
1

2

3

Document Identifier: DSP0274

Date: 2021-08-19

Version: 1.2.0WIP.89

4 Security Protocol and Data Model (SPDM)
Specification

7 Supersedes: 1.1.1

8 Document Class: Normative

9 Document Status: Work in Progress

10 Document Language: en-US

Information for Work-in-Progress version:

5 IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the DMTF

or its members. Because this document is a Work in Progress, this document may still change,

perhaps profoundly and without notice. This document is available for public review and comment until

superseded.

6 Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/

feedback

http://www.dmtf.org/standards/feedback
http://www.dmtf.org/standards/feedback

11 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

12 Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

13 For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

14 This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2021 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

2 Work in Progress Version 1.2.0a

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

15 CONTENTS

1 Foreword . 7

1.1 Acknowledgments . 7

2 Introduction . 9

2.1 Advice . 9

2.2 Conventions. 9

2.2.1 Document conventions . 9

2.2.2 Reserved and unassigned values . 9

2.2.3 Byte ordering. 9

2.2.3.1 Hash byte ordering . 10

2.2.3.2 Encoded ASN.1 byte ordering . 10

2.2.4 SPDM data types . 10

2.2.5 Version encoding. 11

2.2.6 Notations . 11

2.2.7 Text or string encoding . 12

2.2.8 Deprecated material . 13

3 Scope. 14

4 Normative references. 15

5 Terms and definitions . 17

6 Symbols and abbreviated terms . 21

7 SPDM message exchanges. 22

7.1 Security capability discovery and negotiation . 22

7.2 Identity authentication . 22

7.2.1 Identity provisioning . 23

7.2.1.1 Raw public keys . 25

7.2.2 Runtime authentication . 26

7.3 Firmware and configuration measurement . 26

7.4 Secure sessions . 26

7.5 Mutual authentication overview . 27

7.6 Notifications overview . 27

8 SPDM messaging protocol . 28

8.1 SPDM bits-to-bytes mapping. 30

8.2 Generic SPDM message format . 30

8.2.1 SPDM version . 31

8.3 SPDM request codes. 31

8.4 SPDM response codes . 33

8.5 SPDM request and response code issuance allowance . 35

8.6 Concurrent SPDM message processing . 36

8.7 Requirements for Requesters . 37

8.8 Requirements for Responders. 37

9 Timing requirements . 38

9.1 Timing measurements . 38

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 3

9.2 Timing specification table . 38

10 SPDM messages . 41

10.1 Capability discovery and negotiation . 41

10.1.1 Negotiated state preamble . 42

10.2 GET_VERSION request and VERSION response messages. 42

10.3 GET_CAPABILITIES request and CAPABILITIES response messages . 44

10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages 51

10.5 Responder identity authentication . 64

10.6 Requester identity authentication . 66

10.6.1 Certificates and certificate chains . 66

10.7 GET_DIGESTS request and DIGESTS response messages . 67

10.8 GET_CERTIFICATE request and CERTIFICATE response messages. 68

10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE

messages . 69

10.8.2 Leaf certificate . 69

10.9 CHALLENGE request and CHALLENGE_AUTH response messages . 71

10.9.1 CHALLENGE_AUTH signature generation. 74

10.9.2 CHALLENGE_AUTH signature verification. 75

10.9.2.1 Request ordering and message transcript computation rules for M1 and M2 76

10.9.3 Basic mutual authentication . 78

10.9.3.1 Mutual authentication message transcript . 79

10.10 Firmware and other measurements. 80

10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages. 81

10.11.1 Measurement block . 85

10.11.1.1 DMTF specification for the Measurement field of a measurement block 86

10.11.1.2 Device mode field of a measurement block . 88

10.11.2 MEASUREMENTS signature generation . 89

10.11.3 MEASUREMENTS signature verification . 91

10.12 ERROR response message . 92

10.12.1 Standard body or vendor-defined header . 97

10.13 RESPOND_IF_READY request message format . 97

10.14 VENDOR_DEFINED_REQUEST request message . 98

10.15 VENDOR_DEFINED_RESPONSE response message . 99

10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages 100

10.16.1 Session-based mutual authentication . 107

10.16.1.1 Specifying Requester certificate for Session-based mutual authentication 107

10.17 FINISH request and FINISH_RSP response messages . 108

10.17.1 Transcript hash calculation rules. 110

10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages 112

10.19 PSK_FINISH request and PSK_FINISH_RSP response messages . 118

10.20 HEARTBEAT request and HEARTBEAT_ACK response messages. 120

10.20.1 Heartbeat additional information . 121

10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages 121

Security Protocol and Data Model (SPDM) Specification DSP0274

4 Work in Progress Version 1.2.0a

10.21.1 Session key update synchronization. 122

10.21.2 KEY_UPDATE transport allowances. 125

10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response

messages. 128

10.22.1 Encapsulated request flow . 128

10.22.2 Optimized encapsulated request flow . 128

10.22.3 Triggering GET_ENCAPSULATED_REQUEST . 132

10.22.4 Additional constraints . 132

10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK

response messages. 133

10.23.1 Additional information . 135

10.23.2 Allowance for encapsulated requests . 135

10.23.3 Certain error handling in encapsulated flows . 136

10.23.3.1 Response not ready . 136

10.23.3.2 Timeouts . 136

10.24 END_SESSION request and END_SESSION_ACK response messages 136

10.25 Certificate Provisioning . 138

10.25.1 GET_CSR request and CSR response messages . 138

10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages 140

10.26 Event mechanism . 141

10.26.1 SUBSCRIBE_EVENT_GROUP request and SUBSCRIBE_EVENT_GROUP_ACK response

message . 143

10.26.2 GET_SUPPORTED_EVENT_GROUPS request and SUPPORTED_EVENT_GROUPS

response message . 144

10.26.3 SEND_EVENT request and EVENT_ACK response message . 145

10.26.4 Event Instance ID . 147

10.27 Large SPDM message transfer mechanism . 147

10.27.1 CHUNK_SEND request and CHUNK_SEND_ACK response message. 148

10.27.2 CHUNK_GET request and CHUNK_RESPONSE response message. 150

10.27.3 Additional chunk transfer requirements. 152

11 Session. 154

11.1 Session handshake phase. 154

11.2 Application phase. 155

11.3 Session termination phase. 155

11.4 Simultaneous active sessions . 155

11.5 Records and session ID. 156

12 Key schedule . 157

12.1 DHE secret computation . 159

12.2 Transcript hash in key derivation . 159

12.3 TH1 definition . 160

12.4 TH2 definition . 160

12.5 Key schedule major secrets . 161

12.5.1 Request-direction handshake secret. 161

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 5

12.5.2 Response-direction handshake secret . 161

12.5.3 Requester-direction data secret . 161

12.5.4 Responder-direction data secret . 161

12.6 Encryption key and IV derivation . 162

12.7 finished_key derivation . 162

12.8 Deriving additional keys from the Export Master Secret . 163

12.9 Major secrets update . 163

13 Application data . 164

13.1 Nonce derivation . 164

14 General opaque data . 165

15 Signature generation . 167

15.1 Signing algorithms in extensions . 168

15.2 RSA and ECDSA signing algorithms. 168

15.3 EdDSA signing algorithms. 168

15.3.1 Ed25519 sign . 169

15.3.2 Ed448 sign . 169

15.4 SM2 signing algorithm . 169

16 Signature verification . 170

16.1 Signature verification algorithms in extensions . 170

16.2 RSA and ECDSA signature verification algorithms . 171

16.3 EdDSA signature verification algorithms . 171

16.3.1 Ed25519 verify . 171

16.3.2 Ed448 verify . 171

16.4 SM2 signature verification algorithm . 172

17 General ordering rules . 173

18 DMTF Event Types . 174

18.1 Event type details . 174

18.1.1 Measurement Event . 174

18.1.2 Event Lost . 174

19 ANNEX A (informative) TLS 1.3. 176

20 ANNEX B (normative) Device certificate example . 177

21 ANNEX C (informative) OID reference . 179

22 ANNEX D (informative) variable name reference . 180

23 ANNEX E (informative) change log . 182

23.1 Version 1.0.0 (2019-10-16) . 182

23.2 Version 1.1.0 (2020-07-15) . 182

23.3 Version 1.2.0 (Pending) . 182

24 Bibliography . 185

Security Protocol and Data Model (SPDM) Specification DSP0274

6 Work in Progress Version 1.2.0a

16 1 Foreword

17 The Platform Management Components Intercommunication (PMCI) working group of the DMTF prepared the

Security Protocol and Data Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry

members that promotes enterprise and systems management and interoperability. For information about the DMTF,

see DMTF.

18 1.1 Acknowledgments

19 The DMTF acknowledges the following individuals for their contributions to this document:

20 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Lee Ballard — Dell Technologies

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Andrew Draper — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yuval Itkin — Mellanox Technologies

• Theo Koulouris — Hewlett Packard Enterprise

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Edward Newman — Hewlett Packard Enterprise

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 7

https://www.dmtf.org/

• Jiewen Yao — Intel Corporation

Security Protocol and Data Model (SPDM) Specification DSP0274

8 Work in Progress Version 1.2.0a

21 2 Introduction

22 The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges between devices over a variety of transport and physical media. The description of

message exchanges includes authentication of hardware identities, measurement for firmware identities and session

key exchange protocols to enable confidentiality and integrity protected data communication. The SPDM enables

efficient access to low-level security capabilities and operations. Other mechanisms, including non-PMCI- and

DMTF-defined mechanisms, can use the SPDM.

23 2.1 Advice

24 The authors recommend readers visit tutorial and education materials under Platform Management Communications

Infrastructure (PMCI) on DMTF website prior to or during the reading of this specification to help understand this

specification.

25 2.2 Conventions

26 The following conventions apply to all SPDM specifications.

27 2.2.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

28 2.2.2 Reserved and unassigned values

29 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by the DMTF.

30 Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

31 2.2.3 Byte ordering

32 Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit

fields is "Little Endian"(that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 9

https://www.dmtf.org/standards/pmci
https://www.dmtf.org/standards/pmci

33 2.2.3.1 Hash byte ordering

34 For fields or values containing a digest or hash, SPDM preserves the byte order of the digest as defined by the

specification of a given hash algorithm. SPDM views these digests, simply, as a string of octets where the first byte is

the left most byte of the digest, the second byte is the second leftmost byte, the third byte is the third leftmost byte

and this pattern continues until the last byte of the digest. Thus, the byte order for SPDM digests or hashes is the first

byte is placed at the lowest offset in the field or value, the second byte is placed at the second lowest offset, the third

byte is placed at the third lowest offset in the field or value and this pattern continues until the last byte.

35 For example, in FIPS 180-4, a SHA 256 hash is the concatenation of eight 32-bit words where each word is in big

endian order but the order of words do not have any endianness associated with it. SPDM simply views this 256-bit

digest as a string of octets that is 32 bytes in size where the first byte is the value at H0[31:24] of the final digest, the

second byte is the value at H0[23:16], the third byte is value at H0[15:8], the forth byte is value at H0[7:0], the fifth

bytes is the value at H1[31:24] and this pattern continues until the last byte which is the value at H7[7:0] where H0,

H1, H7 are defined in the FIPS 180-4 specification.

36 2.2.3.2 Encoded ASN.1 byte ordering

37 For fields or values containing DER, CER or BER encoded data, SPDM preserves the byte order as described in

X.690 specification. SPDM views a DER, CER or BER encoded data as simply a string of octets where the first byte

is the leftmost byte of Figure 1 or Figure 2 the second byte is the second leftmost byte, the third byte is the third

leftmost byte and this pattern continues until the last byte. The first byte is also called either the Identifier octet or the

Leading identifier octet. Figure 1, Figure 2 and identifier octets are defined in X.690 specification. When populating a

DER, CER or BER encoded data in SPDM fields, the first byte is placed in the lowest address, the second byte is

placed in the second lowest offset, the third byte is placed in the third lowest offset in the field or value and this

pattern continues until the last byte.

38 2.2.4 SPDM data types

39 The SPDM data types table lists the abbreviations and descriptions for common data types that SPDM message

fields and data structure definitions use. These definitions follow DSP0240.

40 SPDM data types

Data type Interpretation

ver8 Eight-bit encoding of the SPDM version number. Version encoding defines the encoding of the version number.

bitfield8 Byte with eight bit fields. Each bit field can be separately defined.

bitfield16 Two-byte word with 16-bit fields. Each bit field can be separately defined.

Security Protocol and Data Model (SPDM) Specification DSP0274

10 Work in Progress Version 1.2.0a

41 2.2.5 Version encoding

42 The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major
Major version field in the SPDMVersion field in the SPDM message

header.
Protocol modification breaks backward compatibility.

Minor
Minor version field in the SPDMVersion field in the SPDM message

header.

Protocol modification maintains backward

compatibility.

43 EXAMPLE:

44 Version 3.7 → 0x37

45 Version 1.0 → 0x10

46 Version 1.2 → 0x12

47 An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 only, but the

available functionality is limited to what SPDM specification Version 1.0 defines.

48 An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

49 The detailed version encoding that the VERSION response message returns contains an additional byte that

indicates specification bug fixes or development versions. See the Successful VERSION response message format

table.

50 2.2.6 Notations

51 SPDM specifications use the following notations:

Notation Description

M:N

In field descriptions, this notation typically represents a range of byte offsets starting from byte M and

continuing to and including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 11

Notation Description

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit ([LSb]) offset = 0.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the right.

1b A lowercase b after a number consisting of 0 s and 1 s indicates that the number is in binary format.

0x12A Hexadecimal, indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

{ Payload }

Used mostly in figures, this notation indicates the payload specified in the enclosing curly brackets is

encrypted and/or authenticated by the keys derived from one or more major secrets. The specific secret

used is described throughout this specification. For example, { HEARTBEAT } shows that the Heartbeat

message is encrypted and/or authenticated by the keys derived from one or more major secrets.

{ Payload }::[[SX]]

Used mostly in figures, this notation indicates the payload specified in the enclosing curly brackets is

encrypted and/or authenticated by the keys derived from major Secret X.

For example, { HEARTBEAT }::[[S2]] shows that the Heartbeat message is encrypted and/or

authenticated by the keys derived from major secret S2 .

52 2.2.7 Text or string encoding

53 When a value is indicated as a text or string data type, the encoding for the text or string shall be an array of

contiguous bytes whose values are ordered. The first byte of the array resides at the lowest offset and the last byte of

the array is at the highest offset. The order of characters in the array shall be where the leftmost character of the

string is placed at the first byte in the array, the second leftmost character is placed in the second byte and so on

forth until the last character is placed in the last byte.

54 Each byte in the array shall be the numeric value that represents that character as defined in the ISO 646/ASCII

table.

55 The "spdm" encoding example table shows an encoding example of the string "spdm".

56 "spdm" encoding example

Offset Character Value

0 s 0x73

1 p 0x70

Security Protocol and Data Model (SPDM) Specification DSP0274

12 Work in Progress Version 1.2.0a

Offset Character Value

2 d 0x64

3 m 0x6D

57 2.2.8 Deprecated material

58 Deprecated material is not recommended for use in new development efforts. Existing and new implementations may

use this material, but they shall move to the favored approach as soon as possible. Implementations can implement

any deprecated elements as required by this document in order to achieve backwards compatibility. Although

implementations may use deprecated elements, they are directed to use the favored elements instead.

59 The following typographical convention indicates deprecated material:

60 DEPRECATED

61 Deprecated material appears here.

62 DEPRECATED

63 In places where this typographical convention cannot be used (for example, tables or figures), the "DEPRECATED"

label is used alone.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 13

64 3 Scope

65 This specification describes how to use messages, data objects, and sequences to exchange messages between

two devices over a variety of transports and physical media. This specification contains the message exchanges,

sequence diagrams, message formats, and other relevant semantics for such message exchanges, including

authentication of hardware identities and firmware measurement.

66 Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

Security Protocol and Data Model (SPDM) Specification DSP0274

14 Work in Progress Version 1.2.0a

67 4 Normative references

68 The following documents are indispensable for the application of this specification. For dated or versioned

references, only the edition cited, including any corrigenda or DMTF update versions, applies. For references without

a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2018

(8th edition)

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0004_3.0.1.pdf

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0223_1.0.1.pdf

• DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/

DSP0236_1.3.0.pdf

• DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0239_1.6.0.pdf

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0240_1.0.0.pdf

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification,

https://www.dmtf.org/dsp/DSP0275

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/

documents/DSP1001_1.2.0.pdf

• IETF RFC2986, PKCS #10: Certification Request Syntax Specification, November 2000

• IETF RFC4716, The Secure Shell (SSH) Public Key File Format, November 2006

• IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

• IETF RFC5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,

May 2008

• IETF RFC7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS), June 2014

• IETF RFC7919, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security

(TLS), August 2016

• IETF RFC8032, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017

• IETF RFC8446, The Transport Layer Security (TLS) Protocol Version 1.3, August 2018

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

• TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.32, June 25, 2020

• NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC, November 2007

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 15

https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://tools.ietf.org/html/rfc2986
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8446
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

• IETF RFC8439, ChaCha20 and Poly1305 for IETF Protocols, June 2018

• IETF RFC8998, ShangMi (SM) Cipher Suites for TLS 1.3, March 2021

• GB/T 32918.1-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 1: General, August 2016

• GB/T 32918.2-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 2: Digital signature algorithm, August 2016

• GB/T 32918.3-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 3: Key exchange protocol, August 2016

• GB/T 32918.4-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 4: Public key encryption algorithm, August 2016

• GB/T 32918.5-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 5: Parameter definition, August 2016

• GB/T 32905-2016, Information security technology—SM3 cryptographic hash algorithm, August 2016

• GB/T 32907-2016, Information security technology—SM4 block cipher algorithm, August 2016

• ASN.1 — ISO-822-1-4, DER — ISO-8825-1

◦ ITU-T X.680, X.681, X.682, X.683, X.690, 08/2015

• X.509 — ISO-9594-8

◦ ITU-T X.509, 08/2015

• ASCII — ISO/IEC 646:1991, 09/1991

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-4 Digital Signature

Standard (DSS)

◦ Appendix D: Recommended Elliptic Curves for Federal Government Use in FIPS PUB 186-4 Digital

Signature Standard (DSS)

• ANSI X9.62, 2005

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

Security Protocol and Data Model (SPDM) Specification DSP0274

16 Work in Progress Version 1.2.0a

https://tools.ietf.org/html/rfc8439
https://tools.ietf.org/html/rfc8998
http://www.gmbz.org.cn/upload/2018-07-24/1532401673134070738.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673134070738.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673138056311.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673138056311.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673149005052.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673149005052.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673367034870.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673367034870.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401863206085511.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401863206085511.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401392982079739.pdf
http://www.gmbz.org.cn/upload/2018-04-04/1522788048733065051.pdf
https://www.itu.int/rec/T-REC-X.680-X.693-201508-I/en
https://www.iso.org/standard/72557.html
https://www.iso.org/standard/4777.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://x9.org/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

69 5 Terms and definitions

70 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines

those terms.

71 The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional

cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7

specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal

English meaning.

72 The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

73 The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative

content. Notes and examples are always informative elements.

74 The terms that DSP0004, DSP0223, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this

document.

75 This specification uses these terms:

Term Definition

alias certificate Certificate that is dynamically generated by the component or component firmware.

application data

Data that is specific to the application and whose definition and format is outside the scope of this specification.

Application data usually exist at the application layer, which is, in general, the layer above SPDM and the transport

layer. Examples of data that could be application data include: messages carried as DMTF MCTP payloads; Internet

traffic (PCIe transaction layer packets (TLPs)); camera images and video (MIPI CSI-2 packets); video display stream

(MIPI DSI-2 packets) and touchscreen data (MIPI I3C Touch).

authentication Process of determining whether an entity is who or what it claims to be.

authentication

initiator
Endpoint that initiates the authentication process by challenging another endpoint.

byte Eight-bit quantity. Also known as an octet.

certificate
Digital form of identification that provides information about an entity and certifies ownership of a particular

asymmetric key-pair.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 17

Term Definition

certificate authority

(CA)
Trusted entity that issues certificates.

certificate chain Series of two or more certificates. Each certificate is signed by the preceding certificate in the chain.

component Physical device, contained in a single package.

device Physical entity such as a network controller or a fan.

device certificate
Certificate that contains information that identifies the component. May be a leaf certificate or an intermediate

certificate.

DMTF

Formerly known as the Distributed Management Task Force, the DMTF creates open manageability standards that

span diverse emerging and traditional information technology (IT) infrastructures, including cloud, virtualization,

network, servers, and storage. Member companies and alliance partners worldwide collaborate on standards to

improve the interoperable management of IT.

encapsulated

request

A request embedded into ENCAPSULATED_REQUEST or ENCAPSULATED_RESPONSE_ACK response message to allow the

Responder to issue a request to a Requester. See GET_ENCAPSULATED_REQUEST request and

ENCAPSULATED_REQUEST response messages for details.

endpoint Logical entity that communicates with other endpoints over one or more transport protocol.

event notifier
An SPDM endpoint that is capable of sending asynchronous notifications using SPDM event mechanisms. See Event

mechanism.

event recipient
An SPDM endpoint that is capable of receiving asynchronous notifications using SPDM event mechanisms. See

Event mechanism.

intermediate

certificate
Certificate that is neither a root certificate nor a leaf certificate.

large SPDM

message
An SPDM message that is greater than the DataTransferSize of the receiving SPDM endpoint.

large SPDM request A Large SPDM message that is an SPDM request.

large SPDM

response
A Large SPDM message that is an SPDM response.

invasive debug

mode

A device mode that enables debug access that might expose or allow modification of security critical firmware,

hardware, or settings. Invasive debug mode might include access to the device TCB.

leaf certificate Last certificate in a certificate chain.

measurement Representation of firmware/software or configuration data on an endpoint.

message See SPDM message.

message body Portion of an SPDM message that carries additional data.

Security Protocol and Data Model (SPDM) Specification DSP0274

18 Work in Progress Version 1.2.0a

Term Definition

message transcript

The concatenation of a sequence of messages in the order in which they are sent and received by an endpoint. The

final message included in the message transcript may be truncated to allow inclusion of a signature in that message

which is computed over the message transcript. If an endpoint is communicating with multiple peer endpoints

concurrently, the message transcripts for the peers are accumulated separately and independently.

most significant byte

(MSB)
Highest order byte in a number consisting of multiple bytes.

Negotiated State

Set of parameters that represent the state of the communication between a corresponding pair of Requester and

Responder at the successful completion of the NEGOTIATE_ALGORITHMS messages.

These parameters may include values provided in VERSION , CAPABILITIES and ALGORITHMS messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to continue or preserve

communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

non-invasive debug

mode

A device mode that enables debug access that does not expose or allow modification of security critical firmware,

hardware, or settings.

nonce

Number that is unpredictable to entities other than its generator. The probability of the same number occurring more

than once is negligible. Nonce may be generated by combining a pseudo random number of at least 64 bits,

optionally concatenated with a monotonic counter of size suitable for the application.

payload

Information-bearing fields of a message. These fields are separate from the transport fields and elements, such as

address fields, framing bits, and checksums, that transport the message from one point to another. In some

instances, a field can be both a payload field and a transport field.

physical transport

binding

Specifications that define how a base messaging protocol is implemented on a particular physical transport type and

medium, such as SMBus/I2C or PCI Express™ Vendor Defined Messaging.

Platform

Management

Component

Intercommunications

(PMCI)

Working group under the DMTF that defines standardized communication protocols, low-level data models, and

transport definitions that support communications with and between management controllers and management

devices that form a platform management subsystem within a managed computer system.

record A record is a unit or chunk of data that is either encrypted and/or authenticated.

Requester
Original transmitter, or source, of an SPDM request message. It is also the ultimate receiver, or destination, of an

SPDM response message.

Reset
This term is used to denote a Reset or restart of a device that runs the Requester or Responder code, that typically

leads to loss of all volatile state on the device.

