N

w

10

11

Memory-Mapped Buffer Interface (MMBI)
Specification

Version: 1.0.2

Document Identifier: DSP0282
Date: 2025-10-01

Version History: https://www.dmtf.org/dsp/DSP0282

Supersedes: 1.0.1
Document Class: Normative
Document Status: Published

Document Language: en-US

https://www.dmtf.org/dsp/DSP0282

12
13

14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34

35
36

37

MMBI Specification DSP0282

Copyright Notice
Copyright © 2023-2025 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release date should always be
noted.

Implementation of certain elements of this standard or proposed standard may be subject to third-party
patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations
to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or
identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate
identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,
in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or
identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation
thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party
implementing such standards, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third parties which have notified DMTF that, in their opinion, such
patents may relate to or impact implementations of DMTF standards, visit
https://www.dmtf.org/about/policies/disclosures.

PCI-SIG®, PCI Express®, and PCle® are registered trademarks or service marks of PCI-SIG. All other
marks and brands are the property of their respective owners.

This document’s normative language is English. Translation into other languages is permitted.

2 Published Version 1.0.2

https://www.dmtf.org/about/policies/disclosures

38

39
40
41
42
43

44
45
46

47
48
49
50
51
52
53

54

55
56
57
58
59

61
62
63
64
65
66
67
68
69

70
71
72

73

DSP0282 MMBI Specification

CONTENTS

o]0 (o PR 6
[(oo [8 o 1o o PP PPPPPPPPRY 7
1 S ToTe] oL TSSOSO POPPPPPPPPPPPPPPPPRS 8
2 NOrMative refEreNCEScocoeeeiieeeee 8
3 Terms and defiNItiONSooi it e e et e e e a e e et e e e e e nree e e nees 8
O 070 117/=]][] o 1SRRI 10
4.1 Reserved and unassignNed ValUES.......c.oooo it a e e e a e 10

N = Y/ (SN o] {0 =Y 1 T TSRS 10

D A UMD ONS ... ————— 10
5.1 Underlying Memory MapPingccceeoe et e et e e e e e e e ee e e e e e e e s annreeeeeeeeeeannnes 10

5.2 MUIIPIE INSTANCESceveiieiiiiiieeeieeeee ettt et ee e tesesateaesasasssssasesssssssasssasnsnsnsssnsnsnsnsnnnnnnns 10

5.3 RESEIS AN EITOIS ...ttt e e e e e e anaeee s 11

5.4 NOoOtIfications (INTEITUPLS) ..ot e e e e e e s e e e e e e e e s e areaaeeeaeaanes 11

5.5 Packet Sizes, Types, and Packet FIOW.............cooociiiiiiiii i 11

ST G T =T o0 | AP 12

6 BasiC ArChiteCture CONCEPL.....cici it e e e e e e st e e e e e e s e sanraaeeeaeeeeaaanes 12
7 MMBI Data StHUCIUIESuviiiiiie ettt e e e e et e e e e e e e e e et aeeeaeeesesasbsaeeeaeeeaaaanes 13
7.1 MMBI Capability DESCHPIONveiiieiiiiie ettt ettt e e ee e s e e e snnaeeeanneees 14

7.2 MMBI Circular Buffers—Variable Packet Size Circular BUffer.............cccooceiiiiiiiiiiiiieece e, 16
7.2.1 Variable Packet Size Circular Buffer DescCriptor...........ccccvveiieeiiiccciiiieee e, 16

7.2.2 Host Read-Write STrUCIUE.......ccoiiuiiiii et 18

7.2.3 Host Read-Only STrUCIUME........ocoiiiiiiiiiiie e 19

G T U 0] 110 0 L= (o Y 21
8.1 MMBI Interface Initialization and ReSetccuiiiiiiiiiiii e 21
8.1.1 Initialization of Descriptor Structures after Power Up.........ccccccooviiiiiiiii e, 21

8.1.2 Interface States and Graceful ReSet...........ccuiiiiiiiiiiiii e 22

8.1.3 Ungraceful Reset Considerations............ccoiiiiiiiiiiiiiiie e 28

8.2 Calculation of Filled Space and Empty Space in Circular Buffer..............ccccciiininnen, 29

8.3 Device Readiness and Communication PAuSEccoooiiiiiiiiiiiiiei e 29

8.4 PaACKET TrANSTEI.....ceiiieiiiiieiieieeeeeee ettt et e e aeteteteteseseaesasssesasasasesssssssasesesnsesnsnsnsnsnsnsnnnnes 31

8.5 INterrupts (OPLIONAI)ooo i 32

9 Multi-Protocol Packet FOrmMat ... 32
ANNEX A (informative) NOTALIONScciiiiiiiiieiii e e e e e e e e e s e e snnraeeeaae s 34
ANNEX B (informative) Change l0g........iiuuiiiiiiiiii ettt e e e et e e sna e e e snsneeeesnneeeas 35

Version 1.0.2 Published 3

74

75
76
77
78
79
80
81
82
83
84

MMBI Specification DSP0282

Figures

Figure 1 — Multiple MMBI INSTANCES........cuiiiiiiiiiiiiieee et e e e e e e e e e e e et e e e e e e e e ennrsneees 11
Figure 2 — MMBI Interface ConCEPt OVEIVIEWeviiiuiiiieiiiiieeeeiiee e seitee et e e s e e s seee e e s snee e e e sneeeeeeennees 13
Figure 3 — MMBI Data Structure RelationShips.........ccoiiiiiiiiii e 14
Figure 4 — MMBI Capability Descriptor LAYOULcoouiiiiiiii e 15
Figure 5 — MMBI Interface STAteSuvviiiiiiiiic e e e e e e e e e e e e naeees 25
Figure 6 — Sample MMBI ReSEt DY HOSE.........uuiiiiiiiieci e e e 26
Figure 7 — Sample MMBI Reset FIow by (B)MC ..o 28
Figure 8 — Filled and Empty Space in Circular BUFfers ... 29
Figure 9 — Sample MMBI Device PausSe SEQUENCEScc.uuiiiiieeeiieciiiieie e e e e e et e e e e seetaaee e e e e s e e ennreaeees 30

4 Published Version 1.0.2

85

86
87
88
89
90
91
92

DSP0282 MMBI Specification

Tables

Table 1 — MMBI Capability Descriptor Structure (MMBI_DESC).......ccccoiiiiiiiiiiieie e 15
Table 2 — Buffer Type Dependent Descriptor for BUFT=0001b (VPSCB Descriptor)cccceecvvvveviiieeennns 17
Table 3 — MMBI Host Read-Write Structure (HOST_RWS)cuiiiiiiiiie e 19
Table 4 — MMBI Host Read-Only Structure (HOSt_ROS).......coouiiiiiiiii e 20
Table 5 — MMBI INterface STAEScoviiiiiieiii e e e e e s e s eaeeeeeeeeennnes 23
Table 6 — Multi-Protocol Packet FOrMAL...........cuuiiiiiiiii et snaeee e 33

Version 1.0.2 Published 5

93

94
95

96
97

98

99
100
101

102
103
104
105

106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

MMBI Specification

Foreword

DSP0282

The Memory-Mapped Buffer Interface (MMBI) Specification (DSP0282) was prepared by the PMCI
Working Group of DMTF.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. For more information about DMTF, visit dmtf.org.

This version supersedes version 1.0.1. For a list of changes, see the change log in ANNEX B.

Acknowledgments

DMTF acknowledges the following individuals for their contributions to this document:

Editors:

Janusz Jurski — Intel Corporation

Richard Marian Thomaiyar — Intel Corporation
Jose Marinho — Arm Limited

Ramesha He — Dell Inc.

