
 1

Memory-Mapped Buffer Interface (MMBI) 2

Specification 3

Version: 1.0.2 4

Document Identifier: DSP0282 5

Date: 2025-10-01 6

Version History: https://www.dmtf.org/dsp/DSP0282 7

Supersedes: 1.0.1 8

Document Class: Normative 9

Document Status: Published 10

Document Language: en-US 11

https://www.dmtf.org/dsp/DSP0282

MMBI Specification DSP0282

2 Published Version 1.0.2

Copyright Notice 12

Copyright © 2023–2025 DMTF. All rights reserved. 13

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 14
management and interoperability. Members and non-members may reproduce DMTF specifications and 15
documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF 16
specifications may be revised from time to time, the particular version and release date should always be 17
noted. 18

Implementation of certain elements of this standard or proposed standard may be subject to third-party 19
patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations 20
to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or 21
identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate 22
identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party, 23
in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or 24
identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation 25
thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party 26
implementing such standards, whether such implementation is foreseeable or not, nor to any patent 27
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 28
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 29
implementing the standard from any and all claims of infringement by a patent owner for such 30
implementations. 31

For information about patents held by third parties which have notified DMTF that, in their opinion, such 32
patents may relate to or impact implementations of DMTF standards, visit 33
https://www.dmtf.org/about/policies/disclosures. 34

PCI-SIG®, PCI Express®, and PCIe® are registered trademarks or service marks of PCI-SIG. All other 35
marks and brands are the property of their respective owners. 36

This document’s normative language is English. Translation into other languages is permitted. 37

https://www.dmtf.org/about/policies/disclosures

DSP0282 MMBI Specification

Version 1.0.2 Published 3

CONTENTS 38

Foreword ... 6 39
Introduction ... 7 40
1 Scope .. 8 41
2 Normative references .. 8 42
3 Terms and definitions .. 8 43
4 Conventions .. 10 44

4.1 Reserved and unassigned values ... 10 45
4.2 Byte ordering ... 10 46

5 Assumptions .. 10 47
5.1 Underlying Memory Mapping .. 10 48
5.2 Multiple Instances ... 10 49
5.3 Resets and Errors ... 11 50
5.4 Notifications (Interrupts) .. 11 51
5.5 Packet Sizes, Types, and Packet Flow ... 11 52
5.6 Security ... 12 53

6 Basic Architecture Concept ... 12 54
7 MMBI Data Structures ... 13 55

7.1 MMBI Capability Descriptor .. 14 56
7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer.. 16 57

7.2.1 Variable Packet Size Circular Buffer Descriptor .. 16 58
7.2.2 Host Read-Write Structure ... 18 59
7.2.3 Host Read-Only Structure .. 19 60

8 Runtime Flows ... 21 61
8.1 MMBI Interface Initialization and Reset .. 21 62

8.1.1 Initialization of Descriptor Structures after Power Up .. 21 63
8.1.2 Interface States and Graceful Reset.. 22 64
8.1.3 Ungraceful Reset Considerations .. 28 65

8.2 Calculation of Filled Space and Empty Space in Circular Buffer .. 29 66
8.3 Device Readiness and Communication Pause .. 29 67
8.4 Packet Transfer ... 31 68
8.5 Interrupts (Optional) .. 32 69

9 Multi-Protocol Packet Format .. 32 70
ANNEX A (informative) Notations ... 34 71
ANNEX B (informative) Change log .. 35 72

 73

MMBI Specification DSP0282

4 Published Version 1.0.2

Figures 74

Figure 1 – Multiple MMBI Instances .. 11 75
Figure 2 – MMBI Interface Concept Overview .. 13 76
Figure 3 – MMBI Data Structure Relationships... 14 77
Figure 4 – MMBI Capability Descriptor Layout ... 15 78
Figure 5 – MMBI Interface States ... 25 79
Figure 6 – Sample MMBI Reset by Host ... 26 80
Figure 7 – Sample MMBI Reset Flow by (B)MC ... 28 81
Figure 8 – Filled and Empty Space in Circular Buffers ... 29 82
Figure 9 – Sample MMBI Device Pause Sequences .. 30 83
 84

DSP0282 MMBI Specification

Version 1.0.2 Published 5

Tables 85

Table 1 – MMBI Capability Descriptor Structure (MMBI_Desc) .. 15 86
Table 2 – Buffer Type Dependent Descriptor for BUFT=0001b (VPSCB Descriptor) 17 87
Table 3 – MMBI Host Read-Write Structure (Host_RWS) .. 19 88
Table 4 – MMBI Host Read-Only Structure (Host_ROS) .. 20 89
Table 5 – MMBI Interface States .. 23 90
Table 6 – Multi-Protocol Packet Format .. 33 91
 92

MMBI Specification DSP0282

6 Published Version 1.0.2

Foreword 93

The Memory-Mapped Buffer Interface (MMBI) Specification (DSP0282) was prepared by the PMCI 94
Working Group of DMTF. 95

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 96
management and interoperability. For more information about DMTF, visit dmtf.org. 97

This version supersedes version 1.0.1. For a list of changes, see the change log in ANNEX B. 98

Acknowledgments 99

DMTF acknowledges the following individuals for their contributions to this document: 100

Editors: 101

• Janusz Jurski – Intel Corporation 102
• Richard Marian Thomaiyar – Intel Corporation 103
• Jose Marinho – Arm Limited 104
• Ramesha He – Dell Inc. 105

Contributors: 106

• Rama Bisa – Dell Inc. 107
• Patrick Caporale – Lenovo 108
• Samer El-Haj-Mahmoud – ARM Inc. 109
• Ted Emerson – Hewlett Packard Enterprise 110
• John Guan – Inspur 111
• Tiffany Kasanicky – Intel Corporation 112
• Eliel Louzoun - Intel Corporation 113
• Mahesh Natu – Intel Corporation 114
• Chandra Nelogal – Dell Inc. 115
• Edward Newman – Hewlett Packard Enterprise 116
• Scott Phuong – Cisco 117
• Derek Roberts – Xilinx Inc. 118
• William Scherer III – Hewlett Packard Enterprise 119
• Hemal Shah – Broadcom Inc. 120
• Bob Stevens – Dell Inc. 121

https://www.dmtf.org/

DSP0282 MMBI Specification

Version 1.0.2 Published 7

Introduction 122

The Memory-Mapped Buffer Interface (MMBI) Specification defines the mechanisms facilitating 123
communication between platform components, typically host software and a Management Controller 124
(usually a Baseboard Management Controller). Using the shared memory concept, this document defines 125
the MMBI protocol that allows packet exchanges between communicating devices. The described 126
memory mapping makes it possible for both boot code (such as UEFI firmware), as well as OS-level 127
software (such as an OS kernel or drivers) to establish efficient communication with a (Baseboard) 128
Management Controller at bandwidth and latency limited by the underlying memory mapping 129
mechanisms. MMBI can also be used to enable communication between other types of platform 130
components, not just host software and a Management Controller (MC) or a Baseboard Management 131
Controller (BMC). 132

