
1 Document Identifier: DSP0280

2 Date: 2022-10-05

3 Version: 1.0.0

4 PMCI Test Tools Interface and Design
Specification

5 Supersedes: None

6 Document Class: Normative

7 Document Status: Published

8 Document Language: en-US

9 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

10 Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

11 For information about patents held by third-parties which have notified DMTF that, in their opinion, such

patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

12 This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2022 DMTF. All rights reserved.

PMCI Test Tools Interface and Design Specification DSP0280

2 Published Version 1.0.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

13 CONTENTS

1 Foreword . 5

1.1 Acknowledgments . 5

2 Introduction . 6

2.1 Conventions. 6

2.1.1 Document conventions . 6

2.1.2 Reserved and unassigned values . 6

2.1.3 Byte ordering. 6

2.1.4 Test Interface data types . 6

2.1.5 Version encoding. 7

2.1.6 Notations . 8

3 Scope. 9

4 Normative references. 10

5 Terms and definitions . 11

6 Symbols and abbreviated terms . 13

7 PMCI Test Architecture . 14

8 PMCI Test Tools Interface Concepts . 16

8.1 Interface Scope . 16

8.2 Security . 16

8.2.1 Overview . 16

8.2.2 Security Requirements . 16

8.2.3 Security Best Practices . 17

8.3 Test Client and Test Service Interface . 17

8.3.1 Admin and Test Protocols Messages Flow . 18

8.3.2 Admin Messaging Protocol . 18

8.3.2.1 Client Session Establishment . 18

8.3.3 Test Messaging Protocol . 20

8.3.4 NC-SI Testing Considerations . 20

9 Test service behavior . 21

9.1 Device security arbiter . 21

9.2 Connection Watchdog . 21

9.3 Proxying of messages . 21

9.4 Collection of timing information . 22

9.5 Relaying of device-initiated messages to registered test clients . 22

10 Messages. 23

10.1 Message structure . 23

10.1.1 Test Service Wrapper . 23

10.1.1.1 Protocol Type . 23

10.1.1.2 Test Service Wrapper Flags . 24

10.1.2 Message Response Codes . 24

10.2 Admin Messages . 25

10.2.1 Command Codes . 25

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 3

10.2.2 Connect (0x00). 26

10.2.3 Disconnect (0x01) . 26

10.2.4 Query Capabilities (0x10). 27

10.2.5 Query Status (0x11) . 29

10.2.6 Query System Inventory (0x12) . 30

10.2.7 Configure Test Service (0x20) . 32

10.2.8 Configure Device Under Test (0x21) . 33

10.2.9 Configure Device Under Test Examples . 34

10.2.9.1 Example 1. 35

10.2.9.2 Example 2. 35

10.2.9.3 Example 3. 35

10.2.9.4 Example 4. 35

10.2.9.5 Example 5. 35

10.2.10 Register to Protocol (0x22). 36

10.2.11 Register Async Message Recipient (0x23). 37

10.2.12 Log Event (0x30) . 37

10.3 Vendor Defined Admin. 38

10.4 Test Messages. 39

10.4.1 Device-originated (Async) Protocol Messages . 39

10.5 Test Request and Response Messages . 40

10.6 Handling MCTP Packets . 41

10.7 Handling NC-SI over RBT Packets . 42

11 ANNEX A SystemInventory Example (informative) and Schema (normative) . 45

11.1 SystemInventory Example . 45

11.2 SystemInventory Schema . 54

12 ANNEX B (informative) Change log. 60

13 Bibliography . 61

PMCI Test Tools Interface and Design Specification DSP0280

4 Published Version 1.0.0

14 1 Foreword

15 The Platform Management Communications Infrastructure (PMCI) working group of the DMTF prepared the PMCI

Test Tools Interface and Design Specification (DSP0280). DMTF is a not-for-profit association of industry members that

promotes enterprise and systems management and interoperability. For information about the DMTF, see DMTF.

16 1.1 Acknowledgments

17 The DMTF acknowledges the following individuals for their contributions to this document:

18 Contributors:

• Daniil Egranov — Arm Ltd.

• Ira Kalman — Intel Corporation

• Justin King — IBM

• Guerney Hunt — IBM

• Manojkiran Eda — IBM

• Peter Lieber — Broadcom Inc.

• Greg Roth — Lenovo

• Bill Scherer — Hewlett Packard Enterprise

• Pat Schoeller — Intel Corporation

• Bob Stevens — Dell Technologies

• Tom Joseph — NVIDIA Corporation

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 5

https://www.dmtf.org/

19 2 Introduction

20 The PMCI Test Tools Interface and Design Specification defines messages, data objects, and sequences for testing PMCI

protocol implementations in devices over a variety of transport media. The description of message exchanges

includes secure registration of test clients, administrative messages for configuring test sessions, and specific

messages for testing individual messages in the various PMCI protocols. The message exchanges are demonstrated

via an example test client.

21 2.1 Conventions

22 The following conventions apply to this specification.

23 2.1.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

24 2.1.2 Reserved and unassigned values

25 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric ranges

are reserved for future definition by the DMTF.

26 Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

27 2.1.3 Byte ordering

28 Unless otherwise specified, for this specification byte ordering of multi-byte numeric fields or multi-byte bit fields is

"Little Endian" (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

29 2.1.4 Test Interface data types

30 The Test interface data types table lists the abbreviations and descriptions for common data types used in this

specification. These definitions follow DSP0240.

31 Test Tool Interface data types

PMCI Test Tools Interface and Design Specification DSP0280

6 Published Version 1.0.0

Data type Interpretation

ver8 Eight-bit encoding of the PTTI version number. Version encoding defines the encoding of the version number.

bitfield8 Byte with 8-bit field. Each of these bit fields can be defined separately.

bitfield16 Two-byte word with 16-bit field. Each of these bit fields can be defined separately.

sint8 8-bit signed integer.

sint16 16-bit signed integer.

sint32 32-bit signed integer.

sint64 64-bit signed integer.

uint8 8-bit unsigned integer.

uint16 16-bit unsigned integer.

uint32 32-bit unsigned integer.

uint64 64-bit unsigned integer.

bool8 8-bit boolean value. 0x00 is false; all other values are true

real32 32-bit real value, formatted per ANSI/IEEE Standard 754

real64 64-bit real value, formatted per ANSI/IEEE Standard 754

strASCII Null-terminated ASCII-encoded string.

strUTF8 Null-terminated UTF-8-encoded string.

enum8

A sequential enumeration, starting from 0 as the default, with mandatory numeric declarator. The number 8 indicates that the

enumeration is encoded using an 8-bit binary number.

Example: enum8 { CPU = 0, Memory = 1, Network = 2, Storage = 3 }

32 2.1.5 Version encoding

33 A field with data type ver8 encodes the supported version of the PTTI specification through a combination of Major

and Minor nibbles, encoded as follows:

Version Matches Incremented when

Major Major version field Protocol modification breaks backward compatibility.

Minor Minor version field Protocol modification maintains backward compatibility.

34 EXAMPLE:

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 7

35 Version 3.7 → 0x37

36 Version 1.0 → 0x10

37 Version 1.2 → 0x12

38 A Test Agent that supports Version 1.2 can interoperate with an older Test Agent that supports Version 1.0 only, but

the available functionality is limited to what specification Version 1.0 defines.

39 A Test Agent that supports Version 1.2 only and a Test Agent that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond the initial Connect admin message. If the Test Service detects that it is

incompatible, it must respond to the Connect message with an INCOMPATIBLE_VERSION message response code and

the Test Client must not communicate any further. If the Test Client receives a SUCCESS message response code from

the Connect message, but is unable to use the Test Service Version from the Connect response message, it shall issue

a Disconnect admin message and then cease communication with the Test Service.

40 2.1.6 Notations

41 This specification uses the following notations:

Notation Description

M:N

In field descriptions, this notation typically represents a range of byte offsets starting from byte M and

continuing to and including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the right.

1b A lowercase b after a number consisting of 0 s and 1 s indicates that the number is in binary format.

0x12A Hexadecimal, indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

PMCI Test Tools Interface and Design Specification DSP0280

8 Published Version 1.0.0

42 3 Scope

43 This specification describes messages and flows used to capture PMCI upper (data model) layer data from a device.

The data may be used to assess conformance of a device vendor firmware that implements PMCI protocols. This

document specifies a specially protected interface to a Control Plane (such as a BMC) that supports a test API for tool

clients.

44 Techniques for verifying that the captured data demonstrates compliance or conformance to PMCI specifications are

not in scope for this specification. DMTF and PMCI Working Group will not certify protocol implementations in device

vendor firmware. Any test clients provided by DMTF and the PMCI Working Group are offered as-is.

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 9

45 4 Normative references

46 The following documents are indispensable for the application of this specification. For dated or versioned references,

only the edition cited, including any corrigenda or DMTF update versions, applies. For references without a date or

version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions)

applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2018 (8th

edition)

• DMTF DSP0218, Platform Level Data Model (PLDM) for Redfish Device Enablement, https://www.dmtf.org/dsp/

DSP0218

• DMTF DSP0222, Network Controller Sideband Interface (NC-SI) Specification, https://www.dmtf.org/dsp/DSP0222

• DMTF DSP0236, MCTP Base Specification, https://www.dmtf.org/dsp/DSP0236

• DMTF DSP0239, MCTP IDs and Codes, https://www.dmtf.org/dsp/DSP0239

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/dsp/DSP0240

• DMTF DSP0241, Platform Level Data Model (PLDM) Over MCTP Binding Specification, https://www.dmtf.org/dsp/

DSP0241

• DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes Specification, https://www.dmtf.org/dsp/

DSP0245

• DMTF DSP0248, Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification,

https://www.dmtf.org/dsp/DSP0248

• DMTF DSP0249, Platform Level Data Model (PLDM) State Set Specification, https://www.dmtf.org/dsp/DSP0249

• DMTF DSP0261, NC-SI over MCTP Binding Specification, https://www.dmtf.org/dsp/DSP0261

• DMTF DSP0267, Platform Level Data Model (PLDM) for Firmware Update Specification, https://www.dmtf.org/dsp/

DSP0267

• DMTF DSP0274, Security Protocol and Data Model (SPDM) Specification, https://www.dmtf.org/dsp/DSP0274

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification, https://www.dmtf.org/

dsp/DSP0275

• DMTF DSP0276, Secured Messages using SPDM over MCTP Binding Specification, https://www.dmtf.org/dsp/

DSP0276

• DMTF DSP0277, Secured Messages using SPDM Specification, https://www.dmtf.org/dsp/DSP0277

• IETF RFC5248, The Transport Layer Security (TLS) Protocol Version 1.2, https://datatracker.ietf.org/doc/html/

rfc5246

PMCI Test Tools Interface and Design Specification DSP0280

10 Published Version 1.0.0

https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230520&objAction=browse&viewType=1
https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230520&objAction=browse&viewType=1
https://www.dmtf.org/dsp/DSP0218
https://www.dmtf.org/dsp/DSP0218
https://www.dmtf.org/dsp/DSP0222
https://www.dmtf.org/dsp/DSP0236
https://www.dmtf.org/dsp/DSP0239
https://www.dmtf.org/dsp/DSP0240
https://www.dmtf.org/dsp/DSP0241
https://www.dmtf.org/dsp/DSP0241
https://www.dmtf.org/dsp/DSP0245
https://www.dmtf.org/dsp/DSP0245
https://www.dmtf.org/dsp/DSP0248
https://www.dmtf.org/dsp/DSP0249
https://www.dmtf.org/dsp/DSP0261
https://www.dmtf.org/dsp/DSP0267
https://www.dmtf.org/dsp/DSP0267
https://www.dmtf.org/dsp/DSP0274
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0276
https://www.dmtf.org/dsp/DSP0276
https://www.dmtf.org/dsp/DSP0277
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

47 5 Terms and definitions

48 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines those

terms.