Contributors:

Rama Bisa — Dell Inc.

Patrick Caporale — Lenovo

Samer El-Haj-Mahmoud — ARM Inc.

Ted Emerson — Hewlett Packard Enterprise
John Guan — Inspur

Tiffany Kasanicky — Intel Corporation

Eliel Louzoun - Intel Corporation

Mahesh Natu — Intel Corporation

Chandra Nelogal — Dell Inc.

Edward Newman — Hewlett Packard Enterprise
Scott Phuong — Cisco

Derek Roberts — Xilinx Inc.

William Scherer Ill — Hewlett Packard Enterprise
Hemal Shah — Broadcom Inc.

Bob Stevens — Dell Inc.

Published

Version 1.0.2

https://www.dmtf.org/

122

123
124
125
126
127
128
129
130
131
132

DSP0282 MMBI Specification

Introduction

The Memory-Mapped Buffer Interface (MMBI) Specification defines the mechanisms facilitating
communication between platform components, typically host software and a Management Controller
(usually a Baseboard Management Controller). Using the shared memory concept, this document defines
the MMBI protocol that allows packet exchanges between communicating devices. The described
memory mapping makes it possible for both boot code (such as UEFI firmware), as well as OS-level
software (such as an OS kernel or drivers) to establish efficient communication with a (Baseboard)
Management Controller at bandwidth and latency limited by the underlying memory mapping
mechanisms. MMBI can also be used to enable communication between other types of platform
components, not just host software and a Management Controller (MC) or a Baseboard Management
Controller (BMC).

Version 1.0.2 Published 7

133

134
135
136
137
138

139

140
141
142
143

144
145

146
147

148
149

150
151
152

153
154

155
156

157

158
159

160
161
162
163
164
165

166
167

168
169
170

171
172

173

MMBI Specification DSP0282

1 Scope

This document provides the specifications for the Memory-Mapped Buffer Interface (MMBI). MMBI
assumes an underlying memory mapping capability, such as PCle MMIO/BAR, allowing host software to
efficiently access data stored in (B)MC memory. MMBI defines generic packet-based communication
mechanism (based on circular buffers), and specific protocols, such as MCTP, should be covered in other
documents.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated or
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.
For references without a date or version, the latest published edition of the referenced document
(including any corrigenda or DMTF update versions) applies.

DMTF, DSP0236, Management Component Transport Protocol (MCTP) Base Specification 1.3,
https://www.dmtf.org/standards/published documents/DSP0236 1.3.pdf

DMTF, DSP0239, Management Component Transport Protocol (MCTP) IDs and Codes 1.10,
https://www.dmtf.org/standards/published _documents/DSP0239 1.10.pdf

DMTF, DSP0276, Secured Messages using SPDM over MCTP Binding Specification 1.1.0,
https://www.dmtf.org/standards/published _documents/DSP0276 1.1.0.pdf

DMTF, DSP0284, Management Component Transport Protocol (MCTP) Memory-Mapped Buffer Interface
(MMBI) Transport Binding Specification 1.0,
https://www.dmtf.org/standards/published documents/DSP0284 1.0.pdf

IANA, Internet Assigned Numbers Authority — Private Enterprise Numbers (PEN),
https://www.iana.org/assignments/enterprise-numbers

PCI-SIG, PCI Express® Base Specification Revision 6.2, February 12, 2024
https://www.pcisig.com/specifications/

3 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
are defined in this clause.

The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”),
“may”, “need not” (“not required”), “can” and “cannot” in this document are to be interpreted as described
in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term,
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional

alternatives shall be interpreted in their normal English meaning.

LTS ” o«

The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as
described in ISO/IEC Directives, Part 2, Clause 6.

The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)”’ do
not contain normative content. Notes and examples are always informative elements.

Refer to Management Component Transport Protocol (MCTP) Base Specification for the terms and
definitions that are used across the MCTP specifications.

For the purposes of this document, the following terms and definitions apply.

8 Published Version 1.0.2

https://www.dmtf.org/standards/published_documents/DSP0236_1.3.pdf
https://www.dmtf.org/standards/published_documents/DSP0239_1.10.pdf
https://www.dmtf.org/standards/published_documents/DSP0276_1.1.0.pdf
https://www.dmtf.org/standards/published_documents/DSP0284_1.0.pdf
https://www.iana.org/assignments/enterprise-numbers
https://www.pcisig.com/specifications/
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml

174
175

176

177
178

179

180
181

182

183
184

185

186
187

188

189
190

191

192
193

194

195
196

197

198
199

200

201
202

203

204
205

206

207
208

209

210
211

212

DSP0282

31
ACK

Acknowledge

3.2

B2H

BMC-to-Host

3.3

BAR

Base Address Register

3.4
(B)MC

MMBI Specification

Baseboard Management Controller — term used interchangeably with Management Controller

3.5
CCT

Control Command Type

3.6
Destination Device

Device receiving the MCTP packet over MMBI

3.7
H2B

Host-to-BMC

3.8

MMBI

Memory-Mapped Buffer Interface
3.9

MMIO

Memory-Mapped Input/Output
3.10

NACK

Not acknowledge

3.1

ROS

Read-Only Structure

312

RWS

Read-Write Structure

3.13

Source Device
Device sending the MCTP packet over MMBI

Version 1.0.2 Published

MMBI Specification DSP0282

213 314

214 SPDM

215 Security Protocol and Data Model
216 3.15

217 VPSCB

218 Variable Packet Size Circular Buffer

219 4 Conventions

220 The conventions described in the following clauses apply to this specification.

221 4.1 Reserved and unassigned values

222 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other
223 numeric ranges are reserved for future definition by DMTF.

224 Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0
225 (zero) and ignored when read.

226 4.2 Byte ordering

227 Unless otherwise specified, byte ordering of multi-byte numeric fields or bit fields is “Big Endian” (that is,
228 the lower byte offset holds the most significant byte, and higher offsets hold less-significant bytes).

229 5 Assumptions

230 5.1 Underlying Memory Mapping

231 The fundamental assumption in this specification is that there exists an underlying platform mechanism
232 allowing efficient memory sharing between the communicating entities (such as a host and a

233 management controller). PCle MMIO is an example of such a mechanism. This specification defines the
234 packet transfer protocol on top of this assumed memory mapping layer.

235 Assumptions about the underlying layer are:

236 1) Memory mapping shall guarantee an error-free lossless channel.

237 2) The size of atomic operations is at least 4 bytes.

238 3) The order of operations must be preserved: writes must be visible to the other party in the order
239 they were executed by the sender; reads cannot be prefetched/cached; if interrupts are used,
240 they must also obey the order of operations.

241 5.2 Multiple Instances

242 This specification has been designed with the assumption that a single MMBI instance will serve

243 communication between the two communicating entities only (typically host software and management
244 controller firmware components) and so the interface is not shared between multiple communicating
245 entities.

246 Multiple components in the system, e.g., multiple host tenant / software agents communicating to a
247 (B)MC, can be supported using a plurality of MMBI interfaces (each being an independent instance of the

10 Published Version 1.0.2

248
249

250
251

252

253
254
255
256
257

258
259

260
261
262
263

264
265

266

267
268
269

DSP0282 MMBI Specification

interface), located in different memory locations. Such MMBI instances shall operate independently as
shown in Figure 1:

Host

MM BI MM BI

Instance #1 Instance #2

(BYMC

Figure 1 — Multiple MMBI Instances

5.3 Resets and Errors

MMBI allows lossless communication as well as graceful reset/initialization on request from a
communicating party (in case of a reset of a software entity). However, MMBI does not provide
guaranteed delivery in case of ungraceful resets of the communicating parties. Applications that care
about data loss in such situations shall employ an ACK packet scheme to verify data reception by the
other party and handle the error if ACK is not received.