MMBI Specification DSP0282

8 Published Version 1.0.2

1 Scope 133

This document provides the specifications for the Memory-Mapped Buffer Interface (MMBI). MMBI 134
assumes an underlying memory mapping capability, such as PCIe MMIO/BAR, allowing host software to 135
efficiently access data stored in (B)MC memory. MMBI defines generic packet-based communication 136
mechanism (based on circular buffers), and specific protocols, such as MCTP, should be covered in other 137
documents. 138

2 Normative references 139

The following referenced documents are indispensable for the application of this document. For dated or 140
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 141
For references without a date or version, the latest published edition of the referenced document 142
(including any corrigenda or DMTF update versions) applies. 143

DMTF, DSP0236, Management Component Transport Protocol (MCTP) Base Specification 1.3, 144
https://www.dmtf.org/standards/published_documents/DSP0236_1.3.pdf 145

DMTF, DSP0239, Management Component Transport Protocol (MCTP) IDs and Codes 1.10, 146
https://www.dmtf.org/standards/published_documents/DSP0239_1.10.pdf 147

DMTF, DSP0276, Secured Messages using SPDM over MCTP Binding Specification 1.1.0, 148
https://www.dmtf.org/standards/published_documents/DSP0276_1.1.0.pdf 149

DMTF, DSP0284, Management Component Transport Protocol (MCTP) Memory-Mapped Buffer Interface 150
(MMBI) Transport Binding Specification 1.0, 151
https://www.dmtf.org/standards/published_documents/DSP0284_1.0.pdf 152

IANA, Internet Assigned Numbers Authority – Private Enterprise Numbers (PEN), 153
https://www.iana.org/assignments/enterprise-numbers 154

PCI-SIG, PCI Express® Base Specification Revision 6.2, February 12, 2024 155
https://www.pcisig.com/specifications/ 156

3 Terms and definitions 157

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 158
are defined in this clause. 159

The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), 160
“may”, “need not” (“not required”), “can” and “cannot” in this document are to be interpreted as described 161
in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, 162
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 163
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 164
alternatives shall be interpreted in their normal English meaning. 165

The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as 166
described in ISO/IEC Directives, Part 2, Clause 6. 167

The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC 168
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)” do 169
not contain normative content. Notes and examples are always informative elements. 170

Refer to Management Component Transport Protocol (MCTP) Base Specification for the terms and 171
definitions that are used across the MCTP specifications. 172

For the purposes of this document, the following terms and definitions apply. 173

https://www.dmtf.org/standards/published_documents/DSP0236_1.3.pdf
https://www.dmtf.org/standards/published_documents/DSP0239_1.10.pdf
https://www.dmtf.org/standards/published_documents/DSP0276_1.1.0.pdf
https://www.dmtf.org/standards/published_documents/DSP0284_1.0.pdf
https://www.iana.org/assignments/enterprise-numbers
https://www.pcisig.com/specifications/
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml

DSP0282 MMBI Specification

Version 1.0.2 Published 9

 174
ACK 175
Acknowledge 176

 177
B2H 178
BMC-to-Host 179

 180
BAR 181
Base Address Register 182

 183
(B)MC 184
Baseboard Management Controller – term used interchangeably with Management Controller 185

 186
CCT 187
Control Command Type 188

 189
Destination Device 190
Device receiving the MCTP packet over MMBI 191

 192
H2B 193

Host-to-BMC 194

 195
MMBI 196
Memory-Mapped Buffer Interface 197

 198
MMIO 199
Memory-Mapped Input/Output 200

 201
NACK 202
Not acknowledge 203

 204
ROS 205
Read-Only Structure 206

 207
RWS 208
Read-Write Structure 209

 210
Source Device 211
Device sending the MCTP packet over MMBI 212

MMBI Specification DSP0282

10 Published Version 1.0.2

 213
SPDM 214
Security Protocol and Data Model 215

 216
VPSCB 217
Variable Packet Size Circular Buffer 218

4 Conventions 219

The conventions described in the following clauses apply to this specification. 220

4.1 Reserved and unassigned values 221

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other 222
numeric ranges are reserved for future definition by DMTF. 223

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 224
(zero) and ignored when read. 225

4.2 Byte ordering 226

Unless otherwise specified, byte ordering of multi-byte numeric fields or bit fields is “Big Endian” (that is, 227
the lower byte offset holds the most significant byte, and higher offsets hold less-significant bytes). 228

5 Assumptions 229

5.1 Underlying Memory Mapping 230

The fundamental assumption in this specification is that there exists an underlying platform mechanism 231
allowing efficient memory sharing between the communicating entities (such as a host and a 232
management controller). PCIe MMIO is an example of such a mechanism. This specification defines the 233
packet transfer protocol on top of this assumed memory mapping layer. 234

Assumptions about the underlying layer are: 235

1) Memory mapping shall guarantee an error-free lossless channel. 236
2) The size of atomic operations is at least 4 bytes. 237
3) The order of operations must be preserved: writes must be visible to the other party in the order 238

they were executed by the sender; reads cannot be prefetched/cached; if interrupts are used, 239
they must also obey the order of operations. 240

5.2 Multiple Instances 241

This specification has been designed with the assumption that a single MMBI instance will serve 242
communication between the two communicating entities only (typically host software and management 243
controller firmware components) and so the interface is not shared between multiple communicating 244
entities. 245

Multiple components in the system, e.g., multiple host tenant / software agents communicating to a 246
(B)MC, can be supported using a plurality of MMBI interfaces (each being an independent instance of the 247

DSP0282 MMBI Specification

Version 1.0.2 Published 11

interface), located in different memory locations. Such MMBI instances shall operate independently as 248
shown in Figure 1: 249

(B)MC

Host

Host Software Component

Management Controller
Firmware Component

Host Software Component

MMBI
Instance #1

MMBI
Instance #2

Management Controller
Firmware Component

 250

Figure 1 – Multiple MMBI Instances 251

5.3 Resets and Errors 252

MMBI allows lossless communication as well as graceful reset/initialization on request from a 253
communicating party (in case of a reset of a software entity). However, MMBI does not provide 254
guaranteed delivery in case of ungraceful resets of the communicating parties. Applications that care 255
about data loss in such situations shall employ an ACK packet scheme to verify data reception by the 256
other party and handle the error if ACK is not received. 257

5.4 Notifications (Interrupts) 258

MMBI is designed to execute in both interrupt and polling mode. 259

The memory sharing capability may be accompanied by the ability to receive interrupts by the 260
communicating software entities. MMBI enables discovery and enables use of the optional interrupt 261
mechanism for efficient data exchange between communicating entities. If interrupts are used, it is 262
assumed that the interrupt delivery mechanism is reliable. 263

If interrupts are not available, a polling mode can be used. Platform designers can choose polling or 264
interrupt mode, based on their needs. 265

