-—

N

10

11

Security Protocol and Data Model (SPDM)
Authorization Specification

Version: 1.0.0WIP99

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of DMTF or its
members. Because this document is a Work in Progress, this document may still change, perhaps
profoundly and without notice. This document is available for public review and comment until
superseded.

Provide any comments through the DMTF Feedback Portal: https://www.dmtf.org/standards/
feedback

Document Identifier: DSP0289

Date: 2025-10-10

Version History: https://www.dmtf.org/dsp/DSP0289
Supersedes: None

Document Class: Normative

Document Status: Work in Progress

Document Language: en-US

https://www.dmtf.org/standards/feedback
https://www.dmtf.org/standards/feedback
https://www.dmtf.org/dsp/DSP0289

12

13

14

15

SPDM Authorization Specification DSP0289

Copyright Notice
Copyright © 2025 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release date should always be
noted.

Implementation of certain elements of this standard or proposed standard may be subject to third-party
patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations
to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or
identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate
identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,
in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or
identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation
thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party
implementing such standards, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third parties which have notified DMTF that, in their opinion, such
patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/
policies/disclosures.

This document's normative language is English. Translation into other languages is permitted.

2 Work in Progress Version 1.0.0WIP99

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

DSP0289 SPDM Authorization Specification

CONTENTS
T ROrEWOId . . . o 7
1.1 ACKNOWIEdgmENtS 7
2 INtrodUCHiON e 8
2.1 Document CONVENTIONSttt e e e e 8
2.1.1 Reserved and unassigned values 8
21,2 Byte Ordering.o 8
21.21 Defaultbyte order. 8
2.1.2.2 Octet string byte order 8
2.1.2.3 Signature byte order 9
2.1.2.3.1 ECDSA signatures byte order 9
2.1.2.3.2 SM2 signatures byte order. 9
213 Textor string enCOAINGttt 9
2.1.4 Other CONVENLIONSt e e 10
G 0 Yo7) = 11
4 Normative referenCes. 12
5Terms and definitions e 14
6 Symbols and abbreviated terms 16
T NOtatiONS . . 17
8 Authorization architecture 19
8.1 Architecture OVEerVIEW e 19
8.2 Authorization VersioN e 19
8.3 Authorization flows e 20
8.3.1 Credential provisioning OVEIVIEW e 20
8.3.2 Authorization Overview 20
8.4 Credentials 21
8.4.1 Identifying the Authorization initiator. 21
8.4.2 Credential structure. e 22
8.4.3 Credential attributes e 23
8.4.3.1 Locking and unlocking attributes 23
8.4.4 Credential change requirements e 24
8.5 Authorization poliCies. 24
8.5.1 DSP0289 Authorization policy. 26
8.5.1.1 DSP0289 Authorization policy changes requirements 29
8.5.1.2 DSP0289 additional Authorization policy requirements 29
8.5.2 Policy attributes. 29
8.6 Initial ProvisSiONINg 30
8.6.1 Supply chain provisSioningot 30
8.6.2 Default state 30
8.6.3 Default state and additional supply chain requirements 30
8.6.4 TaKing OWNershipo 31
8.6.5 Other provisioning considerations. i e 31

Version 1.0.0WIP99 Work in Progress 3

SPDM Authorization Specification DSP0289

8.7 DISCOVEIY . . o ittt e 32
8.8 Authorization ProCeSS 33
8.8.1 User-Specific Authorization Process (USAP) e 33
8.8.1.1 General USAP error handling, requirements,andnotes 35
8.8.1.2 USAS continuation e 36
8.8.2 SPDM Endpoint Authorization Process (SEAP) 37
8.8.2.1 SEAP error handling, requirements, andnotes 40
8.8.3 Terminating Authorization proCess e 40
8.8.4 Other error handling, requirements,and notes i 40
8.9 Authorization record e 41
8.9.1 Authorization record onthe transport 42
8.9.2 Authorization typeso 42
8.9.2.1 Authorization record in Authorization process o .. 42
8.9.2.1.1 USAP Authorizationrecord 42
8.9.2.1.2 SEAP Authorizationrecord. 43
8.9.2.2 Authorization record Failures 43
8.10 Authorization tag 44
8.10.1 SEAP Authorization tag.o 44
8.10.2 USAP Authorization tag e 44
8.10.2.1 USAP Authorizationtag format. 44
8.10.2.2 USAP Authorization tag signature generation and verification. 45
9 AUuthoriZzation MESSAgES. 47
9.1 Authorization messages OVeIVIEW e 47
9.1.1 Bi-directional Authorization message processingt 47
9.1.2 Requirements for Authorization initiators 47
9.1.3 Requirements for Authorization targets. 48
9.1.4 Authorization messages bits-to-bytes mapping 48
9.1.5Version enNCOdiNg.t 48
9.1.6 Generic Authorization message format. L 50
9.2 Authorization message definitions. 50
9.2.1 Authorization message requestcodes 50
9.2.2 Authorization message response COdesSttt e 52
9.2.3 Authorization Message Validity 53
9.2.4 Common variable Names 54
9.2 5 Error handling 54
9.2.5.1 AUTH_ERROR response MeSSage vviit ettt i e e e e e 54
0.2.6 DiSCOVEIY MESSAGE . « .« v ettt e et e e e e e e e e e 58
9.2.6.1 GET_AUTH_VERSION request and AUTH_VERSION response messages 58
9.2.6.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response
MNESSATES - . o v v vt e e ettt e 59
9.2.6.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages. . 60
9.2.7 Credential provisSioningo 64

9.2.7.1 SET_CRED _ID_PARAMS request and SET_CRED_ID_PARAMS_DONE response

4 Work in Progress Version 1.0.0WIP99

DSP0289 SPDM Authorization Specification

MNESSATES - . o v v vt et ettt e e 64
9.2.7.1.1 Additional requirements on SET_CRED_ID PARAMS 66
9.2.7.2 GET_CRED_ID_PARAMS request and CRED_ID_PARAMS response messages. 66
9.2.7.3 Credential provisioning authorization requirements 67
9.2.8 Authorization policy provisioning and management 67
9.2.8.1 SET_AUTH_POLICY request and SET_AUTH_POLICY_DONE response messages . . 67
9.2.8.1.1 Additional requirements on SET_AUTH _POLICY 69
9.2.8.2 GET_AUTH_POLICY request and AUTH_POLICY response messages 69
9.2.8.3 Authorization requirements. L 70
9.2.9 Authorization process management 70
9.2.9.1 General Authorization process management 70
9.2.9.1.1 GET_AUTH_PROCESSES request and AUTH_PROCESSES response
PSS A0S, .« v v ettt et e e 70
9.2.9.1.2 KILL_AUTH_PROCESS request and PROCESS_KILLED response messages .. 71
9.2.9.1.3 Authorization Process ID calculation 72
9.2.9.2 USAP Managementt e 73
9.2.9.2.1 START_AUTH request and START_AUTH_RSP response messages 73
9.2.9.2.2 END_AUTH request and END_AUTH_RSP response messages. 74
9.2.9.3 SEAP Management e 76

9.2.9.3.1 ELEVATE_PRIVILEGE request and PRIVILEGE_ELEVATED response messages 76
9.2.9.3.2 END_ELEVATED_PRIVILEGE request and ELEVATED PRIVILEGE_ENDED

FESPONSE MESSAGE . . o o v ettt ettt et e et e e e e 77

9.2.10 BasiCc management 78
9.2.10.1 TAKE_OWNERSHIP request and OWNERSHIP_TAKEN response 78

9.2.10.2 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response. . 78
9.2.10.2.1 AUTH_RESET TO_DEFAULT additional requirements 80

9.3 TIMING reqUIrEMENTSo e e 81
9.3.1 Message transmission time. 81

9.3.2 Authorization messages timing 81

9.3.3 All messages requiring Authorization 81

10 Authorization Opaque Data Structures (AODS). 83
10.1 General Authorization Opaque Data Structure 83
10.2 AODS error handlingot 84
T0.3 AOD S IDS . o ittt 84
10.4 INVOKE_SEAP AODSo e e e 84
10.5 SEAP_SUCCESS AODS . . .o e 85
10.6 AUTH_HELLO AODS . . . e e e e e e e 85

11 Other transport requiremMents 87
11.1 Authorization record over SPDM Vendor-Defined Messages (VDM). 87
11.1.1 Additional AUTH over SPDM VDM requirements 87

12 Cryptographic operations. 88
12.1 Asymmetric algorithms 88
12.2 Hash algorithmes. 89

Version 1.0.0WIP99 Work in Progress 5

SPDM Authorization Specification DSP0289

12.3 Signature generation and validation 89
12.3.1 Signature algorithm references. 89
12.3.2 Signature generation. 89

12.3.2.1 RSA and ECDSA signing algorithms 91
12.3.2.2 EADSA signing algorithms 91
12.3.2. 2.1 EA25510 Sign . . . oo 91
12.3.2.2.2 Ed448 SigN oo 92
12.3.2.3 SM2 signing algorithm e 92
12.3.3 Signature verification. 92
12.3.3.1 RSA and ECDSA signature verification algorithms 93
12.3.3.2 EdDSA signature verification algorithms 93
12.3.3.2.1 EA25510 verify . ..o 93
12.3.3.2.2 Ed448 verify . . . oo 93
12.3.3.3 SM2 signature verification algorithm. 94

13 Authorization eVents 95

13.1 Eventtype details 95
13.1.1 Credential ID Parameters Changed Event 95

13.2 Protecting the Authorization record 96
13.2.1 Authorization Policy Changed Event. 96

14 ANNEX A (informative) change [0g e 98

14.1 Version 1.0.0 (in Progress)ottt e e e 98

15 Bibliography 99

6 Work in Progress Version 1.0.0WIP99

16

17

18

19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

DSP0289

1 Foreword

SPDM Authorization Specification

The Security Protocols and Data Models (SPDM) Working Group of DMTF prepared the Security Protocol and Data
Model (SPDM) Authorization Specification (DSP0289).

DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and
interoperability. For information about DMTF, visit dmtf.org.

1.1 Acknowledgments

DMTF acknowledges the following individuals for their contributions to this document:

* Lee Ballard — Dell Technologies

» Steven Bellock — NVIDIA Corporation
* Daniil Egranov — Arm Limited

» Sakul Gupta — Micron Technology Inc.
» Brett Henning — Broadcom Inc.

» Eric Hibbard — Samsung

» Jeff Hilland — HPE Labs

* Guerney D H Hunt — IBM

* Raghu Krishnamurthy — NVIDIA Corporation

* Will Marone — AMD Inc.
» Jiewen Yao — Intel Corporation

* Jim Panian — Qualcomm Inc.

» Scott Phuong — Cisco Systems Inc., Axiado Corporation, Microsoft Corporation

» Xiaoyu Ruan — Intel Corporation
» Sungho Yoon — Samsung

* Wilson Young — Solidigm

Version 1.0.0WIP99

Work in Progress

https://www.dmtf.org/

37

38

39

40
41
42

43

44

45

46

47

48

49

50

51

52

SPDM Authorization Specification DSP0289

2 Introduction

The SPDM Authorization Specification defines messages, data objects, and sequences for performing authorized
message exchanges. The description of message exchanges includes authorization of messages, provisioning of
authorization credentials and their policies, management of authorization state, and other related capabilities.

2.1 Document conventions

* Document titles appear in italics.
» The first occurrence of each important term appears in italics with a link to its definition.

» ABNEF rules appear in a monospaced font.

2.1.1 Reserved and unassigned values
Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric
ranges are reserved for future definition by DMTF.

Unless otherwise specified, field values marked as Reserved shall be written as zero (e), ignored when read, not
modified, and not interpreted as an error if not zero.

2.1.2 Byte ordering

This section describes different byte orderings.

2.1.2.1 Default byte order

Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit
fields is little endian (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more
significant bytes).

2.1.2.2 Octet string byte order

A string of octets is conventionally written from left to right. Also by convention, byte 0 of the octet string shall be the
leftmost byte of the octet string, byte 1 of the octet string shall be the second-leftmost byte of the octet string, and this

pattern shall continue. When placing an octet string into an Authorization field, the ith byte of the octet string shall be
placed in the it" offset of that field.
For example, if placing an octet stream consisting of "OxAA 0xCB 0x9F 0xD8" into Longstring field, then offset 0

(the lowest offset) of Longstring will contain OxAA, offset 1 of LongString will contain OxCB, offset 2 of LongString
will contain 0x9F, and offset 3 of LongString will contain 0xD8.

8 Work in Progress Version 1.0.0WIP99

53

54

55

56

57

58

59

60

61

62
63

DSP0289 SPDM Authorization Specification

2.1.2.3 Signature byte order

For fields or values containing a signature, this specification attempts to preserve the byte order of the signature as
the specification of a given signature algorithm defines. Most signature specifications define a string of octets as the
format of the signature, and others may explicitly state the endianness such as in the specification for Edwards-
Curve Digital Signature Algorithm. Unless otherwise specified, the byte order of a signature for a given signature
algorithm shall be octet string byte order.

2.1.2.3.1 ECDSA signatures byte order

FIPS PUB 186-5 defines r, s, and the ECDSA signature to be (r, s) ,where r and s are integers. For ECDSA
signatures, excluding SM2, in SPDM, the signature shall be the concatenation of r and s . The size of r shall be
the size of the selected curve. Likewise, the size of s shall be the size of the selected curve. See BaseAsymAlgo in
NEGOTIATE_ALGORITHMS for the size of r and s . The byte order for r and s shall be big-endian order. When
placing ECDSA signatures into an SPDM signature field, r shall come first, followed by s .

2.1.2.3.2 SM2 signatures byte order

GB/T 32918.2-2016 defines r and s and SM2 signatures to be (r, s) ,where r and s are integers. The sizes
of r and s shall each be 32 bytes. To form an SM2 signature, r and s shall be converted to an octet stream
according to GB/T 32918.2-2016 and GB/T 32918.1-2016 with a target length of 32 bytes. Let the resulting octet
stringof r and s becalled sM2_r and sM2_s respectively. The final SM2 signature shall be the concatenation of
sM2_R and sm2_s . When placing SM2 signatures into an SPDM signature field, the SM2 signature byte order shall
be octet string byte order.

2.1.3 Text or string encoding

When a value is indicated as a text or string data type, the encoding for the text or string shall be an array of
contiguous bytes whose values are ordered. The first byte of the array resides at the lowest offset, and the last byte
of the array is at the highest offset. The order of characters in the array shall be such that the leftmost character of
the string is placed at the first byte in the array, the second leftmost character is placed in the second byte, and so
forth until the last character is placed in the last byte.

Each byte in the array shall be the numeric value that represents that character, as ASCIl — ISO/IEC 646:1991
defines.

Table 1 — "spdm" encoding example shows an encoding example of the string "spdm":

Table 1 — "spdm" encoding example

Offset Character Value
0 s ox73
1 p 0x70

Version 1.0.0WIP99 Work in Progress 9

64

65

SPDM Authorization Specification

Offset Character
2 d
3 m

2.1.4 Other conventions

Unless otherwise specified, all figures are informative.

Value

ox64

ox6D

DSP0289

10 Work in Progress

Version 1.0.0WIP99

66

67

68

DSP0289 SPDM Authorization Specification

3 Scope

This specification describes how to use messages, data objects, and sequences to exchange authorized messages
between two entities over a variety of transports and physical media. This specification contains the message
exchanges, sequence diagrams, message formats, and other relevant semantics for such message exchanges,
including authorization of arbitrary messages.

Other specifications define the mapping of these messages to different transports and physical media. This
specification provides information to enable security policy enforcement but does not specify individual policy
decisions.

Version 1.0.0WIP99 Work in Progress 11

69

70

71
72
73
74

75
76

77
78
79
80
81

82

83

84

85

86
87
88
89
90
91

92

SPDM Authorization Specification DSP0289

4 Normative references

The following documents are indispensable for the application of this specification. For dated or versioned
references, only the edition cited, including any corrigenda or DMTF update versions, applies. For references without
date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update
versions) applies.

DMTF DSP0274, Security Protocol and Data Model (SPDM) Specification, https://www.dmtf.org/dsp/DSP0274
DMTF DSP0277, Secured Messages using SPDM Specification, https://www.dmtf.org/dsp/DSP0277
DMTF DSP0293, Standards Body and Vendor Header Registry, https://www.dmtf.org/dsp/DSP0293

ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2021
(9th edition)

IETF RFC 4716, The Secure Shell (SSH) Public Key File Format, November 2006

IETF RFC 7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS), June 2014

TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.32, June 25, 2020
IETF RFC 8017, PKCS #1: RSA Cryptography Specifications Version 2.2, November, 2016
IETF RFC 8032, Edwards-Curve Digital Signature Algorithm (EADSA), January 2017
IETF RFC 8998, ShangMi (SM) Cipher Suites for TLS 1.3, March 2021
GB/T 32918.1-2016, Information security technology—~Public key cryptographic algorithm SM2 based on elliptic
curves—Part 1: General, August 2016
GB/T 32918.2-2016, Information security technology—~Public key cryptographic algorithm SM2 based on elliptic
curves—Part 2: Digital signature algorithm, August 2016
GB/T 32918.3-2016, Information security technology—~Public key cryptographic algorithm SM2 based on elliptic
curves—Part 3: Key exchange protocol, August 2016
GB/T 32918.4-2016, Information security technology—~Public key cryptographic algorithm SM2 based on elliptic
curves—Part 4: Public key encryption algorithm, August 2016
GB/T 32918.5-2016, Information security technology—~Public key cryptographic algorithm SM2 based on elliptic
curves—Part 5: Parameter definition, August 2016
GB/T 32905-2016, Information security technology—SM3 cryptographic hash algorithm, August 2016
GB/T 32907-2016, Information security technology—SM4 block cipher algorithm, August 2016
ECDSA
o Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-5 Digital Signature
Standard (DSS)
o NIST SP 800-186 Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain
Parameters
o |ETF RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA), August 2013
SHA2-256, SHA2-384, and SHA2-512

12

Work in Progress Version 1.0.0WIP99

https://www.dmtf.org/dsp/DSP0274
https://www.dmtf.org/dsp/DSP0277
https://www.dmtf.org/dsp/DSP0293
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8998
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979

93

94
95

96

DSP0289

o FIPS PUB 180-4 Secure Hash Standard (SHS)

+ SHA3-256, SHA3-384, and SHA3-512

SPDM Authorization Specification

o FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

+ ASCIl —ISO/IEC 646:1991, 09/1991

Version 1.0.0WIP99

Work in Progress

13

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://www.iso.org/standard/4777.html

97

98

99

100

101

102
103

SPDM Authorization Specification DSP0289

5 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines
those terms.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",
"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional
cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7
specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal
English meaning.

The terms "clause", "subclause", "paragraph”, and "annex" in this document are to be interpreted as described in
ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,
Part 2, Clause 3. In this document, clauses, subclauses, and annexes labeled "(informative)" do not contain
normative content. Notes and examples are always informative elements.

The terms that DSP0274 defines also apply to this document.

This specification uses these terms:

Term Definition

Process of determining whether an entity has the privilege to perform an action on a
protected resource.

Authorization

A logical entity that triggers the process of granting permission or approval for accessing a
Authorization initiator protected resource. An Authorization initiator can have an associated Credential ID
depending on the type of message it sends.

Authorization message Unit of communication when using messages defined in this specification.
Portion of the message body of an Authorization message. This portion of the message is
Authorization message payload separate from those fields and elements that identify the authorization request and response

codes and reserved fields.

A secure session whose privilege levels have been escalated on behalf of either a User or
an SPDM endpoint.

Authorization session

L A logical entity that determines if the Authorization initiator has the permission(s) and
Authorization target o
privilege level(s) to access the protected resource.

Byte Eight-bit quantity. Also known as an octet.

Simultaneous or parallel secure sessions between an Authorization initiator and an
Authorization target.

Concurrent secure sessions

Credential Information used to verify the identity of an entity, such as an asymmetric public key.

14 Work in Progress Version 1.0.0WIP99

DSP0289

Term
Endpoint

Message

Owner

Protected Resource

User

User-Specific Authorization Session

SPDM Authorization Specification

Definition
Logical entity that communicates with other endpoints over one or more transport protocols.
See Authorization message.

The user or consumer of the Authorization target operating in an environment and who is
either in physical possession or is a tenant of the Authorization target. Examples of an
Owner are the data center administrators, cloud providers, tenants of Infrastructure-as-a-
Service or equivalent services, typically, offered by cloud providers. These Owners are
generally not considered part of the supply chain such as a distributor, reseller, vendor,
silicon manufacturer, OEM, or ODM.

A software or hardware resource that requires authorization before being used.

An Authorization initiator that is not an SPDM endpoint of the corresponding secure session.
A User is identified by a Credential ID.

An Authorization session that is escalated specifically on behalf of a specific User.

Version 1.0.0WIP99

Work in Progress 15

SPDM Authorization Specification DSP0289

% 6 Symbols and abbreviated terms
105 The following additional abbreviations are used in this document.
Abbreviation Term
AODS Authorization ODS
AUTH Authorization
OoDS Opaque Data Structure
SEAP SPDM Endpoint Authorization Process
SPDM Security Protocol and Data Model
SVH Standards body and Vendor-defined Header. See the Standards
body or vendor-defined header in DSP0293.
USAP User-Specific Authorization Process
USAS User-Specific Authorization Session
VDM Vendor-Defined Messages

16 Work in Progress Version 1.0.0WIP99

DSP0289

% 7 Notations

107 The Authorization Specification uses the following notations:

Notation

Concatenate()

[4]

[M:N]

1b

Ox12A

N+

108

[${message_name}] . ${field_name}

109

or

[${message_name}] . ${field_name} / ${field_name@} /.../ ${field_nameN}

110

SPDM Authorization Specification

Description

The concatenation function concatenate(a, b, ..., z) , where
the first entry occupies the least-significant bits and the last entry

occupies the most-significant bits.

In field descriptions, this notation typically represents a range of
byte offsets starting from byte M and continuing to and including
byte N (where m < N).

The lowest offset is on the left. The highest offset is on the right.

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit
([Lsb]) offset = 0.

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is
on the right.

A lowercase b after a number consistingof esand 1s
indicates that the number is in binary format.

Hexadecimal, as indicated by the leading ox .
Variable-length byte range that starts at byte offset N.

Used to indicate a field in a message.

* ${message_name} is the name of the request or response
message.

* ${field_name} is the name of the field in the request or
response message. An asterisk (*) instead of a field name
means all fields in that message except for any conditional
fields that are empty.

