Copyright Notice

Copyright © 2023 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability. Members and non-members may reproduce DMTF specifications and documents, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third-party patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third-party patent-right owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any party implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is withdrawn or modified after publication, and shall be indemnified and held harmless by any party implementing the standard from any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third parties which have notified the DMTF that, in their opinion, such patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/policies/disclosures.php.

All other marks and brands are the property of their respective owners.

This document’s normative language is English. Translation into other languages is permitted.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Foreword</td>
<td>5</td>
</tr>
<tr>
<td>39</td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>1 Scope</td>
<td>7</td>
</tr>
<tr>
<td>41</td>
<td>2 Normative references</td>
<td>7</td>
</tr>
<tr>
<td>42</td>
<td>3 Terms and definitions</td>
<td>7</td>
</tr>
<tr>
<td>43</td>
<td>4 Conventions</td>
<td>8</td>
</tr>
<tr>
<td>44</td>
<td>4.1 Reserved and unassigned values</td>
<td>8</td>
</tr>
<tr>
<td>45</td>
<td>4.2 Byte ordering</td>
<td>8</td>
</tr>
<tr>
<td>46</td>
<td>5 MCTP over MMBI Transport</td>
<td>8</td>
</tr>
<tr>
<td>47</td>
<td>5.1 MCTP Endpoint ID Use and MCTP Bus Owner</td>
<td>8</td>
</tr>
<tr>
<td>48</td>
<td>5.1.1 MCTP Endpoint IDs</td>
<td>8</td>
</tr>
<tr>
<td>49</td>
<td>5.1.2 MCTP Bus Owner and MCTP Discovery</td>
<td>8</td>
</tr>
<tr>
<td>50</td>
<td>5.1.3 Packet Sizes</td>
<td>8</td>
</tr>
<tr>
<td>51</td>
<td>5.2 MCTP Packet Encapsulation</td>
<td>9</td>
</tr>
<tr>
<td>52</td>
<td>5.3 Supported media</td>
<td>9</td>
</tr>
<tr>
<td>53</td>
<td>5.4 Physical address format for MCTP control messages</td>
<td>10</td>
</tr>
<tr>
<td>54</td>
<td>5.5 Get endpoint ID medium-specific information</td>
<td>10</td>
</tr>
<tr>
<td>55</td>
<td>5.6 MCTP packet and control message timing requirements</td>
<td>10</td>
</tr>
<tr>
<td>56</td>
<td>ANNEX A (informative) Notations</td>
<td>12</td>
</tr>
<tr>
<td>57</td>
<td>ANNEX B (informative) Change log</td>
<td>13</td>
</tr>
</tbody>
</table>
Figures

60 Figure 1 – MCTP over MMBI Encapsulation... 9

Tables

63 Table 1 – MCTP Packet over MMBI – Field Descriptions.. 9
64 Table 2 – Medium-specific information .. 10
65 Table 3 – Timing specifications for MCTP control messages on MMBI 11
Foreword

The Management Component Transport Protocol (MCTP) Memory-Mapped BMC Interface (MMBI) Transport Binding Specification (DSP0284) was prepared by the DMTF PMCI Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability.

This version is the first version of this document. Future changes will be detailed in the change log in ANNEX B.

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:

Editors:

- Janusz Jurski – Intel Corporation

DMTF Contributors:

- Bob Stevens – Dell Inc.
- Edward Newman – Hewlett Packard Enterprise
- Hemal Shah – Broadcom Inc
- Mahesh Natu – Intel Corporation
- Michael Garner – Meta
- Patrick Caporale – Lenovo
- Patrick Schoeller – Intel Corporation
- Rama Bisa – Dell Inc.
- Richard Marian Thomaiyar – Intel Corporation
- Scott Phuong – Cisco
- William Scherer III – Hewlett Packard Enterprise
- Yuval Itkin – NVIDIA Corporation
- Ramesha He – Dell Inc.
- Samer El-Haj-Mahmoud – ARM, Inc
- Chandra Nelogal – Dell Inc.
The Management Component Transport Protocol (MCTP) Memory-Mapped BMC Interface (MMBI) transport binding defines a transport binding for facilitating communication between platform management components, typically host software and a BMC (board management controller).

The Management Component Transport Protocol (MCTP) Base Specification describes the protocol and commands used for communication within and initialization of an MCTP network. The MCTP MMBI transport binding definition in this specification includes a packet format, physical address format, and discovery mechanisms for MCTP over MMBI communications.
1 Scope

This document provides the specification for the Management Component Transport Protocol (MCTP) transport binding for MMBI.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated or versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions) applies.

DMTF, DSP0282, Memory-Mapped BMC Interface (MMBI) 1.0, https://www.dmtf.org/standards/published_documents/DSP0282_1.0.pdf

3 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms are defined in this clause.

The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), “may”, “need not” (“not required”), “can” and “cannot” in this document are to be interpreted as described in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English meaning.