5.5 Packet Sizes, Types, and Packet Flow 266

MMBI allows variable packet sizes, with the maximum size dependent on the underlying physical layer’s 267
memory mapping capabilities. MMBI provides a discovery method allowing the communicating parties to 268
define and discover the circular buffer sizes, which limit the maximum packet sizes that can be 269

MMBI Specification DSP0282

12 Published Version 1.0.2

transmitted (fragmentation/reassembly is not supported by this version of MMBI protocol). The upper 270
layers must adhere to the discovered limits and, if necessary, handle fragmentation/reassembly 271
accordingly. 272

MMBI allows multiple packets (datagrams) to be in-flight. That is, the sender can place more than one 273
packet in the memory buffer even before they are consumed by the receiver. This enables asynchronous 274
operation of the communicating entities. Regardless of the number of packets in-flight, they are 275
guaranteed to arrive to the receiver in the FIFO order (note: upper layer can elect to process in same 276
order or in different order, which will not be guaranteed by the MMBI layer). Note that if multiple instances 277
of MMBI are in the system, they operate independently and no packet ordering guarantees exist between 278
them. 279

MMBI enables and defines discovery mechanisms to support the exchange of a variety of packet protocol 280
types, such as MCTP. Binding of these protocols to MMBI is defined in separate documents, such as 281
Management Component Transport Protocol (MCTP) Memory-Mapped Buffer Interface (MMBI) Transport 282
Binding Specification. 283

5.6 Security 284

MMBI does not provide any security guarantees. Any authentication, integrity protection, and/or 285
encryption is to be implemented by the other layers of the protocol stack. For example, for secure 286
implementation of communication between the host and (B)MC using MMBI, Secured Messages using 287
SPDM over MCTP Binding Specification can be used. Another alternative can be host-based memory 288
protection mechanisms. 289

6 Basic Architecture Concept 290

The host and the (B)MC use circular buffers to exchange data. One buffer is used to send data from the 291
host to the (B)MC and is referred to as H2B (Host-to-BMC). The other buffer is used for communication in 292
the opposite direction and is referred to as B2H (BMC-to-Host). The buffers are used to store packet data, 293
and they are accompanied by a descriptor structure. The descriptor is a data structure in the shared 294
memory used to store important capabilities and control information. These data structures are shown in 295
Figure 2 and are defined in detail in section 7. 296

DSP0282 MMBI Specification

Version 1.0.2 Published 13

(B)MC

(B
)M

C
M

em
or

y
–

M
ap

pe
d

to
 H

os
t

Host

Host Software

MMIO

(B)MC Firmware

H2B
Circular
Buffer

B2H
Circular
 Buffer

GPIO, etc.

Interrupt

Interrupt

MMBI
Capability
Descriptor
Structure

 297

Figure 2 – MMBI Interface Concept Overview 298

7 MMBI Data Structures 299

Each instance of the MMBI interface is divided into sections as defined below: 300

• “BMC-to-Host” (B2H) region with substructure as follows: 301
o MMBI Capability Descriptor (MMBI_Desc Structure) — see section 7.1 for details 302
o Host_ROS (Host Read-Only Structure) — see section 7.2.3 for details 303
o (B)MC-to-Host Circular buffer (B2H Circular buffer) — see section 8 for details 304

• “Host-to-BMC” (H2B) region with substructure as follows: 305
o Host_RWS (Host Read-Write Structure) — see section 7.2.2 for details 306
o Host-to-(B)MC circular buffer (H2B Circular buffer) — see section 8 for details 307

 308

The format of the H2B and B2H circular buffers is a sequence of packets, and this format is referred to as 309
Variable Packet Size Circular Buffer (VPSCB). For VPSCB, the relationships between these data 310
structures and their main pointers are as presented in Figure 3. 311

MMBI Specification DSP0282

14 Published Version 1.0.2

MMBI_Desc (#0)

B2H H2B

B2H Base Addr

B2H Length

H2B Base Addr

H2B Length

Host_ROS

Host_ROS ptr

Interrupt Type Protocol Type

Host_RWS ptr

H2B Read Ptr

B2H Write Ptr

...

...

Host_RWS

B2H Read Ptr

H2B Write Ptr

...

Empty space
Packet

Packet

PacketPacket

Empty space Empty space

Empty space

 312

Figure 3 – MMBI Data Structure Relationships 313

Details of these data structures are presented in the following subsections. Note that the data structures 314
maintain 4-byte alignment for fields that need to be updated atomically. Packets in the circular buffers are 315
also aligned to 4-byte boundaries. 316

7.1 MMBI Capability Descriptor 317

MMBI Capability Descriptor is used to define the MMBI interface details. (B)MC updates this data 318
structure during initialization. Other than that, the (B)MC and host are not allowed to update it. The host 319
only reads this descriptor to understand the format of the MMBI data structures in memory and shall 320
never write to this data structure. The layout of the structure is presented in Figure 4 and described in 321
Table 1. See also section 8.1. 322

DSP0282 MMBI Specification

Version 1.0.2 Published 15

 323

Figure 4 – MMBI Capability Descriptor Layout 324

Table 1 – MMBI Capability Descriptor Structure (MMBI_Desc) 325

Byte(s) Description

0:5 MMBI Signature

“#MMBI$” in ASCII. When this signature is not present, the host SW should assume the absence
of MMBI.

6

[7:4] Reserved

[3:0] MMBI version

0001b – Implementations of MMBI described in this document shall indicate version 1 of MMBI.

7 [7:1] Reserved

[0] OS Use

Indicates if this MMBI interface is intended for OS use:

0b – OS should not use this MMBI interface as it is managed by other host software components
(UEFI BIOS, ACPI ASL code, etc.).

1b – This MMBI interface is intended for OS use.

8:11

[31:29] – Reserved

[28:0] B2H Buffer Base Address (B2H_BA)

B2H (BMC-to-Host) buffer base address expressed in 8-byte units as offset relative to the
beginning of the descriptor

MMBI Specification DSP0282

16 Published Version 1.0.2

Byte(s) Description

12:15 [31:29] – Reserved

[28:0] H2B Buffer Base Address (H2B_BA)

H2B (Host-to-BMC) buffer base address expressed in 8-byte units as offset relative to the
beginning of the descriptor

16:19 B2H Buffer Length (B2H_L)

The size of the B2H buffer (can represent up to 4GB)

20:23 H2B Buffer Length (H2B_L)

The size of the B2H buffer (can represent up to 4GB)

24 [7:4] Reserved

[3:0] Buffer Type (BUFT)

Indicates the type of data structures in H2B and B2H buffers. The following values are defined:

0001b – MMBI Variable Packet Size Circular Buffers (VPSCB) v1 (see section 7.2)

Other values are reserved.