One or more optional forward slash characters (/) can
follow to indicate hierarchy of field names similar to a
directory path in many operating systems

Version 1.0.0WIP99

Work in Progress

17

SPDM Authorization Specification

Notation

LenX

DSP0289

Description

This notation is used only in tables and indicates the length of the
corresponding field only for that table. The value x can be a
number greater than 0, as in the case that multiple fields in the
same table are using this notation.

Note that Lenx in one table has no connection to a Lenx with the
same value of x in any other table. By way of example, consider
two hypothetical tables: in the first table, Lene has a value of 44
bytes, and in the second table Lene has a value of 1024 bytes.
These two Lene s have no connection to each other. A table could
have Len1 and Len2 (and soon), and those Leni and Len2 will
have no connection to the Len1 s or Len2 s in any other table.

18

Work in Progress Version 1.0.0WIP99

111

112

113

114

115

116
117
118
119

120

121

122

123

124

125
126

127

DSP0289 SPDM Authorization Specification

8 Authorization architecture

This authorization architecture serves as a foundation for managing access to a protected resource on an endpoint.
The messages and behavior defined by this specification shall apply between two SPDM endpoints within an SPDM
session, except when using a trusted environment. The messages are defined in a generic fashion that allows them
to be communicated across different physical mediums and over different transport protocols.

When messages defined by this specification are exchanged in a trusted environment, such as during initial
provisioning, they may be performed outside an SPDM session. The authorization requirements for these messages
may also be overridden. The security implications of such exchanges are outside the scope of this specification.

8.1 Architecture overview

The specification defines message exchanges to enable an entity to have the following capabilities:

» Discover capabilities related to authorization in an endpoint.

» Discover and securely provision credentials and their policies into an endpoint.

» Securely manage endpoint state related to authorization.

» Authorize access to protected resources in an endpoint.
A large part of this architecture is the use of an Authorization process to achieve many of the capabilities listed
above. There are two Authorization processes: SPDM Endpoint Authorization Process (SEAP) and User-Specific

Authorization Process (USAP). SEAP is the process to authorize an SPDM endpoint whereas USAP authorizes an
external user.

These capabilities are built on top of well-known and established security practices across the computing industry.
The following clauses provide further details of the message exchanges related to authorization.

8.2 Authorization version

The Authversion field in the SELECT_AUTH_VERSION message shall indicate the version of the Authorization
specification that the format of an Authorization message conforms to.

For example, for version 1.2 of this specification, the value of Authversion is ex12 , which also corresponds to an
Authorization Major Version of 1 and an Authorization Minor Version of 2.

The version of this specification can be found on the title page and in the footer of the other pages in this document.

The Authversionstring shall be a string formed by concatenating the major version, a period (.), and the minor
version. For example, if the version of this specification is 1.2.3, then AuthversionString is "1.2".

The Authversion for this version of this specification shall be oxie . The Authversionstring for this version of this
specification shall be "1.0".

Version 1.0.0WIP99 Work in Progress 19

SPDM Authorization Specification DSP0289

128 8.3 Authorization flows

129 At a high level, the authorization flow involves these processes:
130 Credential provisioning
131 * Authorization

132 8.3.1 Credential provisioning overview

133 Credential provisioning is the process where an endpoint is securely equipped with a credential. In the context of this
specification, a credential consists of an asymmetric key pair. The specifics of the key generation are outside the
scope of the specification. For an asymmetric credential, the public portion is provisioned into the endpoint and the
private key is held securely by the Authorization initiator. The credential is also associated with a policy that
describes the privileges, scope of access, lifetime or other access related attributes, to a protected resource. This
specification defines a set of messages by which credentials and their policies can be securely provisioned into an
endpoint with protected resources, typically an SPDM endpoint.

134 8.3.2 Authorization overview

135 Authorization is the process by which an Authorization initiator, typically an SPDM endpoint, interacts with another
endpoint to gain access to a protected resource. The endpoints exchange messages defined in this specification to
discover capabilities related to authorization such as supported cryptographic algorithms, number of provisioned
credentials and other related information. To gain access to a protected resource, the endpoint with the protected
resource challenges the Authorization initiator, which signs the challenge along with a message to be authorized,
with the private key that it holds. The signature is then verified, and the credential checked against its policy, to
determine if the message has the required privileges or access to operate on the protected resource.

136 Note that the specification does not mandate an Authorization initiator be an SPDM endpoint, however the
interactions specified are between two SPDM endpoints. In cases where an Authorization initiator is not an SPDM
endpoint, it is expected that an SPDM endpoint acts as a proxy to the initiator to facilitate communication to the
endpoint with the protected resource.

137 Figure 1 — Model with SPDM endpoint as Authorization initiator shows a model where an SPDM endpoint acts as an
Authorization initiator. Figure 2 — Model with external Authorization initiator with SPDM endpoint proxy shows a
model where the Authorization initiator is an entity that is not an SPDM endpoint, but communicates with the
protected resource via a proxy SPDM endpoint.

20 Work in Progress Version 1.0.0WIP99

138

139
140
141

142

143

144

145

146

147

DSP0289 SPDM Authorization Specification

SPDM Secure Session

Authorization Initiator |« > Authorization Target

Figure 1 — Model with SPDM endpoint as Authorization initiator

Standard/Proprietary protocol SPDM Secure Session

Authorization Initiator [«

Y

SPDM Proxy Endpoint |«

Y

Authorization Target

Figure 2 — Model with external Authorization initiator with SPDM endpoint proxy

8.4 Credentials

A credential is a cryptographic secret that identifies the Authorization initiator and allows messages sent by the
Authorization initiator to be authenticated as Authorization flows describes.

8.4.1 Identifying the Authorization initiator

This specification supports more than one Authorization initiator. There can be multiple Authorization initiators at any
given time within or across multiple secure sessions. The same Authorization initiator can be in multiple secure
sessions. This raises the need to associate a credential and authorization policies with the Authorization initiator to
which they belong. This specification uses a numeric identifier, called the Credential ID (CredentialID), to make this
association. In other words, the Credential ID identifies the Authorization initiator much like a username identifies a
person's online account.

Furthermore, for the Credential ID to identify a particular Authorization initiator, this architecture presumes the secret
portion of a credential is only accessible to the associated Authorization initiator. If this presumption does not hold,

Version 1.0.0WIP99 Work in Progress 21

148
149

150

151

152

153

154

155
156

157
158

SPDM Authorization Specification DSP0289

then security issues can arise. This presumption allows this specification to use the Credential ID (CredentialID) to
represent or refer to the associated Authorization initiator.

A single Credential ID associates exactly one credential to one Authorization initiator.

An Authorization target shall support a minimum of 8 Credential IDs, and these credentiallID s shall increase
sequentially starting from o .

8.4.2 Credential structure

A single Table 2 — Credential structure contains all the credential information relating to a single Authorization
initiator that an Authorization target needs to know in order to properly authenticate messages requiring
authorization. Depending on the algorithm, credential information may contain secrets. However, for this version of
the specification, only asymmetric algorithms are supported and the credential structure needs only public
information, such as the public key, the exact asymmetric algorithm used, and other parameters generally deemed
public information.

Each credential structure uses the credentialID field to associate the credential information with the corresponding
Authorization initiator.

At a minimum, the Authorization target should store credentials in integrity-protected storage. An endpoint may use
the Table 2 — Credential structure as defined in this specification or use an implementation-specific data structure to
store credentials.

The SET_CRED_ID_PARAMS request can be used to provision credentials into a credential structure as Credential
provisioning defines.

Table 2 — Credential structure describes the structure and format for a credential.
Table 2 — Credential structure
Byte offset Field Size (bytes) Description
A unique identifier to associate the credential

information in this structure with the corresponding
Authorization initiator.

0 CredentiallD 2
The value of OxFFFF shall be reserved unless other
parts of this specification define the use for this
value.
Shall be the type of the credential.

2 CredentialType 1 * 0x01. Asymmetric Key.

« All other values reserved.

Shall be exe1 for this version of the specification.

22 Work in Progress Version 1.0.0WIP99

159

160

161

162

163

164

DSP0289 SPDM Authorization Specification

Byte offset Field Size (bytes) Description

The format of this field shall be as Table 70 — Base
asymmetric algorithm format defines. The value of
BaseAsymAlgoLen shall be as Common variable
3 BaseAsymAlgo BaseAsymAlgolLen names defines.

If credentialType is exe1 , this field shall have
exactly one bit set.

The format of this field shall be as Table 71 — Base
hash algorithm format defines. The value of
BaseHashAlgoLen shall be as Common variable

3 + BaseAsymAlgoLen BaseHashAlgo BaseHashAlgolLen names defines.

If CredentialType is oxo1 , this field shall have
exactly one bit set.

3 + BaseAsymAlgolLen +

Reserved 4 Reserved
BaseHashAlgoLen
7 + BaseAsymAlgolLen + . . . L
CredentialDataSize 4 Size of the credentialData field in bytes.
BaseHashAlgoLen
When credentialType is exe1 , the size and format
11 + BaseAsymAlgolLen . of this field shall be the same size and format as the
CredentialData CredentialDataSize .
+ BaseHashAlgoLen SubjectPublicKeyInfo structure encoded in DER

format as specified by RFC 7250.

8.4.3 Credential attributes

This section discusses various attributes that can be associated with each Credential ID. The Authorization initiator
can use the GET_CRED_ID_PARAMS to see the supported attributes and their current state for the requested Credential
ID. An Authorization target can support different attributes for different Credential IDs.

8.4.3.1 Locking and unlocking attributes

A locked credential cannot be modified by any request for the given Credential ID and its associated policy
regardless of authorization or the policy settings of the requesting Credential ID. Consequently, unlocking the
credential makes the credential and its associated policy modifiable according to the policy of the requesting
Credential ID. Furthermore, a Credential ID can lock and unlock only its own credentials and policy. In other words, a
Credential ID cannot unlock or lock the credentials and the associated policies of other Credential IDs.

A Credential ID can lock and unlock its own credential and policy only if the LockunlockSelfPrivilege bitis setin its
own policy as Authorization policies defines.

The Authorization initiator should exercise caution before locking the credential and associated policies of a
Credential ID, because recovery of locked credentials and their associated policies is outside the scope of this
specification.

Version 1.0.0WIP99 Work in Progress 23

SPDM Authorization Specification DSP0289

165 8.4.4 Credential change requirements

166 When the credential for a given Credential ID is changed, the new credential shall take effect immediately for that
Credential ID. Consequently, the Authorization target shall terminate all active and saved Authorization processes
using the given Credential ID.

167 8.5 Authorization policies

168 Authorization policies specify an Authorization initiator's access privileges to one or more protected resources.

169 All Credential IDs shall be associated with an Authorization policy. Similar to credentials, a single Credential ID
associates a set of policies to exactly one Authorization initiator. Except for initial provisioning, a Credential ID shall
not be usable for authorization without an associated policy. Each Credential ID has its own instance of policies. A
policy can be provisioned for a given Credential ID using the SeT_AutH_poLIcY command. Policies should be stored
by the endpoint in integrity protected storage. An endpoint may use the Table 3 — Policy List as defined in this
specification or use an implementation-specific data structure to store authorization policies.

170 Table 3 — Policy List describes the structure and format for a list of policies.
171 Table 3 — Policy List
Byte Offset Field Size (bytes) Description
0 CredentiallD 9 Shall be the Credential ID of the

Authorization initiator.
Shall be the number of policies listed
2 NumPolicies 2 in the Policies field. The value of

this field shall be at least one.

List of policies as defined by Table 4

4 Policies Variable .
— Policy structure.
172 Table 4 — Policy structure describes the structure and format for a policy.
173 Table 4 — Policy structure
Byte Offset Field Size (bytes) Description
This field shall indicate the owner of
the policy. The format of this field
. shall be the same as the SVH, as
0 PolicyOwnerID LenSVH

DSP0293 defines. The value of
LensVH shall be set as Common
variable names defines.

24 Work in Progress Version 1.0.0WIP99

DSP0289

Byte Offset

LenSVH

4 + LenSVH

6 + LenSVH

Field

PolicyVersion

PolicyLen

Policy

Size (bytes)

PolicyLen

SPDM Authorization Specification

Description

This field shall indicate the version of
the policy in the policy field
associated with the Policy Owner
identified in PolicyownerID field. The
Policy Owner defines the format and
values of this field and its association
with its policy in the Policy field.

When the PolicyOwnerID is
DSP0289 using DMTF-DSP as the

10 in the SVH, the format of this
field shall be the same as Table 25 —
VersionNumberEntry definition
defines and the value of this field
shall be the same as the version of
this specification. Because Table 23
only defines bits [15:0], bits [31:16]
shall be zero.

Shall be the length of Policy .

This field indicates the policy as
PolicyownerID defines. The
PolicyownerID shall define the size

and format of this field.

If PolicyowneriD is DSP0289 using
DMTF-DSP as the 1p in the SVH,
the structure of this field is defined in
Table 5 — DSP0289 Policy structure.

174 Table 5 — DSP0289 Policy structure describes the structure and format for DMTF defined policy.

175

Byte Offset

Table 5 — DSP0289 Policy structure

Field

PolicyType

PolicyLen

PolicyValue

Size (bytes)

PolicylLen

Description

Policy Type column in Table 6 —
DSP0289 Policy Types shall define
the value for this field.

Table 7 — DSP0289 general policy

definitions shall define the value of

this field corresponding to
PolicyType .

Table 7 — DSP0289 general policy
definitions shall define the value of

this field corresponding to
PolicyType .

Version 1.0.0WIP99

Work in Progress

25

176

177

178

179
180

181

182

183

184

185

SPDM Authorization Specification DSP0289

8.5.1 DSP0289 Authorization policy

This section defines the privileges for commands, actions, and other resources that this specification defines. Each
Credential ID has an associated policy. An Authorization initiator uses the SeT_AuTH_poLICcY command to change the
policy associated with the Credential ID provided in the request.

This section uses the term "given Credential ID" to refer to the Credential ID used in many scenarios. In general,
there are two types of Credential IDs: the Credential ID populated in the Credential ID field, if present, of an
Authorization request message and the requesting Credential ID of a message. These two Credential IDs are not
always the same for a message. When authorizing a message, the given Credential ID is the Credential ID of the
Authorization initiator of the corresponding message. After authorization succeeds and when fulfilling the request of
an Authorization request message with a Credential ID field present, the term, given Credential ID, refers to the
Credential ID populated in the Credential ID field of the corresponding request message.

The tables in this section are structured into different field types:

» Privilege. A privilege field type is a bit field where setting a bit grants the ability to perform the corresponding
action and clearing the bit revokes the ability to perform the corresponding action.

» Allowable. An allowable field type is a bit field where setting one or more bits allows the use of one or more
characteristics (usually configuration parameters) associated with that field.

All Authorization initiators can modify their own credentials, limited by their associated Authorization policy. All
Authorization initiators can retrieve their own Authorization policy or revoke their own privileges for all fields of
Privilege field type.

Table 6 — DSP0289 Policy Types lists all the policies specific to this specification. The values in the Policy Type
column shall map to the policyType field as Table 5 — DSP0289 Policy structure defines.

Table 6 — DSP0289 Policy Types
Policy Type Policy Name Description
0 Reserved Reserved

This policy type governs the possible actions an Authorization initiator can perform that are specific
1 GeneralPolicy to this specification. The format and size of Policyvalue shall be the format and size as Table 7 —
DSP0289 general policy definitions defines.

All other values Reserved All other values reserved

Table 7 — DSP0289 general policy definitions defines the credential policies for the resources (for example,
commands, and actions) that this specification defines.

26 Work in Progress Version 1.0.0WIP99

186

187

SPDM Authorization Specification

Table 7 — DSP0289 general policy definitions

DSP0289
Field
Byte Offset Field Size (bytes
y i ize (bytes)
0 AllowedBaseAlgo BaseAsymAlgoLen Allowable

BaseAsymAlgoLen AllowedBaseHashAlgo BaseHashAlgoLen Allowable

BaseAsymAlgolLen
+ CredentialPrivileges 4
BaseHashAlgolLen

4+

BaseAsymAlgolLen .
. AuthProcessPrivileges 1

BaseHashAlgolLen

Description

The format of this field shall be as Table 70 — Base asymmetric
algorithm format defines. The value of BaseAsymAlgoLen shall be
as Common variable names defines. This field reflects the base
algorithms the given Credential ID may use.

If a bit is set, the given Credential ID shall be capable of utilizing
the corresponding algorithm when credentialType is 1. If a bit is
not set, the given Credential ID shall be prohibited from utilizing
the corresponding algorithm.

At least one bit should be set. If no bits are set, then the given
Credential ID cannot be used.

The Authorization initiator can set any bit regardless of the
supported asymmetric algorithm. The Authorization target shall
accept and retain any bit that is set by the Authorization initiator.

The format of this field shall be as Table 71 — Base hash
algorithm format defines. The value of BaseHashAlgoLen shall be
as Common variable names defines. This field reflects the base
hash algorithms the given Credential ID may use.

If a bit is set, the given Credential ID shall be capable of utilizing
the corresponding hash when credentialType is 1. If a bit is not
set, the given Credential ID shall be prohibited from utilizing the
corresponding hash.

At least one bit should be set. If no bits are set, then
CredentialType = 1 cannot be used.

The Authorization initiator can set any bit regardless of the
supported hash algorithm. The Authorization target shall accept
and retain any bit that is set by the Authorization initiator.

The format of this field shall be as Table 8 — DSP0289
Authorization policy bit definitions defines.

The format of this field shall be as Table 9 — DSP0289
Authorization process policy bit definitions defines.

At least one bit should be set for the Authorization target to
authorize any messages for the given Credential ID. Thus, when
no bits are set, the Authorization target cannot authorize any
messages for the given Credential ID which effectively disables
the use of the given Credential ID.

Table 8 — DSP0289 Authorization policy bit definitions defines the credentials provisioning policies.

Version 1.0.0WIP99 Work in Progress

27

SPDM Authorization Specification DSP0289

188 Table 8 — DSP0289 Authorization policy bit definitions
RS Bit , Field »
Offset Offset g Type Description

If this bit is set, the given Credential ID shall be capable of
modifying the Credential ID parameters of other Credential IDs
through the SET_CRED_ID_PARAMS request using the
ParameterChange operation.

0 0 ModifyOtherCredentialParamPrivilege Privilege

If this bit is set, the given Credential ID shall be capable of
0 1 QueryOtherCredentialParamPrivilege Privilege retrieving the Credential ID parameters of other Credential IDs
through the GET_CRED_ID_PARAMS request.

If this bit is set, the given Credential ID shall be capable of
granting privileges for all fields of the Privilege field type for other
Credential IDs through the SET_AUTH_POLICY request.

0 2 GrantOtherPolicyPrivilege Privilege
Also, setting this bit allows the given Credential ID to modify all
fields of Allowable field type in any manner.

If this bit is set, the QueryPolicyPrivilege shall also be set.
If this bit is set, the given Credential ID shall be capable of

revoking privileges for all fields of the Privilege field type for other
0 3 RevokeOtherPolicyPrivilege Privilege Credential IDs through the SET_AUTH_POLICY request.

If this bit is set, the QueryPolicyPrivilege shall also be set.

If this bit is set, the given Credential ID shall be capable of
0 4 QueryPolicyPrivilege Privilege retrieving the Authorization policy of other Credential IDs through
the GET_AUTH_POLICY request.

If this bit is set, the given Credential ID shall be capable of using

0 5 ResetToDefaultsPrivilege Privilege
the AUTH_RESET_TO_DEFAULT request.
When this bit is set, the given Credential ID shall be capable of
locking or unlocking its own Credential parameters and its policy.
0 6 LockUnlockSelfPrivilege Privilege . o . .
Note that this specification does not support a Credential ID being
able to lock or unlock the Credential parameters and policies of
other Credential IDs.
When this bit is set, the given Credential ID shall be capable of
0 7 RetrieveAuthProcListPrivilege Privilege retrieving the Authorization process information of other
Credential IDs using the GET_AUTH_PROCESSES request.
When this bit is set, the given Credential ID shall be capable of
1 0 KillAuthProcPrivilege Privilege terminating the Authorization process of any unlocked Credential
ID using the KILL_AUTH_PROCESS request.
1 [7:1] Reserved Reserved Reserved
2-3 All bits Reserved Reserved Reserved

28 Work in Progress Version 1.0.0WIP99

189
190

191

192

193

194

195

196

197

198

DSP0289 SPDM Authorization Specification

Table 9 — DSP0289 Authorization process policy bit definitions defines the Authorization process policies.

Table 9 — DSP0289 Authorization process policy bit definitions

Byte

Offset Bit Offset Field Field Type Description
If this bit is set, the given Credential ID shall be capable of invoking the
0 0 Privilege SEAP Privilege 9 cdentiat 1o P 9
SEAP process as an Authorization initiator.
. . If this bit is set, the given Credential ID shall be capable of being a user in
0 1 PrivilegeUSAP Privilege

the USAP Process.

If this bit is set, the given Credential ID shall be capable of persisting its
0 2 PrivilegePersistUSAS Privilege own USAS as USAS continuation defines. If this bit is set, the
PrivilegeUsAP bit shall also be set.

0 [7:3] Reserved Reserved Reserved

8.5.1.1 DSP0289 Authorization policy changes requirements

When changing the Authorization policy for a given Credential ID, the new policy settings shall take effect
immediately for that Credential ID. The Authorization target should enforce the new policy in the least-invasive
manner possible. For example, if the new settings grant or revoke a privilege in the
ModifyOtherCredentialParamPrivilege field, the Authorization target can apply the new settings to incoming
messages without ending an active Authorization process. As another example, if a bit is cleared in AllowedBaseAlgo
and if an active Authorization process is using the corresponding asymmetric algorithm, then the Authorization target
will have to fail authorization for all messages requiring authorization for the affected Credential ID, unless the
affected Credential ID changes its own Credential ID parameters to comply with the new policy.

Here are some specific policy change requirements. If a new policy clears a bit in an Allowable field type and the
current Credential ID parameters associated with that Credential ID use the corresponding bit, the Authorization
target shall still allow the Authorization initiator to use the existing Credential ID parameters to change the
parameters to comply with the new policy through SET_CRED_ID_PARAMS and GET_CRED_ID_PARAMS while failing
authorization for all other messages requiring authorization.

The Authorization target can return an AUTH_ERROR message with ErrorCode=TermAuthProc for the corresponding
CredentialID to notify the Authorization initiator that the corresponding Authorization processes are terminated.

8.5.1.2 DSP0289 additional Authorization policy requirements

An Authorization initiator should initially configure the Authorization policy for a given Credential ID using the
SET_AUTH_POLICY request before initially setting the Credential ID parameters via SET_CRED_ID_PARAMS request for the
same Credential ID.