5.4 Notifications (Interrupts)
MMBI is designed to execute in both interrupt and polling mode.

The memory sharing capability may be accompanied by the ability to receive interrupts by the
communicating software entities. MMBI enables discovery and enables use of the optional interrupt
mechanism for efficient data exchange between communicating entities. If interrupts are used, it is
assumed that the interrupt delivery mechanism is reliable.

If interrupts are not available, a polling mode can be used. Platform designers can choose polling or
interrupt mode, based on their needs.

5.5 Packet Sizes, Types, and Packet Flow

MMBI allows variable packet sizes, with the maximum size dependent on the underlying physical layer’s
memory mapping capabilities. MMBI provides a discovery method allowing the communicating parties to
define and discover the circular buffer sizes, which limit the maximum packet sizes that can be

Version 1.0.2 Published 1M

270
271
272

273
274
275
276
277
278
279

280
281
282
283

284

285
286
287
288
289

290

291
292
293
294
295
296

MMBI Specification DSP0282

transmitted (fragmentation/reassembly is not supported by this version of MMBI protocol). The upper
layers must adhere to the discovered limits and, if necessary, handle fragmentation/reassembly
accordingly.

MMBI allows multiple packets (datagrams) to be in-flight. That is, the sender can place more than one
packet in the memory buffer even before they are consumed by the receiver. This enables asynchronous
operation of the communicating entities. Regardless of the number of packets in-flight, they are
guaranteed to arrive to the receiver in the FIFO order (note: upper layer can elect to process in same
order or in different order, which will not be guaranteed by the MMBI layer). Note that if multiple instances
of MMBI are in the system, they operate independently and no packet ordering guarantees exist between
them.

MMBI enables and defines discovery mechanisms to support the exchange of a variety of packet protocol
types, such as MCTP. Binding of these protocols to MMBI is defined in separate documents, such as
Management Component Transport Protocol (MCTP) Memory-Mapped Buffer Interface (MMBI) Transport
Binding Specification.

5.6 Security

MMBI does not provide any security guarantees. Any authentication, integrity protection, and/or
encryption is to be implemented by the other layers of the protocol stack. For example, for secure
implementation of communication between the host and (B)MC using MMBI, Secured Messages using
SPDM over MCTP Binding Specification can be used. Another alternative can be host-based memory
protection mechanisms.

6 Basic Architecture Concept

The host and the (B)MC use circular buffers to exchange data. One buffer is used to send data from the
host to the (B)MC and is referred to as H2B (Host-to-BMC). The other buffer is used for communication in
the opposite direction and is referred to as B2H (BMC-to-Host). The buffers are used to store packet data,
and they are accompanied by a descriptor structure. The descriptor is a data structure in the shared
memory used to store important capabilities and control information. These data structures are shown in
Figure 2 and are defined in detail in section 7.

12 Published Version 1.0.2

297

298

299
300

301
302
303
304
305
306
307
308

309
310
311

DSP0282 MMBI Specification

Host

Interrupt

mapping
Interrupt
mechanism

(B)YMC

MMBI
Capability
Descriptor
Structure

H2B B2H
Circular Circular
Buffer Buffer

| B
S o
o T
€ o
w-l—'
=73
Qg
2 s
o>

Figure 2 — MMBI Interface Concept Overview

7 MMBI Data Structures
Each instance of the MMBI interface is divided into sections as defined below:

o “BMC-to-Host” (B2H) region with substructure as follows:
o MMBI Capability Descriptor (MMBI_Desc Structure) — see section 7.1 for details
o Host_ ROS (Host Read-Only Structure) — see section 7.2.3 for details
o (B)MC-to-Host Circular buffer (B2H Circular buffer) — see section 8 for details
e “Host-to-BMC” (H2B) region with substructure as follows:
o Host_RWS (Host Read-Write Structure) — see section 7.2.2 for details
o Host-to-(B)MC circular buffer (H2B Circular buffer) — see section 8 for details

The format of the H2B and B2H circular buffers is a sequence of packets, and this format is referred to as
Variable Packet Size Circular Buffer (VPSCB). For VPSCB, the relationships between these data
structures and their main pointers are as presented in Figure 3.

Version 1.0.2 Published 13

312
313

314
315
316

317

318
319
320
321
322

MMBI Specification DSP0282

MMBI_Desc (#0)

B2H Base Addr H2B Base Addr
B2H Length H2B l.ength

I Interrupt Type Protccol Type
{ Host_ROS ptr | Host_RWS ptr

Host_ROS Host RWS
H
H2B Read Ptr H2B Write Ptr

B2H Write Ptr _ BHRead Ptr

Empt\/space
Packet

Packet

Empty space

Empty space Empty space

Figure 3 — MMBI Data Structure Relationships

Details of these data structures are presented in the following subsections. Note that the data structures
maintain 4-byte alignment for fields that need to be updated atomically. Packets in the circular buffers are
also aligned to 4-byte boundaries.

7.1 MMBI Capability Descriptor

MMBI Capability Descriptor is used to define the MMBI interface details. (B)MC updates this data
structure during initialization. Other than that, the (B)MC and host are not allowed to update it. The host
only reads this descriptor to understand the format of the MMBI data structures in memory and shall
never write to this data structure. The layout of the structure is presented in Figure 4 and described in
Table 1. See also section 8.1.

14 Published Version 1.0.2

323
324

325

DSP0282 MMBI Specification
Byte +0 Byte +1 Byte +2 Byte +3
f A A) ! A
Byte [7[6]5 al3[2]1]o]7]e6 s[af3[afafo]7]e/s5]al3]2]1]0]7]6/s5]al3]2]10
0 # M M B
4 | $ Reserved ‘ MMBI version Reserved | UO;
8 B2H Buffer Base Address (B2H_BA) Reserved B2H_BA
12 H2B Buffer Base Address (H2B_BA) Reserved H2B_BA
16 B2H Buffer Length (B2H_L)
20 H2B Buffer Length (H2B_L)
24 Reserved Buffer Type(BUFT) Reserved
28
32 Host Read-Only Structure Pointer (H_ROS_P) Reserved H_ROS_P
36 Host Read-Write Structure Pointer (H_RWS_P) Reserved H_RWS_P
10 Reserved :y‘:‘ss ;:t_el::}t) Host Interrupt Location (H_Int_L) Reserved Reserved
a Reserved Host Interrupt Value (H_Int_V) Reserved _?vhs:::ﬁ::;t) BMC Interrupt Location (BMC_Int_L)
a8 BMC Interrupt Location (BMC_Int_L) Reserved
52 BMC Interrupt Value (BMC_Int_V)
56 Reserved
60
Figure 4 — MMBI Capability Descriptor Layout
Table 1 — MMBI Capability Descriptor Structure (MMBI_Desc)
Byte(s) Description
0:5 MMBI Signature
“#MMBIS$” in ASCII. When this signature is not present, the host SW should assume the absence
of MMBI.
6 [7:4] Reserved
[3:0] MMBI version
0001b — Implementations of MMBI described in this document shall indicate version 1 of MMBI.
7 [7:1] Reserved
[0] OS Use
Indicates if this MMBI interface is intended for OS use:
0b — OS should not use this MMBI interface as it is managed by other host software components
(UEFI BIOS, ACPI ASL code, etc.).
1b — This MMBI interface is intended for OS use.
8:11 [[31:29] — Reserved
[28:0] B2H Buffer Base Address (B2H_BA)
B2H (BMC-to-Host) buffer base address expressed in 8-byte units as offset relative to the
beginning of the descriptor

Version

1.0.2 Published

15

MMBI Specification DSP0282

Byte(s) Description

12:15 |[31:29] — Reserved

[28:0] H2B Buffer Base Address (H2B_BA)

H2B (Host-to-BMC) buffer base address expressed in 8-byte units as offset relative to the
beginning of the descriptor

16:19 |[B2H Buffer Length (B2H_L)
The size of the B2H buffer (can represent up to 4GB)

20:23 |H2B Buffer Length (H2B_L)
The size of the B2H buffer (can represent up to 4GB)

24 [7:4] Reserved

[3:0] Buffer Type (BUFT)
Indicates the type of data structures in H2B and B2H buffers. The following values are defined:
0001b — MMBI Variable Packet Size Circular Buffers (VPSCB) v1 (see section 7.2)

Other values are reserved.