25:31 Reserved

32:52 Buffer Type Dependent Descriptor

The definition of this field is dependent on the BUFT field value:

If BUFT=0001b (VPSCB), Table 2 in section 7.2 defines the format of these bytes and the packet
format in circular buffers is defined in section 9

56:63 Reserved

 326

7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer 327

This section describes data structures used when the communication between (B)MC and host SW 328
happens according to the VPSCB Buffer Type (BUFT=0001b). 329

7.2.1 Variable Packet Size Circular Buffer Descriptor 330

Variable Packet Size Circular Buffer Descriptor is part of the MMBI_Desc structure. Its access rules are 331
the same as MMBI_Desc: 332

• The (B)MC updates this data structure during MMBI interface initialization. 333
• Neither the (B)MC nor the host are allowed to update it at any other time. 334

DSP0282 MMBI Specification

Version 1.0.2 Published 17

Table 2 – Buffer Type Dependent Descriptor for BUFT=0001b (VPSCB Descriptor) 335

Byte(s) Description

0:3

[31:29] – Reserved

[28:0] Host Read-Only Structure Pointer (H_ROS_P)

Points to the Host_ROS structure. The base address is expressed in 8-byte units as the offset relative
to beginning of the descriptor

4:7 [31:29] – Reserved

[28:0] Host Read-Write Structure Pointer (H_RWS_P)

Points to the Host_RWS structure. The base address is expressed in 8-byte units as the offset relative
to beginning of the descriptor

8 [7:3] – Reserved

[2:0] Host Interrupt Type (H_Int_T)

Defines how the (B)MC interrupts the host. This is an informative field from the host’s perspective with
the intention to keep the (B)MC and host in sync.

0 – no interrupt / polling

1 – PCIe interrupt (bus specific)

2 – physical pin (GPIO)

3 – eSPI Virtual Wire

Other values are reserved

9 Host Interrupt Location (H_Int_L)

If H_Int_T = 0: reserved

If H_Int_T = 1: for PCIe, indicates the PCIe interrupt message number

If H_Int_T = 2: pin number

If H_Int_T = 3: eSPI Virtual Wire Index number

Reserved otherwise

10:12 Reserved

13 Host Interrupt Value (H_Int_V)

If H_Int_T = 3: eSPI Virtual Wire data value

Reserved otherwise

MMBI Specification DSP0282

18 Published Version 1.0.2

Byte(s) Description

14 [7:3] – Reserved

[2:0] (B)MC Interrupt Type (BMC_Int_T)

Defines how the (B)MC wants to be interrupted:

0 – no interrupt triggering by the host

1 – relative memory space address (offset defined in the BMC_Int_L field)

2 – Inband interrupt (bus specific—such as PCIe MSI or virtual legacy wire)

Other values – reserved

15:18 (B)MC Interrupt Location (BMC_Int_L)

If BMC_Int_T = 1, memory address–offset relative to the beginning of the MMBI Capability Descriptor
base address

Otherwise reserved

19:22 Reserved

23 (B)MC Interrupt Value (BMC_Int_V)

If BMC_Int_T = 1, this field indicates the value to be written at the given address to trigger an interrupt.

Otherwise reserved

7.2.2 Host Read-Write Structure 336

The host’s RW Structure Pointer in the above structure points to the Host_RWS structure, which is shown 337
in Table 1. This structure is accessed as follows: 338

• It is initialized by the (B)MC to the default values. 339
• The host updates this structure during normal communication—it is read-writeable for the host. 340
• The (B)MC is not allowed to write to this structure during normal communication—it should treat 341

this structure as read-only (any kind of hardware-based enforcement of the read-only behavior is 342
out of scope of this specification). 343

DSP0282 MMBI Specification

Version 1.0.2 Published 19

Table 3 – MMBI Host Read-Write Structure (Host_RWS) 344

Byte(s) Description

0:3 [31:2] H2B Write Pointer (H2B_WP)

Bits [31:2] of the offset where the host can write the next data in the H2B circular buffer, counted from
the beginning of the H2B buffer represented in 4-byte alignment.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The (B)MC uses this pointer to determine how many bytes of valid data are present in the Circular
Buffer (by comparing it with the H2B_RP offset).

The host shall advance the pointer once data is written to the Circular Buffer and shall update this
pointer to mark the next available offset.

Note: The host shall not overwrite the data not read by the (B)MC, as indicated by the H2B_RP.

[1] Host Interface Up (H_UP)

1 indicates that the host side of the interface is up and running, which means that the data structures
can be used by the (B)MC.

[0] Host Reset Request (H_RST)

Setting this flag to 1 will initiate a reset sequence to get the circular buffers into a known good state
(see section 8.1 for more information).

4:7 [31:2] B2H Read Pointer (B2H_RP)

Bits [31:2] of the offset where the host reads data from the B2H circular buffer, counted from the
beginning of the B2H buffer represented in 4-byte alignment.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The (B)MC uses this pointer to determine how much of data is read by the host. Comparing this with
the B2H Write Pointer (B2H_WP) will provide how much space is left to write the data.

The host shall only advance the pointer once the data available in B2H is read by the host.

[1] Reserved

[0] Host Ready (H_RDY)

0 indicates that the host is performing some tasks that keep it busy, and so it may be unresponsive.
However, the (B)MC can use the data structures and, for example, put data into the buffers as long as
H_UP = 1.

1 indicates that the host is ready to exchange data (see section 8.1 for more information).

7.2.3 Host Read-Only Structure 345

Host RO Structure Pointer points to Host_ROS structure. The host is only allowed to read this structure 346
(never write). Any kind of hardware-based enforcement of the read-only behavior is out-of-scope of this 347
specification. This structure is initialized by the (B)MC to the default values and later updated by (B)MC 348
during normal communication—it is read-writeable for the (B)MC. 349

MMBI Specification DSP0282

20 Published Version 1.0.2

Table 4 – MMBI Host Read-Only Structure (Host_ROS) 350

Byte(s) Description

0:3
[31:2] B2H Write Pointer (B2H_WP)

Bits [31:2] of the offset where the (B)MC can write the next data in the B2H circular buffer,
counted from the beginning of the B2H buffer.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The host uses this pointer to determine how many bytes of valid data are present in the
Circular Buffer (by comparing it with B2H_RP offset)

The (B)MC shall advance the pointer once data is written to the Buffer to mark the next
available offset.

Note: (B)MC shall not overwrite the data not read by host, as indicated by the B2H_RP.

[1] (B)MC Interface Up (B_UP)

1 indicates that the (B)MC side of the interface is up and running which means that the data
structures are initialized and can be used

[0] (B)MC Reset Request (B_RST)

Setting this flag to 1 will initiate a reset sequence to get the circular buffers into a known
good state (see section 8.1 for more information).

4:7

[31:2] H2B Read Pointer (H2B_RP)

Bits [31:2] of the offset where the host reads data from the H2B circular buffer, counted from
the beginning of the H2B buffer.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The host uses this pointer to determine how much of data is read by the (B)MC. Comparing
this with the H2B write pointer will provide how much space is left to write.