8.5.2 Policy attributes

This section describes attributes associated with policies. The Authorization initiator can use GET_AUTH_POLICY to

Version 1.0.0WIP99 Work in Progress 29

199

200

201

202

203

204

205

206

207

208

209

210

21

SPDM Authorization Specification DSP0289

read the supported attributes and their current state for the requested Credential ID. An Authorization target can
support different attributes for different Credential IDs.

See Locking and unlocking attributes for attribute details applicable to policy.

8.6 Initial provisioning

Initial provisioning covers provisioning requirements needed by entities in the supply chain and the Owner of the
Authorization target. Provisioning is the process of setting up persistent authorization data, such as Credential ID
parameters and associated policies.

The Authorization initiator can discover the device provisioning state by issuing a GET_AUTH_CAPABILITIES request
and checking the DeviceProvisioningState field in the response.

8.6.1 Supply chain provisioning

As the Authorization target traverses the many entities involved in the manufacturing and distribution of the
Authorization target, which in whole is called the supply chain, each entity may need to provision one or more
Credential IDs with their credentials and associated policies for many scenarios such as in-the-field debugging or
return merchandise authorization. Details of these scenarios are outside the scope of this specification.

When the supply chain entity provisions a Credential ID, that entity should utilize the highest numerically available
and lockable Credential ID that the Authorization target supports. When the supply chain entity completes
provisioning, that entity can decide to lock the provisioning for its Credential IDs so that it is modifiable only by that
supply chain entity itself. If the supply chain entity does not lock its provisioning, the Owner can modify those
credentials and policy associated with that Credential ID.

Supply chain entities shall not issue the TAKE_OWNERSHIP request because this can prevent the Owner from
completing its provisioning.

8.6.2 Default state

The default state is the state of the Authorization target where ownership has not been taken, authorization is not
enforced for unlocked Credential IDs, and only locked credentials remain, if any. In this state, supply chain entities
are expected to have locked their provisioned credentials and associated policies. The Authorization target uses
locked provisioning as an indicator of those Credential IDs provisioned by a supply chain entity that should not be
modified by others.

8.6.3 Default state and additional supply chain requirements
This section defines requirements for an Authorization target in the default state and the state of the Authorization
target as it traverses the supply chain.

While the Authorization target is in the default state or as it traverses through the supply chain, messages, including
messages from other protocols or from entities other than the Authorization initiator, can still flow to the Authorization

30 Work in Progress Version 1.0.0WIP99

212
213

214
215
216

217

218

219

220

221

222

223
224

225

DSP0289 SPDM Authorization Specification

target over multiple transports. To ensure proper setup of the Authorization target and its protected resources, the
Authorization target shall fail authorization of all messages requiring authorization, with the following exceptions:

» The Authorization target shall verify authorization for these messages:
o All messages requiring authorization that retrieve or modify protected resources associated with the locked
Credential ID

o A SET_CRED_ID_PARAMS message when locking or unlocking Credential IDs
o A TAKE_OWNERSHIP request message

» The Authorization target shall bypass authorization verification for Authorization messages described in
Credential provisioning and in Authorization policy provisioning and management and for
AUTH_RESET_TO_DEFAULT messages for unlocked Credential IDs. In these cases, the Authorization target shall not
require an Authorization process to occur. In other words, the Authorization target shall fulfill the request without
requiring credentials if no other error occurs.

8.6.4 Taking ownership

Taking ownership is the Owner performing its initial provisioning of the Authorization target. Taking ownership is
important to ensure proper operation of the Authorization target in the operational environment of the Owner.

While the Authorization target is in the default state, an Authorization initiator can modify both the Credential ID
parameters and Authorization policy of all unlocked Credential IDs without credentials and as many times as the
Owner needs as the Default state and additional supply chain requirements section defines. Once the Owner finishes
its initial provisioning, the Authorization initiator shall issue the TAKE_OWNERSHIP request to exit the default state and
enter an operational state where authorization is fully enforced for all messages.

The Owner should check provisioning of all Credential IDs to ensure they are provisioned as expected before
sending the TAKE_OWNERSHIP request.

Lastly, an Authorization target can return to the default state using the AUTH_RESET_TO_DEFAULT request if the
requesting Credential ID's Authorization policy permits.

8.6.5 Other provisioning considerations

This section discusses general provisioning considerations or requirements.

Provisioning of credentials and associated policies in the default state or throughout the supply chain should be done
only in a trusted environment (such as a secure production sandbox environment or secure manufacturing). If
messages used for provisioning are exchanged outside an SPDM session, there are additional factors and any
binding specification that allows such exchanges should ensure there are no gaps in functionality. After taking
ownership, an Owner can provision in a trusted environment or use a credential already provisioned to authorize
provisioning of other Credential ID parameters or their associated policies in an untrusted environment.

During and after initial provisioning, the supply chain and the Owner can configure one or more Credential IDs to
have the highest privilege levels or assign privileges across two or more Credential IDs. Furthermore, the Owner can
configure privileges in such a way that significantly restricts operation of the Authorization target; recovery from such
a state is outside the scope of this specification.

Version 1.0.0WIP99 Work in Progress 31

226

227

228

229

230

231

232

SPDM Authorization Specification DSP0289

8.7 Discovery

This section describes the methodology to discover support information for an SPDM endpoint as an Authorization
target. The discovery process has two phases: an announcement phase followed by the Discover-Select Flow phase.

In the announcement phase, an Authorization target announces itself at the start of a secure session, such as the
Handshake phase of an SPDM session. For an SPDM session, if an SPDM Requester is an Authorization target, the
SPDM Requester shall populate the AuTH_HELLO AODS in the Session-Secrets-Exchange request. Likewise, if an
SPDM Responder is an Authorization target, the SPDM Responder shall populate the AuTH_HELLO AODS in the
Session-Secrets-Exchange response.

The next phase is the Discover-Select Flow phase and this phase only occurs after a secure session is fully
established, such as in the Application phase of an SPDM session. If the Authorization initiator receives an
AUTH_HELLO AODS in an SPDM session, the Authorization initiator can begin this phase by issuing the
GET_AUTH_VERSION message, followed by the SELECT_AUTH_VERSION and ending with GET_AUTH_CAPABILITIES . The
GET_AUTH_VERSION request can be issued at any time and may be skipped if the version information is already known.
The GET_AUTH_CAPABILITIES request, if issued, shall always follow the successful completion of the
SELECT_AUTH_VERSION request.

The Discover-Select Flow phase does not need to fully complete for every secure session. However, the
Authorization initiator shall send a successful SELECT_AUTH_VERSION request in every secure session. The Discover-
Select Flow phase should fully complete between the Authorization initiator and Authorization target in at least one
secure session. Furthermore, for each secure session, the Authorization target shall return an AUTH_ERROR response
with ErrorCode=UnexpectedRequest to all Authorization requests other than GET_AUTH_VERSION and
SELECT_AUTH_VERSION requests until successfully fulfilling a SELECT_AUTH_VERSION request for the corresponding
secure session.

The Authorization initiator should only send exactly one successful SELECT_AUTH_VERSION request. If the Authorization
target receives additional SELECT_AUTH_VERSION requests after a version is already selected and the additional
requests change the selected version, the Authorization target shall respond with an AUTH_ERROR of
ErrorCode=InvalidRequest . Otherwise, it shall respond with SELECT_AUTH_VERSION_RSP because the subsequent
requests could be a retry.

Figure 3 — Most common discovery phase illustrates the most common discovery methodology for an SPDM
Responder that is an Authorization target.

32 Work in Progress Version 1.0.0WIP99

233

234

235

236

237

238

239

240
241

242

243

DSP0289 SPDM Authorization Specification

SPDM SPDM
Requester Responder

:

|

! Session-Secrets-Exchange N
Request

) Session-Secrets-Exchange |7~ -

Response

Session-Secrets-Finish
Request and Response

GET_AUTH_VERSION
P——— AUTH_VERSIONS [—>

Legend:
SELECT_AUTH_VERSION

Discover-Select <
b SELECT _AUTH_VERSION_RSP | >

Flow

> Opaque Data Structure

Authenticated and

GET_AUTH_CAPABILITIES !
T ’y Encrypted Session

> AUTH_CAPBALITIES ’

Figure 3 — Most common discovery phase

8.8 Authorization process

The Authorization process is the process by which an Authorization target grants or denies access to a protected
resource based on policy.

Prior to the Authorization process, the Authorization target should have credentials and policy provisioned
appropriate to its usage model. Otherwise, the Authorization target may inappropriately grant or deny access. See
Credential provisioning and Authorization policy provisioning and management for details.

To properly prepare for the execution of the Authorization process, an Authorization initiator shall successfully
establish a secure session such as an SPDM session as DSP0274 defines or use an already established secure
session.

The Authorization process establishes an authorization session and allows for establishing different types of
authorization sessions. This specification supports these Authorization processes:

» User-Specific Authorization Process
+ SPDM Endpoint Authorization Process

8.8.1 User-Specific Authorization Process (USAP)

The User-Specific Authorization process occurs completely within a secure session. This process establishes an

Version 1.0.0WIP99 Work in Progress 33

244

245

246

247

248

249

250
251
252

253

254

255

SPDM Authorization Specification DSP0289

authorization session bound to the user. Thus, one or more User-specific authorization sessions can occur
simultaneously within a secure session, and the Authorization session identifier shall be the Credential ID of the
corresponding User.

The USAP starts with the Discovery-Select flow as Discovery defines. To ensure the Authorization initiator has
current information, in each secure session the Authorization initiator should perform the Discovery-Select flow
completely before the first User-Specific Authorization session.

To establish a User-Specific Authorization session, the Authorization initiator shall send a START_AUTH request to the
target with the User's corresponding information and the Authorization target shall respond with START_AUTH_RSP for a
successful response. This request and response pair is important for these reasons:

+ It elevates the privilege level of the secure session for that specific User. This portion of a secure session is
called an Authorization session.

« ltinitializes critical cryptographic parameters for the authorization session. Messages that traverse the
authorization session can be messages of any protocol and are not restricted to SPDM or Authorization
messages.

+ It enables the message format of all messages using the authorization session to accommodate authorization
data for the corresponding User. The format for such messages is defined in Authorization record.

The successful completion of the START_AUTH request and START_AUTH_RSP response establishes the Authorization
session for the corresponding User. While the authorization session is active, messages requiring authorization shall
contain authorization data, called the Authorization tag, for the corresponding User. When the Authorization target
receives a message from any protocol in the corresponding secure session, the Authorization target shall determine
whether the message requires authorization regardless of whether the message contains an Authorization tag. If a
message requires authorization, the Authorization target shall validate the Authorization tag according to the
provisioned credentials, associated policies, and the User associated with the corresponding Authorization session.
Upon successful validation of the Authorization tag, the Authorization target shall process the message accordingly. If
a message requiring authorization does not contain an Authorization tag or if the validation of the Authorization tag
fails, the Authorization target shall take one of these actions:

* Respond with an AUTH_ERROR message
» Respond with the corresponding protocol-specific error

» Silently discard the message

Even in error scenarios, the Authorization target still processes the Authorization tag, if present, as USAP
Authorization record details. For messages that do not require authorization, the Authorization target can process the
message according to the definitions of its respective protocol.

The User-Specific Authorization session shall terminate for the corresponding User when the Authorization target
receives an END_AUTH request from the Authorization initiator or the corresponding secure session terminates. The
termination of the Authorization session restores a secure session to its original privilege level for that User.
Additionally, the termination of a User-Specific Authorization session does not end the corresponding secure session.
The termination of a USAS does not terminate the processing of received messages to completion according to the
definition of their respective protocol and this specification by the Authorization target.

Figure 4 — Authorization process illustrates an example of the User-Specific Authorization process using an SPDM
session.

34 Work in Progress Version 1.0.0WIP99

256

257

258

259

DSP0289 SPDM Authorization Specification

SPDM ! Sessiom-Seorote-Exah ! SPDM
p——— Session-Secrets-Exchangem—p!
Requester : 9 : Responder
I
! . - |
i Session-Secrets-Finish »:
! I
L I
i)— Various Protocol-Specific Messages [—p !
|
| - :
L =]
: - |
! Discover-Select |
— Flow —
! l
! I
|
: START_AUTH !
|
I
Ey_ START_AUTH_RSP —U
I
| :
d |
1
. Protocol-Specific Messages I
I ' ’
; Requiring Authorization i
! I
U |
. Protocol-Specific Messages [
I ’ _’
; Not Requiring Authorization E
! I
U I
I
' SET_CERTIFICATE SPDM I ;
| Request (requires Authorization) |
l 1
U 1
| Get Firmware Version |
| — Proprietary Protocol —>!
: Request (No Authorization Required) !
l I
J I
. Many More Protocol-Specific I
I ’_ —>
! Messages Requiring or not |
! Requiring Authorization ;
\ E Legend:
. END_AUTH — ! Authenticated and
: H— Encrypted Session
I
| p—] END_AUTH_RSP ———] User-Specific
! | Authorization Session
1 t

Figure 4 — Authorization process

8.8.1.1 General USAP error handling, requirements, and notes

A User is identified by its Credential ID. The START_AUTH, END_AUTH , and the Authorization record contain the
Credential ID of the user.

Version 1.0.0WIP99 Work in Progress

35

260

261

262

263

264

265

266
267
268
269

270

271

272

273
274

SPDM Authorization Specification DSP0289

A User shall have only one Authorization session active at a time within its corresponding secure session. Therefore,
a START_AUTH request shall be prohibited for the same User when the User has a corresponding active User-Specific
Authorization session. The User-Specific Authorization shall be terminated before another START_AUTH request can
be issued. If a START_AUTH is received for a User with a corresponding active User-Specific Authorization Session,
the Authorization target shall either respond with an AuTH_ERROR or silently discard the request.

A User can repeat the User-Specific Authorization Process as many times as it deems necessary as long as each
iteration of the process starts and ends as User-Specific Authorization Process defines. Additionally, the
Authorization target can limit the number of simultaneous active User-Specific Authorization sessions for a given
secure session.

If the Authorization target receives a message with an Authorization tag but the message does not require an
Authorization tag, the Authorization target shall still process the Authorization tag as this specification defines.

8.8.1.2 USAS continuation

USAS continuation allows a Credential ID to continue a prior USAS from where it ended, if supported by the
Authorization target as indicated by PermPersistCap Or ResetPersistCap inthe AUTH_CAPABILITIES response. USAS
continuation is similar to save and load operations common in numerous consumer applications. To save the USAS,
the Authorization initiator sets the [END_AUTH] . Attributes / PersistMethod as desired. To restore the USAS, the
Authorization initiator sets the [START_AUTH] . Attributes / Continue accordingly. See Authorization process
management for more details.

On a request to persist, both the Authorization target and Authorization initiator shall persist the USAS information
corresponding to the EnD_AUTH request. The USAS information shall be as follows:

* Authorization initiator nonce
» Authorization target nonce

* SavedSequenceNumber

* Credential ID

The savedSequenceNumber shall be calculated as: the last-used sequence number in the USAP Authorization tag plus
1. To ensure the correct sequence number is saved, the User should ensure completion of all messages containing
an Authorization tag before issuing the END_AUTH request for the USAS corresponding to that User.

Once a saved USAS is continued, the USAS becomes active and is no longer a saved USAS. However, the
Authorization target should wait for at least one successfully authorized message before erasing the saved USAS
information from its persistent storage. See [END_AUTH] . Attributes / PersistMethod for additional requirements.

If a saved USAS cannot be continued for any reason, the Authorization target shall still preserve the USAS according
to its original persistence method. The preserved USAS shall be saved until the Authorization target receives a
KILL_AUTH_PROCESS request from the Authorization initiator. To ensure maximum compatibility, the Authorization
initiator should select the same Authorization version as the saved USAS for the corresponding secured session.

Additionally, the Authorization target shall persist no more than one USAS per Credential ID at a time.

The pPrivilegePersistUSAS privilege governs the ability of USAS continuation for the given Credential ID.

36 Work in Progress Version 1.0.0WIP99

275

276

277

278

279

280

281

282

283

284

285

DSP0289 SPDM Authorization Specification

8.8.2 SPDM Endpoint Authorization Process (SEAP)

The SPDM Endpoint Authorization Process (SEAP) is a process that specifically authorizes an SPDM Requester or
both SPDM endpoints in an SPDM session. If SEAP authorizes only the SPDM Requester, then the SPDM
Requester plays the role of the Authorization initiator. If SEAP authorizes both endpoints, then the SPDM Requester
and SPDM Responder can play the role of either an Authorization initiator or an Authorization target at any time
within the session.

SEAP requires SPDM mutual authentication as SPDM defines. This version of the specification only supports
asymmetric algorithms and, therefore, SEAP supports secure session establishment only through SPDM
KEY_EXCHANGE . Additionally, SPDM mutual authentication can use certificates or a raw public key.

SEAP is broken into two parts as Figure 5 — SPDM Endpoint Authorization Process (SEAP) illustrates. The first part
occurs during the Session handshake phase as SPDM defines. The second part occurs during the SPDM Application
phase.

The first part of SEAP begins with a Session-Secrets-Exchange request. If an SPDM Requester wants to invoke this
Authorization process, the SPDM Requester shall add the 1NvoKE_SEAP data structure to the oOpaqueData field of a
Session-Secrets-Exchange request. Additionally, if the SPDM Responder wants to send messages requiring
authorization to the SPDM Requester using SEAP in the same session, the SPDM Responder shall also add the
INVOKE_SEAP data structure to the opaqueData field of the Session-Secrets-Exchange response. Lastly, the SPDM
endpoints shall populate all fields appropriately in a Session-Secrets-Exchange request and response message to
perform mutual authentication.

The first part of SEAP ends with the Session-Secrets-Finish message exchange. If the SPDM Requester
successfully authenticates and finds a matching Credential ID for the SPDM Responder, the SPDM Requester shall
populate the seap_success data structure in the opaqueData field of the Session-Secrets-Finish request. Likewise, if
the SPDM Responder successfully authenticates and finds a matching Credential ID for the SPDM Requester, the
SPDM Responder shall populate the Seap_success data structure in the opaqueData field of the Session-Secrets-
Finish response. Otherwise, if there is a failure or if the opaquebata field does not exist, the SEAP_sucCess data
structure in either the request or the response depending of which endpoint failed shall be absent. A failure of the
SEAP process does not end the SPDM session.

A matching Credential ID has three different definitions depending on ownership and lock Credential ID status. They
are as follows:

» Ownership Taken: A matching Credential ID is a supported Credential ID whose credential parameters and
policies are properly provisioned and whose public key matches that of the leaf certificate or raw public key of
the Authorization initiator used to authenticate the Authorization initiator.

» Ownership Not Taken: A matching Credential ID is a supported Credential ID whose credential parameters and
policies may not be properly or fully provisioned.

» Locked Credential IDs. A matching Credential ID is the same definition as a matching Credential ID in the
Ownership Taken case regardless of ownership status.

Before the second part of SEAP can begin, the Authorization initiator performs the Discovery-Select flow as the
Discovery section defines. The Authorization initiator should completely perform the Discovery-Select flow before the

Version 1.0.0WIP99 Work in Progress 37

SPDM Authorization Specification DSP0289

second part of SEAP in each SPDM session to ensure the Authorization initiator has the current information.
Additionally, the SPDM Requester and the SPDM Responder may not support the same versions or capabilities even
though they can be both Authorization initiators in the same session.

286 The second part of SEAP can begin at any time during the SPDM application phase. Additionally, the second part of
SEAP can occur as many times as needed in the corresponding SPDM session. To initiate the second part of SEAP,
the Authorization initiator shall send an ELEVATE_PRIVILEGE request and the Authorization target shall respond with

PRIVILEGE_ELEVATED for a successful response. This request and response pair elevates the privilege level of the
SPDM session for the Authorization initiator for all subsequent messages until the privilege level is lowered. An
Authorization target shall return an AUTH_ERROR if there is a failure in authorization during the first part of SEAP (that
is, if the SEAP_success was absent for the corresponding Authorization initiator).

287 This portion of an SPDM session is called an Authorization session. In SEAP, at most two Authorization sessions can
occur at any time simultaneously in the corresponding SPDM session. One Authorization session would be for the
SPDM Requester who is acting as an Authorization initiator and the other Authorization session would be for the
SPDM Responder who is acting as an Authorization initiator.

288 The successful completion of this request and response establishes the Authorization session for the corresponding
Authorization initiator. In an Authorization session, when the Authorization target receives a message from any
protocol in the corresponding SPDM session, the Authorization target shall determine if the message requires
authorization or not. If a message requires authorization, the Authorization target shall validate the message
according to the provisioned policies associated with the corresponding Authorization initiator. Upon successful
validation of the message, the Authorization target shall process the message accordingly. If the validation of the
message fails, the Authorization target shall take one of these actions:

289 » Respond with an AUTH_ERROR message

290 » Respond with the corresponding protocol-specific error

291 + Silently discard the message

292 For messages that do not require authorization, the Authorization target can process the message accordingly.

293 The Authorization session shall terminate for the corresponding Authorization initiator when the Authorization target

receives an END_ELEVATED_PRIVILEGE request from the Authorization initiator or the corresponding SPDM session
terminates. The termination of the Authorization session restores an SPDM session to its original privilege level for
that Authorization initiator. The termination of a SEAP Authorization session does not end the corresponding SPDM
session. The termination of a SEAP Authorization session does not terminate the processing of received messages
to completion according to the definition of their respective protocol and this specification by the Authorization target.

294 Figure 5 — SPDM Endpoint Authorization Process (SEAP) illustrates the SPDM Endpoint Authorization Process
(SEAP). Note, for simplicity, the figure does not illustrate all the required AODS during the SPDM handshake. See
Authorization Opaque Data Structures for details on all AODS.

