an octet stream consisting of "0xAA 0xCB 0x9F 0xD8" into LongString field, then offset 0

(the lowest offset) of LongString will contain 0xAA, offset 1 of LongString will contain 0xCB, offset 2 of LongString

will contain 0x9F, and offset 3 of LongString will contain 0xD8.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

SPDM Authorization Specification DSP0289

8 Work in Progress Version 1.0.0WIP99

2.1.2.3 Signature byte order

For fields or values containing a signature, this specification attempts to preserve the byte order of the signature as

the specification of a given signature algorithm defines. Most signature specifications define a string of octets as the

format of the signature, and others may explicitly state the endianness such as in the specification for Edwards-

Curve Digital Signature Algorithm. Unless otherwise specified, the byte order of a signature for a given signature

algorithm shall be octet string byte order.

2.1.2.3.1 ECDSA signatures byte order

FIPS PUB 186-5 defines r , s , and the ECDSA signature to be (r, s) , where r and s are integers. For ECDSA

signatures, excluding SM2, in SPDM, the signature shall be the concatenation of r and s . The size of r shall be

the size of the selected curve. Likewise, the size of s shall be the size of the selected curve. See BaseAsymAlgo in

NEGOTIATE_ALGORITHMS for the size of r and s . The byte order for r and s shall be big-endian order. When

placing ECDSA signatures into an SPDM signature field, r shall come first, followed by s .

2.1.2.3.2 SM2 signatures byte order

GB/T 32918.2-2016 defines r and s and SM2 signatures to be (r, s) , where r and s are integers. The sizes

of r and s shall each be 32 bytes. To form an SM2 signature, r and s shall be converted to an octet stream

according to GB/T 32918.2-2016 and GB/T 32918.1-2016 with a target length of 32 bytes. Let the resulting octet

string of r and s be called SM2_R and SM2_S respectively. The final SM2 signature shall be the concatenation of

SM2_R and SM2_S . When placing SM2 signatures into an SPDM signature field, the SM2 signature byte order shall

be octet string byte order.

2.1.3 Text or string encoding

When a value is indicated as a text or string data type, the encoding for the text or string shall be an array of

contiguous bytes whose values are ordered. The first byte of the array resides at the lowest offset, and the last byte

of the array is at the highest offset. The order of characters in the array shall be such that the leftmost character of

the string is placed at the first byte in the array, the second leftmost character is placed in the second byte, and so

forth until the last character is placed in the last byte.

Each byte in the array shall be the numeric value that represents that character, as ASCII — ISO/IEC 646:1991

defines.

Table 1 — "spdm" encoding example shows an encoding example of the string "spdm":

Table 1 — "spdm" encoding example

Offset Character Value

0 s 0x73

1 p 0x70

53

54

55

56

57

58

59

60

61

62

63

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 9

Offset Character Value

2 d 0x64

3 m 0x6D

2.1.4 Other conventions

Unless otherwise specified, all figures are informative.

64

65

SPDM Authorization Specification DSP0289

10 Work in Progress Version 1.0.0WIP99

3 Scope

This specification describes how to use messages, data objects, and sequences to exchange authorized messages

between two entities over a variety of transports and physical media. This specification contains the message

exchanges, sequence diagrams, message formats, and other relevant semantics for such message exchanges,

including authorization of arbitrary messages.

Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

66

67

68

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 11

4 Normative references

The following documents are indispensable for the application of this specification. For dated or versioned

references, only the edition cited, including any corrigenda or DMTF update versions, applies. For references without

date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

• DMTF DSP0274, Security Protocol and Data Model (SPDM) Specification, https://www.dmtf.org/dsp/DSP0274

• DMTF DSP0277, Secured Messages using SPDM Specification, https://www.dmtf.org/dsp/DSP0277

• DMTF DSP0293, Standards Body and Vendor Header Registry, https://www.dmtf.org/dsp/DSP0293

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2021

(9th edition)

• IETF RFC 4716, The Secure Shell (SSH) Public Key File Format, November 2006

• IETF RFC 7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS), June 2014

• TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.32, June 25, 2020

• IETF RFC 8017, PKCS #1: RSA Cryptography Specifications Version 2.2, November, 2016

• IETF RFC 8032, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017

• IETF RFC 8998, ShangMi (SM) Cipher Suites for TLS 1.3, March 2021

• GB/T 32918.1-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 1: General, August 2016

• GB/T 32918.2-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 2: Digital signature algorithm, August 2016

• GB/T 32918.3-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 3: Key exchange protocol, August 2016

• GB/T 32918.4-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 4: Public key encryption algorithm, August 2016

• GB/T 32918.5-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 5: Parameter definition, August 2016

• GB/T 32905-2016, Information security technology—SM3 cryptographic hash algorithm, August 2016

• GB/T 32907-2016, Information security technology—SM4 block cipher algorithm, August 2016

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-5 Digital Signature

Standard (DSS)

◦ NIST SP 800-186 Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain

Parameters

◦ IETF RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital

Signature Algorithm (ECDSA), August 2013

• SHA2-256, SHA2-384, and SHA2-512

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88
89

90

91

92

SPDM Authorization Specification DSP0289

12 Work in Progress Version 1.0.0WIP99

https://www.dmtf.org/dsp/DSP0274
https://www.dmtf.org/dsp/DSP0277
https://www.dmtf.org/dsp/DSP0293
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8998
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

• ASCII — ISO/IEC 646:1991, 09/1991

93

94
95

96

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 13

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://www.iso.org/standard/4777.html

5 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines

those terms.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional

cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7

specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal

English meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, and annexes labeled "(informative)" do not contain

normative content. Notes and examples are always informative elements.

The terms that DSP0274 defines also apply to this document.

This specification uses these terms:

Term Definition

Authorization
Process of determining whether an entity has the privilege to perform an action on a

protected resource.

Authorization initiator

A logical entity that triggers the process of granting permission or approval for accessing a

protected resource. An Authorization initiator can have an associated Credential ID

depending on the type of message it sends.

Authorization message Unit of communication when using messages defined in this specification.

Authorization message payload

Portion of the message body of an Authorization message. This portion of the message is

separate from those fields and elements that identify the authorization request and response

codes and reserved fields.

Authorization session
A secure session whose privilege levels have been escalated on behalf of either a User or

an SPDM endpoint.

Authorization target
A logical entity that determines if the Authorization initiator has the permission(s) and

privilege level(s) to access the protected resource.

Byte Eight-bit quantity. Also known as an octet.

Concurrent secure sessions
Simultaneous or parallel secure sessions between an Authorization initiator and an

Authorization target.

Credential Information used to verify the identity of an entity, such as an asymmetric public key.

97

98

99

100

101

102

103

SPDM Authorization Specification DSP0289

14 Work in Progress Version 1.0.0WIP99

Term Definition

Endpoint Logical entity that communicates with other endpoints over one or more transport protocols.

Message See Authorization message.

Owner

The user or consumer of the Authorization target operating in an environment and who is

either in physical possession or is a tenant of the Authorization target. Examples of an

Owner are the data center administrators, cloud providers, tenants of Infrastructure-as-a-

Service or equivalent services, typically, offered by cloud providers. These Owners are

generally not considered part of the supply chain such as a distributor, reseller, vendor,

silicon manufacturer, OEM, or ODM.

Protected Resource A software or hardware resource that requires authorization before being used.

User
An Authorization initiator that is not an SPDM endpoint of the corresponding secure session.

A User is identified by a Credential ID.

User-Specific Authorization Session An Authorization session that is escalated specifically on behalf of a specific User.

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 15

6 Symbols and abbreviated terms

The following additional abbreviations are used in this document.

Abbreviation Term

AODS Authorization ODS

AUTH Authorization

ODS Opaque Data Structure

SEAP SPDM Endpoint Authorization Process

SPDM Security Protocol and Data Model

SVH
Standards body and Vendor-defined Header. See the Standards

body or vendor-defined header in DSP0293.

USAP User-Specific Authorization Process

USAS User-Specific Authorization Session

VDM Vendor-Defined Messages

104

105

SPDM Authorization Specification DSP0289

16 Work in Progress Version 1.0.0WIP99

7 Notations

The Authorization Specification uses the following notations:

Notation Description

Concatenate()

The concatenation function Concatenate(a, b, ..., z) , where

the first entry occupies the least-significant bits and the last entry

occupies the most-significant bits.

M:N

In field descriptions, this notation typically represents a range of

byte offsets starting from byte M and continuing to and including

byte N (where M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit

([LSb]) offset = 0.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is

on the right.

1b
A lowercase b after a number consisting of 0 s and 1 s

indicates that the number is in binary format.

0x12A Hexadecimal, as indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

[${message_name}] . ${field_name}

or

[${message_name}] . ${field_name} / ${field_name0} /.../ ${field_nameN}

Used to indicate a field in a message.

• ${message_name} is the name of the request or response

message.

• ${field_name} is the name of the field in the request or

response message. An asterisk (*) instead of a field name

means all fields in that message except for any conditional

fields that are empty.

• One or more optional forward slash characters (/) can

follow to indicate hierarchy of field names similar to a

directory path in many operating systems

106

107

108

109

110

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 17

Notation Description

LenX

This notation is used only in tables and indicates the length of the

corresponding field only for that table. The value X can be a

number greater than 0, as in the case that multiple fields in the

same table are using this notation.

Note that LenX in one table has no connection to a LenX with the

same value of X in any other table. By way of example, consider

two hypothetical tables: in the first table, Len0 has a value of 44

bytes, and in the second table Len0 has a value of 1024 bytes.

These two Len0 s have no connection to each other. A table could

have Len1 and Len2 (and so on), and those Len1 and Len2 will

have no connection to the Len1 s or Len2 s in any other table.

SPDM Authorization Specification DSP0289

18 Work in Progress Version 1.0.0WIP99

8 Authorization architecture

This authorization architecture serves as a foundation for managing access to a protected resource on an endpoint.

The messages and behavior defined by this specification shall apply between two SPDM endpoints within an SPDM

session, except when using a trusted environment. The messages are defined in a generic fashion that allows them

to be communicated across different physical mediums and over different transport protocols.

When messages defined by this specification are exchanged in a trusted environment, such as during initial

provisioning, they may be performed outside an SPDM session. The authorization requirements for these messages

may also be overridden. The security implications of such exchanges are outside the scope of this specification.

8.1 Architecture overview

The specification defines message exchanges to enable an entity to have the following capabilities:

• Discover capabilities related to authorization in an endpoint.

• Discover and securely provision credentials and their policies into an endpoint.

• Securely manage endpoint state related to authorization.

• Authorize access to protected resources in an endpoint.

A large part of this architecture is the use of an Authorization process to achieve many of the capabilities listed

above. There are two Authorization processes: SPDM Endpoint Authorization Process (SEAP) and User-Specific

Authorization Process (USAP). SEAP is the process to authorize an SPDM endpoint whereas USAP authorizes an

external user.

These capabilities are built on top of well-known and established security practices across the computing industry.

The following clauses provide further details of the message exchanges related to authorization.

8.2 Authorization version

The AuthVersion field in the SELECT_AUTH_VERSION message shall indicate the version of the Authorization

specification that the format of an Authorization message conforms to.

For example, for version 1.2 of this specification, the value of AuthVersion is 0x12 , which also corresponds to an

Authorization Major Version of 1 and an Authorization Minor Version of 2.

The version of this specification can be found on the title page and in the footer of the other pages in this document.

The AuthVersionString shall be a string formed by concatenating the major version, a period (.), and the minor

version. For example, if the version of this specification is 1.2.3, then AuthVersionString is "1.2".

The AuthVersion for this version of this specification shall be 0x10 . The AuthVersionString for this version of this

specification shall be "1.0".

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 19

8.3 Authorization flows

At a high level, the authorization flow involves these processes:

• Credential provisioning

• Authorization

8.3.1 Credential provisioning overview

Credential provisioning is the process where an endpoint is securely equipped with a credential. In the context of this

specification, a credential consists of an asymmetric key pair. The specifics of the key generation are outside the

scope of the specification. For an asymmetric credential, the public portion is provisioned into the endpoint and the

private key is held securely by the Authorization initiator. The credential is also associated with a policy that

describes the privileges, scope of access, lifetime or other access related attributes, to a protected resource. This

specification defines a set of messages by which credentials and their policies can be securely provisioned into an

endpoint with protected resources, typically an SPDM endpoint.

8.3.2 Authorization overview

Authorization is the process by which an Authorization initiator, typically an SPDM endpoint, interacts with another

endpoint to gain access to a protected resource. The endpoints exchange messages defined in this specification to

discover capabilities related to authorization such as supported cryptographic algorithms, number of provisioned

credentials and other related information. To gain access to a protected resource, the endpoint with the protected

resource challenges the Authorization initiator, which signs the challenge along with a message to be authorized,

with the private key that it holds. The signature is then verified, and the credential checked against its policy, to

determine if the message has the required privileges or access to operate on the protected resource.

Note that the specification does not mandate an Authorization initiator be an SPDM endpoint, however the

interactions specified are between two SPDM endpoints. In cases where an Authorization initiator is not an SPDM

endpoint, it is expected that an SPDM endpoint acts as a proxy to the initiator to facilitate communication to the

endpoint with the protected resource.

Figure 1 — Model with SPDM endpoint as Authorization initiator shows a model where an SPDM endpoint acts as an

Authorization initiator. Figure 2 — Model with external Authorization initiator with SPDM endpoint proxy shows a

model where the Authorization initiator is an entity that is not an SPDM endpoint, but communicates with the

protected resource via a proxy SPDM endpoint.

128

129

130

131

132

133

134

135

136

137

SPDM Authorization Specification DSP0289

20 Work in Progress Version 1.0.0WIP99

Authorization Initiator Authorization Target

SPDM Secure Session

Figure 1 — Model with SPDM endpoint as Authorization initiator

Authorization Initiator SPDM Proxy Endpoint Authorization Target

SPDM Secure SessionStandard/Proprietary protocol

Figure 2 — Model with external Authorization initiator with SPDM endpoint proxy

8.4 Credentials

A credential is a cryptographic secret that identifies the Authorization initiator and allows messages sent by the

Authorization initiator to be authenticated as Authorization flows describes.

8.4.1 Identifying the Authorization initiator

This specification supports more than one Authorization initiator. There can be multiple Authorization initiators at any

given time within or across multiple secure sessions. The same Authorization initiator can be in multiple secure

sessions. This raises the need to associate a credential and authorization policies with the Authorization initiator to

which they belong. This specification uses a numeric identifier, called the Credential ID (CredentialID), to make this

association. In other words, the Credential ID identifies the Authorization initiator much like a username identifies a

person's online account.

Furthermore, for the Credential ID to identify a particular Authorization initiator, this architecture presumes the secret

portion of a credential is only accessible to the associated Authorization initiator. If this presumption does not hold,

138

139

140

141

142

143

144

145

146

147

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 21

then security issues can arise. This presumption allows this specification to use the Credential ID (CredentialID) to

represent or refer to the associated Authorization initiator.

A single Credential ID associates exactly one credential to one Authorization initiator.

An Authorization target shall support a minimum of 8 Credential IDs, and these CredentialID s shall increase

sequentially starting from 0 .

8.4.2 Credential structure

A single Table 2 — Credential structure contains all the credential information relating to a single Authorization

initiator that an Authorization target needs to know in order to properly authenticate messages requiring

authorization. Depending on the algorithm, credential information may contain secrets. However, for this version of

the specification, only asymmetric algorithms are supported and the credential structure needs only public

information, such as the public key, the exact asymmetric algorithm used, and other parameters generally deemed

public information.

Each credential structure uses the CredentialID field to associate the credential information with the corresponding

Authorization initiator.

At a minimum, the Authorization target should store credentials in integrity-protected storage. An endpoint may use

the Table 2 — Credential structure as defined in this specification or use an implementation-specific data structure to

store credentials.

The SET_CRED_ID_PARAMS request can be used to provision credentials into a credential structure as Credential

provisioning defines.

Table 2 — Credential structure describes the structure and format for a credential.

Table 2 — Credential structure

Byte offset Field Size (bytes) Description

0 CredentialID 2

A unique identifier to associate the credential

information in this structure with the corresponding

Authorization initiator.

The value of 0xFFFF shall be reserved unless other

parts of this specification define the use for this

value.

2 CredentialType 1

Shall be the type of the credential.

• 0x01. Asymmetric Key.

• All other values reserved.

Shall be 0x01 for this version of the specification.

148

149

150

151

152

153

154

155

156

157
158

SPDM Authorization Specification DSP0289

22 Work in Progress Version 1.0.0WIP99

Byte offset Field Size (bytes) Description

3 BaseAsymAlgo BaseAsymAlgoLen

The format of this field shall be as Table 70 — Base

asymmetric algorithm format defines. The value of

BaseAsymAlgoLen shall be as Common variable

names defines.

If CredentialType is 0x01 , this field shall have

exactly one bit set.

3 + BaseAsymAlgoLen BaseHashAlgo BaseHashAlgoLen

The format of this field shall be as Table 71 — Base

hash algorithm format defines. The value of

BaseHashAlgoLen shall be as Common variable

names defines.

If CredentialType is 0x01 , this field shall have

exactly one bit set.

3 + BaseAsymAlgoLen +

BaseHashAlgoLen
Reserved 4 Reserved

7 + BaseAsymAlgoLen +

BaseHashAlgoLen
CredentialDataSize 4 Size of the CredentialData field in bytes.

11 + BaseAsymAlgoLen

+ BaseHashAlgoLen
CredentialData CredentialDataSize

When CredentialType is 0x01 , the size and format

of this field shall be the same size and format as the

SubjectPublicKeyInfo structure encoded in DER

format as specified by RFC 7250.

8.4.3 Credential attributes

This section discusses various attributes that can be associated with each Credential ID. The Authorization initiator

can use the GET_CRED_ID_PARAMS to see the supported attributes and their current state for the requested Credential

ID. An Authorization target can support different attributes for different Credential IDs.

8.4.3.1 Locking and unlocking attributes

A locked credential cannot be modified by any request for the given Credential ID and its associated policy

regardless of authorization or the policy settings of the requesting Credential ID. Consequently, unlocking the

credential makes the credential and its associated policy modifiable according to the policy of the requesting

Credential ID. Furthermore, a Credential ID can lock and unlock only its own credentials and policy. In other words, a

Credential ID cannot unlock or lock the credentials and the associated policies of other Credential IDs.

A Credential ID can lock and unlock its own credential and policy only if the LockUnlockSelfPrivilege bit is set in its

own policy as Authorization policies defines.

The Authorization initiator should exercise caution before locking the credential and associated policies of a

Credential ID, because recovery of locked credentials and their associated policies is outside the scope of this

specification.

159

160

161

162

163

164

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 23

8.4.4 Credential change requirements

When the credential for a given Credential ID is changed, the new credential shall take effect immediately for that

Credential ID. Consequently, the Authorization target shall terminate all active and saved Authorization processes

using the given Credential ID.

8.5 Authorization policies

Authorization policies specify an Authorization initiator's access privileges to one or more protected resources.

All Credential IDs shall be associated with an Authorization policy. Similar to credentials, a single Credential ID

associates a set of policies to exactly one Authorization initiator. Except for initial provisioning, a Credential ID shall

not be usable for authorization without an associated policy. Each Credential ID has its own instance of policies. A

policy can be provisioned for a given Credential ID using the SET_AUTH_POLICY command. Policies should be stored

by the endpoint in integrity protected storage. An endpoint may use the Table 3 — Policy List as defined in this

specification or use an implementation-specific data structure to store authorization policies.

Table 3 — Policy List describes the structure and format for a list of policies.

Table 3 — Policy List

Byte Offset Field Size (bytes) Description

0 CredentialID 2
Shall be the Credential ID of the

Authorization initiator.

2 NumPolicies 2

Shall be the number of policies listed

in the Policies field. The value of

this field shall be at least one.