(B)MC shall only advance the pointer once the data available in H2B is read by the (B)MC.

[1] Reserved

[0] (B)MC Ready (B_RDY)

0 indicates that the (B)MC is performing some tasks that keep it busy and so it may be
unresponsive – host however can use the data structures and, for example, put data into
the buffers as long as B_UP = 1

1 indicates that the (B)MC is ready to exchange data (see section 8.1 for more information).

MMBI uses two circular buffers: H2B and B2H. Each buffer is a memory range defined in the descriptor 351
with the following access: 352

• H2B (Host-to-BMC buffer) is RW for the host and RO for the (B)MC. 353
• B2H (BMC-to-Host buffer) is RO for the host and RW for the (B)MC. 354

DSP0282 MMBI Specification

Version 1.0.2 Published 21

The Read Pointer and Write Pointer are used to indicate the read and write location in the buffer. For 355
each read or write the pointer shall be advanced. It means pointer increment with a rollover at the buffer 356
size. 357

These pointers, along with the Buffer Length fields (B2H_L or H2B_L), are used to calculate the number 358
of filled bytes to read or the number of empty bytes available for write. 359

The circular buffers will be used to send packets of arbitrary size. A packet may require multiple memory 360
reads and/or write transfers. 361

8 Runtime Flows 362

8.1 MMBI Interface Initialization and Reset 363

This section describes the steps to allow the (B)MC to complete the initialization of the data structures 364
and indicating when both sides of communication are ready to exchange data. 365

The goal of the reset, on the other hand, is to reinitialize the data structures when at least one side wants 366
a clean start, which may be due to unexpected device events, malfunction, error, etc. It may also be used 367
to reinitialize the data structures after, for example, a (B)MC firmware update in which the data structure 368
needs some new values (e.g., when the circular buffer size changes after the firmware update). A 369
graceful reset follows the state diagram presented in Figure 5, and it guarantees that MMBI protocol layer 370
does not drop any packets (note that other protocol layers may still be unable to guarantee delivery). 371

The reset sequence is also automatically initiated when hardware errors lead to all-ones or all-zeros 372
memory reads, as is typical with some media. This is thanks to the fact that when all the flags are zeros or 373
are all ones, it indicates an initialization or transition to initialization states. Such unexpected resets do not 374
follow the handshake protocol, and so are ungraceful and may lead to packet losses. 375

These flags are used to indicate the (B)MC’s status as related to initialization and reset: 376

• (B)MC Interface Up (B_UP) 377
• (B)MC Reset Request (B_RST) 378

Similar flags are used to indicate the host’s status: 379

• Host Interface Up (H_UP) 380
• Host Reset Request (H_RST) 381

All these flags are used in combination to achieve the proper handshake mechanism between the host 382
and the (B)MC during initialization or reset. 383

8.1.1 Initialization of Descriptor Structures after Power Up 384

The (B)MC must initialize the expected content of the MMBI data structures (see section 7) during power 385
up and make the shared memory available to the host. Initialization is expected to complete before the 386
host software accesses these structures so that the host can find the MMBI Capability Descriptor 387
(MMBI_Desc) using the MMBI signature bytes. MMBI structures and buffers must always remain 388
available in the shared memory when the host is using the MMBI interface. 389

If the MMBI is made available via a memory-mapped range of a PCIe function, then the MMBI_Desc is at 390
offset 0 of a PCIe function’s BARs, and the function’s PCIe Base Class, Sub-Class, and Programming 391
Interface shall be {0xC, 0xC, 0x0}. There can be at most one MMBI_Desc per BAR. 392

MMBI Specification DSP0282

22 Published Version 1.0.2

During the initial accesses after the host’s power up or reset, the host’s software is expected to verify if 393
the content of the MMBI version and MMBI signature are as expected. If the above requirements are met, 394
the host is expected to check the interface state. 395

If the host’s software does not find the proper MMBI Capability Descriptor (MMBI_Desc) content at the 396
expected location, the host should consider the MMBI as not present or, optionally, it may implement a 397
wait option with a timeout. Such a timeout mechanism is system-dependent and is out of scope of this 398
specification. 399

If the MMBI signature and MMBI version fields match, but the size and location of the buffers cannot be 400
fulfilled by the host, it shall indicate the initialization mismatch error by transitioning to the Initialization 401
Mismatch state as described below. With this indication, the (B)MC may consider the interface as 402
inoperable or attempt to reinitialize the MMBI_Desc structure with, for example, a smaller buffer size. 403
Before updating the data structure content, the (B)MC shall first clear the B_UP flag and then clear the 404
H_RST flag to return back to the Initialization in Progress state. Such attempts to repair the situation are 405
system-dependent and are out of scope of this specification. 406

8.1.2 Interface States and Graceful Reset 407

When _RST and _UP are both set on one side of communication, it means the entity is requesting a reset 408
sequence. When B_RST = H_RST = B_UP = H_UP = 1, it means that both entities are ready to perform 409
the reset sequence (in fact, the host is just waiting for the (B)MC to do all the initialization). 410

All the states are summarized in Table 5. The “Host Write Access” and “(B)MC Write Access” columns 411
define write-access restrictions to the data structures by host and (B)MC, respectively. There are no read 412
restrictions for the (B)MC and host. Note that the host is expected to re-read the data structure contents 413
after initialization is completed. 414

DSP0282 MMBI Specification

Version 1.0.2 Published 23

Table 5 – MMBI Interface States 415

B_UP B_RST H_UP H_RST State Description Host Write
Access

(B)MC Write
Access

0 0 0 0

Initialization in Progress

The (B)MC is initializing the data structures.

The host can only monitor the data structures,
waiting for B_UP = 1 and B_RST = 0 flags.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

1 0 0 0

Initialization Completed

The (B)MC has completed initialization of the
data structures and is ready to exchange data—
waiting for the host to be ready. The host
should re-read the MMBI_Desc structure and
any dependent structures.

During this state, the (B)MC is allowed to
deposit packets into the circular buffer.

Host
allowed to
write to
MMBI
structures
as per
section 7

(B)MC
allowed to
write to
MMBI
structures as
per section 7

1 0 1 0

Normal Runtime

Both the (B)MC and host use the data
structures and the circular buffers for data
exchanges.

Host
allowed to
write to
MMBI
structures
as per
section 7

(B)MC
allowed to
write to
MMBI
structures as
per section 7

1 1 1 0

Reset Request by (B)MC

The (B)MC is requesting reset—waiting for the
host to notice the request.

When the host notices the request, it should
consume the data from the B2H (if any) and
shall set H_RST flag as an ACK and wait for the
initialization to complete (B_UP = 1 and
B_RST = 0 status).