38 Work in Progress Version 1.0.0WIP99

DSP0289

295 SPDM
Requester

Request

Session-Secrets-Exchange
Response

Session-Secrets-Exchange N

SPDM Authorization Specification

SPDM
Responder

Session-Secrets-Finish

I
I
.
| Request :

I— _ -+
| Session-Secrets-Finish >~ ~ !
I ’ — d
i Response !
] [}
i p—| Various Protocol-Specific Messages —>:
[}
| - |
I - I
| - |
]]
Discover-Select 1
— Flow —>!
I
I
I
I

] ELEVATE_PRIVILEGE 4>U'
p———v PRIVILEGE_ELEVATED |

Protocol-Specific Messages
Requiring Authorization

'

Protocol-Specific Messages
Not Requiring Authorization

Request (requires Authorization)

SET_CERTIFICATE SPDM

'

Request (No Authorization Required)

Get Firmware Version
Proprietary Protocol

v

Many More Protocol-Specific

296

I Messages Requiring or not
Requiring Authorization
END_ELEVATED_PRIVILEGE
p—— ELEVATED_PRIVILEGE_ENDED

LT

Legend:

Opaque Data Structure
when

Q SPDM Requester is
Authorization Initiator

Opaque Data Structure
when

Q SPDM Responder is
Authorization Initiator

Authenticated and
Encrypted Session

SEAP
Authorization Session

Figure 5 — SPDM Endpoint Authorization Process (SEAP)

Version 1.0.0WIP99

Work in Progress

39

297

298

299

300

301

302

303

304
305

306

307

308
309
310

31

SPDM Authorization Specification DSP0289

8.8.2.1 SEAP error handling, requirements, and notes

If the INvOKE_SEAP data structure is absent in the Session-Secrets-Exchange request, then the Sseap_success shall
be absent in the opaqueData field of the corresponding Session-Secrets-Finish response. Likewise, if the
INVOKE_SEAP data structure is absent in the Session-Secrets-Exchange response, then the seAp_success shall be
absent in the opaqueData field of the corresponding Session-Secrets-Finish request.

If SEAP uses SPDM version 1.3 or earlier, then Seap_success cannot be supported because there is no oOpaqueData
field in the Session-Secrets-Finish message. Thus, if the first part of SEAP fails, the Authorization target shall return
an AUTH_ERROR USing ErrorCode=OperationFailed for the ELEVATE_PRIVILEGE request in all versions of SPDM.

If an SPDM session uses SEAP, then that session cannot use USAP because it is not possible to differentiate the
Authorization initiator of a message requiring authorization especially when an Authorization tag is not present.
Specifically, if an Authorization initiator invokes SEAP, then the Authorization target shall prohibit the use of USAP in
the corresponding SPDM session.

If INVOKE_SEAP is presentin a Session-Secrets-Exchange message, it shall be present exactly once.

8.8.3 Terminating Authorization process

There are two types of Authorization process termination. The first type is natural termination in which the
Authorization initiator sends an end Authorization process request such as END_AUTH to the Authorization target. The
other type is forced termination. Both types achieve the same effect, except for the case in which the Authorization
process is preserved. An Authorization process can only be preserved through natural termination.

Note that other parts of this specification use forced termination.

In cases that do not preserve an Authorization process or that kill a saved Authorization process, terminating an
Authorization process destroys all metadata (for example, nonce, sequence numbers) associated with that
Authorization process and returns the associated Credential ID to an unprivileged state where all messages requiring
authorization fail authorization checks. The affected Credential ID can start a new Authorization process afterward.

8.8.4 Other error handling, requirements, and notes

When an Authorization session is not active in a secure session for a given User or Authorization initiator, the
processing of messages, regardless of whether they require authorization, is outside the scope of this specification
but likely follows the definitions of its respective protocol. From an authorization perspective, however, this
specification recommends one of these three options:

» Have the Authorization target use another form of authorization, which is outside the scope of this specification

» Respond with an AUTH_ERROR response for all messages requiring authorization

+ Silently discard the message

Authorization sessions do not limit the types of messages that can traverse a secure session, but rather they enable
explicit validation of authority for all messages according to provisioned credentials and policies. Furthermore, this

40 Work in Progress Version 1.0.0WIP99

312

313

314

315
316

317
318

DSP0289 SPDM Authorization Specification

specification strongly recommends that messages requiring authorization be denied access for Users or
Authorization entities outside of an Authorization session.

The use of the same Credential ID across multiple secure sessions can occur at any time, including simultaneously.
The Authorization target and Authorization initiator shall ensure that authorization data associated with a given
Credential ID is bound to their respective secure session and Authorization session. In other words, the authorization
data cannot be reused in another secure session. Here is a small example involving SPDM sessions: the sequence
number, Authorization tag, or nonce that is bound to SPDM session ID 33 cannot be used again in SPDM session ID
88.

8.9 Authorization record

An Authorization record is a wrapper structure that carries authorization information and the message itself for
messages requiring authorization. The Authorization record provides the transport with a protocol-agnostic way to
send and receive messages requiring authorization.

Table 10 — Authorization record format shows the Authorization record format:

Table 10 — Authorization record format

Byte offset Field Size (bytes) Description

o ratespn e e e T e e e e e
1 Reserved 1 Reserved

2 GenericPayloadLen 4 Length, in bytes, of Genericpayload .

6 GenericPayload GenericPayloadLen The format of this field shall be as specified by the AuthRecordType .

Table 11 — Authorization record types shows the supported Authorization record types.

Table 11 — Authorization record types

Value Description

Authorization message. The GenericPayload field shall contain an Authorization message that this
0 specification defines and which does not require authorization. The size and format of this field shall be the
size and format of the specific Authorization message.

Encapsulated message requiring authorization. The GenericPayload field shall contain data in the format
specified by Table 12 — Generic Authorization Record Type Format for Messages Requiring Authorization.

When using DSP0277 as the transport, the format and size of the MsgToAuthPayload field shall be the same
as the Application data as DSP0277 defines. Otherwise, the format and size of the MsgToAuthPayload field
are specific to the message protocol or the transport.

Version 1.0.0WIP99 Work in Progress 41

319

320

321

322

323

324

325

326

327

328
329

SPDM Authorization Specification DSP0289

Value Description

Record Error. The GenericPayload field shall contain data in the format specified by Table 13 — Type 2
Authorization Record Failure.

The Authorization target can use this record type to convey errors associated with the Authorization record or
AUTH record over SPDM VDM. It can also silently discard the Authorization record or AUTH record over
SPDM VDM.

DSP0289-defined Authorization messages requiring authorization.

The GenericPayload field shall contain data in the format specified by Table 12 — Generic Authorization
Record Type Format for Messages Requiring Authorization. Additionally, the size and format of the
MsgToAuthPayload field in the Message Requiring Authorization Record shall be the same format and size as
an Authorization message.

This Authorization record type is strictly for Authorization messages requiring authorization.

All other values Reserved

8.9.1 Authorization record on the transport

While the Authorization record can traverse any transport, there are some requirements the transport should define.
The transport should define at least one mechanism to indicate the presence and absence of the Authorization
record, so that it can be identified and forwarded to the authorization logic for further processing. For example, this
can be accomplished through a single bit indicating presence or by stating that the Authorization record is always
present. The transport can also choose to use the mechanism defined in Authorization record over SPDM Vendor-
Defined Messages (VDM) to transmit the Authorization record since this may help prevent significant modifications to
the transport.

The transport can provide additional requirements, changes, or constraints, if any.

8.9.2 Authorization types

This section defines the format and requirements for all Authorization record types.

8.9.2.1 Authorization record in Authorization process

This section gives additional details on the Authorization records specific to each Authorization process.

8.9.2.1.1 USAP Authorization record

This section defines requirements for all messages requiring authorization in USAP. These are the requirements for
all messages requiring authorization in USAP:

» The Authorization record shall be present for all messages requiring authorization.

* The Authorization record shall be transmitted exclusively from the Authorization initiator to the Authorization

42 Work in Progress Version 1.0.0WIP99

330

331

332

333

334

335

336

DSP0289 SPDM Authorization Specification

target, and transmission in the opposite direction is prohibited.

» For messages not requiring authorization in USAP, the transport can use the Authorization record. If the
Authorization record is used for messages not requiring authorization, the AuthRecordType shall be set to 0.

Table 12 — Generic Authorization Record Type Format for Messages Requiring Authorization shows the format for
the GenericPayload field when AuthRecordType is 1:

Table 12 — Generic Authorization Record Type Format for Messages Requiring Authorization

Byte offset Field Size (bytes) Description

This field indicates a unique number for this Authorization
record. The Authorization endpoints use this number for
message tracking and error-handling purposes.

The value of this field should increment by 1. Values can repeat
as long as the Authorization initiator ensures that the
Authorization target finishes authorization checks on this

0 AuthRecID 4

process.
The value OxFFFF_FFFF shall not be used.

This field shall contain the length, in bytes, of AuthTag . The

4 AuthTaglLen 4 Lo
value of this field shall be greater than zero.

This field shall contain the Authorization tag for the

8 AuthTag AuthTaglen
MsgToAuthPayload .

Shall be the length, in bytes, of MsgToAuthPayload . The value of

8 + AuthTaglLen MsgToAuthPayloadLen 4 o
this field shall be greater than zero.

Shall contain the message requiring authorization. The message
can be a message of any protocol. The format and size of this
field are specific to the message protocol.

12 + AuthTaglen MsgToAuthPayload MsgToAuthPayloadLen
For Authorization messages, this field shall only contain
Authorization requests. The size and format shall be the size
and format of the respective Authorization request.

8.9.2.1.2 SEAP Authorization record

The transport shall specify its use of an Authorization record.

8.9.2.2 Authorization record Failures

The Authorization target can send an Authorization record with an Authorization tag verification failure type (Type 2)
to indicate an authorization verification failure.

Version 1.0.0WIP99 Work in Progress 43

337

338

339

340

341

342

343

344
345

346

347

348
349

SPDM Authorization Specification DSP0289

Table 13 — Type 2 Authorization Record Failure

Byte offset Field Size (bytes) Description

Shall be the AuthrecID of the Authorization record that contains the error. If the
0 ErrorAuthReclID 4 AuthRecID is not known, such as when a message requiring authorization does not
have an Authorization tag, the value of this field shall be OxFFFF_FFFF.

This field contains the error information. The format and size of this field shall be the

same as AUTH_ERROR response.
4 AuthRecErrorinfo Len0O

Note, Type 2 can use only certain types of Errorcode s.

8.10 Authorization tag

The Authorization tag is the cryptographic data that accompanies a message that requires authorization. An
Authorization tag may or may not be present in every Authorization process or in every message. The Authorization
record embeds the Authorization tag. This section details the Authorization tag for each Authorization process.

Furthermore, Authorization tags support only asymmetric signature algorithms.

8.10.1 SEAP Authorization tag

The Authorization tag is not present in SEAP, as SEAP Authorization record discusses. The Credential ID to use for
SEAP shall be the one provided in the 1INvOKE_SEAP AODS.

8.10.2 USAP Authorization tag

This section provides details about the Authorization tag in a USAP.

In a User-specific authorization session, the Authorization tag identifies the user requesting authorization.
Specifically, the Authorization tag contains a Credential ID that numerically identifies the User and verifiable
cryptographic information that authenticates the user to ensure the message came from the corresponding User.

8.10.2.1 USAP Authorization tag format

The format and size for the AuthTag in the Authorization record shall be the format and size as Table 14 —
Authorization tag format defines.

Table 14 — Authorization tag format shows the format for the USAP Authorization tag.
Table 14 — Authorization tag format
Byte offset Field Size (bytes) Description

0 CredentiallD 2 Shall be the Credential ID of an active User-Specific Authorization session.

44 Work in Progress Version 1.0.0WIP99

350

351

352

353

354

355
356
357
358
359

360

361

362

363

364

365
366

DSP0289 SPDM Authorization Specification

Byte offset Field Size (bytes) Description

Shall be the signature of the selected asymmetric algorithm associated with
CredentialID as USAP Authorization tag signature generation and verification defines.
The size of this field shall be the size of the selected signature associated with
CredentiallD .

2 Signature Len0

If credentiallID is presentin the Authorization record, the Authorization target shall use it to locate the credential in
order to verify the Authorization tag.

8.10.2.2 USAP Authorization tag signature generation and verification

This section defines the operations for signature generation and verification when using asymmetric signature
algorithms for USAP.

The verifiable cryptographic information in an Authorization tag shall be a digital signature whose signature algorithm
is the provisioned asymmetric signature algorithm corresponding to the User.

To compute the signature, the User shall create AuthMsgBody by concatenating the following fields in order:

The Credential ID of the User
The requester's nonce provided in the START_AUTH request
The responder's nonce provided in the START_AUTH_RSP response

The sequence number

IS

The message body, which is the MsgToAuthPayload field of the Authorization record

If [START_AUTH] . Attributes / Continue is set, the sequence number shall start with savedSequenceNumber as USAS
continuation defines with the successful completion of sTART_AUTH request. Otherwise, the sequence number shall
start at 1. Thereafter, the sequence number shall increment by 1 after each message requiring authorization and
corresponding to the User. For the Authorization target, the sequence number shall increment by 1 after receiving a
message containing an Authorization tag from the corresponding User regardless of whether the Authorization
verification succeeds or fails.

The message body shall be all the bytes of the MsgToAuthPayload field of the Authorization record. Because this
specification regards the message body as opaque data, the message body shall have an octet string byte order.

The size of the sequence number shall be 32 bits. Once the sequence number equals the maximum value of
OxFFFF_FFFF, the User-Specific Authorization Session shall terminate.

Finally, the User shall compute AuthMsgSignature using this function and the corresponding selected asymmetric
signature algorithm.

AuthMsgSignature = AuthSign(UserPrivKey, AuthMsgBody, context)

where:

+ The userprivkey shall be the private key associated with the corresponding User.

* The context shall be the string "usap signing".

Version 1.0.0WIP99 Work in Progress 45

367

368

369
370

371
372

373

374

375
376
377

378

SPDM Authorization Specification DSP0289

The AuthMsgSignature shall be the signature in an Authorization tag for the corresponding user and corresponding
message.

Likewise, the Authorization target shall verify the message requiring the authorization through this method:

AuthValResult = AuthSigVerify(UserPublicKey, AuthSignature, AuthMsgBody, context)

where:

* The userpublickey shall be the public key associated with the User that is associated with the corresponding
Credential ID.

* The Authsignature shall be the signature in the Authorization tag that accompanied the message.

* The context shall be the string "usap signing".

If AuthvalResult is success, the Authorization tag has been successfully validated. Otherwise, the Authorization tag
has failed validation.

The message requiring authorization shall be successful if all the following conditions are met:

* The message contains an Authorization tag.
* The AuthvalResult is success.

* The policy associated with the message grants the corresponding User access.

Otherwise, the message fails authorization.

46 Work in Progress Version 1.0.0WIP99

379

380

381

382

383

384

385

386

387

388

389

390

391
392
393
394

395

DSP0289 SPDM Authorization Specification

9 Authorization messages

9.1 Authorization messages overview

Authorization messages are messages defined by this specification that are sent between the Authorization initiator
and target and form a request-response protocol. The following clauses describe the rules and requirements for the
messaging protocol.

9.1.1 Bi-directional Authorization message processing

This clause describes the specifications and requirements for handling bi-directional and overlapping authorization
request messages.

If an endpoint can act as both an Authorization initiator and Authorization target, it shall be able to send request
messages and response messages independently.

When an SPDM endpoint acts as a proxy between an Authorization initiator and an Authorization target, how the
proxy SPDM endpoint enforces the rules specified in the following clauses is outside the scope of this specification.

While the specification anticipates that, in common scenarios, an SPDM Requester acts as the Authorization initiator
and an SPDM Responder serves as the Authorization target, this configuration is not mandated by the architecture.
The following clause assumes that an SPDM endpoint is the Authorization initiator.

9.1.2 Requirements for Authorization initiators

An Authorization initiator shall not have multiple outstanding Authorization requests to the same Authorization target,
within a single secure session. This restriction shall only apply to the messages defined by this specification. For
messages defined by other protocols, the rules on multiple outstanding requests are outside the scope of this
specification.

An outstanding request is a request where the request message has begun transmission and the corresponding
response has not yet been fully received.

Within a secure session, if the Authorization initiator has sent a request to an Authorization target and wants to send
a subsequent request to the same target, then the Authorization initiator shall wait to send the subsequent request
until after the Authorization initiator completes one of the following actions:

» Receives the response from the Authorization target for the outstanding request.

» Times out waiting for a response.

» Receives an indication from the transport layer that transmission of the request message failed.
» The Authorization initiator encounters an internal error or reset.

An Authorization initiator might send simultaneous request messages to the same Authorization target across
multiple secure sessions or to different Authorization targets.

Version 1.0.0WIP99 Work in Progress 47

396

397

398

399

400

401

402
403

404
405
406

407

408

409

SPDM Authorization Specification DSP0289

9.1.3 Requirements for Authorization targets
An Authorization target is not required to process more than one request message at a time, within a single secure
session.

An Authorization target that is not ready to accept a new request message shall either respond with an AUTH_ERROR
message of ErrorCode=Busy or silently discard the request message.

If an Authorization target supports Authorization messages across concurrent secure sessions, a pending request in
one session shall not affect pending requests in another session.

9.1.4 Authorization messages bits-to-bytes mapping

All fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned byte in
sequentially decreasing order down to and including the least numerically assigned byte of that field. The following
two figures illustrate this mapping.

Figure 6 — One-byte field bit map shows the one-byte field bit map:
Example:

A One-Byte Field Starting at Byte Offset 3

Byte Offset 3

Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit
7,654 /32|10

Figure 6 — One-byte field bit map

Figure 7 — Two-byte field bit map shows the two-byte field bit map:
Example:
A Two-Byte Field Starting at Byte Offset 5
Byte Offset 6 Byte Offset 5
Bit | Bit [Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit
15|14 /1312|1110 9|8 |7 |6 |54 |3|2]|1]0

Figure 7 — Two-byte field bit map

9.1.5 Version encoding

The Authversion field in the SELECT_AUTH_VERSION message represents the version of the specification through a
combination of Major and Minor nibbles, encoded as follows:

48 Work in Progress Version 1.0.0WIP99

410

411
412
413

414

415

416

417
418
419

420

421

422

DSP0289 SPDM Authorization Specification

Version Matches Incremented when

Major version field in the
Major AuthVersion field in the Protocol modification breaks backward compatibility.
SELECT_AUTH_VERSION message.

Minor version field in the
Minor AuthVersion field in the Protocol modification maintains backward compatibility.
SELECT_AUTH_VERSION message.

For example:

* Version 1.0 would be oxie .
* Version 1.2 would be ox12 .

* Version 3.7 would be ox37 .

An endpoint that supports version 1.2 can interoperate with an older endpoint that supports version 1.0 or other
previous minor versions. Whether an endpoint supports inter-operation with previous minor versions of the
authorization specification is an implementation-specific decision.

An endpoint that supports version 1.2 only and an endpoint that supports version 3.7 only are not interoperable and
shall not attempt to communicate beyond GET_AUTH_VERSION .

This specification considers two minor versions to be interoperable when it is possible for an implementation that is
conformant to a higher minor version number to also communicate with an implementation that is conformant to a
lower minor version number with minimal differences in operation. In such a case, the following rules apply:

» Both endpoints shall use the same lower version number in the Authversion field for all messages.
» Functionality shall be limited to what the lower minor version of the authorization specification defines.

» Computations and other operations between different minor versions of the authorization specification should
remain the same, unless security issues of lower minor versions are fixed in higher minor versions and the fixes
require changes in computations or other operations. These differences are dependent on the value in the

AuthVersion field in the message.

» In a newer minor version of the authorization specification, a given message can be longer, bit fields and
enumerations can contain new values, and reserved fields can gain functionality. Existing numeric and bit fields
retain their existing definitions. Also, fields within a message may grow in length.

+ Errata versions (indicated by a non-zero value in the UpdateversionNumber field of the AUTH_VERSION response
message after a GET_AUTH_VERSION request) clarify existing behaviors in the authorization specification. They
maintain bitwise compatibility with the base version, except as required to fix security vulnerabilities or to correct
mistakes from the base version.

For details on the version agreement process, see GET_AUTH_VERSION request and AUTH_VERSION response
messages and SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response messages. The
detailed version encoding that the AUTH_VERSION response message returns contains an additional byte that
indicates specification bug fixes or development versions. See Table 24 — AUTH_VERSION response message
format.

Version 1.0.0WIP99 Work in Progress 49

423

424

425

426

427

428

429

430

431

SPDM Authorization Specification DSP0289

9.1.6 Generic Authorization message format

Table 15 — Generic Authorization message field definitions defines the fields that constitute a generic Authorization
message, including the message header and payload:

Table 15 — Generic Authorization message field definitions

Byte offset Bit offset Size (bits) Field Description

Shall be the request message code
or response code, which Table 16
— Authorization message request
codes and Table 17 — Authorization
message response codes
enumerate. oxee through ex7r

0 [7:0] 8 RequestResponseCode represent response codes and
ox80 through exrF represent
request codes. In request
messages, this field is considered
the request code. In response
messages, this field is considered
the response code.

1 [7:0] 8 Reserved Reserved

Shall be zero or more bytes that are
See the

2 L Variable Authorization message payload specific to the
description.
RequestResponseCode .

9.2 Authorization message definitions

This section discusses all authorization request and response messages.

9.2.1 Authorization message request codes

Table 16 — Authorization message request codes defines the Authorization message request codes. The
Implementation requirement column indicates requirements on the Requester.

The Authorization requirements column indicates whether or not the message requires authorization. If a value in
this column is Mandatory, the Authorization target shall perform authorization checks for the corresponding request.
If a value in this column is None, the Authorization target shall not perform authorization checks for the
corresponding request. Finally, when the value in this column is Conditional, the section of this specification for the
corresponding request details the requirements. If a request message fails authorization checks, the Authorization
target shall respond with an AUTH_ERROR using ErrorCode=AccessDenied .

If an Authorization target receives an unsupported request, the Authorization target shall respond with an
AUTH_ERROR USINg ErrorCode=UnsupportedRequest .

50 Work in Progress Version 1.0.0WIP99

432

DSP0289

Request

GET_AUTH_VERSION

SELECT_AUTH_VERSION

SET_CRED_ID_PARAMS

GET_CRED_ID_PARAMS

SET_AUTH_POLICY

GET_AUTH_POLICY

START_AUTH

END_AUTH

ELEVATE_PRIVILEGE

END_ELEVATED_PRIVILEGE

GET_AUTH_CAPABILITIES

AUTH_RESET TO_DEFAULT

TAKE_OWNERSHIP

SPDM Authorization Specification

Table 16 — Authorization message request codes

Code value

0x81

0x82

0x83

0x84

0x85

0x86

0x87

0x88

0x89

0x8A

0x8B

0x8C

0x8D

Implementation requirement

Mandatory

Mandatory

Optional

Mandatory

Optional

Mandatory

Optional

Optional

Optional

Optional

Mandatory

Optional

Mandatory

Authorization

i Message format
Requirements

Table 23 —
None GET_AUTH_VERSION
request message format

Table 26 —
None SELECT_AUTH_VERSION
request message format

Table 33 —
SET_CRED_ID_PARAMS
request message format

Conditional

Table 36 —
GET_CRED_ID_PARAMS
request message format

Conditional

Table 39 —
SET_AUTH_POLICY request
message format

Conditional

Table 42 —
GET_AUTH_POLICY request
message format

Conditional

Table 49 — START_AUTH
request message format

None

Table 52 — END_AUTH

None
request message format

Table 55 —
None ELEVATE_PRIVILEGE
request message format

Table 57 —
None END_ELEVATED_PRIVILEGE
request message format

Table 28 —
None GET_AUTH_CAPABILITIES
request message format

Table 61 —
AUTH_RESET_TO_DEFAULT
request message format

Conditional

Table 59 —
TAKE_OWNERSHIP request
message format

Mandatory

Version 1.0.0WIP99

Work in Progress

51

433

434

435

436

437

SPDM Authorization Specification

Request

GET_AUTH_PROCESSES

KILL_AUTH_PROCESS

Reserved

Code value

O0x8E

0x8F

All other
values

Implementation requirement

Optional

Optional

Reserved

9.2.2 Authorization message response codes

DSP0289

Authorization
Requirements

Mandatory

Mandatory

Reserved

Message format

Table 44 —
GET_AUTH_PROCESSES
request message format

Table 47 —
KILL_AUTH_PROCESS
request message format

Authorization implementations
compatible with this version
shall not use the reserved
request codes.

