
 1

 2

Document Identifier: DSP0282 3

Date: 2023-08-25 4

Version: 1.0.0 5

Memory-Mapped BMC Interface (MMBI) 6

Specification 7

Supersedes: None 8

Document Class: Normative 9

Document Status: Published 10

Document Language: en-US 11

MMBI Specification DSP0282

2 Published Version 1.0.0

Copyright Notice 12

Copyright © 2023 DMTF. All rights reserved. 13

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 14
management and interoperability. Members and non-members may reproduce DMTF specifications and 15
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 16
time, the particular version and release date should always be noted. 17

Implementation of certain elements of this standard or proposed standard may be subject to third-party 18
patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations 19
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 20
or identify any or all such third-party patent-right owners or claimants, nor for any incomplete or 21
inaccurate identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to 22
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 23
disclose, or identify any such third-party patent rights, or for such party’s reliance on the standard or 24
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 25
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 26
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 27
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 28
implementing the standard from any and all claims of infringement by a patent owner for such 29
implementations. 30

For information about patents held by third parties which have notified the DMTF that, in their opinion, 31
such patents may relate to or impact implementations of DMTF standards, visit 32
https://www.dmtf.org/about/policies/disclosures. 33

All other marks and brands are the property of their respective owners. 34

This document’s normative language is English. Translation into other languages is permitted. 35

https://www.dmtf.org/about/policies/disclosures

DSP0282 MMBI Specification

Version 1.0.0 Published 3

CONTENTS 36

Foreword ... 5 37
Introduction.. 6 38
1 Scope .. 7 39
2 Normative references .. 7 40
3 Terms and definitions .. 7 41
4 Conventions .. 9 42

4.1 Reserved and unassigned values ... 9 43
4.2 Byte ordering ... 9 44

5 Assumptions .. 9 45
5.1 Underlying Memory Mapping .. 9 46
5.2 Multiple Instances ... 9 47
5.3 Resets and Errors ... 10 48
5.4 Notifications (Interrupts) .. 10 49
5.5 Packet Sizes, Types, and Packet Flow ... 10 50
5.6 Security ... 11 51

6 Basic Architecture Concept ... 11 52
7 MMBI Data Structures ... 12 53

7.1 MMBI Capability Descriptor .. 13 54
7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer .. 15 55

7.2.1 Variable Packet Size Circular Buffer Descriptor .. 15 56
7.2.2 Host Read-Write Structure ... 17 57
7.2.3 Host Read-Only Structure .. 18 58

8 Runtime Flows ... 20 59
8.1 MMBI Interface Initialization and Reset .. 20 60

8.1.1 Initialization of Descriptor Structures after Power Up .. 20 61
8.1.2 Interface States and Graceful Reset.. 21 62
8.1.3 Ungraceful Reset Considerations .. 27 63

8.2 Calculation of Filled Space and Empty Space in Circular Buffer .. 28 64
8.3 Device Readiness and Communication Pause .. 28 65
8.4 Packet Transfer ... 30 66
8.5 Interrupts (Optional) .. 31 67

9 Multi-Protocol Packet Format .. 31 68
ANNEX A (informative) Notations ... 33 69
ANNEX B (informative) Change log .. 34 70

 71

MMBI Specification DSP0282

4 Published Version 1.0.0

Figures 72

Figure 1 – Multiple MMBI Instances .. 10 73
Figure 2 – MMBI Interface Concept Overview .. 12 74
Figure 3 – MMBI Data Structure Relationships... 13 75
Figure 4 – MMBI Capability Descriptor Layout ... 14 76
Figure 5 – MMBI Interface States ... 24 77
Figure 6 – Sample MMBI Reset by Host ... 25 78
Figure 7 – Sample MMBI Reset by BMC .. 27 79
Figure 8 – Filled and Empty Space in Circular Buffers ... 28 80
Figure 9 – Sample MMBI Device Pause Sequences .. 29 81
 82

Tables 83

Table 1 – MMBI Capability Descriptor Structure (MMBI_Desc) .. 14 84
Table 2 – Buffer Type Dependent Descriptor for BUFT=0001b (VPSCB Descriptor) 16 85
Table 3 – MMBI Host Read-Write Structure (Host_RWS) .. 18 86
Table 4 – MMBI Host Read-Only Structure (Host_ROS) .. 19 87
Table 5 – MMBI Interface States .. 22 88
Table 6 – Multi-Protocol Packet Format .. 32 89
 90

DSP0282 MMBI Specification

Version 1.0.0 Published 5

Foreword 91

The Memory-Mapped BMC Interface (MMBI) Specification (DSP0282) was prepared by the DMTF PMCI 92
Working Group. 93

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 94
management and interoperability. 95

This version is the first version of this document. Future changes will be detailed in the change log in 96
ANNEX B. 97

Acknowledgments 98

The DMTF acknowledges the following individuals for their contributions to this document: 99

Editors: 100

• Janusz Jurski – Intel Corporation 101
• Richard Marian Thomaiyar – Intel Corporation 102

DMTF Contributors: 103

• Scott Phuong – Cisco 104
• Patrick Caporale – Lenovo 105
• Edward Newman – Hewlett Packard Enterprise 106
• William Scherer III – Hewlett Packard Enterprise 107
• Ted Emerson – Hewlett Packard Enterprise 108
• Hemal Shah – Broadcom Inc. 109
• Bob Stevens – Dell Inc. 110
• Ramesha He – Dell Inc. 111
• Rama Bisa – Dell Inc. 112
• Derek Roberts – Xilinx Inc. 113
• Mahesh Natu – Intel Corporation 114
• John Guan – Inspur 115
• Tiffany Kasanicky – Intel Corporation 116
• Samer El-Haj-Mahmoud – ARM Inc. 117
• Chandra Nelogal – Dell Inc. 118

MMBI Specification DSP0282

6 Published Version 1.0.0

Introduction 119

The Memory-Mapped BMC Interface (MMBI) specification defines the mechanisms facilitating 120
communication between platform management components, typically host software and a BMC 121
(baseboard management controller). Using the shared memory concept, this document defines a protocol 122
that allows packet exchanges between host software and BMC. The described memory mapping makes it 123
possible for both boot code (such as UEFI firmware), as well as OS-level software (such as OS kernel or 124
drivers) to establish efficient communication with BMC at bandwidth and latency limited by the underlying 125
memory mapping mechanisms. 126

DSP0282 MMBI Specification

Version 1.0.0 Published 7

1 Scope 127

This document provides the specifications for the Memory-Mapped BMC Interface (MMBI). MMBI 128
assumes an underlying memory mapping capability, such as PCIe MMIO/BAR, allowing host software to 129
efficiently access data stored in BMC memory. MMBI defines generic packet-based communication 130
mechanism (based on circular buffers), and specific protocols, such as MCTP, should be covered in other 131
documents. 132