25:31 |Reserved

32:52 |Buffer Type Dependent Descriptor
The definition of this field is dependent on the BUFT field value:

If BUFT=0001b (VPSCB), Table 2 in section 7.2 defines the format of these bytes and the packet
format in circular buffers is defined in section 9

56:63 |Reserved

326

327 7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer

328 This section describes data structures used when the communication between (B)MC and host SW
329 happens according to the VPSCB Buffer Type (BUFT=0001b).

330 7.2.1 Variable Packet Size Circular Buffer Descriptor

331 Variable Packet Size Circular Buffer Descriptor is part of the MMBI_Desc structure. lts access rules are
332 the same as MMBI_Desc:

333 e The (B)MC updates this data structure during MMBI interface initialization.
334 o Neither the (B)MC nor the host are allowed to update it at any other time.

16 Published Version 1.0.2

335

DSP0282

MMBI Specification

Table 2 — Buffer Type Dependent Descriptor for BUFT=0001b (VPSCB Descriptor)

Byte(s)

Description

0:3

[31:29] — Reserved

[28:0] Host Read-Only Structure Pointer (H_ROS_P)

Points to the Host_ROS structure. The base address is expressed in 8-byte units as the offset relative
to beginning of the descriptor

4:7

[31:29] — Reserved

[28:0] Host Read-Write Structure Pointer (H_RWS_P)

Points to the Host RWS structure. The base address is expressed in 8-byte units as the offset relative
to beginning of the descriptor

[7:3] — Reserved

[2:0] Host Interrupt Type (H_Int_T)

Defines how the (B)MC interrupts the host. This is an informative field from the host’s perspective with
the intention to keep the (B)MC and host in sync.

0 — no interrupt / polling

1 — PCle interrupt (bus specific)
2 — physical pin (GPIO)

3 — eSPI Virtual Wire

Other values are reserved

Host Interrupt Location (H_Int_L)

If H Int_T = 0: reserved

If H_Int_T = 1: for PCle, indicates the PCle interrupt message number
If H_Int_T = 2: pin number

If H_Int_T = 3: eSPI Virtual Wire Index number

Reserved otherwise

10:12

Reserved

13

Host Interrupt Value (H_Int_V)
If H Int_T = 3: eSPI Virtual Wire data value

Reserved otherwise

Version 1

.0.2 Published

17

MMBI Specification DSP0282

Byte(s) | Description

14 [7:3] — Reserved

[2:0] (B)MC Interrupt Type (BMC_Int_T)

Defines how the (B)MC wants to be interrupted:

0 — no interrupt triggering by the host

1 — relative memory space address (offset defined in the BMC_Int_L field)
2 — Inband interrupt (bus specific—such as PCle MSI or virtual legacy wire)

Other values — reserved

15:18 |(B)MC Interrupt Location (BMC_Int_L)

If BMC_Int_T = 1, memory address—offset relative to the beginning of the MMBI Capability Descriptor
base address

Otherwise reserved

19:22 [Reserved

23 (B)MC Interrupt Value (BMC_Int_V)
If BMC_Int_T = 1, this field indicates the value to be written at the given address to trigger an interrupt.

Otherwise reserved

336 7.2.2 Host Read-Write Structure

337 The host's RW Structure Pointer in the above structure points to the Host RWS structure, which is shown
338 in Table 1. This structure is accessed as follows:

339 e ltis initialized by the (B)MC to the default values.

340 e The host updates this structure during normal communication—it is read-writeable for the host.
341 e The (B)MC is not allowed to write to this structure during normal communication—it should treat
342 this structure as read-only (any kind of hardware-based enforcement of the read-only behavior is
343 out of scope of this specification).

18 Published Version 1.0.2

344

345

346
347
348
349

DSP0282

MMBI Specification

Table 3 — MMBI Host Read-Write Structure (Host_RWS)

Byte(s) | Description

0:3 [31:2] H2B Write Pointer (H2B_WP)
Bits [31:2] of the offset where the host can write the next data in the H2B circular buffer, counted from
the beginning of the H2B buffer represented in 4-byte alignment.
Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).
The (B)MC uses this pointer to determine how many bytes of valid data are present in the Circular
Buffer (by comparing it with the H2B_RP offset).
The host shall advance the pointer once data is written to the Circular Buffer and shall update this
pointer to mark the next available offset.
Note: The host shall not overwrite the data not read by the (B)MC, as indicated by the H2B_RP.
[1] Host Interface Up (H_UP)
1 indicates that the host side of the interface is up and running, which means that the data structures
can be used by the (B)MC.
[0] Host Reset Request (H_RST)
Setting this flag to 1 will initiate a reset sequence to get the circular buffers into a known good state
(see section 8.1 for more information).

4:7 [31:2] B2H Read Pointer (B2H_RP)

Bits [31:2] of the offset where the host reads data from the B2H circular buffer, counted from the
beginning of the B2H buffer represented in 4-byte alignment.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The (B)MC uses this pointer to determine how much of data is read by the host. Comparing this with
the B2H Write Pointer (B2H_WP) will provide how much space is left to write the data.

The host shall only advance the pointer once the data available in B2H is read by the host.

[1] Reserved

[0] Host Ready (H_RDY)

0 indicates that the host is performing some tasks that keep it busy, and so it may be unresponsive.
However, the (B)MC can use the data structures and, for example, put data into the buffers as long as
H_UP =1.

1 indicates that the host is ready to exchange data (see section 8.1 for more information).

7.2.3 Host Read-Only Structure

Host RO Structure Pointer points to Host_ROS structure. The host is only allowed to read this structure
(never write). Any kind of hardware-based enforcement of the read-only behavior is out-of-scope of this
specification. This structure is initialized by the (B)MC to the default values and later updated by (B)MC

during normal communication—it is read-writeable for the (B)MC.

Version 1

.0.2 Published

19

MMBI Specification DSP0282

350 Table 4 — MMBI Host Read-Only Structure (Host_ROS)

Byte(s) [Description
[31:2] B2H Write Pointer (B2H_WP)

0:3
Bits [31:2] of the offset where the (B)MC can write the next data in the B2H circular buffer,
counted from the beginning of the B2H buffer.
Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).
The host uses this pointer to determine how many bytes of valid data are present in the
Circular Buffer (by comparing it with B2H_RP offset)
The (B)MC shall advance the pointer once data is written to the Buffer to mark the next
available offset.
Note: (B)MC shall not overwrite the data not read by host, as indicated by the B2H_RP.
[1] (B)MC Interface Up (B_UP)
1 indicates that the (B)MC side of the interface is up and running which means that the data
structures are initialized and can be used
[0] (B)MC Reset Request (B_RST)
Setting this flag to 1 will initiate a reset sequence to get the circular buffers into a known
good state (see section 8.1 for more information).