The RequestResponseCode field in the Authorization response message shall specify the appropriate response code

for a request.

On a successful completion of an Authorization message request, the specified response message shall be returned.
Upon an unsuccessful completion of an authorization command, the AUTH_ERROR response message should be

returned.

Table 17 — Authorization message response codes defines the response codes for Authorization messages. The
Implementation requirement column indicates requirements on the Responder.

Response

AUTH_VERSION

SELECT_AUTH_VERSION_RSP

SET_CRED_ID_PARAMS_DONE

CRED_ID_PARAMS

SET_AUTH_POLICY_DONE

Table 17 — Authorization message response codes

Code

value

0x01

0x02

0x03

0x04

0x05

Implementation requirement

Mandatory

Mandatory

Optional

Mandatory

Optional

Message format

Table 24 — AUTH_VERSION
response message format

Table 27 —
SELECT_AUTH_VERSION_RSP
response message format

Table 35 —
SET_CRED_ID_PARAMS_DONE
response message format

Table 37 — CRED_ID_PARAMS
response message format

Table 41 —
SET_AUTH_POLICY_DONE
response message format

52

Work in Progress

Version 1.0.0WIP99

438

439

DSP0289

Response

AUTH_POLICY

START_AUTH_RSP

END_AUTH_RSP

PRIVILEGE_ELEVATED

ELEVATED_PRIVILEGE_ENDED

AUTH_CAPABILITIES

AUTH_DEFAULTS_APPLIED

OWNERSHIP_TAKEN

AUTH_PROCESSES

PROCESS_KILLED

AUTH_ERROR

Reserved

9.2.3 Authorization Message Validity

Code
value

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0xOF

Ox7F

All other
values

Implementation requirement

Mandatory

Optional

Optional

Optional

Optional

Mandatory

Optional

Mandatory

Optional

Optional

Mandatory

Reserved

SPDM Authorization Specification

Message format

Table 43 — AUTH_POLICY
response message format

Table 51 — START_AUTH_RSP
response message format

Table 53 — END_AUTH_RSP
response message format

Table 56 —
PRIVILEGE_ELEVATED
response message format

Table 58 —
ELEVATED_PRIVILEGE_ENDED
response message format

Table 29 —
AUTH_CAPABILITIES response
message format

Table 64 —
AUTH_DEFAULTS_APPLIED
response message format

Table 60 —
OWNERSHIP_TAKEN response
message format

Table 45 — AUTH_PROCESSES
response message format

Table 48 — PROCESS_KILLED
response message format

Table 20 — AUTH_ERROR
response message format

Authorization implementations
compatible with this version shall
not use the reserved response
codes.

Certain Authorization messages are associated with a specific Authorization process. Table 18 — Authorization
message and Authorization process association shows this high level association. More specific information can be
found in the specific message's section.

Version 1.0.0WIP99

Work in Progress

53

440

441

442

443

444

445

446

447

448
449

SPDM Authorization Specification DSP0289

Table 18 — Authorization message and Authorization process association

Message Authorization Process
SET_AUTH_POLICY/START_AUTH_RSP USAP
END_AUTH/END_AUTH_RSP USAP
ELEVATE_PRIVILEGE/PRIVILEGE_ELEVATED SEAP
END_ELEVATED_PRIVILEGE/ELEVATED_PRIVILEGE_ENDED SEAP
All other Authorization messages None

9.2.4 Common variable names

This section defines some frequent variable names used in various Authorization messages. Table 19 — Common
variables used in Authorization messages defines these variable names.

Table 19 — Common variables used in Authorization messages

Variable Names Value
BaseAsymAlgoLen Shall be 8.
BaseHashAlgoLen Shall be 8.
LenSVH Shall be the size of the SVH as DSP0293 defines.

9.2.5 Error handling

This section discusses general error handling for all Authorization messages.

9.2.5.1 AUTH_ERROR response message

For an authorization request message that results in an error, the Authorization target should send an AUTH_ERROR
message to the Requester. The Authorization record also uses this response message for errors in the Authorization
record itself.

Table 20 — AUTH_ERROR response message format shows the AUTH_ERROR response format.

Table 21 — Error code and error data shows the detailed error code, error data, and extended error data. The Layer
column indicates which layer can use the corresponding Errorcode . A value of M in this column indicates that the
ErrorCode shall be allowed in response to an Authorization request. A value of R indicates that the Errorcode shall
be allowed in a Type 2 Authorization record. More than one value can be present in the Layer column for an
ErrorCode , in which case they are comma separated.

54 Work in Progress Version 1.0.0WIP99

450

451

DSP0289

Byte offset

ErrorCode

Reserved

InvalidRequest

ResetRequired

Busy

SPDM Authorization Specification

Table 20 — AUTH_ERROR response message format

Field

RequestResponseCode

Reserved

ErrorCode

ErrorData

ExtendedErrorData

Size (bytes)

0-32

Description

Shall be the code value for AUTH_ERROR in Table 17
— Authorization message response codes.

Reserved

Shall be the ErrorCode. See Table 21 — Error code
and error data.

Shall be the Error data. See Table 21 — Error code
and error data.

Shall be the Extended error data. See Table 21 —
Error code and error data.

Table 21 — Error code and error data

Value Layer

0x00 Reserved

0x01 M
0x02 M
0x03 M,R

Description
Reserved

One or more
request fields are exee
invalid

The operation or
request requires
areset to 0x00
successfully

complete.

The
Authorization
target received
the request
message, and
the Authorization
target decided to
ignore the
request message
but might be able

0x00

to process the
request message
if the request
message is sent
again in the
future.

Error data

Reserved

ExtendedErrorData

Reserved
No extended error data is

provided.

No extended error data is
provided.

No extended error data is
provided.

Version 1.0.0WIP99

Work in Progress

55

SPDM Authorization Specification

ErrorCode

UnexpectedRequest

Unspecified

AccessDenied

OperationFailed

VersionMismatch

UnsupportedRequest

InvalidRecord

Value

0x04

0x05

0x06

0x07

0x08

0x09

0x0A

Layer

Description

The
Authorization
target received
an unexpected
request
message.

Unspecified error
occurred.

Authorization
checks failed.

The request was
valid but the
requested
operation failed.

Requested
AuthVersion is
not supported or
is a different
version from the
selected version.

The Table 16 —
Authorization
message request
codes in the
request message
is unsupported.

One or more
fields in the
Authorization
record are
invalid.

Error data

0x00

0x00

0x00

0x00

0x00

Table 16 — Authorization
message request codes
in the request message.

0x0

DSP0289

ExtendedErrorData

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

56

Work in Progress

Version 1.0.0WIP99

DSP0289 SPDM Authorization Specification

ErrorCode Value Layer Description Error data ExtendedErrorData

The User or

Authorization

initiator

associated with

the Credential ID

in Error data

should terminate

their active

Authorization

process, if any.

The

Authorization

target has

already

terminated

Authorization

processes The format and size of this field

associated with shall be the same as

the given CredentialID field as Table 2
TermAuthProc 0x0B M Credential ID. 0x00 — Credential structure defines.

Further use of A value of exFFFF shall
the active indicate all Credential IDs.
Authorization

processes

associated with

the given

Credential ID can

result in access

denials to the

protected

resource.

The User or
Authorization
initiator can start
new
Authorization

processes.
Shall indicate the registry
or standards body using See Table 22 —
Vendor or .
. one of the values in the ExtendedErrorData format for
Vendor or Standards-Defined OxFF M, R standards-)
defined 1D column of Table 1 — vendor or standards defined
Registry or standards ERROR response message.
body ID in DSP0293.
All
Reserved other Reserved. Reserved Reserved
values

Version 1.0.0WIP99 Work in Progress 57

452

453

454

455

456

457

458

459

460
461

SPDM Authorization Specification DSP0289

Table 22 — ExtendedErrorData format for vendor or standards defined ERROR response message

Byte offset Field Size (bytes) Description

Shall be the vendoribLen as defined by DSP0293
0 VendorIDLen 1 Table 2 — Standards body or vendor-defined header
(SVH).

Shall be the vendoriD as defined by DSP0293 Table

1 VendorlD VendorIDLen 2 — Standards body or vendor-defined header
(SVH).
1+ VendorIDLen OpaqueErrorData Variable The vendor or standards body defines this value.

9.2.6 Discovery message

Messages in this section allow an Authorization initiator to discover aspects of the Authorization target. These
aspects provide basic information to understand support and establish basic communication parameters.

9.2.6.1 GET_AUTH_VERSION request and AUTH_VERSION response messages

This request message shall retrieve the authorization specification version of an endpoint. Table 23 —
GET_AUTH_VERSION request message format shows the GET_AUTH_VERSION request message format and Table 24
— AUTH_VERSION response message format shows the AUTH_VERSION response message format.

In all future authorization versions, the GET_AUTH_VERSION and AUTH_VERSION response messages will be backward
compatible with all earlier versions.

The Authorization initiator should begin the discovery process by sending a GET_AUTH_VERSION request message. It
may skip this message if the information provided by the AUTH_VERSION response is known beforehand from a prior
or concurrent secure session. All Authorization targets shall always support the GET_AUTH_VERSION request message
and provide an AUTH_VERSION response containing all supported versions, as Table 23 — GET_AUTH_VERSION
request message format describes.

When GET_AUTH_VERSION is used, the Authorization initiator should consult the AUTH_VERSION response to obtain
information on a common supported version. The Authorization initiator shall use one of the supported versions in all
future communication of other requests. An Authorization target shall not respond to the GET_AUTH_VERSION request
message with an AUTH_ERROR message except for ErrorCode s specified in this clause.

Table 23 — GET_AUTH_VERSION request message format shows the GET_AUTH_VERSION request message format:

Table 23 — GET_AUTH_VERSION request message format

Byte offset Field Size (bytes) Description

Shall be the code value for GET_AUTH_VERSION in
0 RequestResponseCode 1 .

Table 16 — Authorization message request codes.
1 Reserved 1 Reserved

58 Work in Progress Version 1.0.0WIP99

462

463

464

465

466

467

DSP0289

SPDM Authorization Specification

Table 24 — AUTH_VERSION response message format shows the successful AUTH_VERSION response message

Table 24 — AUTH_VERSION response message format

format:
Byte offset Field
0 RequestResponseCode
1 Reserved
2 VersionNumberEntryCount
3 VersionNumberEntries

Size (bytes)

2*

Description

Shall be the code value for AUTH_VERSION in Table 17
— Authorization message response codes.

Reserved

Number of version entries in VersionNumberEntries .

16-bit version entry. See Table 25 —
VersionNumberEntry definition. Each entry should be
unique. The number of entries in this field shall be
the same value as VersionNumberEntryCount .

VersionNumberEntryCount

The versions in this field shall be in ascending order
sorted by MajorVersion , MinorVersion ,
UpdateVersionNumber , and Alpha .

Table 25 — VersionNumberEntry definition shows the versionNumberEntry definition. See Version encoding for more

Table 25 — VersionNumberEntry definition

details.

Bit offset Field

[15:12] MajorVersion

[11:8] MinorVersion

[7:4] UpdateVersionNumber
[3:0] Alpha

Description

Shall be the version of the specification having changes that are
incompatible with one or more functions in earlier major versions of the
specification.

Shall be the version of the specification having changes that are
compatible with functions in earlier minor versions of this major version
specification.

Shall be the version of the specification with editorial updates and errata
fixes. Informational; ignore when checking versions for interoperability.

Shall be the pre-release work-in-progress version of the specification.
Because the Alpha value represents an in-development version of the
specification, versions that share the same major and minor version
numbers but have different Alpha versions might not be fully
interoperable. Released versions shall have an Alpha value of zero

(o).

9.2.6.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response messages

The SELECT_AUTH_VERSION request shall be used to specify the version of this specification that an Authorization

target shall use when interpreting request messages and providing response messages for authorization commands.

Version 1.0.0WIP99

Work in Progress 59

468

469

470

471

472

473

474

475

SPDM Authorization Specification DSP0289

The request and response parameters for this message are listed in Table 26 — SELECT_AUTH_VERSION request
message format and Table 27 — SELECT_AUTH_VERSION_RSP response message format. The version selected
using this request applies only to the secure session in which the message was sent and is valid until the session
terminates. See Discovery section for additional requirements.

The selected version for communication with an Authorization target shall be the version in the Authversion field of
the SELECT_AUTH_VERSION . The Authversion shall be one of the supported versions of an Authorization target.
Otherwise, the Authorization target shall either return an AUTH_ERROR message of ErrorCode=VersionMismatch or
silently discard the request.

In all future authorization versions, the SELECT_AUTH_VERSION and SELECT_AUTH_VERSION_RSP response messages will
be backward compatible with all earlier versions.

Table 26 — SELECT_AUTH_VERSION request message format shows the SELECT_AUTH_VERSION request message
format:

Table 26 — SELECT_AUTH_VERSION request message format

Byte offset Field Size (bytes) Description

Shall be the code value for SELECT_AUTH_VERSION in
0 RequestResponseCode 1 o
Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

The version that shall be used for all subsequent
2 AuthVersion 1 communication between the Authorization initiator
and target, as Version encoding describes.

Table 27 — SELECT_AUTH_VERSION_RSP response message format shows the successful
SELECT_AUTH_VERSION_RSP response message format:

Table 27 — SELECT_AUTH_VERSION_RSP response message format

Byte offset Field Size (bytes) Description

Shall be the code value for SELECT_AUTH_VERSION_RSP

0 RequestResponseCode 1 in Table 17 — Authorization message response
codes.
1 Reserved 1 Reserved

9.2.6.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages

The GET_AUTH_CAPABILITIES requestand AUTH_CAPABILITIES response shall retrieve capability information from the
Authorization target. The request and response parameters for this message are listed in Table 28 —
GET_AUTH_CAPABILITIES request message format and Table 29 — AUTH_CAPABILITIES response message
format respectively. This request can be sent multiple times and should be sent as the Discovery section describes. If
the request is sent multiple times in the same secure session, the corresponding responses shall be identical to the
first.

60 Work in Progress Version 1.0.0WIP99

476

477

478

479

DSP0289

SPDM Authorization Specification

Table 28 — GET_AUTH_CAPABILITIES request message format shows the GET_AUTH_CAPABILITIES request

message format:

Table 28 — GET_AUTH_CAPABILITIES request message format

Shall be the code value for GET_AUTH_CAPABILITIES in Table 16 — Authorization

message request codes.

Byte offset Field Size (bytes) Description
0 RequestResponseCode 1
1 Reserved 1 Reserved

Table 29 — AUTH_CAPABILITIES response message format shows the successful AUTH_CAPABILITIES response

message format:

Table 29 — AUTH_CAPABILITIES response message format

Byte offset Field

0 RequestResponseCode
1 Reserved

2 MessageCaps

4 AuthProcessCaps

6 DeviceProvisioningState
7 AuthRecordProcessTime

Description

Shall be the code value for AUTH_CAPABILITIES in
Table 17 — Authorization message response codes.

Reserved

The format of this field shall be as Table 30 —
Message supported bit definitions defines.

The format of this field shall be as Table 31 —
Authorization process supported bit definitions
defines.

The format of this field shall be as Table 32 — Device
provisioning state values defines.

This field shall specify the additional amount of time a
message of any protocol that is encapsulated in an
Authorization record takes to process the
Authorization record excluding the MsgToAuthPayload
field. This time includes the time it takes to perform
authorization verification.

The time shall be calculated using this equation and
shall be in units of milliseconds:

pAuthRecordProcessTime e oo ds

The value of this field shall not exceed 31.

See Timing requirements for additional requirements.

Version 1.0.0WIP99 Work in Progress

61

SPDM Authorization Specification DSP0289

Byte offset Field Size (bytes) Description

If a bit is set, the Authorization target supports the
corresponding asymmetric algorithm. Otherwise, the
bit shall be clear.
8 BaseAsymAlgoSupported BaseASYMALEOLeN The format of this field shall be as Table 70 — Base
asymmetric algorithm format defines. The value of
BaseAsymAlgoLen shall be as Common variable
names defines.

If a bit is set, the Authorization target supports the
corresponding hash algorithm. Otherwise, the bit shall
be clear.
8 + BaseAsymAlgolLen BaseHashAlgoSupported BaseHashAlgolen The format of this field shall be as Table 71 — Base
hash algorithm format defines. The value of
BaseHashAlgoLen shall be as Common variable
names defines.

The value of this field shall be the number of policy
8 + BaseAsymAlgoLen + . owners in SupportedPolicyownerIDList . If the value of
SupportedPolicyOwnerIDCount 2 o
BaseHashAlgoLen this field is zero, then the

supportedPolicyownerIDList field shall be absent.

This field summarizes the policies the Authorization
target supports by only listing the policy owners
(PolicyOwnerID).

The format of this field shall be the concatenation of
one or more PolicyownerID fields, as Table 4 —
Policy structure defines, for each policy the
Authorization target supports. The number of
SupportedPolicyOwnerIDList ~ Variable PolicyownerID s in this list shall be the value in the
SupportedPolicyownerIDCount field. If multiple policies

10 + BaseAsymAlgolLen +
BaseHashAlgoLen

share the same PolicyOwnerID , that PolicyOwnerID
shall only be included once. This list shall be
considered to be unordered.

To retrieve more details of policy support, the
Authorization initiator can use the GET_AUTH_PoLICY
and the corresponding response.

480 Table 30 — Message supported bit definitions defines the messages the Authorization endpoint supports.

481 Table 30 — Message supported bit definitions

Byte Offset Bit Offset Field Description

If the Authorization target supports SET_CRED_ID_PARAMS_DONE , then this bit shall be

0 0 ChangeCredIDParamsCap . o
set. Otherwise, this bit shall not be set.

62 Work in Progress Version 1.0.0WIP99

DSP0289 SPDM Authorization Specification
Byte Offset Bit Offset Field Description
. If the Authorization target supports SET_AUTH_POLICY_DONE , then this bit shall be
0 1 ChangeAuthPolicyCap . o
set. Otherwise, this bit shall not be set.
If the Authorization target supports Authorization events as Authorization events
0 2 AuthEventCap . o
define, then this bit shall be set.
. If the Authorization target supports AUTH_PROCESSES , then this bit shall be set.
0 3 AuthProcListCap . o
Otherwise, this bit shall not be set.
If the Authorization target supports PROCESS_KILLED , then this bit shall be set.
Otherwise, this bit shall not be set.
0 4 AuthProcKillCap
If this bit is set, the AuthProcListcap shall also be set.
If the Authorization target supports AUTH_RESET_TO_DEFAULT , then this bit shall be
0 5 ResetToDefaultCap . s
set. Otherwise, this bit shall not be set.
0 [7:6] Reserved Reserved
1 [7:0] Reserved Reserved
482 Table 31 — Authorization process supported bit definitions defines the Authorization processes the Authorization
endpoint supports.
483 Table 31 — Authorization process supported bit definitions
Byte Offset Bit Offset Field Description
If the Authorization target supports USAP, then this bit shall be set. Otherwise, this bit
shall not be set.
0 0 USAPcap
If this bit is set, the START_AUTH_RSP and END_AUTH_RSP response messages shall be
supported.
If the Authorization target supports SEAP, then this bit shall be set. Otherwise, this bit
shall not be set.
0 1 SEAPcap
If this bit is set, the PRIVILEGE_ELEVATED and ELEVATED_PRIVILEGE_ENDED response
messages shall be supported.
If the Authorization target supports USAS continuation until device reset, this bit shall
. be set. Otherwise, this bit shall not be set.
0 2 ResetPersistCap
If usAPcap is not set, this bit shall not be set.
If the Authorization target supports USAS continuation across device reset, this bit shall
. be set. Otherwise, this bit shall not be set.
0 3 PermPersistCap
If usAPcap is not set, this bit shall not be set.
0 [7:4] Reserved Reserved

Version 1.0.0WIP99

Work in Progress

63

484

485

486

487

488

489

490

SPDM Authorization Specification DSP0289

Byte Offset Bit Offset Field Description

1 [7:0] Reserved Reserved

Table 32 — Device provisioning state values

Value Name Description

0 Unprovisioned Device does not have any credentials provisioned.

1 DefaultState Device is in the default state. See Default state for details.

2 Owned Device has had ownership taken via TAKE_OWNERSHIP . See Taking ownership for additional details.
All

other Reserved Reserved

values

9.2.7 Credential provisioning

9.2.7.1 SET_CRED_ID_PARAMS request and SET_CRED_ID_PARAMS_DONE response messages

The SeT_CRED_ID_PARAMS request shall be used to provision credentials into an Authorization target, as described in
the Credentials section. When credpParams provides an invalid credential type, Credential ID or algorithm, the
Authorization target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest .

The Authorization initiator shall use the setcredinfoop field to specify the operation for the request. An Authorization
target shall ensure that the operation is atomic, that is, the requested operation can successfully complete for all
credentials in CredParams , and fail if that is not possible. When credpParams provides an invalid Credential ID or
other invalid values, the Authorization target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest . When
SetCredInfoOp is valid but authorization checks fail, the Authorization target shall respond with AUTH_ERROR and

ErrorCode=AccessDenied .

Table 33 — SET_CRED_ID_PARAMS request message format shows the SET_CRED_ID_PARAMS request message
format:

Table 33 — SET_CRED_ID_PARAMS request message format

Byte offset Field Size (bytes) Description

Shall be the code value for SET_CRED_ID_PARAMS in
0 RequestResponseCode 1 L

Table 16 — Authorization message request codes.
1 Reserved 1 Reserved

The field indicates the requested operation. The
2 SetCredInfoOp 1 format of this field shall be as Table 34 — Values for
setCredInfoop field defines.