2 Normative references 133

The following referenced documents are indispensable for the application of this document. For dated or 134
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 135
For references without a date or version, the latest published edition of the referenced document 136
(including any corrigenda or DMTF update versions) applies. 137

DMTF, DSP0236, Management Component Transport Protocol (MCTP) Base Specification 1.3, 138
https://www.dmtf.org/standards/published_documents/DSP0236_1.3.pdf 139

DMTF, DSP0239, Management Component Transport Protocol (MCTP) IDs and Codes 1.10, 140
https://www.dmtf.org/standards/published_documents/DSP0239_1.10.pdf 141

DMTF, DSP0276, Secured Messages using SPDM over MCTP Binding Specification 1.1.0, 142
https://www.dmtf.org/standards/published_documents/DSP0276_1.1.0.pdf 143

DMTF, DSP0284, Management Component Transport Protocol (MCTP) Memory-Mapped BMC Interface 144
(MMBI) Transport Binding Specification 1.0, 145
https://www.dmtf.org/standards/published_documents/DSP0284_1.0.pdf 146

IANA, Internet Assigned Numbers Authority – Private Enterprise Numbers (PEN), 147
https://www.iana.org/assignments/enterprise-numbers 148

3 Terms and definitions 149

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 150
are defined in this clause. 151

The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), 152
“may”, “need not” (“not required”), “can” and “cannot” in this document are to be interpreted as described 153
in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, 154
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 155
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 156
alternatives shall be interpreted in their normal English meaning. 157

The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as 158
described in ISO/IEC Directives, Part 2, Clause 6. 159

The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC 160
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)” do 161
not contain normative content. Notes and examples are always informative elements. 162

Refer to Management Component Transport Protocol (MCTP) Base Specification for the terms and 163
definitions that are used across the MCTP specifications. 164

For the purposes of this document, the following terms and definitions apply. 165

https://www.dmtf.org/standards/published_documents/DSP0236_1.3.pdf
https://www.dmtf.org/standards/published_documents/DSP0239_1.10.pdf
https://www.dmtf.org/standards/published_documents/DSP0276_1.1.0.pdf
https://www.dmtf.org/standards/published_documents/DSP0284_1.0.pdf
https://www.iana.org/assignments/enterprise-numbers
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml

MMBI Specification DSP0282

8 Published Version 1.0.0

 166
ACK 167
Acknowledge 168

 169
B2H 170
BMC-to-Host 171

 172
BAR 173
Base Address Register 174

 175
CCT 176
Control Command Type 177

 178
Destination Device 179
Device receiving the MCTP packet over MMBI 180

 181
H2B 182
Host-to-BMC 183

 184
MMBI 185
Memory-Mapped BMC Interface 186

 187
MMIO 188
Memory-Mapped Input/Output 189

 190
NACK 191
Not acknowledge 192

 193
ROS 194
Read-Only Structure 195

 196
RWS 197
Read-Write Structure 198

 199
Source Device 200
Device sending the MCTP packet over MMBI 201

 202
SPDM 203
Security Protocol and Data Model 204

DSP0282 MMBI Specification

Version 1.0.0 Published 9

 205
VPSCB 206
Variable Packet Size Circular Buffer 207

4 Conventions 208

The conventions described in the following clauses apply to this specification. 209

4.1 Reserved and unassigned values 210

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other 211
numeric ranges are reserved for future definition by the DMTF. 212

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 213
(zero) and ignored when read. 214

4.2 Byte ordering 215

Unless otherwise specified, byte ordering of multi-byte numeric fields or bit fields is “Big Endian” (that is, 216
the lower byte offset holds the most significant byte, and higher offsets hold less-significant bytes). 217

5 Assumptions 218

5.1 Underlying Memory Mapping 219

The fundamental assumption in this specification is that there exists an underlying platform mechanism 220
allowing efficient memory sharing between the communicating entities (such as a host and a 221
management controller). PCIe MMIO is an example of such a mechanism. This specification defines the 222
packet transfer protocol on top of this assumed memory mapping layer. 223

Assumptions about the underlying layer are: 224

1) Memory mapping shall guarantee an error-free lossless channel. 225
2) The size of atomic operations is at least 4 bytes. 226
3) The order of operations must be preserved: writes must be visible to the other party in the order 227

they were executed by the sender; reads cannot be prefetched/cached; if interrupts are used, 228
they must also obey the order of operations. 229

5.2 Multiple Instances 230

This specification has been designed with the assumption that a single MMBI instance will serve 231
communication between the two communicating entities only (typically host software and management 232
controller firmware components) and so the interface is not shared between multiple communicating 233
entities. 234

Multiple components in the system, e.g., multiple host tenant / software agents communicating to a BMC, 235
can be supported using a plurality of MMBI interfaces (each being an independent instance of the 236

MMBI Specification DSP0282

10 Published Version 1.0.0

interface), located in different memory locations. Such MMBI instances shall operate independently as 237
shown in Figure 1: 238

BMC

Host

Host Software Component

BMC Firmware Component

Host Software Component

MMBI
Instance #1

MMBI
Instance #2

BMC Firmware Component

 239

Figure 1 – Multiple MMBI Instances 240

5.3 Resets and Errors 241

MMBI allows lossless communication as well as graceful reset/initialization on request from a 242
communicating party (in case of a reset of a software entity). However, MMBI does not provide 243
guaranteed delivery in case of ungraceful resets of the communicating parties. Applications that care 244
about data loss in such situations shall employ an ACK packet scheme to verify data reception by the 245
other party and handle the error if ACK is not received. 246

5.4 Notifications (Interrupts) 247

MMBI is designed to execute in both interrupt and polling mode. 248

The memory sharing capability may be accompanied by the ability to receive interrupts by the 249
communicating software entities. MMBI enables discovery and enables use of the optional interrupt 250
mechanism for efficient data exchange between communicating entities. If interrupts are used, it is 251
assumed that the interrupt delivery mechanism is reliable. 252

If interrupts are not available, a polling mode can be used. Platform designers can choose polling or 253
interrupt mode, based on their needs. 254

5.5 Packet Sizes, Types, and Packet Flow 255

MMBI allows variable packet sizes, with the maximum size dependent on the underlying physical layer’s 256
memory mapping capabilities. MMBI provides a discovery method allowing the communicating parties to 257
define and discover the circular buffer sizes, which limit the maximum packet sizes that can be 258
transmitted (fragmentation/reassembly is not supported by this version of MMBI protocol). The upper 259

DSP0282 MMBI Specification

Version 1.0.0 Published 11

layers must adhere to the discovered limits and, if necessary, handle fragmentation/reassembly 260
accordingly. 261