Host
allowed to
write to
MMBI
structures
as per
section 7

(B)MC
allowed to
write to
MMBI
structures as
per section 7

1 0 1 1

Reset Request by Host

The host is requesting reset—waiting for the
(B)MC to notice the request and reinitialize the
interface. When the host sets the H_RST flag, it
shall not perform any further updates in the
MMBI data structures but shall only wait for the
initialization to be completed by (B)MC (B_UP =
1 and B_RST = 0 status).

When the (B)MC notices the request, it should
consume the data from the B2H (if any) and
shall set B_RST flag as an ACK.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

MMBI Specification DSP0282

24 Published Version 1.0.2

B_UP B_RST H_UP H_RST State Description Host Write
Access

(B)MC Write
Access

1 1 1 1

Reset ACKed

The host and (B)MC are ready to perform
graceful interface reset. This is a transient state
when the host is waiting for the (B)MC to
complete the initialization. The host is not
allowed to write to MMBI data structures. The
(B)MC is expected to clear the B_UP and
B_RST flags (in this order) and reinitialize all
the data structures.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

0 1 1 1

Transitioning to Initialization

Transient state after the “Reset ACKed” state.
The host is not allowed to write to MMBI data
structures.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

0 1 1 0
Temporary Transition States

These states may be observed during
initialization when the (B)MC updates the data
structures (reinitialization of all the data
structures is not an atomic operation).

They are unexpected during normal operation
and if they happen it means that MMBI
structures have been corrupted. The (B)MC
may initialize the interface or stop using MMBI
and report a fatal error.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

0 1 0 1

0 1 0 0

0 0 0 1

1 0 0 1

Initialization Mismatch

The host causes transition into this state from
Initialization Completed when it is unable to use
the interface due to unsupported content in the
MMBI Capability Descriptor structure.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

1 1 0 1 Unexpected States

These states shall never happen:

• If the (B)MC reads this state, it
indicates that the host does not follow
MMBI protocol or some other
corruption happened—the (B)MC
should initialize the interface or it may
stop using MMBI and report a fatal
error, depending on system policy.

• If the host reads this state, it may wait
for the reinitialization to complete or
stop using MMBI and report a fatal
error, depending on system policy.

1 1 0 0

0 0 1 0

0 0 1 1

DSP0282 MMBI Specification

Version 1.0.2 Published 25

The expected state transitions are presented in Figure 5: 416

 417

Ungraceful reset
(entry from any other state)

Initialization
in Progress

Initialization
Completed

Normal
runtime, incl.

halt

Reset
Request by

BMC

Reset
Request by

Host

Power-up or
error

Reset ACKed

Transitioning
to

Initialization

Initialization
Mismatch

 418

Figure 5 – MMBI Interface States 419

The host shall check the MMBI Interface state before writing any new data to the H2B buffer (as 420
described in Table 5, the host is only allowed to transfer new data in the Normal Runtime state, i.e., 421
B_UP=1 & B_RST=0 & H_UP=1 & H_RST=0). Similarly, the (B)MC shall check the status before writing 422

MMBI Specification DSP0282

26 Published Version 1.0.2

any new data to the B2H buffer. These status flags are conveniently located in the B2H_WP or H2B_WP 423
bytes which the host or (B)MC, respectively, read anyway during any use of the circular buffers. 424

8.1.2.1 Host Initiating Graceful Reset Sequence 425

Assuming Normal Runtime state, the host shall use the following sequence to request MMBI interface 426
reset: 427

1) The host sets H_RST = 1 to initiate the reset flow. If (B)MC interrupts are enabled, the host 428
notifies the (B)MC. 429

a. In response, the (B)MC is expected to set B_RST = 1, which indicates the transition to 430
the Reset ACKed state. If host interrupts are enabled, the host is expected to be notified 431
about the update (or else it uses polling). At this point, the (B)MC reinitializes all the data 432
structures. 433

2) The host waits for B_UP = 1 and B_RST = 0 (and H_UP = H_RST = 0), which indicates the 434
transition to the Initialization Completed state. Host interrupts are not used at this stage until 435
H_UP is set by host software. 436

3) The host transitions to the Normal Runtime state by setting H_UP = 1. The host is also expected 437
to set the B_RDY flag, indicating that it can receive and handle new packets—see section 8.3. If 438
(B)MC interrupts are enabled, the host notifies the (B)MC after the flags are updated. 439

Figure 6 presents a sample flow: 440

 441

Figure 6 – Sample MMBI Reset by Host 442

DSP0282 MMBI Specification

Version 1.0.2 Published 27

8.1.2.2 (B)MC Initiating Graceful Reset Sequence 443

Assuming Normal Runtime state, the (B)MC shall use the following sequence to request MMBI interface 444
reset: 445

1) The (B)MC sets B_RST = 1 to initiate the reset flow. If host interrupts are enabled, the (B)MC 446
notifies the host. 447

2) The (B)MC waits for H_UP = 1 and H_RST = 1, which indicates the transition to the Reset ACKed 448
state. If (B)MC interrupts are enabled, the (B)MC is expected to be notified about the update (or 449
else (B)MC uses polling). 450

3) The (B)MC clears the B_UP flag (B_RST still set). Host interrupts are no longer enabled. 451

4) The (B)MC clears the H_UP and H_RST flags (this may cause transient states to be observed by 452
the host). 453

5) The (B)MC clears the B_RST flag. 454

6) The (B)MC reinitializes all the data structures. 455

7) The (B)MC sets B_UP = 1. Host interrupts are not used at this stage until H_UP is set by host 456
software. 457

8) The (B)MC waits for the host to set H_UP = 1. If (B)MC interrupts are enabled, the (B)MC is 458
expected to be notified about the update. 459

Note that the (B)MC is also expected to set the B_RDY flag, typically in step 7, indicating that it can 460
receive and handle new packets—see section 8.3. 461

Figure 7 presents a sample flow. 462

MMBI Specification DSP0282

28 Published Version 1.0.2

BMC
Host

Normal Runtime:
B_UP = 1
B_RST = 0

Normal Runtime:
H_UP = 1
H_RST=0

Reset Request by BMC:
B_UP = 1 B_RST = 1

BMC requests reset; stops sending new packets

Reset ACKed:
H_UP = 1
H_RST = 1

Host uses MMBI to send/receive packets

Transitioning to Init:
B_UP = 0
B_RST = 1

BMC-to-Host Interrupt or polling

BMC uses MMBI to receive remaining packets

Initialization:
B_UP = H_UP = 0

B_RST = H_RST = 0

Initialization Completed:
B_UP = 1
B_RST = 0

Data structure reset

Normal Runtime:
H_UP = 1
H_RST = 0

BMC-to-Host - polling by host

Host uses MMBI to send/receive packets

BMC uses MMBI to receive packets

 463

Figure 7 – Sample MMBI Reset Flow by (B)MC 464

8.1.3 Ungraceful Reset Considerations 465

If an ungraceful reset/crash happens, MMBI does not guarantee delivery. However, provisions are 466
present in the MMBI design to handle the following scenarios: 467