4 Policies Variable
List of policies as defined by Table 4

— Policy structure.

Table 4 — Policy structure describes the structure and format for a policy.

Table 4 — Policy structure

Byte Offset Field Size (bytes) Description

0 PolicyOwnerID LenSVH

This field shall indicate the owner of

the policy. The format of this field

shall be the same as the SVH, as

DSP0293 defines. The value of

LenSVH shall be set as Common

variable names defines.

165

166

167

168

169

170

171

172

173

SPDM Authorization Specification DSP0289

24 Work in Progress Version 1.0.0WIP99

Byte Offset Field Size (bytes) Description

LenSVH PolicyVersion 4

This field shall indicate the version of

the policy in the Policy field

associated with the Policy Owner

identified in PolicyOwnerID field. The

Policy Owner defines the format and

values of this field and its association

with its policy in the Policy field.

When the PolicyOwnerID is

DSP0289 using DMTF-DSP as the

ID in the SVH, the format of this

field shall be the same as Table 25 —

VersionNumberEntry definition

defines and the value of this field

shall be the same as the version of

this specification. Because Table 23

only defines bits [15:0], bits [31:16]

shall be zero.

4 + LenSVH PolicyLen 2 Shall be the length of Policy .

6 + LenSVH Policy PolicyLen

This field indicates the policy as

PolicyOwnerID defines. The

PolicyOwnerID shall define the size

and format of this field.

If PolicyOwnerID is DSP0289 using

DMTF-DSP as the ID in the SVH,

the structure of this field is defined in

Table 5 — DSP0289 Policy structure.

Table 5 — DSP0289 Policy structure describes the structure and format for DMTF defined policy.

Table 5 — DSP0289 Policy structure

Byte Offset Field Size (bytes) Description

0 PolicyType 2

Policy Type column in Table 6 —

DSP0289 Policy Types shall define

the value for this field.

2 PolicyLen 2

Table 7 — DSP0289 general policy

definitions shall define the value of

this field corresponding to

PolicyType .

4 PolicyValue PolicyLen

Table 7 — DSP0289 general policy

definitions shall define the value of

this field corresponding to

PolicyType .

174

175

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 25

8.5.1 DSP0289 Authorization policy

This section defines the privileges for commands, actions, and other resources that this specification defines. Each

Credential ID has an associated policy. An Authorization initiator uses the SET_AUTH_POLICY command to change the

policy associated with the Credential ID provided in the request.

This section uses the term "given Credential ID" to refer to the Credential ID used in many scenarios. In general,

there are two types of Credential IDs: the Credential ID populated in the Credential ID field, if present, of an

Authorization request message and the requesting Credential ID of a message. These two Credential IDs are not

always the same for a message. When authorizing a message, the given Credential ID is the Credential ID of the

Authorization initiator of the corresponding message. After authorization succeeds and when fulfilling the request of

an Authorization request message with a Credential ID field present, the term, given Credential ID, refers to the

Credential ID populated in the Credential ID field of the corresponding request message.

The tables in this section are structured into different field types:

• Privilege. A privilege field type is a bit field where setting a bit grants the ability to perform the corresponding

action and clearing the bit revokes the ability to perform the corresponding action.

• Allowable. An allowable field type is a bit field where setting one or more bits allows the use of one or more

characteristics (usually configuration parameters) associated with that field.

All Authorization initiators can modify their own credentials, limited by their associated Authorization policy. All

Authorization initiators can retrieve their own Authorization policy or revoke their own privileges for all fields of

Privilege field type.

Table 6 — DSP0289 Policy Types lists all the policies specific to this specification. The values in the Policy Type

column shall map to the PolicyType field as Table 5 — DSP0289 Policy structure defines.

Table 6 — DSP0289 Policy Types

Policy Type Policy Name Description

0 Reserved Reserved

1 GeneralPolicy

This policy type governs the possible actions an Authorization initiator can perform that are specific

to this specification. The format and size of PolicyValue shall be the format and size as Table 7 —

DSP0289 general policy definitions defines.

All other values Reserved All other values reserved

Table 7 — DSP0289 general policy definitions defines the credential policies for the resources (for example,

commands, and actions) that this specification defines.

176

177

178

179

180

181

182

183

184

185

SPDM Authorization Specification DSP0289

26 Work in Progress Version 1.0.0WIP99

Table 7 — DSP0289 general policy definitions

Byte Offset Field Size (bytes)
Field

Type
Description

0 AllowedBaseAlgo BaseAsymAlgoLen Allowable

The format of this field shall be as Table 70 — Base asymmetric

algorithm format defines. The value of BaseAsymAlgoLen shall be

as Common variable names defines. This field reflects the base

algorithms the given Credential ID may use.

If a bit is set, the given Credential ID shall be capable of utilizing

the corresponding algorithm when CredentialType is 1. If a bit is

not set, the given Credential ID shall be prohibited from utilizing

the corresponding algorithm.

At least one bit should be set. If no bits are set, then the given

Credential ID cannot be used.

The Authorization initiator can set any bit regardless of the

supported asymmetric algorithm. The Authorization target shall

accept and retain any bit that is set by the Authorization initiator.

BaseAsymAlgoLen AllowedBaseHashAlgo BaseHashAlgoLen Allowable

The format of this field shall be as Table 71 — Base hash

algorithm format defines. The value of BaseHashAlgoLen shall be

as Common variable names defines. This field reflects the base

hash algorithms the given Credential ID may use.

If a bit is set, the given Credential ID shall be capable of utilizing

the corresponding hash when CredentialType is 1. If a bit is not

set, the given Credential ID shall be prohibited from utilizing the

corresponding hash.

At least one bit should be set. If no bits are set, then

CredentialType = 1 cannot be used.

The Authorization initiator can set any bit regardless of the

supported hash algorithm. The Authorization target shall accept

and retain any bit that is set by the Authorization initiator.

BaseAsymAlgoLen

+

BaseHashAlgoLen

CredentialPrivileges 4
The format of this field shall be as Table 8 — DSP0289

Authorization policy bit definitions defines.

4 +

BaseAsymAlgoLen

+

BaseHashAlgoLen

AuthProcessPrivileges 1

The format of this field shall be as Table 9 — DSP0289

Authorization process policy bit definitions defines.

At least one bit should be set for the Authorization target to

authorize any messages for the given Credential ID. Thus, when

no bits are set, the Authorization target cannot authorize any

messages for the given Credential ID which effectively disables

the use of the given Credential ID.

Table 8 — DSP0289 Authorization policy bit definitions defines the credentials provisioning policies.

186

187

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 27

Table 8 — DSP0289 Authorization policy bit definitions

Byte

Offset

Bit

Offset
Field

Field

Type
Description

0 0 ModifyOtherCredentialParamPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of

modifying the Credential ID parameters of other Credential IDs

through the SET_CRED_ID_PARAMS request using the

ParameterChange operation.

0 1 QueryOtherCredentialParamPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of

retrieving the Credential ID parameters of other Credential IDs

through the GET_CRED_ID_PARAMS request.

0 2 GrantOtherPolicyPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of

granting privileges for all fields of the Privilege field type for other

Credential IDs through the SET_AUTH_POLICY request.

Also, setting this bit allows the given Credential ID to modify all

fields of Allowable field type in any manner.

If this bit is set, the QueryPolicyPrivilege shall also be set.

0 3 RevokeOtherPolicyPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of

revoking privileges for all fields of the Privilege field type for other

Credential IDs through the SET_AUTH_POLICY request.

If this bit is set, the QueryPolicyPrivilege shall also be set.

0 4 QueryPolicyPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of

retrieving the Authorization policy of other Credential IDs through

the GET_AUTH_POLICY request.

0 5 ResetToDefaultsPrivilege Privilege
If this bit is set, the given Credential ID shall be capable of using

the AUTH_RESET_TO_DEFAULT request.

0 6 LockUnlockSelfPrivilege Privilege

When this bit is set, the given Credential ID shall be capable of

locking or unlocking its own Credential parameters and its policy.

Note that this specification does not support a Credential ID being

able to lock or unlock the Credential parameters and policies of

other Credential IDs.

0 7 RetrieveAuthProcListPrivilege Privilege

When this bit is set, the given Credential ID shall be capable of

retrieving the Authorization process information of other

Credential IDs using the GET_AUTH_PROCESSES request.

1 0 KillAuthProcPrivilege Privilege

When this bit is set, the given Credential ID shall be capable of

terminating the Authorization process of any unlocked Credential

ID using the KILL_AUTH_PROCESS request.

1 [7:1] Reserved Reserved Reserved

2-3 All bits Reserved Reserved Reserved

188

SPDM Authorization Specification DSP0289

28 Work in Progress Version 1.0.0WIP99

Table 9 — DSP0289 Authorization process policy bit definitions defines the Authorization process policies.

Table 9 — DSP0289 Authorization process policy bit definitions

Byte

Offset
Bit Offset Field Field Type Description

0 0 PrivilegeSEAP Privilege
If this bit is set, the given Credential ID shall be capable of invoking the

SEAP process as an Authorization initiator.

0 1 PrivilegeUSAP Privilege
If this bit is set, the given Credential ID shall be capable of being a user in

the USAP Process.

0 2 PrivilegePersistUSAS Privilege

If this bit is set, the given Credential ID shall be capable of persisting its

own USAS as USAS continuation defines. If this bit is set, the

PrivilegeUSAP bit shall also be set.

0 [7:3] Reserved Reserved Reserved

8.5.1.1 DSP0289 Authorization policy changes requirements

When changing the Authorization policy for a given Credential ID, the new policy settings shall take effect

immediately for that Credential ID. The Authorization target should enforce the new policy in the least-invasive

manner possible. For example, if the new settings grant or revoke a privilege in the

ModifyOtherCredentialParamPrivilege field, the Authorization target can apply the new settings to incoming

messages without ending an active Authorization process. As another example, if a bit is cleared in AllowedBaseAlgo

and if an active Authorization process is using the corresponding asymmetric algorithm, then the Authorization target

will have to fail authorization for all messages requiring authorization for the affected Credential ID, unless the

affected Credential ID changes its own Credential ID parameters to comply with the new policy.

Here are some specific policy change requirements. If a new policy clears a bit in an Allowable field type and the

current Credential ID parameters associated with that Credential ID use the corresponding bit, the Authorization

target shall still allow the Authorization initiator to use the existing Credential ID parameters to change the

parameters to comply with the new policy through SET_CRED_ID_PARAMS and GET_CRED_ID_PARAMS while failing

authorization for all other messages requiring authorization.

The Authorization target can return an AUTH_ERROR message with ErrorCode=TermAuthProc for the corresponding

CredentialID to notify the Authorization initiator that the corresponding Authorization processes are terminated.

8.5.1.2 DSP0289 additional Authorization policy requirements

An Authorization initiator should initially configure the Authorization policy for a given Credential ID using the

SET_AUTH_POLICY request before initially setting the Credential ID parameters via SET_CRED_ID_PARAMS request for the

same Credential ID.

8.5.2 Policy attributes

This section describes attributes associated with policies. The Authorization initiator can use GET_AUTH_POLICY to

189

190

191

192

193

194

195

196

197

198

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 29

read the supported attributes and their current state for the requested Credential ID. An Authorization target can

support different attributes for different Credential IDs.

See Locking and unlocking attributes for attribute details applicable to policy.

8.6 Initial provisioning

Initial provisioning covers provisioning requirements needed by entities in the supply chain and the Owner of the

Authorization target. Provisioning is the process of setting up persistent authorization data, such as Credential ID

parameters and associated policies.

The Authorization initiator can discover the device provisioning state by issuing a GET_AUTH_CAPABILITIES request

and checking the DeviceProvisioningState field in the response.

8.6.1 Supply chain provisioning

As the Authorization target traverses the many entities involved in the manufacturing and distribution of the

Authorization target, which in whole is called the supply chain, each entity may need to provision one or more

Credential IDs with their credentials and associated policies for many scenarios such as in-the-field debugging or

return merchandise authorization. Details of these scenarios are outside the scope of this specification.

When the supply chain entity provisions a Credential ID, that entity should utilize the highest numerically available

and lockable Credential ID that the Authorization target supports. When the supply chain entity completes

provisioning, that entity can decide to lock the provisioning for its Credential IDs so that it is modifiable only by that

supply chain entity itself. If the supply chain entity does not lock its provisioning, the Owner can modify those

credentials and policy associated with that Credential ID.

Supply chain entities shall not issue the TAKE_OWNERSHIP request because this can prevent the Owner from

completing its provisioning.

8.6.2 Default state

The default state is the state of the Authorization target where ownership has not been taken, authorization is not

enforced for unlocked Credential IDs, and only locked credentials remain, if any. In this state, supply chain entities

are expected to have locked their provisioned credentials and associated policies. The Authorization target uses

locked provisioning as an indicator of those Credential IDs provisioned by a supply chain entity that should not be

modified by others.

8.6.3 Default state and additional supply chain requirements

This section defines requirements for an Authorization target in the default state and the state of the Authorization

target as it traverses the supply chain.

While the Authorization target is in the default state or as it traverses through the supply chain, messages, including

messages from other protocols or from entities other than the Authorization initiator, can still flow to the Authorization

199

200

201

202

203

204

205

206

207

208

209

210

211

SPDM Authorization Specification DSP0289

30 Work in Progress Version 1.0.0WIP99

target over multiple transports. To ensure proper setup of the Authorization target and its protected resources, the

Authorization target shall fail authorization of all messages requiring authorization, with the following exceptions:

• The Authorization target shall verify authorization for these messages:

◦ All messages requiring authorization that retrieve or modify protected resources associated with the locked

Credential ID

◦ A SET_CRED_ID_PARAMS message when locking or unlocking Credential IDs

◦ A TAKE_OWNERSHIP request message

• The Authorization target shall bypass authorization verification for Authorization messages described in

Credential provisioning and in Authorization policy provisioning and management and for

AUTH_RESET_TO_DEFAULT messages for unlocked Credential IDs. In these cases, the Authorization target shall not

require an Authorization process to occur. In other words, the Authorization target shall fulfill the request without

requiring credentials if no other error occurs.

8.6.4 Taking ownership

Taking ownership is the Owner performing its initial provisioning of the Authorization target. Taking ownership is

important to ensure proper operation of the Authorization target in the operational environment of the Owner.

While the Authorization target is in the default state, an Authorization initiator can modify both the Credential ID

parameters and Authorization policy of all unlocked Credential IDs without credentials and as many times as the

Owner needs as the Default state and additional supply chain requirements section defines. Once the Owner finishes

its initial provisioning, the Authorization initiator shall issue the TAKE_OWNERSHIP request to exit the default state and

enter an operational state where authorization is fully enforced for all messages.

The Owner should check provisioning of all Credential IDs to ensure they are provisioned as expected before

sending the TAKE_OWNERSHIP request.

Lastly, an Authorization target can return to the default state using the AUTH_RESET_TO_DEFAULT request if the

requesting Credential ID's Authorization policy permits.

8.6.5 Other provisioning considerations

This section discusses general provisioning considerations or requirements.

Provisioning of credentials and associated policies in the default state or throughout the supply chain should be done

only in a trusted environment (such as a secure production sandbox environment or secure manufacturing). If

messages used for provisioning are exchanged outside an SPDM session, there are additional factors and any

binding specification that allows such exchanges should ensure there are no gaps in functionality. After taking

ownership, an Owner can provision in a trusted environment or use a credential already provisioned to authorize

provisioning of other Credential ID parameters or their associated policies in an untrusted environment.

During and after initial provisioning, the supply chain and the Owner can configure one or more Credential IDs to

have the highest privilege levels or assign privileges across two or more Credential IDs. Furthermore, the Owner can

configure privileges in such a way that significantly restricts operation of the Authorization target; recovery from such

a state is outside the scope of this specification.

212
213

214

215

216

217

218

219

220

221

222

223

224

225

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 31

8.7 Discovery

This section describes the methodology to discover support information for an SPDM endpoint as an Authorization

target. The discovery process has two phases: an announcement phase followed by the Discover-Select Flow phase.

In the announcement phase, an Authorization target announces itself at the start of a secure session, such as the

Handshake phase of an SPDM session. For an SPDM session, if an SPDM Requester is an Authorization target, the

SPDM Requester shall populate the AUTH_HELLO AODS in the Session-Secrets-Exchange request. Likewise, if an

SPDM Responder is an Authorization target, the SPDM Responder shall populate the AUTH_HELLO AODS in the

Session-Secrets-Exchange response.

The next phase is the Discover-Select Flow phase and this phase only occurs after a secure session is fully

established, such as in the Application phase of an SPDM session. If the Authorization initiator receives an

AUTH_HELLO AODS in an SPDM session, the Authorization initiator can begin this phase by issuing the

GET_AUTH_VERSION message, followed by the SELECT_AUTH_VERSION and ending with GET_AUTH_CAPABILITIES . The

GET_AUTH_VERSION request can be issued at any time and may be skipped if the version information is already known.

The GET_AUTH_CAPABILITIES request, if issued, shall always follow the successful completion of the

SELECT_AUTH_VERSION request.

The Discover-Select Flow phase does not need to fully complete for every secure session. However, the

Authorization initiator shall send a successful SELECT_AUTH_VERSION request in every secure session. The Discover-

Select Flow phase should fully complete between the Authorization initiator and Authorization target in at least one

secure session. Furthermore, for each secure session, the Authorization target shall return an AUTH_ERROR response

with ErrorCode=UnexpectedRequest to all Authorization requests other than GET_AUTH_VERSION and

SELECT_AUTH_VERSION requests until successfully fulfilling a SELECT_AUTH_VERSION request for the corresponding

secure session.

The Authorization initiator should only send exactly one successful SELECT_AUTH_VERSION request. If the Authorization

target receives additional SELECT_AUTH_VERSION requests after a version is already selected and the additional

requests change the selected version, the Authorization target shall respond with an AUTH_ERROR of

ErrorCode=InvalidRequest . Otherwise, it shall respond with SELECT_AUTH_VERSION_RSP because the subsequent

requests could be a retry.

Figure 3 — Most common discovery phase illustrates the most common discovery methodology for an SPDM

Responder that is an Authorization target.

226

227

228

229

230

231

232

SPDM Authorization Specification DSP0289

32 Work in Progress Version 1.0.0WIP99

Session-Secrets-Exchange
Request

Session-Secrets-Exchange
Response

Session-Secrets-Finish
Request and Response

GET_AUTH_VERSION
AUTH_VERSIONS

SELECT_AUTH_VERSION
SELECT_AUTH_VERSION_RSP

Discover-Select
Flow

SPDM
Requester

SPDM
Responder

Legend:

Authenticated and
Encrypted Session

Opaque Data Structure

AUTH_HELLOAUTH_HELLO

GET_AUTH_CAPABILITIES
AUTH_CAPBALITIES

Figure 3 — Most common discovery phase

8.8 Authorization process

The Authorization process is the process by which an Authorization target grants or denies access to a protected

resource based on policy.

Prior to the Authorization process, the Authorization target should have credentials and policy provisioned

appropriate to its usage model. Otherwise, the Authorization target may inappropriately grant or deny access. See

Credential provisioning and Authorization policy provisioning and management for details.

To properly prepare for the execution of the Authorization process, an Authorization initiator shall successfully

establish a secure session such as an SPDM session as DSP0274 defines or use an already established secure

session.

The Authorization process establishes an authorization session and allows for establishing different types of

authorization sessions. This specification supports these Authorization processes:

• User-Specific Authorization Process

• SPDM Endpoint Authorization Process

8.8.1 User-Specific Authorization Process (USAP)

The User-Specific Authorization process occurs completely within a secure session. This process establishes an

233

234

235

236

237

238

239

240

241

242

243

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 33

authorization session bound to the user. Thus, one or more User-specific authorization sessions can occur

simultaneously within a secure session, and the Authorization session identifier shall be the Credential ID of the

corresponding User.