MMBI allows multiple packets (datagrams) to be in-flight. That is, the sender can place more than one 262
packet in the memory buffer even before they are consumed by the receiver. This enables asynchronous 263
operation of the communicating entities. Regardless of the number of packets in-flight, they are 264
guaranteed to arrive to the receiver in the FIFO order (note: upper layer can elect to process in same 265
order or in different order, which will not be guaranteed by the MMBI layer). Note that if multiple instances 266
of MMBI are in the system, they operate independently and no packet ordering guarantees exist between 267
them. 268

MMBI enables and defines discovery mechanisms to support the exchange of a variety of packet protocol 269
types, such as MCTP. Binding of these protocols to MMBI is defined in separate documents, such as 270
Management Component Transport Protocol (MCTP) Memory-Mapped BMC Interface (MMBI) Transport 271
Binding Specification. 272

5.6 Security 273

MMBI does not provide any security guarantees. Any authentication, integrity protection, and/or 274
encryption is to be implemented by the other layers of the protocol stack. For example, for secure 275
implementation of communication between the host and BMC using MMBI, Secured Messages using 276
SPDM over MCTP Binding Specification can be used. Another alternative can be host-based memory 277
protection mechanisms. 278

6 Basic Architecture Concept 279

The host and BMC use circular buffers to exchange data. One buffer is used to send data from the host to 280
the BMC and is referred to as H2B (Host-to-BMC). The other buffer is used for communication in the 281
opposite direction and is referred to as B2H (BMC-to-Host). The buffers are used to store packet data, 282
and they are accompanied by a descriptor structure. The descriptor is a data structure in the shared 283
memory used to store important capabilities and control information. These data structures are shown in 284
Figure 2 and are defined in detail in section 7. 285

MMBI Specification DSP0282

12 Published Version 1.0.0

BMC

BM
C

M
em

or
y

–
M

ap
pe

d
to

 H
os

t

Host

Host Software

MMIO

BMC Firmware

H2B
Circular
Buffer

B2H
Circular
 Buffer

GPIO, etc.

Interrupt

Interrupt

MMBI
Capability
Descriptor
Structure

 286

Figure 2 – MMBI Interface Concept Overview 287

7 MMBI Data Structures 288

Each instance of the MMBI interface is divided into sections as defined below: 289

• “BMC-to-Host” (B2H) region with substructure as follows: 290
o MMBI Capability Descriptor (MMBI_Desc Structure)—see section 7.1 for details 291
o Host_ROS (Host Read-Only Structure) —see section 7.2.3 for details 292
o BMC-to-Host Circular buffer (B2H Circular buffer) —see section 8 for details 293

• “Host-to-BMC” (H2B) region with substructure as follows: 294
o Host_RWS (Host Read-Write Structure) —see section 7.2.2 for details 295
o Host-to-BMC circular buffer (H2B Circular buffer) —see section 8 for details 296

 297

The format of the H2B and B2H circular buffers is a sequence of packets, and this format is referred to as 298
Variable Packet Size Circular Buffer (VPSCB). For VPSCB, the relationships between these data 299
structures and their main pointers are as presented in Figure 3. 300

DSP0282 MMBI Specification

Version 1.0.0 Published 13

MMBI_Desc (#0)

B2H H2B

B2H Base Addr

B2H Length

H2B Base Addr

H2B Length

Host_ROS

Host_ROS ptr

Interrupt Type Protocol Type

Host_RWS ptr

H2B Read Ptr

B2H Write Ptr

...

...

Host_RWS

B2H Read Ptr

H2B Write Ptr

...

Empty space
Packet

Packet

PacketPacket

Empty space Empty space

Empty space

 301

Figure 3 – MMBI Data Structure Relationships 302

Details of these data structures are presented in the following subsections. Note that the data structures 303
maintain 4-byte alignment for fields that need to be updated atomically. Packets in the circular buffers are 304
also aligned to 4-byte boundaries. 305

7.1 MMBI Capability Descriptor 306

MMBI Capability Descriptor is used to define the MMBI interface details. BMC updates this data structure 307
during initialization. Other than that, the BMC and host are not allowed to update it. The host only reads 308
this descriptor to understand the format of the MMBI data structures in memory and shall never write to 309
this data structure. The layout of the structure is presented in Figure 4 and described in Table 1. See also 310
section 8.1. 311

MMBI Specification DSP0282

14 Published Version 1.0.0

 312

Figure 4 – MMBI Capability Descriptor Layout 313

Table 1 – MMBI Capability Descriptor Structure (MMBI_Desc) 314

Byte(s) Description

0:5 MMBI Signature

“#MMBI$” in ASCII. When this signature is not present, the host SW should assume the absence
of MMBI.

6

[7:4] Reserved

[3:0] MMBI version

0001b – Implementations of MMBI described in this document shall indicate version 1 of MMBI.

7 [7:1] Reserved

[0] OS Use

Indicates if this MMBI interface is intended for OS use:

0b – OS should not use this MMBI interface as it is managed by other host software components
(UEFI BIOS, ACPI ASL code, etc.).

1b – This MMBI interface is intended for OS use.

8:11

[31:29] – Reserved

[28:0] B2H Buffer Base Address (B2H_BA)

B2H (BMC-to-Host) buffer base address expressed in 8-byte units as offset relative to the
beginning of the descriptor

Byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0

4
OS

Use

8

12

16

20

24

28

32

36

40

44

48

52
56
60

B2H Buffer Base Address (B2H_BA)

H2B Buffer Base Address (H2B_BA)

B2H Buffer Length (B2H_L)

H2B Buffer Length (H2B_L)

Host Read-Only Structure Pointer (H_ROS_P)

Reserved

Reserved

Reserved

Reserved

B2H_BA

H2B_BA

B2H_L

H2B_L

BMC Interrupt Location (BMC_Int_L) Reserved

BMC Interrupt Value (BMC_Int_V)
Reserved

Reserved

Reserved Reserved

Host Interrupt Value (H_Int_V) Reserved BMC Interrupt
Type (H_Int_T) BMC Interrupt Location (BMC_Int_L)

Reserved Host Interrupt
Type (H_Int_T) Host Interrupt Location (H_Int_L)

Reserved

Host Read-Write Structure Pointer (H_RWS_P)

Reserved

Reserved

H_ROS_P

H_RWS_P

Reserved Buffer Type
(BUFT)

$ M M B

I # Reserved MMBI version Reserved

Byte +0 Byte +1 Byte +2 Byte +3

DSP0282 MMBI Specification

Version 1.0.0 Published 15

Byte(s) Description

12:15 [31:29] – Reserved

[28:0] H2B Buffer Base Address (H2B_BA)

H2B (Host-to-BMC) buffer base address expressed in 8-byte units as offset relative to the
beginning of the descriptor

16:19 B2H Buffer Length (B2H_L)

The size of the B2H buffer (can represent up to 4GB)

20:23 H2B Buffer Length (H2B_L)

The size of the B2H buffer (can represent up to 4GB)

24 [7:4] Reserved

[3:0] Buffer Type (BUFT)

Indicates the type of data structures in H2B and B2H buffers. The following values are defined:

0001b – MMBI Variable Packet Size Circular Buffers (VPSCB) v1 (see section 7.2)

Other values are reserved.