47 [31:2] H2B Read Pointer (H2B_RP)

Bits [31:2] of the offset where the host reads data from the H2B circular buffer, counted from
the beginning of the H2B buffer.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The host uses this pointer to determine how much of data is read by the (B)MC. Comparing
this with the H2B write pointer will provide how much space is left to write.

(B)MC shall only advance the pointer once the data available in H2B is read by the (B)MC.

[1] Reserved

[0] (B)MC Ready (B_RDY)

0 indicates that the (B)MC is performing some tasks that keep it busy and so it may be
unresponsive — host however can use the data structures and, for example, put data into
the buffers as long as B_UP =1

1 indicates that the (B)MC is ready to exchange data (see section 8.1 for more information).

351 MMBI uses two circular buffers: H2B and B2H. Each buffer is a memory range defined in the descriptor
352 with the following access:

353 o H2B (Host-to-BMC buffer) is RW for the host and RO for the (B)MC.
354 e B2H (BMC-to-Host buffer) is RO for the host and RW for the (B)MC.

20 Published Version 1.0.2

355
356
357

358
359

360
361

362

363

364
365

366
367
368
369
370
371

372
373
374
375

376

377
378

379

380
381

382
383

384

385
386
387
388
389

390
391
392

DSP0282 MMBI Specification

The Read Pointer and Write Pointer are used to indicate the read and write location in the buffer. For
each read or write the pointer shall be advanced. It means pointer increment with a rollover at the buffer
size.

These pointers, along with the Buffer Length fields (B2H_L or H2B_L), are used to calculate the number
of filled bytes to read or the number of empty bytes available for write.

The circular buffers will be used to send packets of arbitrary size. A packet may require multiple memory
reads and/or write transfers.

8 Runtime Flows

8.1 MMBI Interface Initialization and Reset

This section describes the steps to allow the (B)MC to complete the initialization of the data structures
and indicating when both sides of communication are ready to exchange data.

The goal of the reset, on the other hand, is to reinitialize the data structures when at least one side wants
a clean start, which may be due to unexpected device events, malfunction, error, etc. It may also be used
to reinitialize the data structures after, for example, a (B)MC firmware update in which the data structure
needs some new values (e.g., when the circular buffer size changes after the firmware update). A
graceful reset follows the state diagram presented in Figure 5, and it guarantees that MMBI protocol layer
does not drop any packets (note that other protocol layers may still be unable to guarantee delivery).

The reset sequence is also automatically initiated when hardware errors lead to all-ones or all-zeros
memory reads, as is typical with some media. This is thanks to the fact that when all the flags are zeros or
are all ones, it indicates an initialization or transition to initialization states. Such unexpected resets do not
follow the handshake protocol, and so are ungraceful and may lead to packet losses.

These flags are used to indicate the (B)MC'’s status as related to initialization and reset:

e (B)MC Interface Up (B_UP)
e (B)MC Reset Request (B_RST)

Similar flags are used to indicate the host’s status:

e Host Interface Up (H_UP)
e Host Reset Request (H_RST)

All these flags are used in combination to achieve the proper handshake mechanism between the host
and the (B)MC during initialization or reset.

8.1.1 Initialization of Descriptor Structures after Power Up

The (B)MC must initialize the expected content of the MMBI data structures (see section 7) during power
up and make the shared memory available to the host. Initialization is expected to complete before the
host software accesses these structures so that the host can find the MMBI Capability Descriptor
(MMBI_Desc) using the MMBI signature bytes. MMBI structures and buffers must always remain
available in the shared memory when the host is using the MMBI interface.

If the MMBI is made available via a memory-mapped range of a PCle function, then the MMBI_Desc is at
offset 0 of a PCle function’s BARs, and the function’s PCle Base Class, Sub-Class, and Programming
Interface shall be {0xC, 0xC, 0x0}. There can be at most one MMBI_Desc per BAR.

Version 1.0.2 Published 21

393
394
395

396
397
398
399

400
401
402
403
404
405
406

407

408
409
410

411
412
413
414

MMBI Specification DSP0282

During the initial accesses after the host’s power up or reset, the host’s software is expected to verify if
the content of the MMBI version and MMBI signature are as expected. If the above requirements are met,
the host is expected to check the interface state.

If the host’s software does not find the proper MMBI Capability Descriptor (MMBI_Desc) content at the
expected location, the host should consider the MMBI as not present or, optionally, it may implement a
wait option with a timeout. Such a timeout mechanism is system-dependent and is out of scope of this
specification.

If the MMBI signature and MMBI version fields match, but the size and location of the buffers cannot be
fulfilled by the host, it shall indicate the initialization mismatch error by transitioning to the /Initialization
Mismatch state as described below. With this indication, the (B)MC may consider the interface as
inoperable or attempt to reinitialize the MMBI_Desc structure with, for example, a smaller buffer size.
Before updating the data structure content, the (B)MC shall first clear the B_UP flag and then clear the
H_RST flag to return back to the /Initialization in Progress state. Such attempts to repair the situation are
system-dependent and are out of scope of this specification.

8.1.2 Interface States and Graceful Reset

When _RST and _UP are both set on one side of communication, it means the entity is requesting a reset
sequence. When B_RST =H_RST = B_UP = H_UP = 1, it means that both entities are ready to perform
the reset sequence (in fact, the host is just waiting for the (B)MC to do all the initialization).

All the states are summarized in Table 5. The “Host Write Access” and “(B)MC Write Access” columns
define write-access restrictions to the data structures by host and (B)MC, respectively. There are no read
restrictions for the (B)MC and host. Note that the host is expected to re-read the data structure contents
after initialization is completed.

22 Published Version 1.0.2

415

DSP0282 MMBI Specification
Table 5 — MMBI Interface States
B_UP | B_LRST | H_UP | H_RST State Description FESILLD | [2)00C Ll
Access Access
Initialization in Progress Host not (B)MC
e allowed to | allowed to
0 0 0 0 The (B)MC is initializing the data structures. write to any | write to any
The host can only monitor the data structures, | MMBI MMBI
waiting for B_UP = 1 and B_RST = 0 flags. structures | structures
Initialization Completed
The (B)MC has completed initialization of the | HOSt (B)MC
) allowed to
data structures and is ready to exchange data— . allowed to
s write to .
1 0 0 0 waiting for the host to be ready. The host MMBI write to
should re-read the MMBI_Desc structure and MMBI
structures
any dependent structures. structures as
as per er section 7
During this state, the (B)MC is allowed to section 7 P
deposit packets into the circular buffer.
i :?osvtved to (B)MC
Normal Runtime write to allowed to
1 0 1 0 Both the (B)MC and host use the data MMBI write to
structures and the circular buffers for data structures | MIMBI
exchanges. as per structures as
) per section 7
section 7
Reset Request by (B)MC
The (B)MC is requesting reset—waiting for the Host (B)MC
. allowed to
host to notice the request. X allowed to
write to write to
1 1 1 0 When the host notices the request, it should MMBI
. MMBI
consume the data from the B2H (if any) and structures structures as
shall set H_RST flag as an ACK and wait for the | as per per section 7
initialization to complete (B_UP = 1 and section 7
B_RST = 0 status).
Reset Request by Host
The host is requesting reset—waiting for the
(B)MC to notice the request and reinitialize the
interface. When the host sets the H_RST flag, it | Host not (B)MC
shall not perform any further updates in the allowed to | allowed to
1 0 1 1 MMBI data structures but shall only wait for the | write to any [write to any
initialization to be completed by (B)MC (B_UP = | MMBI MMBI
1 and B_RST = 0 status). structures | structures
When the (B)MC notices the request, it should
consume the data from the B2H (if any) and
shall set B_RST flag as an ACK.