49 The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2 (see Clause 7). The terms in parenthesis are alternatives for the preceding term, for use in

exceptional cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2

(see Clause 7) specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their

normal English meaning.

50 The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in ISO/

IEC Directives, Part 2 (see Clause 6).

51 The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2 (see Clause 3). In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain

normative content. Notes and examples are always informative elements.

52 The terms that DSP0236, DSP0239, and DSP0275 define also apply to this document.

53 This specification uses these terms:

Term Definition

Asynchronous

Message

A Request Message that originates at the Test Service and flows to the Test Client, either due to a message from a DUT or an

administrative event within the Test Service.

Client Session A session established between the Test Client and the Test Service for the purpose of PMCI upper layer protocols validation.

Command

Code
A numeric identifier, typically one byte, inserted into a message to indicate an operation to be performed.

Control Plane

An entity that provides hardware monitoring and control functions for a platform. Commonly, this is a BMC as defined in

DSP0236, though it may also be a primary/secondary BMC pair, a network of peer BMCs, or another management entity

altogether in a complex, multi-chassis environment.

DUT Device Under Test; A managed device like Host Firmware, Network Controller, etc.

Device

Identifier

A value identifying a device. This does not determine a physical interface or path. There is only one Device Identifier per

device.

DMTF

Formerly known as the Distributed Management Task Force, the DMTF creates open manageability standards that span

diverse emerging and traditional information technology (IT) infrastructures, including cloud, virtualization, network, servers,

and storage. Member companies and alliance partners worldwide collaborate on standards to improve the interoperable

management of IT.

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 11

Term Definition

DUT

Connection

ID

A value returned by the Configure Device Under Test message which identifies a specific path and interface to a DUT for use

in protocol Test Messages.

Interface

Identifier
A value that identifies a specific interface to a device. There can be multiple Interface Identifiers per device.

Message
A sequence of data communicated between a requester and a responder, such as a Test Client and a Test Service, to effect an

operation specified by a Command Code. A message may be classified as either a Request Message or a Response Message.

Request

Message
A Message that asks the recipient to initiate an operation.

Response

Message
A Message that provides the results of an operation to the entity that requested it.

Test Agent
Either a Test Client or a Test Service, entities which can communicate over the Test Interface using the protocols defined in

this specification.

Test Client The part of a testing tool or suite which is responsible for the communication with a Test Service via a Test Interface.

Test Interface An interface that is used for the communication between the Test Service and the Test Client(s).

Test Message
A Request Message that originates at the Test Client and flows to the Test Service that instructs the Test Service to send an

Upper-layer protocol message to a DUT

Test Protocol
Messages and sequences for testing PMCI protocol implementations in devices over a variety of transport mediums using

the Test Interface that is defined in this specification.

Test Service

An application that communicates with the Test Client(s) through a Test Interface for the purpose of PMCI upper layer

protocols validation. The Test Service runs on the Control Plane, and analyzes the messages sent via a Test Interface and

sends the corresponding messages (like PLDM/NC-SI/SPDM) to a DUT.

PMCI Test Tools Interface and Design Specification DSP0280

12 Published Version 1.0.0

54 6 Symbols and abbreviated terms

55 The following abbreviations are used in this document.

Abbreviation Definition

DMTF Formerly the Distributed Management Task Force

PMCI Platform Management Communications Infrastructure

DUT Device Under Test

PTTI PMCI Test Tools Interface

TC Test Client

TLS Transport Layer Security

TS Test Service

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 13

56 7 PMCI Test Architecture

57 This clause provides a high-level view of the components of the PMCI Test Architecture. It contains three main

components:

• Test client software

• Test service software or firmware

• Devices that support PMCI protocols that can be tested

58 The test client is a piece of software that performs test and validation functions for one or more PMCI protocols. Test

clients may be written in any language so long as they have the ability to communicate with the test service over the

network via the TLS protocol.

59 The next component is the test service, which can be either firmware or software. Typically a part of the system's

control plane (often a management controller), the test service offers an API by which test clients can register

themselves and interrogate the system under test as to the number or type of target devices against which they can

perform test functions.

60 The last component is the collection of devices in the system that support various PMCI protocols. The test service

provides APIs by which test clients can target specific devices with test messages that validate their implementations

of PMCI protocols. The connection from the test service to a particular device under test can be via any of the

hardware buses that are supported in the PMCI protocol stack.

PMCI Test Tools Interface and Design Specification DSP0280

14 Published Version 1.0.0

System

Test Client

Control Plane (such as BMC)

Test Service

Device
Under Test

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 15

61 8 PMCI Test Tools Interface Concepts

62 8.1 Interface Scope

63 The PMCI Test Tools Interface is intended for testing upper layer PMCI protocols. However, NC-SI Pass-through and

MCTP Control are not within the scope of PTTI, and Test Service implementations may elect to prohibit testing these

protocols altogether.

64 8.2 Security

65 8.2.1 Overview

66 The PMCI Test Tools Interface can be utilized in a number of circumstances, such as:

• Development of devices or device firmware

• Acceptance test of a new device or new device firmware

• Manufacturing of systems containing devices

• Debugging a device in a production system

67 PTTI opens up a communication path between an external entity (Test Client) and a device under test inside a system.

Therefore, it is strongly recommended to consider the security of this communication path. In some cases it may be

necessary for the Test Client to be on a remote network, and this scenario requires even more thought.

68 PTTI is built upon TLS, which provides a number of benefits:

• The Test Client and Test Server are authenticated to one another.

• The Test Client, using TLS certificates, verifies that it is talking to the expected control plane.

• The link between Test Agents is encrypted and can prevent replay and man-in-the-middle attacks.

69 8.2.2 Security Requirements

1. The Test Client shall connect to the Test Service with a secure, authenticated protocol (TLS).

2. The Test Client shall verify that the target system is the intended system by validating the Test Service's

TLS certificate.

3. The Test Client shall verify that the protocol version returned from the Connect message is supported.

PMCI Test Tools Interface and Design Specification DSP0280

16 Published Version 1.0.0

70 8.2.3 Security Best Practices

71 Test Agents should log all interactions with their partner Test Agent, including authorization credentials.

72 The Test Service should be disabled by default on the control plane, and it should require special authorization to

enable the Test Service. The control plane should log all authorization credentials when an administrator attempts to

enable the Test Service.

73 The Test Client should verify that the control plane and the Test Service are at an acceptable level of firmware via the

Query System Inventory message.

74 When a remote Test Client (that is, a Test Client on a separate network from the control plane) is required, the control

plane administrator should only enable the Test Service to run when required, and shall disable the Test Service as

soon as the connection with the Test Client is ended. The Test Client should be required to go through some

additional form of authentication, such as a Virtual Private Network.

75 It is not recommended to enable the Test Service when the system is in production, when devices in the system are in

production, or when devices in the system store persistent data. If the target system or devices are in production and

the Test Service must be run, then:

• The control plane should not be directly connected to the internet.

• The control plane administrator should ensure that the Security Parameter to the Connect message is very strong

(such as a long password or certificate).

• A device under test is offline whenever possible (for example, a network card is disconnected from any network

and not available to users of the system).

• A device under test with persistent data should be reset before and after the connection with the Test Client.

76 8.3 Test Client and Test Service Interface

77 There are two kinds of messages that can be sent over the test client and test service interface:

• Messages related to Admin Messaging Protocol

• Messages related to Test Messaging Protocol

78 The differences between two protocols and also the scope, are described later on in this chapter. The Admin and Test

Protocols Messages Flow depicts the high-level flow diagram for the Test Client and Test Service communication.

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 17

79 8.3.1 Admin and Test Protocols Messages Flow

80

Test ClientTest Client Test Service

Connect { Security parameter }

Response { Test Service version, Test Client ID }

Query Capabilities { }

Response { Capabilities of Test Service }

Configure Test Service { Capabilities }

Response

Query System Inventory { }
Response { System Inventory Data }

Configure DUT #N { Target Identifier, Identifier List }

Response { DUT Connection ID }

Register to Protocol #N { Protocol, DUT Connection ID }

Response { DUT Connection ID }

Register Async Message Recipient #N { Protocol, DUT Connection ID }
Response { DUT Connection ID }

Admin
Messages

Test
Messages

DUT

Test Protocol Message #N

Response #N

Test Protocol Message #N

Response #N

Async Test Protocol Message #NAsync Test Protocol Message #N

Response #N Response #N

81 8.3.2 Admin Messaging Protocol

82 The admin messaging protocol is used to set up the test service and to register a test client that will perform testing.

Admin messages provide support for the following functionality:

• Establishing connections to test clients (see Client Session Establishment)

• Providing a system inventory of available devices against which testing may be performed

• Registering a test client to specific protocols and to specific target devices

• Configuring a device for testing, including the hardware path to be used for testing it

• Registering a test client to receive asynchronous messages sent from devices

83 8.3.2.1 Client Session Establishment

84 There are multiple steps in establishing a session between the Test Client and the Test Service. First, the Test Service

PMCI Test Tools Interface and Design Specification DSP0280

18 Published Version 1.0.0

must open a TLS port and begin listening on that port. This document does not specify how the TLS port is opened,

which will vary based on the vendor that produces the Test Service.

85 Second, the TLS port number and the Test Service's certificate must be provided as inputs to the Test Client. Again,

this document does not specify any procedure for providing these inputs, and in many cases this will be a manual

setup step. The Test Client is responsible for verifying the correctness of the provided certificate.

86 The Test Client will initiate a TLS connection with the Test Service as detailed in the TLS specification, using the

provided certificate and port. Once the TLS connection is established, the data flowing between the Test Client and

Test Service is encrypted and protected from man-in-the-middle attacks.