25:31 Reserved

32:52 Buffer Type Dependent Descriptor

The definition of this field is dependent on the BUFT field value:

If BUFT=0001b (VPSCB), Table 2 in section 7.2 defines the format of these bytes and the packet
format in circular buffers is defined in section 9

56:63 Reserved

 315

7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer 316

This section describes data structures used when the communication between BMC and host SW 317
happens according to the VPSCB Buffer Type (BUFT=0001b). 318

7.2.1 Variable Packet Size Circular Buffer Descriptor 319

Variable Packet Size Circular Buffer Descriptor is part of the MMBI_Desc structure. Its access rules are 320
the same as MMBI_Desc: 321

• The BMC updates this data structure during MMBI interface initialization. 322
• Neither the BMC nor the host are allowed to update it at any other time. 323

MMBI Specification DSP0282

16 Published Version 1.0.0

Table 2 – Buffer Type Dependent Descriptor for BUFT=0001b (VPSCB Descriptor) 324

Byte(s) Description

0:3

[31:29] – Reserved

[28:0] Host Read-Only Structure Pointer (H_ROS_P)

Points to the Host_ROS structure. The base address is expressed in 8-byte units as the offset relative
to beginning of the descriptor

4:7 [31:29] – Reserved

[28:0] Host Read-Write Structure Pointer (H_RWS_P)

Points to the Host_RWS structure. The base address is expressed in 8-byte units as the offset relative
to beginning of the descriptor

8 [7:3] – Reserved

[2:0] Host Interrupt Type (H_Int_T)

Defines how the BMC interrupts the host. This is an informative field from the host’s perspective with
the intention to keep the BMC and host in sync.

0 – no interrupt / polling

1 – PCIe interrupt (bus specific)

2 – physical pin (GPIO)

3 – eSPI Virtual Wire

Other values are reserved

9 Host Interrupt Location (H_Int_L)

If H_Int_T = 0: reserved

If H_Int_T = 1: for PCIe, indicates the PCIe interrupt message number

If H_Int_T = 2: pin number

If H_Int_T = 3: eSPI Virtual Wire Index number

Reserved otherwise

10:12 Reserved

13 Host Interrupt Value (H_Int_V)

If H_Int_T = 3: eSPI Virtual Wire data value

Reserved otherwise

DSP0282 MMBI Specification

Version 1.0.0 Published 17

Byte(s) Description

14 [7:3] – Reserved

[2:0] BMC Interrupt Type (BMC_Int_T)

Defines how the BMC wants to be interrupted:

0 – no interrupt triggering by the host

1 – relative memory space address (offset defined in the BMC_Int_L field)

2 – Inband interrupt (bus specific—such as PCIe MSI or virtual legacy wire)

Other values – reserved

15:18 BMC Interrupt Location (BMC_Int_L)

If BMC_Int_T = 1, memory address–offset relative to the beginning of the MMBI Capability Descriptor
base address

Otherwise reserved

19:22 Reserved

23 BMC Interrupt Value (BMC_Int_V)

If BMC_Int_T = 1, this field indicates the value to be written at the given address to trigger an interrupt.

Otherwise reserved

7.2.2 Host Read-Write Structure 325

The host’s RW Structure Pointer in the above structure points to the Host_RWS structure, which is shown 326
in Table 1. This structure is accessed as follows: 327

• It is initialized by the BMC to the default values. 328
• The host updates this structure during normal communication—it is read-writeable for the host. 329
• The BMC is not allowed to write to this structure during normal communication—it should treat 330

this structure as read-only (any kind of hardware-based enforcement of the read-only behavior is 331
out of scope of this specification). 332

MMBI Specification DSP0282

18 Published Version 1.0.0

Table 3 – MMBI Host Read-Write Structure (Host_RWS) 333

Byte(s) Description

0:3 [31:2] H2B Write Pointer (H2B_WP)

Bits [31:2] of the offset where the host can write the next data in the H2B circular buffer, counted from
the beginning of the H2B buffer represented in 4-byte alignment.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The BMC uses this pointer to determine how many bytes of valid data are present in the Circular
Buffer (by comparing it with the H2B_RP offset).

The host shall advance the pointer once data is written to the Circular Buffer and shall update this
pointer to mark the next available offset.

Note: The host shall not overwrite the data not read by the BMC, as indicated by the H2B_RP.

[1] Host Interface Up (H_UP)

1 indicates that the host side of the interface is up and running, which means that the data structures
can be used by the BMC.

[0] Host Reset Request (H_RST)

Setting this flag to 1 will initiate a reset sequence to get the circular buffers into a known good state
(see section 8.1 for more information).

4:7 [31:2] B2H Read Pointer (B2H_RP)

Bits [31:2] of the offset where the host reads data from the B2H circular buffer, counted from the
beginning of the B2H buffer represented in 4-byte alignment.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The BMC uses this pointer to determine how much of data is read by the host. Comparing this with the
B2H Write Pointer (B2H_WP) will provide how much space is left to write the data.

The host shall only advance the pointer once the data available in B2H is read by the host.

[1] Reserved

[0] Host Ready (H_RDY)

0 indicates that the host is performing some tasks that keep it busy, and so it may be unresponsive.
However, the BMC can use the data structures and, for example, put data into the buffers as long as
H_UP = 1.

1 indicates that the host is ready to exchange data (see section 8.1 for more information).

7.2.3 Host Read-Only Structure 334

Host RO Structure Pointer points to Host_ROS structure. The host is only allowed to read this structure 335
(never write). Any kind of hardware-based enforcement of the read-only behavior is out-of-scope of this 336
specification. This structure is initialized by the BMC to the default values and later updated by BMC 337
during normal communication—it is read-writeable for the BMC. 338

DSP0282 MMBI Specification

Version 1.0.0 Published 19

Table 4 – MMBI Host Read-Only Structure (Host_ROS) 339

Byte(s) Description

0:3
[31:2] B2H Write Pointer (B2H_WP)

Bits [31:2] of the offset where the BMC can write the next data in the B2H circular buffer,
counted from the beginning of the B2H buffer.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The host uses this pointer to determine how many bytes of valid data are present in the
Circular Buffer (by comparing it with B2H_RP offset)

The BMC shall advance the pointer once data is written to the Buffer to mark the next
available offset.

Note: BMC shall not overwrite the data not read by host, as indicated by the B2H_RP.

[1] BMC Interface Up (B_UP)

1 indicates that the BMC side of the interface is up and running which means that the data
structures are initialized and can be used

[0] BMC Reset Request (B_RST)

Setting this flag to 1 will initiate a reset sequence to get the circular buffers into a known
good state (see section 8.1 for more information).