Version 1.0.2

Published

23

MMBI Specification DSP0282
B_UP | B_LRST | H_UP | H_RST State Description It OND | ([NS T2
Access Access
Reset ACKed
The host and (B)MC are ready to perform
graceful interface reset. This is a transient state | H0st not (B)MC
when the host is waiting for the (B)MC to allowed to | allowed to
1 1 1 1 complete the initialization. The host is not write to any | write to any
allowed to write to MMBI data structures. The MMBI MMBI
(B)MC is expected to clear the B_UP and structures | structures
B_RST flags (in this order) and reinitialize all
the data structures.
Transitioning to Initialization Hostnot |(B)MC
allowed to | allowed to
0 1 1 1 Transient state after the “Reset ACKed” state. | write to any |write to any
The host is not allowed to write to MMBI data MMBI MMBI
structures. structures | structures
0 1 1 0 .
Temporary Transition States
0 1 0 1 These states may be observed during
initialization V\./h.e.n Fhe '(B)MC updates the data Host not (B)MC
0 1 0 0 structures (reinitialization of all the data allowed to | allowed to
structures is not an atomic operation). . :
write to any | write to any
They are unexpected during normal operation | MMBI MMBI
and if they happen it means that MMBI structures | structures
0 0 0 1 structures have been corrupted. The (B)MC
may initialize the interface or stop using MMBI
and report a fatal error.
Initialization Mismatch
The host causes transition into this state from
1 0 0 1 Initialization Completed when it is unable to use
the interface due to unsupported content in the
MMBI Capability Descriptor structure.
1 1 0 1 Unexpected States
These states shall never happen: Host not (B)MC
1 1 0 0 I Il t
e Ifthe (B)MC reads this state, it allowed to | allowed to
i write to any [write to any
indicates that the host does not follow MMBI MMBI
0 0 1 0
MMBI protocol or some other structures | structures
corruption happened—the (B)MC
should initialize the interface or it may
stop using MMBI and report a fatal
error, depending on system policy.
0 0 1 1 e |f the host reads this state, it may wait
for the reinitialization to complete or
stop using MMBI and report a fatal
error, depending on system policy.
24 Published Version 1.0.2

416

417

418

419

420
421
422

DSP0282

The expected state transitions are presented in Figure 5:

Ungraceful reset
(entry from any other state)

MMBI Specification

Power-up or

error

Initialization
Mismatch

Reset
Request by
BMC

Initialization
in Progress

Initialization
Completed

Normal
runtime, incl.
halt

Reset ACKed

Reset
Request by
Host

Figure 5 — MMBI Interface States

The host shall check the MMBI Interface state before writing any new data to the H2B buffer (as
described in Table 5, the host is only allowed to transfer new data in the Normal Runtime state, i.e.,
B_UP=1 & B_RST=0 & H_UP=1 & H_RST=0). Similarly, the (B)MC shall check the status before writing

Version 1.0.2 Published

25

423
424

425

426
427

428
429

430
431
432
433

434
435
436

437
438
439

440

441

442

MMBI Specification DSP0282

any new data to the B2H buffer. These status flags are conveniently located in the B2H_WP or H2B_WP
bytes which the host or (B)MC, respectively, read anyway during any use of the circular buffers.

8.1.2.1 Host Initiating Graceful Reset Sequence

Assuming Normal Runtime state, the host shall use the following sequence to request MMBI interface
reset:

1) The host sets H_RST = 1 to initiate the reset flow. If (B)MC interrupts are enabled, the host
notifies the (B)MC.

a. Inresponse, the (B)MC is expected to set B_RST = 1, which indicates the transition to
the Reset ACKed state. If host interrupts are enabled, the host is expected to be notified
about the update (or else it uses polling). At this point, the (B)MC reinitializes all the data
structures.

2) The host waits for B_UP =1 and B_RST = 0 (and H_UP = H_RST = 0), which indicates the
transition to the Initialization Completed state. Host interrupts are not used at this stage until
H_UP is set by host software.

3) The host transitions to the Normal Runtime state by setting H_UP = 1. The host is also expected
to set the B_RDY flag, indicating that it can receive and handle new packets—see section 8.3. If
(B)MC interrupts are enabled, the host notifies the (B)MC after the flags are updated.

Figure 6 presents a sample flow:

BMC Host

Normal Runtime:
H_UP=1
H_RST=0

Normal Runtime:
B_UP=1
B_RST =0

T
| Host uses MMBI to send/receive packets
A J

|
BMC uses MMBI to send/receive packets Reset Request by Host:
| H_UP=1

l ! Host-to-BMC Interrupt or polling H RST=1
Reset ACKed by BMC:

B UP=1B RST=1 BMC-to-Host Interrupt or polling

!
P
Transitioning to Init:
B UP=0
B RST=1

Initialization:
B UP=H_UP=0
B_RST=H_RST=0

o

Data structure res

Initialization Completed:

|
|
|
|
|
|
|
| |
e
|
|
|
]
J

B UP=1 BMC-to-Hgst -
B_RST=0 ©-Host - polling by hose
. | Normal Runtime:
| H_UP=1
BMC uses MMBI to send/receive pa.ckets H_RST =0
| |
| [
I I
Figure 6 — Sample MMBI Reset by Host
26 Published Version 1.0.2

443

444
445

446
447

448
449
450

451

452
453

454

455

456
457

458
459

460
461

462

DSP0282 MMBI Specification

8.1.2.2 (B)MC Initiating Graceful Reset Sequence

Assuming Normal Runtime state, the (B)MC shall use the following sequence to request MMBI interface

reset:

1)

2)

8)

The (B)MC sets B_RST = 1 to initiate the reset flow. If host interrupts are enabled, the (B)MC
notifies the host.

The (B)MC waits for H_UP =1 and H_RST = 1, which indicates the transition to the Reset ACKed
state. If (B)MC interrupts are enabled, the (B)MC is expected to be notified about the update (or
else (B)MC uses polling).

The (B)MC clears the B_UP flag (B_RST still set). Host interrupts are no longer enabled.

The (B)MC clears the H_UP and H_RST flags (this may cause transient states to be observed by
the host).

The (B)MC clears the B_RST flag.
The (B)MC reinitializes all the data structures.

The (B)MC sets B_UP = 1. Host interrupts are not used at this stage until H_UP is set by host
software.

The (B)MC waits for the host to set H_UP = 1. If (B)MC interrupts are enabled, the (B)MC is
expected to be notified about the update.

Note that the (B)MC is also expected to set the B_RDY flag, typically in step 7, indicating that it can
receive and handle new packets—see section 8.3.

Figure 7 presents a sample flow.

Version 1.0.2 Published 27

463

464

465

466
467

468
469
470
471
472

473
474
475
476
477
478
479

480
481
482
483

MMBI Specification DSP0282

Host
BMC
I
T |
Normal Runtime: Normal Runtime:
B_UP=1 H_UP=1
B_RST =0 H_RST=0
I '
BMC requests reset; stops sending new packets !
_to- i Host uses MMBI to send/receive packets
Reset Request by BMC: | BMC-to-Host Interrupt or polling
B_UP=1B_RST=1 | o
>
| | i Reset ACKed:
BMC uses MMBI to receive remaining packets Host-to-BMC Interrupt or polling H UP=1
| H_RST =1
Transitioning to Init: | |
B_UP=0 I |
B_RST =1 | |
Initialization: : :
B_UP=H_UP=0 | I
B_RST=H_RST=0 |
[|
Data structure reset |
|
Initialization Completed: | BMC-to-Host lling by host |
B UP=1 -to-Host - polling by hos I
B_RST =0 |)
»
I Normal Runtime:
BMC uses MMBI to receive packets H_UP=1
i H_RST =0

|
Host uses MMBI to send/receive packets
1

Figure 7 — Sample MMBI Reset Flow by (B)MC

8.1.3 Ungraceful Reset Considerations

If an ungraceful reset/crash happens, MMBI does not guarantee delivery. However, provisions are
present in the MMBI design to handle the following scenarios:

1.