87 Next, the Test Client will send a Connect admin message over the secure channel. The Security Parameter of the

Connect message proves that the Test Client has authorization to send PTTI messages to the Test Service. This

document does not specify the manner by which the Test Service validates the Security Parameter.

88 If the Security Parameter is invalid, the Test Service will respond to the Connect message with an

AUTHENTICATION_ERROR message response code. However, if the Security Parameter is valid, the Test Service will

respond to the Connect message with a SUCCESS message response code as well as a Test Client ID and a Test

Service Version. The Test Client ID serves as a token that must be passed as a parameter with all subsequent

messages. This Test Client ID is just a handle and has no meaning other than to identify the Test Client to the Test

Service. The Test Service Version returned by the Test Service should be validated by the Test Client to ensure that the

Test Client is able to communicate with the Test Service.

89 Once the Test Client has obtained a Test Client ID and has validated that it can use the Test Service Version, it should

issue the following admin messages:

• Query Capabilities to ensure that the Test Service provides all the capabilities necessary for the Test Client's

operation.

• Query System Inventory to collect the inventory of available devices that may be tested.

90 From the inventory provided by the Test Service, the Test Client may select one device to designate as the Device

Under Test. The Test Client shall use the Configure Device Under Test admin message to inform the Test Service that it

wishes to test a specified device, and it optionally may select the path by which the Control Plane will talk to the

device by using information from the system inventory.

91 After a DUT is successfully configured, the Test Client shall issue one or more Register To Protocol admin messages to

request that the Test Service allow the Test Client to test particular protocols or protocol types. Optionally, the Test

Client may issue one or more Register Async Message Recipient admin messages in order to receive messages

asynchronously originating from the DUT.

92 Having completed all the messages to establish a test session, the Test Client may now begin testing using the Test

Messaging Protocol.

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 19

93 8.3.3 Test Messaging Protocol

94 The test messaging protocol is used by a test client to send request messages to the test service for relay to a device

under test. The test service then collects the device's response to the request messages and returns them to the test

client for evaluation and further processing. The test messaging protocol supports a variety of upper-level protocols

and provides support for testing messages in each of these protocols.

95 In addition to message relay, the test messaging protocol collects timing information for the amount of time that a

device took to respond to the Test Message. It also reports on various errors that may have occurred in the

processing of the message.

96 The Test Client is permitted at most one outstanding Test Message per Protocol Type to each Device Under Test at a

time. The Test Service is responsible for ensuring that the DUT responds in the appropriate amount of time, and if it

does not, the Test Service must send a response to the Test Client with the TIMEOUT Message Response Code.

97 If the Test Service does not respond to the Test Message in a time frame that is reasonable to the Test Client, the Test

Client may terminate its connection to the Test Service. In this case, the Test Client may wish to send a Log Event

admin message with Reason Code ClientTimeout before disconnecting.

98 8.3.4 NC-SI Testing Considerations

99 Special care should be taken when implementing tests for NC-SI. There are no provisions made in this specification

for testing NC-SI Pass-through traffic, and it is recommended that the Test Service reject any NC-SI Pass-through

tests (for example, those using MCTP Type 3).

100 NC-SI Control is supported by this specification. However, in certain architectures, the Test Service running on a

Control Plane (such as a BMC) may be connected to the external network or the Test Client using NC-SI Pass-

Through. The recommendation is that the implementer review the architecture of the system and avoid using the NC-

SI Deselect command for a package that may be providing network connectivity to the Control Plane. Details about

NC-SI packages may be found in the "NC-SIInfo" section of the System Inventory, and it is recommended that Test

Services return the "NC-SIInfo" JSON object when NC-SI Control testing is supported to a DUT.

PMCI Test Tools Interface and Design Specification DSP0280

20 Published Version 1.0.0

101 9 Test service behavior

102 9.1 Device security arbiter

103 The Test Service may optionally maintain a database of Test Clients and the devices for which they have permission to

access. The Test Service may allow or deny access to devices for test purposes, and the Test Service may allow or deny

access to certain protocols or protocol types. Further, the Test Service may allow or deny access to asynchronous

messages originating from the device, on a protocol or protocol type basis.

104 The Test Client may check which protocols it has been granted permission for by issuing the Query Status admin

message.

105 9.2 Connection Watchdog

106 The Test Service may optionally implement a Connection Watchdog, by which the Test Service may disconnect Test

Clients that are no longer communicating with the Test Service. The Test Service must reset the Connection Watchdog

timeout after receiving any message from the Test Client that has a valid Test Client ID. Upon expiration of the

Watchdog timer, the Test Service will send the Log Event message with Reason Code WatchdogTimeout to indicate

the connection will be disconnected and the Test Client ID will become invalid afterwards. The Test Service should

reject any further messages from the Test Client with an AUTHENTICATION_ERROR message response code.

107 If implemented, the Connection Watchdog timeout must be reported in the Query Capabilities response message.

The Test Client can configure the watchdog timeout using the Configure Test Service message and the maximum

watchdog timeout that can be configured must be reported in the Query Capabilities response message. Should the

Test Client wish to keep the connection open without sending Test Messages to the Test Service, the Test Client may

use the Query Status message with the Query Type set to Ping .

108 9.3 Proxying of messages

109 The primary purpose of the test service is to act as a proxy, receiving messages from test clients, submitting them to a

device under test, collecting response messages from the device, and relaying those responses back to the test client.

It is imperative that the test service be as transparent as possible; to the maximum extent possible, it should appear

to both the test client and the device under test that they are communicating directly. The main exception to this is

that the test service is responsible for simplifying the communication pathways, enabling the test client to reach the

device under test via an abstract DUT Connection ID rather than needing to know the physical hardware addresses for

the device under test. Similarly, low-level details such as the packetization of MCTP messages is taken care of by the

control plane so that the test client can focus on higher-level protocol testing.

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 21

110 9.4 Collection of timing information

111 Upon request, the test service is responsible for collecting timing information for how long it takes a device to

respond to a request message. This measurement shall be the amount of time elapsed between when the last byte of

the request message is sent and the first byte of the response message is received. In the event that multiple tries are

required to obtain a response from the device under test, the test service shall only report the timing for the final

request.

112 9.5 Relaying of device-initiated messages to registered test clients

113 Test clients may optionally register to receive asynchronous communications for specific protocols from a device

under test. If the test client has so registered and the device emits a message that matches the registration criteria,

the test service shall intercept that message and relay it to the test client.

114 For PLDM events, the Control Plane is responsible for collecting events whether those events come from device-

initiated PlatformEventMessage messages or by Control Plane-initiated PollForPlatformEventMessage messages. In

either case, the Control Plane must deliver these events to its Test Service so that they may be relayed to the Test

Client.

PMCI Test Tools Interface and Design Specification DSP0280

22 Published Version 1.0.0

115 10 Messages

116 This clause details the various messages used in the test interface.

117 10.1 Message structure

118 The basic structure of all PTTI request and response messages consists of two parts: a Test Service Wrapper and

Message Data. For Admin requests and responses, the first byte of the Message Data indicates the specific Admin

Command Code. For Test requests and responses, the full Upper-layer message (header and data) is contained in the

Message Data.

Byte Description

Test Service Wrapper 0:7 Message header for the test service

Message Data 8+ Protocol-specific message payload data

119 10.1.1 Test Service Wrapper

120 The test service wrapper is a header specific to the test interface and shall be present for all request and response

messages.

Type Byte Description

Version ver8 0 PTTI Protocol Version

Protocol Type byte 1 Protocol Type

Flags bitfield16 2:3 Test Service Wrapper Flags

Test Client ID uint32 4:7 Client ID as assigned by the Connect response message

121 10.1.1.1 Protocol Type

122 The Protocol Type field identifies the protocol for the current message.

Protocol ID

PTTI Admin 0xFF

PTTI Vendor Defined Admin 0xF1

Test Messages (values from DSP0239) 0x00 - 0x7F

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 23

123 10.1.1.2 Test Service Wrapper Flags

124 The test service wrapper flags contain attributes of the current message.

Bits Field Description

[0:1] Direction

0: TC → TS Request Message

1: TS → TC Response Message

2: TS → TC Request Message

3: TC → TS Response Message

[2:15] R Reserved

125 10.1.2 Message Response Codes

126 The following table enumerates the possible response codes for messages. Response codes with value 0x80 and

higher are reserved for command-specific message responses.

Code Name Description

0 SUCCESS The responding test agent received a request and performed all required actions successfully.

1 TIMEOUT
The responding test agent received a request but a timeout occurred prior to completing the

request.

2 INVALID_PROTOCOL
The Test Service received a Test request for an unsupported Protocol Type such as MCTP

Control (0) or NC-SI Pass-through (3)

3 TRANSPORT_ERROR The Test Service was unable to send the Test Message due to a transport-level error.

4 PHYSICAL_ERROR The Test Service was unable to send the Test Message due to a physical-level error.

5 AUTHENTICATION_ERROR
The Test Service was unable to send the Test Message as the Test Client ID failed

authentication checks.

6 PRIVILEGE_ERROR
The Test Service was unable to process the request because the Test Client has insufficient

privilege to perform the requested action.

7 INTEGRITY_CHECK_ERROR
The responding test agent received a request but could not complete the request due to a

data integrity check error.

8 INCOMPATIBLE_VERSION
The responding test agent received a message, but the Test Service Wrapper Version is

incompatible with the test agent.

9 INVALID_DUT_CONNECTION_ID The DUT Connection ID given by the requesting test agent is invalid.

10 OUTSTANDING_MESSAGE
The Test Agent already has an outstanding Test Message to the specified DUT, or already has

an outstanding Admin message to its partner Test Agent, so this message is not permitted.

PMCI Test Tools Interface and Design Specification DSP0280

24 Published Version 1.0.0

Code Name Description

0x80..0xEF COMMAND_SPECIFIC_RESERVED Reserved for command-specific message responses.

0xF0..0xFF OEM_SPECIFIC_RESERVED Reserved for OEM-specific message responses.

127 10.2 Admin Messages

128 Admin messages are used to setup the test service and register a test client. Admin messages are distinguished by

the Protocol Type in the Test Wrapper, and have a Command Code as the first byte of their Message Data.

129 The Test Client is permitted one outstanding Admin message to the Test Service at a time, in addition to having one

outstanding Test Message to each Device Under Test. If the Test Service detects a second Admin message has been

received before it responds to the first Admin message, it may respond with the OUTSTANDING_MESSAGE Message

Response Code.

130 If the Test Service does not respond to the Admin message in a time frame that is reasonable to the Test Client, the

Test Client may terminate its connection to the Test Service. In this case, the Test Client may wish to send a Log Event

admin message with Reason Code ClientTimeout before disconnecting.