The USAP starts with the Discovery-Select flow as Discovery defines. To ensure the Authorization initiator has

current information, in each secure session the Authorization initiator should perform the Discovery-Select flow

completely before the first User-Specific Authorization session.

To establish a User-Specific Authorization session, the Authorization initiator shall send a START_AUTH request to the

target with the User's corresponding information and the Authorization target shall respond with START_AUTH_RSP for a

successful response. This request and response pair is important for these reasons:

• It elevates the privilege level of the secure session for that specific User. This portion of a secure session is

called an Authorization session.

• It initializes critical cryptographic parameters for the authorization session. Messages that traverse the

authorization session can be messages of any protocol and are not restricted to SPDM or Authorization

messages.

• It enables the message format of all messages using the authorization session to accommodate authorization

data for the corresponding User. The format for such messages is defined in Authorization record.

The successful completion of the START_AUTH request and START_AUTH_RSP response establishes the Authorization

session for the corresponding User. While the authorization session is active, messages requiring authorization shall

contain authorization data, called the Authorization tag, for the corresponding User. When the Authorization target

receives a message from any protocol in the corresponding secure session, the Authorization target shall determine

whether the message requires authorization regardless of whether the message contains an Authorization tag. If a

message requires authorization, the Authorization target shall validate the Authorization tag according to the

provisioned credentials, associated policies, and the User associated with the corresponding Authorization session.

Upon successful validation of the Authorization tag, the Authorization target shall process the message accordingly. If

a message requiring authorization does not contain an Authorization tag or if the validation of the Authorization tag

fails, the Authorization target shall take one of these actions:

• Respond with an AUTH_ERROR message

• Respond with the corresponding protocol-specific error

• Silently discard the message

Even in error scenarios, the Authorization target still processes the Authorization tag, if present, as USAP

Authorization record details. For messages that do not require authorization, the Authorization target can process the

message according to the definitions of its respective protocol.

The User-Specific Authorization session shall terminate for the corresponding User when the Authorization target

receives an END_AUTH request from the Authorization initiator or the corresponding secure session terminates. The

termination of the Authorization session restores a secure session to its original privilege level for that User.

Additionally, the termination of a User-Specific Authorization session does not end the corresponding secure session.

The termination of a USAS does not terminate the processing of received messages to completion according to the

definition of their respective protocol and this specification by the Authorization target.

Figure 4 — Authorization process illustrates an example of the User-Specific Authorization process using an SPDM

session.

244

245

246

247

248

249

250

251

252

253

254

255

SPDM Authorization Specification DSP0289

34 Work in Progress Version 1.0.0WIP99

…

Session-Secrets-Exchange

Session-Secrets-Finish

Various Protocol-Specific Messages

Discover-Select
Flow

Protocol-Specific Messages
Requiring Authorization

Many More Protocol-Specific
Messages Requiring or not

Requiring Authorization

SET_CERTIFICATE SPDM
Request (requires Authorization)

Get Firmware Version
Proprietary Protocol

Request (No Authorization Required)

Protocol-Specific Messages
Not Requiring Authorization

START_AUTH

START_AUTH_RSP

END_AUTH

END_AUTH_RSP

SPDM
Requester

SPDM
Responder

Legend:

Authenticated and
Encrypted Session

User-Specific
Authorization Session

Figure 4 — Authorization process

8.8.1.1 General USAP error handling, requirements, and notes

A User is identified by its Credential ID. The START_AUTH , END_AUTH , and the Authorization record contain the

Credential ID of the user.

256

257

258

259

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 35

A User shall have only one Authorization session active at a time within its corresponding secure session. Therefore,

a START_AUTH request shall be prohibited for the same User when the User has a corresponding active User-Specific

Authorization session. The User-Specific Authorization shall be terminated before another START_AUTH request can

be issued. If a START_AUTH is received for a User with a corresponding active User-Specific Authorization Session,

the Authorization target shall either respond with an AUTH_ERROR or silently discard the request.

A User can repeat the User-Specific Authorization Process as many times as it deems necessary as long as each

iteration of the process starts and ends as User-Specific Authorization Process defines. Additionally, the

Authorization target can limit the number of simultaneous active User-Specific Authorization sessions for a given

secure session.

If the Authorization target receives a message with an Authorization tag but the message does not require an

Authorization tag, the Authorization target shall still process the Authorization tag as this specification defines.

8.8.1.2 USAS continuation

USAS continuation allows a Credential ID to continue a prior USAS from where it ended, if supported by the

Authorization target as indicated by PermPersistCap or ResetPersistCap in the AUTH_CAPABILITIES response. USAS

continuation is similar to save and load operations common in numerous consumer applications. To save the USAS,

the Authorization initiator sets the [END_AUTH] . Attributes / PersistMethod as desired. To restore the USAS, the

Authorization initiator sets the [START_AUTH] . Attributes / Continue accordingly. See Authorization process

management for more details.

On a request to persist, both the Authorization target and Authorization initiator shall persist the USAS information

corresponding to the END_AUTH request. The USAS information shall be as follows:

• Authorization initiator nonce

• Authorization target nonce

• SavedSequenceNumber

• Credential ID

The SavedSequenceNumber shall be calculated as: the last-used sequence number in the USAP Authorization tag plus

1. To ensure the correct sequence number is saved, the User should ensure completion of all messages containing

an Authorization tag before issuing the END_AUTH request for the USAS corresponding to that User.

Once a saved USAS is continued, the USAS becomes active and is no longer a saved USAS. However, the

Authorization target should wait for at least one successfully authorized message before erasing the saved USAS

information from its persistent storage. See [END_AUTH] . Attributes / PersistMethod for additional requirements.

If a saved USAS cannot be continued for any reason, the Authorization target shall still preserve the USAS according

to its original persistence method. The preserved USAS shall be saved until the Authorization target receives a

KILL_AUTH_PROCESS request from the Authorization initiator. To ensure maximum compatibility, the Authorization

initiator should select the same Authorization version as the saved USAS for the corresponding secured session.

Additionally, the Authorization target shall persist no more than one USAS per Credential ID at a time.

The PrivilegePersistUSAS privilege governs the ability of USAS continuation for the given Credential ID.

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

SPDM Authorization Specification DSP0289

36 Work in Progress Version 1.0.0WIP99

8.8.2 SPDM Endpoint Authorization Process (SEAP)

The SPDM Endpoint Authorization Process (SEAP) is a process that specifically authorizes an SPDM Requester or

both SPDM endpoints in an SPDM session. If SEAP authorizes only the SPDM Requester, then the SPDM

Requester plays the role of the Authorization initiator. If SEAP authorizes both endpoints, then the SPDM Requester

and SPDM Responder can play the role of either an Authorization initiator or an Authorization target at any time

within the session.

SEAP requires SPDM mutual authentication as SPDM defines. This version of the specification only supports

asymmetric algorithms and, therefore, SEAP supports secure session establishment only through SPDM

KEY_EXCHANGE . Additionally, SPDM mutual authentication can use certificates or a raw public key.

SEAP is broken into two parts as Figure 5 — SPDM Endpoint Authorization Process (SEAP) illustrates. The first part

occurs during the Session handshake phase as SPDM defines. The second part occurs during the SPDM Application

phase.

The first part of SEAP begins with a Session-Secrets-Exchange request. If an SPDM Requester wants to invoke this

Authorization process, the SPDM Requester shall add the INVOKE_SEAP data structure to the OpaqueData field of a

Session-Secrets-Exchange request. Additionally, if the SPDM Responder wants to send messages requiring

authorization to the SPDM Requester using SEAP in the same session, the SPDM Responder shall also add the

INVOKE_SEAP data structure to the OpaqueData field of the Session-Secrets-Exchange response. Lastly, the SPDM

endpoints shall populate all fields appropriately in a Session-Secrets-Exchange request and response message to

perform mutual authentication.

The first part of SEAP ends with the Session-Secrets-Finish message exchange. If the SPDM Requester

successfully authenticates and finds a matching Credential ID for the SPDM Responder, the SPDM Requester shall

populate the SEAP_SUCCESS data structure in the OpaqueData field of the Session-Secrets-Finish request. Likewise, if

the SPDM Responder successfully authenticates and finds a matching Credential ID for the SPDM Requester, the

SPDM Responder shall populate the SEAP_SUCCESS data structure in the OpaqueData field of the Session-Secrets-

Finish response. Otherwise, if there is a failure or if the OpaqueData field does not exist, the SEAP_SUCCESS data

structure in either the request or the response depending of which endpoint failed shall be absent. A failure of the

SEAP process does not end the SPDM session.

A matching Credential ID has three different definitions depending on ownership and lock Credential ID status. They

are as follows:

• Ownership Taken: A matching Credential ID is a supported Credential ID whose credential parameters and

policies are properly provisioned and whose public key matches that of the leaf certificate or raw public key of

the Authorization initiator used to authenticate the Authorization initiator.

• Ownership Not Taken: A matching Credential ID is a supported Credential ID whose credential parameters and

policies may not be properly or fully provisioned.

• Locked Credential IDs. A matching Credential ID is the same definition as a matching Credential ID in the

Ownership Taken case regardless of ownership status.

Before the second part of SEAP can begin, the Authorization initiator performs the Discovery-Select flow as the

Discovery section defines. The Authorization initiator should completely perform the Discovery-Select flow before the

275

276

277

278

279

280

281

282

283

284

285

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 37

second part of SEAP in each SPDM session to ensure the Authorization initiator has the current information.

Additionally, the SPDM Requester and the SPDM Responder may not support the same versions or capabilities even

though they can be both Authorization initiators in the same session.

The second part of SEAP can begin at any time during the SPDM application phase. Additionally, the second part of

SEAP can occur as many times as needed in the corresponding SPDM session. To initiate the second part of SEAP,

the Authorization initiator shall send an ELEVATE_PRIVILEGE request and the Authorization target shall respond with

PRIVILEGE_ELEVATED for a successful response. This request and response pair elevates the privilege level of the

SPDM session for the Authorization initiator for all subsequent messages until the privilege level is lowered. An

Authorization target shall return an AUTH_ERROR if there is a failure in authorization during the first part of SEAP (that

is, if the SEAP_SUCCESS was absent for the corresponding Authorization initiator).

This portion of an SPDM session is called an Authorization session. In SEAP, at most two Authorization sessions can

occur at any time simultaneously in the corresponding SPDM session. One Authorization session would be for the

SPDM Requester who is acting as an Authorization initiator and the other Authorization session would be for the

SPDM Responder who is acting as an Authorization initiator.

The successful completion of this request and response establishes the Authorization session for the corresponding

Authorization initiator. In an Authorization session, when the Authorization target receives a message from any

protocol in the corresponding SPDM session, the Authorization target shall determine if the message requires

authorization or not. If a message requires authorization, the Authorization target shall validate the message

according to the provisioned policies associated with the corresponding Authorization initiator. Upon successful

validation of the message, the Authorization target shall process the message accordingly. If the validation of the

message fails, the Authorization target shall take one of these actions:

• Respond with an AUTH_ERROR message

• Respond with the corresponding protocol-specific error

• Silently discard the message

For messages that do not require authorization, the Authorization target can process the message accordingly.

The Authorization session shall terminate for the corresponding Authorization initiator when the Authorization target

receives an END_ELEVATED_PRIVILEGE request from the Authorization initiator or the corresponding SPDM session

terminates. The termination of the Authorization session restores an SPDM session to its original privilege level for

that Authorization initiator. The termination of a SEAP Authorization session does not end the corresponding SPDM

session. The termination of a SEAP Authorization session does not terminate the processing of received messages

to completion according to the definition of their respective protocol and this specification by the Authorization target.

Figure 5 — SPDM Endpoint Authorization Process (SEAP) illustrates the SPDM Endpoint Authorization Process

(SEAP). Note, for simplicity, the figure does not illustrate all the required AODS during the SPDM handshake. See

Authorization Opaque Data Structures for details on all AODS.

286

287

288

289

290

291

292

293

294

SPDM Authorization Specification DSP0289

38 Work in Progress Version 1.0.0WIP99

…

Session-Secrets-Exchange
Request

Session-Secrets-Exchange
Response

Session-Secrets-Finish
Request

Session-Secrets-Finish
Response

Various Protocol-Specific Messages

Session-Based Mutual Authentication

Discover-Select
Flow

Protocol-Specific Messages
Requiring Authorization

Many More Protocol-Specific
Messages Requiring or not

Requiring Authorization

SET_CERTIFICATE SPDM
Request (requires Authorization)

Get Firmware Version
Proprietary Protocol

Request (No Authorization Required)

Protocol-Specific Messages
Not Requiring Authorization

ELEVATE_PRIVILEGE

PRIVILEGE_ELEVATED

END_ELEVATED_PRIVILEGE

ELEVATED_PRIVILEGE_ENDED

SPDM
Requester

SPDM
Responder

Legend:

Authenticated and
Encrypted Session

SEAP
Authorization Session

Opaque Data Structure
when
SPDM Responder is
Authorization Initiator

Opaque Data Structure
when
SPDM Requester is
Authorization Initiator

INVOKE_SEAP
INVOKE_SEAPINVOKE_SEAP

SEAP_SUCCESS
SEAP_SUCCESS

Figure 5 — SPDM Endpoint Authorization Process (SEAP)

295

296

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 39

8.8.2.1 SEAP error handling, requirements, and notes

If the INVOKE_SEAP data structure is absent in the Session-Secrets-Exchange request, then the SEAP_SUCCESS shall

be absent in the OpaqueData field of the corresponding Session-Secrets-Finish response. Likewise, if the

INVOKE_SEAP data structure is absent in the Session-Secrets-Exchange response, then the SEAP_SUCCESS shall be

absent in the OpaqueData field of the corresponding Session-Secrets-Finish request.

If SEAP uses SPDM version 1.3 or earlier, then SEAP_SUCCESS cannot be supported because there is no OpaqueData

field in the Session-Secrets-Finish message. Thus, if the first part of SEAP fails, the Authorization target shall return

an AUTH_ERROR using ErrorCode=OperationFailed for the ELEVATE_PRIVILEGE request in all versions of SPDM.

If an SPDM session uses SEAP, then that session cannot use USAP because it is not possible to differentiate the

Authorization initiator of a message requiring authorization especially when an Authorization tag is not present.

Specifically, if an Authorization initiator invokes SEAP, then the Authorization target shall prohibit the use of USAP in

the corresponding SPDM session.

If INVOKE_SEAP is present in a Session-Secrets-Exchange message, it shall be present exactly once.

8.8.3 Terminating Authorization process

There are two types of Authorization process termination. The first type is natural termination in which the

Authorization initiator sends an end Authorization process request such as END_AUTH to the Authorization target. The

other type is forced termination. Both types achieve the same effect, except for the case in which the Authorization

process is preserved. An Authorization process can only be preserved through natural termination.

Note that other parts of this specification use forced termination.

In cases that do not preserve an Authorization process or that kill a saved Authorization process, terminating an

Authorization process destroys all metadata (for example, nonce, sequence numbers) associated with that

Authorization process and returns the associated Credential ID to an unprivileged state where all messages requiring

authorization fail authorization checks. The affected Credential ID can start a new Authorization process afterward.

8.8.4 Other error handling, requirements, and notes

When an Authorization session is not active in a secure session for a given User or Authorization initiator, the

processing of messages, regardless of whether they require authorization, is outside the scope of this specification

but likely follows the definitions of its respective protocol. From an authorization perspective, however, this

specification recommends one of these three options:

• Have the Authorization target use another form of authorization, which is outside the scope of this specification

• Respond with an AUTH_ERROR response for all messages requiring authorization

• Silently discard the message

Authorization sessions do not limit the types of messages that can traverse a secure session, but rather they enable

explicit validation of authority for all messages according to provisioned credentials and policies. Furthermore, this

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

SPDM Authorization Specification DSP0289

40 Work in Progress Version 1.0.0WIP99

specification strongly recommends that messages requiring authorization be denied access for Users or

Authorization entities outside of an Authorization session.

The use of the same Credential ID across multiple secure sessions can occur at any time, including simultaneously.

The Authorization target and Authorization initiator shall ensure that authorization data associated with a given

Credential ID is bound to their respective secure session and Authorization session. In other words, the authorization

data cannot be reused in another secure session. Here is a small example involving SPDM sessions: the sequence

number, Authorization tag, or nonce that is bound to SPDM session ID 33 cannot be used again in SPDM session ID

88.

8.9 Authorization record

An Authorization record is a wrapper structure that carries authorization information and the message itself for

messages requiring authorization. The Authorization record provides the transport with a protocol-agnostic way to

send and receive messages requiring authorization.

Table 10 — Authorization record format shows the Authorization record format:

Table 10 — Authorization record format

Byte offset Field Size (bytes) Description

0 AuthRecordType 1
Specifies the record type. The values in this field shall be the values

defined in Table 11 — Authorization record types.

1 Reserved 1 Reserved

2 GenericPayloadLen 4 Length, in bytes, of GenericPayload .

6 GenericPayload GenericPayloadLen The format of this field shall be as specified by the AuthRecordType .

Table 11 — Authorization record types shows the supported Authorization record types.

Table 11 — Authorization record types

Value Description

0

Authorization message. The GenericPayload field shall contain an Authorization message that this

specification defines and which does not require authorization. The size and format of this field shall be the

size and format of the specific Authorization message.

1

Encapsulated message requiring authorization. The GenericPayload field shall contain data in the format

specified by Table 12 — Generic Authorization Record Type Format for Messages Requiring Authorization.

When using DSP0277 as the transport, the format and size of the MsgToAuthPayload field shall be the same

as the Application data as DSP0277 defines. Otherwise, the format and size of the MsgToAuthPayload field

are specific to the message protocol or the transport.

312

313

314

315

316

317

318

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 41

Value Description

2

Record Error. The GenericPayload field shall contain data in the format specified by Table 13 — Type 2

Authorization Record Failure.

The Authorization target can use this record type to convey errors associated with the Authorization record or

AUTH record over SPDM VDM. It can also silently discard the Authorization record or AUTH record over

SPDM VDM.

3

DSP0289-defined Authorization messages requiring authorization.

The GenericPayload field shall contain data in the format specified by Table 12 — Generic Authorization

Record Type Format for Messages Requiring Authorization. Additionally, the size and format of the

MsgToAuthPayload field in the Message Requiring Authorization Record shall be the same format and size as

an Authorization message.

This Authorization record type is strictly for Authorization messages requiring authorization.

All other values Reserved

8.9.1 Authorization record on the transport

While the Authorization record can traverse any transport, there are some requirements the transport should define.

The transport should define at least one mechanism to indicate the presence and absence of the Authorization

record, so that it can be identified and forwarded to the authorization logic for further processing. For example, this

can be accomplished through a single bit indicating presence or by stating that the Authorization record is always

present. The transport can also choose to use the mechanism defined in Authorization record over SPDM Vendor-

Defined Messages (VDM) to transmit the Authorization record since this may help prevent significant modifications to

the transport.

The transport can provide additional requirements, changes, or constraints, if any.

8.9.2 Authorization types

This section defines the format and requirements for all Authorization record types.

8.9.2.1 Authorization record in Authorization process

This section gives additional details on the Authorization records specific to each Authorization process.

8.9.2.1.1 USAP Authorization record

This section defines requirements for all messages requiring authorization in USAP. These are the requirements for

all messages requiring authorization in USAP:

• The Authorization record shall be present for all messages requiring authorization.

• The Authorization record shall be transmitted exclusively from the Authorization initiator to the Authorization

319

320

321

322

323

324

325

326

327

328

329

SPDM Authorization Specification DSP0289

42 Work in Progress Version 1.0.0WIP99

target, and transmission in the opposite direction is prohibited.

• For messages not requiring authorization in USAP, the transport can use the Authorization record. If the

Authorization record is used for messages not requiring authorization, the AuthRecordType shall be set to 0.