Responder
Ultimate receiver, or destination, of an SPDM request message. It is also the original transmitter, or source of an

SPDM response message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 19

Term Definition

root certificate First certificate in a certificate chain, which is self-signed.

session keys Session Keys are any secrets, derived cryptographic keys or any cryptographic information bound to the session.

Session-Secrets-

Exchange

This term denotes any SPDM request and their corresponding response that initiates a session and provides initial

cryptographic exchange. Examples of such requests are KEY_EXCHANGE and PSK_EXCHANGE .

Session-Secrets-

Finish

This term denotes any SPDM request and their corresponding response that finalizes a session setup and provides

the final exchange of cryptographic or other information before application data can be securely transmitted.

Examples of such requests are FINISH and PSK_FINISH .

secure session
A secure session is a session that provides either or both of encryption or message authentication for communicating

data over a transport.

SPDM message Unit of communication in SPDM communications. See Generic SPDM message format for details.

SPDM message

payload

Portion of the message body of an SPDM message. This portion of the message is separate from those fields and

elements that identify the SPDM version, the SPDM request and response codes, and the two parameters.

SPDM request

message

Message that is sent to an endpoint to request a specific SPDM operation. A corresponding SPDM response

message acknowledges receipt of an SPDM request message.

SPDM response

message

Message that is sent in response to a specific SPDM request message. This message includes a Response Code

field that indicates whether the request completed normally.

trusted computing

base (TCB)

Set of all hardware, firmware, and/or software components that are critical to its security, in the sense that bugs or

vulnerabilities occurring inside the TCB might jeopardize the security properties of the entire system. By contrast,

parts of a computer system outside the TCB shall not be able to misbehave in a way that would leak any more

privileges than are granted to them in accordance to the security policy.

Reference: https://en.wikipedia.org/wiki/Trusted_computing_base

Security Protocol and Data Model (SPDM) Specification DSP0274

20 Work in Progress Version 1.2.0a

https://en.wikipedia.org/wiki/Trusted_computing_base
https://en.wikipedia.org/wiki/Trusted_computing_base

76 6 Symbols and abbreviated terms

77 The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

78 The following additional abbreviations are used in this document.

Abbreviation Definition

CA certificate authority

MAC Message Authentication Code

DMTF Formerly the Distributed Management Task Force

MSB most significant byte

PMCI Platform Management Component Intercommunications

SPDM Security Protocol and Data Model

TCB trusted computing base

AEAD Authenticated Encryption with Associated Data

VCA Version-Capabilities-Algorithms

KDF Key Derivation Function

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 21

79 7 SPDM message exchanges

80 The message exchanges defined in this specification are between two endpoints and are performed and exchanged

through sending and receiving of SPDM messages defined in SPDM messages. The SPDM message exchanges are

defined in a generic fashion that allows the messages to be communicated across different physical mediums and

over different transport protocols.

81 The specification-defined message exchanges enable Requesters to:

• Discover and negotiate the security capabilities of a Responder.

• Authenticate the identity of a Responder.

• Retrieve the measurements of a Responder.

• Securely establish cryptographic session keys to construct a secure communication channel for the transmission

or reception of application data.

• Receive notifications of selectable events when certain scenarios transpire.

82 These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. The following clauses provide a brief overview of each message exchange capability. Some

message exchange capabilities are based on the security model that the USB Authentication Specification Rev 1.0

with ECN and Errata through January 7, 2019 defines.

83 7.1 Security capability discovery and negotiation

84 This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that are defined in this specification.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the

Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

85 7.2 Identity authentication

86 In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

87 At a high-level, the authentication of the identity of a Responder involves these processes:

• Identity provisioning

• Runtime authentication

Security Protocol and Data Model (SPDM) Specification DSP0274

22 Work in Progress Version 1.2.0a

88 7.2.1 Identity provisioning

89 Identity provisioning is the process that device vendors follow during or after hardware manufacturing. A trusted root

certificate authority (CA) generates a root certificate (RootCert) that is provisioned to the authentication initiator.

The authentication initiator uses this certificate to verify the validity of certificate chains. A device carries a certificate

chain, which has the RootCert as the root of the certificate chain and a leaf certificate as the last certificate of the

certificate chain.

90 The certificate chain may be built according to one of two models, both of which are shown in the SPDM certificate

chain models figure. In one model, shown on the left in the following figure, the leaf certificate is a device certificate

(DeviceCert), which contains the public key that corresponds to the device private key. In the other model, shown

on the right in the following figure, the leaf certificate is an alias certificate (AliasCert), in which case there may be

one or more intermediate AliasCert certificates between the DeviceCert and the leaf AliasCert . In the

AliasCert model, the device private key signs the next level AliasCert , and then the private key associated with

the public key in each AliasCert signs the AliasCert below it.

91 A device that implements the AliasCert model may factor some mutable information, such as the measurement of

a firmware image, into the derivation of the public/private key pairs for the intermediate and leaf alias certificates.

Therefore, the asymmetric public/private key pairs for each AliasCert should be treated as mutable.

92 Through the certificate chain, the root CA indirectly endorses the per-device public/private key pair in the

DeviceCert , where the private key is provisioned to or generated by the endpoint. When the AliasCert model is

in use, the AliasCert s are endorsed by the per-device private key pair, meaning that the AliasCert s are also

indirectly endorsed by the root CA.

93 The certificate chain should contain at least one certificate that includes hardware identity information, and the

hardware identity information should be present in the device certificate, whether the DeviceCert or AliasCert

model is in use. Though existing deployments may not include the hardware identity information in a certificate, it is

strongly recommended that new deployments include this information. The public/private key pair associated with a

hardware identity certificate is constant on the instance of the device, regardless of version of firmware running on

the device. The Extended Key Usage extension of a hardware identity certificate may include id-DMTF-hardware-

identity OID.

id-DMTF-hardware-identity OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 2 }

94 When the AliasCert model is used, the device creates and endorses one or more certificates. The certificates from

the root certificate to the device certificate are immutable, and can only be changed through the SET_CERTIFICATE

command or an equivalent capability. The certificates below the device certificate may be created on the device, and

are mutable certificates, in that they may change when the device state changes, such as a device reset. The

mutable certificates may include the id-DMTF-mutable-certificate OID in the Extended Key Usage extension of

the certificate to identify them as mutable.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 23

id-DMTF-mutable-certificate OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 5 }

95 In addition, when the AliasCert model is used, one or more AliasCert s may contain firmware identity

information. The format of the firmware identity information may be defined by other standards bodies, and is outside

the scope of this specification.

96 A Responder may use the DeviceCert model or the AliasCert model. A Requester should be capable of

performing Runtime authentication on a certificate chain that conforms to either model.

97 SPDM certificate chain models

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Work in Progress Version 1.2.0a

Root CA

Intermediate CA

Device
Certificate

...

DeviceCert
Model

Root CA

Intermediate CA

Device
Certificate

...

AttestationCert
Model

Alias
Intermediate CA

Alias Certificate

...

98 7.2.1.1 Raw public keys

99 Alternatively to certificate chains, the vendor may provision the raw public key of the Responder to the Requester in a

trusted environment; for example, during the secure manufacturing process. In this case, trust of the public key of the

Responder is established without the need for a certificate-based public key infrastructure.

100 The format of the provisioned public key is out of scope of this specification. Vendors can use proprietary formats or

public key formats that other standards define, such as RFC7250 and RFC4716.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 25

101 7.2.2 Runtime authentication

102 Runtime authentication is the process by which an authentication initiator, or Requester, interacts with a Responder

in a running system. The authentication initiator can retrieve the certificate chains from the Responder and send a

unique challenge to the Responder. The Responder uses the private key associated with the leaf certificate to sign

the challenge. The authentication initiator verifies the signature by using the public key associated with the leaf

certificate of the Responder, and any intermediate public keys within the certificate chain by using the root certificate

as the trusted anchor.

103 If the public key of the Responder was provisioned to the Requester in a trusted environment, the authentication

initiator sends a unique challenge to the Responder. The Responder signs the challenge with the private key. The

authentication initiator verifies the signature by using the public key of the Responder. The transport layer should

handle device identification, which is outside the scope of this specification.

104 7.3 Firmware and configuration measurement

105 A measurement is a representation of firmware/software or configuration data on an endpoint. A measurement is

typically a cryptographic hash value of the data, or the raw data itself. The endpoint optionally binds a measurement

with the endpoint identity through the use of digital signatures. This binding enables an authentication initiator to

establish the identity and measurement of the firmware/software or configuration running on the endpoint.

106 7.4 Secure sessions

107 Many devices exchange data with other devices that may require protection. In this specification, the device-specific

data that is communicated is generically referred to as application data. The protocol of the application data usually

exists at a higher layer and it is outside the scope of this specification. The protocol of the application data usually

allows for encrypted and/or authenticated data transfer.

108 This specification provides a method to perform a cryptographic key exchange such that the protocol of the

application data can use the exchanged keys to provide a secure channel of communication by using encryption and

message authentication. This cryptographic key exchange provides either Responder-only authentication or mutual

authentication which can be considered equivalent to Runtime authentication. For more details, see the Session

clause.

109 Finally, many SPDM requests and their corresponding responses can also be afforded the same protection. See the

SPDM request and response messages validity table and SPDM request and response code issuance allowance

clause for more details.

110 The SPDM messaging protocol flow gives a very high-level view of when the secure session actually starts.

Security Protocol and Data Model (SPDM) Specification DSP0274

26 Work in Progress Version 1.2.0a

111 7.5 Mutual authentication overview

112 The ability for a Responder to verify the authenticity of the Requester is called mutual authentication. Several

mechanisms in this specification are detailed to provide mutual authentication capabilities. The cryptographic means

to verify the identity of the Requester is the same as verifying the identity of the Responder. The Identity provisioning

clause discusses identity in regards to the Responder but the details apply to the Requester as well.

113 In general, when this specification states requirements or recommendations for Responders in the context of identity,

those same rules also apply to Requesters in the context of mutual authentication. The various clauses in this

specification will provide more details.

114 7.6 Notifications overview

115 To aid an SPDM endpoint in enforcing its security policy requirements in an efficient, reliable and timely manner,

SPDM event mechanism provides a method to asynchronously deliver or receive a notification to the interested

SPDM endpoint. This mechanism allows an interested SPDM endpoint to choose only the event groups it wants to

receive. For more details, see Event mechanism.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 27

116 8 SPDM messaging protocol

117 The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to

with an SPDM response message as defined in this specification unless otherwise stated in this specification.

118 The SPDM messaging protocol flow depicts the high-level request-response flow diagram for SPDM. An endpoint

that acts as the Requester sends an SPDM request message to another endpoint that acts as the Responder, and

the Responder returns an SPDM response message to the Requester.

119 SPDM messaging protocol flow

Security Protocol and Data Model (SPDM) Specification DSP0274

28 Work in Progress Version 1.2.0a

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

If necessary

ResponderRequester

GET_VERSION

VERSION

CAPABILITIES

If supported

CHALLENGE

CHALLENGE_AUTH

GET_CERTIFICATE

CERTIFICATE

If supported

MEASUREMENTS

KEY_EXCHANGE

GET_MEASUREMENTS

FINISH

FINISH_RSP

If supported

Secure Session

Application Data

KEY_EXCHANGE_RSP

Mutual Authentication

GET_CAPABILITIES

If supported

120 All SPDM request-response messages share a common data format, that consists of a four-byte message header

and zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages details each of the request and response messages.

121 The Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS request messages

before issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS may be saved by the Requester so that after Reset the Requester may skip these requests.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 29

122 8.1 SPDM bits-to-bytes mapping

123 All SPDM fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned

byte in monotonically decreasing order until the least numerically assigned byte of that field. The following two figures

illustrate this mapping.

124 One-byte field bit map

125

Byte 1

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A One-Byte Field

126 Two-byte field bit map

127

Byte 2

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A Two-Byte Field

Byte 3

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

128 8.2 Generic SPDM message format

129 The Generic SPDM message field definitions table defines the fields that constitute a generic SPDM message,

including the message header and payload.

130 Generic SPDM message field definitions

Byte Bits
Length

(bits)
Field Description

0 [7:4] 4

SPDM

Major

Version

The major version of the SPDM Specification. An endpoint shall not communicate by using an

incompatible SPDM version value. See Version encoding.

Security Protocol and Data Model (SPDM) Specification DSP0274

30 Work in Progress Version 1.2.0a

Byte Bits
Length

(bits)
Field Description

0 [3:0] 4

SPDM

Minor

Version

The minor version of the SPDM Specification. A specification with a given minor version extends a

specification with a lower minor version as long as they share the major version. See Version

encoding.

1 [7:0] 8

Request

Response

Code

The request message code or response code, which Table 4 and Table 5 enumerate. 0x00 through

0x7F represent response codes and 0x80 through 0xFF represent request codes. In request

messages, this field is considered the request code. In response messages, this field is considered

the response code.

2 [7:0] 8 Param1
The first one-byte parameter. The contents of the parameter is specific to the Request Response

Code .

3 [7:0] 8 Param2
The second one-byte parameter. The contents of the parameter is specific to the Request Response

Code .

4
See the

description.
Variable

SPDM

message

payload

Zero or more bytes that are specific to the Request Response Code .

131 8.2.1 SPDM version

132 The SPDMVersion field, present as the first field in all SPDM messages, indicates the version of the SPDM

specification that the format of an SPDM message adheres to. The format of this field shall be the same as byte 0 in

the Generic SPDM message field definitions. The value of this field shall be the same value as the version of this

specification except for GET_VERSION and VERSION messages.

133 For example, if the version of this specification is 1.2, the value of SPDMVersion is 0x12 which also corresponds to

an SPDM Major Version of 1 and an SPDM Minor Version of 2. See Version encoding for more examples.

134 The version of this specification can be found on the title page or the header or footer of each page in this document.

135 The SPDMVersion for the version of this specification shall be 0x12.

136 The FullSPDMversionString shall be the string form of the concatenation of major version, ".", minor version, "."

and update version. For example, if the version of this specification is 1.2.3, then FullSPDMversionString is "1.2.3".

137 8.3 SPDM request codes

138 The SPDM request codes table defines the SPDM request codes. The Implementation requirement column

indicates requirements on the Requester.

139 All SPDM-compatible implementations shall use the following SPDM request codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 31

140 If an ERROR response is sent for unsupported request codes, the ErrorCode shall be UnsupportedRequest .

141 SPDM request codes

Request Code value Implementation requirement Message format

GET_DIGESTS 0x81 Optional GET_DIGESTS request message format

GET_CERTIFICATE 0x82 Optional
GET_CERTIFICATE request message

format

CHALLENGE 0x83 Optional CHALLENGE request message format

GET_VERSION 0x84 Required GET_VERSION request message format

CHUNK_SEND 0x85 Optional CHUNK_SEND message format

CHUNK_GET 0x86 Optional CHUNK_GET request message format

GET_MEASUREMENTS 0xE0 Optional
GET_MEASUREMENTS request message

format

GET_CAPABILITIES 0xE1 Required
GET_CAPABILITIES request message

format

GET_SUPPORTED_EVENT_GROUPS 0xE2 Optional
GET_SUPPORTED_EVENT_GROUPS

request message format

NEGOTIATE_ALGORITHMS 0xE3 Required
NEGOTIATE_ALGORITHMS request

message format

KEY_EXCHANGE 0xE4 Optional
KEY_EXCHANGE request message

format

FINISH 0xE5 Optional FINISH request message format

PSK_EXCHANGE 0xE6 Optional
PSK_EXCHANGE request message

format

PSK_FINISH 0xE7 Optional PSK_FINISH request message format

HEARTBEAT 0xE8 Optional HEARTBEAT request message format

KEY_UPDATE 0xE9 Optional KEY_UPDATE request message format

GET_ENCAPSULATED_REQUEST 0xEA Optional
GET_ENCAPSULATED_REQUEST

request message format

DELIVER_ENCAPSULATED_RESPONSE 0xEB Optional
DELIVER_ENCAPSULATED_RESPONSE

request message format

END_SESSION 0xEC Optional END_SESSION request message format

Security Protocol and Data Model (SPDM) Specification DSP0274

32 Work in Progress Version 1.2.0a

Request Code value Implementation requirement Message format

GET_CSR 0xED Optional GET_CSR request message format

SET_CERTIFICATE 0xEE Optional
SET_CERTIFICATE request message

format

SUBSCRIBE_EVENT_GROUP 0xEF Optional
SUBSCRIBE_EVENT_GROUP request

message format

SEND_EVENT 0xF0 Optional SEND_EVENT request message format

VENDOR_DEFINED_REQUEST 0xFE Optional
VENDOR_DEFINED_REQUEST request

message format

RESPOND_IF_READY 0xFF Required
RESPOND_IF_READY request message

format

Reserved

0x80 ,

0x85 - 0xDF ,

0xF1 - 0xFD

SPDM implementations compatible with this

version shall not use the reserved request

codes.

142 8.4 SPDM response codes

143 The Request Response Code field in the SPDM response message shall specify the appropriate response code for

a request. All SPDM-compatible implementations shall use the following SPDM response codes.

144 On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of an SPDM operation, the ERROR response message should be returned.

145 The SPDM response codes table defines the response codes for SPDM. The Implementation requirement column

indicates requirements on the Responder.

146 SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Optional
Successful DIGESTS response

message format

CERTIFICATE 0x02 Optional
Successful CERTIFICATE response

message format

CHALLENGE_AUTH 0x03 Optional
Successful CHALLENGE_AUTH

response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 33

Response Value Implementation requirement Message format

VERSION 0x04 Required
Successful VERSION response

message format

CHUNK_SEND_ACK 0x05 Optional
CHUNK_SEND_ACK response

message format

CHUNK_RESPONSE 0x06 Optional
CHUNK_RESPONSE response

message format

MEASUREMENTS 0x60 Optional
Successful MEASUREMENTS

response message format

CAPABILITIES 0x61 Required
Successful CAPABILITIES response

message format

SUPPORTED_EVENT_GROUPS 0x62 Optional
SUPPORTED_EVENT_GROUPS

response message format

ALGORITHMS 0x63 Required
Successful ALGORITHMS response

message format

KEY_EXCHANGE_RSP 0x64 Optional
Successful KEY_EXCHANGE_RSP

response message format

FINISH_RSP 0x65 Optional
Successful FINISH_RSP response

message format

PSK_EXCHANGE_RSP 0x66 Optional
PSK_EXCHANGE_RSP response

message format

PSK_FINISH_RSP 0x67 Optional
Successful PSK_FINISH_RSP

response message format

HEARTBEAT_ACK 0x68 Optional
HEARTBEAT_ACK response

message format

KEY_UPDATE_ACK 0x69 Optional
KEY_UPDATE_ACK response

message format

ENCAPSULATED_REQUEST 0x6A Optional
ENCAPSULATED_REQUEST

response message format

ENCAPSULATED_RESPONSE_ACK 0x6B Optional
ENCAPSULATED_RESPONSE_ACK

response message format

END_SESSION_ACK 0x6C Optional
END_SESSION_ACK response

message format

CSR 0x6D Optional CSR response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

34 Work in Progress Version 1.2.0a

Response Value Implementation requirement Message format

SET_CERTIFICATE_RSP 0x6E Optional
SET_CERTIFICATE_RSP response

message format

SUBSCRIBE_EVENT_GROUP_ACK 0x6F Optional
SUBSCRIBE_EVENT_GROUP_ACK

response message format

EVENT_ACK 0x70 Optional
EVENT_ACK response message

format

VENDOR_DEFINED_RESPONSE 0x7E Optional
VENDOR_DEFINED_RESPONSE

response message format

ERROR 0x7F ERROR response message format

Reserved

0x00 ,

0x05 - 0x5F ,

0x71 - 0x7D

SPDM implementations compatible with this version

shall not use the reserved response codes.

147 8.5 SPDM request and response code issuance allowance

148 The SPDM request and response messages validity table describes the conditions under which a request and

response can be issued.

149 The Session column describes whether the respective request and response can be sent in a session. If the value is

"Allowed", the issuer of the request and response shall be able to send it in a secure session; thereby, affording them

the protection of a secure session. If the Session column value is Prohibited , the issuer shall be prohibited from

sending the respective request and response in a secure session.

150 The Outside of a session column indicates which requests and responses are allowed to be sent free and

independent of a session; thereby lacking the protection of a secure session. An "Allowed" in this column indicates

that the respective request and response shall be able to be sent outside the context of a secure session. Likewise, a

"Prohibited" in this column shall prohibit the issuer from sending the respective request or response outside the

context of a session.

151 A request and its corresponding response can have the Allowed value in both the Session and Outside of a

session columns, in which case, they can be sent and received in both scenarios but may have additional

restrictions. See the respective request and response clause for further details.

152 A request and its corresponding response that has Allowed value in the Session and Prohibited in the Outside

of a session columns are commands used by the session. These commands only operate on the session that they

were sent under, which is outside of the SPDM specification. The session ID is implicit from the session used to

transmit the commands.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 35

153 Finally, the Session phases column describes which phases of a session the respective request and response shall

be issued when they are allowed to be issued in a session.

154 For details, see the Session clause.

155 SPDM request and response messages validity

Request Response Session Outside of a session Session phases

GET_MEASUREMENT MEASUREMENT Allowed Allowed Application Phase

FINISH FINISH_RSP Allowed Prohibited Session Handshake

PSK_FINISH PSK_FINISH_RSP Allowed Prohibited Session Handshake

HEARTBEAT HEARTBEAT_ACK Allowed Prohibited Application Phase

KEY_UPDATE KEY_UPDATE_ACK Allowed Prohibited Application Phase

END_SESSION END_SESSION_ACK Allowed Prohibited Application Phase

Not Applicable ERROR Allowed Allowed All Phases

GET_ENCAPSULATED_REQUEST ENCAPSULATED_REQUEST Allowed Allowed All Phases

DELIVER_ENCAPSULATED_RESPONSE ENCAPSULATED_RESPONSE_ACK Allowed Allowed All Phases

VENDOR_DEFINED_REQUEST VENDOR_DEFINED_RESPONSE Allowed Allowed Application Phase

GET_SUPPORTED_EVENT_GROUPS SUPPORTED_EVENT_GROUPS Allowed Prohibited Application Phase

SUBSCRIBE_EVENT_GROUP SUBSCRIBE_EVENT_GROUP_ACK Allowed Prohibited Application Phase

SEND_EVENT EVENT_ACK Allowed Prohibited Application Phase

CHUNK_SEND CHUNK_SEND_ACK Allowed Allowed All Phases

CHUNK_GET CHUNK_RESPONSE Allowed Allowed All Phases

All others All others Prohibited Allowed Not Applicable

156 For ERROR response in the session handshake or application phase of a session, the Requester is only allowed in

certain situations to send the ERROR response.

157 8.6 Concurrent SPDM message processing

158 This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

Security Protocol and Data Model (SPDM) Specification DSP0274

36 Work in Progress Version 1.2.0a

159 If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

160 8.7 Requirements for Requesters

161 A Requester shall not have multiple outstanding requests to the same Responder, with the following exception: as

addressed in GET_VERSION request and VERSION response messages, a Requester may issue a GET_VERSION

to a Responder to restart the protocol at any time, even if the Requester has existing outstanding requests to the

same Responder.

162 If the Requester has sent a request to a Responder and wants to send a subsequent request to the same

Responder, then the Requester shall wait to send the subsequent request until after the Requester completes one of

the following actions:

• Receives the response from the Responder for the outstanding request.

• Times out waiting for a response.

• Receives an indication, from the transport layer, that transmission of the request message failed.

• The Requester encounters an internal error or Reset.

163 A Requester may send simultaneous request messages to different Responders.

164 8.8 Requirements for Responders

165 A Responder is not required to process more than one request message at a time.

166 A Responder that is not ready to accept a new request message shall either respond with an ERROR response

message with ErrorCode=Busy or silently discard the request message.

167 If a Responder is working on a request message from a Requester, the Responder may respond with

ErrorCode=Busy .