131 10.2.1 Command Codes

132 The Command Code is the first byte of the Message Data in an Admin request or response message. It identifies

which Admin command is contained within the message and enables interpretation of the message payload.

Command Code

Connect 0x00

Disconnect 0x01

Query Capabilities 0x10

Query Status 0x11

Query System Inventory 0x12

Configure Test Service 0x20

Configure Device Under Test 0x21

Register to Protocol 0x22

Register Async Message Recipient 0x23

Log Event 0x30

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 25

133 10.2.2 Connect (0x00)

134 The Connect message connects a Test Client to a Test Service. The Connect message does not require a valid Test

Client ID parameter in the Test Service Wrapper.

135 A security parameter must be passed in the Connect request message. The process for generating this security

parameter is dependent on the Test Service vendor, and will not be specified in this document. The security parameter

may be a password, encryption key, certificate, or other construct as determined by the Test Service vendor.

136 When the Test Service receives a security parameter that it accepts, the Test Service will respond to the Connect

message with a 4-byte Test Client ID that must be passed in the Test Service Wrapper, by the Test Client, on all

subsequent messages. The Test Service also provides the version of the Test Service API that it supports. In the event

that the Test Client is incompatible with this version, it shall use the Disconnect message to cease testing.

137 While connected, this Test Service is unavailable to other Test Clients and will refuse connection requests. A

connection is terminated by the Disconnect message or a Connection Watchdog timeout.

138 Connect request message format

Offset Field Type Description

0 Command Code enum8 0x00 - See Command Codes

1 Security Parameter Length uint32 Length of the security parameter

5 Security Parameter Variable Security parameter provided by the Test Service vendor

139 Connect response message format

Offset Field Type Description

0 Command Code enum8 0x00 - See Command Codes

1 Response Code enum8
See Test Service Response Codes and the below specific codes.

0x80 : OTHER_CLIENT_CONNECTED - The test service is already connected to another client.

2 Test Service Version ver8 The version of the Test Service API that the Test Service implements

3 Test Client ID uint32 Test Client ID for use in the Test Service Wrapper on subsequent messages

140 10.2.3 Disconnect (0x01)

141 The Disconnect message terminates the connection between a Test Client and a Test Service. Any outstanding

messages shall be canceled (if possible) or quiesced (otherwise) by the Test Service prior to response to this message.

PMCI Test Tools Interface and Design Specification DSP0280

26 Published Version 1.0.0

Registration for asynchronous notification of messages initiated by devices under test shall be implicitly canceled by

the issuing of this message.

142 After the Disconnect message is issued, the Test Client ID parameter in the Test Service Wrapper is no longer valid,

and a new Connect message must be issued with a valid security parameter in order to obtain a new Test Client ID.

143 Disconnect request message format

Offset Field Type Description

0 Command Code enum8 0x01 - See Command Codes

144 Disconnect response message format

Offset Field Type Description

0 Command Code enum8 0x01 - See Command Codes

1 Response Code enum8 See Test Service Response Codes

145 10.2.4 Query Capabilities (0x10)

146 The Query Capabilities message shall be used by the Test Client to determine the capabilities of the Test Service. A

Test Client must issue the Query Capabilities message after every successful Connect message. The Test Service must

guarantee that the capabilities do not change while the Test Client ID obtained from the Connect message remains

valid.

147 A Test Service may optionally support each of the following capabilities. For all one-bit fields, a value of 1b indicates

that the Test Service supports the feature, and a value of 0b indicates that the Test Service does not support the

feature.

148 Test Service Capabilities

Name
Capability

ID
Description

Maximum Connection Watchdog Timeout

(Read Only)
1 Maximum Watchdog timeout in seconds

Current Connection Watchdog Timeout 2 Current Watchdog timeout in seconds

Reserved for future use 3-32763 Reserved for future use

Vendor Capabilities Set #1 IANA Enterprise

ID
32764

IANA Enterprise ID of the vendor owning the capabilities in ID range

32768-40959

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 27

Name
Capability

ID
Description

Vendor Capabilities Set #2 IANA Enterprise

ID
32765

IANA Enterprise ID of the vendor owning the capabilities in ID range

40960-49151

Vendor Capabilities Set #3 IANA Enterprise

ID
32766

IANA Enterprise ID of the vendor owning the capabilities in ID range

49152-57343

Vendor Capabilities Set #4 IANA Enterprise

ID
32767

IANA Enterprise ID of the vendor owning the capabilities in ID range

57344-65535

Vendor Capabilities Set #1 32768-40959 Vendor Capabilities Set #1

Vendor Capabilities Set #2 40960-49151 Vendor Capabilities Set #2

Vendor Capabilities Set #3 49152-57343 Vendor Capabilities Set #3

Vendor Capabilities Set #4 57344-65535 Vendor Capabilities Set #4

149 Query Capabilities Message request format

Offset Field Type Description

0 Command Code enum8 0x10 - See Command Codes

150 Query Capabilities Message response format

Offset Field Type Description

0 Command Code enum8 0x10 - See Command Codes

1 Response Code enum8 See Test Service Response Codes

2 Reserved uint8 Reserved for future use

3 Number of Capabilities Fields uint16 Count of capabilities in this structure

5 First Capability ID uint16 From the Table of Capability IDs

7 First Capability Value uint32 Value for the first Capability

11 Second Capability ID uint16 From the Table of Capability IDs

13 Second Capability Value uint32 Value for the second Capability

...

N*6+5 Final Capability ID uint16 From the Table of Capability IDs

N*6+9 Final Capability Value uint32 Value for the final Capability

PMCI Test Tools Interface and Design Specification DSP0280

28 Published Version 1.0.0

151 10.2.5 Query Status (0x11)

152 The Query Status message may be used by the Test Client to query the status of its connection to the Test Service

and, optionally, the protocol and async-handling registrations for a device under test.

153 Query Status Message request format

Offset Field Type Description

0 Command Code enum8 0x11 - See Command Codes

1 Query Type enum8
The type of status query being performed.

{ Ping = 0, Device List = 1 }

154 Query Status Message response format

Offset Field Type Description

0 Command Code enum8 0x11 - See Command Codes

1 Response Code enum8 See Test Service Response Codes

2 Query Type enum8
The type of status query that was performed.

See values in Query Status request.

3 Query Response Data Length uint32 The length of the Query Response Data.

7 Query Response Data variable The data in response to the query, which is interpreted based on the Query Type.

155 Query Status Ping Response Data

156 If the Query Type is Ping , the Query Response Data Length will be 0, and there will be no Query Response Data.

157 Query Status Device List Response Data

158 If the Query Type is Device List , the Query Response Data will be in the following format:

Offset Field Type Description

0 Device Count uint8 The number of devices returned in this query.

1 Device Data Structures Repeating List A repeating list of Query Status Device Data structures based on the Device Count

159 Query Status Device Data

160 The Test Client may use this structure to understand the test status of a particular DUT. In addition to a DUT

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 29

Connection ID, the structure contains a list of protocol/type pairs. The protocol value of the pair indicates the specific

protocol that is registered, such as 0x01 for PLDM. The type value of the pair indicates a type of message within the

protocol, such as 0x02 for PLDM for Platform Monitoring and Control. For a protocol that does not have multiple

types, the value 0x00 shall be used for the type. The Test Service will also indicate whether it will forward

asynchronous messages that originate from the DUT to the Test Client.

Offset Field Type Description

0 DUT Connection ID uint32 The DUT Connection ID for the device.

4
Device Registered Protocol Type

Count
uint8

The count of protocol/type pairs for the device registered by the Test Client using

Register to Protocol

5 Device Registered Protocol #1 enum8 A protocol value for the first registered Protocol/Type pair

6
Device Registered Protocol Type

#1
enum8 A protocol type value for the first registered Protocol/Type pair

7
Async Registered for Protocol

Type #1
bool8

The Test Client has registered to receive asynchronous messages for the first Protocol/

Type pair

8 Device Registered Protocol #2 enum8 A protocol value for the second registered Protocol/Type pair

9
Device Registered Protocol Type

#2
enum8 A protocol type value for the second registered Protocol/Type pair

10
Async Registered for Protocol

Type #2
bool8

The Test Client has registered to receive asynchronous messages for the second

Protocol/Type pair

...

N*3+5 Device Registered Protocol #N enum8 A protocol value for the final registered Protocol/Type pair

N*3+6
Device Registered Protocol Type

#N
enum8 A protocol type value for the final registered Protocol/Type pair

N*3+7
Async Registered for Protocol

Type #N
bool8

The Test Client has registered to receive asynchronous messages for the final Protocol/

Type pair

161 10.2.6 Query System Inventory (0x12)

162 The Query System Inventory message retrieves an inventory of the hardware and firmware present in the system

exposed by the test service. The resulting inventory is supplied in JSON format per the SystemInventory JSON

schema. A mockup and the schema may be found in Annex A.

163 The inventory returned by the Test Service may be constructed via both standard and vendor proprietary methods.

For example, the Protocol information may be supplied by the cached results of an MCTP Get Message Type

Support command, but the PCI-ID information would typically be obtained outside of PMCI protocol messages. As

each platform and Control Plane are unique, the methods for constructing a System Inventory must also be unique to

that platform and Control Plane.

PMCI Test Tools Interface and Design Specification DSP0280

30 Published Version 1.0.0

164 The fields in the system inventory are as follows:

• Schema definition : A link to the SystemInventory schema

• ControlPlane : An object containing information about the control plane (such as a management controller)

with which the test service interacts to provide test functionality

◦ Manufacturer : The manufacturer of the control plane

◦ Model : The model of the control plane (if applicable)

◦ Firmware versions : An array of named firmware associated with the control plane and/or system

environment. It is recommended that the "Name" of the firmware component be consistent with the

Package Classification Type from the ComponentClassification values table in PLDM For Firmware Update

whenever possible.

◦ Device Identifier : The code identifying the control plane for the system under test. This is usually 0.

◦ Interfaces : An array of the hardware and software interfaces the control plane supports for

communicating with devices, as well as an indication of whether devices can initiate messages on them

• Devices : A list of the devices in the system that can be reached for test purposes. For each of these devices:

◦ Manufacturer : The manufacturer of the device

◦ Location : The physical location of the device, such as a particular slot in the chassis

◦ Device Identifier : A code that can be used to test against the specific device when the test client doesn't

care which interface messages are routed over

◦ UniqueID : A unique value that can be used to identify a device that does not change over the lifetime of

the device. The UniqueID can be MCTP Endpoint UUID, NC-SI Package UUID or any other unique identifier

such as a serial number. The format of the UniqueID is outside the scope of this specification.