Table 12 — Generic Authorization Record Type Format for Messages Requiring Authorization shows the format for

the GenericPayload field when AuthRecordType is 1:

Table 12 — Generic Authorization Record Type Format for Messages Requiring Authorization

Byte offset Field Size (bytes) Description

0 AuthRecID 4

This field indicates a unique number for this Authorization

record. The Authorization endpoints use this number for

message tracking and error-handling purposes.

The value of this field should increment by 1. Values can repeat

as long as the Authorization initiator ensures that the

Authorization target finishes authorization checks on this

process.

The value 0xFFFF_FFFF shall not be used.

4 AuthTagLen 4
This field shall contain the length, in bytes, of AuthTag . The

value of this field shall be greater than zero.

8 AuthTag AuthTagLen
This field shall contain the Authorization tag for the

MsgToAuthPayload .

8 + AuthTagLen MsgToAuthPayloadLen 4
Shall be the length, in bytes, of MsgToAuthPayload . The value of

this field shall be greater than zero.

12 + AuthTagLen MsgToAuthPayload MsgToAuthPayloadLen

Shall contain the message requiring authorization. The message

can be a message of any protocol. The format and size of this

field are specific to the message protocol.

For Authorization messages, this field shall only contain

Authorization requests. The size and format shall be the size

and format of the respective Authorization request.

8.9.2.1.2 SEAP Authorization record

The transport shall specify its use of an Authorization record.

8.9.2.2 Authorization record Failures

The Authorization target can send an Authorization record with an Authorization tag verification failure type (Type 2)

to indicate an authorization verification failure.

330

331

332

333

334

335

336

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 43

Table 13 — Type 2 Authorization Record Failure

Byte offset Field Size (bytes) Description

0 ErrorAuthRecID 4

Shall be the AuthRecID of the Authorization record that contains the error. If the

AuthRecID is not known, such as when a message requiring authorization does not

have an Authorization tag, the value of this field shall be 0xFFFF_FFFF.

4 AuthRecErrorInfo Len0

This field contains the error information. The format and size of this field shall be the

same as AUTH_ERROR response.

Note, Type 2 can use only certain types of ErrorCode s.

8.10 Authorization tag

The Authorization tag is the cryptographic data that accompanies a message that requires authorization. An

Authorization tag may or may not be present in every Authorization process or in every message. The Authorization

record embeds the Authorization tag. This section details the Authorization tag for each Authorization process.

Furthermore, Authorization tags support only asymmetric signature algorithms.

8.10.1 SEAP Authorization tag

The Authorization tag is not present in SEAP, as SEAP Authorization record discusses. The Credential ID to use for

SEAP shall be the one provided in the INVOKE_SEAP AODS.

8.10.2 USAP Authorization tag

This section provides details about the Authorization tag in a USAP.

In a User-specific authorization session, the Authorization tag identifies the user requesting authorization.

Specifically, the Authorization tag contains a Credential ID that numerically identifies the User and verifiable

cryptographic information that authenticates the user to ensure the message came from the corresponding User.

8.10.2.1 USAP Authorization tag format

The format and size for the AuthTag in the Authorization record shall be the format and size as Table 14 —

Authorization tag format defines.

Table 14 — Authorization tag format shows the format for the USAP Authorization tag.

Table 14 — Authorization tag format

Byte offset Field Size (bytes) Description

0 CredentialID 2 Shall be the Credential ID of an active User-Specific Authorization session.

337

338

339

340

341

342

343

344

345

346

347

348

349

SPDM Authorization Specification DSP0289

44 Work in Progress Version 1.0.0WIP99

Byte offset Field Size (bytes) Description

2 Signature Len0

Shall be the signature of the selected asymmetric algorithm associated with

CredentialID as USAP Authorization tag signature generation and verification defines.

The size of this field shall be the size of the selected signature associated with

CredentialID .

If CredentialID is present in the Authorization record, the Authorization target shall use it to locate the credential in

order to verify the Authorization tag.

8.10.2.2 USAP Authorization tag signature generation and verification

This section defines the operations for signature generation and verification when using asymmetric signature

algorithms for USAP.

The verifiable cryptographic information in an Authorization tag shall be a digital signature whose signature algorithm

is the provisioned asymmetric signature algorithm corresponding to the User.

To compute the signature, the User shall create AuthMsgBody by concatenating the following fields in order:

1. The Credential ID of the User

2. The requester's nonce provided in the START_AUTH request

3. The responder's nonce provided in the START_AUTH_RSP response

4. The sequence number

5. The message body, which is the MsgToAuthPayload field of the Authorization record

If [START_AUTH] . Attributes / Continue is set, the sequence number shall start with SavedSequenceNumber as USAS

continuation defines with the successful completion of START_AUTH request. Otherwise, the sequence number shall

start at 1. Thereafter, the sequence number shall increment by 1 after each message requiring authorization and

corresponding to the User. For the Authorization target, the sequence number shall increment by 1 after receiving a

message containing an Authorization tag from the corresponding User regardless of whether the Authorization

verification succeeds or fails.

The message body shall be all the bytes of the MsgToAuthPayload field of the Authorization record. Because this

specification regards the message body as opaque data, the message body shall have an octet string byte order.

The size of the sequence number shall be 32 bits. Once the sequence number equals the maximum value of

0xFFFF_FFFF, the User-Specific Authorization Session shall terminate.

Finally, the User shall compute AuthMsgSignature using this function and the corresponding selected asymmetric

signature algorithm.

AuthMsgSignature = AuthSign(UserPrivKey, AuthMsgBody, context)

where:

• The UserPrivKey shall be the private key associated with the corresponding User.

• The context shall be the string "usap signing".

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 45

The AuthMsgSignature shall be the signature in an Authorization tag for the corresponding user and corresponding

message.

Likewise, the Authorization target shall verify the message requiring the authorization through this method:

AuthValResult = AuthSigVerify(UserPublicKey, AuthSignature, AuthMsgBody, context)

where:

• The UserPublicKey shall be the public key associated with the User that is associated with the corresponding

Credential ID.

• The AuthSignature shall be the signature in the Authorization tag that accompanied the message.

• The context shall be the string "usap signing".

If AuthValResult is success, the Authorization tag has been successfully validated. Otherwise, the Authorization tag

has failed validation.

The message requiring authorization shall be successful if all the following conditions are met:

• The message contains an Authorization tag.

• The AuthValResult is success.

• The policy associated with the message grants the corresponding User access.

Otherwise, the message fails authorization.

367

368

369

370

371

372

373

374

375

376

377

378

SPDM Authorization Specification DSP0289

46 Work in Progress Version 1.0.0WIP99

9 Authorization messages

9.1 Authorization messages overview

Authorization messages are messages defined by this specification that are sent between the Authorization initiator

and target and form a request-response protocol. The following clauses describe the rules and requirements for the

messaging protocol.

9.1.1 Bi-directional Authorization message processing

This clause describes the specifications and requirements for handling bi-directional and overlapping authorization

request messages.

If an endpoint can act as both an Authorization initiator and Authorization target, it shall be able to send request

messages and response messages independently.

When an SPDM endpoint acts as a proxy between an Authorization initiator and an Authorization target, how the

proxy SPDM endpoint enforces the rules specified in the following clauses is outside the scope of this specification.

While the specification anticipates that, in common scenarios, an SPDM Requester acts as the Authorization initiator

and an SPDM Responder serves as the Authorization target, this configuration is not mandated by the architecture.

The following clause assumes that an SPDM endpoint is the Authorization initiator.

9.1.2 Requirements for Authorization initiators

An Authorization initiator shall not have multiple outstanding Authorization requests to the same Authorization target,

within a single secure session. This restriction shall only apply to the messages defined by this specification. For

messages defined by other protocols, the rules on multiple outstanding requests are outside the scope of this

specification.

An outstanding request is a request where the request message has begun transmission and the corresponding

response has not yet been fully received.

Within a secure session, if the Authorization initiator has sent a request to an Authorization target and wants to send

a subsequent request to the same target, then the Authorization initiator shall wait to send the subsequent request

until after the Authorization initiator completes one of the following actions:

• Receives the response from the Authorization target for the outstanding request.

• Times out waiting for a response.

• Receives an indication from the transport layer that transmission of the request message failed.

• The Authorization initiator encounters an internal error or reset.

An Authorization initiator might send simultaneous request messages to the same Authorization target across

multiple secure sessions or to different Authorization targets.

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 47

9.1.3 Requirements for Authorization targets

An Authorization target is not required to process more than one request message at a time, within a single secure

session.

An Authorization target that is not ready to accept a new request message shall either respond with an AUTH_ERROR

message of ErrorCode=Busy or silently discard the request message.

If an Authorization target supports Authorization messages across concurrent secure sessions, a pending request in

one session shall not affect pending requests in another session.

9.1.4 Authorization messages bits-to-bytes mapping

All fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned byte in

sequentially decreasing order down to and including the least numerically assigned byte of that field. The following

two figures illustrate this mapping.

Figure 6 — One-byte field bit map shows the one-byte field bit map:

Byte Offset 3

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example:
A One-Byte Field Starting at Byte Offset 3

Figure 6 — One-byte field bit map

Figure 7 — Two-byte field bit map shows the two-byte field bit map:

Byte Offset 5

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example:
A Two-Byte Field Starting at Byte Offset 5

Byte Offset 6

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

Figure 7 — Two-byte field bit map

9.1.5 Version encoding

The AuthVersion field in the SELECT_AUTH_VERSION message represents the version of the specification through a

combination of Major and Minor nibbles, encoded as follows:

396

397

398

399

400

401

402

403

404

405

406

407

408

409

SPDM Authorization Specification DSP0289

48 Work in Progress Version 1.0.0WIP99

Version Matches Incremented when

Major

Major version field in the

AuthVersion field in the

SELECT_AUTH_VERSION message.

Protocol modification breaks backward compatibility.

Minor

Minor version field in the

AuthVersion field in the

SELECT_AUTH_VERSION message.

Protocol modification maintains backward compatibility.

For example:

• Version 1.0 would be 0x10 .

• Version 1.2 would be 0x12 .

• Version 3.7 would be 0x37 .

An endpoint that supports version 1.2 can interoperate with an older endpoint that supports version 1.0 or other

previous minor versions. Whether an endpoint supports inter-operation with previous minor versions of the

authorization specification is an implementation-specific decision.

An endpoint that supports version 1.2 only and an endpoint that supports version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_AUTH_VERSION .

This specification considers two minor versions to be interoperable when it is possible for an implementation that is

conformant to a higher minor version number to also communicate with an implementation that is conformant to a

lower minor version number with minimal differences in operation. In such a case, the following rules apply:

• Both endpoints shall use the same lower version number in the AuthVersion field for all messages.

• Functionality shall be limited to what the lower minor version of the authorization specification defines.

• Computations and other operations between different minor versions of the authorization specification should

remain the same, unless security issues of lower minor versions are fixed in higher minor versions and the fixes

require changes in computations or other operations. These differences are dependent on the value in the

AuthVersion field in the message.

• In a newer minor version of the authorization specification, a given message can be longer, bit fields and

enumerations can contain new values, and reserved fields can gain functionality. Existing numeric and bit fields

retain their existing definitions. Also, fields within a message may grow in length.

• Errata versions (indicated by a non-zero value in the UpdateVersionNumber field of the AUTH_VERSION response

message after a GET_AUTH_VERSION request) clarify existing behaviors in the authorization specification. They

maintain bitwise compatibility with the base version, except as required to fix security vulnerabilities or to correct

mistakes from the base version.

For details on the version agreement process, see GET_AUTH_VERSION request and AUTH_VERSION response

messages and SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response messages. The

detailed version encoding that the AUTH_VERSION response message returns contains an additional byte that

indicates specification bug fixes or development versions. See Table 24 — AUTH_VERSION response message

format.

410

411

412

413

414

415

416

417

418

419

420

421

422

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 49

9.1.6 Generic Authorization message format

Table 15 — Generic Authorization message field definitions defines the fields that constitute a generic Authorization

message, including the message header and payload:

Table 15 — Generic Authorization message field definitions

Byte offset Bit offset Size (bits) Field Description

0 [7:0] 8 RequestResponseCode

Shall be the request message code

or response code, which Table 16

— Authorization message request

codes and Table 17 — Authorization

message response codes

enumerate. 0x00 through 0x7F

represent response codes and

0x80 through 0xFF represent

request codes. In request

messages, this field is considered

the request code. In response

messages, this field is considered

the response code.

1 [7:0] 8 Reserved Reserved

2
See the

description.
Variable Authorization message payload

Shall be zero or more bytes that are

specific to the

RequestResponseCode .

9.2 Authorization message definitions

This section discusses all authorization request and response messages.

9.2.1 Authorization message request codes

Table 16 — Authorization message request codes defines the Authorization message request codes. The

Implementation requirement column indicates requirements on the Requester.

The Authorization requirements column indicates whether or not the message requires authorization. If a value in

this column is Mandatory, the Authorization target shall perform authorization checks for the corresponding request.

If a value in this column is None, the Authorization target shall not perform authorization checks for the

corresponding request. Finally, when the value in this column is Conditional, the section of this specification for the

corresponding request details the requirements. If a request message fails authorization checks, the Authorization

target shall respond with an AUTH_ERROR using ErrorCode=AccessDenied .

If an Authorization target receives an unsupported request, the Authorization target shall respond with an

AUTH_ERROR using ErrorCode=UnsupportedRequest .

423

424

425

426

427

428

429

430

431

SPDM Authorization Specification DSP0289

50 Work in Progress Version 1.0.0WIP99

Table 16 — Authorization message request codes

Request Code value Implementation requirement
Authorization

Requirements
Message format

GET_AUTH_VERSION 0x81 Mandatory None

Table 23 —

GET_AUTH_VERSION

request message format

SELECT_AUTH_VERSION 0x82 Mandatory None

Table 26 —

SELECT_AUTH_VERSION

request message format

SET_CRED_ID_PARAMS 0x83 Optional Conditional

Table 33 —

SET_CRED_ID_PARAMS

request message format

GET_CRED_ID_PARAMS 0x84 Mandatory Conditional

Table 36 —

GET_CRED_ID_PARAMS

request message format

SET_AUTH_POLICY 0x85 Optional Conditional

Table 39 —

SET_AUTH_POLICY request

message format

GET_AUTH_POLICY 0x86 Mandatory Conditional

Table 42 —

GET_AUTH_POLICY request

message format

START_AUTH 0x87 Optional None
Table 49 — START_AUTH

request message format

END_AUTH 0x88 Optional None
Table 52 — END_AUTH

request message format

ELEVATE_PRIVILEGE 0x89 Optional None

Table 55 —

ELEVATE_PRIVILEGE

request message format

END_ELEVATED_PRIVILEGE 0x8A Optional None

Table 57 —

END_ELEVATED_PRIVILEGE

request message format

GET_AUTH_CAPABILITIES 0x8B Mandatory None

Table 28 —

GET_AUTH_CAPABILITIES

request message format

AUTH_RESET_TO_DEFAULT 0x8C Optional Conditional

Table 61 —

AUTH_RESET_TO_DEFAULT

request message format

TAKE_OWNERSHIP 0x8D Mandatory Mandatory

Table 59 —

TAKE_OWNERSHIP request

message format

432

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 51

Request Code value Implementation requirement
Authorization

Requirements
Message format

GET_AUTH_PROCESSES 0x8E Optional Mandatory

Table 44 —

GET_AUTH_PROCESSES

request message format

KILL_AUTH_PROCESS 0x8F Optional Mandatory

Table 47 —

KILL_AUTH_PROCESS

request message format

Reserved
All other

values
Reserved Reserved

Authorization implementations

compatible with this version

shall not use the reserved

request codes.

9.2.2 Authorization message response codes

The RequestResponseCode field in the Authorization response message shall specify the appropriate response code

for a request.

On a successful completion of an Authorization message request, the specified response message shall be returned.

Upon an unsuccessful completion of an authorization command, the AUTH_ERROR response message should be

returned.

Table 17 — Authorization message response codes defines the response codes for Authorization messages. The

Implementation requirement column indicates requirements on the Responder.

Table 17 — Authorization message response codes

Response
Code

value
Implementation requirement Message format

AUTH_VERSION 0x01 Mandatory
Table 24 — AUTH_VERSION

response message format

SELECT_AUTH_VERSION_RSP 0x02 Mandatory

Table 27 —

SELECT_AUTH_VERSION_RSP

response message format

SET_CRED_ID_PARAMS_DONE 0x03 Optional

Table 35 —

SET_CRED_ID_PARAMS_DONE

response message format

CRED_ID_PARAMS 0x04 Mandatory
Table 37 — CRED_ID_PARAMS

response message format

SET_AUTH_POLICY_DONE 0x05 Optional

Table 41 —

SET_AUTH_POLICY_DONE

response message format

433

434

435

436

437

SPDM Authorization Specification DSP0289

52 Work in Progress Version 1.0.0WIP99

Response
Code

value
Implementation requirement Message format

AUTH_POLICY 0x06 Mandatory
Table 43 — AUTH_POLICY

response message format

START_AUTH_RSP 0x07 Optional
Table 51 — START_AUTH_RSP

response message format

END_AUTH_RSP 0x08 Optional
Table 53 — END_AUTH_RSP

response message format

PRIVILEGE_ELEVATED 0x09 Optional

Table 56 —

PRIVILEGE_ELEVATED

response message format

ELEVATED_PRIVILEGE_ENDED 0x0A Optional

Table 58 —

ELEVATED_PRIVILEGE_ENDED

response message format

AUTH_CAPABILITIES 0x0B Mandatory

Table 29 —

AUTH_CAPABILITIES response

message format

AUTH_DEFAULTS_APPLIED 0x0C Optional

Table 64 —

AUTH_DEFAULTS_APPLIED

response message format

OWNERSHIP_TAKEN 0x0D Mandatory

Table 60 —

OWNERSHIP_TAKEN response

message format

AUTH_PROCESSES 0x0E Optional
Table 45 — AUTH_PROCESSES

response message format

PROCESS_KILLED 0x0F Optional
Table 48 — PROCESS_KILLED

response message format

AUTH_ERROR 0x7F Mandatory
Table 20 — AUTH_ERROR

response message format

Reserved
All other

values
Reserved

Authorization implementations

compatible with this version shall

not use the reserved response

codes.

9.2.3 Authorization Message Validity

Certain Authorization messages are associated with a specific Authorization process. Table 18 — Authorization

message and Authorization process association shows this high level association. More specific information can be

found in the specific message's section.

438

439

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 53

Table 18 — Authorization message and Authorization process association

Message Authorization Process

SET_AUTH_POLICY/START_AUTH_RSP USAP

END_AUTH/END_AUTH_RSP USAP

ELEVATE_PRIVILEGE/PRIVILEGE_ELEVATED SEAP

END_ELEVATED_PRIVILEGE/ELEVATED_PRIVILEGE_ENDED SEAP

All other Authorization messages None

9.2.4 Common variable names

This section defines some frequent variable names used in various Authorization messages. Table 19 — Common

variables used in Authorization messages defines these variable names.

Table 19 — Common variables used in Authorization messages

Variable Names Value

BaseAsymAlgoLen Shall be 8.

BaseHashAlgoLen Shall be 8.

LenSVH Shall be the size of the SVH as DSP0293 defines.

9.2.5 Error handling

This section discusses general error handling for all Authorization messages.

9.2.5.1 AUTH_ERROR response message

For an authorization request message that results in an error, the Authorization target should send an AUTH_ERROR

message to the Requester. The Authorization record also uses this response message for errors in the Authorization

record itself.

Table 20 — AUTH_ERROR response message format shows the AUTH_ERROR response format.