168 If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 37

169 9 Timing requirements

170 The Timing specification for SPDM messages table shows the timing specifications for Requesters and Responders.

171 If the Requester does not receive a response within T1 or T2 time accordingly, the Requester may retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

172 The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) may retry,

but that is outside of the SPDM specification.

173 9.1 Timing measurements

174 A Requester shall measure timing parameters, applicable to it, from the end of a successful transmission of an

SPDM request to the beginning of the reception of the corresponding SPDM response. A Responder shall measure

timing parameters, applicable to it, from the end of the reception of the SPDM request to the beginning of

transmission of the response.

175 9.2 Timing specification table

176 The Ownership column in the Timing specification for SPDM messages table specifies whether the timing parameter

applies to the Responder or Requester. For encapsulated requests, the Requester shall comply with the timing

parameters where the Ownership indicates a Responder.

177 Timing specification for SPDM messages

Timing

parameter
Ownership Value Units Description

RTT Requester
See the

description.
µs

Worst case round-trip transport timing.

The maximum value shall be the worst case total time for the complete transmission

and delivery of an SPDM message round trip at the transport layer(s). The actual

value for this parameter is transport- or media-specific. Both the actual value and

how an endpoint obtains this value are outside the scope of this specification.

ST1 Responder 100,000 µs

Shall be the maximum amount of time the Responder has to provide a response to

requests that do not require cryptographic processing, such as the

GET_CAPABILITIES , GET_VERSION , or NEGOTIATE_ALGORITHMS request messages.

Security Protocol and Data Model (SPDM) Specification DSP0274

38 Work in Progress Version 1.2.0a

Timing

parameter
Ownership Value Units Description

T1 Requester RTT+ST1 µs

Shall be the minimum amount of time the Requester shall wait before issuing a retry

for requests that do not require cryptographic processing.

For details, see ST1 .

CT

Requester

and

Responder

2 CTExponent µs

CTExponent is reported in GET_CAPABILITIES and CAPABILITIES messages.

This timing parameter shall be the maximum amount of time the endpoint has to

provide any response requiring cryptographic processing, such as the

GET_MEASUREMENTS or CHALLENGE request messages.

T2 Requester RTT+CT µs

Shall be the minimum amount of time the Requester shall wait before issuing a retry

for requests that require cryptographic processing.

For details, see CT .

RDT Responder 2 RDTExponent µs

Recommended delay, in microseconds that the Responder needs to complete the

requested cryptographic operation. When the Responder cannot complete

cryptographic processing response within the CT time, it shall provide

RDTExponent as part of the ERROR response. See the ResponseNotReady

extended error data table for the RDTExponent value.

For details, see ErrorCode=ResponseNotReady in the ResponseNotReady

extended error data table.

WT Requester RDT µs

Amount of time that the Requester should wait before issuing the

RESPOND_IF_READY request message.

The Requester shall measure this time parameter from the reception of the ERROR

response to the transmission of RESPOND_IF_READY request. The Requester may

take into account the transmission time of the ERROR from the Responder to

Requester when calculating WT .

For details, see RDT .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 39

Timing

parameter
Ownership Value Units Description

WT Max Requester
(RDT*RDTM)-

RTT
µs

Maximum wait time the Requester has to issue RESPOND_IF_READY request unless

the Requester issued a successful RESPOND_IF_READY request message earlier.

After this time the Responder is allowed to drop the response. The Requester shall

take into account the transmission time of the ERROR from the Responder to

Requester when calculating WT Max .

The RDTM value appears in the ResponseNotReady extended error data.

The Responder should ensure that WT Max does not result in less than WT in

determination of RDTM .

For details, see ErrorCode=ResponseNotReady in the ResponseNotReady

extended error data table.

HeartbeatPeriod

Requester

and

Responder

Variable s See HEARTBEAT request and HEARTBEAT_ACK response for detail.

LMTO
See

Description
ST1 µs

Large SPDM message timeout. This parameter shall be the maximum amount of

time the Requester of CHUNK_SEND or CHUNK_GET has to issue the respective

request for the next chunk in the sequence after receiving the previous chunk of

data. Failure to comply with this timing requirement may result in the loss or

unexpected termination of a Large SPDM message transfer. See Large SPDM

message transfer for details.

Security Protocol and Data Model (SPDM) Specification DSP0274

40 Work in Progress Version 1.2.0a

178 10 SPDM messages

179 SPDM messages can be divided into the following categories, supporting different aspects of security exchanges

between a Requester and Responder:

• Capability discovery and negotiation

• Responder identity authentication

• Firmware measurements

• Key agreement for secure channel establishment

180 10.1 Capability discovery and negotiation

181 All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS .

182 The Capability discovery and negotiation flow shows the high-level request-response flow and sequence for the

capability discovery and negotiation:

183 Capability discovery and negotiation flow

184

Selected
cryptographic
algorithm set

Supported
cryptographic
algorithm set

ResponderRequester

1. The Requester sends a
GET_VERSION request
message.

2. The Requester sends a
GET_CAPABILITIES request
message.

3. Determine device capability
and feature support.

4. The Requester sends a

NEGOTIATE_ALGORITHMS
request message to advertise
the supported algorithms.

5. The Requester uses the
selected cryptographic
algorithm set for all following
exchanges, until the next
GET_VERSION or the next
reset.

1. The Responder
sends a VERSION
response message.

2. The Responder
sends a
CAPABILITIES
response message.

3. The Responder
selects the algorithm
set and sends a
ALGORITHMS
response message.

Measurement
support,

authentication
support,

timeout, etc.

NEGOTIATE_ALGORITHMS

GET_CAPABILITIES

CAPABILITIES

GET_VERSION

VERSION

ALGORITHMS

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 41

185 10.1.1 Negotiated state preamble

186 The VCA (Version-Capabilities-Algorithms) refers to the concatenation of messages GET_VERSION , VERSION ,

GET_CAPABILITIES , CAPABILITIES , NEGOTIATE_ALGORITHMS , and ALGORITHMS last exchanged between the

Requester and the Responder.

187 If the Responder supports caching the negotiated state (CACHE_CAP=1), the Requester may not issue GET_VERSION ,

GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS . In this case, the Requester and the Responder shall store the

most recent VCA as part of the Negotiated State.

188 If the two endpoints support session key establishment with the PSK (Pre-Shared Key) option, then Negotiated State

is not applicable and VCA is not stored.

189 10.2 GET_VERSION request and VERSION response messages

190 This request message shall retrieve the SPDM version of an endpoint. The GET_VERSION request message format

table shows the GET_VERSION request message format and the Successful VERSION response message format

table shows the VERSION response message format.

191 In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with

all earlier versions.

192 The Requester shall begin the discovery process by sending a GET_VERSION request message with major version

0x1 . All Responders shall always support the GET_VERSION request message with major version 0x1 and provide

a VERSION response containing all supported versions, as the GET_VERSION request message format table

describes.

193 The Requester shall consult the VERSION response to select a common supported version, which is typically the

latest supported common version. The Requester shall use the selected version in all future communication of other

requests. A Requester shall not issue other requests until it receives a successful VERSION response and identifies

a common version that both sides support. A Responder shall not respond to the GET_VERSION request message

with ErrorCode=ResponseNotReady .

194 A Requester can issue a GET_VERSION request message to a Responder at any time, which is as an exception to

Requirements for Requesters to allow for scenarios where a Requester shall restart the protocol due to an internal

error or Reset.

195 After receiving a GET_VERSION request, the Responder shall cancel all previous requests from the same Requester.

All active sessions between the Requester and the Responder are terminated, i.e., information (such as session

keys, session IDs) for those sessions should not be used anymore. Additionally, this message shall clear the

previously Negotiated State, if any, in both the Requester and its corresponding Responder.

196 After sending the VERSION response for a GET_VERSION request, if the Responder completes a runtime code or

Security Protocol and Data Model (SPDM) Specification DSP0274

42 Work in Progress Version 1.2.0a

configuration change for its hardware or firmware measurement and the change has taken effect, then the

Responder shall perform these steps:

1. If the Responder is an Event Notifier (i.e. EVENT_CAP is set) and supports MeasurementEvent in

DMTF event group and the Requester subscribed to the DMTF event group, the Responder shall send

each changed measurement as a MeasurementEvent . See Event mechanism for details.

2. Otherwise, the Responder shall silently discard any request or respond with

ErrorCode=RequestResynch to any request until a GET_VERSION request is received.

197 Discovering the common major version

198

ResponderRequester

GET_VERSION (version=1.0)

VERSION (6.4, 6.3, 6.2, 6.1)

Request version always
uses version = 1.0

Supports versions 6.4,
6.3, 6.2, 6.1

GET_CAPABILITIES (version=6.3)

CAPABILITIES

Supports versions 7.1, 7.0, 6.3,
6.2, 6.1, 6.0

Version information
response

Settle on version 6.3

NEGOTIATE_ALGORITHMS (Version = 6.3)

ALGORITHMS ()

199 GET_VERSION request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be 0x10 (V1.0).

1 RequestResponseCode 1 0x84=GET_VERSION

2 Param1 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 43

Offset Field Size (bytes) Value

3 Param2 1 Reserved.

200 Successful VERSION response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be 0x10 (V1.0).

1 RequestResponseCode 1 0x04=VERSION

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 VersionNumberEntryCount 1 Number of version entries present in this table (=n).

6 VersionNumberEntry1:<n> 2*n 16-bit version entry. See the VersionNumberEntry definition table.

201 VersionNumberEntry definition

Bit Field Value

[15:12] MajorVersion
Version of the specification with changes that are incompatible with one or more functions in earlier

major versions of the specification.

[11:8] MinorVersion
Version of the specification with changes that are compatible with functions in earlier minor versions of

this major version specification.

[7:4] UpdateVersionNumber
Version of the specification with editorial updates but no functionality additions or changes.

Informational; possible errata fixes. Ignore when checking versions for interoperability.

[3:0] Alpha

Pre-release work-in-progress version of the specification. Backward compatible with earlier minor

versions of this major version specification. However, because the Alpha value represents an in-

development version of the specification, versions that share the same major and minor version

numbers but have different Alpha versions may not be fully interoperable. Released versions shall

have an Alpha value of zero (0).

202 10.3 GET_CAPABILITIES request and CAPABILITIES response

messages

203 This request message shall retrieve the SPDM capabilities of an endpoint.

Security Protocol and Data Model (SPDM) Specification DSP0274

44 Work in Progress Version 1.2.0a

204 The GET_CAPABILITIES request message format table shows the GET_CAPABILITIES request message format.

205 The Successful CAPABILITIES response message format table shows the CAPABILITIES response message

format.

206 The Requester flag fields definitions table shows the flag fields definitions for the Requester.

207 Likewise, the Responder flag fields definitions table shows the flag fields definitions for the Responder.

208 A Responder shall not respond to GET_CAPABILITIES request message with ErrorCode=ResponseNotReady .

209 To properly support transferring of SPDM messages, the Requester and Responder shall indicate two buffer sizes:

• One for receiving a single SPDM message called DataTransferSize .

• One for indicating their maximum internal buffer size for processing a single SPDM message called

MaxSPDMmsgSize .

210 Both the Requester and Responder shall support a minimum buffer size in order to successfully transfer SPDM

messages. The minimum size, referred to as MinDataTransferSize , shall be the size, in bytes, of the SPDM

message with the largest size in this list:

• GET_VERSION

• GET_CAPABILITIES

• CAPABILITIES

• CHUNK_SEND using the size of the SPDM Header for the size of the SPDMchunk field.

• CHUNK_SEND_ACK using the maximum size of ERROR message for the size of the ResponseToLargeRequest

field.

• CHUNK_GET

• CHUNK_RESPONSE using the size of SPDM Header for the size of the SPDMchunk field.

• ERROR using the maximum size for the ExtendedErrorData

211 The calculation of MinDataTransferSize shall assume all fields are present. For this version of the specification, the

MinDataTransferSize shall be 44.

212 GET_CAPABILITIES request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE1=GET_CAPABILITIES

2 Param1 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 45

Offset Field
Size

(bytes)
Value

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be exponent of base 2, which is used to calculate CT .

See the Timing specification for SPDM messages table.

The equation for CT shall be 2 CTExponent microseconds (µs).

For example, if CTExponent is 10 , CT is 2 10 =1024 µs .

6 Reserved 2 Reserved.

8 Flags 4 See the Requester flag fields definitions table.

12 DataTransferSize 4
This field shall indicate the maximum buffer size, in bytes, of the Requester for receiving a single

SPDM message. The value of this field shall be equal to or greater than MinDataTransferSize .

16 MaxSPDMmsgSize 4

This field shall indicate the maximum size, in bytes, of the internal buffer of a Requester for

processing a single Large SPDM message. This field shall be greater than or equal to

DataTransferSize .

213 Successful CAPABILITIES response message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x61=CAPABILITIES

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be the exponent of base 2, which used to calculate CT .

See the Timing specification for SPDM messages table.

The equation for CT shall be 2 CTExponent microseconds (µs).

For example, if CTExponent is 10 , CT is 2 10 =1024 µs .

6 Reserved 2 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

46 Work in Progress Version 1.2.0a

Offset Field
Size

(bytes)
Value

8 Flags 4 See the Responder flag fields definitions table.

12 DataTransferSize 4
This field shall indicate the maximum buffer size, in bytes, of the Responder for receiving a single

SPDM message. The value of this field shall be equal to or greater than MinDataTransferSize .

16 MaxSPDMmsgSize 4

This field shall indicate the maximum size, in bytes, of the internal buffer of a Responder for

processing a single Large SPDM message. This field shall be greater than or equal to

DataTransferSize .

214 As described in other parts of this specification, a Requester or Responder can reverse roles or be both roles for

certain SPDM messages and flows. Thus, in general, an SPDM endpoint cannot send an SPDM message that

exceeds the MaxSPDMmsgSize of the receiving SPDM endpoint. Specifically, a requesting SPDM endpoint shall not

send a request that exceeds the size of the receiving SPDM endpoint. Likewise, a responding SPDM endpoint shall

not send a response that exceeds the size of MaxSPDMmsgSize of the requesting SPDM endpoint. If the size of a

response message exceeds the size of the MaxSPDMmsgSize of the requesting SPDM endpoint, the responding

SPDM endpoint shall respond with ErrorCode == ResponseTooLarge or silently discard the request. Likewise, if the

size of a request message exceeds the size of the MaxSPDMmsgSize of the responding SPDM endpoint, the

responding SPDM endpoint shall respond with ErrorCode=RequestTooLarge or silently discard the request.

Additionally, an SPDM endpoint should provide graceful error handling (e.g., buffer overflow/underflow protection) in

the event they receive an SPDM messages that exceed their MaxSPDMmsgSize .

215 Requester flag fields definitions

216 Unless otherwise stated, if a Requester indicates support of a capability associated with an SPDM request or

response message, it means the Requester can receive the corresponding request and produce a successful

response. In other words, the Requester is acting as a Responder to that SPDM request associated with that

capability. For example, if a Requester sets CERT_CAP bit to 1 , the Requester can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

Byte Bit Field Value

0 0 Reserved Reserved.

0 1 CERT_CAP If set, Requester supports DIGESTS and CERTIFICATE response messages.

0 2 CHAL_CAP If set, Requester supports CHALLENGE_AUTH response message.

0 5:3 Reserved Reserved.

0 6 ENCRYPT_CAP

If set, Requester supports message encryption in a secure session. If set, when the

Requester chooses to start a secure session, the Requester shall send one of the Session-

Secrets-Exchange request messages supported by the Responder.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 47

Byte Bit Field Value

0 7 MAC_CAP

If set, Requester supports message authentication in a secure session. If set, when the

Requester chooses to start a secure session, the Requester shall send one of the Session-

Secrets-Exchange request messages supported by the Responder.

1 0 MUT_AUTH_CAP If set, Requester supports mutual authentication.

1 1 KEY_EX_CAP
If set, Requester supports KEY_EXCHANGE messages. If set, ENCRYPT_CAP or MAC_CAP shall

be set.

1 3:2 PSK_CAP

Pre-shared key capabilities of the Requester.

00b . Requester does not support pre-shared key capabilities.

01b . Requester supports pre-shared key

10b and 11b . Reserved.

If supported, ENCRYPT_CAP or MAC_CAP shall be set.

1 4 ENCAP_CAP DEPRECATED: If Basic mutual authentication is supported, this field shall be set.

1 5 HBEAT_CAP If set, Requester supports HEARTBEAT messages.

1 6 KEY_UPD_CAP If set, Requester supports KEY_UPDATE messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Requester can support a Responder that can only send and receive all SPDM

messages exchanged during the Session Handshake Phase in the clear (such as without

encryption and message authentication). Application data is encrypted and/or authenticated

using the negotiated cryptographic algorithms as normal. Setting this bit leads to changes in

the contents of certain SPDM messages, discussed in other parts of this specification.

If this bit is cleared, the Requester signals that it requires encryption and/or message

authentication of SPDM messages exchanged during the Session Handshake Phase.

If the Requester does not support encryption and message authentication, then this bit shall

be zero.

2 0 PUB_KEY_ID_CAP

If set, the public key of the Requester was provisioned to the Responder. The transport layer

is responsible for identifying the Responder. In this case, the CERT_CAP of the Requester

shall be 0 .

2 1 EVENT_CAP If set, the Requester is an Event Notifier. See Event mechanism for details.

2 2 Reserved Reserved.

2 7:3 Reserved Reserved.

3 7:0 Reserved Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

48 Work in Progress Version 1.2.0a

217 Responder flag fields definitions

218 Unless otherwise stated, if a Responder indicates support of a capability associated with an SPDM request or

response message, it means the Responder can receive the corresponding request and produce a successful

response. For example, if a Responder sets CERT_CAP bit to 1 , the Responder can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

Byte Bit Field Value

0 0 CACHE_CAP

If set, the Responder supports the ability to cache the Negotiated State across a Reset. This

allows the Requester to skip reissuing the GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS requests after a Reset. The Responder shall cache the selected

cryptographic algorithms as one of the parameters of the Negotiated State. If the Requester

chooses to skip issuing these requests after the Reset, the Requester shall also cache the

same selected cryptographic algorithms.

0 1 CERT_CAP If set, Responder supports DIGESTS and CERTIFICATE response messages.

0 2 CHAL_CAP If set, Responder supports CHALLENGE_AUTH response message.

0 4:3 MEAS_CAP

MEASUREMENT response capabilities of the Responder.

00b . The Responder does not support MEASUREMENTS response capabilities.

01b . The Responder supports MEASUREMENTS response but cannot perform signature

generation.

10b . The Responder supports MEASUREMENTS response and can generate signatures.

11b . Reserved.

0 5 MEAS_FRESH_CAP

0 . As part of MEASUREMENTS response message, the Responder may return MEASUREMENTS

that were computed during the last Responder’s Reset.

1 . The Responder supports recomputing all MEASUREMENTS without requiring a Reset, and

shall always return fresh MEASUREMENTS as part of MEASUREMENTS response message.

0 6 ENCRYPT_CAP
If set, Responder supports message encryption in a secure session. If set, PSK_CAP or

KEY_EX_CAP shall be set accordingly to indicate support.

0 7 MAC_CAP
If set, Responder supports message authentication in a secure session. If set, PSK_CAP or

KEY_EX_CAP shall be set accordingly to indicate support.

1 0 MUT_AUTH_CAP If set, Responder supports mutual authentication.

1 1 KEY_EX_CAP
If set, Responder supports KEY_EXCHANGE messages. If set, ENCRYPT_CAP or MAC_CAP shall

be set.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 49

Byte Bit Field Value

1 3:2 PSK_CAP

Pre-Shared Key capabilities of the Responder.

00b . Responder does not support Pre-Shared Key capabilities.

01b . Responder supports Pre-Shared Key but does not provide ResponderContext for

session key derivation.

10b . Responder supports Pre-Shared Key and provides ResponderContext for session key

derivation.

11b . Reserved.

If supported, ENCRYPT_CAP or MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Responder supports GET_ENCAPSULATED_REQUEST , ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and ENCAPSULATED_RESPONSE_ACK messages.

Additionally, the transport may require the Responder to support these messages.

DEPRECATED: If Basic mutual authentication is supported, this field shall be set.

1 5 HBEAT_CAP If set, Responder supports HEARTBEAT messages.

1 6 KEY_UPD_CAP If set, Responder supports KEY_UPDATE messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Responder can only send and receive messages without encryption and message

authentication during the Session Handshake Phase. If set, KEY_EX_CAP shall also be set.

Setting this bit leads to changes in the contents of certain SPDM messages, discussed in

other parts of this specification.

If the Responder does not support encryption and message authentication, then this bit shall

be zero.

2 0 PUB_KEY_ID_CAP

If set, the public key of the Responder was provisioned to the Requester. The transport layer

is responsible for identifying the Requester. In this case, CERT_CAP of the Responder shall be

0 .

2 1 EVENT_CAP If set, the Responder is an Event Notifier. See Event mechanism for details.

2 2 ALIAS_CERT_CAP If set, the Responder uses the AliasCert model. See Identity provisioning for details.

2 7:3 Reserved Reserved.

3 7:0 Reserved Reserved.

219 In the case where an SPDM implementation incorrectly returns an illegal combination of capability flags, as these are

defined by this specification (for example ENCRYPT_CAP is set but both KEY_EX_CAP and PSK_CAP are cleared), the

following guidance is provided: If a Responder detects an illegal capability flag combination reported by the

Requester, it shall issue an ERROR message and should set the ErrorCode = InvalidRequest . If a Requester

detects an illegal capability flag combination reported by the Responder it should retry once by issuing GET_VERSION

Security Protocol and Data Model (SPDM) Specification DSP0274

50 Work in Progress Version 1.2.0a

and GET_CAPABILITIES . If the illegal combination is returned again it should cease communicating with this

particular Responder over SPDM and log an error in an implementation-specific manner to assist with identifying the

problem.

220 10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response

messages

221 This request message shall negotiate cryptographic algorithms. A Requester shall not issue a

NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES response message.

222 A Requester shall not issue any other SPDM requests, with the exception of GET_VERSION , until it receives a

successful ALGORITHMS response message.

223 A Responder shall not respond to NEGOTIATE_ALGORITHMS request message with ErrorCode=ResponseNotReady .

224 The NEGOTIATE_ALGORITHMS request message format table shows the NEGOTIATE_ALGORITHMS request

message format.

225 The Successful ALGORITHMS response message format table shows the ALGORITHMS response message format.

226 NEGOTIATE_ALGORITHMS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE3=NEGOTIATE_ALGORITHMS

2 Param1 1 Number of algorithms structure tables in this request using ReqAlgStruct

3 Param2 1 Reserved

4 Length 2
Length of the entire request message, in bytes. Length shall be less than or equal to

128 bytes.

6 MeasurementSpecification 1

Bit mask. The MeasurementSpecification field of the Measurement block format

table defines the values in this field. The Requester may set more than one bit to

indicate multiple measurement specification support.

7 Reserved 1 Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 51

Offset Field Size (bytes) Value

8 BaseAsymAlgo 4

Bit mask listing Requester-supported SPDM-enumerated asymmetric key signature

algorithms for the purpose of signature verification. If the capabilities do not support

this algorithm, this value is not used and shall be set to zero. Let SigLen be the size

of the signature in bytes. If the size of a signature component is less than specified

size, then 0x00 octets are padded to the left of the most significant byte.

Byte 0 Bit 0. TPM_ALG_RSASSA_2048 where SigLen =256.

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048 where SigLen =256.

Byte 0 Bit 2. TPM_ALG_RSASSA_3072 where SigLen =384.

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072 where SigLen =384.

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256 where SigLen =64 (32-byte r

followed by 32-byte s).

Byte 0 Bit 5. TPM_ALG_RSASSA_4096 where SigLen =512.

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096 where SigLen =512.

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384 where SigLen =96 (48-byte r

followed by 48-byte s).

Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521 where SigLen =132 (66-byte r

followed by 66-byte s).

Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256 where SigLen =64 (32-byte r

followed by 32-byte s).