4:7

[31:2] H2B Read Pointer (H2B_RP)

Bits [31:2] of the offset where the host reads data from the H2B circular buffer, counted from
the beginning of the H2B buffer.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The host uses this pointer to determine how much of data is read by the BMC. Comparing
this with the H2B write pointer will provide how much space is left to write.

BMC shall only advance the pointer once the data available in H2B is read by the BMC.

[1] Reserved

[0] BMC Ready (B_RDY)

0 indicates that the BMC is performing some tasks that keep it busy and so it may be
unresponsive – host however can use the data structures and, for example, put data into
the buffers as long as B_UP = 1

1 indicates that the BMC is ready to exchange data (see section 8.1 for more information).

MMBI uses two circular buffers: H2B and B2H. Each buffer is a memory range defined in the descriptor 340
with the following access: 341

• H2B (Host-to-BMC buffer) is RW for the host and RO for the BMC. 342
• B2H (BMC-to-Host buffer) is RO for the host and RW for the BMC. 343

MMBI Specification DSP0282

20 Published Version 1.0.0

The Read Pointer and Write Pointer are used to indicate the read and write location in the buffer. For 344
each read or write the pointer shall be advanced. It means pointer increment with a rollover at the buffer 345
size. 346

These pointers, along with the Buffer Length fields (B2H_L or H2B_L), are used to calculate the number 347
of filled bytes to read or the number of empty bytes available for write. 348

The circular buffers will be used to send packets of arbitrary size. A packet may require multiple memory 349
reads and/or write transfers. 350

8 Runtime Flows 351

8.1 MMBI Interface Initialization and Reset 352

This section describes the steps to allow the BMC to complete the initialization of the data structures and 353
indicating when both sides of communication are ready to exchange data. 354

The goal of the reset, on the other hand, is to reinitialize the data structures when at least one side wants 355
a clean start, which may be due to unexpected device events, malfunction, error, etc. It may also be used 356
to reinitialize the data structures after, for example, a BMC firmware update in which the data structure 357
needs some new values (e.g., when the circular buffer size changes after the firmware update). A 358
graceful reset follows the state diagram presented in Figure 5, and it guarantees that MMBI protocol layer 359
does not drop any packets (note that other protocol layers may still be unable to guarantee delivery). 360

The reset sequence is also automatically initiated when hardware errors lead to all-ones or all-zeros 361
memory reads, as is typical with some media. This is thanks to the fact that when all the flags are zeros or 362
are all ones, it indicates an initialization or transition to initialization states. Such unexpected resets do not 363
follow the handshake protocol, and so are ungraceful and may lead to packet losses. 364

These flags are used to indicate the BMC’s status as related to initialization and reset: 365

• BMC Interface Up (B_UP) 366
• BMC Reset Request (B_RST) 367

Similar flags are used to indicate the host’s status: 368

• Host Interface Up (H_UP) 369
• Host Reset Request (H_RST) 370

All these flags are used in combination to achieve the proper handshake mechanism between the host 371
and BMC during initialization or reset. 372

8.1.1 Initialization of Descriptor Structures after Power Up 373

The BMC must initialize the expected content of the MMBI data structures (see section 7) during power 374
up and make the shared memory available to the host. Initialization is expected to complete before the 375
host software accesses these structures so that the host can find the MMBI Capability Descriptor 376
(MMBI_Desc) using the MMBI signature bytes. MMBI structures and buffers must always remain 377
available in the shared memory when the host is using the MMBI interface. 378

During the initial accesses after the host’s power up or reset, the host’s software is expected to verify if 379
the content of the MMBI version and MMBI signature are as expected. If the above requirements are met, 380
the host is expected to check the interface state. 381

If the host’s software does not find the proper MMBI Capability Descriptor (MMBI_Desc) content at the 382
expected location, the host should consider the MMBI as not present or, optionally, it may implement a 383

DSP0282 MMBI Specification

Version 1.0.0 Published 21

wait option with a timeout. Such a timeout mechanism is system-dependent and is out of scope of this 384
specification. 385

If the MMBI signature and MMBI version fields match, but the size and location of the buffers cannot be 386
fulfilled by the host, it shall indicate the initialization mismatch error by transitioning to the Initialization 387
Mismatch state as described below. With this indication, BMC may consider the interface as inoperable or 388
attempt to reinitialize the MMBI_Desc structure with, for example, a smaller buffer size. Before updating 389
the data structure content, BMC shall first clear the B_UP flag and then clear the H_RST flag to return 390
back to the Initialization in Progress state. Such attempts to repair the situation are system-dependent 391
and are out of scope of this specification. 392

8.1.2 Interface States and Graceful Reset 393

When _RST and _UP are both set on one side of communication, it means the entity is requesting a reset 394
sequence. When B_RST = H_RST = B_UP = H_UP = 1, it means that both entities are ready to perform 395
the reset sequence (in fact, the host is just waiting for the BMC to do all the initialization). 396

All the states are summarized in Table 5. The “Host Write Access” and “BMC Write Access” columns 397
define write-access restrictions to the data structures by host and BMC, respectively. There are no read 398
restrictions for the BMC and host. Note that the host is expected to re-read the data structure contents 399
after initialization is completed. 400

MMBI Specification DSP0282

22 Published Version 1.0.0

Table 5 – MMBI Interface States 401

B_UP B_RST H_UP H_RST State Description Host Write
Access

BMC Write
Access

0 0 0 0

Initialization in Progress

The BMC is initializing the data structures.

The host can only monitor the data structures,
waiting for B_UP = 1 and B_RST = 0 flags.

Host not
allowed to
write to any
MMBI
structures

BMC
allowed to
write to any
MMBI
structures

1 0 0 0

Initialization Completed

The BMC has completed initialization of the data
structures and is ready to exchange data—
waiting for the host to be ready. The host should
re-read the MMBI_Desc structure and any
dependent structures.

During this state, the BMC is allowed to deposit
packets into the circular buffer.

Host
allowed to
write to
MMBI
structures
as per
section 7

BMC
allowed to
write to
MMBI
structures
as per
section 7

1 0 1 0
Normal Runtime

Both the BMC and host use the data structures
and the circular buffers for data exchanges.

Host
allowed to
write to
MMBI
structures
as per
section 7

BMC
allowed to
write to
MMBI
structures
as per
section 7

1 1 1 0

Reset Request by BMC

The BMC is requesting reset—waiting for the
host to notice the request.

When the host notices the request, it should
consume the data from the B2H (if any) and shall
set H_RST flag as an ACK and wait for the
initialization to complete (B_UP = 1 and
B_RST = 0 status).