Table 21 — Error code and error data shows the detailed error code, error data, and extended error data. The Layer

column indicates which layer can use the corresponding ErrorCode . A value of M in this column indicates that the

ErrorCode shall be allowed in response to an Authorization request. A value of R indicates that the ErrorCode shall

be allowed in a Type 2 Authorization record. More than one value can be present in the Layer column for an

ErrorCode , in which case they are comma separated.

440

441

442

443

444

445

446

447

448

449

SPDM Authorization Specification DSP0289

54 Work in Progress Version 1.0.0WIP99

Table 20 — AUTH_ERROR response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for AUTH_ERROR in Table 17

— Authorization message response codes.

1 Reserved 1 Reserved

2 ErrorCode 1
Shall be the ErrorCode. See Table 21 — Error code

and error data.

3 ErrorData 1
Shall be the Error data. See Table 21 — Error code

and error data.

4 ExtendedErrorData 0-32
Shall be the Extended error data. See Table 21 —

Error code and error data.

Table 21 — Error code and error data

ErrorCode Value Layer Description Error data ExtendedErrorData

Reserved 0x00 Reserved Reserved Reserved Reserved

InvalidRequest 0x01 M

One or more

request fields are

invalid

0x00
No extended error data is

provided.

ResetRequired 0x02 M

The operation or

request requires

a reset to

successfully

complete.

0x00
No extended error data is

provided.

Busy 0x03 M, R

The

Authorization

target received

the request

message, and

the Authorization

target decided to

ignore the

request message

but might be able

to process the

request message

if the request

message is sent

again in the

future.

0x00
No extended error data is

provided.

450

451

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 55

ErrorCode Value Layer Description Error data ExtendedErrorData

UnexpectedRequest 0x04 M

The

Authorization

target received

an unexpected

request

message.

0x00
No extended error data is

provided.

Unspecified 0x05 M, R
Unspecified error

occurred.
0x00

No extended error data is

provided.

AccessDenied 0x06 R
Authorization

checks failed.
0x00

No extended error data is

provided.

OperationFailed 0x07 M

The request was

valid but the

requested

operation failed.

0x00
No extended error data is

provided.

VersionMismatch 0x08 M

Requested

AuthVersion is

not supported or

is a different

version from the

selected version.

0x00
No extended error data is

provided.

UnsupportedRequest 0x09 M

The Table 16 —

Authorization

message request

codes in the

request message

is unsupported.

Table 16 — Authorization

message request codes

in the request message.

No extended error data is

provided.

InvalidRecord 0x0A R

One or more

fields in the

Authorization

record are

invalid.

0x0
No extended error data is

provided.

SPDM Authorization Specification DSP0289

56 Work in Progress Version 1.0.0WIP99

ErrorCode Value Layer Description Error data ExtendedErrorData

TermAuthProc 0x0B M

The User or

Authorization

initiator

associated with

the Credential ID

in Error data

should terminate

their active

Authorization

process, if any.

The

Authorization

target has

already

terminated

Authorization

processes

associated with

the given

Credential ID.

Further use of

the active

Authorization

processes

associated with

the given

Credential ID can

result in access

denials to the

protected

resource.

The User or

Authorization

initiator can start

new

Authorization

processes.

0x00

The format and size of this field

shall be the same as

CredentialID field as Table 2

— Credential structure defines.

A value of 0xFFFF shall

indicate all Credential IDs.

Vendor or Standards-Defined 0xFF M, R

Vendor or

standards-

defined

Shall indicate the registry

or standards body using

one of the values in the

ID column of Table 1 —

Registry or standards

body ID in DSP0293.

See Table 22 —

ExtendedErrorData format for

vendor or standards defined

ERROR response message.

Reserved

All

other

values

Reserved. Reserved Reserved

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 57

Table 22 — ExtendedErrorData format for vendor or standards defined ERROR response message

Byte offset Field Size (bytes) Description

0 VendorIDLen 1

Shall be the VendorIDLen as defined by DSP0293

Table 2 — Standards body or vendor-defined header

(SVH).

1 VendorID VendorIDLen

Shall be the VendorID as defined by DSP0293 Table

2 — Standards body or vendor-defined header

(SVH).

1 + VendorIDLen OpaqueErrorData Variable The vendor or standards body defines this value.

9.2.6 Discovery message

Messages in this section allow an Authorization initiator to discover aspects of the Authorization target. These

aspects provide basic information to understand support and establish basic communication parameters.

9.2.6.1 GET_AUTH_VERSION request and AUTH_VERSION response messages

This request message shall retrieve the authorization specification version of an endpoint. Table 23 —

GET_AUTH_VERSION request message format shows the GET_AUTH_VERSION request message format and Table 24

— AUTH_VERSION response message format shows the AUTH_VERSION response message format.

In all future authorization versions, the GET_AUTH_VERSION and AUTH_VERSION response messages will be backward

compatible with all earlier versions.

The Authorization initiator should begin the discovery process by sending a GET_AUTH_VERSION request message. It

may skip this message if the information provided by the AUTH_VERSION response is known beforehand from a prior

or concurrent secure session. All Authorization targets shall always support the GET_AUTH_VERSION request message

and provide an AUTH_VERSION response containing all supported versions, as Table 23 — GET_AUTH_VERSION

request message format describes.

When GET_AUTH_VERSION is used, the Authorization initiator should consult the AUTH_VERSION response to obtain

information on a common supported version. The Authorization initiator shall use one of the supported versions in all

future communication of other requests. An Authorization target shall not respond to the GET_AUTH_VERSION request

message with an AUTH_ERROR message except for ErrorCode s specified in this clause.

Table 23 — GET_AUTH_VERSION request message format shows the GET_AUTH_VERSION request message format:

Table 23 — GET_AUTH_VERSION request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for GET_AUTH_VERSION in

Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

452

453

454

455

456

457

458

459

460

461

SPDM Authorization Specification DSP0289

58 Work in Progress Version 1.0.0WIP99

Table 24 — AUTH_VERSION response message format shows the successful AUTH_VERSION response message

format:

Table 24 — AUTH_VERSION response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for AUTH_VERSION in Table 17

— Authorization message response codes.

1 Reserved 1 Reserved

2 VersionNumberEntryCount 1 Number of version entries in VersionNumberEntries .

3 VersionNumberEntries
2 *

VersionNumberEntryCount

16-bit version entry. See Table 25 —

VersionNumberEntry definition. Each entry should be

unique. The number of entries in this field shall be

the same value as VersionNumberEntryCount .

The versions in this field shall be in ascending order

sorted by MajorVersion , MinorVersion ,

UpdateVersionNumber , and Alpha .

Table 25 — VersionNumberEntry definition shows the VersionNumberEntry definition. See Version encoding for more

details.

Table 25 — VersionNumberEntry definition

Bit offset Field Description

[15:12] MajorVersion

Shall be the version of the specification having changes that are

incompatible with one or more functions in earlier major versions of the

specification.

[11:8] MinorVersion

Shall be the version of the specification having changes that are

compatible with functions in earlier minor versions of this major version

specification.

[7:4] UpdateVersionNumber
Shall be the version of the specification with editorial updates and errata

fixes. Informational; ignore when checking versions for interoperability.

[3:0] Alpha

Shall be the pre-release work-in-progress version of the specification.

Because the Alpha value represents an in-development version of the

specification, versions that share the same major and minor version

numbers but have different Alpha versions might not be fully

interoperable. Released versions shall have an Alpha value of zero

(0).

9.2.6.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response messages

The SELECT_AUTH_VERSION request shall be used to specify the version of this specification that an Authorization

target shall use when interpreting request messages and providing response messages for authorization commands.

462

463

464

465

466

467

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 59

The request and response parameters for this message are listed in Table 26 — SELECT_AUTH_VERSION request

message format and Table 27 — SELECT_AUTH_VERSION_RSP response message format. The version selected

using this request applies only to the secure session in which the message was sent and is valid until the session

terminates. See Discovery section for additional requirements.

The selected version for communication with an Authorization target shall be the version in the AuthVersion field of

the SELECT_AUTH_VERSION . The AuthVersion shall be one of the supported versions of an Authorization target.

Otherwise, the Authorization target shall either return an AUTH_ERROR message of ErrorCode=VersionMismatch or

silently discard the request.

In all future authorization versions, the SELECT_AUTH_VERSION and SELECT_AUTH_VERSION_RSP response messages will

be backward compatible with all earlier versions.

Table 26 — SELECT_AUTH_VERSION request message format shows the SELECT_AUTH_VERSION request message

format:

Table 26 — SELECT_AUTH_VERSION request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for SELECT_AUTH_VERSION in

Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

2 AuthVersion 1

The version that shall be used for all subsequent

communication between the Authorization initiator

and target, as Version encoding describes.

Table 27 — SELECT_AUTH_VERSION_RSP response message format shows the successful

SELECT_AUTH_VERSION_RSP response message format:

Table 27 — SELECT_AUTH_VERSION_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1

Shall be the code value for SELECT_AUTH_VERSION_RSP

in Table 17 — Authorization message response

codes.

1 Reserved 1 Reserved

9.2.6.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages

The GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response shall retrieve capability information from the

Authorization target. The request and response parameters for this message are listed in Table 28 —

GET_AUTH_CAPABILITIES request message format and Table 29 — AUTH_CAPABILITIES response message

format respectively. This request can be sent multiple times and should be sent as the Discovery section describes. If

the request is sent multiple times in the same secure session, the corresponding responses shall be identical to the

first.

468

469

470

471

472

473

474

475

SPDM Authorization Specification DSP0289

60 Work in Progress Version 1.0.0WIP99

Table 28 — GET_AUTH_CAPABILITIES request message format shows the GET_AUTH_CAPABILITIES request

message format:

Table 28 — GET_AUTH_CAPABILITIES request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for GET_AUTH_CAPABILITIES in Table 16 — Authorization

message request codes.

1 Reserved 1 Reserved

Table 29 — AUTH_CAPABILITIES response message format shows the successful AUTH_CAPABILITIES response

message format:

Table 29 — AUTH_CAPABILITIES response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for AUTH_CAPABILITIES in

Table 17 — Authorization message response codes.

1 Reserved 1 Reserved

2 MessageCaps 2
The format of this field shall be as Table 30 —

Message supported bit definitions defines.

4 AuthProcessCaps 2

The format of this field shall be as Table 31 —

Authorization process supported bit definitions

defines.

6 DeviceProvisioningState 1
The format of this field shall be as Table 32 — Device

provisioning state values defines.

7 AuthRecordProcessTime 1

This field shall specify the additional amount of time a

message of any protocol that is encapsulated in an

Authorization record takes to process the

Authorization record excluding the MsgToAuthPayload

field. This time includes the time it takes to perform

authorization verification.

The time shall be calculated using this equation and

shall be in units of milliseconds:

2AuthRecordProcessTime milliseconds

The value of this field shall not exceed 31.

See Timing requirements for additional requirements.

476

477

478

479

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 61

Byte offset Field Size (bytes) Description

8 BaseAsymAlgoSupported BaseAsymAlgoLen

If a bit is set, the Authorization target supports the

corresponding asymmetric algorithm. Otherwise, the

bit shall be clear.

The format of this field shall be as Table 70 — Base

asymmetric algorithm format defines. The value of

BaseAsymAlgoLen shall be as Common variable

names defines.

8 + BaseAsymAlgoLen BaseHashAlgoSupported BaseHashAlgoLen

If a bit is set, the Authorization target supports the

corresponding hash algorithm. Otherwise, the bit shall

be clear.

The format of this field shall be as Table 71 — Base

hash algorithm format defines. The value of

BaseHashAlgoLen shall be as Common variable

names defines.

8 + BaseAsymAlgoLen +

BaseHashAlgoLen
SupportedPolicyOwnerIDCount 2

The value of this field shall be the number of policy

owners in SupportedPolicyOwnerIDList . If the value of

this field is zero, then the

SupportedPolicyOwnerIDList field shall be absent.

10 + BaseAsymAlgoLen +

BaseHashAlgoLen
SupportedPolicyOwnerIDList Variable

This field summarizes the policies the Authorization

target supports by only listing the policy owners

(PolicyOwnerID).

The format of this field shall be the concatenation of

one or more PolicyOwnerID fields, as Table 4 —

Policy structure defines, for each policy the

Authorization target supports. The number of

PolicyOwnerID s in this list shall be the value in the

SupportedPolicyOwnerIDCount field. If multiple policies

share the same PolicyOwnerID , that PolicyOwnerID

shall only be included once. This list shall be

considered to be unordered.

To retrieve more details of policy support, the

Authorization initiator can use the GET_AUTH_POLICY

and the corresponding response.

Table 30 — Message supported bit definitions defines the messages the Authorization endpoint supports.

Table 30 — Message supported bit definitions

Byte Offset Bit Offset Field Description

0 0 ChangeCredIDParamsCap
If the Authorization target supports SET_CRED_ID_PARAMS_DONE , then this bit shall be

set. Otherwise, this bit shall not be set.

480

481

SPDM Authorization Specification DSP0289

62 Work in Progress Version 1.0.0WIP99

Byte Offset Bit Offset Field Description

0 1 ChangeAuthPolicyCap
If the Authorization target supports SET_AUTH_POLICY_DONE , then this bit shall be

set. Otherwise, this bit shall not be set.

0 2 AuthEventCap
If the Authorization target supports Authorization events as Authorization events

define, then this bit shall be set.

0 3 AuthProcListCap
If the Authorization target supports AUTH_PROCESSES , then this bit shall be set.

Otherwise, this bit shall not be set.

0 4 AuthProcKillCap

If the Authorization target supports PROCESS_KILLED , then this bit shall be set.

Otherwise, this bit shall not be set.

If this bit is set, the AuthProcListCap shall also be set.

0 5 ResetToDefaultCap
If the Authorization target supports AUTH_RESET_TO_DEFAULT , then this bit shall be

set. Otherwise, this bit shall not be set.

0 [7:6] Reserved Reserved

1 [7:0] Reserved Reserved

Table 31 — Authorization process supported bit definitions defines the Authorization processes the Authorization

endpoint supports.

Table 31 — Authorization process supported bit definitions

Byte Offset Bit Offset Field Description

0 0 USAPcap

If the Authorization target supports USAP, then this bit shall be set. Otherwise, this bit

shall not be set.

If this bit is set, the START_AUTH_RSP and END_AUTH_RSP response messages shall be

supported.

0 1 SEAPcap

If the Authorization target supports SEAP, then this bit shall be set. Otherwise, this bit

shall not be set.

If this bit is set, the PRIVILEGE_ELEVATED and ELEVATED_PRIVILEGE_ENDED response

messages shall be supported.

0 2 ResetPersistCap

If the Authorization target supports USAS continuation until device reset, this bit shall

be set. Otherwise, this bit shall not be set.

If USAPcap is not set, this bit shall not be set.

0 3 PermPersistCap

If the Authorization target supports USAS continuation across device reset, this bit shall

be set. Otherwise, this bit shall not be set.

If USAPcap is not set, this bit shall not be set.

0 [7:4] Reserved Reserved

482

483

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 63

Byte Offset Bit Offset Field Description

1 [7:0] Reserved Reserved

Table 32 — Device provisioning state values

Value Name Description

0 Unprovisioned Device does not have any credentials provisioned.

1 DefaultState Device is in the default state. See Default state for details.

2 Owned Device has had ownership taken via TAKE_OWNERSHIP . See Taking ownership for additional details.

All

other

values

Reserved Reserved

9.2.7 Credential provisioning

9.2.7.1 SET_CRED_ID_PARAMS request and SET_CRED_ID_PARAMS_DONE response messages

The SET_CRED_ID_PARAMS request shall be used to provision credentials into an Authorization target, as described in

the Credentials section. When CredParams provides an invalid credential type, Credential ID or algorithm, the

Authorization target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest .

The Authorization initiator shall use the SetCredInfoOp field to specify the operation for the request. An Authorization

target shall ensure that the operation is atomic, that is, the requested operation can successfully complete for all

credentials in CredParams , and fail if that is not possible. When CredParams provides an invalid Credential ID or

other invalid values, the Authorization target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest . When

SetCredInfoOp is valid but authorization checks fail, the Authorization target shall respond with AUTH_ERROR and

ErrorCode=AccessDenied .

Table 33 — SET_CRED_ID_PARAMS request message format shows the SET_CRED_ID_PARAMS request message

format:

Table 33 — SET_CRED_ID_PARAMS request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for SET_CRED_ID_PARAMS in

Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

2 SetCredInfoOp 1

The field indicates the requested operation. The

format of this field shall be as Table 34 — Values for

SetCredInfoOp field defines.

484

485

486

487

488

489

490

SPDM Authorization Specification DSP0289

64 Work in Progress Version 1.0.0WIP99

Byte offset Field Size (bytes) Description

3 CredParams Variable

This field represents identity information associated

with the given Credential ID. The format and size of

this field shall be the same format and size as Table

2 — Credential structure defines.

If SetCredInfoOp field indicates a lock or unlock

operation, the format and size of this field shall be

the same format and size as the CredentialID field

defined in Table 2 — Credential structure.

Additionally, the value of the CredentialID shall be

the same as the Credential ID of the Requester.

Table 34 — Values for `SetCredInfoOp` field

Value Operation Name Description

0 Reserved Reserved

1 ParameterChange
Shall indicate an operation that modifies credential parameters associated with the given

Credential IDs.

2 Lock

Shall indicate an operation that locks the credential parameters and its Authorization policy

for the given Credential ID.

The Authorization target shall only permit this operation if the Lockable credential attribute

is set for the requested Credential ID.

3 Unlock

Shall indicate an operation that unlocks the credential parameters and its Authorization

policy for the given Credential ID.

The Authorization target shall only permit this operation if the Unlockable credential

attribute is set for the requested Credential ID.

All other values Reserved Reserved

Table 35 — SET_CRED_ID_PARAMS_DONE response message format shows the successful

SET_CRED_ID_PARAMS_DONE response message format:

Table 35 — SET_CRED_ID_PARAMS_DONE response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1

Shall be the code value for SET_CRED_ID_PARAMS_DONE

in Table 17 — Authorization message response

codes.

1 Reserved 1 Reserved

491

492

493

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 65

9.2.7.1.1 Additional requirements on SET_CRED_ID_PARAMS

When locking or unlocking, the requested Credential ID shall only be capable of locking its own credential

parameters and associated policy if the LockUnlockSelfPrivilege policy bit is set. See Locking and unlocking

attributes and DSP0289 Authorization policy for additional requirements.

9.2.7.2 GET_CRED_ID_PARAMS request and CRED_ID_PARAMS response messages

The GET_CRED_ID_PARAMS request shall be used to retrieve information about credentials provisioned in a credential

structure. If the request contains an invalid Credential ID or the corresponding credential structure is not provisioned,

the Authorization target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest . When CredentialID is valid

but authorization checks fail, the Authorization target shall respond with AUTH_ERROR and ErrorCode=AccessDenied .

Table 36 — GET_CRED_ID_PARAMS request message format shows the GET_CRED_ID_PARAMS request message

format:

Table 36 — GET_CRED_ID_PARAMS request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for GET_CRED_ID_PARAMS in

Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

2 CredentialID 2
Shall be the Credential ID that identifies the

requested credential.

Table 37 — CRED_ID_PARAMS response message format shows the successful CRED_ID_PARAMS response

message format:

Table 37 — CRED_ID_PARAMS response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for CRED_ID_PARAMS in Table

17 — Authorization message response codes.

1 Reserved 1 Reserved

2 CredAttributes 2

The field indicates credential attributes of the

requested Credential ID. The format of this field shall

be as Table 38 — Credential attributes bit definitions

defines.

4 CredParams Variable

This field represents identity information associated

with the requested Credential ID. The size and

format of this field shall be the same size and format

as Table 2 — Credential structure defines.

494

495

496

497

498

499

500

501

SPDM Authorization Specification DSP0289

66 Work in Progress Version 1.0.0WIP99

Table 38 — Credential attributes bit definitions defines the various Credential ID attributes:

Table 38 — Credential attributes bit definitions

Byte Offset Bit Offset Field Description

0 0 Lockable
If the Authorization target supports the ability to lock the credentials and associated policies

of the requested Credential ID, this bit shall be set.