Byte 1 Bit 2. EdDSA ed25519 where SigLen =64 (32-byte R followed by 32-byte S).

Byte 1 Bit 3. EdDSA ed448 where SigLen =114 (57-byte R followed by 57-byte S).

All other values reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

52 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

12 BaseHashAlgo 4

Bit mask listing Requester-supported SPDM-enumerated cryptographic hashing

algorithms. If the capabilities do not support this algorithm, this value is not used and

shall be set to zero.

Byte 0 Bit 0. TPM_ALG_SHA_256

Byte 0 Bit 1. TPM_ALG_SHA_384

Byte 0 Bit 2. TPM_ALG_SHA_512

Byte 0 Bit 3. TPM_ALG_SHA3_256

Byte 0 Bit 4. TPM_ALG_SHA3_384

Byte 0 Bit 5. TPM_ALG_SHA3_512

Byte 0 Bit 6. TPM_ALG_SM3_256

All other values reserved.

16 Reserved 12 Reserved

28 ExtAsymCount 1

Number of Requester-supported extended asymmetric key signature algorithms (=A)

for the purpose of signature verification. A + E + ExtAlgCount2 + ExtAlgCount3 +

ExtAlgCount4 + ExtAlgCount5 shall be less than or equal to 20. If the capabilities do

not support this algorithm, this value is not used and shall be set to zero.

29 ExtHashCount 1

Number of Requester-supported extended hashing algorithms (=E). A + E +

ExtAlgCount2 + ExtAlgCount3 + ExtAlgCount4 + ExtAlgCount5 shall be less than or

equal to 20. If the capabilities do not support this algorithm, this value is not used and

shall be set to zero.

30 Reserved 2 Reserved

32 ExtAsym 4*A

List of Requester-supported extended asymmetric key signature algorithms for the

purpose of signature verification. The Extended algorithm field format table describes

the format of this field.

32 +

4*A
ExtHash 4*E

List of the extended hashing algorithms supported by Requester. The Extended

algorithm field format table describes the format of this field.

32 +

4*A +

4*E

ReqAlgStruct AlgStructSize See the AlgStructure request field.

227 AlgStructSize is the sum of the size of the following algorithm structure tables. The algorithm structure table shall

be present only if the Requester supports that AlgType . AlgType shall monotonically increase for subsequent

entries.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 53

228 Algorithm request structure

Offset Field Size (bytes) Value

0 AlgType 1

Type of algorithm.

0 and 1 = Reserved

2 = DHE

3 = AEADCipherSuite

4 = ReqBaseAsymAlg

5 = KeySchedule

All other values reserved.

1 AlgCount 1

Requester supported fixed algorithms.

Bit [7:4]. Number of Bytes required to describe Requester supported SPDM-enumerated

fixed algorithms (= FixedAlgCount). FixedAlgCount + 2 shall be a multiple of 4

Bit [3:0] Number of Requester supported extended algorithms (= ExtAlgCount).

2 AlgSupported FixedAlgCount Bit mask listing Requester-supported SPDM-enumerated algorithms.

2 +

FixedAlgCount
AlgExternal 4*ExtAlgCount

List of Requester-supported extended algorithms. The Extended algorithm field format

table describes the format of this field.

229 The following tables describe the associated fixed fields for the individual types.

230 DHE structure

Offset Field Size (bytes) Value

0 AlgType 1 0x2=DHE

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-supported extended DHE groups (= ExtAlgCount2).

Security Protocol and Data Model (SPDM) Specification DSP0274

54 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated Diffie-Hellman Ephemeral (DHE)

groups. Values in parentheses specify the size of the corresponding public values associated with

each group.

Byte 0 Bit 0. ffdhe2048 (D = 256)

Byte 0 Bit 1. ffdhe3072 (D = 384)

Byte 0 Bit 2. ffdhe4096 (D = 512)

Byte 0 Bit 3. secp256r1 (D = 64, C = 32)

Byte 0 Bit 4. secp384r1 (D = 96, C = 48)

Byte 0 Bit 5. secp521r1 (D = 132, C = 66)

Byte 0 Bit 6. SM2_P256 (Part 3 and Part 5) (D = 64, C = 32)

All other values reserved.

4 AlgExternal 4*ExtAlgCount2
List of Requester-supported extended DHE groups. The Extended algorithm field format table

describes the format of this field.

231 AEAD structure

Offset Field Size (bytes) Value

0 AlgType 1 0x3=AEAD

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester supported extended AEAD algorithms (= ExtAlgCount3).

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated AEAD algorithms.

Byte 0 Bit 0. AES-128-GCM. 128-bit key; 96-bit IV (initialization vector); tag size is specified by

transport layer.

Byte 0 Bit 1. AES-256-GCM. 256-bit key; 96-bit IV; tag size is specified by transport layer.

Byte 0 Bit 2. CHACHA20_POLY1305. 256-bit key; 96-bit IV; 128-bit tag.

Byte 0 Bit 3. AEAD_SM4_GCM. 128-bit key; 96-bit IV; tag size is specified by transport layer.

All other values reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 55

Offset Field Size (bytes) Value

4 AlgExternal 4*ExtAlgCount3
List of Requester-supported extended AEAD algorithms. The Extended algorithm field format

table describes the format of this field.

232 ReqBaseAsymAlg structure

Offset Field Size (bytes) Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester supported extended asymmetric key signature algorithms for the

purpose of signature generation (= ExtAlgCount4).

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated asymmetric key signature algorithms for

the purpose of signature generation.

Byte 0 Bit 0. TPM_ALG_RSASSA_2048

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

Byte 0 Bit 2. TPM_ALG_RSASSA_3072

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5. TPM_ALG_RSASSA_4096

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256

Byte 1 Bit 2. EdDSA ed25519

Byte 1 Bit 3. EdDSA ed448

All other values reserved.

4 AlgExternal 4*ExtAlgCount4
List of Requester-supported extended asymmetric key signature algorithms for the purpose of

signature generation. The Extended algorithm field format table describes the format of this field.

233 KeySchedule structure

Security Protocol and Data Model (SPDM) Specification DSP0274

56 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

0 AlgType 1 0x5=KeySchedule

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester supported extended key schedule algorithms (= ExtAlgCount5).

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated Key Schedule algorithms.

Byte 0 Bit 0. SPDM Key Schedule.

All other values reserved.

4 AlgExternal 4*ExtAlgCount5
List of Requester-supported extended key schedule algorithms. The Extended algorithm field

format table describes the format of this field.

234 Successful ALGORITHMS response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x63=ALGORITHMS

2 Param1 1 Number of algorithms structure tables in this request using RespAlgStruct

3 Param2 1 Reserved

4 Length 2 Length of the response message, in bytes.

6 MeasurementSpecificationSel 1

Bit mask. The Responder shall select one of the measurement

specifications supported by the Requester. Thus, no more than one bit

shall be set. The MeasurementSpecification field of the Measurement

block format table defines the values in this field.

7 Reserved 1 Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 57

Offset Field Size (bytes) Value

8 MeasurementHashAlgo 4

Bit mask indicating the SPDM-enumerated hashing algorithms used for

measurements.

Bit 0. Raw Bit Stream Only

Bit 1. TPM_ALG_SHA_256

Bit 2. TPM_ALG_SHA_384

Bit 3. TPM_ALG_SHA_512

Bit 4. TPM_ALG_SHA3_256

Bit 5. TPM_ALG_SHA3_384

Bit 6. TPM_ALG_SHA3_512

Bit 7. TPM_ALG_SM3_256

Note that different measurement indices may use different hashing

algorithms and/or a raw bit stream. If the Responder supports

GET_MEASUREMENTS , then the Responder shall set all applicable bits. If

the Responder does not support GET_MEASUREMENTS , then the Responder

shall set this field to 0 .

12 BaseAsymSel 4

Bit mask indicating the SPDM-enumerated asymmetric key signature

algorithm selected for the purpose of signature generation. If the

capabilities do not support this algorithm, this value is not used and shall

be set to zero. The Responder shall set no more than one bit.

16 BaseHashSel 4

Bit mask indicating the SPDM-enumerated hashing algorithm selected. If

the capabilities do not support this algorithm, this value is not used and

shall be set to zero. The Responder shall set no more than one bit.

20 Reserved 12 Reserved

32 ExtAsymSelCount 1

Number of extended asymmetric key signature algorithms selected for the

purpose of signature generation. Shall be either 0 or 1 (=A'). If the

capabilities do not support this algorithm, this value is not used and shall

be set to zero.

33 ExtHashSelCount 1

The number of extended hashing algorithms selected. Shall be either 0

or 1 (=E'). If the capabilities do not support this algorithm, this value is

not used and shall be set to zero.

34 Reserved 2 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

58 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

36 ExtAsymSel 4*A'

The extended asymmetric key signature algorithm selected for the

purpose of signature generation. The Responder shall use this

asymmetric signature algorithm for all subsequent applicable response

messages to the Requester. The Extended algorithm field format table

describes the format of this field.

36+4*A' ExtHashSel 4*E'

Extended hashing algorithm selected. The Responder shall use this

hashing algorithm during all subsequent response messages to the

Requester. The Requester shall use this hashing algorithm during all

subsequent applicable request messages to the Responder. The

Extended algorithm field format table describes the format of this field.

36+4*A'+4*E' RespAlgStruct AlgStructSize See Response AlgStructure field format

235 AlgStructSize is the sum of the size of all Algorithm structure tables, as the following tables show. The algorithm

structure table need be present only if the Responder supports that AlgType . AlgType shall monotonically increase

for subsequent entries.

236 Response AlgStructure field format

Offset Field Size (bytes) Value

0 AlgType 1

Type of algorithm.

0 and 1 = Reserved

2 = DHE

3 = AEADCipherSuite

4 = ReqBaseAsymAlg

5 = KeySchedule

All other values reserved.

1 AlgCount 1

Bit mask listing Responder supported fixed algorithm requested by the Requester.

Bit [7:4]. Number of Bytes required to describe Requester supported SPDM-enumerated

fixed algorithms (= FixedAlgCount). FixedAlgCount + 2 shall be a multiple of 4

Bit [3:0] Number of Requester-supported, Responder-selected, extended algorithms (=

ExtAlgCount'). This value shall be either 0 or 1.

2 AlgSupported FixedAlgCount
Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated

algorithm. Responder shall set at most one bit to 1.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 59

Offset Field Size (bytes) Value

2 +

FixedAlgCount
AlgExternal 4*ExtAlgCount'

If present: a Requester-supported, Responder-selected, extended algorithm. Responder

shall select at most one external algorithm. The Extended algorithm field format table

describes the format of this field.

237 The tables for each of the individual type with the associated fixed fields are described below.

238 DHE structure

Offset Field Size (bytes) Value

0 AlgType 1 0x2=DHE

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-supported, Responder-selected, extended DHE groups (=

ExtAlgCount2'). This value shall be either 0 or 1.

2 AlgSupported 2

Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated DHE

group. Values in parentheses specify the size of the corresponding public values associated with

each group.

Byte 0 Bit 0. ffdhe2048 (D = 256)

Byte 0 Bit 1. ffdhe3072 (D = 384)

Byte 0 Bit 2. ffdhe4096 (D = 512)

Byte 0 Bit 3. secp256r1 (D = 64, C = 32)

Byte 0 Bit 4. secp384r1 (D = 96, C = 48)

Byte 0 Bit 5. secp521r1 (D = 132, C = 66)

Byte 0 Bit 6. SM2_P256 (Part 3 and Part 5) (D = 64, C = 32)

All other values reserved.

4 AlgExternal 4*ExtAlgCount2'
If present: a Requester-supported, Responder-selected, extended DHE algorithm. The Extended

algorithm field format table describes the format of this field.

239 AEAD structure

Offset Field Size (bytes) Value

0 AlgType 1 0x3=AEAD

Security Protocol and Data Model (SPDM) Specification DSP0274

60 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-supported, Responder-selected, extended AEAD algorithms (=

ExtAlgCount3'). This value shall be either 0 or 1.

2 AlgSupported 2

Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated AEAD

algorithm.

Byte 0 Bit 0. AES-128-GCM

Byte 0 Bit 1. AES-256-GCM

Byte 0 Bit 2. CHACHA20_POLY1305

Byte 0 Bit 3. AEAD_SM4_GCM

All other values reserved.

4 AlgExternal 4*ExtAlgCount3'
If present: a Requester-supported, Responder-selected, extended AEAD algorithm. The

Extended algorithm field format table describes the format of this field.

240 ReqBaseAsymAlg structure

Offset Field Size (bytes) Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-supported, Responder-selected, extended asymmetric key

signature algorithms (= ExtAlgCount4') for the purpose of signature verification. This value shall

be either 0 or 1.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 61

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated

asymmetric key signature algorithm for the purpose of signature verification.

Byte 0 Bit 0. TPM_ALG_RSASSA_2048

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

Byte 0 Bit 2. TPM_ALG_RSASSA_3072

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5. TPM_ALG_RSASSA_4096

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256

Byte 1 Bit 2. EdDSA ed25519

Byte 1 Bit 3 EdDSA ed448

All other values reserved.

4 AlgExternal 4*ExtAlgCount4'

If present: a Requester-supported, Responder-selected extended asymmetric key signature

algorithm for the purpose of signature verification. The Extended algorithm field format table

describes the format of this field.

241 KeySchedule structure

Offset Field Size (bytes) Value

0 AlgType 1 0x5=KeySchedule

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] Number of Requester-supported, Responder-selected, extended key schedule

algorithms (= ExtAlgCount5'). This value shall be either 0 or 1.

Security Protocol and Data Model (SPDM) Specification DSP0274

62 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated Key

Schedule algorithm.

Byte 0 Bit 0. SPDM Key Schedule.

All other values reserved.

4 AlgExternal 4*ExtAlgCount5'
If present: a Requester-supported, Responder-selected, extended key schedule algorithm. The

Extended algorithm field format table describes the format of this field.

242 Extended Algorithm field format

Offset Field Description

0
Registry

ID

Shall represent the registry or standards body. The ID column in the Registry or standards body ID table describes the

value of this field.

1 Reserved Reserved

[2:3]
Algorithm

ID

Shall indicate the desired algorithm. The registry or standards body owns the value of this field. For details, see the

Registry or standards body ID table.

243 For each algorithm type, a Responder shall not select both an SPDM-enumerated algorithm and an extended

algorithm.

244 Hashing algorithm selection: Example 1 illustrates how two endpoints negotiate a base hashing algorithm.

245 In Hashing algorithm selection: Example 1, endpoint A issues NEGOTIATE_ALGORITHMS request message and

endpoint B selects an algorithm of which both endpoints are capable.

246 Hashing algorithm selection: Example 1

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 63

247

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384)

ALGORITHMS (SHA-384)

If supported

CHALLENGE (256-bit Nonce)

CHALLENGE_AUTH (384-bit CertChainHash,
and MeasurementSummaryHash, 256-bit Nonce)

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

Supports SHA-384

and SHA3-384
Supports SHA-256

and SHA-384

Select SHA-384
Agree on SHA-384

returns SHA-384 digest

248 The SPDM protocol accounts for the possibility that both endpoints may issue NEGOTIATE_ALGORITHMS request

messages independently of each other. In this case, the endpoint A Requester and endpoint B Responder

communication pair may select a different algorithm compared to the endpoint B Requester and endpoint A

Responder communication pair.

249 10.5 Responder identity authentication

250 This clause describes request messages and response messages associated with the identity of the Responder

authentication operations. The GET_DIGESTS and GET_CERTIFICATE messages shall be supported by a Responder

that returns CERT_CAP =1 in the CAPABILITIES response message. The CHALLENGE message defined in this clause

shall be supported by a Responder that returns CHAL_CAP =1 in the CAPABILITIES response message. The

GET_DIGESTS and GET_CERTIFICATE messages are not applicable if the public key of the Responder was

provisioned to the Requester in a trusted environment.

Security Protocol and Data Model (SPDM) Specification DSP0274

64 Work in Progress Version 1.2.0a

251 The Responder authentication: Example certificate retrieval flow shows the high-level request-response message

flow and sequence for certificate retrieval.

252 Responder authentication: Example certificate retrieval flow

253

RootCert

…

VendorCert

…

ModelCert

DeviceCert

SHA384Slot0

…

SHA384Slot3

…
SHA384Slotn-2

SHA384Slotn-1

Offset (0)
Length (0x2000H)

ResponderRequester

1. The requester sends a GET_DIGESTS
request message. 1. The responder sends a DIGESTS

message.

2.For each received
GET_CERTIFICATE request, the
responder verifies that Offset is
within the certificate chain and then
sends the CERTIFICATE response
message based on the requested
Length. If the actual CERTIFICATE
chain length is less than or equal to
the requested Length (e.g. 1076
bytes), the Responder returns entire
certificate and a RemainderLength 0.

2. Compare digests in DIGESTS response
message to cached digests. Continue if
no match is found.

3. The requester sends a
GET_CERTIFICATE request

4. Verify validity of the signatures of each
certificate (X.509 containing the public
key) in the certificate chain against the
root certificate, then proceed to the
challenge-response.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE (1076, 0)

If necessary

RootCert

254 The GET_DIGESTS request message and DIGESTS response message may optimize the amount of data required to

be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of each of the certificate chains stored on an endpoint is returned with the DIGESTS

response message, such that the Requester can cache the previously retrieved certificate chain hash values to

detect any change to the certificate chains stored on the device before issuing the GET_CERTIFICATE request

message.

255 For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload

shall be signed by using the private key associated with the leaf certificate over the hash of the message transcript.

See the Request ordering and message transcript computation rules for M1/M2 table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 65

256 This ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder and enables the Requester to detect the presence of an active

adversary attempting to downgrade cryptographic algorithms or SPDM versions.

257 Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a

Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates.

The message transcript generation for the signature computation is restarted with the latest GET_VERSION request

received.

258 10.6 Requester identity authentication

259 If a Requester supports mutual authentication, it shall comply with all requirements placed on a Responder as

specified in Responder identity authentication.

260 If a Responder supports mutual authentication, it shall comply with all requirements placed on a Requester as

specified in Responder identity authentication. These two statements essentially describe a role reversal.

261 10.6.1 Certificates and certificate chains

262 Each SPDM endpoint that supports identity authentication using certificates shall carry at least one certificate chain.

A certificate chain contains an ordered list of certificates, presented as the binary (byte) concatenation of the fields

that the Certificate chain format shows.

263 Each certificate shall be in ASN.1 DER-encoded X.509 v3 format. The ASN.1 DER encoding of each individual

certificate can be analyzed to determine its length. The minimum number of certificates within a chain shall be one, in

which case the single certificate is the DeviceCert certificate. The SPDM endpoint shall contain a single public-

private key pair per supported algorithm for its leaf certificate, regardless of how many certificate chains are stored

on the device. The Responder selects a single asymmetric key signature algorithm per Requester.

264 Certificate chains are stored in locations called slots. Each slot shall either be empty or contain one complete

certificate chain. A device shall not contain more than eight slots, numbered zero through seven inclusive. Slot 0 is

populated by default. If a device uses AliasCert s, each certificate chain shall include the AliasCert s. Additional

slots may be populated through the supply chain such as by a platform integrator or by an end user such as the IT

administrator. A slot mask identifies the certificate chains from the eight slots.

265 In this document, H refers to the output size, in bytes, of the hash algorithm agreed upon in

NEGOTIATE_ALGORITHMS .

266 Certificate chain format

Security Protocol and Data Model (SPDM) Specification DSP0274

66 Work in Progress Version 1.2.0a

Offset Field Size Description

0 Length 2 Total length of the certificate chain, in bytes, including all fields in this table. This field is little endian.

2 Reserved 2 Reserved.

4 RootHash H
Digest of the Root Certificate. Note that Root Certificate is ASN.1 DER-encoded for this digest. This field

shall be in Hash byte order.

4 + H Certificates

Length

- (4 +

H)

One or more ASN.1 DER-encoded X.509 v3 certificates where the first certificate is signed by the Root

Certificate or is the Root Certificate itself and each subsequent certificate is signed by the preceding

certificate. The last certificate is the leaf certificate. This field shall be in Encoded ASN.1 byte order.

267 10.7 GET_DIGESTS request and DIGESTS response messages

268 This request message shall be used to retrieve the certificate chain digests.

269 The GET_DIGESTS request message format table shows the GET_DIGESTS request message format.

270 The Successful DIGESTS response message table shows the DIGESTS response message format.

271 The digests in the Successful DIGESTS response message table shall be computed over the certificate chain as

shown in Certificate chain format.

272 GET_DIGESTS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x81=GET_DIGESTS

2 Param1 1 Reserved

3 Param2 1 Reserved

273 Successful DIGESTS response message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x01=DIGESTS

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 67

Offset Field
Size

(bytes)
Value

2 Param1 1 Reserved

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and only if slot number K contains

a certificate chain for the protocol version in the SPDMVersion field. (Bit 0 is the least significant

bit of the byte.) The number of digests returned shall be equal to the number of bits set in this

byte. The digests shall be returned in order of increasing slot number.

4 Digest[0] H Digest of the first certificate chain. This field shall be in Hash byte order.

...

4 + (H

* (n

-1))

Digest[n-1] H Digest of the last (nth) certificate chain. This field shall be in Hash byte order.

274 10.8 GET_CERTIFICATE request and CERTIFICATE response messages

275 This request message shall retrieve the certificate chain from the specified slot number.

276 The GET_CERTIFICATE request message format table shows the GET_CERTIFICATE request message format.

277 The Successful CERTIFICATE response message table shows the CERTIFICATE response message format.

278 The Requester should, at a minimum, save the public key of the leaf certificate and associate it with each of the

digests returned by DIGESTS message response. The Requester sends one or more GET_CERTIFICATE requests to

retrieve the certificate chain of the Responder.

279 GET_CERTIFICATE request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x82=GET_CERTIFICATE

2 Param1 1

Bit [7:4] = Reserved.

Bit[3:0] = SlotID . Slot number of the Responder certificate chain to read. The value in this field

shall be between 0 and 7 inclusive.

3 Param2 1 Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

68 Work in Progress Version 1.2.0a

280 Successful CERTIFICATE response message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x02=CERTIFICATE

2 Param1 1

Bit [7:4] = Reserved.

Bit[3:0] = SlotID . Slot number of the certificate chain returned.

3 Param2 1 Reserved.

4 CertChain Variable
Requested contents of target certificate chain, as described in Certificates and certificate

chains.

281 10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE

messages

282 If the Requester supports mutual authentication, the requirements placed on the Responder in GET_CERTIFICATE

request and CERTIFICATE response messages clause shall also apply to the Requester. If the Responder supports

mutual authentication, the requirements placed on the Requester in GET_CERTIFICATE request and CERTIFICATE

response messages clause shall also apply to the Responder. These two statements essentially describe a role

reversal.

283 10.8.2 Leaf certificate

284 The SPDM endpoints for authentication shall be provisioned with DER-encoded X.509 v3 format certificates. For

endpoint devices to verify the certificate, the following required fields shall be present. In addition, to provide device

information, use the Subject Alternative Name certificate extension otherName field. See the Definition of

otherName using the DMTF OID.

285 Required fields

Field Description

Version Version of the encoded certificate shall be present and shall be 3 (encoded as value 2).

Serial Number CA-assigned serial number shall be present with a positive integer value.

Signature Algorithm Signature algorithm that CA uses shall be present.

Issuer CA distinguished name shall be specified.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 69

Field Description

Subject Name Subject name shall be present and shall represent the distinguished name associated with the leaf certificate.

Validity See Certificate Validity details below, and RFC5280 for further details.

Subject Public Key Info Device public key and the algorithm shall be present.

Key Usage Shall be present and key usage bit for digital signature shall be set.

286 Optional fields

Field Description

Basic

Constraints
If present, the CA value shall be FALSE in the leaf certificate.