◦ PCI-ID : The four-part PCI device identifier for the device:

▪ DID : The device identifier

▪ SDID : The sub-device identifier

▪ VID : The vendor identifier

▪ SVID : The sub-vendor identifier

◦ Firmware versions : An array of named firmware associated with the device

◦ Interfaces : An array of interfaces with which the MC can reach the device. For each interface:

▪ Name : The name of the interface

▪ Interface Identifier : An identifier that can be used as part of a compound sequence to build up a

specific path to a device to force testing on specific paths and interfaces via the Configure Device Under

Test message

▪ Parent Device Identifier : The Device Identifier for the bridge or control plane to which that the

interface is attached. Zero for the main management controller/control plane.

▪ Protocol support : A list of the protocols for which the device advertises support:

▪ Protocol : The name of the protocol

▪ Types : An array of sub-types of the protocol supported by the device:

▪ Type : The numeric sub-type value

▪ Name : The name of the protocol sub-type, such as PLDM for Platform Monitoring and Control

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 31

▪ Versions : A list of specific specification versions the device supports for the sub-type

▪ NC-SIInfo : Additional information if the Protocol is NC-SI

▪ ChannelID : Network Controller Channel ID to address the Network Controller Channel

▪ Pass-through : The status of the channel to allow Pass-through packets

165 Admin Query System Inventory Message request format

Offset Field Type Description

0 Command Code enum8 0x12 - See Command Codes

166 Admin Query System Inventory Message response format

Offset Field Type Description

0 Command Code enum8 0x12 - See Command Codes

1 Response Code enum8 See Test Service Response Codes

2 System Inventory uint8 * N UTF-8 formatted JSON SystemInventory data

167 10.2.7 Configure Test Service (0x20)

168 The Configure Test Service shall be used by the test client to configure the capabilities of the test service. A Test Client

must issue the Query Capabilities message after every successful Connect message. The Test Client can configure the

Test Service after determining the capabilities of the Test Service from the response of Query Capabilities. Test client

can issue Query Capabilities after Configure Test Service to ensure the capability is configured as expected. The test

client might configure the test service before issuing the Configure Device Under Test, after which the test service can

reject the Configure Test Service request from the test client.

169 Admin Configure Test Service Message request format

Offset Field Type Description

0 Command Code enum8 0x20 - See Command Codes

1 Number of Capabilities Fields uint16 Count of capabilities in this structure

3 First Capability ID uint16 From the Table of Capability IDs

5 First Capability Value uint32 Value for the first Capability

9 Second Capability ID uint16 From the Table of Capability IDs

11 Second Capability Value uint32 Value for the second Capability

...

PMCI Test Tools Interface and Design Specification DSP0280

32 Published Version 1.0.0

Offset Field Type Description

N*6+3 Final Capability ID uint16 From the Table of Capability IDs

N*6+5 Final Capability Value uint32 Value for the final Capability

170 Admin Configure Test Service Message response format

Offset Field Type Description

0 Command Code enum8 0x20 - See Command Codes

1 Response Code enum8 See Test Service Response Codes

171 10.2.8 Configure Device Under Test (0x21)

172 The Configure Device Under Test message enables the test client to configure the Test Service to communicate with a

device it wishes to perform testing against. This may either be via the Device Identifier from the System Inventory, if

the test does not require a certain path or interface to reach the device; or it may be via a sequence of Device

Identifiers and Interface Identifiers that specify the exact sequence of interfaces to use to reach it.

173 If the Target Identifier is a Device Identifier and the Identifier Count is 0, the Test Service determines the path to reach

the device and the interface to use. If the Target Identifier is an Interface Identifier and the Identifier Count is 0, the

Test Service will determine a path that uses the given interface to connect to the associated device.

174 In the case where an Identifier List is provided and the Identifier Count is greater than 0, the test service will verify

that the path is valid. If the given path is invalid, the Test Service shall send a response with the Response Code set to

INVALID_PATH . The DUT Connection IDs, Device Identifiers, and Interface Identifiers all exist in the same name-

space, removing any ambiguities between them.

175 In all cases other than for invalid paths, the Test Service returns a Configure Device Under Test Response with the

newly created DUT connection ID and the path chosen to reach the DUT. Using the DUT Connection ID in future

messages guarantees the returned path will be used. To facilitate debugging in the invalid path case, the response

Identifier List can contain the Interface Identifiers up to, but not including the first invalid connection.

176 Admin Configure Device Under Test Message request format

Offset Field Type Description

0 Command Code enum8 0x21 - See Command Codes

1 Target Identifier uint32 The device or interface identifier for the device being configured

5 Identifier Count uint8 The number of identifiers supplied in the remainder of this message

6 Identifier List uint32 * N The sequence of interface identifier(s) to the device under test if the Identifier Count is 0

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 33

177 Admin Configure Device Under Test Message response format

Offset Field Type Description

0 Command Code enum8 0x21 - See Command Codes

1 Response Code enum8
See Test Service Response Codes and the below specific codes.

0x90 : INVALID_PATH - Path given in Interface List of Configure DUT request is invalid

2 DUT Connection ID uint32 The DUT Connection ID to use with subsequent messages

6 Identifier Count uint8 The number of interface identifiers in the path to the DUT

7 Identifier List uint32 * N The sequence of interface identifiers in the path to the DUT

178 10.2.9 Configure Device Under Test Examples

179 The figure below is an examples of a topology containing a control plane, two bridges, and three devices.

Explanations of some example calls to Configure Device Under Test follow the figure below.

+----------+ +-----------+
		Device
		Dev ID 02
Control		IfcID 0C
Plane	+-----------+	
Dev ID 00		+-----------+
IfcID 0A+----------------+----------------------+IfcID 0F		
	+---------------------+	Device
IfcID 0B	------+IfcID 0D	
+----------+ | Bridge | | |

Dev ID 03			
IfcID 0E+----+-----	IfcID 10		
+---------------------+ | +-----------+

+----------+ |
Device	+---------------------+		
Dev ID 06		Bridge	
		Dev ID 05	
IfcID 13+----+IfcID 11			
		IfcID 12+----+	
+----------+ | |

+---------------------+

PMCI Test Tools Interface and Design Specification DSP0280

34 Published Version 1.0.0

180 10.2.9.1 Example 1

• Client sends ConfigureDUTRequest(TargetIdentifier: 02, IdentifierCount: 0, IdentifierList: [])

• Path: Test Service picks only available path via Interface 0A to Interface 0C

• DUT Connection ID: Test Service picks available Identifier 20

• Test Service sends ConfigureDUTResponse(ResponseCode: 0<SUCCESS>, DUTConnectionID: 20,

IdentifierCount: 2, IdentifierList: [0A, 0C])

181 10.2.9.2 Example 2

• Client sends ConfigureDUTRequest(TargetIdentifier: 04, IdentifierCount: 0, IdentifierList: [])

• Path: Test Service has two choices of paths, and must choose any valid path. For example, Interface 0A to

Interface 0F .

• DUT Connection ID: Test Service picks available Identifier 21

• Test Service sends ConfigureDUTResponse(ResponseCode: 0<SUCCESS>, DUTConnectionID: 21,

IdentifierCount: 2, IdentifierList: [0A, 0F])

182 10.2.9.3 Example 3

• Client sends ConfigureDUTRequest(TargetIdentifier: 10, IdentifierCount: 3, IdentifierList: [0B,

0D, 0E])

• Path: Test Service determines the given path is valid.

• DUT Connection ID: Test Service picks available Identifier 22

• Test Service sends ConfigureDUTResponse(ResponseCode: 0<SUCCESS>, DUTConnectionID: 22,

IdentifierCount: 4, IdentifierList: [0B, 0D, 0E, 10])

183 10.2.9.4 Example 4

• Client sends ConfigureDUTRequest(TargetIdentifier: 13, IdentifierCount: 5, IdentifierList: [0A,

0D, 0E, 12, 11])

• Path: Test Service determines the given path is invalid, noting the last good interface identifier along the path is

0A .

• DUT Connection ID: Test Service does not create a DUT Connection ID

• Test Service sends ConfigureDUTResponse(ResponseCode: 90<INVALID_PATH>, DUTConnectionID: 00,

IdentifierCount: 1, IdentifierList: [0A])

184 10.2.9.5 Example 5

• Client sends ConfigureDUTRequest(TargetIdentifier: 13, IdentifierCount: 0, IdentifierList: [])

• Path: Test Service picks only available path to interface 13 of device 06.

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 35

• DUT Connection ID: Test Service picks available Identifier 23

• Test Service sends ConfigureDUTResponse(ResponseCode: 0<SUCCESS>, DUTConnectionID: 23,

IdentifierCount: 6, IdentifierList: [0B, 0D, 0E, 12, 11, 13])

185 10.2.10 Register to Protocol (0x22)

186 The Register to Protocol message enables the test client to specify the particular device(s), protocol(s), and type(s) it

plans to test against. This is a hook by which the test service may deny permission to a test client for protocol access.

A response of success grants permission to access the protocol/type(s) on the requested device. If the device is not

available on the requested protocol or the path given in the Configure Device DUT message does not support it, this

message shall fail.

187 The Register to Protocol message includes a field to specify types of messages within a Protocol Type. For example,

there are multiple types of PLDM messages (Platform Monitoring and Control, Redfish Device Enablement, etc.)

defined in DSP0245, and a test client may register for any combination of these PLDM types. NC-SI and SPDM do not

have types within their protocols, and so the Type Count would be set to 0 for these protocols.

188 This message only sets up communication from the Test Client to the DUT (via the Test Service). In order for the Test

Client to receive asynchronous communication originating from the DUT, the Test Client must use the Register Async

Message Recipient message.

189 Admin Register to Protocol Message request format

Offset Field Type Description

0 Command Code enum8 0x22 - See Command Codes

1 Protocol Type enum8 The protocol the test client wishes to test against

2
DUT Connection

ID
uint32 The DUT the test client is requesting to test against

6 Type Count uint8
The number of types within the protocol the client wishes to test against (0 if no types in

protocol)

7 Types
uint8 *

N
The specific individual types within the Protocol Type (for example, Redfish Device Enablement)

190 Admin Register to Protocol Message response format

Offset Field Type Description

0 Command Code enum8 0x22 - See Command Codes

1 Response Code enum8 See Test Service Response Codes

2 DUT Connection ID uint32 The DUT that the test client requested to test against

PMCI Test Tools Interface and Design Specification DSP0280

36 Published Version 1.0.0

191 10.2.11 Register Async Message Recipient (0x23)

192 The Register Async Message Recipient message informs the test service that the test client wishes to receive

asynchronous messages caused by a particular device. The test service shall forward asynchronous messages for

registered types to the test client for processing. Except in matters of physical safety of the hardware, the test service

shall not process forwarded messages itself.