Host
allowed to
write to
MMBI
structures
as per
section 7

BMC
allowed to
write to
MMBI
structures
as per
section 7

1 0 1 1

Reset Request by Host

The host is requesting reset—waiting for the
BMC to notice the request and reinitialize the
interface. When the host sets the H_RST flag, it
shall not perform any further updates in the
MMBI data structures but shall only wait for the
initialization to be completed by BMC (B_UP = 1
and B_RST = 0 status).

When the BMC notices the request, it should
consume the data from the B2H (if any) and shall
set B_RST flag as an ACK.

Host not
allowed to
write to any
MMBI
structures

BMC
allowed to
write to any
MMBI
structures

1 1 1 1

Reset ACKed

The host and BMC are ready to perform graceful
interface reset. This is a transient state when the
host is waiting for the BMC to complete the
initialization. The host is not allowed to write to
MMBI data structures. The BMC is expected to
clear the B_UP and B_RST flags (in this order)
and reinitialize all the data structures.

Host not
allowed to
write to any
MMBI
structures

BMC
allowed to
write to any
MMBI
structures

DSP0282 MMBI Specification

Version 1.0.0 Published 23

B_UP B_RST H_UP H_RST State Description Host Write
Access

BMC Write
Access

0 1 1 1

Transitioning to Initialization

Transient state after the “Reset ACKed” state.
The host is not allowed to write to MMBI data
structures.

Host not
allowed to
write to any
MMBI
structures

BMC
allowed to
write to any
MMBI
structures

0 1 1 0
Temporary Transition States

These states may be observed during
initialization when the BMC updates the data
structures (reinitialization of all the data
structures is not an atomic operation).

They are unexpected during normal operation
and if they happen it means that MMBI structures
have been corrupted. The BMC may initialize the
interface or stop using MMBI and report a fatal
error.

Host not
allowed to
write to any
MMBI
structures

BMC
allowed to
write to any
MMBI
structures

0 1 0 1

0 1 0 0

0 0 0 1

1 0 0 1

Initialization Mismatch

The host causes transition into this state from
Initialization Completed when it is unable to use
the interface due to unsupported content in the
MMBI Capability Descriptor structure.

Host not
allowed to
write to any
MMBI
structures

BMC
allowed to
write to any
MMBI
structures

1 1 0 1 Unexpected States

These states shall never happen:

• If the BMC reads this state, it indicates
that the host does not follow MMBI
protocol or some other corruption
happened—the BMC should initialize
the interface or it may stop using MMBI
and report a fatal error, depending on
system policy.

• If the host reads this state, it may wait
for the reinitialization to complete or
stop using MMBI and report a fatal
error, depending on system policy.

1 1 0 0

0 0 1 0

0 0 1 1

The expected state transitions are presented in Figure 5: 402

MMBI Specification DSP0282

24 Published Version 1.0.0

 403

Ungraceful reset
(entry from any other state)

Initialization
in Progress

Initialization
Completed

Normal
runtime, incl.

halt

Reset
Request by

BMC

Reset
Request by

Host

Power-up or
error

Reset ACKed

Transitioning
to

Initialization

Initialization
Mismatch

 404

Figure 5 – MMBI Interface States 405

The host shall check the MMBI Interface state before writing any new data to the H2B buffer (as 406
described in Table 5, the host is only allowed to transfer new data in the Normal Runtime state, i.e., 407
B_UP=1 & B_RST=0 & H_UP=1 & H_RST=0). Similarly, the BMC shall check the status before writing 408
any new data to the B2H buffer. These status flags are conveniently located in the B2H_WP or H2B_WP 409
bytes which the host or BMC, respectively, read anyway during any use of the circular buffers. 410

DSP0282 MMBI Specification

Version 1.0.0 Published 25

8.1.2.1 Host Initiating Graceful Reset Sequence 411

Assuming Normal Runtime state, the host shall use the following sequence to request MMBI interface 412
reset: 413

1) The host sets H_RST = 1 to initiate the reset flow. If BMC interrupts are enabled, the host notifies 414
the BMC. 415

a. In response, the BMC is expected to set B_RST = 1, which indicates the transition to the 416
Reset ACKed state. If host interrupts are enabled, the host is expected to be notified 417
about the update (or else it uses polling). At this point, the BMC reinitializes all the data 418
structures. 419

2) The host waits for B_UP = 1 and B_RST = 0 (and H_UP = H_RST = 0), which indicates the 420
transition to the Initialization Completed state. Host interrupts are not used at this stage until 421
H_UP is set by host software. 422

3) The host transitions to the Normal Runtime state by setting H_UP = 1. The host is also expected 423
to set the B_RDY flag, indicating that it can receive and handle new packets—see section 8.3. If 424
BMC interrupts are enabled, the host notifies the BMC after the flags are updated. 425

Figure 6 presents a sample flow: 426

 427

Figure 6 – Sample MMBI Reset by Host 428

MMBI Specification DSP0282

26 Published Version 1.0.0

8.1.2.2 BMC Initiating Graceful Reset Sequence 429

Assuming Normal Runtime state, the BMC shall use the following sequence to request MMBI interface 430
reset: 431

1) The BMC sets B_RST = 1 to initiate the reset flow. If host interrupts are enabled, the BMC 432
notifies the host. 433

2) The BMC waits for H_UP = 1 and H_RST = 1, which indicates the transition to the Reset ACKed 434
state. If BMC interrupts are enabled, the BMC is expected to be notified about the update (or else 435
BMC uses polling). 436

3) The BMC clears the B_UP flag (B_RST still set). Host interrupts are no longer enabled. 437

4) The BMC clears the H_UP and H_RST flags (this may cause transient states to be observed by 438
the host). 439

5) The BMC clears the B_RST flag. 440

6) The BMC reinitializes all the data structures. 441

7) The BMC sets B_UP = 1. Host interrupts are not used at this stage until H_UP is set by host 442
software. 443

8) The BMC waits for the host to set H_UP = 1. If BMC interrupts are enabled, the BMC is expected 444
to be notified about the update. 445

Note that the BMC is also expected to set the B_RDY flag, typically in step 7, indicating that it can receive 446
and handle new packets—see section 8.3. 447

Figure 7 presents a sample flow. 448

DSP0282 MMBI Specification

Version 1.0.0 Published 27

BMC
Host

Normal Runtime:
B_UP = 1
B_RST = 0

Normal Runtime:
H_UP = 1
H_RST=0

Reset Request by BMC:
B_UP = 1 B_RST = 1

BMC requests reset; stops sending new packets

Reset ACKed:
H_UP = 1
H_RST = 1

Host uses MMBI to send/receive packets

Transitioning to Init:
B_UP = 0
B_RST = 1

BMC-to-Host Interrupt or polling

BMC uses MMBI to receive remaining packets

Initialization:
B_UP = H_UP = 0

B_RST = H_RST = 0

Initialization Completed:
B_UP = 1
B_RST = 0

Data structure reset

Normal Runtime:
H_UP = 1
H_RST = 0

BMC-to-Host - polling by host

Host uses MMBI to send/receive packets

BMC uses MMBI to receive packets

 449

Figure 7 – Sample MMBI Reset by BMC 450

8.1.3 Ungraceful Reset Considerations 451

If an ungraceful reset/crash happens, MMBI does not guarantee delivery. However, provisions are 452
present in the MMBI design to handle the following scenarios: 453