1. In the case of a (B)MC FW-only reset (HW continues to work, memory content, including 468
buffers stay intact in shared memory and accesses are still handled by HW): the host will still 469
see the MMBI in the normal state and write to MMBI Circular buffers to deposit or read data 470
as long as there is any space available in the buffers. In this situation, host may timeout 471
waiting for a response but this is handled by higher layers above MMBI. 472

2. (B)MC HW reset (buffers are wiped and MMIO mechanisms are broken): the host will see 473
errors on reads/writes and must handle them as per host-specific mechanisms. Additionally, 474
MMBI encoding of status in B_UP, B_RST, H_UP, & H_RST is such that all-zeros or all-ones 475
are recognized as transient states (see Table 5). So, even if there would be no other 476
mechanisms in the system, the host would still recognize this as an error and would have to 477
wait for reinitialization by the (B)MC (the host is not allowed to write to the buffers in the 478
transient state, i.e., until the data structures are reinitialized by (B)MC FW). 479

3. Unexpected host reset (SW or HW reset is the same outcome): the host’s unexpected reset 480
will leave the data structures intact in (B)MC memory, so the (B)MC can still read the data 481
from the buffers. Assuming the (B)MC understands the host’s status via other mechanisms, 482
the (B)MC can take informed decisions about how to respond to such situations. 483

DSP0282 MMBI Specification

Version 1.0.2 Published 29

In all the above cases, MMBI data structures can be reinitialized after the reset to allow a clean restart. 484

8.2 Calculation of Filled Space and Empty Space in Circular Buffer 485

The procedure for calculating the number of filled bytes in a circular buffer is analogous for both the H2B 486
and B2H buffers: the difference between the write pointer and read pointer indicates the amount of valid 487
data, accounting for the rollover at the end of the buffer. The write pointer cannot advance beyond the 488
read pointer, accounting for the rollover at the end of the buffer. 489

The following steps allow calculation of the number of filled slots in a circular buffer: 490

1. The write and read pointers must start with zero after initialization. Since read pointer = write 491
pointer, there is no valid data/packets in the buffer on initialization. 492

2. Once data is written to the buffer, the source (the host or (B)MC) will advance the write buffer 493
pointer. 494

3. Read pointer is advanced once data is read/consumed by the receiver (the host or (B)MC). 495

4. Rollover: when the pointers reach the maximum offset within the buffer during writing/reading, 496
data must be written/read starting back at zero offset, and the pointers roll over accordingly. 497

 498

Figure 8 – Filled and Empty Space in Circular Buffers 499

8.3 Device Readiness and Communication Pause 500

In addition to the reinitialization or reset states, the MMBI interface also uses the H_RDY and B_RDY 501
flags to indicate the device’s readiness to consume incoming packets and handle them. When the host or 502
(B)MC are ready to receive and handle packets, they set the B_RDY or H_RDY flags, respectively. If a 503
B_RDY or H_RDY flag is clear but the B_UP and H_UP flags are set, it means that the MMBI interface is 504
up but the target device is not ready to consume and handle new packets. When the interface is up, it 505
means that the data structures are ready to accept new packets so the sender can: 506

• wait for the receiver to become ready before writing new packets to the buffer—this is 507
important if the sender expects an action to be taken by the receiver, such as providing a 508
response 509

MMBI Specification DSP0282

30 Published Version 1.0.2

• deposit new packets to the buffer in order for the receiver to consume them later—this 510
capability may be used if the sender does not expect a response from the receiver; for 511
example, when the sender needs to deposit some logs in the shared memory 512

An example flow when (B)MC firmware / host software undergoes a reset and indicates its non-readiness 513
during a reboot is presented in Figure 9. Note that in this example it is assumed that the MMBI data 514
structures are still intact in shared memory during the reset. 515

BMC Host

B_UP = 0
B_RDY=0

B_UP = 0
B_RDY=0

AC cycle boot / First time init

B_UP = 1
B_RDY = 0

Initializes MMBI descriptor & ready

H_UP = 1
H_RDY = 0

Not ready

H_UP = 1
H_RDY = 1

Transition to ready

B_UP = 1
B_RDY = 1

Transition to ready

BMC FW pause

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 1

B_UP = 1
B_RDY = 1

BMC booted & ready

Transactions can continue from here

Transactions should be halted

B_UP = 1
B_RDY = 1

B_UP = 1
B_RDY = 0

BMC reboot

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 0

H_UP = 1
H_RDY = 1

B_UP = 1
B_RDY = 1

Transactions can continue from here

Transactions should be halted

B_UP = 1
B_RDY = 1

B_UP = 1
B_RDY = 1

Host SW resets

Host SW pause

Host SW init

 516

Figure 9 – Sample MMBI Device Pause Sequences 517

DSP0282 MMBI Specification

Version 1.0.2 Published 31

8.4 Packet Transfer 518

This flow describes the host-to-(B)MC flow that shall be followed to send a packet. An analogous flow 519
shall be followed to send packets in the opposite direction (swap (B)MC and host in the description and 520
use B2H buffer instead): 521

1) Host software reads the read and write pointers (H2B_RP and H2B_WP) to determine the 522
number of empty spaces available in its circular buffer. 523

a. If there is not enough empty space available in the host’s circular buffer, the host waits 524
until there is room in the host’s circular buffer. This is done either by polling or waiting for 525
an interrupt. 526

b. Host software shall also verify that B_UP = 1 & B_RST = 0 before any packet transfers. If 527
this is not the case, it shall follow the reset process as defined in section 8.1. Note that 528
the host may decide to delay packet transfer depending on B_RDY state and its policy. 529

2) Once there is enough empty space available in the circular buffer, the host writes the packet into 530
the host’s circular buffer. To accomplish this, the host sequentially writes data at the write pointer 531
location but not exceeding the length of the buffer (H2B_L). When it reaches the maximum 532
address of the buffer, it shall continue writing the packet from the buffer base address (H2B_BA). 533
This process shall never overflow the buffer by advancing beyond the H2B_RP. 534

3) Once the packet write is complete, the host updates the write pointer value in H2B_WP. 535

4) In Interrupt-enabled mode, the (B)MC firmware is interrupted: 536

a. If BMC_Int_T = 1, the host uses the (B)MC Interrupt Info (BMC_Int_L) and (B)MC 537
Interrupt Value (BMC_Int_V) to interrupt the (B)MC FW. 538

b. Even if BMC_Int_T = 0, the (B)MC HW may also monitor H2B_WP and generate an 539
interrupt automatically. 540

c. Alternatively, a platform-specific method can be used to trigger the interrupt to (B)MC. 541

5) In polling mode, the (B)MC FW can continuously read the write pointer to see when it changes. In 542
interrupt mode, it is woken up by the (B)MC HW. 543

6) The (B)MC firmware reads the read/write pointers and determines the number of filled spaces in 544
the circular buffer available for reading. 545

a. If the circular buffer is empty, the host has not sent a packet. This interrupt is for another 546
reason, or it indicates that the host has completed reading the packet(s) last transmitted 547
by the (B)MC. 548