193 The Test Service shall not permit the Test Client to register for asynchronous messages from a device if the Test Client

has not previously registered to send synchronous (Test Client-initiated) messages to that device using the Register To

Protocol message.

194 Admin Register Async Message Recipient Message request format

Offset Field Type Description

0
Command

Code
enum8 0x23 - See Command Codes

1 Protocol Type enum8 The protocol the test client wishes to test against

2
DUT

Connection ID
uint32 The DUT for which the test client requests to receive asynchronous events

6 Type Count uint8
The number of types within the protocol the client wishes to receive asynchronously (0 if no types in

protocol)

7 Types
uint8

* N

The specific individual types within the Protocol Type (for example, Platform Monitoring and Control - see

discussion in Register To Protocol)

195 Admin Register Async Message Recipient Message response format

Offset Field Type Description

0 Command Code enum8 0x23 - See Command Codes

1 Response Code enum8 See Test Service Response Codes

2 DUT Connection ID uint32 The DUT for which the test client requested to receive asynchronous events

196 10.2.12 Log Event (0x30)

197 The Log Event message is used by a Test Agent to log event messages to its peer Test Agent. The receiving Test Agent

may, at its discretion, ignore the Log Data. This may be desirable in the case that the receiving Test Agent does not

have the space to store the Log Data.

198 Log Event request message format

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 37

Offset Field Type Description

0 Command Code enum8 0x30 - See Command Codes

1 Reason Code enum8
The reason for the Log Event

{ CorruptMessage = 1, ClientTimeout = 2, WatchdogTimeout = 3, OemReserved = 0xF0..FF }

2 Log Data Format enum8
The format for the Log Data (see DSP0267 String Type values)

{ Binary = 0, ASCII = 1, UTF8 = 2, UTF-16 = 3, UTF-16LE = 4, UTF16-BE = 5 }

3 Log Data Length uint32 Length of the Log Data

7 Log Data variable Log Data

199 Log Event response message format

Offset Field Type Description

0 Command Code enum8 0x30 - See Command Codes

1 Response Code enum8 See Test Service Response Codes

200 10.3 Vendor Defined Admin

201

202 PTTI Vendor Defined Admin messages are used when a tester wants to send custom messages between their Test

Client and Test Service. In contrast, MCTP Vendor Defined Messages are used when a tester wants to send custom

messages between their Test Client and DUT. MCTP Vendor Defined Messages are sent via Test Request and Response

Messages with the appropriate Protocol Type from DSP0239, and not via the Vendor Defined Admin mechanism.

203 PTTI Vendor Defined Admin messages are identified using the Protocol Type of the Test Service Wrapper. The IANA

Enterprise ID of the requester and responder must be provided as the first 4 bytes.

204 A PTTI Vendor Defined Admin message may not be sent when a standard PTTI Admin message is outstanding, and a

standard PTTI Admin message may not be sent when a PTTI Vendor Defined Admin message is outstanding. In such

cases, the Test Service shall respond with an OUTSTANDING_MESSAGE Test Service Response Code.

205 Vendor Defined Admin request message format

Offset Field Type Description

0
IANA

Enterprise ID
uint32

IANA Enterprise ID for Vendor. MSB first. This is formatted per the Vendor Data Field for IANA enterprise

vendor ID in the MCTP Base Specification.

4+
Vendor

Defined Data
Variable Data for Vendor Defined Admin request message

PMCI Test Tools Interface and Design Specification DSP0280

38 Published Version 1.0.0

206 Vendor Defined Admin response message format

Offset Field Type Description

0
IANA

Enterprise ID
uint32

IANA Enterprise ID for Vendor. MSB first. This is formatted per the Vendor Data Field for IANA enterprise

vendor ID in the MCTP Base Specification.

4
Response

Code
enum8 See Test Service Response Codes

5+
Vendor

Defined Data
Variable Data for Vendor Defined Admin request message

207 10.4 Test Messages

208

209 Test Messages instruct the Test Service to send a message, of the protocol specified in the Protocol Type field of the

Test Service Wrapper, to the DUT using the connection specified in the DUT Connection ID. Test Clients must correctly

set the Test Service Wrapper Flags to indicate that the Test Message Request originates with the Test Client (TC → TS

Request). Likewise, the Test Service must set the flags indicating that the Response originates from the Test Service

(TS → TC Response).

210 When constructing a PTTI Test Message, the Test Client should use the Protocol Type value defined in DSP0239, even

when the underlying transport layer is not MCTP. MCTP Type 0 (MCTP Control) and Type 3 (NC-SI Pass-through) are

not supported by this specification, and it is recommended that the Test Service reject such requests with the

INVALID_PROTOCOL message response code.

211 If the Test Service detects that a second Test Message for the same Protocol Type has been received for a DUT before

the Test Service has responded to the first Test Protocol message for the same Protocol Type and DUT, the Test

Service may respond with the OUTSTANDING_MESSAGE Message Response Code and not forward the Test Message to

the DUT.

212 10.4.1 Device-originated (Async) Protocol Messages

213 Certain upper-layer messages, such as AEN packets in NC-SI and the PlatformEventMessage message in PLDM for

Platform Monitoring and Control, may asynchronously originate from the DUT and flow to the Control Plane. If the

Test Client wishes to receive these messages, they may register this request using the Register Async Message

Recipient message to the Test Service.

214 When the Test Service receives a message originating from the device that matches the forwarding criteria

established by the Test Client, the Test Service will send a Test Message to the Test Client with the correct Protocol

Type. The Test Service must take care that the Test Service Wrapper Flags are set such that Request originates from

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 39

the Test Service (TS → TC Request). Likewise, the Test Client must set the flags indicating that the Response originates

from the Test Client (TC → TS Response).

215 10.5 Test Request and Response Messages

216 Test Message request format

Offset Field Type Value

0

DUT

Connection

ID

uint32 DUT Connection ID returned by Configure Device Under Test message

4

Maximum

Wait Time

(μs)

uint32

The maximum time that the Test Service should wait, after transmitting the last byte of this request, before

returning a TIMEOUT message response code. For protocols such as PLDM, this may be a fixed value for all

messages. For certain SPDM messages, this value may vary based on negotiation between the Test Client and

the DUT.

8

Upper-layer

Protocol

Request

Message

Variable A fully-formed Upper-layer Protocol message such as a complete PLDM, NC-SI Control, or SPDM message.

217 Test Message response format

Offset Field Type Value

0 Response Code enum8 See Test Service Response Codes

1 DUT Connection ID uint32 DUT Connection ID returned by Configure Device Under Test message

5 Elapsed Time (μs) uint32
The elapsed time from when the Test Service sent the last byte of the test message request to

when the Test Service received the first byte of the response.

9
Upper-layer Protocol

Response Message
Variable

If the Response Code is SUCCESS , the response message from the DUT shall be in this field. If the

Response Code is not SUCCESS , this field shall have zero length.

PMCI Test Tools Interface and Design Specification DSP0280

40 Published Version 1.0.0

218 10.6 Handling MCTP Packets

219 To build one or more MCTP packets from a Test Request message, the Test Service (and the Control Plane hosting the

Test Service) may take the following steps:

1. The Physical Medium-Specific Header and Trailer will typically be created by Control Plane logic that

manages the appropriate physical interface. It may be necessary for the Test Service to look up the

physical interface using the DUT Connection ID, and the Test Service may reject any unregistered

requests with a PRIVILEGE_ERROR Message Response Code.

2. The MCTP Header version, Start Of Message, End Of Message, Packet Sequence #, Tag Owner, and

Message tag fields shall be filled out as appropriate (for example, for a first/middle/last packet in a

message). Packetization of Upper-layer Protocol messages is described in DSP0236, and it may be

necessary for the Test Service or Control Plane to build multiple MCTP packets to handle a single Test

request.

3. The Destination endpoint ID shall be obtained by using the DUT Connection ID to look up the DUT's

Destination endpoint ID.

4. The Source endpoint ID shall be the Control Plane's MCTP EID.

5. The MCTP Message type may be obtained directly from the Test Service Wrapper's Protocol Type field.

6. The remainder of the MCTP packet payload is contained within the Upper-layer Protocol Request

Message of the Test request.

7. Once the entire MCTP message is constructed and sent to the DUT, the Test Service must start a timer

to capture the elapsed request-to-response time in a Test response. If the timer exceeds the Maximum

Wait Time from the Test Client, the Test Service shall respond with a TIMEOUT Message Response

Code.

220 Likewise, the Test Service may handle an MCTP message received from the DUT in this way:

1. If the Test Service receives a message that cannot be interpreted or correlated to a request message,

the Test Service should send a Log Event message with Reason Code CorruptMessage to the Test

Client with relevant information, and then continue waiting for a response if appropriate. It is possible

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 41

that the Test Service will eventually exceed the Maximum Wait Time in this scenario, in which case a

TIMEOUT Message Response code should be sent.

2. The control plane should check the Physical Medium-Specific Header and Trailer for any errors. If one

is found, but it is possible to correlate the message to a request message, it is appropriate to send a

PHYSICAL_ERROR message response code to the Test Client.

3. The control plane or Test Service should check the MCTP Header version, Destination endpoint ID, Start

Of Message, End Of Message, Packet Sequence #, Tag Owner, and Message tag fields for accuracy. If

any errors are found, but it is possible to correlate the message to a request message, it is appropriate

to send a TRANSPORT_ERROR message response code to the Test Client. It may be necessary to wait for

multiple MCTP packets before the MCTP message is ready.

4. Use the Source endpoint ID, Message type, and Message type-specific Header fields to discover

whether this is a response to an outstanding Test request. If so, a Test response should be constructed

with the TS → TC Response bits set in the Test Service Wrapper. If the Test Service receives an

asynchronous MCTP message, and the Test Client has registered to receive async messages from the

DUT, then a new Test request should be constructed with the TS → TC Request bits set.

5. When constructing either a Test response or an async Test request to the Test Client, the Protocol Type

(in the Test Service Wrapper) shall be set to the MCTP Message type from the MCTP packet payload,

the DUT Connection ID shall be set to the appropriate value for the device and physical interface, and

the Upper-layer Protocol Response Message shall be all bytes of the MCTP packet payload, excluding

the MCTP Message type byte.

6. For Test response messages, the Elapsed Time shall be filled in using the timer that was started during

the Test request.

221 10.7 Handling NC-SI over RBT Packets

222 To build an NC-SI packet from a Test Request message, the Test Service (and the Control Plane hosting the Test

Service) may take the following steps (refer to DSP0222). Implementers are reminded that NC-SI is a Big Endian

protocol and that the bytes column of the preceding diagram represents the order of transmission.