1. In the case of a BMC FW-only reset (HW continues to work, memory content, including 454
buffers stay intact in shared memory and accesses are still handled by HW): the host will still 455
see the MMBI in the normal state and write to MMBI Circular buffers to deposit or read data 456
as long as there is any space available in the buffers. In this situation, host may timeout 457
waiting for a response but this is handled by higher layers above MMBI. 458

2. BMC HW reset (buffers are wiped and MMIO mechanisms are broken): the host will see 459
errors on reads/writes and must handle them as per host-specific mechanisms. Additionally, 460
MMBI encoding of status in B_UP, B_RST, H_UP, & H_RST is such that all-zeros or all-ones 461
are recognized as transient states (see Table 5). So, even if there would be no other 462
mechanisms in the system, the host would still recognize this as an error and would have to 463
wait for reinitialization by the BMC (the host is not allowed to write to the buffers in the 464
transient state, i.e., until the data structures are reinitialized by BMC FW). 465

3. Unexpected host reset (SW or HW reset is the same outcome): the host’s unexpected reset 466
will leave the data structures intact in BMC memory, so the BMC can still read the data from 467
the buffers. Assuming the BMC understands the host’s status via other mechanisms, the 468
BMC can take informed decisions about how to respond to such situations. 469

MMBI Specification DSP0282

28 Published Version 1.0.0

In all the above cases, MMBI data structures can be reinitialized after the reset to allow a clean restart. 470

8.2 Calculation of Filled Space and Empty Space in Circular Buffer 471

The procedure for calculating the number of filled bytes in a circular buffer is analogous for both the H2B 472
and B2H buffers: the difference between the write pointer and read pointer indicates the amount of valid 473
data, accounting for the rollover at the end of the buffer. The write pointer cannot advance beyond the 474
read pointer, accounting for the rollover at the end of the buffer. 475

The following steps allow calculation of the number of filled slots in a circular buffer: 476

1. The write and read pointers must start with zero after initialization. Since read pointer = write 477
pointer, there is no valid data/packets in the buffer on initialization. 478

2. Once data is written to the buffer, the source (the host or BMC) will advance the write buffer 479
pointer. 480

3. Read pointer is advanced once data is read/consumed by the receiver (the host or BMC). 481

4. Rollover: when the pointers reach the maximum offset within the buffer during writing/reading, 482
data must be written/read starting back at zero offset, and the pointers roll over accordingly. 483

 484

Figure 8 – Filled and Empty Space in Circular Buffers 485

8.3 Device Readiness and Communication Pause 486

In addition to the reinitialization or reset states, the MMBI interface also uses the H_RDY and B_RDY 487
flags to indicate the device’s readiness to consume incoming packets and handle them. When the host or 488
BMC are ready to receive and handle packets, they set the B_RDY or H_RDY flags, respectively. If a 489
B_RDY or H_RDY flag is clear but the B_UP and H_UP flags are set, it means that the MMBI interface is 490
up but the target device is not ready to consume and handle new packets. When the interface is up, it 491
means that the data structures are ready to accept new packets so the sender can: 492

• wait for the receiver to become ready before writing new packets to the buffer—this is 493
important if the sender expects an action to be taken by the receiver, such as providing a 494
response 495

DSP0282 MMBI Specification

Version 1.0.0 Published 29

• deposit new packets to the buffer in order for the receiver to consume them later—this 496
capability may be used if the sender does not expect a response from the receiver; for 497
example, when the sender needs to deposit some logs in the shared memory 498

An example flow when BMC firmware / host software undergoes a reset and indicates its non-readiness 499
during a reboot is presented in Figure 9. Note that in this example it is assumed that the MMBI data 500
structures are still intact in shared memory during the reset. 501

BMC Host

B_UP = 0
B_RDY=0

B_UP = 0
B_RDY=0

AC cycle boot / First time init

B_UP = 1
B_RDY = 0

Initializes MMBI descriptor & ready

H_UP = 1
H_RDY = 0

Not ready

H_UP = 1
H_RDY = 1

Transition to ready

B_UP = 1
B_RDY = 1

Transition to ready

BMC FW pause

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 1

B_UP = 1
B_RDY = 1

BMC booted & ready

Transactions can continue from here

Transactions should be halted

B_UP = 1
B_RDY = 1

B_UP = 1
B_RDY = 0

BMC reboot

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 0

H_UP = 1
H_RDY = 1

B_UP = 1
B_RDY = 1

Transactions can continue from here

Transactions should be halted

B_UP = 1
B_RDY = 1

B_UP = 1
B_RDY = 1

Host SW resets

Host SW pause

Host SW init

 502

Figure 9 – Sample MMBI Device Pause Sequences 503

MMBI Specification DSP0282

30 Published Version 1.0.0

8.4 Packet Transfer 504

This flow describes the host-to-BMC flow that shall be followed to send a packet. An analogous flow shall 505
be followed to send packets in the opposite direction (swap BMC and host in the description and use B2H 506
buffer instead): 507

1) Host software reads the read and write pointers (H2B_RP and H2B_WP) to determine the 508
number of empty spaces available in its circular buffer. 509

a. If there is not enough empty space available in the host’s circular buffer, the host waits 510
until there is room in the host’s circular buffer. This is done either by polling or waiting for 511
an interrupt. 512

b. Host software shall also verify that B_UP = 1 & B_RST = 0 before any packet transfers. If 513
this is not the case, it shall follow the reset process as defined in section 8.1. Note that 514
the host may decide to delay packet transfer depending on B__RDY state and its policy. 515

2) Once there is enough empty space available in the circular buffer, the host writes the packet into 516
the host’s circular buffer. To accomplish this, the host sequentially writes data at the write pointer 517
location but not exceeding the length of the buffer (H2B_L). When it reaches the maximum 518
address of the buffer, it shall continue writing the packet from the buffer base address (H2B_BA). 519
This process shall never overflow the buffer by advancing beyond the H2B_RP. 520

3) Once the packet write is complete, the host updates the write pointer value in H2B_WP. 521

4) In Interrupt-enabled mode, the BMC firmware is interrupted: 522

a. If BMC_Int_T = 1, the host uses the BMC Interrupt Info (BMC_Int_L) and BMC Interrupt 523
Value (BMC_Int_V) to interrupt the BMC FW. 524

b. Even if BMC_Int_T = 0, the BMC HW may also monitor H2B_WP and generate an 525
interrupt automatically. 526

c. Alternatively, a platform-specific method can be used to trigger the interrupt to BMC. 527