Subject

Alternative

Name

otherName

In some cases, it might be desirable to provide device specific information as part of the leaf certificate. DMTF chose the

otherName field with a specific format to represent the device information. The use of the otherName field also provides

flexibility for other alliances to provide device specific information as part of the leaf certificate. See the Definition of

otherName using the DMTF OID.

Extended

Key Usage

(EKU)

If present, the Extended Key Usage extension indicates one or more purposes for which the public key should be used.

The following Extended Key Usage purposes are defined for SPDM certificate authentication:

SPDM Responder Authentication (1.3.6.1.4.1.412.274.3) : The presence of this OID shall indicate that a leaf certificate

is used for Responder authentication purposes.

SPDM Requester Authentication (1.3.6.1.4.1.412.274.4) : The presence of this OID shall indicate that a leaf certificate

is used for Requester authentication purposes.

The presence of both OIDs shall indicate that the leaf certificate is used for both Requester and Responder authentication

purposes.

A Responder device that supports mutual authentication should include the SPDM Responder Authentication OID in the

Extended Key Usage field of its leaf certificate. A Requester device that supports mutual authentication should include the

SPDM Requester Authentication OID in the Extended Key Usage field of its leaf certificate.

287 Certificate Validity details

288 As per RFC5280, the certificate validity period is the time interval during which the CA warrants that it will maintain

information about the status of the certificate. The field is represented as a ASN.1-encoded SEQUENCE of two

dates: the date on which the certificate validity period begins (notBefore) and the date on which the certificate

validity period ends (notAfter).

289 For all DeviceCert leaf certificates (which are immutable) as well as the leaf certificate whose chain is stored in Slot

0, the notBefore date should be the date of certificate creation, and the notAfter date should be set to

Security Protocol and Data Model (SPDM) Specification DSP0274

70 Work in Progress Version 1.2.0a

GeneralizedTime value 99991231235959Z . In general, immutable leaf certificates' notAfter dates should be set

appropriately to ensure that the leaf certificate will not expire during the practical lifetime of the device.

290 For AliasCert leaf certificates as well as leaf certificates whose chains are stored in Slots 1-7, the notBefore date

should be the date of certificate creation. The notAfter date may be set according to end user requirements,

including values that will cause certificate expiration and necessitate certificate renewal, and thus device re-

certification, during the lifetime of the device.

291 Definition of otherName using the DMTF OID

DMTFOtherName ::= SEQUENCE {
type-id DMTF-oid
value [0] EXPLICIT ub-DMTF-device-info

}
-- OID for DMTF device info --
id-DMTF-device-info OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 1 }
DMTF-oid ::= OBJECT IDENTIFIER (id-DMTF-device-info)

-- All printable characters except ":" --
DMTF-device-string ::= UTF8String (ALL EXCEPT ":")

-- Device Manufacturer --
DMTF-manufacturer ::= DMTF-device-string

-- Device Product --
DMTF-product ::= DMTF-device-string

-- Device Serial Number --
DMTF-serialNumber ::= DMTF-device-string

-- Device information string --
ub-DMTF-device-info ::= UTF8String({DMTF-manufacturer":"DMTF-product":"DMTF-serialNumber})

292 The Leaf certificate example shows an example leaf certificate.

293 10.9 CHALLENGE request and CHALLENGE_AUTH response messages

294 This request message shall authenticate a Responder through the challenge-response protocol.

295 The CHALLENGE request message format table shows the CHALLENGE request message format.

296 The Successful CHALLENGE_AUTH response message table shows the CHALLENGE_AUTH response message

format.

297 CHALLENGE request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 71

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x83=CHALLENGE

2 Param1 1

SlotID . Slot number of the Responder certificate chain that shall be used for authentication. It

shall be 0xFF if the public key of the Responder was provisioned to the Requester in a trusted

environment, otherwise the value in this field shall be between 0 and 7 inclusive.

3 Param2 1

Type of measurement summary hash requested:

0x0 : No measurement summary hash requested.

0x1 : TCB measurements only.

0xFF : All measurements.

All other values reserved.

If a Responder does not support measurements (MEAS_CAP=00b in CAPABILITIES response), the

Requester shall set this value to 0x0 .

4 Nonce 32 The Requester should choose a random value.

298 Successful CHALLENGE_AUTH response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x03=CHALLENGE_AUTH

2 Param1 1
Response Attribute Field. Please see CHALLENGE_AUTH

Response Attribute Table for details.

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and

only if slot number K contains a certificate chain for the protocol

version in the SPDMVersion field. Bit 0 is the least significant bit of

the byte. This field is reserved if the public key of the Responder

was provisioned to the Requester in a trusted environment.

4 CertChainHash H

Hash of the certificate chain or public key (if the public key of the

Responder was provisioned to the Requester in a trusted

environment) used for authentication. The Requester can use this

value to check that the certificate chain or public key matches the

one requested.

This field shall be in Hash byte order.

Security Protocol and Data Model (SPDM) Specification DSP0274

72 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

4 + H Nonce 32 Responder-selected random value.

36 + H MeasurementSummaryHash H

If the Responder does not support measurements (MEAS_CAP=00b

in CAPABILITIES response) or requested Param2 = 0x0 , this field

shall be absent.

If the requested Param2 = 0x1 , this field shall be the combined

hash of measurements of all measurable components considered to

be in the TCB required to generate this response, computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...)) where MeasurementBlock[x]

denotes a measurement of an element in the TCB. Measurements

are concatenated in ascending order based on their measurement

index.

When the requested Param2 = 0x1 and there are no measurable

components in the TCB required to generate this response, this field

shall be 0 .

If requested Param2 = 0xFF , this field shall be computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ..., MeasurementBlock[n])) of all

supported measurement blocks available in the measurement index

range 0x01 - 0xFE , concatenated in ascending index order. Indices

with no associated measurements shall not be included in the hash

calculation. See the Measurement index assignments section for

details.

If the Responder supports both raw bit stream and digest

representations for a given measurement index, then the Responder

shall use the digest form.

This field shall be in Hash byte order.

36 + 2H OpaqueDataLength 2

Size of the OpaqueData field that follows in bytes. The value should

not be greater than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

38 + 2H OpaqueData OpaqueDataLength

The Responder may include Responder-specific information and/or

information defined by its transport. If present, this field shall

conform to the General opaque Data Format.

38 + 2H +

OpaqueDataLength
Signature SigLen

SigLen is the size of the asymmetric-signing algorithm output that

the Responder selected through the last ALGORITHMS response

message to the Requester. The CHALLENGE_AUTH signature

generation and CHALLENGE_AUTH signature verification clauses,

respectively, define the signature generation and verification

processes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 73

299 CHALLENGE_AUTH response attribute

Bit

Offset
Field Name Description

[3:0] SlotID

This field shall contain the SlotID in the Param1 field of the corresponding CHALLENGE request. If the

Responder’s public key was provisioned to the Requester previously, this field shall be 0xF. The Requester can

use this value to check that the certificate matched what was requested.

[6:4] Reserved Reserved.

7
DEPRECATED:

BasicMutAuthReq

DEPRECATED: When mutual authentication is supported by both Responder and Requester, the Responder

shall set this bit to indicate the Responder wants to authenticate the identity of the Requester using the basic

mutual authentication flow. The Requester shall not set this bit in a basic mutual authentication flow. See Basic

mutual authentication flow for more details. If mutual authentication is not supported, this bit shall be zero;

otherwise, it should be considered an error.

300 10.9.1 CHALLENGE_AUTH signature generation

301 To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

1.302 The Responder shall construct M1 and the Requester shall construct M2 message transcripts. For

Responder authentication, see the Request ordering and message transcript computation rules for

M1/M2 table. For Requester authentication in the mutual authentication scenario, see the Mutual

authentication message transcript clause.

303 where:

304 Concatenate() is the standard concatenation function that is performed only after a successful

completion response on the entire request and response contents.

◦305 If a response contains ErrorCode=ResponseNotReady :

306 Concatenation function is performed on the contents of both the original request and the

successful response received during RESPOND_IF_READY . Neither the error response

(ResponseNotReady) nor the RESPOND_IF_READY request shall be included in M1/M2.

◦307 If a response contains an ErrorCode other than ResponseNotReady :

308 No concatenation function is performed on the contents of both the original request and response.

2.309 The Responder shall generate:

Signature = SPDMsign(PrivKey, M1, "challenge_auth signing");

Security Protocol and Data Model (SPDM) Specification DSP0274

74 Work in Progress Version 1.2.0a

310 where:

◦ SPDMsign is described in Signature generation.

◦ PrivKey shall be the private key associated with the leaf certificate of the Responder in

slot=Param1 of the CHALLENGE request message. If the public key of the Responder was

provisioned to the Requester, then PrivKey shall be the associated private key.

311 10.9.2 CHALLENGE_AUTH signature verification

312 Modifications to the previous request messages or the corresponding response messages by an active person-in-

the-middle adversary or media error result in M2!=M1 and lead to verification failure.

313 To complete the CHALLENGE_AUTH signature verification process, the Requester shall complete this step:

1.314 The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, M2, "challenge_auth signing");

315 where:

◦ SPDMsignatureVerify is described in Signature verification. A successful verification is when

result is success.

◦ PubKey shall be the public key associated with the leaf certificate of the Responder with

slot=Param1 of the CHALLENGE request message. If the public key of the Responder was

provisioned to the Requester, then PK is the provisioned public key.

316 The Responder authentication: Runtime challenge-response flow shows the high-level request-response message

flow and sequence for the authentication of the Responder for runtime challenge-response.

317 Responder authentication: Runtime challenge-response flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 75

318

Nonce

ResponderRequester

1. The Requester sends a
CHALLENGE request message.

2. The Requester verifies
Responder's signature.

1. The Responder computes signature using
the Nonce and generates a
CHALLENGE_AUTH response message

CHALLENGE

Cert Chain Hash, Nonce,
Measurement SummaryHash,

OpaqueData, Signature

CHALLENGE_AUTH

319 10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

320 This clause applies to Responder-only authentication.

321 The Request ordering and message transcript computation rules for M1/M2 table defines how the message transcript

is constructed for M1 and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH

response message.

322 The possible request orderings after Reset leading up to and including CHALLENGE shall be:

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , GET_CERTIFICATE , CHALLENGE

(A1, B1, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , CHALLENGE (A1, B3, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , CHALLENGE (A1, B2, C1)

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A2, B1, C1)

• GET_DIGESTS , CHALLENGE (A2, B3, C1)

• GET_CERTIFICATE , CHALLENGE (A2, B4, C1)

• CHALLENGE (A2, B2, C1)

323 Immediately after Reset, M1 and M2 shall be null.

324 After the Requester receives a successful CHALLENGE_AUTH response or the Requester sends a GET_MEASUREMENTS

request, M1 and M2 shall be set to null. If a Negotiated State has been established, this will remain intact.

325 If a Requester sends a GET_VERSION message, the Requester and Responder shall set M1 and M2 to null, clear all

Negotiated State and recommence construction of M1 and M2 starting with the new GET_VERSION message.

326 For additional rules, see General ordering rules.

327 Request ordering and message transcript computation rules for M1/M2

Security Protocol and Data Model (SPDM) Specification DSP0274

76 Work in Progress Version 1.2.0a

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

Initial value N/A M1/M2= null

GET_VERSION issued

Requester issues this request to allow the Requester and Responder to

determine an agreed upon Negotiated State . Also issued if the Requester

detects an out of sync condition, when the signature verification fails or when

the Responder provides an unexpected error response.

M1/M2=null

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Issued

Requester shall always issue these requests in this order. A1=VCA

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Skipped

Requester skipped issuing these requests after a Reset or a completed

CHALLENGE_AUTH response, that caused M1/M2 to re-initialize to null , if the

Responder has previously indicated CACHE_CAP=1 . In this case, the Requester

and Responder shall proceed with the previously determined Negotiated

State . These requests and responses are still required for M1/M2 construction.

A2=VCA

GET_DIGESTS ,

GET_CERTIFICATE

issued

Requester issued these requests in this order after NEGOTIATE_ALGORITHMS

request completion, or after a Reset or a completed CHALLENGE_AUTH

response, that caused M1/M2 to re-initialize to null , if it chose to skip the

previous three requests.

B1=Concatenate(GET_DIGESTS,

DIGESTS, GET_CERTFICATE,

CERTIFICATE)

GET_DIGESTS ,

GET_CERTIFICATE

skipped

Requester skipped both requests after a Reset or a completed

CHALLENGE_AUTH response, that caused M1/M2 to re-initialize to null , since it

could use previously cached certificate information.

B2=null

GET_DIGESTS issued,

GET_CERTIFICATE

skipped

Requester skipped GET_CERTIFICATE request after a Reset or a completed

CHALLENGE_AUTH response, that caused M1/M2 to re-initialize to null since it

could use the previously cached CERTIFICATE response.

B3=(GET DIGESTS, DIGESTS)

GET_DIGESTS skipped,

GET_CERTIFICATE

issued

Requester skipped GET_DIGEST request after after a Reset or a completed

CHALLENGE_AUTH response, that caused M1/M2 to re-initialize to null . The

Requester uses the previously cached CERTIFICATE response for a byte-by-

byte comparison.

B4=(GET CERTIFICATE,

CERTIFICATE)

CHALLENGE issued

Requester issued this request to complete security verification of current

requests and responses. The Signature bytes of CHALLENGE_AUTH shall not be

included in C.

C1=(CHALLENGE,

CHALLENGE_AUTH\Signature) .

See the CHALLENGE request

message format table.

CHALLENGE completion Completion of CHALLENGE sets M1/M2 to null . M1/M2=null

Other issued

If the Requester issued GET_MEASUREMENTS or KEY_EXCHANGE or FINISH or

PSK_EXCHANGE or PSK_FINISH or KEY_UPDATE or HEARTBEAT or

GET_ENCAPSULATED_REQUEST or DELIVER_ENCAPSULATED_RESPONSE or

END_SESSSION request(s) and skipped CHALLENGE completion, M1/M2 are set

to null .

M1/M2=null

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 77

328 The Basic mutual authentication flow is DEPRECATED. Implementations should use Session-based mutual

authentication or Optimized Session-based mutual authentication.

329 DEPRECATED

330 10.9.3 Basic mutual authentication

331 Unless otherwise stated, if the Requester supports mutual authentication, the requirements placed on the Responder

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Requester.

Unless otherwise stated, if the Responder supports mutual authentication, the requirements placed on the Requester

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Responder.

These two statements essentially describe a role reversal, unless otherwise stated.

332 The basic mutual authentication flow shall start when the Requester successfully receives a CHALLENGE_AUTH with

BasicMutAuthReq set. This flow shall utilize message encapsulation as described in

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages to retrieve

request messages. The basic mutual authentication flow shall end when the encapsulated request flow ends.

333 This flow shall only allow GET_DIGESTS , GET_CERTIFICATE , CHALLENGE and their corresponding responses to be

encapsulated. If other requests are encapsulated, the Requester may send an ERROR response with

ErrorCode=UnexpectedRequest and shall terminate the flow.

334 The Mutual authentication basic flow illustrates, as an example, the basic mutual authentication flow.

335 Mutual authentication basic flow

Security Protocol and Data Model (SPDM) Specification DSP0274

78 Work in Progress Version 1.2.0a

336

BASIC
MUTUAL
AUTHENTICATION
FLOW

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

CHALLENGE

CHALLENGE_AUTH

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

ENCAPSULATED_RESPONSE_ACK (CHALLENGE)

DELIVER_ENCAPSULATED_RESPONSE (CHALLENGE_AUTH)

BasicMutAuthReq is
set in the response.

Both Requester
and Responder
set MUT_AUTH_CAP
bits.

337 10.9.3.1 Mutual authentication message transcript

338 This clause applies to the Responder authenticating the Requester in a basic mutual authentication scenario.

339 The Basic mutual authentication message transcript table defines how the message transcript is constructed for M1

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 79

and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH response message when

the Responder authenticates the Requester.

340 The possible request orderings for the basic mutual authentication flow shall be one of the following (the Flow ID is in

parenthesis):

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (BMAF0)

• GET_DIGESTS , CHALLENGE (BMAF1)

• GET_CERTIFICATE , CHALLENGE (BMAF2)

• CHALLENGE (BMAF3)

341 When the basic mutual authentication flow starts (i.e., when GET_ENCAPSULATED_REQUEST is issued) M1 and M2 shall

be set to null.

342 Basic mutual authentication message transcript

Flow

ID
M1/M2

BMAF0
Concatenate(VCA , GET_DIGESTS , DIGESTS , GET_CERTIFICATE , CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the

signature)

BMAF1 Concatenate(VCA , GET_DIGESTS , DIGESTS , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF2 Concatenate(VCA , GET_CERTIFICATE , CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF3 Concatenate(VCA , CHALLENGE , CHALLENGE_AUTH without the signature)

343 For GET_CERTIFICATE and CERTIFICATE , these messages may need to be issued multiple times to retrieve the

entire certificate chain. Thus, each instance of the request and response shall be part of M1/M2 in the order that they

are issued.

344 DEPRECATED

345 10.10 Firmware and other measurements

346 This clause describes request messages and response messages associated with endpoint measurement. All

request messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in

CAPABILITIES response.

347 The Measurement retrieval flow shows the high-level request-response flow and sequence for endpoint

measurement. If MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0, and the Requester

Security Protocol and Data Model (SPDM) Specification DSP0274

80 Work in Progress Version 1.2.0a

requires fresh measurements, the Responder shall be Reset before GET_MEASUREMENTS is resent. The mechanisms

employed for Resetting the Responder are outside the scope of this specification.

348 Measurement retrieval flow

349

Nonce

ResponderRequester

1. The Requester sends a
GET_MEASUREMENTS request
message.

2. Verify signature and verify
measurements match expected
values.

1. The Responder sends a
MEASUREMENTS response message.

GET_MEASUREMENTS

Number of
measurements,
length, Nonce,
measurement

blocks,
signature.

MEASUREMENTS

350 10.11 GET_MEASUREMENTS request and MEASUREMENTS response

messages

351 Measurements in SPDM are represented in the form of measurement blocks. Measurement block defines the

measurement block structure. A device may present measurements of different elements of its internal state, as well

as metadata to assist in the attestation of its state via measurements, as separate blocks. The GET_MEASUREMENTS

request message enables a Requester to query a Responder for the number of individual measurement blocks it

supports, and request either specific blocks or all available blocks. The MEASUREMENTS response message returns

the requested blocks. A collection of more than one measurement blocks is called a measurement record.

352 Because issuing GET_MEASUREMENTS clears the M1/M2 message transcript, it is recommended that a Requester

does not send this message until it has received at least one successful CHALLENGE_AUTH response message from

the Responder. This ensures that the information in message pairs GET_DIGESTS / DIGESTS and

GET_CERTIFICATES / CERTIFICATES has been authenticated at least once.

353 The GET_MEASUREMENTS request message format table shows the GET_MEASUREMENTS request message format.

354 The GET_MEASUREMENTS request attributes table shows the GET_MEASUREMENTS request message attributes.

355 The Successful MEASUREMENTS response message format table shows the MEASUREMENTS response message

format. The measurement blocks in MeasurementRecord shall be sorted in ascending order by index.

356 GET_MEASUREMENTS request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 81

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE0=GET_MEASUREMENTS

2 Param1 1 Request attributes. See the GET_MEASUREMENTS request attributes table.

3 Param2 1

Measurement operation.

A value of 0x0 shall query the Responder for the total number of measurement blocks available.

A value of 0xFF shall request all measurement blocks.

A value between 0x1 and 0xFE , inclusively, shall request the measurement block at the index

corresponding to that value.

4 Nonce

NL=32

or

NL=0

The Requester should choose a random value. This field is only present if Bit [0] of Param1 is 1 .

See the GET_MEASUREMENTS request attributes table.

4 +

NL
SlotIDParam 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID . Slot number of the Responder certificate chain that shall be used for

authenticating the measurement(s). If the Responder’s public key was provisioned to the

Requester previously, this field shall be 0xF . This field is only present if Bit [0] of Param1 is 1 .

See the GET_MEASUREMENTS request attributes table.

357 GET_MEASUREMENTS request attributes

Bits Field Description

0 SignatureRequested

If the Responder can generate a signature (MEAS_CAP is 10b in the CAPABILITIES response), value

of 1 indicates that a signature on the measurement log (L1/L2 defined in MEASUREMENTS signature

generation) is required. The Nonce field shall be present in the request where this bit is set. The

Responder shall generate and send a signature in the response.

Value of 0 indicates that the Requester does not require a signature. The Responder shall not

generate a signature in the response. The Nonce field shall be absent in the request.

For Responders that cannot generate a signature (MEAS_CAP is 01b in the CAPABILITIES response)

the Requester shall always use 0 .

Security Protocol and Data Model (SPDM) Specification DSP0274

82 Work in Progress Version 1.2.0a

Bits Field Description

1 RawBitStreamRequested

This bit is applicable only if the measurement specification supports only two representations, raw bit

stream and digest (for example, when MeasurementSpecification of Measurement block format is set

to DMTF). If the measurement specification supports other representations, this bit is ignored.

If the Responder is able to return either a raw bit stream or a hash for the requested measurement,

value 1 shall request the Responder to return the raw bit stream version of such measurement. If the

Responder cannot return raw bit stream for the measurement (for example, if the raw bit stream

contains confidential data that the Responder cannot expose), it shall return the corresponding hash.

Value 0 shall request the Responder to return a hash version of the measurement. If the Responder

cannot return hash of the measurement (for example, if the measurement represents a data structure

where digest is not applicable), it shall return the corresponding raw bit stream.

[7:2] Reserved Reserved

358 Measurement index assignments

359 This specification imposes no requirements on the scope, type or format of measurement a device associates with a

particular measurement index in the range 0x1 to 0xEF . As a result, Responders may use the same index to report

different types of measurements based on their implementation. If available, a Requester may use a measurement

manifest (a measurement of type DMTFSpecMeasurementValueType[6:0] = 0x04 if measurements follow the DMTF

measurement specification format) to discover information about the specific measurement types available by a

particular Responder and the indices they correspond to.

360 To aid interoperability, this specification reserves indices 0xF0 to 0xFE inclusive for specific purposes. If a

Responder supports a type of measurement defined in the Measurement index assigned range table, it shall always

assign it to the corresponding index value. A Responder shall not assign indices 0xF0 to 0xFE to measurements of

types other than those defined in Measurement index assigned range table.

361 Measurement index assigned range table

Measurement

index
Measurement type Description

0xF0 - 0xFC Reserved Reserved

0xFD
Measurement

manifest

Metadata on available measurements, as defined by type

DMTFSpecMeasurementValueType[6:0] = 0x04

0xFE Device mode
Structured device mode information, as defined by type

DMTFSpecMeasurementValueType[6:0] = 0x05

362 Successful MEASUREMENTS response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 83

Offset Field Size (bytes) Value

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1 0x60=MEASUREMENTS

2 Param1 1

When Param2 in the requested measurement operation

is 0 , this parameter shall return the total number of

measurement indices on the device. Otherwise, this field

is reserved.

3 Param2 1

Bit[7:6] = Reserved.

Bit[5:4] = content changed. If this message contains a

signature, this field indicates if one or more entries in the

measurement log being signed have changed.

00b : the Responder does not support detection of

runtime measurement changes, or this message does

not contain a signature.

01b : the Responder detected that one or more entries

in the measurement log being signed have changed.

The Requester may consider issuing

GET_MEASUREMENTS again to acquire current

measurements.

10b : the Responder detected no change in the entries

in the measurement log being signed.

11b : reserved.

Bit[3:0] = SlotID . If this message contains a signature,

this field contains the slot number of the certificate chain

specified in the GET_MEASUREMENTS request, or 0xF if

the Responder’s public key was provisioned to the

Requester previously. If this message does not contain a

signature, this field shall be set to 0x0 .

4 NumberOfBlocks 1

Number of measurement blocks in the full

MeasurementRecord .

If Param2 in the requested measurement operation is

0 , this field shall be 0 .

5 MeasurementRecordLength 3

Size of the full MeasurementRecord in bytes.