In the case of a (B)MC FW-only reset (HW continues to work, memory content, including
buffers stay intact in shared memory and accesses are still handled by HW): the host will still
see the MMBI in the normal state and write to MMBI Circular buffers to deposit or read data
as long as there is any space available in the buffers. In this situation, host may timeout
waiting for a response but this is handled by higher layers above MMBI.

(B)MC HW reset (buffers are wiped and MMIO mechanisms are broken): the host will see
errors on reads/writes and must handle them as per host-specific mechanisms. Additionally,
MMBI encoding of status in B_UP, B_RST, H_UP, & H_RST is such that all-zeros or all-ones
are recognized as transient states (see Table 5). So, even if there would be no other
mechanisms in the system, the host would still recognize this as an error and would have to
wait for reinitialization by the (B)MC (the host is not allowed to write to the buffers in the
transient state, i.e., until the data structures are reinitialized by (B)MC FW).

Unexpected host reset (SW or HW reset is the same outcome): the host’s unexpected reset
will leave the data structures intact in (B)MC memory, so the (B)MC can still read the data
from the buffers. Assuming the (B)MC understands the host’s status via other mechanisms,
the (B)MC can take informed decisions about how to respond to such situations.

28

Published Version 1.0.2

DSP0282 MMBI Specification

484 In all the above cases, MMBI data structures can be reinitialized after the reset to allow a clean restart.

485 8.2 Calculation of Filled Space and Empty Space in Circular Buffer

486 The procedure for calculating the number of filled bytes in a circular buffer is analogous for both the H2B
487 and B2H buffers: the difference between the write pointer and read pointer indicates the amount of valid
488 data, accounting for the rollover at the end of the buffer. The write pointer cannot advance beyond the
489 read pointer, accounting for the rollover at the end of the buffer.

490 The following steps allow calculation of the number of filled slots in a circular buffer:

491 1. The write and read pointers must start with zero after initialization. Since read pointer = write
492 pointer, there is no valid data/packets in the buffer on initialization.

493 2. Once data is written to the buffer, the source (the host or (B)MC) will advance the write buffer
494 pointer.

495 3. Read pointer is advanced once data is read/consumed by the receiver (the host or (B)MC).
496 4. Rollover: when the pointers reach the maximum offset within the buffer during writing/reading,
497 data must be written/read starting back at zero offset, and the pointers roll over accordingly.

HOST 2 BMC
Circular Buffer

BMC 2 HOST

Circular Buffer

> Unread by +
HOST RWP OST ROP Egp RESP X+1
+ i S ST .. R o
CMD X+1 0 150501 ﬁZ‘EI\Nf«-t‘e‘_f‘t;\mer[z.‘\B] s D oser P2H write Pointer [2:19] s
- Rl Reva £ oo Poriata Revd R1 Reva 23 v
S B2H Read Pointer [34:311f- {22, Lls H2B Read Rointer [34:51]| [32:
1) b6 ED N R e ,.F'mn & 33
4
g
@m
- :
CMD X+4 &5
498
499 Figure 8 — Filled and Empty Space in Circular Buffers

500 8.3 Device Readiness and Communication Pause

501 In addition to the reinitialization or reset states, the MMBI interface also uses the H_RDY and B_RDY
502 flags to indicate the device’s readiness to consume incoming packets and handle them. When the host or
503 (B)MC are ready to receive and handle packets, they set the B_RDY or H_RDY flags, respectively. If a
504 B_RDY or H_RDY flag is clear but the B_UP and H_UP flags are set, it means that the MMBI interface is
505 up but the target device is not ready to consume and handle new packets. When the interface is up, it
506 means that the data structures are ready to accept new packets so the sender can:

507 e wait for the receiver to become ready before writing new packets to the buffer—this is
508 important if the sender expects an action to be taken by the receiver, such as providing a
509 response

Version 1.0.2 Published 29

510
511
512

513
514
515

516

517

MMBI Specification

DSP0282

deposit new packets to the buffer in order for the receiver to consume them later—this
capability may be used if the sender does not expect a response from the receiver; for
example, when the sender needs to deposit some logs in the shared memory

An example flow when (B)MC firmware / host software undergoes a reset and indicates its non-readiness
during a reboot is presented in Figure 9. Note that in this example it is assumed that the MMBI data
structures are still intact in shared memory during the reset.

BMC

Host

AC cycle boot / First time init

B_UP=0
B_RDY=0

Transition to ready

Initializes MMBI descriptor & ready
1

BMC sets up MmB) config

Notready

|

H_UP=1

H R[l)YZO

Transition to ready

Figure 9 — Sample MMBI Device Pause Sequences

|
| |
| |
| |
| |
B_UP = | | H_UP =]
B RDY =1 | | H RDY=1
| |
BMC FW pause : :
B UP=1 : : el
B Rov=1 || | H_RDY =1
BMC"eboot | |
B UP=1 I . | H UP=1
B T houl hal r
v oo : ransactions should be halted : H RDY =1
BMC bootéd &ready I |
v __ | | HUP=1
B_UP=1 | Transactions can continue from here | Za
B RDY =1 H_RDY =1
: I
Host SW pause I : :
BUP=1 | | | i
e | | H RDY =1
: : Host resets
BB_RllJ;:_ll : Transactions should be halted : :_Rugyz—lo
| I Host SIWinit
A | | H U'P 1
—oF= | Transactions can continue from here——— | i
B_RDY=1 | | | H_RDY =1
| |

30

Published

Version 1.0.2

518

519
520
521

522
523

524
525
526

527
528
529

530
531
532
533
534

535
536

537
538

539
540

541

542
543

544
545

546
547
548

549

550
551
552

553

554
555

DSP0282 MMBI Specification

8.4 Packet Transfer

This flow describes the host-to-(B)MC flow that shall be followed to send a packet. An analogous flow
shall be followed to send packets in the opposite direction (swap (B)MC and host in the description and
use B2H buffer instead):

1) Host software reads the read and write pointers (H2B_RP and H2B_WP) to determine the
number of empty spaces available in its circular buffer.

a. |If there is not enough empty space available in the host’s circular buffer, the host waits
until there is room in the host’s circular buffer. This is done either by polling or waiting for
an interrupt.

b. Host software shall also verify that B_UP = 1 & B_RST = 0 before any packet transfers. If
this is not the case, it shall follow the reset process as defined in section 8.1. Note that
the host may decide to delay packet transfer depending on B_RDY state and its policy.

2) Once there is enough empty space available in the circular buffer, the host writes the packet into
the host’s circular buffer. To accomplish this, the host sequentially writes data at the write pointer
location but not exceeding the length of the buffer (H2B_L). When it reaches the maximum
address of the buffer, it shall continue writing the packet from the buffer base address (H2B_BA).
This process shall never overflow the buffer by advancing beyond the H2B_RP.