64 Work in Progress Version 1.0.0WIP99

DSP0289 SPDM Authorization Specification

Byte offset Field Size (bytes) Description

This field represents identity information associated
with the given Credential ID. The format and size of
this field shall be the same format and size as Table
2 — Credential structure defines.

3 CredParams Variable If setcredinfoop field indicates a lock or unlock
operation, the format and size of this field shall be
the same format and size as the credentialiD field
defined in Table 2 — Credential structure.
Additionally, the value of the credentialId shall be
the same as the Credential ID of the Requester.

491 Table 34 — Values for "SetCredIinfoOp" field
Value Operation Name Description
0 Reserved Reserved
1 e Shall indicate an operation that modifies credential parameters associated with the given

Credential IDs.

Shall indicate an operation that locks the credential parameters and its Authorization policy
for the given Credential ID.

2 Lock
The Authorization target shall only permit this operation if the Lockable credential attribute
is set for the requested Credential ID.
Shall indicate an operation that unlocks the credential parameters and its Authorization
policy for the given Credential ID.

3] Unlock
The Authorization target shall only permit this operation if the unlockable credential
attribute is set for the requested Credential ID.

All other values Reserved Reserved

492 Table 35 — SET_CRED_ID_PARAMS_DONE response message format shows the successful
SET_CRED_ID_PARAMS_DONE response message format:

493 Table 35 — SET_CRED_ID_PARAMS_DONE response message format

Byte offset Field Size (bytes) Description

Shall be the code value for SET_CRED_ID_PARAMS_DONE

0 RequestResponseCode 1 in Table 17 — Authorization message response
codes.
1 Reserved 1 Reserved

Version 1.0.0WIP99 Work in Progress 65

494

495

496

497

498

499

500

501

SPDM Authorization Specification DSP0289

9.2.7.1.1 Additional requirements on SET_CRED_ID_PARAMS

When locking or unlocking, the requested Credential ID shall only be capable of locking its own credential
parameters and associated policy if the LockunlockSelfPrivilege policy bitis set. See Locking and unlocking
attributes and DSP0289 Authorization policy for additional requirements.

9.2.7.2 GET_CRED_ID_PARAMS request and CRED_ID_PARAMS response messages

The GET_CRED_ID_PARAMS request shall be used to retrieve information about credentials provisioned in a credential
structure. If the request contains an invalid Credential ID or the corresponding credential structure is not provisioned,
the Authorization target shall respond with AUTH_ERROR and ErrorCode=InvalidRequest . When CredentialID is valid
but authorization checks fail, the Authorization target shall respond with AUTH_ERROR and ErrorCode=AccessDenied .

Table 36 — GET_CRED_ID_PARAMS request message format shows the GET_CRED_ID_PARAMS request message
format:

Table 36 — GET_CRED_ID_PARAMS request message format

Byte offset Field Size (bytes) Description

Shall be the code value for GET_CRED_ID_PARAMS in
0 RequestResponseCode 1 .
Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

Shall be the Credential ID that identifies the
requested credential.

2 CredentiallD 2

Table 37 — CRED_ID_PARAMS response message format shows the successful CRED_ID_PARAMS response
message format:

Table 37 — CRED_ID_PARAMS response message format

Byte offset Field Size (bytes) Description

Shall be the code value for cRep_ID_PARAMS in Table
0 RequestResponseCode 1 o
17 — Authorization message response codes.

1 Reserved 1 Reserved

The field indicates credential attributes of the
requested Credential ID. The format of this field shall

2 CredAttributes 2) . . N
be as Table 38 — Credential attributes bit definitions
defines.
This field represents identity information associated
. with the requested Credential ID. The size and
4 CredParams Variable

format of this field shall be the same size and format
as Table 2 — Credential structure defines.

66 Work in Progress Version 1.0.0WIP99

502
503

504

505

506

507

508

509

510

DSP0289 SPDM Authorization Specification

Table 38 — Credential attributes bit definitions defines the various Credential ID attributes:

Table 38 — Credential attributes bit definitions

Byte Offset Bit Offset Field Description

0 0 Lockable If the Authorization target supports the ability to lock the credentials and associated policies
of the requested Credential ID, this bit shall be set.
If the Authorization target supports the ability to unlock the credentials and associated
policies of the requested Credential ID, this bit shall be set.

0 1 Unlockable
If this bit is set, the Lockable bit shall also be set.
If the credentials and associated policy of the requested Credential ID are locked, this bit
shall be set. This bit can be set or cleared through the Lock or unlock operation in either

0 2 Locked SET_CRED_ID_PARAMS OF SET_AUTH_POLICY request.
If this bit is set, the Lockable bit shall also be set.

0 [7:3] Reserved Reserved

1 [7:0] Reserved Reserved

9.2.7.3 Credential provisioning authorization requirements

The Authorization target shall perform authorization checks for SET_CRED_ID_PARAMS and GET_CRED_ID_PARAMS
requests except for the scenarios that Initial provisioning details.

9.2.8 Authorization policy provisioning and management

9.2.8.1 SET_AUTH_POLICY request and SET_AUTH_POLICY_DONE response messages

The seT_AuTtH_poLICY request shall be used to modify a policy associated with a Credential ID as Authorization
policies discusses. When PolicyList provides an invalid Credential ID, the Authorization target shall respond with
AUTH_ERROR and ErrorCode=InvalidRequest .

The Authorization initiator shall use the setAuthpolicyop field to specify the operation for the request. An
Authorization target shall ensure that the operation is atomic, that is, the requested operation can successfully
complete for all policies in the policyList and fail if that is not possible. When PolicyList provides an invalid
Credential ID or invalid values, the Authorization target shall respond with AUTH_ERROR and

ErrorCode=InvalidRequest . When setAuthPolicyOp is valid but authorization checks fail, the Authorization target
shall respond with AUTH_ERROR and ErrorCode=AccessDenied .

Table 39 — SET_AUTH_POLICY request message format shows the SET_AUTH_PoLICY request message format:

Version 1.0.0WIP99 Work in Progress

67

511

512

513

514

SPDM Authorization Specification

Byte offset

Value

All other values

DSP0289

Table 39 — SET_AUTH_POLICY request message format

Field Size (bytes)
RequestResponseCode 1

Reserved 1
SetAuthPolicyOp 1

PolicyList Variable

Description

Shall be the code value for SET_AUTH_PoLICY in Table
16 — Authorization message request codes.

Reserved

The field indicates the requested operation. The
format of this field shall be as Table 40 — Values for
setAuthPolicyop field defines.

If setAuthpolicyop field indicates a PolicyChange
operation, this field represents the policy information
to change that is associated with the given
Credential ID. This field shall only represent the
policies associated with a single Credential ID. The
size and format of this field shall be the same size
and format as Table 3 — Policy List defines.

If setAuthpPolicyop field indicates a lock or unlock
operation, the format and size of this field shall be
the same format and size as the cCredentialID field
defined in Table 3 — Policy List.

Table 40 — Values for "SetAuthPolicyOp" field

Operation Name

Reserved

PolicyChange

Lock

Unlock

Reserved

Reserved

Description

Shall indicate an operation that modifies the Authorization policy associated with the given

Credential ID.

This field shall have the same definition as the Lock operation as Table 34 — Values for

setCredInfoop field defines.

This field shall have the same definition as the unlock operation as Table 34 — Values for

SetCredInfoop field defines.

Reserved

Table 41 — SET_AUTH_POLICY_DONE response message format shows the successful SET_AUTH_POLICY_DONE
response message format:

Table 41 — SET_AUTH_POLICY_DONE response message format

Byte offset Field Size (bytes) Description

Shall be the code value for SET_AUTH_POLICY_DONE in
0 RequestResponseCode 1 .

Table 17 — Authorization message response codes.
68 Work in Progress Version 1.0.0WIP99

515

516

517

518

519
520

521

522

DSP0289 SPDM Authorization Specification

Byte offset Field Size (bytes) Description

1 Reserved 1 Reserved

9.2.8.1.1 Additional requirements on SET_AUTH_POLICY

When locking or unlocking, see locking and unlocking requirements in Additional requirements on
SET_CRED_ID_PARAMS.

9.2.8.2 GET_AUTH_POLICY request and AUTH_POLICY response messages

The GET_AUTH_PoLICY request shall be used to retrieve the policy associated with a provisioned Credential ID. If an
invalid Credential ID is requested, the Authorization target shall respond with AUTH_ERROR and
ErrorCode=InvalidRequest . When CredentialID is valid but authorization checks fail, the Authorization target shall
respond with AUTH_ERROR and ErrorCode=AccessDenied .

Table 42 — GET_AUTH_POLICY request message format shows the GET_AUTH_PoLICY request message format:

Table 42 — GET_AUTH_POLICY request message format

Byte offset Field Size (bytes) Description
Shall be the code value for GET_AUTH_PoLICY in Table
0 RequestResponseCode 1 o
16 — Authorization message request codes.
1 Reserved 1 Reserved
. Shall be the Credential ID that identifies the
2 CredentiallD 2

requested policy.

Table 43 — AUTH_POLICY response message format shows the successful AUTH_POLICY response message
format:

Table 43 — AUTH_POLICY response message format

Byte offset Field Size (bytes) Description

Shall be the code value for AuTH_PoLICY in Table 17

0 RequestResponseCode 1 o
— Authorization message response codes.

1 Reserved 1 Reserved
The field indicates attributes of all policies associated
with the requested Credential ID. The format of this

2 PolicyAttributes 2 \ 4 ° form: :
field shall be as Table 38 — Credential attributes bit
definitions defines.
This field contains all the policy information
associated with the requested Credential ID. The

4 PolicyList Variable 4

size and format of this field shall be the same size
and format as Table 3 — Policy List defines.

Version 1.0.0WIP99 Work in Progress 69

523

524

525

526

527

528

529

530

531

532
533

SPDM Authorization Specification DSP0289

9.2.8.3 Authorization requirements
The Authorization target shall perform authorization checks for SET_AUTH_PoLICY and GET_AUTH_POLICY requests

except for the scenarios that Initial provisioning details.

9.2.9 Authorization process management

9.2.9.1 General Authorization process management

Authorization requests and responses in this section apply to all Authorization processes.

9.2.9.1.1 GET_AUTH_PROCESSES request and AUTH_PROCESSES response messages

The GET_AUTH_PROCESSES request and AUTH_PROCESSES response messages retrieve the list of active or saved
Authorization processes associated with the requested Credential ID. A Credential ID shall always be capable of
retrieving its own information regardless of the value of RetrieveAuthProcListPrivilege bit.

Table 44 — GET_AUTH_PROCESSES request message format shows the GET_AUTH_PROCESSES request message
format:

Table 44 — GET_AUTH_PROCESSES request message format

Byte offset Field Size (bytes) Description
Shall be the code value for GET_AUTH_PROCESSES in Table 16 — Authorization
0 RequestResponseCode 1
message request codes.
1 Reserved 1 Reserved
Shall be a Credential ID.
2 CredentiallD 2

A value of OxFFFF shall indicate all Credential IDs.

Table 45 — AUTH_PROCESSES response message format shows the AUTH_PROCESSES response message format:
Table 45 — AUTH_PROCESSES response message format
Byte offset Field Size (bytes) Description

Shall be the code value for AUTH_PROCESSES in Table 17 — Authorization message

0 RequestResponseCode 1
response codes.

1 Reserved 1 Reserved
Shall be a count of the number of Authorization processes information in
AuthProcInfoList associated with the requested Credential ID.

2 AuthProclnfoCount 2

If there are no saved or active Authorization processes for the requested
Credential ID, the value of this field shall be zero.

70 Work in Progress Version 1.0.0WIP99

534
535

536
537
538
539

540

541
542

543

544

545

DSP0289

Byte offset Field

4 AuthProcinfoList

Size (bytes)

Variable

SPDM Authorization Specification

Description

Shall be a list of active or saved Authorization processes. The format of this field
shall be the concatenation of one or more Authorization process information as
Table 46 — Authorization process information format defines. The size of this field
shall be the size of an Authorization process information multiplied by
AuthProcInfoCount

Table 46 — Authorization process information format shows the Authorization process information format:

Byte offset Field

0 CredentiallD
2 AuthProcessType
3 AuthProcID

Table 46 — Authorization process information format

Size (bytes)

2

48

Description
Shall be the Credential ID associated with the Authorization process.

Shall indicate the type of active or saved Authorization process type associated with
CredentiallD .

The values of this field shall be as follows:
« o . Shall indicate an active USAS.

* 1. Shall indicate an active SEAP.
¢ 2. Shall indicate a saved USAS.

« All other values reserved.

Shall be the Authorization Process ID associated with the credentialiD and
AuthProcessType , as Authorization Process ID calculation defines.

9.2.9.1.2 KILL_AUTH_PROCESS request and PROCESS_KILLED response messages

The KILL_AUTH_PROCESS requestand PROCESS_KILLED response messages terminate an Authorization process.

If the requested Authorization process to terminate is an active USAS, the USAS shall end immediately and incoming
messages requiring authorization shall fail authorization checks for the given Credential ID. If the requested
Authorization process is a saved USAS, the saved USAS information shall no longer persist and consequently, the
User shall not be able to continue the requested USAS.

If the requested Authorization process to terminate is an active SEAP, all messages requiring authorization shall fail
authorization checks, but the secure session shall remain unaffected. The Authorization target can consequently end

the secure session.

An Authorization initiator shall be capable of killing only its own Authorization process, regardless of the value of

KillAuthProcPrivilege bit.

Table 47 — KILL_AUTH_PROCESS request message format shows the KILL_AUTH_PROCESS request message

format:

Version 1.0.0WIP99

Work in Progress 71

SPDM Authorization Specification DSP0289

546 Table 47 — KILL_AUTH_PROCESS request message format

Byte offset Field Size (bytes) Description

Shall be the code value for KILL_AUTH_PROCESS in Table 16 — Authorization

0 RequestResponseCode 1
message request codes.
1 Reserved 1 Reserved
2 CredentiallD 2 Shall be the Credential ID of the desired Authorization process to terminate.
4 AuthProciD 48 Shal! be the Authoriz.aticlm Process ID associatt?d with.the CredentialID to
terminate, as Authorization Process ID calculation defines.
547 Table 48 — PROCESS_KILLED response message format shows the PROCESS_KILLED response message format:
548 Table 48 — PROCESS_KILLED response message format
Byte offset Field Size (bytes) Description
Shall be the code value for PROCESS_KILLED in Table 17 — Authorization message
0 RequestResponseCode 1
response codes.
1 Reserved 1 Reserved
2 AuthProcID 48 Shall be the requested Authorization process ID.
549 9.2.9.1.2.1 Additional requirements for KILL AUTH_PROCESS
550 If the Authorization target fails to kill a process after passing authorization checks, the Authorization target shall

respond with an AUTH_ERROR message using the ErrorCode=OperationFailed .

551 9.2.9.1.3 Authorization Process ID calculation

552 The Authorization Process ID shall use the TPM_ALG_SHA 384 hash algorithm.

553 To calculate the SHA2-384 hash, the Authorization endpoint shall form auth_proc_id_octet_string for a given
Authorization process by concatenating the following four elements in the order shown. (Note that some elements will
be omitted depending on conditions.)

554 » 1. String prefix

555 > For USAP, this element shall be omitted.

556 o For SEAP, the prefix shall be one of the following:

557 = If the SPDM Responder is an Authorization target, the prefix shall be "Responder”.

558 = If the SPDM Requester is an Authorization target, the prefix shall be "Requester".

559 * 2. The Authorization initiator's nonce

560 o For USAP, this shall be the [START_AUTH] . Nonce .

561 o For SEAP, this shall be the SPDM Requester's nonce provided in the Session-Secrets-Exchange Request.
562 3. Authorization target's nonce

72 Work in Progress Version 1.0.0WIP99

DSP0289 SPDM Authorization Specification

563 o For USAP, this shall be the [START_AUTH_RSP] . Nonce .

564 o For SEAP, this shall be the SPDM Responder's nonce provided in the Session-Secrets-Exchange
Response.

565 * 4. Saved sequence number

566 o If the Authorization process is a saved USAS, this shall be the savedSequenceNumber . Otherwise this

element shall be omitted.

567 The auth_proc_id_octet_string shall be the message to hash, resulting in the Authorization Process ID.

568 9.2.9.2 USAP Management

569 9.2.9.2.1 START_AUTH request and START_AUTH_RSP response messages

570 The START_AUTH requestand START_AUTH_RSP messages are used to establish a User-specific authorization session
as described in USAP. The Authorization target shall respond with an AUTH_ERROR Of ErrorCode=UnexpectedRequest
or silently discard the request if a START_AUTH is received for a User with a corresponding active USAS. See General
USAP error handling for more information.

571 Table 49 — START_AUTH request message format shows the START_AUTH request message format:
572 Table 49 — START_AUTH request message format
Byte offset Field Size (bytes) Description
0 RequestResponseCode 1 Shall be the code value for START_AUTH in Table 16

— Authorization message request codes.
1 Reserved 1 Reserved

The value of this field shall be the Credential ID of

2 CredentiallD 2 . .

the User making this request.
. Shall be the same format as Table 50 —

4 Attributes 1 . B)
START_AUTH Request Attributes definition defines.
Length of the Nonce field. Shall be 32 bytes for this

5 NoncelLen 1) -
version of the specification
Random sequence of bytes chosen by the user

6 Nonce NoncelLen

identified by credentialiD .

573 Table 50 — START_AUTH Request Attributes definition shows the field definition for [START_AUTH] . Attributes field:

Version 1.0.0WIP99 Work in Progress 73

SPDM Authorization Specification DSP0289

574 Table 50 — START_AUTH Request Attributes definition

Bit offset Field Description

If set, the Authorization target shall continue a prior USAS associated with the requested credentiallD .
The Authorization target shall use the requested credentialIlD and Nonce to ensure the correct USAS
0 Continue information is loaded.

See more details in USAS continuation section.

[7:1] Reserved Reserved
575 Table 51 — START_AUTH_RSP response message format shows the START_AUTH_RSP response message format:
576 Table 51 — START_AUTH_RSP response message format
Byte offset Field Size (bytes) Description
Shall be the code value for START_AUTH_RSP in Table
0 RequestResponseCode 1 o
17 — Authorization message response codes.
1 Reserved 1 Reserved
. Shall be the credentialid from the corresponding
2 CredentiallD 2
START_AUTH request.
Length of the Nonce field. Shall be 32 bytes for this
4 NoncelLen 1 . P
version of the specification
Random sequence of bytes chosen by the
Authorization target.
If the continue bitinthe Attributes field of the
5 Nonce NoncelLen . . L
corresponding request is set, the Authorization target
shall populate this field with the saved Nonce
corresponding to the Nonce in the corresponding
request.
577 9.2.9.2.1.1 START_AUTH Additional Errors
578 If the continue bitis set and an Authorization target cannot find a preserved USAS associated with the requested

CredentialID and Nonce , the Authorization target shall return an AUTH_ERROR with ErrorCode=InvalidRequest .

579 9.2.9.2.2 END_AUTH request and END_AUTH_RSP response messages

580 The END_AUTH request and END_AUTH_RSP messages are used to terminate a USAS established using the
START_AUTH command. The termination of the Authorization session restores a secure session to its original privilege
level for that User. Additionally, the termination of a USAS does not end the corresponding secure session. If a
session for the corresponding user does not exist, the Authorization target shall return an AUTH_ERROR with

ErrorCode=InvalidRequest .

74 Work in Progress Version 1.0.0WIP99

581
582

583
584

585

DSP0289 SPDM Authorization Specification

Table 52 — END_AUTH request message format shows the END_AUTH request message format:

Table 52 — END_AUTH request message format

Byte offset Field Size (bytes) Description
Shall be the code value for END_AUTH in Table 16 —
0 RequestResponseCode 1 o
Authorization message request codes.
1 Reserved 1 Reserved
. The value of this field shall be the Credential ID of
2 CredentiallD 2 . .
the User making this request.
. Shall be the format as Table 54 — END_AUTH
4 Attributes 1

Request Attributes definition.

Table 53 — END_AUTH_RSP response message format shows the END_AUTH_RSP response message format:

Table 53 — END_AUTH_RSP response message format

Byte offset Field Size (bytes) Description
Shall be the code value for END_AUTH_RSP in Table 17
0 RequestResponseCode 1 o
— Authorization message response codes.
1 Reserved 1 Reserved
. Shall be the credentialid from the corresponding
2 CredentiallD 2

END_AUTH request.

Table 54 — END_AUTH Request Attributes definition shows the field definition for [END_AUTH] . Attributes field:

Version 1.0.0WIP99 Work in Progress 75

586

587

588

589

590

591

592

593

594

SPDM Authorization Specification DSP0289

Table 54 — END_AUTH Request Attributes definition

Bit offset Field Description

Shall indicate the persistence type for the USAP associated with the requested credentialiD . This
field shall have the following definition:

* 0. The Authorization target shall erase the USAS information immediately upon the successful
completion of this request. If the USAS information was previously persisted, the USAS
information shall no longer be persisted.

* 1. The Authorization target shall persist or continue to persist the USAS information until the
next device reset.

* 2. The Authorization target shall persist or continue to persist the USAS information across
resets until credential information associated with the requested Credential ID changes.

[1:0] PersistMethod + 3 .Reserved

USAS continuation defines the USAS information associated with CredentialID to persist or erase.

An Authorization initiator can change the value of this field the next time it continues and ends the
same USAS. However, if a User continues a saved USAS and ends the USAS without issuing a
successfully authorized message, then the value of this field shall remain the same persist method
as before the continuation.

The KILL_AUTH_PROCESS request can terminate all Authorization processes, regardless of the value of
this field.

[7:2] Reserved Reserved

9.2.9.3 SEAP Management

9.2.9.3.1 ELEVATE_PRIVILEGE request and PRIVILEGE_ELEVATED response messages

ELEVATE_PRIVILEGE requestand PRIVILEGE_ELEVATED response are used to start the authorization session when the
SPDM Endpoint Authorization Process is used. These messages shall be used only during the application phase of
the secure session. To initiate the authorization session, the Authorization initiator shall send an ELEVATE_PRIVILEGE
request and the Authorization target shall respond with PRIVILEGE_ELEVATED for a successful response. This request
and response pair elevates the privilege level of the SPDM session for the Authorization initiator for all subsequent
messages until the privilege level is lowered. An Authorization target shall return an AUTH_ERROR with

ErrorCode=InvalidRequest if there is a failure during the first part of SEAP (that is, the SEAP_success was absent for
the corresponding Authorization initiator). An Authorization target shall return an AUTH_ERROR with

ErrorCode=InvalidRequest or silently discard the ELEVATE_PRIVILEGE request if the session's privilege level is already
elevated.