1. The Test Service shall ensure that the Protocol type is set to NC-SI Control, even though this message

will not be going over MCTP. If the Protocol type is not set to NC-SI control, the Test Service shall

return an INVALID_PROTOCOL message response code to the Test Client.

PMCI Test Tools Interface and Design Specification DSP0280

42 Published Version 1.0.0

2. The Ethernet frame header is populated by the Control Plane.

3. The NC-SI Control Packet Header must be included as part of the Upper-layer Protocol Request

Message coming from the Test Client. However, the Control Plane and Test Service may validate or re-

write certain fields as follows:

i. The Management Controller ID shall be filled in by the Test Service using the DUT

Connection ID. Typically, this value will be 0x00 .

ii. The Header Revision must be set to 0x01 by the Test Service.

iii. The Instance ID must be re-written by the Control Plane or Test Service to ensure that it

is monotonically increasing, as required in DSP0222. The Instance ID that was requested

by the Test Client must be remembered so that it may be re-written into the Test

response. It is possible that even Instance IDs sent from the Test Service will not be

monotonically increasing, since the Control Plane may need to send its own NC-SI

messages for critical operations such as thermal monitoring, and therefore the Test

Service must maintain a bi-directional mapping of the requested Instance ID and the

sent/received Instance ID.

iv. The Control Packet Type, Flags, and Payload Length is provided by the Test Client as part

of the Upper-layer Protocol Request.

v. The Channel ID is provided by the Test Client as part of the Upper-layer Protocol

Request, based on the NC-SIInfo section of the System Inventory. Implementers are

encouraged to review the NC-SI Considerations section of this document related to the

Channel ID.

4. The Control Packet payload will follow the Control Packet Header in the Upper-layer Protocol Request

from the Test Client, and may be copied directly into the NC-SI over RBT packet. However, the Test

Service or Control Plane may have to modify the Payload Pad as required by DSP0222.

5. Once the entire RBT message is constructed and sent to the DUT, the Test Service must start a timer to

capture the elapsed request-to-response time in a Test response. If the timer exceeds the Maximum

Wait Time from the Test Client, the Test Service shall respond with a TIMEOUT Message Response

Code.

223 Likewise, the Test Service may handle an NC-SI Response packet or AEN packet received from the DUT in this way:

1. If the Test Service receives an NC-SI packet that cannot be interpreted as an AEN packet or a Response

packet correlated to a Request message, the Test Service should send a Log Event message with Reason

Code CorruptMessage to the Test Client with relevant information, and then continue waiting for a

response if appropriate. It is possible that the Test Service will eventually exceed the Maximum Wait

Time in this scenario, in which case a TIMEOUT Message Response code should be sent.

2. If the packet is valid, the Ethernet frame header shall be removed by the Test Service or Control Plane.

If the packet is not valid, it is appropriate to send a TRANSPORT_ERROR message response code to the

Test Client.

3. The Test Service shall construct a Test Response message with:

i. The Test Service Wrapper with the Protocol type set to NC-SI Control (even though this

was not an MCTP message) and the TS → TC Response bits set.

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 43

ii. The DUT Connection ID appropriate value for the device and physical interface.

iii. For NC-SI Response packets, the Elapsed Time shall be filled in using the timer that was

started during the Test request.

iv. The appropriate Message response code (typically, SUCCESS if a valid NC-SI message

was received).

v. For NC-SI Response packets, the requested Instance ID from the Test Client shall replace

the received Instance ID from the DUT so that the Test Client may match up the request

and response NC-SI messages. For AEN packets, the Instance ID field is set to 0.

vi. The Control Packet header (with the updated Instance ID), followed by the unmodified

Response packet payload, as the Upper-layer Protocol Response Message.

PMCI Test Tools Interface and Design Specification DSP0280

44 Published Version 1.0.0

224 11 ANNEX A SystemInventory Example (informative)
and Schema (normative)

225 11.1 SystemInventory Example

226 The following is an example of System Inventory that might be returned from the GetSystemInventory message:

{
"SchemaDefinition": "SystemInventory.v1_0_0",
"ControlPlane": {

"Manufacturer": "Contoso",
"Model": "ContoBMC",
"FirmwareVersions": [

{
"Name": "name1",
"Version": "version1"

},
{

"Name": "name2",
"Version": "version2"

},
{

"Name": "name3",
"Version": "version3"

}
],
"Interfaces": [

{
"Interface": "I2C",
"MessageInitiationSupport": "ControlPlaneRequestorOnly"

},
{

"Interface": "PCIeVDM",
"MessageInitiationSupport": "AnyRequestor"

},
{

"Interface": "RBT",
"MessageInitiationSupport": "ControlPlaneRequestorOnly"

}
]

},
"Devices": [

{
"Manufacturer": "ContosoAdapters",
"Location": "Slot 3",

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 45

"GeneralDeviceIdentifier": 3180,
"PCI-ID": {

"DID": "0x1234",
"SDID": "0x5678",
"VID": "0x9ABC",
"SVID": "0xDEF0"

},
"FirmwareVersions": [

{
"Name": "Management",
"Version": "2.7.3"

},
{

"Name": "Ethernet",
"Version": "4.8.1"

},
{

"Name": "Security",
"Version": "1.3.7a"

}
],
"Interfaces": [

{
"Interface": "I2C",
"InterfaceIdentifier": 3187,
"ParentDeviceIdentifier": 0,
"ProtocolSupport": [

{
"Protocol": "MCTP",
"Types": [

{
"Type": 0,
"Name": "MCTP Base",
"Versions": [

"1.2.0"
]

},
{

"Type": 1,
"Name": "PLDM over MCTP",
"Versions": [

"1.0.0"
]

},
{

"Type": 2,
"Name": "NC-SI over MCTP",
"Versions": [

"1.0.0"
]

PMCI Test Tools Interface and Design Specification DSP0280

46 Published Version 1.0.0

},
{

"Type": 3,
"Name": "Ethernet over MCTP",
"Versions": [

"1.0.0"
]

},
{

"Type": 4,
"Name": "NVM Express Management Messages over MCTP",
"Versions": [

"1.0.0"
]

},
{

"Type": 5,
"Name": "SPDM over MCTP",
"Versions": [

"1.0.0"
]

},
{

"Type": 126,
"Name": "Vendor Defined - PCI",
"Versions": [

"1.0.0"
]

},
{

"Type": 127,
"Name": "Vendor Defined - IANA",
"Versions": [

"1.0.0"
]

}
]

},
{

"Protocol": "PLDM",
"Types": [

{
"Type": 0,
"Name": "PLDM Base",
"Versions": [

"1.0.0"
]

},
{

"Type": 2,

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 47

"Name": "PLDM for Platform Monitoring and Control",
"Versions": [

"1.2.0"
]

}
]

}
]

},
{

"Interface": "PCIeVDM",
"InterfaceIdentifier": 3188,
"ParentDeviceIdentifier": 0,
"ProtocolSupport": [

{
"Protocol": "MCTP",
"Types": [

{
"Type": 0,
"Name": "MCTP Base",
"Versions": [

"1.2.0"
]

},
{

"Type": 1,
"Name": "PLDM over MCTP",
"Versions": [

"1.0.0"
]

}
]

},
{

"Protocol": "PLDM",
"Types": [

{
"Type": 0,
"Name": "PLDM Base",
"Versions": [

"1.0.0"
]

},
{

"Type": 2,
"Name": "PLDM for Platform Monitoring and Control",
"Versions": [

"1.2.0"
]

},

PMCI Test Tools Interface and Design Specification DSP0280

48 Published Version 1.0.0

{
"Type": 5,
"Name": "PLDM for Firmware Update",
"Versions": [

"1.1.0"
]

},
{

"Type": 6,
"Name": "PLDM for Redfish Device Enablement",
"Versions": [

"1.0.1",
"1.1.0"

]
}

]
}

]
},
{

"Interface": "RBT",
"InterfaceIdentifier": 3189,
"ParentDeviceIdentifier": 0,
"ProtocolSupport": [

{
"Protocol": "NC-SI",
"Types":[

{
"Type": 0,
"Name": "NC-SI",
"Versions": [

"1.1.1"
]

}
],
"NC-SIInfo": [

{
"ChannelID": "0x01",
"Pass-through": "Enabled"

},
{

"ChannelID": "0x02",
"Pass-through": "Disabled"

}
]

}
]

}
]

},

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 49

{
"Manufacturer": "ContosoBridge",
"Location": "Slot 5",
"GeneralDeviceIdentifier": 6450,
"PCI-ID": {

"DID": "0x0867",
"SDID": "0x5309",
"VID": "0x9ABC",
"SVID": "0xDEF0"

},
"FirmwareVersions": [

{
"Management": "1.6a"

}
],
"Interfaces": [

{
"Interface": "I2C",
"PathDeviceIdentifier": 6457,
"ParentDeviceIdentifier": 0,
"ProtocolSupport": [

{
"Protocol":"MCTP",
"Types":[

{
"Type": 0,
"Name": "MCTP Base",
"Versions": [

"1.2.0"
]

},
{

"Type": 1,
"Name": "PLDM over MCTP",
"Versions": [

"1.0.0"
]

}
]

},
{

"Protocol": "PLDM",
"Types": [

{
"Type": 0,
"Name": "PLDM Base",
"Versions": [

"1.0.0"
]

}

PMCI Test Tools Interface and Design Specification DSP0280

50 Published Version 1.0.0

]
}

]
},
{

"Interface": "PCIeVDM",
"PathDeviceIdentifier": 6458,
"ParentDeviceIdentifier": 0,
"ProtocolSupport": [

{
"Protocol": "MCTP",
"Types": [

{
"Type": 0,
"Name": "MCTP Base",
"Versions": [

"1.2.0"
]

},
{

"Type": 1,
"Name": "PLDM over MCTP",
"Versions": [

"1.0.0"
]

}
]

},
{

"Protocol": "PLDM",
"Types": [

{
"Type": 0,
"Name": "PLDM Base",
"Versions": [

"1.0.0"
]

}
]

}
]

}
]

},
{

"Manufacturer": "ContosoBackendDrive",
"Location": "Bridge Slot 1",
"GeneralDeviceIdentifier": 1240,
"UniqueID": "0x45237789056AB781",
"PCI-ID":{

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 51

"DID": "0x2468",
"SDID": "0x1357",
"VID": "0x9ABC",
"SVID": "0xDEF0"

},
"FirmwareVersions": [

{
"Management": "1.0.1",
"NVMe": "12.3.45"

}
],
"Interfaces": [

{
"Interface": "I2C",
"PathDeviceIdentifier": 1247,
"ParentDeviceIdentifier": 6450,
"ProtocolSupport": [

{
"Protocol": "MCTP",
"Types": [

{
"Type": 0,
"Name": "MCTP Base",
"Versions": [

"1.2.0"
]