5) In polling mode, the BMC FW can continuously read the write pointer to see when it changes. In 528
interrupt mode, it is woken up by the BMC HW. 529

6) The BMC firmware reads the read/write pointers and determines the number of filled spaces in 530
the circular buffer available for reading. 531

a. If the circular buffer is empty, the host has not sent a packet. This interrupt is for another 532
reason, or it indicates that the host has completed reading the packet(s) last transmitted 533
by the BMC. 534

7) The BMC FW reads the buffer data written by the host. 535

8) The BMC FW updates the read pointer in B2H_RWS. This indicates to the host how much data 536
has been read by the BMC, and the host can use the portion of the buffer that has been read 537
already. 538

9) If host notifications are enabled, BMC FW shall generate an interrupt to the host. 539

10) When the host software gets interrupted or due to polling of H2B_RP, it can determine that the 540
BMC has consumed the data. The host can also poll instead of relying on interrupts. 541

DSP0282 MMBI Specification

Version 1.0.0 Published 31

8.5 Interrupts (Optional) 542

Interrupts, if enabled by the discovery/control mechanisms of MMBI, shall be triggered for the following 543
reasons (both for host software and BMC firmware): 544

• A packet has just been written to the circular buffer. 545

• A packet has just been read from the circular buffer. 546

• The host or BMC has initiated an interface reset sequence. 547

• The host or BMC has completed its portion of the interface reset sequence and normal operation 548
can begin. 549

An interrupt handler shall: 550

• check the status flags in the MMBI Capability Descriptor (MMBI_Desc)—if a reset is initiated, the 551
flow defined in section 8.1 shall be followed 552

• check if there is a packet in the circular buffer—this can be calculated as per section 8.2—and, if 553
there is data present in the buffer, the interrupt handler should initiate the packet receive flow, as 554
defined in section 8.4. 555

If there are multiple instances of the MMBI interface sharing the same interrupt, the interrupt handler shall 556
check all the instances for the reasons listed above. The order of such a check and interrupt affinity are 557
implementation-specific and out of scope of this specification. 558

9 Multi-Protocol Packet Format 559

If BUFT=0001b (VPSCB) and Packet Protocol Type = 0001b (Multi-protocol Type), the multi-protocol 560
MMBI packets will have the following defined header fields, as shown in Table 6. There is a 4-byte 561
alignment expectation, meaning that padding must be added if necessary for the packet length to be a 562
multiple of 4 bytes. 563

MMBI Specification DSP0282

32 Published Version 1.0.0

Table 6 – Multi-Protocol Packet Format 564

Byte(s) Description

0:2 [23:2] Packet Length (PKT_LEN)

The size of the packet, calculated as PKT_LEN+1 multiplied by 4 bytes (can represent up to 16MB
packet).

Values 0x3FFFFF and zero are reserved.

[1:0] Packet padding (PKT_PAD)

Number of padding bytes

3 [7:4] – Reserved

[3:0] – Packet type (PKT_TYPE)

Defines the format of the remaining bytes:

0100b – MCTP over MMBI (see Management Component Transport Protocol (MCTP) Memory-
Mapped BMC Interface (MMBI) Transport Binding Specification)

0101b – Vendor defined content as defined below

Other values are reserved.

4:N-1 Protocol type specific fields

This field depends on the PKT_TYPE value:

If PKT_TYPE = MCTP = 0100b: format follows MCTP over MMBI (see Management Component
Transport Protocol (MCTP) Memory-Mapped BMC Interface (MMBI) Transport Binding Specification)

If PKT_TYPE = Vendor defined = 0101b: the following vendor-defined format shall be used:

Byte(s) Description

4:7 Vendor IANA Enterprise Number encoded in little-endian format; for more
information about IANA Enterprise Numbers, please see Internet
Assigned Numbers Authority – Private Enterprise Numbers

8:N-1 Content defined by the vendor

(N:M) Padding (PAD) – optional

Padding bytes as defined in PKT_PAD field.

Note: padding is added to ensure packets are 4-byte aligned

 565

DSP0282 MMBI Specification

Version 1.0.0 Published 33

ANNEX A 566
(informative) 567

 568
 569

Notations 570

Examples of notations used in this document are as follows: 571

• 2:N In field descriptions, this will typically be used to represent a range of byte offsets 572
starting from byte two and continuing to and including byte N. The lowest offset is on 573
the left; the highest is on the right. 574

• (6) Parentheses around a single number can be used in packet field descriptions to 575
indicate a byte field that may be present or absent. 576

• (3:6) Parentheses around a field consisting of a range of bytes indicates the entire range 577
may be present or absent. The lowest offset is on the left; the highest is on the right. 578

• PCIe Underlined blue text is typically used to indicate a reference to a document or 579
specification called out in clause 2, “Normative References” or to items hyperlinked 580
within the document. 581

• [4] Square brackets around a number are typically used to indicate a bit offset. Bit offsets 582
are given as zero-based values (that is, the least significant bit offset = 0). 583

• [7:5] A range of bit offsets. The most significant bit is on the left, the least significant bit is 584
on the right. 585

• 1b A number consisting of 0s and 1s followed by a lowercase “b” indicates that the 586
number is in binary format. 587

• 0x12A A leading “0x” indicates that the number is in hexadecimal format. 588

MMBI Specification DSP0282

34 Published Version 1.0.0

ANNEX B 589
(informative) 590

 591
 592

Change log 593

Version Date Description
1.0.0 2023-08-25 Initial release.

 594

	Acknowledgments
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Conventions
	4.1 Reserved and unassigned values
	4.2 Byte ordering

	5 Assumptions
	5.1 Underlying Memory Mapping
	5.2 Multiple Instances
	5.3 Resets and Errors
	5.4 Notifications (Interrupts)
	5.5 Packet Sizes, Types, and Packet Flow
	5.6 Security

	6 Basic Architecture Concept
	7 MMBI Data Structures
	7.1 MMBI Capability Descriptor
	7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer
	7.2.1 Variable Packet Size Circular Buffer Descriptor
	7.2.2 Host Read-Write Structure
	7.2.3 Host Read-Only Structure

	8 Runtime Flows
	8.1 MMBI Interface Initialization and Reset
	8.1.1 Initialization of Descriptor Structures after Power Up
	8.1.2 Interface States and Graceful Reset
	8.1.2.1 Host Initiating Graceful Reset Sequence
	8.1.2.2 BMC Initiating Graceful Reset Sequence

	8.1.3 Ungraceful Reset Considerations

	8.2 Calculation of Filled Space and Empty Space in Circular Buffer
	8.3 Device Readiness and Communication Pause
	8.4 Packet Transfer
	8.5 Interrupts (Optional)

	9 Multi-Protocol Packet Format
	ANNEX A (informative) Notations
	ANNEX B (informative) Change log