Table 55 — ELEVATE_PRIVILEGE request message format shows the ELEVATE_PRIVILEGE request message format:

76 Work in Progress Version 1.0.0WIP99

595

596

597

598

599

600

601

602

603

DSP0289 SPDM Authorization Specification

Table 55 — ELEVATE_PRIVILEGE request message format
Byte offset Field Size (bytes) Description

Shall be the code value for ELEVATE_PRIVILEGE in
0 RequestResponseCode 1 o
Table 16 — Authorization message request codes.

1 Reserved 1 Reserved

Table 56 — PRIVILEGE_ELEVATED response message format shows the PRIVILEGE_ELEVATED response message
format:

Table 56 — PRIVILEGE_ELEVATED response message format
Byte offset Field Size (bytes) Description

Shall be the code value for PRIVILEGE_ELEVATED in
0 RequestResponseCode 1 L
Table 17 — Authorization message response codes.

1 Reserved 1 Reserved

9.2.9.3.2 END_ELEVATED_PRIVILEGE request and ELEVATED_PRIVILEGE_ENDED response message

END_ELEVATED_PRIVILEGE requestand ELEVATED_PRIVILEGE_ENDED response are used to terminate the authorization

session when SEAP is used. An Authorization target shall return an AUTH_ERROR with ErrorCode=InvalidRequest if
there is no SEAP in progress.

Table 57 — END_ELEVATED_PRIVILEGE request message format shows the END_ELEVATED_PRIVILEGE request
message format:

Table 57 — END_ELEVATED_PRIVILEGE request message format

Byte offset Field Size (bytes) Description

Shall be the code value for END_ELEVATED_PRIVILEGE
0 RequestResponseCode 1) .

in Table 16 — Authorization message request codes.
1 Reserved 1 Reserved

Table 58 — ELEVATED_PRIVILEGE_ENDED response message format shows the ELEVATED_PRIVILEGE_ENDED
response message format:

Table 58 — ELEVATED_PRIVILEGE_ENDED response message format
Byte offset Field Size (bytes) Description

Shall be the code value for
0 RequestResponseCode 1 ELEVATED_PRIVILEGE_ENDED in Table 17 —

Authorization message response codes.

1 Reserved 1 Reserved

Version 1.0.0WIP99 Work in Progress 77

604

605

606

607

608

609
610

611

612

613

614

615

616

SPDM Authorization Specification DSP0289

9.2.10 Basic management

Messages in this section provide general management of the Authorization target.

9.2.10.1 TAKE_OWNERSHIP request and OWNERSHIP_TAKEN response

The TAKE_OWNERSHIP request and its successful OWNERSHIP_TAKEN response shall cause the Authorization target to
exit the default state and fully enforce authorization for all messages requiring authorization. This request and
response has no associated policy bit and thus any Credential ID has the authority to issue this request. However,
the Authorization target still performs authorization checks.

If Ownership is already taken, the Authorization target shall respond with an AUTH_ERROR message using

ErrorCode=UnexpectedRequest .
Table 59 — TAKE_OWNERSHIP request message format shows the TAKE_OWNERSHIP request message format:

Table 59 — TAKE_OWNERSHIP request message format

Byte offset Field Size (bytes) Description

Shall be the code value for TAKE_OWNERSHIP in Table 16 — Authorization message

0 RequestResponseCode 1
request codes.

1 Reserved 1 Reserved
Table 60 — OWNERSHIP_TAKEN response message format shows the OWNERSHIP_TAKEN response message
format:

Table 60 — OWNERSHIP_TAKEN response message format

Byte offset Field Size (bytes) Description

Shall be the code value for owNERSHIP_TAKEN in Table 17 — Authorization

0 RequestResponseCode 1
message response codes.

1 Reserved 1 Reserved

9.2.10.2 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response

The AUTH_RESET_TO_DEFAULT request and its successful AUTH_DEFAULTS_APPLIED response shall cause the
Authorization target to reset the requested data types (such as credentials and policies) to initial or default values for
unlocked credentials. This request and response shall not affect locked credentials and their associated policies and
data types.

The Authorization target shall reset all data associated with the requested DataType and/or SVResetDataType of the
SVH owner for the requested credentialID to initial or default values.

Table 61 — AUTH_RESET_TO_DEFAULT request message format shows the AUTH_RESET_TO_DEFAULT request
message format:

78 Work in Progress Version 1.0.0WIP99

DSP0289 SPDM Authorization Specification

617 Table 61 — AUTH_RESET_TO_DEFAULT request message format
Byte offset Field Size (bytes) Description
Shall be the code value for AUTH_RESET_TO_DEFAULT in Table 16 — Authorization
0 RequestResponseCode 1
message request codes.
1 Reserved 1 Reserved
This field indicates the type of data to reset to initial or default values. The format
of this field shall be as Table 62 — DataType bit definitions defines.
2 DataType 2

Zero or more bits can be set.
The value of this field shall indicate the unlocked Credential ID(s) of the data
4 CredentiallD 2 type(s) to reset to initial or default values. The value of OxFFFF shall indicate all

unlocked Credential IDs.

This field shall be the count of Standard or Vendor Reset Data Type Elements in

6 SVResetDataTypeCount 2 SVResetDataTypeList . A value of zero shall indicate the absence of
SVResetDataTypeList .
This field shall cause data types defined by a standard body or vendor to reset to
their initial or default values. The format of this field shall be the concatenation of
Standard or Vendor Reset Data Type Element as Table 63 — Standard or Vendor
Reset Data Type Element format defines.
8 SVResetDataTypeList Variable) N) .
If a standard or vendor is present in this list, then the list can contain more than
one instance of that standard or vendor because a standard body may have
multiple standards with their corresponding data types. This specification
recommends that the standard or vendor prevent duplicate instances to minimize
payload.
618 Table 62 — DpataType bit definitions shows the pataType bit definitions:
619 Table 62 — "DataType" bit definitions
Byte Offset Bit Offset Field Description
If this bit is set, Credential ID parameters shall be reset to initial or default values for the
0 0 CredIDParams o .
specified Credential IDs.
0 1 AuthPolic If this bit is set, the Authorization policy associated with the SVH in SvResetDataTypelList
u i
v shall reset to initial or default values for the specified Credential IDs.
0 [7:2] Reserved Reserved
1 [7:0] Reserved Reserved
620 Table 63 — Standard or Vendor Reset Data Type Element format shows the definition for the standard or vendor

data type to reset to initial or default values:

Version 1.0.0WIP99 Work in Progress 79

621

622

623

624

625

626

627
628
629

630

SPDM Authorization Specification DSP0289

Table 63 — Standard or Vendor Reset Data Type Element format

Byte offset Field Size (bytes) Description

This field shall specify the owner of the SvresetDataType field. The format
and size of this field shall be the format and size of the SVH as DSP0293
defines. The value of LensvH shall be set as Common variable names
defines.

0 SVResetDataTypeOwner LenSvH
If other DMTF DSP uses the format as this table defines, then the other
DMTF DSP specifications shall use the value associated with DMTF-DSP
for the 1D field as DSP0293 defines.

The value of this field shall specify the length of svResetDataType , in bytes.

LenSVH SVResetDataTypelLen 1 o
The value of this field shall not exceed 32.

This field shall indicate the standard or vendor specific data types to reset to
initial or default values.

1+ LenSVH SVResetDataType SVResetDataTypeLen The SVResetDataTypeowner defines the format and size for this field.

For this specification, the svResetDataType is not present and thus the
SVResetDataTypeLen shall have a value of zero.

Table 64 — AUTH_DEFAULTS_APPLIED response message format shows the AUTH_DEFAULTS_APPLIED response
message format:

Table 64 — AUTH_DEFAULTS_APPLIED response message format

Byte offset Field Size (bytes) Description

Shall be the code value for AUTH_DEFAULTS_APPLIED in Table 17 — Authorization
0 RequestResponseCode 1

message response codes.
1 Reserved 1 Reserved

9.2.10.2.1 AUTH_RESET_TO_DEFAULT additional requirements

The DpataType field indicates either a global data type or a data type specific to this specification. For global data
types, note that SVH owners or any specifications that implement this specification do not need to define an
equivalent bit in their svResetDataType .

To restore the Authorization target back to default state as Initial provisioning describes, the request shall have these
values:

* CredentialID field shall have a value of OXFFFF.
» All non-reserved bits shall be set in the DataType field of the request.

* SVResetDataTypeCount shall be zero.

Upon receiving the above request, the Authorization target shall return to the default state upon successful

80 Work in Progress Version 1.0.0WIP99

631

632

633

634

635

636

637

638

639

640

641

642

643

644
645

DSP0289 SPDM Authorization Specification

completion. For all other parameter combinations, the Authorization target shall remain in the Owned state and shall
reset to initial or default values for the requested data types.

If the Authorization requires a reset to successfully complete the request and there are no other errors, the
Authorization target shall reply with an AUTH_ERROR Of ErrorCode=ResetRequired . Otherwise, a successful response
shall indicate the Authorization target has successfully completed the requested operation.

AUTH_RESET_TO_DEFAULT request is an invasive operation. Thus, an Authorization target shall immediately terminate
all active and saved Authorization processes associated with the requested Credential IDs after the
AUTH_DEFAULTS_APPLIED response has been sent.

9.3 Timing requirements

This section discusses timing requirements for Authorization messages and all messages requiring authorization.

9.3.1 Message transmission time

The message transmission time is the worst-case transmission time it takes the Authorization initiator to completely
transmit a message to the Authorization target plus the worst-case transmission time for the Authorization target to
completely send a message to the Authorization initiator. The actual value and method of measurement of the
message transmission time is outside the scope of this specification.

9.3.2 Authorization messages timing

For messages not requiring authorization, the Authorization target shall respond within AuthResponseTime as
measured from the reception of the Authorization request to the transmission of the corresponding response. The
value of AuthResponseTime shall be 100 ms.

If an Authorization initiator wants to retry a request, the Authorization initiator shall wait at least AuthResponseTime
plus Message transmission time.

9.3.3 All messages requiring Authorization

Because this specification provides a mechanism for authorizing messages for any protocol, the Authorization target
can consume additional processing time to process the messages. Protocols that implement this specification should
consider the additional processing time needed and adjust existing timing requirements accordingly.

The Authorization target provides this additional processing time in [AUTH_CAPABILITIES].AuthRecordProcessTime field
to process the Authorization record. The transport can use this value if it uses the Authorization record.

If an Authorization initiator wants to retry an Authorization request, the Authorization initiator shall wait at least the
sum of these timing parameters:

* AuthResponseTime

* [AUTH_CAPABILITIES].AuthRecordProcessTime

Version 1.0.0WIP99 Work in Progress 81

646
647

648
649
650

SPDM Authorization Specification

The Message transmission time.

DSP0289

Unless otherwise specified by the transport, the Authorization initiator should wait at least the sum of these timing
parameters before performing any error handling for messages of other protocols encapsulated in an Authorization
record:

AuthRecordProcessTime

The process time of MsgToAuthPayload in the Authorization record as specified by the transport

The Message transmission time.

82

Work in Progress

Version 1.0.0WIP99

651

652

653

654

655

656
657

658

DSP0289 SPDM Authorization Specification

10 Authorization Opaque Data Structures (AODS)

Authorization Opaque Data Structures (AODS) are data structures that are populated into the opaqueData field of
various SPDM messages. Other parts of this specification define which AODS populate into which SPDM messages.
This section defines the format for each AODS.

AODS requirements shall apply only when the secure session is an SPDM session. AODS can be used for other
types of secure sessions. However, the use of AODS to fulfill the requirements in this specification while outside of
an SPDM session is outside the scope of this specification.

10.1 General Authorization Opaque Data Structure

All AODS formats shall follow the General opaque data format as SPDM defines. This section binds the AODS to the
General opaque data format.

Table 65 — AODS general format defines the general format of all AODS.

Table 65 — AODS general format

Byte Offset Field Size (bytes) Description
0 D 1 The value of this field shall be 0xB to identify DMTF-DSP as the standards
body.
The value of this field shall be 2 to identify DMTF-DSP as the owner of the
1 VendorIDLen 1 .
definition of all AODS.
The value of this field shall be 289. This field indicates that the definition of
2 DMTFspecID 2 . o
the opaqueElementData belongs to this DMTF specification.
The value of this field shall be the total size of these fields: Aobsid and
4 OpaqueElementDatalLen 2]
AoDSbody field.
This field identifies the AODS and its format in Aobsbody . The value of this
6 AODSId 1 field shall be one of the values in the AODS ID column of Table 66 —
AODS IDs.
This field shall contain the actual AODS content according to the value in
AoDsid . See the respective AODS section for the actual definition. The size
7 AODSbody AODSbodylLen

of this field shall be the size of Aobsbody corresponding to the value in
Aopsid field.

See the field of the same name in SPDM for definition and requirements.
7 + AODSbodylLen AlignPadding Variable The oOpaqueElementData are the fields following DMTFspecID (without
including the DMTFspecID field itself).

SPDM 1.2 or later defines the General opaque data format for all opaque data populated in all opaqueData fields of
SPDM messages when opaqueDataFmtl is selected as the Opaque data format for the SPDM connection. Prior to

Version 1.0.0WIP99 Work in Progress 83

SPDM Authorization Specification DSP0289

SPDM 1.2 or when opaqueDataFmt1 is not the selected Opaque data format for the SPDM connection, the format of
the opaquebata field is out of scope of this specification.

659 10.2 AODS error handling

660 This specification defines which SPDM message an AODS can be present in and other AODS requirements. An
error arises when an Authorization endpoint does not meet these AODS requirements, such as an unexpected
presence. When an error occurs, an Authorization endpoint can terminate the session, prevent Authorization
processes in the corresponding session, or use other error-handling mechanisms that are outside the scope of this
specification.

661 10.3 AODS IDs

662 Table 66 — AODS IDs lists out all AODS in this specification with a short description.
663 Table 66 — AODS IDs

AODS ID AODS Name Description

Shall invoke the SEAP process for an SPDM endpoint. The format of the Aobsbody shall be

0 INVOKE_SEAP
- the INVOKE_SEAP AODS.

Shall indicate the SPDM session handshake phase of the SEAP process has successfully
1 SEAP_SUCCESS passed for the corresponding SPDM endpoint. The format of the Aobsbody shall be the
SEAP_SUCCESS AODS.

Shall indicate the SPDM endpoint supports being an Authorization target. The format of the

2 AUTH_HELLO
- AoDSbody shall be the AUTH_HELLO AODS.

All other values Reserved Reserved

664 10.4 INVOKE_SEAP AODS

665 The INVOKE_SEAP AODS shall request the other SPDM endpoint to invoke the SEAP process for the requesting
SPDM endpoint. Table 67 — INVOKE_SEAP Body definition defines the format for the Aobsbody in the AODS
general format when AODS ID is INVOKE_SEAP .

666 Table 67 — INVOKE_SEAP Body definition
Byte Offset Field Size (bytes) Description
. This field shall indicate the presence of extra fields. The value of this field shall be
0 PresenceExtension 1
reserved.
1 CredentiallD 2 The field shall contain the Credential ID of the requesting SPDM endpoint.

667 Because the INVOKE_SEAP AODS occurs before the SPDM endpoint knows the supported Authorization versions

84 Work in Progress Version 1.0.0WIP99

668

669

670

671

672

673

674

675

676

677

678

DSP0289 SPDM Authorization Specification

of the other SPDM endpoint, the pPresenceExtension field helps maintain future compatibility. Future versions of this
specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be present.

This allows a current implementation to skip the remaining fields and process only the fields it knows about. An
implementation can skip the remaining fields it doesn't know about by taking into account the opaqueElementDatalen
in the Table 65 — AODS general format.

10.5 SEAP_SUCCESS AODS

The SEAP_SUCCESS AODS shall indicate the SEAP process during the SPDM session handshake phase for the
requesting SPDM endpoint is successful. Table 68 — SEAP_SUCCESS Body definition defines the format for the
AoDSbody in the AODS general format when AODS ID is SEAP_SUCCESS .

Table 68 — SEAP_SUCCESS Body definition

Byte Offset Field Size (bytes) Description

This field shall indicate the presence of extra fields. The value of this field shall be

0 PresenceExtension 1
reserved.

Because the SEAP_SUCCESS AODS occurs before the SPDM endpoint knows the supported Authorization
versions of the other SPDM endpoint, the PresenceExtension field helps maintain future compatibility. Future
versions of this specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be
present.

This allows a current implementation to skip the remaining fields and process only the fields it knows about. An
implementation can skip the remaining fields it doesn't know about by taking into account the opaqueElementDatalen
in the Table 65 — AODS general format.

10.6 AUTH_HELLO AODS

The AUTH_HELLO AODS shall indicate the SPDM endpoint providing this AODS is an Authorization target. Table 69
— AUTH_HELLO Body definition defines the format for the Aobsbody in the AODS general format when AODS ID is
AUTH_HELLO .

Table 69 — AUTH_HELLO Body definition

Byte Offset Field Size (bytes) Description

This field shall indicate the presence of extra fields. The value of this field shall be

0 PresenceExtension 1
reserved.

Because the AUTH_HELLO AODS occurs before the SPDM endpoint knows the supported Authorization versions of
the other SPDM endpoint, the PresenceExtension field helps maintain future compatibility. Future versions of this
specification could define the next lowest unused bit. If a bit is set, the corresponding field shall be present.

This allows a current implementation to skip the remaining fields and process only the fields it knows about. An

Version 1.0.0WIP99 Work in Progress 85

SPDM Authorization Specification DSP0289

implementation can skip the remaining fields it doesn't know about by taking into account the opaqueElementDatalen
in the Table 65 — AODS general format.

86 Work in Progress Version 1.0.0WIP99

679

680

681

682

683

684

685
686

687

688

689

690

DSP0289 SPDM Authorization Specification

11 Other transport requirements

This section describes other or additional requirements that are not discussed elsewhere in this specification.

11.1 Authorization record over SPDM Vendor-Defined Messages (VDM)

This clause defines the Authorization record over SPDM Vendor-Defined Messages (VDM) to enable transmission of
Authorization messages, Authorization records and messages of any protocol requiring authorization over existing
transports. By leveraging SPDM's Vendor-defined messages, existing transports can utilize their current SPDM
bindings without requiring significant modifications. These requests and responses are intended for use between
SPDM endpoints acting as an Authorization initiator and an Authorization target.

AUTH record over SPDM VDM messages shall not affect the SPDM transcript defined in the SPDM specification.
Additionally, depending on the type of Authorization record and its content, one or more SPDM requests can be
outstanding at any time. Furthermore, an Authorization record over SPDM VDM request can have a response that is
not encapsulated in an Authorization record over SPDM VDM response. In a way, AUTH record over SPDM VDM
behaves more like a transport than a request and response model.

All Authorization record over SPDM VDM shall use the SPDM VENDOR_DEFINED REQUEST and
VENDOR_DEFINED_RESPONSE request and response with these requirements:

* The standardIiD shall be oxB to indicate DMTF-DSP.

* The vendoriD shall be 289 (ex121) to indicate this specification.

The VendorDefinedReqPayload field of the VENDOR_DEFINED_REQUEST and VendorDefinedRespPayload field of the
VENDOR_DEFINED_RESPONSE shall be the same format and size as Table 10 — Authorization record format. If
LargeVendorDefinedReqPayload is presentin the VENDOR_DEFINED_REQUEST Or LargeVendorDefinedRespPayload iS
present in the VENDOR_DEFINED_RESPONSE , then the format of these fields shall be the same format and size as Table
10 — Authorization record format.

11.1.1 Additional AUTH over SPDM VDM requirements

The timing requirements for the AUTH Record over SPDM VDM requirements shall be the same as defined in Timing
requirements.

The Authorization target should size MaxSPDMmsgSize inthe GET_CAPABILITIES requestand CAPABILITIES response
messages in SPDM appropriately to receive all supported Authorization record types especially when the
Authorization record carries a message requiring authorization.

Version 1.0.0WIP99 Work in Progress 87

SPDM Authorization Specification DSP0289

691

12 Cryptographic operations

692 This section describes or defines cryptographic functions specific to Authorization.

633 12.1 Asymmetric algorithms

694 This section defines the supported asymmetric algorithms.

695 Table 70 — Base asymmetric algorithm format lists the bit definitions and other parameters associated with the
respective asymmetric algorithms. BaseAsymAlgoLen is defined in Common variable names.

696 Table 70 — Base asymmetric algorithm format
OB fz: :t Of‘Bfistet Algorithm Signa(:;:;:als.;a ngth Description
0 0 TPM_ALG_RSASSA_2048 256
0 1 TPM_ALG_RSAPSS_2048 256
0 2 TPM_ALG_RSASSA_3072 384
0 3 TPM_ALG_RSAPSS_3072 384

The signature format shall be 32-byte r followed
0 4 TPM_ALG_ECDSA_ECC_NIST_P256 64

by 32-byte s .
0 5 TPM_ALG_RSASSA_4096 512
0 6 TPM_ALG_RSAPSS_4096 512
The signature format shall be 48-byte r followed
0 7 TPM_ALG_ECDSA_ECC_NIST_P384 96
- - - - - by 48-byte s .
The signature format shall be 66-byte r followed
1 0 TPM_ALG_ECDSA_ECC_NIST_P521 132
by 66-byte s .
The signature format shall be 32-byte sm2_r
1 1 TPM_ALG_SM2_ECC_SM2_P256 64
- - - - - followed by 32-byte sm2_s .
The signature format shall be 32-byte r followed
1 2 EdDSA ed25519 64
by 32-byte s .
The signature format shall be 57-byte r followed
1 3 EdDSA ed448 114
by 57-byte s .
1 [7:4] Reserved Reserved
2:7 All bits Reserved Reserved

88 Work in Progress Version 1.0.0WIP99

697

698
699

700

701

702

703

704

705

706

707

DSP0289

12.2 Hash algorithms

This section defines the supported hash algorithms.

Table 71 — Base hash algorithm format lists the bit definitions of all supported base hash algorithms.

BaseHashAlgoLen is defined in Common variable names.

Byte Offset Bit Offset
0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
1:7 All bits

TPM_ALG_SHA 256
TPM_ALG_SHA_384
TPM_ALG_SHA 512
TPM_ALG_SHA3_256
TPM_ALG_SHA3_384
TPM_ALG_SHA3_512
TPM_ALG_SM3_256
Reserved

Reserved

12.3 Signature generation and validation

This section describes the Authsign and Authsigverify functions.