The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as described in ISO/IEC Directives, Part 2, Clause 6.

The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)” do not contain normative content. Notes and examples are always informative elements.

Refer to Management Component Transport Protocol (MCTP) Base Specification for the terms and definitions that are used across the MCTP specifications.

For the purposes of this document, the following terms and definitions apply.

3.1 MMBI

Memory-Mapped BMC Interface

3.2 MMIO

Memory-Mapped Input/Output
4 Conventions

The conventions described in the following clauses apply to this specification.

4.1 Reserved and unassigned values

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other
numeric ranges are reserved for future definition by the DMTF.

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0
(zero) and ignored when read.

4.2 Byte ordering

Unless otherwise specified, byte ordering of multi-byte numeric fields or bit fields is “Big Endian” (that is,
the lower byte offset holds the most significant byte, and higher offsets hold less-significant bytes).

5 MCTP over MMBI Transport

The MCTP over MMBI transport binding defines how MCTP packets are delivered over a MMBI. See
Memory-Mapped BMC Interface (MMBI) for details about MMBI.

A single MMBI instance shall serve as a communication channel between two communicating entities
(typically a host software component and the management controller)\(^1\). MCTP packet bridging to other
interfaces is out of scope for this revision of the specification.

5.1 MCTP Endpoint ID Use and MCTP Bus Owner

5.1.1 MCTP Endpoint IDs

This specification only uses MCTP physical addressing as defined in Management Component Transport
Protocol (MCTP) Base Specification. The sender of an MCTP over MMBI message shall set the Source
EID and the Destination EID fields to zero. The receiver of an MCTP over MMBI message shall ignore the
Source EID and the Destination EID fields.

5.1.2 MCTP Bus Owner and MCTP Discovery

As defined in Management Component Transport Protocol (MCTP) Base Specification, the MCTP Bus
Owner device is responsible for MCTP endpoint discovery and management of MCTP EID assignments.
EID assignment is not applicable to MMBI, and a Bus Owner is not used. The Set Endpoint ID command
should not be generated by MCTP over MMBI implementations. MCTP over MMBI implementations that
receive such a command shall respond with the ERROR_UNSUPPORTED_CMD code (defined in
Management Component Transport Protocol (MCTP) Base Specification). The Discovery Notify, Prepare
for Endpoint Discovery, or Endpoint Discovery MCTP control messages shall not be used to discover
MCTP endpoints over MMBI.

5.1.3 Packet Sizes

The normal packet size requirements and fragmentation and reassembly rules apply for MCTP packet
size over MMBI, as defined in Management Component Transport Protocol (MCTP) Base Specification.

\(^1\) Note that multiple endpoints in the system can be supported using a plurality of MMBI instances.
5.2 MCTP Packet Encapsulation

The MCTP message header and MCTP message data fields map to MMBI payload as shown in Figure 1.

![Figure 1 – MCTP over MMBI Encapsulation](image)

The length of the MCTP packet is determined by the MMBI header. Because of the 4-byte alignment requirement, padding must be added if necessary so that the packet length is a multiple of 4-bytes.

Table 1 – MCTP Packet over MMBI – Field Descriptions

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0:2 | [23:2] MMBI packet length, as defined in Memory-Mapped BMC Interface (MMBI) specification
| | [1:0] Padding length, as defined in Memory-Mapped BMC Interface (MMBI) specification |
| 3 | reserved |
| | [3:0] Packet Type = MCTP = 0100b, as defined in Memory-Mapped BMC Interface (MMBI) specification |
| 4 | reserved |
| | [3:0] Header Version = 0001b for MCTP, as defined in Management Component Transport Protocol (MCTP) Base Specification |
| 5 | Destination endpoint ID = Null Destination EID value, as defined in Management Component Transport Protocol (MCTP) Base Specification |
| 6 | Source endpoint ID = Null Source EID value, as defined in Management Component Transport Protocol (MCTP) Base Specification |
| varies | Padding as defined in Memory-Mapped BMC Interface (MMBI) specification |

The definitions of all other fields follow Management Component Transport Protocol (MCTP) Base Specification.

5.3 Supported media

The MMBI media type identifier for this binding spec is defined in Management Component Transport Protocol (MCTP) IDs and Codes, section 7 MCTP physical medium identifiers.
5.4 Physical address format for MCTP control messages

The physical address format for MCTP control messages is not defined in the revision of the document. This is because MCTP over MMBI disallows bridging, and the physical address format is only used by commands related to bridging:

- Resolve Endpoint ID
- Resolve UUID
- Routing Information Update
- Get Routing Table Entries

MCTP over MMBI and implementations shall not generate these commands. If received, they shall respond with the ERROR_UNSUPPORTED_CMD code (defined in *Management Component Transport Protocol (MCTP) Base Specification*).