3) Once the packet write is complete, the host updates the write pointer value in H2B_WP.
4) In Interrupt-enabled mode, the (B)MC firmware is interrupted:

a. [fBMC_Int_T =1, the host uses the (B)MC Interrupt Info (BMC _Int_L) and (B)MC
Interrupt Value (BMC_Int_V) to interrupt the (B)MC FW.

b. Evenif BMC Int T =0, the (B)MC HW may also monitor H2B_WP and generate an
interrupt automatically.

c. Alternatively, a platform-specific method can be used to trigger the interrupt to (B)MC.

5) In polling mode, the (B)MC FW can continuously read the write pointer to see when it changes. In
interrupt mode, it is woken up by the (B)MC HW.

6) The (B)MC firmware reads the read/write pointers and determines the number of filled spaces in
the circular buffer available for reading.

a. If the circular buffer is empty, the host has not sent a packet. This interrupt is for another
reason, or it indicates that the host has completed reading the packet(s) last transmitted
by the (B)MC.

7) The (B)MC FW reads the buffer data written by the host.

8) The (B)MC FW updates the read pointer in B2ZH_RWS. This indicates to the host how much data
has been read by the (B)MC, and the host can use the portion of the buffer that has been read
already.

9) If host notifications are enabled, (B)MC FW shall generate an interrupt to the host.

10) When the host software gets interrupted or due to polling of H2B_RP, it can determine that the
(B)MC has consumed the data. The host can also poll instead of relying on interrupts.

Version 1.0.2 Published 31

556

557
558

559
560
561

562
563

564

565
566

567
568
569

570
571
572

573

574
575
576
577

MMBI Specification DSP0282

8.5

Interrupts (Optional)

Interrupts, if enabled by the discovery/control mechanisms of MMBI, shall be triggered for the following
reasons (both for host software and (B)MC firmware):

A packet has just been written to the circular buffer.
A packet has just been read from the circular buffer.
The host or (B)MC has initiated an interface reset sequence.

The host or (B)MC has completed its portion of the interface reset sequence and normal
operation can begin.

An interrupt handler shall:

check the status flags in the MMBI Capability Descriptor (MMBI_Desc)—if a reset is initiated, the
flow defined in section 8.1 shall be followed

check if there is a packet in the circular buffer—this can be calculated as per section 8.2—and, if
there is data present in the buffer, the interrupt handler should initiate the packet receive flow, as
defined in section 8.4.

If there are multiple instances of the MMBI interface sharing the same interrupt, the interrupt handler shall
check all the instances for the reasons listed above. The order of such a check and interrupt affinity are
implementation-specific and out of scope of this specification.

9 Multi-Protocol Packet Format

If BUFT=0001b (VPSCB) and Packet Protocol Type = 0001b (Multi-protocol Type), the multi-protocol
MMBI packets will have the following defined header fields, as shown in Table 6. There is a 4-byte
alignment expectation, meaning that padding must be added if necessary for the packet length to be a
multiple of 4 bytes.

32

Published Version 1.0.2

DSP0282 MMBI Specification

578 Table 6 — Multi-Protocol Packet Format

Byte(s) Description

0:2 [23:2] Packet Length (PKT_LEN)

The size of the packet, calculated as PKT_LEN+1 multiplied by 4 bytes (can represent up to 16MB
packet).

Values 0x3FFFFF and zero are reserved.

[1:0] Packet padding (PKT_PAD)
Number of padding bytes

3 [7:4] — Reserved

[3:0] — Packet type (PKT_TYPE)
Defines the format of the remaining bytes:

0100b — MCTP over MMBI (see Management Component Transport Protocol (MCTP) Memory-
Mapped Buffer Interface (MMBI) Transport Binding Specification)

0101b — Vendor defined content as defined below

Other values are reserved.

4:N-1 [Protocol type specific fields
This field depends on the PKT_TYPE value:

If PKT_TYPE = MCTP = 0100b: format follows MCTP over MMBI (see Management Component
Transport Protocol (MCTP) Memory-Mapped Buffer Interface (MMBI) Transport Binding Specification)

If PKT_TYPE = Vendor defined = 0101b: the following vendor-defined format shall be used:

Byte(s) Description

4:7 Vendor IANA Enterprise Number encoded in little-endian format; for more
information about IANA Enterprise Numbers, please see Internet
Assigned Numbers Authority — Private Enterprise Numbers

8:N-1 Content defined by the vendor

(N:M) [Padding (PAD) — optional
Padding bytes as defined in PKT_PAD field.

Note: padding is added to ensure packets are 4-byte aligned

579

Version 1.0.2 Published 33

580
581
582
583
584

585

586
587
588

589
590

591
592

593
594
595

596
597

598
599

600
601

602

MMBI Specification

DSP0282

ANNEX A
(informative)

Notations

Examples of notations used in this document are as follows:

2:N

(6)
(3:6)

DSP0236

[4]

[7:5]

1b

0x12A

In field descriptions, this will typically be used to represent a range of byte offsets
starting from byte two and continuing to and including byte N. The lowest offset is on
the left; the highest is on the right.

Parentheses around a single number can be used in packet field descriptions to
indicate a byte field that may be present or absent.

Parentheses around a field consisting of a range of bytes indicates the entire range
may be present or absent. The lowest offset is on the left; the highest is on the right.

Underlined blue text is typically used to indicate a reference to a document or
specification called out in Normative references or to items hyperlinked within the
document.

Square brackets around a number are typically used to indicate a bit offset. Bit
offsets are given as zero-based values (that is, the least significant bit offset = 0).

A range of bit offsets. The most significant bit is on the left, the least significant bit is
on the right.

A number consisting of 0s and 1s followed by a lowercase “b” indicates that the
number is in binary format.

A leading “0x” indicates that the number is in hexadecimal format.

34

Published Version 1.0.2

603
604
605
606
607

608

609

DSP0282

ANNEX B
(informative)

Change log

MMBI Specification

Version

Date

Description

1.0.0

2023-07-14

Initial release

1.0.1

2024-08-30

Document title change (“Memory-Mapped BMC Interface” to
“Memory-Mapped Buffer Interface”) to better reflect potential
broader uses of MMBI beyond just BMC

1.0.2

2025-10-01

Define the discovery process of an MMBI description within a
PCle endpoint.
Fixed: https://github.com/DMTF/PMCI-WG/issues/1646

Version 1.0.2

Published

35

https://github.com/DMTF/PMCI-WG/issues/1646

	Acknowledgments
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Conventions
	4.1 Reserved and unassigned values
	4.2 Byte ordering

	5 Assumptions
	5.1 Underlying Memory Mapping
	5.2 Multiple Instances
	5.3 Resets and Errors
	5.4 Notifications (Interrupts)
	5.5 Packet Sizes, Types, and Packet Flow
	5.6 Security

	6 Basic Architecture Concept
	7 MMBI Data Structures
	7.1 MMBI Capability Descriptor
	7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer
	7.2.1 Variable Packet Size Circular Buffer Descriptor
	7.2.2 Host Read-Write Structure
	7.2.3 Host Read-Only Structure

	8 Runtime Flows
	8.1 MMBI Interface Initialization and Reset
	8.1.1 Initialization of Descriptor Structures after Power Up
	8.1.2 Interface States and Graceful Reset
	8.1.2.1 Host Initiating Graceful Reset Sequence
	8.1.2.2 (B)MC Initiating Graceful Reset Sequence

	8.1.3 Ungraceful Reset Considerations

	8.2 Calculation of Filled Space and Empty Space in Circular Buffer
	8.3 Device Readiness and Communication Pause
	8.4 Packet Transfer
	8.5 Interrupts (Optional)

	9 Multi-Protocol Packet Format
	ANNEX A (informative) Notations
	ANNEX B (informative) Change log