0 1 Unlockable

If the Authorization target supports the ability to unlock the credentials and associated

policies of the requested Credential ID, this bit shall be set.

If this bit is set, the Lockable bit shall also be set.

0 2 Locked

If the credentials and associated policy of the requested Credential ID are locked, this bit

shall be set. This bit can be set or cleared through the Lock or Unlock operation in either

SET_CRED_ID_PARAMS or SET_AUTH_POLICY request.

If this bit is set, the Lockable bit shall also be set.

0 [7:3] Reserved Reserved

1 [7:0] Reserved Reserved

9.2.7.3 Credential provisioning authorization requirements

The Authorization target shall perform authorization checks for SET_CRED_ID_PARAMS and GET_CRED_ID_PARAMS

requests except for the scenarios that Initial provisioning details.

9.2.8 Authorization policy provisioning and management

9.2.8.1 SET_AUTH_POLICY request and SET_AUTH_POLICY_DONE response messages

The SET_AUTH_POLICY request shall be used to modify a policy associated with a Credential ID as Authorization

policies discusses. When PolicyList provides an invalid Credential ID, the Authorization target shall respond with

AUTH_ERROR and ErrorCode=InvalidRequest .

The Authorization initiator shall use the SetAuthPolicyOp field to specify the operation for the request. An

Authorization target shall ensure that the operation is atomic, that is, the requested operation can successfully

complete for all policies in the PolicyList and fail if that is not possible. When PolicyList provides an invalid

Credential ID or invalid values, the Authorization target shall respond with AUTH_ERROR and

ErrorCode=InvalidRequest . When SetAuthPolicyOp is valid but authorization checks fail, the Authorization target

shall respond with AUTH_ERROR and ErrorCode=AccessDenied .

Table 39 — SET_AUTH_POLICY request message format shows the SET_AUTH_POLICY request message format:

502

503

504

505

506

507

508

509

510

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 67

Table 39 — SET_AUTH_POLICY request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for SET_AUTH_POLICY in Table

16 — Authorization message request codes.

1 Reserved 1 Reserved

2 SetAuthPolicyOp 1

The field indicates the requested operation. The

format of this field shall be as Table 40 — Values for

SetAuthPolicyOp field defines.

3 PolicyList Variable

If SetAuthPolicyOp field indicates a PolicyChange

operation, this field represents the policy information

to change that is associated with the given

Credential ID. This field shall only represent the

policies associated with a single Credential ID. The

size and format of this field shall be the same size

and format as Table 3 — Policy List defines.

If SetAuthPolicyOp field indicates a lock or unlock

operation, the format and size of this field shall be

the same format and size as the CredentialID field

defined in Table 3 — Policy List.

Table 40 — Values for `SetAuthPolicyOp` field

Value Operation Name Description

0 Reserved Reserved

1 PolicyChange
Shall indicate an operation that modifies the Authorization policy associated with the given

Credential ID.

2 Lock
This field shall have the same definition as the Lock operation as Table 34 — Values for

SetCredInfoOp field defines.

3 Unlock
This field shall have the same definition as the Unlock operation as Table 34 — Values for

SetCredInfoOp field defines.

All other values Reserved Reserved

Table 41 — SET_AUTH_POLICY_DONE response message format shows the successful SET_AUTH_POLICY_DONE

response message format:

Table 41 — SET_AUTH_POLICY_DONE response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for SET_AUTH_POLICY_DONE in

Table 17 — Authorization message response codes.

511

512

513

514

SPDM Authorization Specification DSP0289

68 Work in Progress Version 1.0.0WIP99

Byte offset Field Size (bytes) Description

1 Reserved 1 Reserved

9.2.8.1.1 Additional requirements on SET_AUTH_POLICY

When locking or unlocking, see locking and unlocking requirements in Additional requirements on

SET_CRED_ID_PARAMS.

9.2.8.2 GET_AUTH_POLICY request and AUTH_POLICY response messages

The GET_AUTH_POLICY request shall be used to retrieve the policy associated with a provisioned Credential ID. If an

invalid Credential ID is requested, the Authorization target shall respond with AUTH_ERROR and

ErrorCode=InvalidRequest . When CredentialID is valid but authorization checks fail, the Authorization target shall

respond with AUTH_ERROR and ErrorCode=AccessDenied .

Table 42 — GET_AUTH_POLICY request message format shows the GET_AUTH_POLICY request message format:

Table 42 — GET_AUTH_POLICY request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for GET_AUTH_POLICY in Table

16 — Authorization message request codes.

1 Reserved 1 Reserved

2 CredentialID 2
Shall be the Credential ID that identifies the

requested policy.

Table 43 — AUTH_POLICY response message format shows the successful AUTH_POLICY response message

format:

Table 43 — AUTH_POLICY response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for AUTH_POLICY in Table 17

— Authorization message response codes.

1 Reserved 1 Reserved

2 PolicyAttributes 2

The field indicates attributes of all policies associated

with the requested Credential ID. The format of this

field shall be as Table 38 — Credential attributes bit

definitions defines.

4 PolicyList Variable

This field contains all the policy information

associated with the requested Credential ID. The

size and format of this field shall be the same size

and format as Table 3 — Policy List defines.

515

516

517

518

519

520

521

522

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 69

9.2.8.3 Authorization requirements

The Authorization target shall perform authorization checks for SET_AUTH_POLICY and GET_AUTH_POLICY requests

except for the scenarios that Initial provisioning details.

9.2.9 Authorization process management

9.2.9.1 General Authorization process management

Authorization requests and responses in this section apply to all Authorization processes.

9.2.9.1.1 GET_AUTH_PROCESSES request and AUTH_PROCESSES response messages

The GET_AUTH_PROCESSES request and AUTH_PROCESSES response messages retrieve the list of active or saved

Authorization processes associated with the requested Credential ID. A Credential ID shall always be capable of

retrieving its own information regardless of the value of RetrieveAuthProcListPrivilege bit.

Table 44 — GET_AUTH_PROCESSES request message format shows the GET_AUTH_PROCESSES request message

format:

Table 44 — GET_AUTH_PROCESSES request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for GET_AUTH_PROCESSES in Table 16 — Authorization

message request codes.

1 Reserved 1 Reserved

2 CredentialID 2

Shall be a Credential ID.

A value of 0xFFFF shall indicate all Credential IDs.

Table 45 — AUTH_PROCESSES response message format shows the AUTH_PROCESSES response message format:

Table 45 — AUTH_PROCESSES response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for AUTH_PROCESSES in Table 17 — Authorization message

response codes.

1 Reserved 1 Reserved

2 AuthProcInfoCount 2

Shall be a count of the number of Authorization processes information in

AuthProcInfoList associated with the requested Credential ID.

If there are no saved or active Authorization processes for the requested

Credential ID, the value of this field shall be zero.

523

524

525

526

527

528

529

530

531

532

533

SPDM Authorization Specification DSP0289

70 Work in Progress Version 1.0.0WIP99

Byte offset Field Size (bytes) Description

4 AuthProcInfoList Variable

Shall be a list of active or saved Authorization processes. The format of this field

shall be the concatenation of one or more Authorization process information as

Table 46 — Authorization process information format defines. The size of this field

shall be the size of an Authorization process information multiplied by

AuthProcInfoCount .

Table 46 — Authorization process information format shows the Authorization process information format:

Table 46 — Authorization process information format

Byte offset Field Size (bytes) Description

0 CredentialID 2 Shall be the Credential ID associated with the Authorization process.

2 AuthProcessType 1

Shall indicate the type of active or saved Authorization process type associated with

CredentialID .

The values of this field shall be as follows:

• 0 . Shall indicate an active USAS.

• 1 . Shall indicate an active SEAP.

• 2 . Shall indicate a saved USAS.

• All other values reserved.

3 AuthProcID 48
Shall be the Authorization Process ID associated with the CredentialID and

AuthProcessType , as Authorization Process ID calculation defines.

9.2.9.1.2 KILL_AUTH_PROCESS request and PROCESS_KILLED response messages

The KILL_AUTH_PROCESS request and PROCESS_KILLED response messages terminate an Authorization process.

If the requested Authorization process to terminate is an active USAS, the USAS shall end immediately and incoming

messages requiring authorization shall fail authorization checks for the given Credential ID. If the requested

Authorization process is a saved USAS, the saved USAS information shall no longer persist and consequently, the

User shall not be able to continue the requested USAS.

If the requested Authorization process to terminate is an active SEAP, all messages requiring authorization shall fail

authorization checks, but the secure session shall remain unaffected. The Authorization target can consequently end

the secure session.

An Authorization initiator shall be capable of killing only its own Authorization process, regardless of the value of

KillAuthProcPrivilege bit.

Table 47 — KILL_AUTH_PROCESS request message format shows the KILL_AUTH_PROCESS request message

format:

534

535

536
537
538
539

540

541

542

543

544

545

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 71

Table 47 — KILL_AUTH_PROCESS request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for KILL_AUTH_PROCESS in Table 16 — Authorization

message request codes.

1 Reserved 1 Reserved

2 CredentialID 2 Shall be the Credential ID of the desired Authorization process to terminate.

4 AuthProcID 48
Shall be the Authorization Process ID associated with the CredentialID to

terminate, as Authorization Process ID calculation defines.

Table 48 — PROCESS_KILLED response message format shows the PROCESS_KILLED response message format:

Table 48 — PROCESS_KILLED response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for PROCESS_KILLED in Table 17 — Authorization message

response codes.

1 Reserved 1 Reserved

2 AuthProcID 48 Shall be the requested Authorization process ID.

9.2.9.1.2.1 Additional requirements for KILL_AUTH_PROCESS

If the Authorization target fails to kill a process after passing authorization checks, the Authorization target shall

respond with an AUTH_ERROR message using the ErrorCode=OperationFailed .

9.2.9.1.3 Authorization Process ID calculation

The Authorization Process ID shall use the TPM_ALG_SHA_384 hash algorithm.

To calculate the SHA2-384 hash, the Authorization endpoint shall form auth_proc_id_octet_string for a given

Authorization process by concatenating the following four elements in the order shown. (Note that some elements will

be omitted depending on conditions.)

• 1. String prefix

◦ For USAP, this element shall be omitted.

◦ For SEAP, the prefix shall be one of the following:

▪ If the SPDM Responder is an Authorization target, the prefix shall be "Responder".

▪ If the SPDM Requester is an Authorization target, the prefix shall be "Requester".

• 2. The Authorization initiator's nonce

◦ For USAP, this shall be the [START_AUTH] . Nonce .

◦ For SEAP, this shall be the SPDM Requester's nonce provided in the Session-Secrets-Exchange Request.

• 3. Authorization target's nonce

546

547

548

549

550

551

552

553

554
555

556
557

558

559
560

561

562

SPDM Authorization Specification DSP0289

72 Work in Progress Version 1.0.0WIP99

◦ For USAP, this shall be the [START_AUTH_RSP] . Nonce .

◦ For SEAP, this shall be the SPDM Responder's nonce provided in the Session-Secrets-Exchange

Response.

• 4. Saved sequence number

◦ If the Authorization process is a saved USAS, this shall be the SavedSequenceNumber . Otherwise this

element shall be omitted.

The auth_proc_id_octet_string shall be the message to hash, resulting in the Authorization Process ID.

9.2.9.2 USAP Management

9.2.9.2.1 START_AUTH request and START_AUTH_RSP response messages

The START_AUTH request and START_AUTH_RSP messages are used to establish a User-specific authorization session

as described in USAP. The Authorization target shall respond with an AUTH_ERROR of ErrorCode=UnexpectedRequest

or silently discard the request if a START_AUTH is received for a User with a corresponding active USAS. See General

USAP error handling for more information.

Table 49 — START_AUTH request message format shows the START_AUTH request message format:

Table 49 — START_AUTH request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for START_AUTH in Table 16

— Authorization message request codes.

1 Reserved 1 Reserved

2 CredentialID 2
The value of this field shall be the Credential ID of

the User making this request.

4 Attributes 1
Shall be the same format as Table 50 —

START_AUTH Request Attributes definition defines.

5 NonceLen 1
Length of the Nonce field. Shall be 32 bytes for this

version of the specification

6 Nonce NonceLen
Random sequence of bytes chosen by the user

identified by CredentialID .

Table 50 — START_AUTH Request Attributes definition shows the field definition for [START_AUTH] . Attributes field:

563

564

565
566

567

568

569

570

571

572

573

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 73

Table 50 — START_AUTH Request Attributes definition

Bit offset Field Description

0 Continue

If set, the Authorization target shall continue a prior USAS associated with the requested CredentialID .

The Authorization target shall use the requested CredentialID and Nonce to ensure the correct USAS

information is loaded.

See more details in USAS continuation section.

[7:1] Reserved Reserved

Table 51 — START_AUTH_RSP response message format shows the START_AUTH_RSP response message format:

Table 51 — START_AUTH_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for START_AUTH_RSP in Table

17 — Authorization message response codes.

1 Reserved 1 Reserved

2 CredentialID 2
Shall be the CredentialID from the corresponding

START_AUTH request.

4 NonceLen 1
Length of the Nonce field. Shall be 32 bytes for this

version of the specification

5 Nonce NonceLen

Random sequence of bytes chosen by the

Authorization target.

If the Continue bit in the Attributes field of the

corresponding request is set, the Authorization target

shall populate this field with the saved Nonce

corresponding to the Nonce in the corresponding

request.

9.2.9.2.1.1 START_AUTH Additional Errors

If the Continue bit is set and an Authorization target cannot find a preserved USAS associated with the requested

CredentialID and Nonce , the Authorization target shall return an AUTH_ERROR with ErrorCode=InvalidRequest .

9.2.9.2.2 END_AUTH request and END_AUTH_RSP response messages

The END_AUTH request and END_AUTH_RSP messages are used to terminate a USAS established using the

START_AUTH command. The termination of the Authorization session restores a secure session to its original privilege

level for that User. Additionally, the termination of a USAS does not end the corresponding secure session. If a

session for the corresponding user does not exist, the Authorization target shall return an AUTH_ERROR with

ErrorCode=InvalidRequest .

574

575

576

577

578

579

580

SPDM Authorization Specification DSP0289

74 Work in Progress Version 1.0.0WIP99

Table 52 — END_AUTH request message format shows the END_AUTH request message format:

Table 52 — END_AUTH request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for END_AUTH in Table 16 —

Authorization message request codes.

1 Reserved 1 Reserved

2 CredentialID 2
The value of this field shall be the Credential ID of

the User making this request.

4 Attributes 1
Shall be the format as Table 54 — END_AUTH

Request Attributes definition.

Table 53 — END_AUTH_RSP response message format shows the END_AUTH_RSP response message format:

Table 53 — END_AUTH_RSP response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for END_AUTH_RSP in Table 17

— Authorization message response codes.

1 Reserved 1 Reserved

2 CredentialID 2
Shall be the CredentialID from the corresponding

END_AUTH request.

Table 54 — END_AUTH Request Attributes definition shows the field definition for [END_AUTH] . Attributes field:

581

582

583

584

585

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 75

Table 54 — END_AUTH Request Attributes definition

Bit offset Field Description

[1:0] PersistMethod

Shall indicate the persistence type for the USAP associated with the requested CredentialID . This

field shall have the following definition:

• 0 . The Authorization target shall erase the USAS information immediately upon the successful

completion of this request. If the USAS information was previously persisted, the USAS

information shall no longer be persisted.

• 1 . The Authorization target shall persist or continue to persist the USAS information until the

next device reset.

• 2 . The Authorization target shall persist or continue to persist the USAS information across

resets until credential information associated with the requested Credential ID changes.

• 3 . Reserved

USAS continuation defines the USAS information associated with CredentialID to persist or erase.

An Authorization initiator can change the value of this field the next time it continues and ends the

same USAS. However, if a User continues a saved USAS and ends the USAS without issuing a

successfully authorized message, then the value of this field shall remain the same persist method

as before the continuation.

The KILL_AUTH_PROCESS request can terminate all Authorization processes, regardless of the value of

this field.

[7:2] Reserved Reserved

9.2.9.3 SEAP Management

9.2.9.3.1 ELEVATE_PRIVILEGE request and PRIVILEGE_ELEVATED response messages

ELEVATE_PRIVILEGE request and PRIVILEGE_ELEVATED response are used to start the authorization session when the

SPDM Endpoint Authorization Process is used. These messages shall be used only during the application phase of

the secure session. To initiate the authorization session, the Authorization initiator shall send an ELEVATE_PRIVILEGE

request and the Authorization target shall respond with PRIVILEGE_ELEVATED for a successful response. This request

and response pair elevates the privilege level of the SPDM session for the Authorization initiator for all subsequent

messages until the privilege level is lowered. An Authorization target shall return an AUTH_ERROR with

ErrorCode=InvalidRequest if there is a failure during the first part of SEAP (that is, the SEAP_SUCCESS was absent for

the corresponding Authorization initiator). An Authorization target shall return an AUTH_ERROR with

ErrorCode=InvalidRequest or silently discard the ELEVATE_PRIVILEGE request if the session's privilege level is already

elevated.

Table 55 — ELEVATE_PRIVILEGE request message format shows the ELEVATE_PRIVILEGE request message format:

586

587

588

589

590

591

592

593

594

SPDM Authorization Specification DSP0289

76 Work in Progress Version 1.0.0WIP99

Table 55 — ELEVATE_PRIVILEGE request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for ELEVATE_PRIVILEGE in

Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

Table 56 — PRIVILEGE_ELEVATED response message format shows the PRIVILEGE_ELEVATED response message

format:

Table 56 — PRIVILEGE_ELEVATED response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for PRIVILEGE_ELEVATED in

Table 17 — Authorization message response codes.

1 Reserved 1 Reserved

9.2.9.3.2 END_ELEVATED_PRIVILEGE request and ELEVATED_PRIVILEGE_ENDED response message

END_ELEVATED_PRIVILEGE request and ELEVATED_PRIVILEGE_ENDED response are used to terminate the authorization

session when SEAP is used. An Authorization target shall return an AUTH_ERROR with ErrorCode=InvalidRequest if

there is no SEAP in progress.

Table 57 — END_ELEVATED_PRIVILEGE request message format shows the END_ELEVATED_PRIVILEGE request

message format:

Table 57 — END_ELEVATED_PRIVILEGE request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for END_ELEVATED_PRIVILEGE

in Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

Table 58 — ELEVATED_PRIVILEGE_ENDED response message format shows the ELEVATED_PRIVILEGE_ENDED

response message format:

Table 58 — ELEVATED_PRIVILEGE_ENDED response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1

Shall be the code value for

ELEVATED_PRIVILEGE_ENDED in Table 17 —

Authorization message response codes.

1 Reserved 1 Reserved

595

596

597

598

599

600

601

602

603

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 77

9.2.10 Basic management

Messages in this section provide general management of the Authorization target.

9.2.10.1 TAKE_OWNERSHIP request and OWNERSHIP_TAKEN response

The TAKE_OWNERSHIP request and its successful OWNERSHIP_TAKEN response shall cause the Authorization target to

exit the default state and fully enforce authorization for all messages requiring authorization. This request and

response has no associated policy bit and thus any Credential ID has the authority to issue this request. However,

the Authorization target still performs authorization checks.

If Ownership is already taken, the Authorization target shall respond with an AUTH_ERROR message using

ErrorCode=UnexpectedRequest .

Table 59 — TAKE_OWNERSHIP request message format shows the TAKE_OWNERSHIP request message format:

Table 59 — TAKE_OWNERSHIP request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for TAKE_OWNERSHIP in Table 16 — Authorization message

request codes.

1 Reserved 1 Reserved

Table 60 — OWNERSHIP_TAKEN response message format shows the OWNERSHIP_TAKEN response message

format:

Table 60 — OWNERSHIP_TAKEN response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for OWNERSHIP_TAKEN in Table 17 — Authorization

message response codes.