5.5 Get endpoint ID medium-specific information

The medium-specific information shown in Table 2 shall be used for the medium-specific Information field returned in the response to the Get Endpoint ID MCTP control message. Note that the Get Endpoint ID MCTP control message should not be typically employed by MCTP over MMBI implementations because this specification only defines the use of the special endpoint ID values: Null Destination EID and Null Source EID—as defined in *Management Component Transport Protocol (MCTP) Base Specification*.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7:0] reserved</td>
</tr>
</tbody>
</table>

Table 2 – Medium-specific information

5.6 MCTP packet and control message timing requirements

With MMBI, which uses a memory-mapping mechanism, the sender and receiver are able to determine if packets have been retrieved from the shared memory buffer. This mechanism can be used as an additional indication to optionally stop MCTP packet retransmissions (i.e., there is no reason to resend a packet if the previous one has not been retrieved from the buffer by the receiver). See Table 3.
Table 3 – Timing specifications for MCTP control messages on MMBI

<table>
<thead>
<tr>
<th>Timing Specification</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of request retries</td>
<td>MN1</td>
<td>2</td>
<td>none</td>
<td>Total of three tries, minimum: the original try plus two retries. The maximum number of retries for a given request is limited by the requirement that all retries shall occur within MT4, max of the initial request.</td>
</tr>
<tr>
<td>Request-to-response time</td>
<td>MT1</td>
<td>—</td>
<td>100 ms</td>
<td>This interval is measured at the responder from the end of the reception of the MCTP Control Protocol request to the beginning of the transmission of the response.</td>
</tr>
<tr>
<td>Time-out waiting for a response</td>
<td>MT2</td>
<td>MT1 max$^{[1]}$ + 2 * MT3 max</td>
<td>MT4, min$^{[1]}$</td>
<td>This interval at the requester sets the minimum amount of time that a requester should wait before retrying an MCTP control request. This interval is measured at the requester from the end of the successful transmission of the MCTP control request to the beginning of the reception of the corresponding MCTP control response. NOTE: This specification does not preclude an implementation from adjusting the minimum time-out waiting for a response to a smaller number than MT2 based on the measured response times from responders. The mechanism for doing so is outside the scope of this specification.</td>
</tr>
<tr>
<td>Transmission delay</td>
<td>MT3</td>
<td>—</td>
<td>20 ms</td>
<td>Time to take into account the transmission delay of an MCTP Control Protocol message. Measured as the time between the end of the transmission of an MCTP Control Protocol message at the transmitter to the beginning of the reception of the MCTP Control Protocol message at the receiver.</td>
</tr>
<tr>
<td>Inter-packet delay for multi-packet messages</td>
<td>MT3a</td>
<td>—</td>
<td>100 ms</td>
<td>Allowed time measured from the end of the transmission of an MCTP packet with EOM=0 to the beginning of the following MCTP packet of the same Message (see Message assembly in Management Component Transport Protocol (MCTP) Base Specification), measured at the transmitter. The receiver can drop the incomplete message after this timeout.</td>
</tr>
<tr>
<td>Instance ID expiration interval</td>
<td>MT4</td>
<td>5 sec$^{[2]}$</td>
<td>6 sec</td>
<td>Interval after which the instance ID for a given response will expire and become reusable if a response has not been received for the request. This is also the maximum time that a responder tracks an instance ID for a given request from a given requester.</td>
</tr>
</tbody>
</table>

NOTE 1: Unless otherwise specified, this timing applies to the mandatory and optional MCTP commands. **NOTE 2:** If a requester is reset, it may produce the same sequence number for a request as one that was previously issued. To guard against this, it is recommended that sequence number expiration be implemented. Any request from a given requester that is received more than MT4 seconds after a previous matching request should be treated as a new request, not a retry.
ANNEX A
(informative)

Notations

Examples of notations used in this document are as follows:

• **2:N** In field descriptions, this will typically be used to represent a range of byte offsets starting from byte two and continuing to and including byte N. The lowest offset is on the left, the highest is on the right.

• **(6)** Parentheses around a single number can be used in message field descriptions to indicate a byte field that may be present or absent.

• **(3:6)** Parentheses around a field consisting of a range of bytes indicates the entire range may be present or absent. The lowest offset is on the left, and the highest offset is on the right.

• **PCle** Underlined blue text is typically used to indicate a reference to a document or specification called out in 2, “Normative References” or to items hyperlinked within the document.

• **[4]** Square brackets around a number are typically used to indicate a bit offset. Bit offsets are given as zero-based values (that is, the least significant bit offset = 0).

• **[7:5]** A range of bit offsets. The most significant bit is on the left, and the least significant bit is on the right.

• **1b** A number consisting of 0s and 1s followed by a lowercase “b” indicates that the number is in binary format.

• **0x12A** A leading “0x” indicates that the number is in hexadecimal format.
ANNEX B
(informative)

Change log

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0</td>
<td>2023-08-25</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>