If Param2 in the requested measurement operation is

0 , this field shall be 0 .

8 MeasurementRecordData L= MeasurementRecordLength

Concatenation of all measurement blocks that

correspond to the requested Measurement operation.

Measurement block defines the measurement block

structure.

8 + L Nonce 32
The Responder should choose a random value. This

field shall always be present.

Security Protocol and Data Model (SPDM) Specification DSP0274

84 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

40 + L OpaqueDataLength 2

Size of the OpaqueData field that follows in bytes. The

value should not be greater than 1024 bytes. Shall be 0

if no OpaqueData is provided.

42 + L OpaqueData OpaqueDataLength

The Responder may include Responder-specific

information and/or information defined by its transport. If

present, this field shall conform to the General opaque

Data Format.

42 + L +

OpaqueDataLength
Signature SigLen

Signature of the measurement log, excluding the

Signature field and signed using the private key

associated with the leaf certificate. The Responder shall

use the asymmetric signing algorithm it selected during

the last ALGORITHMS response message to the

Requester, and SigLen is the size of that asymmetric

signing algorithm output. This field is conditional and

only present in the MEASUREMENTS response

corresponding to a GET_MEASUREMENTS request

with Param1[0] set to 1.

363 10.11.1 Measurement block

364 Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,

offsets 0 through 3, followed by the measurement data that correspond to a particular measurement index and

measurement type. The blocks are ordered by Index .

365 The Measurement block format table shows the format for a measurement block:

366 Measurement block format

Offset Field Size (bytes) Value

0 Index 1

Index. When Param2 of GET_MEASUREMENTS request is between 0x1 and

0xFE , inclusive, this field shall match the request. Otherwise, this field shall

represent the index of the measurement block, where the index starts at 1 and

ends at the index of the last measurement block.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 85

Offset Field Size (bytes) Value

1 MeasurementSpecification 1

Bit mask. The value shall indicate the measurement specification that the

requested Measurement follows and shall match the selected measurement

specification in the ALGORITHMS message. See the Successful ALGORITHMS

response message format table. Only one bit shall be set in the measurement

block.

Bit 0 = DMTF, as specified in the DMTF measurement specification format table.

All other bits are reserved.

2 MeasurementSize 2 Size of Measurement , in bytes.

4 Measurement MeasurementSize The MeasurementSpecification defines the format of this field.

367 10.11.1.1 DMTF specification for the Measurement field of a measurement block

368 The present clause is the specification for the format of the Measurement field in a measurement block when the

MeasurementSpecification field selects DMTF (Bit 0). This format is specified in DMTF measurement specification

format table.

369 The measurement manifest of DMTFSpecMeasurementValueType refers to a manifest that describes contents of other

indexes. For example, the set of firmware modules executing on the Responder may change at runtime. The

measurement manifest tells the Requester which firmware modules' measurements are reported in this response and

their indexes. The format of measurement manifest is out of scope of this specification.

370 DMTF measurement specification format

Security Protocol and Data Model (SPDM) Specification DSP0274

86 Work in Progress Version 1.2.0a

Offset Field
Size

(bytes)
Value

0 DMTFSpecMeasurementValueType 1

Composed of:

Bit [7] indicates the representation in DMTFSpecMeasurementValue .

Bits [6:0] indicate what is being measured by DMTFSpecMeasurementValue .

These values are set independently and are interpreted as follows:

[7]=0b . Digest.

[7]=1b . Raw bit stream. Note: the Responder shall make sure the raw bit stream does

not contain secrets.

[6:0]=00h . Immutable ROM.

[6:0]=01h . Mutable firmware.

[6:0]=02h . Hardware configuration, such as straps.

[6:0]=03h . Firmware configuration, such as configurable firmware policy.

[6:0]=04h . Measurement manifest. When

DMTFSpecMeasurementValueType[6:0]=04h , the Responder should support setting

DMTFSpecMeasurementValueType[7] to either 0b or 1b .

[6:0]=05h . Structured representation of debug and device mode. See Device mode

field of a measurement block. When DMTFSpecMeasurementValueType[6:0]=05h ,

DMTFSpecMeasurementValueType[7] shall be set to 1b .

[6:0]=06h . Mutable firmware's version number. This specification does not mandate a

format for firmware version number. When DMTFSpecMeasurementValueType[6:0]=06h ,

DMTFSpecMeasurementValueType[7] should be set to 1b .

[6:0]=07h . Mutable firmware's security version number, which should be formatted as

an 8-byte unsigned integer. When DMTFSpecMeasurementValueType[6:0]=07h ,

DMTFSpecMeasurementValueType[7] should be set to 1b .

All other values reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 87

Offset Field
Size

(bytes)
Value

1 DMTFSpecMeasurementValueSize 2

The value of this field indicates the format and size of DMTFSpecMeasurementValue .

The possible values for this field shall be these values:

0x0000 : Raw Bit Stream (MS=MeasurementSize - 3). MeasurementSize is a field in

Measurement block.

0x0001 : TPM_ALG_SHA_256 (MS=32)

0x0002 : TPM_ALG_SHA_384 (MS=48)

0x0003 : TPM_ALG_SHA_512 (MS=64)

0x0004 : TPM_ALG_SHA3_256 (MS=32)

0x0005 : TPM_ALG_SHA3_384 (MS=48)

0x0006 : TPM_ALG_SHA3_512 (MS=64)

0x0007 : TPM_ALG_SM3_256 (MS=32)

0x0008 - 0xFFFF : Reserved

3 DMTFSpecMeasurementValue MS

Cryptographic hash or raw bit stream, as indicated in

DMTFSpecMeasurementValueType[7] . For cryptographic hashes or digests, this field

shall be in Hash byte order. The byte order for raw bit streams is vendor defined.

371 10.11.1.2 Device mode field of a measurement block

Offset Field
Size

(bytes)
Value

0 OperationalModeCapabilties 4

Fields with bits set to 1 indicate support for reporting the associated state in

OperationalModeState .

• Bit [0] Indicates support for reporting device in manufacturing mode.

• Bit [1] Indicates support for reporting device in validation mode.

• Bit [2] Indicates support for reporting device in normal operational mode.

• Bit [3] Indicates support for reporting device in RMA mode.

• Bit [4] Indicates support for reporting device in decommissioned mode.

All other values reserved.

4 OperationalModeState 4

Fields with bits set to 1 indicate true for the reported state.

• Bit [0] Indicates the device is in manufacturing mode.

• Bit [1] Indicates the device is in validation mode.

• Bit [2] Indicates the device is in normal operational mode.

• Bit [3] Indicates the device is in RMA mode.

• Bit [4] Indicates the device is in decommissioned mode.

All other values reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

88 Work in Progress Version 1.2.0a

Offset Field
Size

(bytes)
Value

8 DeviceModeCapabilties 4

Fields with bits set to 1 indicate support for reporting the associated state in

DeviceModeState .

• Bit [0] Indicates support for reporting non-invasive debug mode is active.

• Bit [1] Indicates support for reporting invasive debug mode is active.

• Bit [2] Indicates support for reporting non-invasive debug mode has been active this

Reset cycle.

• Bit [3] Indicates support for reporting invasive debug mode has been active this Reset

cycle.

• Bit [4] Indicates support for reporting invasive debug mode has been active on this

device at least once since exiting manufacturing mode.

All other values reserved.

12 DeviceModeState 4

Fields with bits set to 1 indicate true for the reported state.

• Bit [0] Indicates non-invasive debug mode is active.

• Bit [1] Indicates invasive debug mode is active.

• Bit [2] Indicates non-invasive debug mode has been active this Reset cycle.

• Bit [3] Indicates invasive debug mode has been active this Reset cycle.

• Bit [4] Indicates invasive debug mode has been active on this device at least once

since exiting manufacturing mode.

All other values reserved.

372 10.11.2 MEASUREMENTS signature generation

373 While a Requester may opt to require a signature in each of the request-response messages, it is advisable that the

cost of the signature generation process is minimized by amortizing it over multiple request-response messages

where applicable. In this scheme, the Requester issues a number of requests without requiring signatures followed

by a final request requiring a signature over the entire set of request-response messages exchanged. The steps to

complete this scheme are as follows:

1.374 The Responder shall construct measurement log L1 and the Requester shall construct measurement

log L2 over their observed messages:

L1/L2 = Concatenate(`VCA`, GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,
GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,
GET_MEASUREMENTS_REQUESTn, MEASUREMENTS_RESPONSEn)

375 where:

◦376 Concatenate()

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 89

377 Standard concatenation function.

◦378 GET_MEASUREMENTS_REQUEST1

379 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

not requested a signature on that specific GET_MEASUREMENTS request.

◦380 MEASUREMENTS_RESPONSE1

381 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUEST1 .

◦382 GET_MEASUREMENTS_REQUESTn-1

383 Entire last consecutive GET_MEASUREMENTS request message under consideration, where the

Requester has not requested a signature on that specific GET_MEASUREMENTS request.

◦384 MEASUREMENTS_RESPONSEn-1

385 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn-1 .

◦386 GET_MEASUREMENTS_REQUESTn

387 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

requested a signature on that specific GET_MEASUREMENTS request.

388 n is a number greater than or equal to 1 .

389 When n equals 1 , the Requester has not made any GET_MEASUREMENTS requests without

signature prior to issuing a GET_MEASUREMENTS request with signature.

◦390 MEASUREMENTS_RESPONSEn

391 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn .

392 Any communication between Requester and Responder other than a GET_MEASUREMENTS request or

response re-initializes L1/L2 computation to null. The GET_MEASUREMENTS requests and

MEASUREMENTS responses before the L1/L2 re-initialization will not be covered by the signature in the

final MEASUREMENTS response. Consequently, it is recommended that the Requester not use the

measurements before verifying the signature.

393 An error response with ErrorCode=ResponseNotReady shall not re-initialize L1/L2 - Requester and

Security Protocol and Data Model (SPDM) Specification DSP0274

90 Work in Progress Version 1.2.0a

Responder shall continue to construct L1/L2 with GET_MEASUREMENTS and MEASUREMENTS . An error

response with any error code other than ResponseNotReady shall re-initialize L1/L2 to null.

2.394 The Responder shall generate:

Signature = SPDMsign(PrivKey, L1, "measurement signing");

395 where:

◦ SPDMsign is described in Signature generation.

◦ PrivKey shall be the private key of the Responder associated with the leaf certificate stored in

SlotID of SlotIDParam in GET_MEASUREMENTS . If the public key of the Responder was

provisioned to the Requester, then PrivKey shall be the associated private key.

396 10.11.3 MEASUREMENTS signature verification

397 To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

1.398 The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, L2, "measurement signing")

399 where:

◦ SPDMsignatureVerify is described in Signature verification. A successful verification is when

result is success.

◦ PubKey shall be the public key associated with the leaf certificate stored in SlotID of

SlotIDParam in GET_MEASUREMENTS . PubKey is extracted from the CERTIFICATES response. If

the public key of the Responder was provisioned to the Requester, then PubKey shall be the

provisioned public key.

400 The Measurement signature computation example shows an example of a typical Requester Responder protocol

where the Requester issues 1 to n-1 GET_MEASUREMENTS requests without a signature, followed by a single

GET_MEASUREMENTS request n with a signature.

401 Measurement signature computation example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 91

402

GET_MEASUREMENTS (n-1, NoSig)

MEASUREMENTS (n-1, NoSig)

GET_MEASUREMENTS (n, Sig)

MEASUREMENTS (n, Sig)

Responder

GET_MEASUREMENTS (1, NoSig)

MEASUREMENTS (1, NoSig)
MEASUREMENT

response 1 with no

signature

...

...

MEASUREMENT response

n-1 with no signature

GET_MEASUREMENT
request 1 with no

signature request

GET_MEASUREMENT
request n-1 with no

signature request

GET_MEASUREMENT
request n with signature

request

MEASUREMENT response
n with signature computed

as described

Requester

Verify Signature computed

as described

403 10.12 ERROR response message

404 For an SPDM operation that results in an error, the Responder should send an ERROR response message to the

Requester.

405 The ERROR response message format table shows the ERROR response format.

406 The Error code and error data table shows the detailed error code, error data, and extended error data.

407 The ResponseNotReady extended error data table shows the ResponseNotReady extended error data.

408 The Registry or standards body ID table shows the registry or standards body ID.

409 The ExtendedErrorData format for vendor or other standards-defined ERROR response message table shows the

ExtendedErrorData format definition for vendor or other standards-defined ERROR response message.

410 ERROR response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

92 Work in Progress Version 1.2.0a

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x7F=ERROR

2 Param1 1 Error Code. See Error code and error data.

3 Param2 1 Error Data. See Error code and error data.

4 ExtendedErrorData 0-32 Optional extended data. See Error code and error data.

411 Error code and error data

Error code Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved Reserved Reserved

InvalidRequest 0x01 One or more request fields are invalid 0x00
No extended error data is

provided.

Reserved 0x02 Reserved Reserved
No extended error data is

provided.

Busy 0x03

The Responder received the request

message and the Responder decided to

ignore the request message, but the

Responder may be able to process the

request message if the request message is

sent again in the future.

0x00
No extended error data is

provided.

UnexpectedRequest 0x04

The Responder received an unexpected

request message. For example, CHALLENGE

before NEGOTIATE_ALGORITHMS .

0x00
No extended error data is

provided.

Unspecified 0x05 Unspecified error occurred. 0x00
No extended error data is

provided.

DecryptError 0x06

The receiver of the record cannot decrypt the

record or verify data during the session

handshake.

Reserved
No extended error data is

provided.

UnsupportedRequest 0x07
The RequestResponseCode in the request

message is unsupported.

RequestResponseCode

in the request message.

No extended error data is

provided

RequestInFlight 0x08

The Responder has delivered an

encapsulated request to which it is still

waiting for the response.

Reserved
No extended error data is

provided.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 93

Error code Value Description Error data ExtendedErrorData

InvalidResponseCode 0x09
The Requester delivered an invalid response

for an encapsulated response.
Reserved

No extended error data is

provided.

SessionLimitExceeded 0x0A
Maximum number of concurrent sessions

reached.
Reserved

No extended error data is

provided.

SessionRequired 0x0B
The Request message received by the

Responder is only allowed within a session.
Reserved

No extended error data is

provided.

ResetRequired 0x0C

The device requires a reset to complete the

requested operation. This ErrorCode can

be sent in response to the GENERATE_KEY or

SET_CERTIFICATE message.

0x00
No extended error data is

provided.

ResponseTooLarge 0x0D

The response is greater than the

MaxSPDMmsgSize of the requesting SPDM

endpoint.

Reserved
See ExtendedErrorData

for ResponseTooLarge

RequestTooLarge 0x0E

The request is greater than the

MaxSPDMmsgSize of the receiving SPDM

endpoint.

Reserved Reserved

LargeResponse 0x0F

The response is greater than

DataTransferSize of the requesting SPDM

endpoint.

Reserved
See ExtendedErrorData

for LargeResponse.

Reserved 0x10 - 0x40 Reserved Reserved Reserved

MajorVersionMismatch 0x41
Requested SPDM Major Version is not

supported.
0x00

No extended error data is

provided.

ResponseNotReady 0x42
See the RESPOND_IF_READY request

message format.
0x00

See the

ResponseNotReady

extended error data

table.

RequestResynch 0x43

Responder is requesting Requester to

reissue GET_VERSION to resynchronize. An

example is following a firmware update.

0x00
No extended error data is

provided.

Reserved 0x44 - 0xFE Reserved Reserved. Reserved

Vendor/Other Standards

Defined
0xFF Vendor or Other Standards defined

Shall indicate the registry

or standard body using

one of the values in the

ID column in the Registry

or standards body ID

table.

See the

ExtendedErrorData

format for vendor or other

standards-defined

ERROR response

message table for format

definition.

Security Protocol and Data Model (SPDM) Specification DSP0274

94 Work in Progress Version 1.2.0a

412 ResponseNotReady extended error data

Offset Field
Size

(bytes)
Value

0 RDTExponent 1

Exponent expressed in logarithmic (base 2 scale) to calculate RDT time in µs after which the Responder

can provide successful completion response.

For example, the raw value 8 indicates that the Responder will be ready in 28=256 µs.

Responder should use RDT to avoid continuous pinging and issue the RESPOND_IF_READY request

message after RDT time.

For timing requirement details, see the Timing specification for SPDM messages table.

1 RequestCode 1 The request code that triggered this response.

2 Token 1

The opaque handle that the Requester shall pass in with the RESPOND_IF_READY request message. The

Responder can use the value in this field to provide the correct response when the Requester issues a

RESPOND_IF_READY request.

3 RDTM 1

Multiplier used to compute WT Max in µs to indicate the response may be dropped after this delay.

The multiplier shall always be greater than 1.

The Responder may also stop processing the initial request if the same Requester issues a different

request.

For timing requirement details, see the Timing specification for SPDM messages table.

413 Registry or standards body ID

414 For algorithm encoding in extended algorithm fields, unless otherwise specified, consult the respective registry or

standards body.

ID
Vendor ID

length (bytes)

Registry or standards

body name
Description

0x0 0 DMTF
DMTF does not have a Vendor ID registry. At present, DMTF does not have any

algorithms defined for use in extended algorithms fields.

0x1 2 TCG
Vendor is identified by using TCG Vendor ID Registry. For extended algorithms, see TCG

Algorithm Registry.

0x2 2 USB Vendor is identified by using the vendor ID assigned by USB.

0x3 2 PCI-SIG Vendor is identified using PCI-SIG Vendor ID.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 95

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies

ID
Vendor ID

length (bytes)

Registry or standards

body name
Description

0x4 4 IANA
The Private Enterprise Number (PEN) assigned by the Internet Assigned Numbers

Authority (IANA) identifies the vendor.

0x5 4 HDBaseT Vendor is identified by using HDBaseT HDCD entity.

0x6 2 MIPI The Manufacturer ID assigned by MIPI identifies the vendor.

0x7 2 CXL Vendor is identified by using CXL vendor ID.

0x8 2 JEDEC Vendor is identified by using JEDEC vendor ID.

415 ExtendedErrorData format for vendor or other standards-defined ERROR response message

Byte

offset
Length Field name Description

0 1 Len

Length of the VendorID field.

If the ERROR is vendor defined, the value of this field shall equal the Vendor ID Len , as the Registry

or standards body ID table describes, of the corresponding registry or standard body name.

If the ERROR is defined by a registry or a standard, this field shall be zero (0), which also indicates

that the VendorID field is not present.

The Error Data field in the ERROR message indicates the registry or standards body name, such as

Param2 , and is one of the values in the ID column in the Registry or standards body ID table.

1 Len VendorID

The value of this field shall indicate the Vendor ID, as assigned by the registry or standards body. The

Registry or standards body ID table describes the length of this field. Shall be in little endian format.

The registry or standards body name in the ERROR is indicated in the Error Data field, such as

Param2 , and is one of the values in the ID column in the Registry or standards body ID table.

1 +

Len
Variable OpaqueErrorData Defined by the vendor or other standards.

416 ExtendedErrorData format for ResponseTooLarge

Byte offset Length Field name Description

0 4 ActualSize The size of the actual Response.

417 ExtendedErrorData format for LargeResponse

Security Protocol and Data Model (SPDM) Specification DSP0274

96 Work in Progress Version 1.2.0a

https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/
https://mipi.org/
https://mid.mipi.org/
https://www.computeexpresslink.org/
https://www.jedec.org/

Byte

offset
Length

Field

name
Description

0 1 Handle

Shall be a unique value that identifies the Large SPDM Response and shall be the same value for all chunks of the

same Large SPDM message.

The value of this field should either entirely monotonically increase or entirely monotonically decrease with each

Large SPDM message and with the expectation that it will wrap around after reaching the maximum or minimum

value, respectively, of this field. See CHUNK_GET request and CHUNK_RESPONSE response message for

details.

418 10.12.1 Standard body or vendor-defined header

419 The Standard body or vendor-defined header (SVH) format is used in numerous places in this specification to help

identify the entity that defined the format for a given payload. The clauses in the other parts of this specification will

indicate which payload this header applies to.

420 Standard body or vendor-defined header (SVH)

Offset Field
Length

(bytes)
Description

0 ID 1 Shall be one of the values in the ID column of Registry or standards body ID.

1 VendorLen 1

Length in bytes of the VendorID field.

If the given payload belongs to a standards body, this field shall be 0.

Otherwise, the given payload belongs to the vendor and therefore, this field shall be the length indicated in

the Vendor ID column of Registry and standards body ID table for the respective ID .

2 VendorID VendorLen
If VendorLen is greater than zero, this field shall be the ID of the vendor corresponding to the ID field.

Otherwise, this field shall be absent.

421 10.13 RESPOND_IF_READY request message format

422 This request message shall ask for the response to the original request upon receipt of ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return the ERROR response message, set

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response

message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 97

423

CHALLENGE_AUTH()

ResponderRequester

CHALLENGE(0x83)

ERROR (ResponseNotReady, 0x7, 8, 4)

RESPOND_IF_READY(0x83, 0x7)

Sends response in less than CT
us to meet the crypto timeout

requirement.
ResponseNotReady with

Token=0x7, RDTExponent = 8 and
RDTM = 4

Waits for more than
WT = 2 ^ 8 us but

less than WTMax =
((2 ^ 8) x 4) – us

Processing is complete

Less than CT us

Less than CT us

RTT = 1

424 The RESPOND_IF_READY request message format table shows the RESPOND_IF_READY request message format.

425 RESPOND_IF_READY request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xFF=RESPOND_IF_READY

2 Param1 1
The original request code that triggered the ResponseNotReady error code response. Shall match

the request code returned as part of the ResponseNotReady extended error data.

3 Param2 1 The token that was returned as part of the ResponseNotReady extended error data.

426 10.14 VENDOR_DEFINED_REQUEST request message

427 A Requester intending to define a unique request to meet its need can use this request message. The

VENDOR_DEFINED_REQUEST request message format table defines the format.

428 The Requester should send this request message only after sending GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS request sequence.

429 If the vendor intends that these messages are to be used before a session has been established, and the vendor

Security Protocol and Data Model (SPDM) Specification DSP0274

98 Work in Progress Version 1.2.0a

wishes to have the requests authenticated, then the vendor shall indicate how the transcript and/or message

transcript are changed to add the vendor defined commands.

430 The VENDOR_DEFINED_REQUEST request message format table shows the VENDOR_DEFINED_REQUEST request

message format.

431 VENDOR_DEFINED_REQUEST request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xFE=VENDOR_DEFINED_REQUEST

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2
Shall indicate the registry or standards body by using one of the values in the ID column

in the Registry or standards body ID table.

6 Len 1

Length of the Vendor ID field. If the VendorDefinedRequest is standard defined, Len

shall be 0 . If the VendorDefinedRequest is vendor-defined, Len shall equal Vendor ID

Len , as the Registry or standards body ID table describes.

7 VendorID Len Vendor ID, as assigned by the registry or standards body. Shall be in little endian format.

7 +

Len
ReqLength 2 Length of the VendorDefinedReqPayload .

7 +

Len +

2

VendorDefinedReqPayload ReqLength The standard or vendor shall use this field to send the request payload.

432 10.15 VENDOR_DEFINED_RESPONSE response message

433 A Responder can use this response message in response to VENDOR_DEFINED_REQUEST . The

VENDOR_DEFINED_RESPONSE response message format table defines the format.

434 The VENDOR_DEFINED_RESPONSE response message format table shows the response message format.

435 VENDOR_DEFINED_RESPONSE response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 99

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x7E=VENDOR_DEFINED_RESPONSE

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2
Shall indicate the registry or standard body using one of the values in the ID column in

the Registry or standards body ID table.

6 Len 1

Length of the Vendor ID field. If the VendorDefinedRequest is standards-defined,

length shall be 0 . If the VendorDefinedRequest is vendor-defined, length shall equal

Vendor ID Len , as the Registry or standards body ID table describes.

7 VendorID Len
Shall indicate the Vendor ID, as assigned by the registry or standards body. Shall be in

little endian format.