},
{

"Type": 1,
"Name": "PLDM over MCTP",
"Versions": [

"1.0.0"
]

}
]

},
{

"Protocol": "PLDM",
"Types": [

{
"Type": 0,
"Name": "PLDM Base",
"Versions": [

"1.0.0"
]

}
]

}
]

},

PMCI Test Tools Interface and Design Specification DSP0280

52 Published Version 1.0.0

{
"Interface": "PCIeVDM",
"PathDeviceIdentifier": 1248,
"ParentDeviceIdentifier": 6450,
"ProtocolSupport": [

{
"Protocol": "MCTP",
"Types": [

{
"Type": 0,
"Name": "MCTP Base",
"Versions": [

"1.2.0"
]

},
{

"Type": 1,
"Name": "PLDM over MCTP",
"Versions": [

"1.0.0"
]

}
]

},
{

"Protocol": "PLDM",
"Types": [

{
"Type": 0,
"Name": "PLDM Base",
"Versions": [

"1.0.0"
]

},
{

"Type": 5,
"Name": "PLDM for Firmware Update",
"Versions": [

"1.1.0"
]

}
]

}
]

}
]

}
]

}

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 53

227 11.2 SystemInventory Schema

228 The following Schema dictates the contents of the System Inventory document returned from the

GetSystemInventory message:

{
"$id": "http://pmci.dmtf.org/tools/SystemInventory.v1_0_0.json",
"$schema": "http://json-schema.org/draft-07/schema#",
"description": "A system-level representation of the hardware devices and their

connections.",
"copyright": "Copyright 2021 DMTF. For the full DMTF copyright policy, see

http://www.dmtf.org/about/policies/copyright",
"type": "object",
"additionalProperties": false,
"properties": {

"SchemaDefinition": {
"type": "string",
"description": "The JSON schema that defines this SystemInventory document and can

be used to validate its contents."
},
"ControlPlane": {

"type": "object",
"description": "Information on the Control Plane with which the test service

interacts.",
"properties": {

"Manufacturer": {
"type": "string",
"description": "The name of the organization that manufactures this Control

Plane."
},
"Model": {

"type": "string",
"description": "The model name of this Control Plane."

},
"FirmwareVersions": {

"type": "array",
"items": {

"$ref": "#/definitions/FWVersion"
}

},
"Interfaces": {

"type": "array",
"items": {

"$ref": "#/definitions/ControlPlaneInterface"
}

}
}

},
"Devices": {

PMCI Test Tools Interface and Design Specification DSP0280

54 Published Version 1.0.0

"type": "array",
"items": {

"$ref": "#/definitions/Device"
}

}
},
"definitions": {

"Interface": {
"type": "string",
"enum": ["I2C", "I3C", "PCIeVDM", "RBT", "Serial", "Proprietary"],
"enumDescriptions": {

"I2C": "I2C or SMBus",
"I3C": "I3C",
"PCIeVDM": "PCIe supported via vendor defined messages",
"RBT": "RBT/RMII used for NC-SI communications",
"Serial": "Serial",
"Proprietary": "Vendor-specific proprietary interface not otherwise listed here"

},
"description": "The name of the interface"

},
"Device": {

"type": "object",
"description": "Information about hardware device",
"properties": {

"Manufacturer": {
"type": "string",
"description": "The name of the organization that manufactures this Device."

},
"Location": {

"type": "string",
"description": "The physical location (slot, etc.) for this device."

},
"GeneralDeviceIdentifier": {

"type": "number",
"description": "A numeric identifier assigned by the testing service for

this device."
},
"UniqueID": {

"type": "string",
"description": "An idempotent identifier unique to the device ."

},
"PCI-ID": {

"type": "object",
"description": "The PCI identifier for this device",
"properties": {

"DID": {
"type": "string",
"description": "The four hexadecimal digit device identifier for

this device, prefixed with 0x"
},
"SDID": {

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 55

"type": "string",
"description": "The four hexadecimal digit subdevice identifier for

this device, prefixed with 0x"
},
"VID": {

"type": "string",
"description": "The four hexadecimal digit vendor identifier for

this device, prefixed with 0x"
},
"SVID": {

"type": "string",
"description": "The four hexadecimal digit subvendor identifier for

this device, prefixed with 0x"
}

}
},
"FirmwareVersions": {

"type": "array",
"items": {

"$ref": "#/definitions/FWVersion"
}

},
"Interfaces": {

"type": "array",
"items": {

"$ref": "#/definitions/DeviceInterfaceInfo"
}

}
}

},
"DeviceInterfaceInfo": {

"type": "object",
"description": "Information about a specific interface for a hardware device",
"properties": {

"Interface": {
"$ref": "#/definitions/Interface"

},
"PathDeviceIdentifier": {

"type": "number",
"description": "A numeric identifier assigned by the testing service for

this device as connected to via this interface."
},
"ParentDeviceIdentifier": {

"type": "number",
"description": "The testing service-assigned numeric identifier for the

bridge to which this device is attached on this interface, or zero if the device is directly
connected to the host system's Control Plane."

},
"ProtocolSupport": {

"type": "array",
"items": {

"$ref": "#/definitions/ProtocolInfo"

PMCI Test Tools Interface and Design Specification DSP0280

56 Published Version 1.0.0

}
}

}
},
"FWVersion": {

"type": "object",
"description": "Information about a firmware version for the Control Plane",
"properties": {

"Name": {
"type": "string",
"description": "The name of the firmware component"

},
"Version": {

"type": "string",
"description": "The version string for the firmware component"

}
}

},
"ControlPlaneInterface": {

"type": "object",
"description": "Information about an interface supported by the Control Plane",
"properties": {

"Interface": {
"$ref": "#/definitions/Interface"

},
"MessageInitiationSupport": {

"type": "string",
"enum": [

"AnyRequestor",
"ControlPlaneRequestorOnly",
"DeviceRequestorOnly"

],
"enumDescriptions": {

"AnyRequestor": "Either the Control Plane or the device may initiate
messages",

"ControlPlaneRequestorOnly": "Only the Control Plane may initiate
messages",

"DeviceRequestorOnly": "Only the device may initiate messages"
},
"description": "An indication of the directions from which messages may be

initiated on this interface"
}

}
},
"ProtocolInfo": {

"type": "object",
"description": "Information about a protocol family supported by a device.",
"properties": {

"Protocol": {
"type": "string",
"enum": [

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 57

"MCTP",
"PLDM",
"NC-SI",
"NVMe",
"OEM"

],
"enumDescriptions": {

"MCTP": "Management Control Transfer Protocol",
"PLDM": "Platform Layer Data Model",
"NC-SI": "Network Controller Sideband Interface",
"NVMe": "Non-Volatile Memory Express",
"OEM": "Original Equipment Manufacturer (proprietary)"

}
},
"Types": {

"type": "array",
"items": {

"$ref": "#/definitions/ProtocolTypeSupport"
}

}
}

},
"ProtocolTypeSupport": {

"type": "object",
"description": "Information about the types supported within a protocol family for

a device.",
"properties": {

"Type": {
"type": "number",
"description": "The numeric identifier for the protocol type."

},
"Name": {

"type": "string",
"description": "The name of the protocol"

},
"Versions": {

"type": "array",
"items": {

"patternProperties": {
"^.*$": {

"description": "A version of the protocol type supported by the
device"

}
}

}
}

}
},
"NC-SIAuxInfo": {

"type": "object",

PMCI Test Tools Interface and Design Specification DSP0280

58 Published Version 1.0.0

"description": "Information about the NC-SI implementation on the network
controller",

"properties": {
"ChannelID": {

"type": "string",
"description": "Network Controller Channel ID to address the Network

Controller Channel."
},
"Pass-through": {

"type": "string",
"description": "The status of the channel to allow Pass-through packets.",
"enum": [

"Enabled",
"Disabled"

],
"enumDescriptions": {

"Enabled": "Pass-through enabled on channel",
"Disabled": "Pass-through disabled on channel"

}
}

}
}

}
}

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 59

229 12 ANNEX B (informative) Change log

Version Date Description

1.0.0 2022-07-07 Initial Version

PMCI Test Tools Interface and Design Specification DSP0280

60 Published Version 1.0.0

230 13 Bibliography

231 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

DSP0280 PMCI Test Tools Interface and Design Specification

Version 1.0.0 Published 61

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	PMCI Test Tools Interface and Design Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Conventions
	2.1.1 Document conventions
	2.1.2 Reserved and unassigned values
	2.1.3 Byte ordering
	2.1.4 Test Interface data types
	2.1.5 Version encoding
	2.1.6 Notations

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 PMCI Test Architecture
	8 PMCI Test Tools Interface Concepts
	8.1 Interface Scope
	8.2 Security
	8.2.1 Overview
	8.2.2 Security Requirements
	8.2.3 Security Best Practices

	8.3 Test Client and Test Service Interface
	8.3.1 Admin and Test Protocols Messages Flow
	8.3.2 Admin Messaging Protocol
	8.3.2.1 Client Session Establishment

	8.3.3 Test Messaging Protocol
	8.3.4 NC-SI Testing Considerations

	9 Test service behavior
	9.1 Device security arbiter
	9.2 Connection Watchdog
	9.3 Proxying of messages
	9.4 Collection of timing information
	9.5 Relaying of device-initiated messages to registered test clients
	10 Messages
	10.1 Message structure
	10.1.1 Test Service Wrapper
	10.1.1.1 Protocol Type
	10.1.1.2 Test Service Wrapper Flags

	10.1.2 Message Response Codes

	10.2 Admin Messages
	10.2.1 Command Codes
	10.2.2 Connect (0x00)
	10.2.3 Disconnect (0x01)
	10.2.4 Query Capabilities (0x10)
	10.2.5 Query Status (0x11)
	10.2.6 Query System Inventory (0x12)
	10.2.7 Configure Test Service (0x20)
	10.2.8 Configure Device Under Test (0x21)
	10.2.9 Configure Device Under Test Examples
	10.2.9.1 Example 1
	10.2.9.2 Example 2
	10.2.9.3 Example 3
	10.2.9.4 Example 4
	10.2.9.5 Example 5

	10.2.10 Register to Protocol (0x22)
	10.2.11 Register Async Message Recipient (0x23)
	10.2.12 Log Event (0x30)

	10.3 Vendor Defined Admin
	10.4 Test Messages
	10.4.1 Device-originated (Async) Protocol Messages

	10.5 Test Request and Response Messages
	10.6 Handling MCTP Packets
	10.7 Handling NC-SI over RBT Packets
	11 ANNEX A SystemInventory Example (informative) and Schema (normative)
	11.1 SystemInventory Example
	11.2 SystemInventory Schema
	12 ANNEX B (informative) Change log
	13 Bibliography