1 Reserved 1 Reserved

9.2.10.2 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response

The AUTH_RESET_TO_DEFAULT request and its successful AUTH_DEFAULTS_APPLIED response shall cause the

Authorization target to reset the requested data types (such as credentials and policies) to initial or default values for

unlocked credentials. This request and response shall not affect locked credentials and their associated policies and

data types.

The Authorization target shall reset all data associated with the requested DataType and/or SVResetDataType of the

SVH owner for the requested CredentialID to initial or default values.

Table 61 — AUTH_RESET_TO_DEFAULT request message format shows the AUTH_RESET_TO_DEFAULT request

message format:

604

605

606

607

608

609

610

611

612

613

614

615

616

SPDM Authorization Specification DSP0289

78 Work in Progress Version 1.0.0WIP99

Table 61 — AUTH_RESET_TO_DEFAULT request message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for AUTH_RESET_TO_DEFAULT in Table 16 — Authorization

message request codes.

1 Reserved 1 Reserved

2 DataType 2

This field indicates the type of data to reset to initial or default values. The format

of this field shall be as Table 62 — DataType bit definitions defines.

Zero or more bits can be set.

4 CredentialID 2

The value of this field shall indicate the unlocked Credential ID(s) of the data

type(s) to reset to initial or default values. The value of 0xFFFF shall indicate all

unlocked Credential IDs.

6 SVResetDataTypeCount 2

This field shall be the count of Standard or Vendor Reset Data Type Elements in

SVResetDataTypeList . A value of zero shall indicate the absence of

SVResetDataTypeList .

8 SVResetDataTypeList Variable

This field shall cause data types defined by a standard body or vendor to reset to

their initial or default values. The format of this field shall be the concatenation of

Standard or Vendor Reset Data Type Element as Table 63 — Standard or Vendor

Reset Data Type Element format defines.

If a standard or vendor is present in this list, then the list can contain more than

one instance of that standard or vendor because a standard body may have

multiple standards with their corresponding data types. This specification

recommends that the standard or vendor prevent duplicate instances to minimize

payload.

Table 62 — DataType bit definitions shows the DataType bit definitions:

Table 62 — `DataType` bit definitions

Byte Offset Bit Offset Field Description

0 0 CredIDParams
If this bit is set, Credential ID parameters shall be reset to initial or default values for the

specified Credential IDs.

0 1 AuthPolicy
If this bit is set, the Authorization policy associated with the SVH in SVResetDataTypeList

shall reset to initial or default values for the specified Credential IDs.

0 [7:2] Reserved Reserved

1 [7:0] Reserved Reserved

Table 63 — Standard or Vendor Reset Data Type Element format shows the definition for the standard or vendor

data type to reset to initial or default values:

617

618

619

620

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 79

Table 63 — Standard or Vendor Reset Data Type Element format

Byte offset Field Size (bytes) Description

0 SVResetDataTypeOwner LenSVH

This field shall specify the owner of the SVResetDataType field. The format

and size of this field shall be the format and size of the SVH as DSP0293

defines. The value of LenSVH shall be set as Common variable names

defines.

If other DMTF DSP uses the format as this table defines, then the other

DMTF DSP specifications shall use the value associated with DMTF-DSP

for the ID field as DSP0293 defines.

LenSVH SVResetDataTypeLen 1
The value of this field shall specify the length of SVResetDataType , in bytes.

The value of this field shall not exceed 32.

1 + LenSVH SVResetDataType SVResetDataTypeLen

This field shall indicate the standard or vendor specific data types to reset to

initial or default values.

The SVResetDataTypeOwner defines the format and size for this field.

For this specification, the SVResetDataType is not present and thus the

SVResetDataTypeLen shall have a value of zero.

Table 64 — AUTH_DEFAULTS_APPLIED response message format shows the AUTH_DEFAULTS_APPLIED response

message format:

Table 64 — AUTH_DEFAULTS_APPLIED response message format

Byte offset Field Size (bytes) Description

0 RequestResponseCode 1
Shall be the code value for AUTH_DEFAULTS_APPLIED in Table 17 — Authorization

message response codes.

1 Reserved 1 Reserved

9.2.10.2.1 AUTH_RESET_TO_DEFAULT additional requirements

The DataType field indicates either a global data type or a data type specific to this specification. For global data

types, note that SVH owners or any specifications that implement this specification do not need to define an

equivalent bit in their SVResetDataType .

To restore the Authorization target back to default state as Initial provisioning describes, the request shall have these

values:

• CredentialID field shall have a value of 0xFFFF.

• All non-reserved bits shall be set in the DataType field of the request.

• SVResetDataTypeCount shall be zero.

Upon receiving the above request, the Authorization target shall return to the default state upon successful

621

622

623

624

625

626

627

628

629

630

SPDM Authorization Specification DSP0289

80 Work in Progress Version 1.0.0WIP99

completion. For all other parameter combinations, the Authorization target shall remain in the Owned state and shall

reset to initial or default values for the requested data types.

If the Authorization requires a reset to successfully complete the request and there are no other errors, the

Authorization target shall reply with an AUTH_ERROR of ErrorCode=ResetRequired . Otherwise, a successful response

shall indicate the Authorization target has successfully completed the requested operation.

AUTH_RESET_TO_DEFAULT request is an invasive operation. Thus, an Authorization target shall immediately terminate

all active and saved Authorization processes associated with the requested Credential IDs after the

AUTH_DEFAULTS_APPLIED response has been sent.

9.3 Timing requirements

This section discusses timing requirements for Authorization messages and all messages requiring authorization.

9.3.1 Message transmission time

The message transmission time is the worst-case transmission time it takes the Authorization initiator to completely

transmit a message to the Authorization target plus the worst-case transmission time for the Authorization target to

completely send a message to the Authorization initiator. The actual value and method of measurement of the

message transmission time is outside the scope of this specification.

9.3.2 Authorization messages timing

For messages not requiring authorization, the Authorization target shall respond within AuthResponseTime as

measured from the reception of the Authorization request to the transmission of the corresponding response. The

value of AuthResponseTime shall be 100 ms.

If an Authorization initiator wants to retry a request, the Authorization initiator shall wait at least AuthResponseTime

plus Message transmission time.

9.3.3 All messages requiring Authorization

Because this specification provides a mechanism for authorizing messages for any protocol, the Authorization target

can consume additional processing time to process the messages. Protocols that implement this specification should

consider the additional processing time needed and adjust existing timing requirements accordingly.

The Authorization target provides this additional processing time in [AUTH_CAPABILITIES].AuthRecordProcessTime field

to process the Authorization record. The transport can use this value if it uses the Authorization record.

If an Authorization initiator wants to retry an Authorization request, the Authorization initiator shall wait at least the

sum of these timing parameters:

• AuthResponseTime

• [AUTH_CAPABILITIES].AuthRecordProcessTime

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 81

• The Message transmission time.

Unless otherwise specified by the transport, the Authorization initiator should wait at least the sum of these timing

parameters before performing any error handling for messages of other protocols encapsulated in an Authorization

record:

• AuthRecordProcessTime

• The process time of MsgToAuthPayload in the Authorization record as specified by the transport

• The Message transmission time.

646

647

648

649

650

SPDM Authorization Specification DSP0289

82 Work in Progress Version 1.0.0WIP99

10 Authorization Opaque Data Structures (AODS)

Authorization Opaque Data Structures (AODS) are data structures that are populated into the OpaqueData field of

various SPDM messages. Other parts of this specification define which AODS populate into which SPDM messages.

This section defines the format for each AODS.

AODS requirements shall apply only when the secure session is an SPDM session. AODS can be used for other

types of secure sessions. However, the use of AODS to fulfill the requirements in this specification while outside of

an SPDM session is outside the scope of this specification.

10.1 General Authorization Opaque Data Structure

All AODS formats shall follow the General opaque data format as SPDM defines. This section binds the AODS to the

General opaque data format.

Table 65 — AODS general format defines the general format of all AODS.

Table 65 — AODS general format

Byte Offset Field Size (bytes) Description

0 ID 1
The value of this field shall be 0xB to identify DMTF-DSP as the standards

body.

1 VendorIDLen 1
The value of this field shall be 2 to identify DMTF-DSP as the owner of the

definition of all AODS.

2 DMTFspecID 2
The value of this field shall be 289. This field indicates that the definition of

the OpaqueElementData belongs to this DMTF specification.

4 OpaqueElementDataLen 2
The value of this field shall be the total size of these fields: AODSid and

AODSbody field.

6 AODSid 1

This field identifies the AODS and its format in AODSbody . The value of this

field shall be one of the values in the AODS ID column of Table 66 —

AODS IDs.

7 AODSbody AODSbodyLen

This field shall contain the actual AODS content according to the value in

AODSid . See the respective AODS section for the actual definition. The size

of this field shall be the size of AODSbody corresponding to the value in

AODSid field.

7 + AODSbodyLen AlignPadding Variable

See the field of the same name in SPDM for definition and requirements.

The OpaqueElementData are the fields following DMTFspecID (without

including the DMTFspecID field itself).

SPDM 1.2 or later defines the General opaque data format for all opaque data populated in all OpaqueData fields of

SPDM messages when OpaqueDataFmt1 is selected as the Opaque data format for the SPDM connection. Prior to

651

652

653

654

655

656

657

658

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 83

SPDM 1.2 or when OpaqueDataFmt1 is not the selected Opaque data format for the SPDM connection, the format of

the OpaqueData field is out of scope of this specification.

10.2 AODS error handling

This specification defines which SPDM message an AODS can be present in and other AODS requirements. An

error arises when an Authorization endpoint does not meet these AODS requirements, such as an unexpected

presence. When an error occurs, an Authorization endpoint can terminate the session, prevent Authorization

processes in the corresponding session, or use other error-handling mechanisms that are outside the scope of this

specification.

10.3 AODS IDs

Table 66 — AODS IDs lists out all AODS in this specification with a short description.

Table 66 — AODS IDs

AODS ID AODS Name Description

0 INVOKE_SEAP
Shall invoke the SEAP process for an SPDM endpoint. The format of the AODSbody shall be

the INVOKE_SEAP AODS.

1 SEAP_SUCCESS

Shall indicate the SPDM session handshake phase of the SEAP process has successfully

passed for the corresponding SPDM endpoint. The format of the AODSbody shall be the

SEAP_SUCCESS AODS.

2 AUTH_HELLO
Shall indicate the SPDM endpoint supports being an Authorization target. The format of the

AODSbody shall be the AUTH_HELLO AODS.

All other values Reserved Reserved

10.4 INVOKE_SEAP AODS

The INVOKE_SEAP AODS shall request the other SPDM endpoint to invoke the SEAP process for the requesting

SPDM endpoint. Table 67 — INVOKE_SEAP Body definition defines the format for the AODSbody in the AODS

general format when AODS ID is INVOKE_SEAP .

Table 67 — INVOKE_SEAP Body definition

Byte Offset Field Size (bytes) Description

0 PresenceExtension 1
This field shall indicate the presence of extra fields. The value of this field shall be

reserved.

1 CredentialID 2 The field shall contain the Credential ID of the requesting SPDM endpoint.

Because the INVOKE_SEAP AODS occurs before the SPDM endpoint knows the supported Authorization versions

659

660

661

662

663

664

665

666

667

SPDM Authorization Specification DSP0289

84 Work in Progress Version 1.0.0WIP99

of the other SPDM endpoint, the PresenceExtension field helps maintain future compatibility. Future versions of this

specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be present.

This allows a current implementation to skip the remaining fields and process only the fields it knows about. An

implementation can skip the remaining fields it doesn't know about by taking into account the OpaqueElementDataLen

in the Table 65 — AODS general format.

10.5 SEAP_SUCCESS AODS

The SEAP_SUCCESS AODS shall indicate the SEAP process during the SPDM session handshake phase for the

requesting SPDM endpoint is successful. Table 68 — SEAP_SUCCESS Body definition defines the format for the

AODSbody in the AODS general format when AODS ID is SEAP_SUCCESS .

Table 68 — SEAP_SUCCESS Body definition

Byte Offset Field Size (bytes) Description

0 PresenceExtension 1
This field shall indicate the presence of extra fields. The value of this field shall be

reserved.

Because the SEAP_SUCCESS AODS occurs before the SPDM endpoint knows the supported Authorization

versions of the other SPDM endpoint, the PresenceExtension field helps maintain future compatibility. Future

versions of this specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be

present.

This allows a current implementation to skip the remaining fields and process only the fields it knows about. An

implementation can skip the remaining fields it doesn't know about by taking into account the OpaqueElementDataLen

in the Table 65 — AODS general format.

10.6 AUTH_HELLO AODS

The AUTH_HELLO AODS shall indicate the SPDM endpoint providing this AODS is an Authorization target. Table 69

— AUTH_HELLO Body definition defines the format for the AODSbody in the AODS general format when AODS ID is

AUTH_HELLO .

Table 69 — AUTH_HELLO Body definition

Byte Offset Field Size (bytes) Description

0 PresenceExtension 1
This field shall indicate the presence of extra fields. The value of this field shall be

reserved.

Because the AUTH_HELLO AODS occurs before the SPDM endpoint knows the supported Authorization versions of

the other SPDM endpoint, the PresenceExtension field helps maintain future compatibility. Future versions of this

specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be present.

This allows a current implementation to skip the remaining fields and process only the fields it knows about. An

668

669

670

671

672

673

674

675

676

677

678

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 85

implementation can skip the remaining fields it doesn't know about by taking into account the OpaqueElementDataLen

in the Table 65 — AODS general format.

SPDM Authorization Specification DSP0289

86 Work in Progress Version 1.0.0WIP99

11 Other transport requirements

This section describes other or additional requirements that are not discussed elsewhere in this specification.

11.1 Authorization record over SPDM Vendor-Defined Messages (VDM)

This clause defines the Authorization record over SPDM Vendor-Defined Messages (VDM) to enable transmission of

Authorization messages, Authorization records and messages of any protocol requiring authorization over existing

transports. By leveraging SPDM's Vendor-defined messages, existing transports can utilize their current SPDM

bindings without requiring significant modifications. These requests and responses are intended for use between

SPDM endpoints acting as an Authorization initiator and an Authorization target.

AUTH record over SPDM VDM messages shall not affect the SPDM transcript defined in the SPDM specification.

Additionally, depending on the type of Authorization record and its content, one or more SPDM requests can be

outstanding at any time. Furthermore, an Authorization record over SPDM VDM request can have a response that is

not encapsulated in an Authorization record over SPDM VDM response. In a way, AUTH record over SPDM VDM

behaves more like a transport than a request and response model.

All Authorization record over SPDM VDM shall use the SPDM VENDOR_DEFINED_REQUEST and

VENDOR_DEFINED_RESPONSE request and response with these requirements:

• The StandardID shall be 0xB to indicate DMTF-DSP.

• The VendorID shall be 289 (0x121) to indicate this specification.

The VendorDefinedReqPayload field of the VENDOR_DEFINED_REQUEST and VendorDefinedRespPayload field of the

VENDOR_DEFINED_RESPONSE shall be the same format and size as Table 10 — Authorization record format. If

LargeVendorDefinedReqPayload is present in the VENDOR_DEFINED_REQUEST or LargeVendorDefinedRespPayload is

present in the VENDOR_DEFINED_RESPONSE , then the format of these fields shall be the same format and size as Table

10 — Authorization record format.

11.1.1 Additional AUTH over SPDM VDM requirements

The timing requirements for the AUTH Record over SPDM VDM requirements shall be the same as defined in Timing

requirements.

The Authorization target should size MaxSPDMmsgSize in the GET_CAPABILITIES request and CAPABILITIES response

messages in SPDM appropriately to receive all supported Authorization record types especially when the

Authorization record carries a message requiring authorization.

679

680

681

682

683

684

685

686

687

688

689

690

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 87

12 Cryptographic operations

This section describes or defines cryptographic functions specific to Authorization.

12.1 Asymmetric algorithms

This section defines the supported asymmetric algorithms.

Table 70 — Base asymmetric algorithm format lists the bit definitions and other parameters associated with the

respective asymmetric algorithms. BaseAsymAlgoLen is defined in Common variable names.

Table 70 — Base asymmetric algorithm format

Byte

Offset

Bit

Offset
Algorithm

Signature Length

(bytes)
Description

0 0 TPM_ALG_RSASSA_2048 256

0 1 TPM_ALG_RSAPSS_2048 256

0 2 TPM_ALG_RSASSA_3072 384

0 3 TPM_ALG_RSAPSS_3072 384

0 4 TPM_ALG_ECDSA_ECC_NIST_P256 64
The signature format shall be 32-byte r followed

by 32-byte s .

0 5 TPM_ALG_RSASSA_4096 512

0 6 TPM_ALG_RSAPSS_4096 512

0 7 TPM_ALG_ECDSA_ECC_NIST_P384 96
The signature format shall be 48-byte r followed

by 48-byte s .

1 0 TPM_ALG_ECDSA_ECC_NIST_P521 132
The signature format shall be 66-byte r followed

by 66-byte s .

1 1 TPM_ALG_SM2_ECC_SM2_P256 64
The signature format shall be 32-byte SM2_R

followed by 32-byte SM2_S .

1 2 EdDSA ed25519 64
The signature format shall be 32-byte R followed

by 32-byte S .

1 3 EdDSA ed448 114
The signature format shall be 57-byte R followed

by 57-byte S .

1 [7:4] Reserved Reserved

2:7 All bits Reserved Reserved

691

692

693

694

695

696

SPDM Authorization Specification DSP0289

88 Work in Progress Version 1.0.0WIP99

12.2 Hash algorithms

This section defines the supported hash algorithms.

Table 71 — Base hash algorithm format lists the bit definitions of all supported base hash algorithms.

BaseHashAlgoLen is defined in Common variable names.

Table 71 — Base hash algorithm format

Byte Offset Bit Offset Algorithm

0 0 TPM_ALG_SHA_256

0 1 TPM_ALG_SHA_384

0 2 TPM_ALG_SHA_512

0 3 TPM_ALG_SHA3_256

0 4 TPM_ALG_SHA3_384

0 5 TPM_ALG_SHA3_512

0 6 TPM_ALG_SM3_256

0 7 Reserved

1:7 All bits Reserved

12.3 Signature generation and validation

This section describes the AuthSign and AuthSigVerify functions.

12.3.1 Signature algorithm references

Refer to the Signature algorithm references section in the SPDM specification (DSP0274) for details on signature

algorithms.

12.3.2 Signature generation

The AuthSign function used in various parts of this specification defines the signature generation algorithm while

accounting for the differences in the various supported cryptographic signing algorithms.

The signature generation function takes this form:

697

698

699

700

701

702

703

704

705

706

707

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 89

signature = AuthSign(PrivKey, data_to_be_signed, context);

The AuthSign function shall take these input parameters:

• PrivKey : a secret key associated with the given Credential ID

• data_to_be_signed : a bit stream of the data that will be signed

• context : a string

The function shall output a signature using PrivKey and the selected cryptographic signing algorithm.

The signing function shall follow these steps to create auth_prefix and auth_context (See Text or string encoding

for encoding rules):

1. Create auth_prefix . The auth_prefix shall be the repetition, four times, of the concatenation of

"dmtf-auth-v", AuthVersionString and ".*". This will form a 64-character string.

2. Create auth_context . If the User is generating the signature, auth_context shall be the

concatenation of "user-" and context .

Now follows an example, designated Example 1, of creating a combined_auth_prefix .

In this example, the version of this specification is 1.9.3, the User is generating a signature, and the context is "my

example context". Thus, the auth_prefix is "dmtf-auth-v1.9.*dmtf-auth-v1.9.*dmtf-auth-v1.9.*dmtf-auth-v1.9.*". The

auth_context is "user-my example context".