7 +

Len
RespLength 2 Length of the VendorDefinedRespPayload

7 +

Len +

2

VendorDefinedRespPayload ReqLength Standard or vendor shall use this value to send the response payload.

436 10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response

messages

437 This request message shall initiate a handshake between Requester and Responder intended to authenticate the

Responder (or optionally both parties), negotiate cryptographic parameters (in addition to those negotiated in the last

NEGOTIATE_ALGORITHMS / ALGORITHMS exchange), and establish shared keying material. The KEY_EXCHANGE

request message format table shows the KEY_EXCHANGE request message format and the Successful

KEY_EXCHANGE_RSP response message format table shows the KEY_EXCHANGE_RSP response message format.

The handshake is completed by the successful exchange of the FINISH request and FINISH_RSP response

messages, presented in the next clause, and depends on the tight coupling between the two request/response

message pairs.

438 The Requester and Responder pair may support two modes of handshakes. If HANDSHAKE_IN_THE_CLEAR_CAP is set

in both the Requester and the Responder all SPDM messages exchanged during the Session Handshake Phase are

sent in the clear (outside of a secure session). Otherwise both the Requester and the Responder use encryption and/

or message authentication during the Session Handshake Phase using the Handshake secret derived at the

completion of KEY_EXCHANGE_RSP message for subsequent message communication until FINISH_RSP

message completion.

Security Protocol and Data Model (SPDM) Specification DSP0274

100 Work in Progress Version 1.2.0a

439 Responder authentication key exchange example

440

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

KEY_EXCHANGE

KEY_EXCHANGE_RSP

GET_CERTIFICATE

CERTIFICATE

If supported

FINISH

FINISH_RSP

441 The Responder authentication multiple key exchange example provides an example of multiple sessions using two

independent sets of root session keys that coexist at the same time. The specification does not require a specific

temporal relationship between the second KEY_EXCHANGE request message and the first FINISH_RSP response

message. To simplify implementation, however a Responder may generate an ErrorCode=Busy response to the

second KEY_EXCHANGE request message until the first FINISH_RSP response message is complete.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 101

442 Responder authentication multiple key exchange example

443

KEY_EXCHANGE(K2)

KEY_EXCHANGE_RSP (K2)

ResponderRequester

KEY_EXCHANGE (K1)

KEY_EXCHANGE_RSP (K1)

FINISH (K1)

FINISH_RSP (K1)

FINISH (K2)

FINISH_RSP (K2)

Enables authenticated and/or
 encrypted data transfer (K2)

Enables authenticated and/or
 encrypted data transfer (K1)

Authenticated and/or encrypted
data transfer (K1) continues

444 The handshake includes an ephemeral Diffie-Hellman (DHE) key exchange in which the Requester and Responder

each generate an ephemeral (that is, temporary) Diffie-Hellman key pair and exchange the public keys of those key

pairs in the ExchangeData fields of the KEY_EXCHANGE request message and KEY_EXCHANGE_RSP response

message. The Responder generates a DHE secret by using the private key of the DHE key pair of the Responder

and the public key of the DHE key pair of the Requester provided in the KEY_EXCHANGE request message. Similarly,

the Requester generates a DHE secret by using the private key of the DHE key pair of the Requester and the public

key of the DHE key pair of the Responder provided in the KEY_EXCHANGE_RSP response message. The DHE secrets

are computed as specified in clause 7.4 of RFC 8446. Assuming that the public keys were received correctly, both

the Requester and Responder generate identical DHE secrets from which session secrets are generated.

445 Diffie-Hellman group parameters are determined by the DHE group in use, which is selected in the most recent

ALGORITHMS response. The contents of the ExchangeData field are computed as specified in clause 4.2.8 of RFC

8446. Specifically, if the DHE key exchange is based on finite-fields (FFDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the computed public value (Y = g^X mod p) for the specified

group (see DHE structure for group definitions) encoded as a big-endian integer and padded to the left with zeros to

the size of p in bytes. If the key exchange is based on elliptic curves (ECDHE), the ExchangeData field in

Security Protocol and Data Model (SPDM) Specification DSP0274

102 Work in Progress Version 1.2.0a

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the serialization of X and Y, which are the binary

representations of the x and y values respectively in network byte order, padded on the left by zeros if necessary.

The size of each number representation occupies as many octets as implied by the curve parameters selected.

Specifically, X is [0: C - 1] and Y is [C : D – 1], where C and D are determined by the group.

446 For SM2_P256 key exchange, an additional identifier, IDA and IDB, defined by GB/T 32918.3-2016 specification, is

needed to derive the shared secret. If this algorithm is selected, the ID for the Requester (i.e. IDA) shall be the

concatenation of "Requester-KEP-dmtf-spdm-v", FullSPDMversionString and if any, the transport-specific identity.

Likewise, the ID for the Responder shall be the concatenation of "Responder-KEP-dmtf-spdm-v",

FullSPDMversionString and if any, the transport-specific identity. The transport should specify the transport-

specific identity.

447 A Requester should generate a fresh DHE key pair for each KEY_EXCHANGE request message that the Requester

sends. A Responder should generate a fresh DHE key pair for each KEY_EXCHANGE_RSP response message that the

Responder sends.

448 KEY_EXCHANGE request message format

Offset Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE4 = KEY_EXCHANGE

2 Param1 1

Type of measurement summary hash requested:

0x0 : No measurement summary hash requested.

0x1 : TCB measurements only.

0xFF : All measurements.

All other values reserved.

If a Responder does not support measurements (MEAS_CAP=00b in CAPABILITIES

response), the Requester shall set this value to 0x0 .

3 Param2 1

SlotID . Slot number of the Responder certificate chain that shall be used for

authentication. The value in this field shall be between 0 and 7 inclusive. It shall be

0xFF if the public key of the Responder was provisioned to the Requester

previously.

4 ReqSessionID 2

Two-byte Requester contribution to allow construction of a unique four-byte session

ID between a Requester-Responder pair. The final session ID = Concatenate

(ReqSessionID, RspSessionID).

6 Reserved 2 Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 103

Offset Field Size in bytes Value

8 RandomData 32 Requester-provided random data.

40 ExchangeData D

DHE public information generated by the Requester. If the DHE group selected in the

most recent ALGORITHMS response is finite-field-based (FFDHE), the ExchangeData

represents the computed public value. If the selected DHE group is elliptic curve-

based (ECDHE), the ExchangeData represents the X and Y values in network byte

order. Specifically, X is [0: C - 1] and Y is [C : D – 1]. In both cases the size of D (and

C for ECDHE) is derived from the selected DHE group.

40 +

D
OpaqueDataLength 2

Size of the OpaqueData field that follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is provided.

42 +

D
OpaqueData OpaqueDataLength

If present, OpaqueData sent by the Requester. Used to indicate any parameters that

Requester wishes to pass to the Responder as part of key exchange. This field shall

conform to the General Opaque Data Format.

449 Successful KEY_EXCHANGE_RSP response message format

Offset Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x64 = KEY_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if Heartbeat is not supported.

Otherwise, the value shall be in units of seconds.

3 Param2 1 Reserved.

4 RspSessionID 2

Two-byte Responder contribution to allow construction of a unique

four-byte session ID between a Requester-Responder pair. The final

session ID = Concatenate (ReqSessionID, RspSessionID).

Security Protocol and Data Model (SPDM) Specification DSP0274

104 Work in Progress Version 1.2.0a

Offset Field Size in bytes Value

6 MutAuthRequested 1

Bit 0 - If set, the Responder is requesting to authenticate the

Requester (Session-based mutual authentication) without using the

encapsulated request flow.

Bit 1 - If set, Responder is requesting Session-based mutual

authentication with the encapsulated request flow.

Bit 2 - If set, Responder is requesting Session-based mutual

authentication with an implicit GET_DIGESTS request. The

Responder and Requester shall follow the optimized encapsulated

request flow.

Bit [7:3] - Reserved.

Only one of Bit 0, Bit 1 and Bit 2 shall be set.

For details on the encapsulated request flow or the optimized

encapsulated request flow, see the

GET_ENCAPSULATED_REQUEST request and

ENCAPSULATED_REQUEST response messages clause.

7 SlotIDParam 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID . Slot number of the Requester certificate chain

that shall be used for mutual authentication, if MutAuthRequested

Bit 0 is set. The value in this field shall be between 0 and 7 inclusive,

or 0xF if the public key of the Requester was provisioned to the

Responder through other means. All other values Reserved.

For any other value of MutAuthRequested this field shall be set to

0 and ignored by the Requester.

8 RandomData 32 Responder-provided random data.

40 ExchangeData D

DHE public information generated by the Requester. If the DHE

group selected in the most recent ALGORITHMS response is finite-

field-based (FFDHE), the ExchangeData represents the computed

public value. If the selected DHE group is elliptic curve-based

(ECDHE), the ExchangeData represents the X and Y values in

network byte order. Specifically, X is [0: C - 1] and Y is [C : D – 1]. In

both cases the size of D (and C for ECDHE) is derived from the

selected DHE group.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 105

Offset Field Size in bytes Value

40 + D MeasurementSummaryHash H

If the Responder does not support measurements (MEAS_CAP=00b

in CAPABILITIES response) or requested Param2 = 0x0 , this field

shall be absent.

If the requested Param2 = 0x1 , this field shall be the combined

hash of measurements of all measurable components considered to

be in the TCB required to generate this response, computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...)) where MeasurementBlock[x]

denotes a measurement of an element in the TCB. Measurements

are concatenated in ascending order based on their measurement

index.

When the requested Param2 = 0x1 and there are no measurable

components in the TCB required to generate this response, this field

shall be 0 .

If requested Param2 = 0xFF , this field shall be computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ..., MeasurementBlock[n])) of all

supported measurements available in the measurement index range

0x01 - 0xFE , concatenated in ascending index order. Indices with

no associated measurements shall not be included in the hash

calculation. See the Measurement index assignments section for

details.

If the Responder supports both raw bit stream and digest

representations for a given measurement index, then the Responder

shall use the digest form.

This field shall be in Hash byte order.

40 + D + H OpaqueDataLength 2

Size of the OpaqueData field that follows in bytes. The value should

not be greater than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

42 + D + H OpaqueData OpaqueDataLength

If present, OpaqueData sent by the Responder. Used to indicate any

parameters that the Responder wishes to pass to the Requester as

part of key exchange. This field shall conform to the General opaque

Data Format.

42 + D + H +

OpaqueDataLength
Signature SigLen

Signature over the transcript. SigLen is the size of the asymmetric

signing algorithm output the Responder selected via the last

ALGORITHMS response message to the Requester. The construction

of the transcript hash is defined in Transcript for KEY_EXCHANGE_RSP

signature.

Security Protocol and Data Model (SPDM) Specification DSP0274

106 Work in Progress Version 1.2.0a

Offset Field Size in bytes Value

42 + D + H +

OpaqueDataLength

+ SigLen

ResponderVerifyData H

Conditional field.

If the Session Handshake Phase is encrypted and/or message

authenticated, then this field shall be of length H and it shall equal

the HMAC of the transcript hash, using finished_key as the secret

key and using the negotiated hash algorithm as the hash function.

The transcript hash shall be the Transcript Hash for

KEY_EXCHANGE_RSP HMAC. The finished_key shall be derived

from the Response Direction Handshake Secret and is described in

the finished_key derivation clause. HMAC is described in RFC 2104.

If both the Requester and Responder set

HANDSHAKE_IN_THE_CLEAR_CAP to 1, then this field shall be absent.

450 10.16.1 Session-based mutual authentication

451 Mutual authentication for KEY_EXCHANGE occurs in the session handshake phase of a session.

452 To perform authentication of a Requester, the Responder sets the appropriate bit in the MutAuthRequested field of

the KEY_EXCHANGE_RSP message. When either Bit 1 or Bit 2 of MutAuthRequested are set, the encapsulated

request flow or the optimized encapsulated request flow shall be used accordingly to enable the Responder to obtain

the certificate chains and certificate chain digests of the Requester. For details and illustrations of these flows, see

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

453 When either bit 1 or bit 2 of MutAuthRequested are set, the only allowed messages in this phase of the session shall

be GET_DIGESTS , DIGESTS , GET_CERTIFICATE , CERTIFICATE and ERROR . If the Requester receives other

requests during this flow, the Requester can respond with an ERROR message using

ErrorCode=UnexpectedRequest and shall terminate the session.

454 If Bit 0 of MutAuthRequested is set, then mutual authentication shall be performed without exchanging any

messages between KEY_EXCHANGE_RSP and FINISH request. This is useful for Responders which have obtained a

Requester's certificate chains in a previous interaction.

455 10.16.1.1 Specifying Requester certificate for Session-based mutual authentication

456 The SPDM key exchange protocol is optimized to perform key exchange with the least number of messages

exchanged. When Responder-only authentication, or mutual authentication where the Responder has obtained the

certificate chains of the Requester in a previous interaction is performed, key exchange is carried out with two

request/response message pairs (KEY_EXCHANGE , KEY_EXCHANGE_RSP , FINISH and FINISH_RSP). In other cases

where mutual authentication is desired, additional encapsulated messages are exchanged between

KEY_EXCHANGE_RSP and FINISH to enable the Responder to obtain the certificate chains and certificate chain

digests of the Requester. However, in all cases the certificate chain (or raw public key) the Requester should

authenticate against is specified by the Responder via the SlotID field in KEY_EXCHANGE_RSP , which precedes the

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 107

https://tools.ietf.org/html/rfc2104

aforementioned encapsulated messages. This means that a Responder authenticating a Requester whose

certificates it has not obtained in a previous interaction, using a slot other than the default (slot 0), has no way of

knowing in advance which SlotID value to use.

457 To address this case, the Responder explicitly designates the certificate chain to be used via the final

ENCAPSULATED_RESPONSE_ACK request issued inside the encapsulated request flow. Specifically, if either Bit 1 or 2 in

MutAuthRequested is set to 1 , the Responder shall use a ENCAPSULATED_RESPONSE_ACK request with Param2 =

0x02 and an 1-byte long Encapsulated Request field containing the SlotID value. The Requester shall use the

certificate chain corresponding to the slot specified in the Encapsulated Request field.

458 If Bit 0 of MutAuthRequested is set, then no encapsulated messages are exchanged after KEY_EXCHANGE_RSP and

the certificate chain of the Requester is determined by the value of SlotIDParam in KEY_EXCHANGE_RSP .

459 10.17 FINISH request and FINISH_RSP response messages

460 This request message shall complete the handshake between Requester and Responder initiated by a

KEY_EXCHANGE request. The purpose of the FINISH request and FINISH_RSP response messages is to provide key

confirmation, bind the identify of each party to the exchanged keys and protect the entire handshake against

manipulation by an active attacker. The FINISH request message format table shows the FINISH request message

format and the Successful FINISH_RSP response message format table shows the FINISH_RSP response message

format.

461 FINISH request message format

Offset Field
Size in

bytes
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE5 = FINISH

2 Param1 1
Bit 0 – If set, the Signature field is included. This bit shall be set when Session-based mutual

authentication occurs. All other bits reserved.

3 Param2 1

SlotID . Only valid if Param1 = 0x01 , otherwise reserved. Slot number of the Requester

certificate chain that shall be authenticated in Signature field. The value in this field shall be

between 0 and 7 inclusive. It shall be 0xFF if the public key of the Requester was

provisioned to the Responder through other means.

4 Signature SigLen

Signature over the transcript. SigLen is the size of the asymmetric signing algorithm

(BaseAsymSel or ExtAsymSel) output the Responder selected via the last ALGORITHMS

response message to the Requester. SigLen is zero and field not present if Param1 =

0x00 . The construction of the transcript, signature generation and verification are defined in

Transcript for FINISH signature, mutual authentication.

Security Protocol and Data Model (SPDM) Specification DSP0274

108 Work in Progress Version 1.2.0a

Offset Field
Size in

bytes
Value

4+ SigLen RequesterVerifyData H

This field shall be an HMAC of the transcript hash using the finished_key as the secret

key and using the negotiated hash algorithm as the hash function. For mutual authentication,

the transcript hash shall be the Transcript Hash for FINISH HMAC, mutual authentication.

Otherwise, it shall be the Transcript Hash for FINISH HMAC, Responder-only

authentication. The finished_key shall be derived from Request Direction Handshake

Secret and is described in the finished_key derivation clauses. HMAC is described in RFC

2104.

462 The following clause applies when the handshake is performed in the clear (i.e. both Requester and Responder have

set HANDSHAKE_IN_THE_CLEAR_CAP to 1): If KEY_EXCHANGE_RSP.MutAuthRequested equals either 0x02 or 0x04 ,

upon receiving FINISH the Responder shall confirm that the value in FINISH.Param2 matches the value specified

by the Responder in the final ENCAPSULATED_RESPONSE_ACK.EncapsulatedRequest .

463 Successful FINISH_RSP response message format

Offset Field

Size

in

bytes

Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x65 = FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 ResponderVerifyData H

Conditional field.

If the Session Handshake Phase is encrypted and/or message authenticated (i.e., if either the

Requester or the Responder set HANDSHAKE_IN_THE_CLEAR_CAP to 0), this field shall be absent.

If both the Requester and Responder support HANDSHAKE_IN_THE_CLEAR_CAP field, this field shall

be of length H and it shall equal the HMAC of the transcript hash using finished_key as the

secret key and using the negotiated hash algorithm as the hash function. For Session-based mutual

authentication, the transcript shall be the Transcript Hash for FINISH_RSP HMAC, mutual

authentication. Otherwise, the transcript hash shall be the Transcript Hash for FINISH_RSP HMAC,

Responder Only authentication. The finished_key shall be derived from Response Direction

Handshake Secret and is described in the finished_key derivation clause. HMAC is described in

RFC 2104.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 109

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

464 10.17.1 Transcript hash calculation rules

465 The transcript hash is calculated by hashing the concatenation of the prescribed full messages or message fields in

order. For messages that are encrypted, the plaintext messages are used in calculating the transcript hash.

466 The notation [${message_name}] . ${field_name} is used, where:

• ${message_name} is the name of the request or response message.

• ${field_name} is the name of the field in the request or response message. The asterisk (*) means all fields

in that message, except from any conditional fields that are empty (for example KEY_EXCHANGE.OpaqueData).

467 Transcript for KEY_EXCHANGE_RSP signature

1. `VCA`
2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2) or hash of the public key in its provisioned format, if a certificate is not used
3. [KEY_EXCHANGE].*
4. [KEY_EXCHANGE_RSP].* except the `Signature` and `ResponderVerifyData` fields.

468 The Responder shall generate the KEY_EXCHANGE_RSP signature from SPDMsign(PrivKey, transcript,

"key_exchange_rsp signing") where transcript shall be the concatenation of the messages for a

KEY_EXCHANGE_RSP signature and the PrivKey shall be the private key of the leaf certificate of the Responder. The

leaf certificate of the Responder shall be the one indicated by SlotID in Param2 of KEY_EXCHANGE request.

SPDMsign is described in Signature generation.

469 Likewise, the Requester shall verify the KEY_EXCHANGE_RSP signature using SPDMsignatureVerify(PubKey,

signature, transcript, "key_exchange_rsp signing") where transcript is the concatenation of the messages

for a KEY_EXCHANGE_RSP signature and the PubKey is the public key of the leaf certificate of the Responder. The

leaf certificate of the Responder shall be the one indicated by SlotID in Param2 of KEY_EXCHANGE request.

SPDMsignatureVerify is described in Signature verification. A successful verification shall be when

SPDMsignatureVerify returns success.

470 Transcript hash for KEY_EXCHANGE_RSP HMAC

1. `VCA`
2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2) or hash of the public key in its provisioned format, if a certificate is not used
3. [KEY_EXCHANGE].*
4. [KEY_EXCHANGE_RSP].* except the `ResponderVerifyData` field.

471 Transcript for FINISH signature, mutual authentication

Security Protocol and Data Model (SPDM) Specification DSP0274

110 Work in Progress Version 1.2.0a

1. `VCA`
2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2) or hash of the public key in its provisioned format, if a certificate is not used
3. [KEY_EXCHANGE].*
4. [KEY_EXCHANGE_RSP].*
5. Hash of the specified certificate chain in DER format (i.e., FINISH Param2) or hash of the public key in its provisioned format, if a certificate is not used
6. [FINISH].SPDM Header Fields

472 The Requester shall generate the FINISH signature from SPDMsign(PrivKey, transcript, "finish signing")

where transcript is the concatenation of the messages for FINISH signature and the PrivKey is the private key

of the leaf certificate of the Requester. The leaf certificate of the Requester shall be the one indicated in SlotID in

Param2 of FINISH request. SPDMsign is described in Signature generation.

473 Likewise, the Responder shall verify the FINISH signature using SPDMsignatureVerify(PubKey, signature,

transcript, "finish signing") where transcript is the concatenation of the messages for a FINISH signature

and the PubKey is the public key of the leaf certificate of the Requester. The leaf certificate of the Requester shall be

the one indicated in SlotID in Param2 of FINISH request. SPDMsignatureVerify is described in Signature

verification. A successful verification is when SPDMsignatureVerify returns success.

474 Transcript hash for FINISH HMAC, Responder-only authentication

1. `VCA`
2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2) or hash of the public key in its provisioned format, if a certificate is not used
3. [KEY_EXCHANGE].*
4. [KEY_EXCHANGE_RSP].*
5. [FINISH].SPDM Header Fields

475 Transcript hash for FINISH HMAC, mutual authentication

1. `VCA`
2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2) or hash of the public key in its provisioned format, if a certificate is not used
3. [KEY_EXCHANGE].*
4. [KEY_EXCHANGE_RSP].*
5. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2) or hash of the public key in its provisioned format, if a certificate is not used.
6. [FINISH].SPDM Header Fields
7. [FINISH].Signature

476 Transcript hash for FINISH_RSP HMAC, Responder-only authentication

1. `VCA`
2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2) or hash of the public key in its provisioned format, if a certificate is not used
3. [KEY_EXCHANGE].*

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 111

4. [KEY_EXCHANGE_RSP].*
5. [FINISH].*
6. [FINISH_RSP].SPDM Header fields

477 Transcript hash for FINISH_RSP HMAC, mutual authentication

1. `VCA`
2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2) or hash of the public key in its provisioned format, if a certificate is not used
3. [KEY_EXCHANGE].*
4. [KEY_EXCHANGE_RSP].*
5. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2) or hash of the public key in its provisioned format, if a certificate is not used
6. [FINISH].*
7. [FINISH_RSP].SPDM Header fields

478 When multiple session keys are being established between the same Requester and Responder pair, Signature over

Transcript HASH during FINISH request is computed using only the corresponding KEY_EXCHANGE,

KEY_EXCHANGE_RSP and FINISH request parameters.

479 For additional rules, see General ordering rules.

480 10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response

messages

481 The Pre-Shared Key (PSK) key exchange scheme provides an option for a Requester and a Responder to perform

session key establishment with symmetric-key cryptography. This option is especially useful for endpoints that do not

support asymmetric-key cryptography or certificate processing. This option can also be leveraged to expedite the

session key establishment, even if asymmetric-key cryptography is supported.

482 This option requires the Requester and the Responder to have prior knowledge of a common PSK before the

handshake. Essentially, the PSK serves as a mutual authentication credential and the base of the session key

establishment. As such, only the two endpoints and potentially a trusted third party that provisions the PSK to the two

endpoints may know the value of the PSK. For these same reasons, the HANDSHAKE_IN_THE_CLEAR_CAP is not

applicable in a PSK key exchange. Thus, for PSK-based session establishment both the Responder and the

Requester shall ignore the HANDSHAKE_IN_THE_CLEAR_CAP bit.

483 A Requester may be paired with multiple Responders. Likewise, a Responder may be paired with multiple

Requesters. A pair of Requester and Responder may be provisioned with one or more PSKs. An endpoint may act

as a Requester to one device and simultaneously a Responder to another device. If both endpoints can act as

Requester or Responder, then the endpoints shall use different PSKs for each role. It is the responsibility of the

transport layer to identify the peer and establish communication between the two endpoints, before the PSK-based

session key exchange starts.