7) The (B)MC FW reads the buffer data written by the host. 549

8) The (B)MC FW updates the read pointer in B2H_RWS. This indicates to the host how much data 550
has been read by the (B)MC, and the host can use the portion of the buffer that has been read 551
already. 552

9) If host notifications are enabled, (B)MC FW shall generate an interrupt to the host. 553

10) When the host software gets interrupted or due to polling of H2B_RP, it can determine that the 554
(B)MC has consumed the data. The host can also poll instead of relying on interrupts. 555

MMBI Specification DSP0282

32 Published Version 1.0.2

8.5 Interrupts (Optional) 556

Interrupts, if enabled by the discovery/control mechanisms of MMBI, shall be triggered for the following 557
reasons (both for host software and (B)MC firmware): 558

• A packet has just been written to the circular buffer. 559

• A packet has just been read from the circular buffer. 560

• The host or (B)MC has initiated an interface reset sequence. 561

• The host or (B)MC has completed its portion of the interface reset sequence and normal 562
operation can begin. 563

An interrupt handler shall: 564

• check the status flags in the MMBI Capability Descriptor (MMBI_Desc)—if a reset is initiated, the 565
flow defined in section 8.1 shall be followed 566

• check if there is a packet in the circular buffer—this can be calculated as per section 8.2—and, if 567
there is data present in the buffer, the interrupt handler should initiate the packet receive flow, as 568
defined in section 8.4. 569

If there are multiple instances of the MMBI interface sharing the same interrupt, the interrupt handler shall 570
check all the instances for the reasons listed above. The order of such a check and interrupt affinity are 571
implementation-specific and out of scope of this specification. 572

9 Multi-Protocol Packet Format 573

If BUFT=0001b (VPSCB) and Packet Protocol Type = 0001b (Multi-protocol Type), the multi-protocol 574
MMBI packets will have the following defined header fields, as shown in Table 6. There is a 4-byte 575
alignment expectation, meaning that padding must be added if necessary for the packet length to be a 576
multiple of 4 bytes. 577

DSP0282 MMBI Specification

Version 1.0.2 Published 33

Table 6 – Multi-Protocol Packet Format 578

Byte(s) Description

0:2 [23:2] Packet Length (PKT_LEN)

The size of the packet, calculated as PKT_LEN+1 multiplied by 4 bytes (can represent up to 16MB
packet).

Values 0x3FFFFF and zero are reserved.

[1:0] Packet padding (PKT_PAD)

Number of padding bytes

3 [7:4] – Reserved

[3:0] – Packet type (PKT_TYPE)

Defines the format of the remaining bytes:

0100b – MCTP over MMBI (see Management Component Transport Protocol (MCTP) Memory-
Mapped Buffer Interface (MMBI) Transport Binding Specification)

0101b – Vendor defined content as defined below

Other values are reserved.

4:N-1 Protocol type specific fields

This field depends on the PKT_TYPE value:

If PKT_TYPE = MCTP = 0100b: format follows MCTP over MMBI (see Management Component
Transport Protocol (MCTP) Memory-Mapped Buffer Interface (MMBI) Transport Binding Specification)

If PKT_TYPE = Vendor defined = 0101b: the following vendor-defined format shall be used:

Byte(s) Description

4:7 Vendor IANA Enterprise Number encoded in little-endian format; for more
information about IANA Enterprise Numbers, please see Internet
Assigned Numbers Authority – Private Enterprise Numbers

8:N-1 Content defined by the vendor

(N:M) Padding (PAD) – optional

Padding bytes as defined in PKT_PAD field.

Note: padding is added to ensure packets are 4-byte aligned

 579

MMBI Specification DSP0282

34 Published Version 1.0.2

ANNEX A 580
(informative) 581

 582
 583

Notations 584

Examples of notations used in this document are as follows: 585

• 2:N In field descriptions, this will typically be used to represent a range of byte offsets 586
starting from byte two and continuing to and including byte N. The lowest offset is on 587
the left; the highest is on the right. 588

• (6) Parentheses around a single number can be used in packet field descriptions to 589
indicate a byte field that may be present or absent. 590

• (3:6) Parentheses around a field consisting of a range of bytes indicates the entire range 591
may be present or absent. The lowest offset is on the left; the highest is on the right. 592

• DSP0236 Underlined blue text is typically used to indicate a reference to a document or 593
specification called out in Normative references or to items hyperlinked within the 594
document. 595

• [4] Square brackets around a number are typically used to indicate a bit offset. Bit 596
offsets are given as zero-based values (that is, the least significant bit offset = 0). 597

• [7:5] A range of bit offsets. The most significant bit is on the left, the least significant bit is 598
on the right. 599

• 1b A number consisting of 0s and 1s followed by a lowercase “b” indicates that the 600
number is in binary format. 601

• 0x12A A leading “0x” indicates that the number is in hexadecimal format. 602

DSP0282 MMBI Specification

Version 1.0.2 Published 35

ANNEX B 603
(informative) 604

 605
 606

Change log 607

Version Date Description
1.0.0 2023-07-14 Initial release
1.0.1 2024-08-30 Document title change (“Memory-Mapped BMC Interface” to

“Memory-Mapped Buffer Interface”) to better reflect potential
broader uses of MMBI beyond just BMC

1.0.2 2025-10-01 Define the discovery process of an MMBI description within a
PCIe endpoint.
Fixed: https://github.com/DMTF/PMCI-WG/issues/1646

 608

 609

https://github.com/DMTF/PMCI-WG/issues/1646

	Acknowledgments
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Conventions
	4.1 Reserved and unassigned values
	4.2 Byte ordering

	5 Assumptions
	5.1 Underlying Memory Mapping
	5.2 Multiple Instances
	5.3 Resets and Errors
	5.4 Notifications (Interrupts)
	5.5 Packet Sizes, Types, and Packet Flow
	5.6 Security

	6 Basic Architecture Concept
	7 MMBI Data Structures
	7.1 MMBI Capability Descriptor
	7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer
	7.2.1 Variable Packet Size Circular Buffer Descriptor
	7.2.2 Host Read-Write Structure
	7.2.3 Host Read-Only Structure

	8 Runtime Flows
	8.1 MMBI Interface Initialization and Reset
	8.1.1 Initialization of Descriptor Structures after Power Up
	8.1.2 Interface States and Graceful Reset
	8.1.2.1 Host Initiating Graceful Reset Sequence
	8.1.2.2 (B)MC Initiating Graceful Reset Sequence

	8.1.3 Ungraceful Reset Considerations

	8.2 Calculation of Filled Space and Empty Space in Circular Buffer
	8.3 Device Readiness and Communication Pause
	8.4 Packet Transfer
	8.5 Interrupts (Optional)

	9 Multi-Protocol Packet Format
	ANNEX A (informative) Notations
	ANNEX B (informative) Change log