Next, the combined_auth_prefix is formed. The combined_auth_prefix shall be the concatenation of four elements:

auth_prefix , a byte with a value of zero, zero_pad , and auth_context . The size of zero_pad shall be the number

of bytes needed to ensure that the length of combined_auth_prefix is 100 bytes. The size of zero_pad can be zero.

The value of zero_pad shall be zero.

Continuing Example 1, Table 72 — Example combined_auth_prefix structure shows the combined_auth_prefix with

offsets. Offsets increase from left to right and top to bottom. As shown, the length of combined_auth_prefix is 100

bytes. Furthermore, a number surrounded by double quotation marks indicates that the ASCII value of that number is

used. See Text or string encoding for encoding rules. Table 72 — Example combined_auth_prefix structure

concludes Example 1.

Table 72 — Example `combined_auth_prefix` structure

Offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0 d m t f - a u t h - v "1" . "9" . *

0x10 d m t f - a u t h - v "1" . "9" . *

0x20 d m t f - a u t h - v "1" . "9" . *

0x30 d m t f - a u t h - v "1" . "9" . *

0x40 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 u s e

708

709

710

711

712

713

714

715

716

717

718

719

720

SPDM Authorization Specification DSP0289

90 Work in Progress Version 1.0.0WIP99

Offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x50 r - m y space (0x20) e x a m p l e space (0x20) c o n

0x60 t e x t

The next step is to form the message_hash . The message_hash shall be the hash of data_to_be_signed using the

selected hash function associated with the given Credential ID. Many hash algorithms allow implementations to

compute an intermediate hash, sometimes called a running hash. An intermediate hash allows for the updating of the

hash as each byte of the ordered data of the message becomes known. Consequently, the ability to compute an

intermediate hash allows for memory utilization optimizations where an Authorization endpoint can discard bytes of

the message that are already covered by the intermediate hash while waiting for more bytes of the message to be

received.

Because cryptographic signing algorithms can vary widely, the following clauses define the binding of SPDMsign to

these algorithms.

12.3.2.1 RSA and ECDSA signing algorithms

All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

selected hash function associated with the given Credential ID.

The private key, defined by the specification for these algorithms, shall be PrivKey .

In the specification for these algorithms, the letter M denotes the message to be signed. M shall be the

concatenation of combined_auth_prefix and message_hash .

RSA and ECDSA algorithms are described in Signature algorithm references.

The FIPS PUB 186-5 supports deterministic ECDSA as a variant of ECDSA. RFC 6979 describes this deterministic

digital signature generation procedure. This variant does not impact the signature verification process. How an

implementation chooses to support ECDSA or deterministic ECDSA is outside the scope of this specification.

12.3.2.2 EdDSA signing algorithms

These algorithms are described in RFC 8032.

The private key, defined by RFC 8032, shall be PrivKey .

In the specification for these algorithms, the letter M denotes the message to be signed.

12.3.2.2.1 Ed25519 sign

This specification defines only Ed25519 usage and not its variants.

M shall be the concatenation of combined_auth_prefix and message_hash .

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 91

12.3.2.2.2 Ed448 sign

This specification defines only Ed448 usage and not its variants.

M shall be the concatenation of combined_auth_prefix and message_hash .

Ed448 defines a context string, C . C shall be the auth_context .

12.3.2.3 SM2 signing algorithm

This algorithm is described in GB/T 32918.2-2016. GB/T 32918.2-2016 also defines the variable M and IDA.

The private key defined by GB/T 32918.2-2016 shall be PrivKey .

In the specification for SM2, the letter M denotes the message to be signed. M shall be the concatenation of

combined_auth_prefix and message_hash .

The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the selected

hash function associated with the given Credential ID.

Lastly, SM2 expects a distinguishing identifier, which identifies the signer and is indicated by the variable IDA. If this

algorithm is selected, the ID shall be an empty string of size 0.

12.3.3 Signature verification

The AuthSigVerify function, used in various parts of this specification, defines the signature verification algorithm

while accounting for the differences in the various supported cryptographic signing algorithms.

The signature verification function takes this form:

AuthSigVerify(PubKey, signature, unverified_data, context);

The AuthSigVerify function shall take these input parameters:

• PubKey : the public key associated with the given Credential ID

• signature : a digital signature

• unverified_data : a bit stream of data that needs to be verified

• context : a string

The function shall verify the unverified_data using signature , PubKey , and a selected cryptographic signing

algorithm. AuthSigVerify shall return success if the signature is successfully verified and failure otherwise. Each

cryptographic signing algorithm states the verification steps or criteria for successful verification.

The verifier of the signature shall create auth_prefix , auth_context , and combined_auth_prefix as described in

Signature generation.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

SPDM Authorization Specification DSP0289

92 Work in Progress Version 1.0.0WIP99

The next step is to form the unverified_message_hash . The unverified_message_hash shall be the hash of the

unverified_data using the selected hash function associated with the given Credential ID.

The selected cryptographic signature verification algorithm is the one associated with the given Credential ID.

Because cryptographic signature verification algorithms can vary widely, the following clauses define the binding of

AuthSigVerify to these algorithms.

12.3.3.1 RSA and ECDSA signature verification algorithms

All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

selected hash function associated with the given Credential ID.

The public key, defined in the specification for these algorithms, shall be PubKey .

In the specification for these algorithms, the letter M denotes the message that is signed. M shall be the

concatenation of the combined_auth_prefix and unverified_message_hash .

For RSA algorithms, AuthSigVerify shall return success when the output of the signature verification operation, as

defined in the RSA specification, is "valid signature". Otherwise, AuthSigVerify shall return failure.

For ECDSA algorithms, AuthSigVerify shall return success when the output of "ECDSA Signature Verification

Algorithm" as defined in FIPS PUB 186-5 is "accept". Otherwise, AuthSigVerify shall return failure.

RSA and ECDSA algorithms are described in Signature algorithm references.

12.3.3.2 EdDSA signature verification algorithms

RFC 8032 describes these algorithms. RFC 8032, also, defines the M , PH , and C variables.

The public key, also defined in RFC 8032, shall be PubKey .

In the specification for these algorithms, the letter M denotes the message to be signed.

12.3.3.2.1 Ed25519 verify

M shall be the concatenation of combined_auth_prefix and unverified_message_hash .

AuthSigVerify shall return success when step 1 does not result in an invalid signature and when the constraints of

the group equation in step 3 are met as described in RFC 8032 section 5.1.7. Otherwise, AuthSigVerify shall return

failure.

12.3.3.2.2 Ed448 verify

M shall be the concatenation of combined_auth_prefix and unverified_message_hash .

Ed448 defines a context string, C . C shall be the auth_context .

AuthSigVerify shall return success when step 1 does not result in an invalid signature and when the constraints of

the group equation in step 3 are met as described in RFC 8032 section 5.2.7. Otherwise, AuthSigVerify shall return

failure.

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 93

12.3.3.3 SM2 signature verification algorithm

This algorithm is described in GB/T 32918.2-2016, which also defines the variable M and IDA.

The public key, also defined in GB/T 32918.2-2016, shall be PubKey .

In the specification for SM2, the variable M' is used to denote the message that is signed. M' shall be the

concatenation of combined_auth_prefix and unverified_message_hash .

The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the selected

hash function associated with the given Credential ID.

Lastly, SM2 expects a distinguishing identifier, which identifies the signer, and is indicated by the variable IDA. See

SM2 signing algorithm to create the value for IDA.

AuthSigVerify shall return success when the Digital signature verification algorithm, as described in GB/T

32918.2-2016, outputs an "accept". Otherwise, AuthSigVerify shall return failure.

777

778

779

780

781

782

783

SPDM Authorization Specification DSP0289

94 Work in Progress Version 1.0.0WIP99

13 Authorization events

The Authorization events are sent using the SPDM Event mechanism. This section uses many variable names that

SPDM defines. See DSP0274 for details, especially the eventing mechanism sections.

Authorization event requirements apply only when AuthEventCap is set. Otherwise, an Authorization target does not

support Authorization events. The Requirement column indicates whether or not the event is mandatory or

conditional. If a value in this column is Mandatory, the event shall be supported. If a value in this column is

Conditional, the section for the corresponding request details the requirements.

The EventGroupId in SPDM events identifies the owner of the event. For Authorization, the EventGroupId shall

indicate DMTF-DSP with a Vendor ID value of 289.

Table 73 — Authorization event types shows the supported Authorization event types for the Authorization event

group. The values in the Event Type ID column shall be the same values for EventTypeId field in the SPDM Event

data table for the Authorization event group for the corresponding event in the Event Name column. The version

(EventGroupVer) of the Authorization Event Group shall be 1 .

Table 73 — Authorization event types

Event Type ID Event Name Requirement Description

0 Reserved Reserved Reserved

1 CredIDparamsChanged Conditional
A change to one or more parameters via SET_CRED_ID_PARAMS has occurred for a

Credential ID.

2 AuthPolicyChanged Conditional
One or more parameters associated with SET_AUTH_POLICY have changed for a

Credential ID.

All others Reserved Reserved Reserved

13.1 Event type details

Each Authorization event type has its own event-specific information, referred to as EventDetail , to describe the

event. These clauses describe the format for each Authorization event type. The event types are listed in Table 73 —

Authorization event types.

13.1.1 Credential ID Parameters Changed Event

An Authorization target shall use this event (EventTypeId=CredIDparamsChanged) to notify the Event Recipient as

SPDM defines that the Authorization target made a change to one or more parameters by the SET_CRED_ID_PARAMS

request. The event shall apply to all operations indicated by the SetCredInfoOp field in the SET_CRED_ID_PARAMS

request.

784

785

786

787

788

789

790

791

792

793

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 95

The event shall be supported if the Authorization target supports the SET_CRED_ID_PARAMS request.

Table 74 — Credential ID Parameters Changed Event format describes the format for EventDetail as SPDM

defines.

Table 74 — Credential ID Parameters Changed Event format

Offset Field Size (bytes) Description

0 CredentialIdCount 2 Shall be the number of Credential IDs in CredentialIdList

2 CredentialIdList Variable

Shall be a list of Credential IDs whose Credential ID parameters changed through the

SET_CRED_ID_PARAMS request. The format of this field shall be the concatenation of

CredentialID s as Table 2 — Credential structure defines. Thus, the size of this field

shall be CredentialIdCount * the size of CredentialID .

The Authorization initiator can issue GET_CRED_ID_PARAMS to obtain details of this change.

13.2 Protecting the Authorization record

The Authorization record carries both messages requiring authorization and Authorization messages. To protect

Authorization records, Authorization records should traverse a secured transport that provides, minimally, the ability

to authenticate the message. The secured transport should also provide the ability to obfuscate messages.

If an SPDM session is used, then both the SPDM Requester and SPDM Responder shall set the MAC_CAP bit in their

corresponding GET_CAPABILITIES or CAPABILITIES message. The SPDM endpoints can set their corresponding

ENCRYPT_CAP bit as well.

13.2.1 Authorization Policy Changed Event

An Authorization target shall use the Authorization Policy Changed Event (EventTypeId=AuthPolicyChanged) to notify

the Event Recipient as SPDM defines when one or more authorization policies have changed through the

SET_AUTH_POLICY request. The event shall apply to all operations indicated by the SetAuthPolicyOp field in the

SET_AUTH_POLICY request. The EventDetail format for this event type shall be as the Table 75 — Authorization

Policy Changed Event format defines. This event only indicates a single policy change. If more than one policy

changes, then each change will have its own event.

The event shall be supported if the Authorization target supports the SET_AUTH_POLICY request.

Table 75 — Authorization Policy Changed Event format describes the format for EventDetail for the

AuthPolicyChanged event.

Table 75 — Authorization Policy Changed Event format

Offset Field Size (bytes) Description

0 CredentialID 2
Shall be the Credential ID associated with the Authorization policy that

changed.

794

795

796

797

798

799

800

801

802

803

804

805

SPDM Authorization Specification DSP0289

96 Work in Progress Version 1.0.0WIP99

Offset Field Size (bytes) Description

2 PolicyOwnerID LenSVH
Shall identify the owner of the definition of the policy that changed. The

format of this field shall be the SVH as DSP0293 defines.

2 + LenSVH PolicyIdLen 2 Shall be the length of PolicyID field.

4 + LenSVH PolicyID PolicyIdLen

Shall identify the actual policy, defined by PolicyOwnerID , that changed.

If the PolicyOwnerID indicates DSP0289 using DMTF-DSP as standards

body registry, then the format and size of this field is the PolicyType field

as Table 7 — DSP0289 general policy definitions defines.

The Authorization initiator can issue GET_AUTH_POLICY to obtain further details on the change.806

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 97

14 ANNEX A (informative) change log

14.1 Version 1.0.0 (in progress)

• Initial release

807

808

809

SPDM Authorization Specification DSP0289

98 Work in Progress Version 1.0.0WIP99

15 Bibliography

DMTF DSP4014, DMTF Process for Working Bodies, https://www.dmtf.org/dsp/DSP4014

810

811

DSP0289 SPDM Authorization Specification

Version 1.0.0WIP99 Work in Progress 99

https://www.dmtf.org/dsp/DSP4014

	Security Protocol and Data Model (SPDM) Authorization Specification
	Version: 1.0.0WIP99
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Document conventions
	2.1.1 Reserved and unassigned values
	2.1.2 Byte ordering
	2.1.2.1 Default byte order
	2.1.2.2 Octet string byte order
	2.1.2.3 Signature byte order
	2.1.2.3.1 ECDSA signatures byte order
	2.1.2.3.2 SM2 signatures byte order

	2.1.3 Text or string encoding
	2.1.4 Other conventions

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 Notations
	8 Authorization architecture
	8.1 Architecture overview
	8.2 Authorization version
	8.3 Authorization flows
	8.3.1 Credential provisioning overview
	8.3.2 Authorization overview

	8.4 Credentials
	8.4.1 Identifying the Authorization initiator
	8.4.2 Credential structure
	8.4.3 Credential attributes
	8.4.3.1 Locking and unlocking attributes

	8.4.4 Credential change requirements

	8.5 Authorization policies
	8.5.1 DSP0289 Authorization policy
	8.5.1.1 DSP0289 Authorization policy changes requirements
	8.5.1.2 DSP0289 additional Authorization policy requirements

	8.5.2 Policy attributes

	8.6 Initial provisioning
	8.6.1 Supply chain provisioning
	8.6.2 Default state
	8.6.3 Default state and additional supply chain requirements
	8.6.4 Taking ownership
	8.6.5 Other provisioning considerations

	8.7 Discovery
	8.8 Authorization process
	8.8.1 User-Specific Authorization Process (USAP)
	8.8.1.1 General USAP error handling, requirements, and notes
	8.8.1.2 USAS continuation

	8.8.2 SPDM Endpoint Authorization Process (SEAP)
	8.8.2.1 SEAP error handling, requirements, and notes

	8.8.3 Terminating Authorization process
	8.8.4 Other error handling, requirements, and notes

	8.9 Authorization record
	8.9.1 Authorization record on the transport
	8.9.2 Authorization types
	8.9.2.1 Authorization record in Authorization process
	8.9.2.1.1 USAP Authorization record
	8.9.2.1.2 SEAP Authorization record

	8.9.2.2 Authorization record Failures

	8.10 Authorization tag
	8.10.1 SEAP Authorization tag
	8.10.2 USAP Authorization tag
	8.10.2.1 USAP Authorization tag format
	8.10.2.2 USAP Authorization tag signature generation and verification

	9 Authorization messages
	9.1 Authorization messages overview
	9.1.1 Bi-directional Authorization message processing
	9.1.2 Requirements for Authorization initiators
	9.1.3 Requirements for Authorization targets
	9.1.4 Authorization messages bits-to-bytes mapping
	9.1.5 Version encoding
	9.1.6 Generic Authorization message format

	9.2 Authorization message definitions
	9.2.1 Authorization message request codes
	9.2.2 Authorization message response codes
	9.2.3 Authorization Message Validity
	9.2.4 Common variable names
	9.2.5 Error handling
	9.2.5.1 AUTH_ERROR response message

	9.2.6 Discovery message
	9.2.6.1 GET_AUTH_VERSION request and AUTH_VERSION response messages
	9.2.6.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response messages
	9.2.6.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages

	9.2.7 Credential provisioning
	9.2.7.1 SET_CRED_ID_PARAMS request and SET_CRED_ID_PARAMS_DONE response messages
	9.2.7.1.1 Additional requirements on SET_CRED_ID_PARAMS

	9.2.7.2 GET_CRED_ID_PARAMS request and CRED_ID_PARAMS response messages
	9.2.7.3 Credential provisioning authorization requirements

	9.2.8 Authorization policy provisioning and management
	9.2.8.1 SET_AUTH_POLICY request and SET_AUTH_POLICY_DONE response messages
	9.2.8.1.1 Additional requirements on SET_AUTH_POLICY

	9.2.8.2 GET_AUTH_POLICY request and AUTH_POLICY response messages
	9.2.8.3 Authorization requirements

	9.2.9 Authorization process management
	9.2.9.1 General Authorization process management
	9.2.9.1.1 GET_AUTH_PROCESSES request and AUTH_PROCESSES response messages
	9.2.9.1.2 KILL_AUTH_PROCESS request and PROCESS_KILLED response messages
	9.2.9.1.2.1 Additional requirements for KILL_AUTH_PROCESS

	9.2.9.1.3 Authorization Process ID calculation

	9.2.9.2 USAP Management
	9.2.9.2.1 START_AUTH request and START_AUTH_RSP response messages
	9.2.9.2.1.1 START_AUTH Additional Errors

	9.2.9.2.2 END_AUTH request and END_AUTH_RSP response messages

	9.2.9.3 SEAP Management
	9.2.9.3.1 ELEVATE_PRIVILEGE request and PRIVILEGE_ELEVATED response messages
	9.2.9.3.2 END_ELEVATED_PRIVILEGE request and ELEVATED_PRIVILEGE_ENDED response message

	9.2.10 Basic management
	9.2.10.1 TAKE_OWNERSHIP request and OWNERSHIP_TAKEN response
	9.2.10.2 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response
	9.2.10.2.1 AUTH_RESET_TO_DEFAULT additional requirements

	9.3 Timing requirements
	9.3.1 Message transmission time
	9.3.2 Authorization messages timing
	9.3.3 All messages requiring Authorization

	10 Authorization Opaque Data Structures (AODS)
	10.1 General Authorization Opaque Data Structure
	10.2 AODS error handling
	10.3 AODS IDs
	10.4 INVOKE_SEAP AODS
	10.5 SEAP_SUCCESS AODS
	10.6 AUTH_HELLO AODS
	11 Other transport requirements
	11.1 Authorization record over SPDM Vendor-Defined Messages (VDM)
	11.1.1 Additional AUTH over SPDM VDM requirements

	12 Cryptographic operations
	12.1 Asymmetric algorithms
	12.2 Hash algorithms
	12.3 Signature generation and validation
	12.3.1 Signature algorithm references
	12.3.2 Signature generation
	12.3.2.1 RSA and ECDSA signing algorithms
	12.3.2.2 EdDSA signing algorithms
	12.3.2.2.1 Ed25519 sign
	12.3.2.2.2 Ed448 sign

	12.3.2.3 SM2 signing algorithm

	12.3.3 Signature verification
	12.3.3.1 RSA and ECDSA signature verification algorithms
	12.3.3.2 EdDSA signature verification algorithms
	12.3.3.2.1 Ed25519 verify
	12.3.3.2.2 Ed448 verify

	12.3.3.3 SM2 signature verification algorithm

	13 Authorization events
	13.1 Event type details
	13.1.1 Credential ID Parameters Changed Event

	13.2 Protecting the Authorization record
	13.2.1 Authorization Policy Changed Event

	14 ANNEX A (informative) change log
	14.1 Version 1.0.0 (in progress)
	15 Bibliography