12.3.1 Signature algorithm references

Refer to the Signature algorithm references section in the SPDM specification (DSP0274) for details on signature

algorithms.

12.3.2 Signature generation

The Authsign function used in various parts of this specification defines the signature generation algorithm while
accounting for the differences in the various supported cryptographic signing algorithms.

The signature generation function takes this form:

SPDM Authorization Specification

Table 71 — Base hash algorithm format

Algorithm

Version 1.0.0WIP99

Work in Progress

89

708

709
710
711

712
713

714

715

716
717

718

719

720

SPDM Authorization Specification DSP0289

signature = AuthSign(PrivKey, data_to_be_signed, context);

The Authsign function shall take these input parameters:

* Privkey : a secret key associated with the given Credential ID
* data_to_be_signed : a bit stream of the data that will be signed

* context :a string
The function shall output a signature using privkey and the selected cryptographic signing algorithm.

The signing function shall follow these steps to create auth_prefix and auth_context (See Text or string encoding
for encoding rules):

1. Create auth_prefix . The auth_prefix shall be the repetition, four times, of the concatenation of
"dmtf-auth-v", Authversionstring and ".*". This will form a 64-character string.

2. Create auth_context . If the User is generating the signature, auth_context shall be the
concatenation of "user-" and context .

Now follows an example, designated Example 1, of creating a combined_auth_prefix .

In this example, the version of this specification is 1.9.3, the User is generating a signature, and the context is "my
example context". Thus, the auth_prefix is "dmtf-auth-v1.9.*dmtf-auth-v1.9.*dmtf-auth-v1.9.*dmtf-auth-v1.9.*". The
auth_context is "user-my example context".

Next, the combined auth_prefix is formed. The combined auth prefix shall be the concatenation of four elements:
auth_prefix , a byte with a value of zero, zero_pad , and auth_context . The size of zero_pad shall be the number
of bytes needed to ensure that the length of combined_auth_prefix is 100 bytes. The size of zero_pad can be zero.
The value of zero pad shall be zero.

Continuing Example 1, Table 72 — Example combined_auth_prefix structure shows the combined_auth_prefix with
offsets. Offsets increase from left to right and top to bottom. As shown, the length of combined_auth_prefix is 100
bytes. Furthermore, a number surrounded by double quotation marks indicates that the ASCII value of that number is
used. See Text or string encoding for encoding rules. Table 72 — Example combined_auth_prefix structure
concludes Example 1.

Table 72 — Example “combined_auth_prefix" structure

Offset 0x0 O0x1 O0x2 O0x3 O0x4 0x5 O0x6 Ox7 0x8 0x9 OxA O0xB O0xC 0xD OxE OxF
0 d m t f - a u t h - v "t "o *
0x10 d m ot f - a u t h - v "t | "or . *
0x20 d m ot f - a u t h - v "t "ot *
0x30 d m ot f - a u t h - v "t | "or . *
0x40 0x0 0x0O O0x0 0x0 0x0 0x0O 0x0O Ox0O Ox0O Ox0 O0x0 O0x0 0x0 u s e

90 Work in Progress Version 1.0.0WIP99

721

722

723

724

725
726

727
728

729

730
731
732

733

734
735

DSP0289 SPDM Authorization Specification

Offset 0x0 O0x1 O0x2 O0x3 O0x4 0x5 O0x6 O0x7 0x8 0x9 OxA 0xB O0xC 0xD OxE OxF
0x50 r - m y space (0x20) e X a m p | e space (0x20) © o n

0x60 t e X t

The next step is to form the message_hash . The message_hash shall be the hash of data_to_be_signed using the
selected hash function associated with the given Credential ID. Many hash algorithms allow implementations to
compute an intermediate hash, sometimes called a running hash. An intermediate hash allows for the updating of the
hash as each byte of the ordered data of the message becomes known. Consequently, the ability to compute an
intermediate hash allows for memory utilization optimizations where an Authorization endpoint can discard bytes of
the message that are already covered by the intermediate hash while waiting for more bytes of the message to be
received.

Because cryptographic signing algorithms can vary widely, the following clauses define the binding of sPbMsign to
these algorithms.

12.3.2.1 RSA and ECDSA signing algorithms

All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the
selected hash function associated with the given Credential ID.

The private key, defined by the specification for these algorithms, shall be Privkey .

In the specification for these algorithms, the letter m denotes the message to be signed. m shall be the
concatenation of combined_auth_prefix and message_hash .

RSA and ECDSA algorithms are described in Signature algorithm references.

The FIPS PUB 186-5 supports deterministic ECDSA as a variant of ECDSA. RFC 6979 describes this deterministic
digital signature generation procedure. This variant does not impact the signature verification process. How an
implementation chooses to support ECDSA or deterministic ECDSA is outside the scope of this specification.

12.3.2.2 EdDSA signing algorithms

These algorithms are described in RFC 8032.
The private key, defined by RFC 8032, shall be Privkey .

In the specification for these algorithms, the letter m denotes the message to be signed.

12.3.2.2.1 Ed25519 sign

This specification defines only Ed25519 usage and not its variants.

M shall be the concatenation of combined_auth_prefix and message hash .

Version 1.0.0WIP99 Work in Progress 91

736

737
738
739

740

741
742
743

744

745

746

747

748

749

750
751
752
753

754

755

SPDM Authorization Specification DSP0289

12.3.2.2.2 Ed448 sign

This specification defines only Ed448 usage and not its variants.
M shall be the concatenation of combined_auth_prefix and message hash .

Ed448 defines a context string, ¢ . ¢ shall be the auth_context .

12.3.2.3 SM2 signing algorithm

This algorithm is described in GB/T 32918.2-2016. GB/T 32918.2-2016 also defines the variable m and IDA.
The private key defined by GB/T 32918.2-2016 shall be Pprivkey .

In the specification for SM2, the letter m denotes the message to be signed. M shall be the concatenation of

combined_auth_prefix and message_hash .

The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the selected
hash function associated with the given Credential ID.

Lastly, SM2 expects a distinguishing identifier, which identifies the signer and is indicated by the variable IDa. If this
algorithm is selected, the ID shall be an empty string of size 0.

12.3.3 Signature verification
The Authsigverify function, used in various parts of this specification, defines the signature verification algorithm
while accounting for the differences in the various supported cryptographic signing algorithms.

The signature verification function takes this form:

AuthSigVerify(PubKey, signature, unverified_data, context);

The Authsigverify function shall take these input parameters:

* PubKey : the public key associated with the given Credential ID
* signature : a digital signature
* unverified_data :a bit stream of data that needs to be verified
* context :a string
The function shall verify the unverified_data using signature, PubKey , and a selected cryptographic signing

algorithm. Authsigverify shall return success if the signature is successfully verified and failure otherwise. Each
cryptographic signing algorithm states the verification steps or criteria for successful verification.

The verifier of the signature shall create auth_prefix , auth_context , and combined_auth_prefix as described in
Signature generation.

92 Work in Progress Version 1.0.0WIP99

756

757
758

759

760

761
762

763

764

765

766

767
768
769

770

771
772

773
774
775
776

DSP0289 SPDM Authorization Specification

The next step is to form the unverified_message_hash . The unverified_message_hash shall be the hash of the
unverified_data using the selected hash function associated with the given Credential ID.

The selected cryptographic signature verification algorithm is the one associated with the given Credential ID.

Because cryptographic signature verification algorithms can vary widely, the following clauses define the binding of
AuthSigVerify to these algorithms.

12.3.3.1 RSA and ECDSA signature verification algorithms

All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the
selected hash function associated with the given Credential ID.

The public key, defined in the specification for these algorithms, shall be pubkey .

In the specification for these algorithms, the letter m denotes the message that is signed. m shall be the
concatenation of the combined_auth_prefix and unverified message_hash .

For RSA algorithms, Authsigverify shall return success when the output of the signature verification operation, as
defined in the RSA specification, is "valid signature". Otherwise, Authsigverify shall return failure.

For ECDSA algorithms, Authsigverify shall return success when the output of "ECDSA Signature Verification
Algorithm" as defined in FIPS PUB 186-5 is "accept". Otherwise, Authsigverify shall return failure.

RSA and ECDSA algorithms are described in Signature algorithm references.

12.3.3.2 EdDSA signature verification algorithms

RFC 8032 describes these algorithms. RFC 8032, also, defines the m, PH, and c variables.
The public key, also defined in RFC 8032, shall be Pubkey .

In the specification for these algorithms, the letter m denotes the message to be signed.

12.3.3.2.1 Ed25519 verify

M shall be the concatenation of combined_auth_prefix and unverified_message_hash .

AuthsigVerify shall return success when step 1 does not result in an invalid signature and when the constraints of
the group equation in step 3 are met as described in RFC 8032 section 5.1.7. Otherwise, Authsigverify shall return
failure.

12.3.3.2.2 Ed448 verify

M shall be the concatenation of combined_auth_prefix and unverified_message_hash .
Ed448 defines a context string, ¢ . ¢ shall be the auth_context .

AuthsigVerify shall return success when step 1 does not result in an invalid signature and when the constraints of
the group equation in step 3 are met as described in RFC 8032 section 5.2.7. Otherwise, Authsigverify shall return
failure.

Version 1.0.0WIP99 Work in Progress 93

77

778
779
780

781

782

783

SPDM Authorization Specification DSP0289

12.3.3.3 SM2 signature verification algorithm

This algorithm is described in GB/T 32918.2-2016, which also defines the variable M and IDa.
The public key, also defined in GB/T 32918.2-2016, shall be Pubkey .

In the specification for SM2, the variable M' is used to denote the message that is signed. m' shall be the
concatenation of combined_auth_prefix and unverified_message_hash .

The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the selected
hash function associated with the given Credential ID.

Lastly, SM2 expects a distinguishing identifier, which identifies the signer, and is indicated by the variable IDa. See
SM2 signing algorithm to create the value for IDA.

AuthsigVerify shall return success when the Digital signature verification algorithm, as described in GB/T
32918.2-2016, outputs an "accept". Otherwise, Authsigverify shall return failure.

94 Work in Progress Version 1.0.0WIP99

784

785

786

787

788

789

790

791

792

793

DSP0289 SPDM Authorization Specification

13 Authorization events

The Authorization events are sent using the SPDM Event mechanism. This section uses many variable names that
SPDM defines. See DSP0274 for details, especially the eventing mechanism sections.

Authorization event requirements apply only when AuthEventcap is set. Otherwise, an Authorization target does not
support Authorization events. The Requirement column indicates whether or not the event is mandatory or
conditional. If a value in this column is Mandatory, the event shall be supported. If a value in this column is
Conditional, the section for the corresponding request details the requirements.

The EventGroupid in SPDM events identifies the owner of the event. For Authorization, the EventGroupid shall
indicate DMTF-DSP with a Vendor ID value of 289.

Table 73 — Authorization event types shows the supported Authorization event types for the Authorization event
group. The values in the Event Type ID column shall be the same values for EventTypeld field in the SPDM Event
data table for the Authorization event group for the corresponding event in the Event Name column. The version

(EventGroupver) of the Authorization Event Group shall be 1.

Table 73 — Authorization event types

Event Type ID Event Name Requirement Description
0 Reserved Reserved Reserved

. A change to one or more parameters via SET_CRED_ID_PARAMS has occurred for a
1 CredIDparamsChanged Conditional

Credential ID.

One or more parameters associated with SET_AUTH_poLICY have changed for a

2 AuthPolicyChanged Conditional .
Credential ID.

All others Reserved Reserved Reserved

13.1 Event type details

Each Authorization event type has its own event-specific information, referred to as EventDetail , to describe the
event. These clauses describe the format for each Authorization event type. The event types are listed in Table 73 —
Authorization event types.

13.1.1 Credential ID Parameters Changed Event

An Authorization target shall use this event (EventTypeId=CredIDparamsChanged) to notify the Event Recipient as
SPDM defines that the Authorization target made a change to one or more parameters by the SET_CRED_ID_PARAMS
request. The event shall apply to all operations indicated by the SetCredinfoop field in the SET_CRED_ID_PARAMS
request.

Version 1.0.0WIP99 Work in Progress 95

794
795

796

797

798

799

800

801

802

803
804

805

SPDM Authorization Specification DSP0289

The event shall be supported if the Authorization target supports the SET_CRED_ID_PARAMS request.

Table 74 — Credential ID Parameters Changed Event format describes the format for EventDetail as SPDM

defines.
Table 74 — Credential ID Parameters Changed Event format
Offset Field Size (bytes) Description
0 CredentialldCount 2 Shall be the number of Credential IDs in CredentialIdList
Shall be a list of Credential IDs whose Credential ID parameters changed through the
. . . SET_CRED_ID_PARAMS request. The format of this field shall be the concatenation of
2 CredentialldList Variable

CredentialID s as Table 2 — Credential structure defines. Thus, the size of this field
shall be credentialIldCount *the size of CredentialiD .

The Authorization initiator can issue GET_CRED_ID_PARAMS to obtain details of this change.

13.2 Protecting the Authorization record

The Authorization record carries both messages requiring authorization and Authorization messages. To protect
Authorization records, Authorization records should traverse a secured transport that provides, minimally, the ability
to authenticate the message. The secured transport should also provide the ability to obfuscate messages.

If an SPDM session is used, then both the SPDM Requester and SPDM Responder shall set the Mac_caAp bit in their
corresponding GET_CAPABILITIES Or CAPABILITIES message. The SPDM endpoints can set their corresponding
ENCRYPT_CAP bit as well.

13.2.1 Authorization Policy Changed Event

An Authorization target shall use the Authorization Policy Changed Event (EventTypeId=AuthPolicyChanged) to notify
the Event Recipient as SPDM defines when one or more authorization policies have changed through the
SET_AUTH_POLICY request. The event shall apply to all operations indicated by the SetAuthPolicyop field in the
SET_AUTH_POLICY request. The EventDetail format for this event type shall be as the Table 75 — Authorization
Policy Changed Event format defines. This event only indicates a single policy change. If more than one policy
changes, then each change will have its own event.

The event shall be supported if the Authorization target supports the SET_AUTH_POLICY request.

Table 75 — Authorization Policy Changed Event format describes the format for EventDetail for the
AuthPolicyChanged event.

Table 75 — Authorization Policy Changed Event format

Offset Field Size (bytes) Description

Shall be the Credential ID associated with the Authorization policy that

0 CredentiallD 2
changed.

96 Work in Progress Version 1.0.0WIP99

806

DSP0289

Offset

2+ LenSVH

4 + LenSVH

Field Size (bytes)

PolicyOwnerID LenSVH

PolicyldLen 2

PolicylD PolicyIdLen

SPDM Authorization Specification

Description

Shall identify the owner of the definition of the policy that changed. The
format of this field shall be the SVH as DSP0293 defines.

Shall be the length of pPolicyId field.

Shall identify the actual policy, defined by PolicyowneriD , that changed.

If the PolicyownerID indicates DSP0289 using DMTF-DSP as standards
body registry, then the format and size of this field is the PolicyType field
as Table 7 — DSP0289 general policy definitions defines.

The Authorization initiator can issue GET_AUTH_PoLICY to obtain further details on the change.

Version 1.0.0WIP99

Work in Progress 97

SPDM Authorization Specification DSP0289

7 14 ANNEX A (informative) change log

808 14.1 Version 1.0.0 (in progress)

809 Initial release

98 Work in Progress Version 1.0.0WIP99

DSP0289 SPDM Authorization Specification

810

15 Bibliography

811 DMTF DSP4014, DMTF Process for Working Bodies, https://www.dmtf.org/dsp/DSP4014

Version 1.0.0WIP99 Work in Progress 99

https://www.dmtf.org/dsp/DSP4014

	Security Protocol and Data Model (SPDM) Authorization Specification
	Version: 1.0.0WIP99
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Document conventions
	2.1.1 Reserved and unassigned values
	2.1.2 Byte ordering
	2.1.2.1 Default byte order
	2.1.2.2 Octet string byte order
	2.1.2.3 Signature byte order
	2.1.2.3.1 ECDSA signatures byte order
	2.1.2.3.2 SM2 signatures byte order

	2.1.3 Text or string encoding
	2.1.4 Other conventions

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 Notations
	8 Authorization architecture
	8.1 Architecture overview
	8.2 Authorization version
	8.3 Authorization flows
	8.3.1 Credential provisioning overview
	8.3.2 Authorization overview

	8.4 Credentials
	8.4.1 Identifying the Authorization initiator
	8.4.2 Credential structure
	8.4.3 Credential attributes
	8.4.3.1 Locking and unlocking attributes

	8.4.4 Credential change requirements

	8.5 Authorization policies
	8.5.1 DSP0289 Authorization policy
	8.5.1.1 DSP0289 Authorization policy changes requirements
	8.5.1.2 DSP0289 additional Authorization policy requirements

	8.5.2 Policy attributes

	8.6 Initial provisioning
	8.6.1 Supply chain provisioning
	8.6.2 Default state
	8.6.3 Default state and additional supply chain requirements
	8.6.4 Taking ownership
	8.6.5 Other provisioning considerations

	8.7 Discovery
	8.8 Authorization process
	8.8.1 User-Specific Authorization Process (USAP)
	8.8.1.1 General USAP error handling, requirements, and notes
	8.8.1.2 USAS continuation

	8.8.2 SPDM Endpoint Authorization Process (SEAP)
	8.8.2.1 SEAP error handling, requirements, and notes

	8.8.3 Terminating Authorization process
	8.8.4 Other error handling, requirements, and notes

	8.9 Authorization record
	8.9.1 Authorization record on the transport
	8.9.2 Authorization types
	8.9.2.1 Authorization record in Authorization process
	8.9.2.1.1 USAP Authorization record
	8.9.2.1.2 SEAP Authorization record

	8.9.2.2 Authorization record Failures

	8.10 Authorization tag
	8.10.1 SEAP Authorization tag
	8.10.2 USAP Authorization tag
	8.10.2.1 USAP Authorization tag format
	8.10.2.2 USAP Authorization tag signature generation and verification

	9 Authorization messages
	9.1 Authorization messages overview
	9.1.1 Bi-directional Authorization message processing
	9.1.2 Requirements for Authorization initiators
	9.1.3 Requirements for Authorization targets
	9.1.4 Authorization messages bits-to-bytes mapping
	9.1.5 Version encoding
	9.1.6 Generic Authorization message format

	9.2 Authorization message definitions
	9.2.1 Authorization message request codes
	9.2.2 Authorization message response codes
	9.2.3 Authorization Message Validity
	9.2.4 Common variable names
	9.2.5 Error handling
	9.2.5.1 AUTH_ERROR response message

	9.2.6 Discovery message
	9.2.6.1 GET_AUTH_VERSION request and AUTH_VERSION response messages
	9.2.6.2 SELECT_AUTH_VERSION request and SELECT_AUTH_VERSION_RSP response messages
	9.2.6.3 GET_AUTH_CAPABILITIES request and AUTH_CAPABILITIES response messages

	9.2.7 Credential provisioning
	9.2.7.1 SET_CRED_ID_PARAMS request and SET_CRED_ID_PARAMS_DONE response messages
	9.2.7.1.1 Additional requirements on SET_CRED_ID_PARAMS

	9.2.7.2 GET_CRED_ID_PARAMS request and CRED_ID_PARAMS response messages
	9.2.7.3 Credential provisioning authorization requirements

	9.2.8 Authorization policy provisioning and management
	9.2.8.1 SET_AUTH_POLICY request and SET_AUTH_POLICY_DONE response messages
	9.2.8.1.1 Additional requirements on SET_AUTH_POLICY

	9.2.8.2 GET_AUTH_POLICY request and AUTH_POLICY response messages
	9.2.8.3 Authorization requirements

	9.2.9 Authorization process management
	9.2.9.1 General Authorization process management
	9.2.9.1.1 GET_AUTH_PROCESSES request and AUTH_PROCESSES response messages
	9.2.9.1.2 KILL_AUTH_PROCESS request and PROCESS_KILLED response messages
	9.2.9.1.2.1 Additional requirements for KILL_AUTH_PROCESS

	9.2.9.1.3 Authorization Process ID calculation

	9.2.9.2 USAP Management
	9.2.9.2.1 START_AUTH request and START_AUTH_RSP response messages
	9.2.9.2.1.1 START_AUTH Additional Errors

	9.2.9.2.2 END_AUTH request and END_AUTH_RSP response messages

	9.2.9.3 SEAP Management
	9.2.9.3.1 ELEVATE_PRIVILEGE request and PRIVILEGE_ELEVATED response messages
	9.2.9.3.2 END_ELEVATED_PRIVILEGE request and ELEVATED_PRIVILEGE_ENDED response message

	9.2.10 Basic management
	9.2.10.1 TAKE_OWNERSHIP request and OWNERSHIP_TAKEN response
	9.2.10.2 AUTH_RESET_TO_DEFAULT request and AUTH_DEFAULTS_APPLIED response
	9.2.10.2.1 AUTH_RESET_TO_DEFAULT additional requirements

	9.3 Timing requirements
	9.3.1 Message transmission time
	9.3.2 Authorization messages timing
	9.3.3 All messages requiring Authorization

	10 Authorization Opaque Data Structures (AODS)
	10.1 General Authorization Opaque Data Structure
	10.2 AODS error handling
	10.3 AODS IDs
	10.4 INVOKE_SEAP AODS
	10.5 SEAP_SUCCESS AODS
	10.6 AUTH_HELLO AODS
	11 Other transport requirements
	11.1 Authorization record over SPDM Vendor-Defined Messages (VDM)
	11.1.1 Additional AUTH over SPDM VDM requirements

	12 Cryptographic operations
	12.1 Asymmetric algorithms
	12.2 Hash algorithms
	12.3 Signature generation and validation
	12.3.1 Signature algorithm references
	12.3.2 Signature generation
	12.3.2.1 RSA and ECDSA signing algorithms
	12.3.2.2 EdDSA signing algorithms
	12.3.2.2.1 Ed25519 sign
	12.3.2.2.2 Ed448 sign

	12.3.2.3 SM2 signing algorithm

	12.3.3 Signature verification
	12.3.3.1 RSA and ECDSA signature verification algorithms
	12.3.3.2 EdDSA signature verification algorithms
	12.3.3.2.1 Ed25519 verify
	12.3.3.2.2 Ed448 verify

	12.3.3.3 SM2 signature verification algorithm

	13 Authorization events
	13.1 Event type details
	13.1.1 Credential ID Parameters Changed Event

	13.2 Protecting the Authorization record
	13.2.1 Authorization Policy Changed Event

	14 ANNEX A (informative) change log
	14.1 Version 1.0.0 (in progress)
	15 Bibliography