Security Protocol and Data Model (SPDM) Specification DSP0274

112 Work in Progress Version 1.2.0a

484 The PSK may be provisioned in a trusted environment, for example, during the secure manufacturing process. In an

untrusted environment, the PSK may be agreed upon between the two endpoints using a secure protocol. The

mechanism for PSK provisioning is out of scope of this specification. The size of the provisioned PSK is determined

by the requirement of security strength of the application, but should be at least 128 bits and recommended to be 256

bits or larger, to resist dictionary attacks especially when the Requester and Responder cannot both contribute

sufficient entropy during the exchange. During PSK provisioning, the capabilities of an endpoint and supported

algorithms may be communicated to the peer. Therefore, SPDM commands GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS are not required during session key establishment with the PSK option, and Negotiated

State shall not be supported.

485 Two message pairs are defined for this option: PSK_EXCHANGE / PSK_EXCHANGE_RSP and

PSK_FINISH / PSK_FINISH_RSP .

486 The PSK_EXCHANGE message carries three responsibilities:

1. Prompts the Responder to retrieve the specific PSK.

2. Exchanges contextual information between the Requester and the Responder.

3. Proves to the Requester that the Responder knows the correct PSK and has derived the correct

session keys.

487 PSK_EXCHANGE: Example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 113

488

NEGOTIATE_ALGORITHMS

ALGORITHMS

PSK_EXCHANGE

PSK_EXCHANGE_RSP

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

PSK_FINISH

PSK_FINISH_RSP

If supported

489 PSK_EXCHANGE request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE6 = PSK_EXCHANGE

Security Protocol and Data Model (SPDM) Specification DSP0274

114 Work in Progress Version 1.2.0a

Offsets Field Size in bytes Value

2 Param1 1

Type of measurement summary hash requested:

0x0 : No measurement summary hash requested.

0x1 : TCB measurements only.

0xFF : All measurements.

All other values reserved.

If a Responder does not support measurements (MEAS_CAP=00b in CAPABILITIES

response), the Requester shall set this value to 0x0 .

3 Param2 1 Reserved.

4 ReqSessionID 2

Two-byte Requester contribution to allow construction of a unique four-byte session

ID between a Requester-Responder pair. The final session ID = Concatenate

(ReqSessionID, RspSessionID).

6 P 2 Length of PSKHint in bytes.

8 R 2
Length of RequesterContext in bytes. R shall be equal to or greater than H, where

H is the size of the underlying HMAC used in the context of the Requester.

10 OpaqueDataLength 2
Size of the OpaqueData field that follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is provided.

12 PSKHint P Information required by the Responder to retrieve the PSK. Optional.

12 + P RequesterContext R

The context of the Requester. Shall include a nonce (random number or monotonic

counter) of at least 32 bytes and optionally relevant information contributed by the

Requester.

12 + P

+ R
OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent by the Requester is used to indicate any

parameters that Requester wishes to pass to the Responder as part of PSK-based

key exchange. This field shall conform to the General opaque Data Format.

490 The field PSKHint is optional (absent if P is set to 0). It is introduced to address two scenarios:

• The Responder is provisioned with multiple PSKs and stores them in secure storage. The Requester uses

PSKHint as an identifier to specify which PSK will be used in this particular session.

• The Responder does not store the actual value of the PSK, but can derive the PSK using PSKHint . For

example, if the Responder has an immutable UDS (Unique Device Secret) in fuses, then during provisioning, a

PSK may be derived from the UDS or a derivative value and a non-secret salt known by the Requester. During

session key establishment, the salt value is sent to the Responder in PSKHint of PSK_EXCHANGE . This

mechanism allows the Responder to support any number of PSKs, without consuming secure storage.

491 The RequesterContext is the contribution of the Requester to session key derivation. It shall contain a nonce

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 115

(random number or monotonic counter) to ensure that the derived session keys are ephemeral to mitigate against

replay attacks. If a monotonic counter is used as the nonce, the monotonic counter shall not be reset for the lifetime

of the device. The RequesterContext may also contain other information from the Requester.

492 Upon receiving a PSK_EXCHANGE request, the Responder:

1. Generates PSK from PSKHint , if necessary.

2. Generates ResponderContext , if supported.

3. Derives the finished_key of the Responder by following Key Schedule.

4. Constructs PSK_EXCHANGE_RSP response message and sends to the Requester.

493 PSK_EXCHANGE_RSP response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x66 = PSK_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if Heartbeat is not supported.

Otherwise, the value shall be in units of seconds.

3 Param2 1 Reserved.

4 RspSessionID 2

Two-byte Responder contribution to allow construction of a unique

four-byte session ID between a Requester-Responder pair. The final

session ID = Concatenate (ReqSessionID, RspSessionID).

6 Reserved 2 Reserved.

8 Q 2 Length of ResponderContext in bytes.

10 OpaqueDataLength 2

Size of the OpaqueData field that follows in bytes. The value should

not be greater than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

Security Protocol and Data Model (SPDM) Specification DSP0274

116 Work in Progress Version 1.2.0a

Offsets Field Size in bytes Value

12 MeasurementSummaryHash H

If the Responder does not support measurements (MEAS_CAP=00b

in CAPABILITIES response) or requested Param1 = 0x0 , this field

shall be absent.

If the requested Param1 = 0x1 , this field shall be the combined

hash of measurements of all measurable components considered to

be in the TCB required to generate this response, computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...)) where MeasurementBlock[x]

denotes a measurement of an element in the TCB. Measurements

are concatenated in ascending order based on their measurement

index.

When the requested Param1 = 0x1 and there are no measurable

components in the TCB required to generate this response, this field

shall be 0 .

If requested Param1 = 0xFF , this field shall be computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ..., MeasurementBlock[n])) of all

supported measurements available in the measurement index range

0x01 - 0xFE , concatenated in ascending index order. Indices with

no associated measurements shall not be included in the hash

calculation. See the Measurement index assignments section for

details.

If the Responder supports both raw bit stream and digest

representations for a given measurement index, then the Responder

shall use the digest form.

This field shall be in Hash byte order.

12 + H ResponderContext Q
Context of the Responder. Optional. If present, shall include a nonce

and/or information contributed by the Responder.

12 + H + Q OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent by the Responder is used

to indicate any parameters that Responder wishes to pass to the

Requester as part of PSK-based key exchange. This field shall

conform to the General Opaque Data Format.

12 + H + Q +

OpaqueDataLength
ResponderVerifyData H

Data to be verified by the Requester using the finished_key of the

Responder.

494 The ResponderContext is the contribution of the Responder to session key derivation. It should contain a nonce

(random number or monotonic counter) and other information of the Responder. If a monotonic counter is used as

the nonce, the monotonic counter shall not be reset for the lifetime of the device. Because the Responder may be a

constrained device that is not able to generate a nonce, ResponderContext is optional. However, the Responder is

required to use ResponderContext if it can generate a nonce.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 117

495 It should be noted that the nonce in ResponderContext is critical for anti-replay. If a nonce is not present in

ResponderContext , then the Responder is not challenging the Requester for real-time knowledge of the PSK. Such

a session is subject to replay attacks - a man-in-the-middle attacker could record and replay prior PSK_EXCHANGE

and PSK_FINISH messages and set up a session with the Responder. But the bogus session would not leak secrets,

so long as the PSK or session keys of the prior replayed session are not compromised.

496 If ResponderContext is absent, such as when PSK_CAP in the CAPABILITIES of the Responder is 01b , the

Requester shall not send PSK_FINISH , because the session keys are solely determined by the Requester and the

Session immediately enters the Application Phase. If and only if the ResponderContext is present in the response,

such as when PSK_CAP in the CAPABILITIES of the Responder is 10b , the Requester shall send PSK_FINISH with

RequesterVerifyData to prove that it has derived correct session keys.

497 To calculate ResponderVerifyData , the Responder calculates an HMAC. The HMAC key is the finished_key of

the Responder. The data is the hash of the concatenation of all messages sent up to this point between the

Requester and the Responder. For messages that are encrypted, the plaintext messages are used in calculating the

hash.

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. [PSK_EXCHANGE].*
8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

498 Note that, even if CERTIFICATES , CHALLENGE_AUTH , and/or MEASUREMENTS were issued, these messages would not

be included in the data for calculating ResponderVerifyData . In other words, the identity of the signer of

CHALLENGE_AUTH and/or MEASUREMENTS is not bound to identity of the sender of PSK_EXCHANGE_RSP . Therefore, to

mitigate Responder identity impersonation, the Requester should not issue PSK_EXCHANGE if it has received

CHALLENGE_AUTH and/or MEASUREMENTS with a signature from the Responder.

499 Upon receiving PSK_EXCHANGE_RSP, the Requester:

1. Derives the finished_key of the Responder by following Key Schedule.

2. Verify ResponderVerifyData by calculating the HMAC in the same manner as the Responder. If

verification fails, the Requester aborts the session.

3. If the Responder contributes to session key derivation, such as when PSK_CAP in the CAPABILITIES

of the Responder is 10b , construct PSK_FINISH request and send to the Responder.

500 10.19 PSK_FINISH request and PSK_FINISH_RSP response messages

501 The PSK_FINISH request proves to the Responder that the Requester knows the PSK and has derived the correct

Security Protocol and Data Model (SPDM) Specification DSP0274

118 Work in Progress Version 1.2.0a

session keys. This is achieved by an HMAC value calculated with the finished_key of the Requester and

messages of this session. The Requester shall send PSK_FINISH only if ResponderContext is present in

PSK_EXCHANGE_RSP .

502 PSK_FINISH request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE7 = PSK_FINISH

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 RequesterVerifyData H Data to be verified by the Responder by using the finished_key of the Requester.

503 To calculate RequesterVerifyData , the Requester calculates an HMAC. The key is the finished_key of the

Requester, as described in Key Schedule. The data is the hash of the concatenation of all messages sent so far

between the Requester and the Responder. For messages that are encrypted, the plaintext messages are used in

calculating the hash.

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. [PSK_EXCHANGE].*
8. [PSK_EXCHANGE_RSP].*
9. [PSK_FINISH].* except the RequesterVerifyData field

504 For additional rules, see General ordering rules.

505 Upon receiving PSK_FINISH request, the Responder derives the finished_key of the Requester and calculates the

HMAC independently in the same manner and verifies the result matches RequesterVerifyData . If verified, the

Responder constructs PSK_FINISH_RSP response and sends to the Requester. Otherwise, the Responder sends

ERROR response with error code InvalidRequest to the Requester.

506 Successful PSK_FINISH_RSP response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 119

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x67 = PSK_FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

507 10.20 HEARTBEAT request and HEARTBEAT_ACK response messages

508 This request shall keep a session alive if HEARTBEAT is supported by both the Requester and Responder. The

HEARTBEAT request shall be sent periodically as indicated in HeartbeatPeriod in either KEY_EXCHANGE_RSP or

PSK_EXCHANGE_RSP response messages. The Responder shall terminate the session if session traffic is not received

in twice HeartbeatPeriod . Likewise, the Requester shall terminate the session if session traffic, including ERROR

response, is not received in twice HeartbeatPeriod . Session traffic includes encrypted data at the transport layer.

How SPDM is informed of encrypted data at the transport layer is outside of the scope of this specification. The

Requester may retry HEARTBEAT requests. The Requester shall wait ST1 time for the response before retrying.

509 The timer for the Heartbeat period shall start at the transmission, for Responders, or reception, for Requester, of

either the FINISH_RSP or PSK_FINISH_RSP response messages. When determining the value of HeartbeatPeriod,

the Responder should ensure this value is sufficiently greater than RTT .

510 For further details of session termination, see Session termination phase.

511 The HEARTBEAT request message format describes the message format.

512 HEARTBEAT request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE8 = HEARTBEAT Request

2 Param1 1 Reserved.

3 Param2 1 Reserved.

513 The HEARTBEAT_ACK response message formatdescribes the format for the Heartbeat Response.

514 HEARTBEAT_ACK response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

120 Work in Progress Version 1.2.0a

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x68 = HEARTBEAT_ACK Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

515 10.20.1 Heartbeat additional information

516 The transport layer may allow the HEARTBEAT request to be sent from the Responder to the Requester. This is

recommended for transports capable of asynchronous bidirectional communication.

517 10.21 KEY_UPDATE request and KEY_UPDATE_ACK response

messages

518 To update session keys, this request shall be used. There are many reasons for doing this but an important one is

when the per-record nonce will soon reach its maximum value and rollover. The KEY_UPDATE request can be

issued by the Responder as well using the GET_ENCAPSULATED_REQUEST mechanism. A KEY_UPDATE

request shall update session keys in the direction of the request only. Because the Responder can also send this

request, it is possible that two simultaneous key updates, one for each direction, can occur. However, only one

KEY_UPDATE request for a single direction shall occur. Until the session key update synchronization successfully

completes, subsequent KEY_UPDATE requests for the same direction shall be considered a retry of the original

KEY_UPDATE request.

519 KEY_UPDATE request message format

Offsets Field

Size

in

bytes

Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE9 = KEY_UPDATE Request

2 Param1 1 Key Operation. See KEY_UPDATE Operations Table.

3 Param2 1
Tag. This field shall contain a unique number to aid the Responder in differentiating between the

original and retry request. A retry request shall contain the same tag number as the original.

520 KEY_UPDATE_ACK response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 121

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x69 = KEY_UPDATE_ACK Response

2 Param1 1 Key Operation. This field shall reflect the Key Operation field of the request.

3 Param2 1 Tag. This field shall reflect the Tag number in the KEY_UPDATE request.

521 KEY_UPDATE operations

Value Operation Description

0 Reserved Reserved

1 UpdateKey Update the single-direction key.

2 UpdateAllKeys Update keys for both directions.

3 VerifyNewKey Ensure the key update is successful and the old keys can be safely discarded.

4 - 255 Reserved Reserved

522 10.21.1 Session key update synchronization

523 For clarity, in the key update process, the term, sender, means the SPDM endpoint that issued the KEY_UPDATE

request and the term, receiver, means the SPDM endpoint that received the KEY_UPDATE request. To ensure the key

update process is seamless while still allowing the transmission and reception of records, both sender and receiver

shall follow the prescribed method described in this clause.

524 The data transport layer shall ensure that data transfer during key updates is managed in such a way that the correct

keys are used before, during, and after the key update operation. How this is accomplished by the data transport

layer is outside of the scope of this specification.

525 Both the sender and the receiver shall derive the new keys as detailed in Major secrets update.

526 The sender shall not use the new transmit key until after reception of the KEY_UPDATE_ACK response.

527 The sender and receiver shall use the new key on the KEY_UPDATE request with VerifyNewKey command and all

subsequent commands until another key update is performed.

528 In the case of KEY_UPDATE request with UpdateAllKeys , the receiver shall use the new transmit key for the

KEY_UPDATE_ACK response. The KEY_UPDATE request with UpdateAllKeys should only be used with physical

transports that are single master to ensure that simultaneous UpdateAllKeys requests do not occur.

Security Protocol and Data Model (SPDM) Specification DSP0274

122 Work in Progress Version 1.2.0a

529 If the sender has not received KEY_UPDATE_ACK , the sender may retry or end the session. The sender shall not

proceed to the next step until successfully receiving the corresponding KEY_UPDATE_ACK .

530 Upon the successful reception of the KEY_UPDATE_ACK , the sender shall transmit a KEY_UPDATE request with

VerifyNewKey operation using the new session keys. The sender may retry until the corresponding

KEY_UPDATE_ACK response is received. However, the sender shall be prohibited, at this point, from restarting this

process or going back to a previous step. Its only recourse in error handling is either to retry the same request or to

terminate the session. Upon successful reception of the KEY_UPDATE with VerifyNewKey operation, the receiver

can now discard the old session keys. After the sender successfully receives the corresponding KEY_UPDATE_ACK ,

the transport layer may start using the new keys.

531 In certain scenarios, the receiver may need additional time to process the KEY_UPDATE request such as processing

data already in its buffer. Thus, the receiver may reply with an ERROR message with ErrorCode=Busy . The sender

should retry the request after a reasonable period of time with a reasonable amount of retries to prevent premature

session termination.

532 Finally, it bears repeating that a key update in one direction can happen simultaneously with a key update in the

opposite direction. Still, the aforementioned synchronization process occurs independently but simultaneously for

each direction.

533 The KEY_UPDATE protocol example flow figure illustrates a typical key update initiated by the Requester to update

its secret. In this example, the Responder and Requester are both capable of message authentication and

encryption.

534 KEY_UPDATE protocol example flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 123

535

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateKey,

Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateKey,

Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3
]]

Requester Responder

S3S2 S3S2

S
2,new

Key Operation == VerifyNewKey,

Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,

Tag == 0x2

 { KEY_UPDATE_ACK }::[[S
3
]]

S2

S2

{ Application Data }

{ Application Data }

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and Authenticated
by S

2,new
 and S

3
 depending

on direction.

Legend:

Authenticated and
Encrypted Session

S
2,new

Notice new
secrets used!

536 The KEY_UPDATE protocol change all keys example flow illustrates a typical key update initiated by the Requester

to update all secrets. In this example, the Responder and Requester are both capable of message authentication and

encryption.

537 KEY_UPDATE protocol change all keys example flow

Security Protocol and Data Model (SPDM) Specification DSP0274

124 Work in Progress Version 1.2.0a

538

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateAllKeys,

Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateAllKeys,

Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3,new

]]

Requester Responder

S3S2 S3S2

Key Operation == VerifyNewKey,

Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,

Tag == 0x2

S2

S2

{ Application Data }

{ Application Data }

Encrypted and authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and authenticated
by S

2,new
 and S

3,new
depending

on direction.

Legend:

Authenticated and
Encrypted Session

Notice new
secrets used!

S
3,new

S
2,new S

3,new
S

2,new

S3
S3

 { KEY_UPDATE_ACK}::[[S
3,new

]]

539 10.21.2 KEY_UPDATE transport allowances

540 On some transports, bidirectional communication can occur asynchronously. On such transports, the transport may

allow or disallow the KEY_UPDATE to be sent asynchronously without using the GET_ENCAPSULATED_REQUEST

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 125

mechanism. The actual method to use should be defined by the transport and is outside the scope of this

specification.

541 The KEY_UPDATE protocol example flow 2 illustrates a key update over a physical transport that has a limitation

whereby only a single device (often called the master) is allowed to initiate all transactions on that bus. This physical

transport specifies that a Responder shall alert the Requester via a sideband mechanism and to utilize the

GET_ENCAPSULATED_REQUEST mechanism to fulfill SPDM-related requirements. Also, in this same example, the

Requester and Responder are both capable of encryption and message authentication.

542 KEY_UPDATE protocol example flow 2

Security Protocol and Data Model (SPDM) Specification DSP0274

126 Work in Progress Version 1.2.0a

543

…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

Request == KEY_UPDATE

Key Operation == UpdateKey,

Tag == 0x1

{ ENCAPSULATED_REQUEST }
::[[S3]]

Response == KEY_UPDATE_ACK

Key Operation == UpdateKey,

Tag == 0x1

{ DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

Requester Responder

S3S2 S3S2

S3

S3

{ Application Data }

{ Application Data }

Responder seeks attention from
Requester via Transport-specific

Methodology

{ GET_ENCAPSULATED_REQUEST }
::[[S2]]

Request == KEY_UPDATE

Key Operation == VerifyNewKey,

Tag == 0x2

 { ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Response == KEY_UPDATE_ACK

Key Operation == VerifyNewKey,

Tag == 0x2

 { DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

No More Requests

{ ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Legend:

Authenticated and
Encrypted Session

{ FINISH_RSP }::[[S
1
]]

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

S
3,new

S
3,new

Encrypted and
Authenticated by S

2

and S
3,new

 depending
on direction.

Notice new
secrets used!

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 127

544 10.22 GET_ENCAPSULATED_REQUEST request and

ENCAPSULATED_REQUEST response messages

545 In certain use cases, such as mutual authentication, the Responder needs the ability to issue its own SPDM request

messages to the Requester. Certain transports prohibit the Responder from asynchronously sending out data on that

transport. Cases like these are addressed through message encapsulation, which preserves the roles of Requester

and Responder as far as the transport is concerned, but enables the Responder to issue its own requests to the

Requester. Message encapsulation is only allowed in certain scenarios. The Session-based mutual authentication

figure and Optimized Session-based mutual authentication example figure are examples that illustrate the use of this

scheme.

546 A Requester issues a GET_ENCAPSULATED_REQUEST request message to retrieve an encapsulated SPDM request

message from the Responder. The response to this message (ENCAPSULATED_REQUEST) encapsulates the SPDM

request message as if the Responder was acting as a Requester. The request message format is described in

GET_ENCAPSULATED_REQUEST request format table. The Responder shall use the same SPDM version the Requester

used.

547 10.22.1 Encapsulated request flow

548 The encapsulated request flow starts with the Requester sending a GET_ENCAPSULATED_REQUEST message and ends

with an ENCAPSULATED_RESPONSE_ACK that carries no more encapsulated requests. The

GET_ENCAPSULATED_REQUEST shall only be issued once with the exception of retries. This is also illustrated in

Session-based mutual authentication.

549 When the Requester issues a GET_ENCAPSULATED_REQUEST , the encapsulated request flow shall start. Upon the

successful reception of the ENCAPSULATED_REQUEST and when the encapsulated response is ready, the Requester

shall continue the flow by issuing the DELIVER_ENCAPSULATED_RESPONSE . During this period, with the exception of

GET_VERSION , RESPOND_IF_READY and DELIVER_ENCAPSULATED_RESPONSE , the Requester shall not issue any other

message. If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY or

GET_VERSION , the Responder should respond with ErrorCode=RequestInFlight .

550 10.22.2 Optimized encapsulated request flow

551 The optimized encapsulated request flow is similar to the encapsulated request flow but without the need of

GET_ENCAPSULATED_REQUEST . This is because the encapsulated request accompanies one of the Session-Secrets-

Exchange responses; thereby, removing the necessity on the Requester from issuing a

GET_ENCAPSULATED_REQUEST . When the Responder includes an encapsulated requests with a Session-Secrets-

Exchange response, the optimized encapsulated request flow shall start. This is also illustrated in Optimized session-

based mutual authentication.

552 When the Requester successfully receives a Session-Secrets-Exchange response with an included encapsulated

request, the Requester shall send a DELIVER_ENCAPSULATED_RESPONSE after processing the encapsulated request.

Security Protocol and Data Model (SPDM) Specification DSP0274

128 Work in Progress Version 1.2.0a

The Requester shall not issue any other requests except for DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY

and GET_VERSION . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE ,

RESPOND_IF_READY , GET_VERSION or Session-Secrets-Exchange, then the Responder should respond with

ErrorCode=RequestInFlight .

553 Session-based mutual authentication example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 129

554

Session-Based
MUTUAL AUTH

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

KEY_EXCHANGE

KEY_EXCHANGE_RSP()

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

FINISH

FINISH_RSP

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

Encapsulated

Request

Flow

555 Optimized session-based mutual authentication example

Security Protocol and Data Model (SPDM) Specification DSP0274

130 Work in Progress Version 1.2.0a

556

ResponderRequester

Session-Based
MUTUAL AUTH

ENCAPSULATED_RESPONSE_ACK()

DELIVER_ENCAPSULATED_RESPONSE(CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK(GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE(DIGEST)

KEY_EXCHANGE_RSP+GET_DIGEST

KEY_EXCHANGE

CERTIFICATE

GET_CERTIFICATE

DIGESTS

GET_DIGESTS

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

FINISH_RSP

FINISH

Optimized

Encapsulated

Request

Flow

557 GET_ENCAPSULATED_REQUEST request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 131

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xEA = GET_ENCAPSULATED_REQUEST

2 Param1 1 Reserved.

3 Param2 1 Reserved.

558 The ENCAPSULATED_REQUEST response message format describes the format this response.

559 ENCAPSULATED_REQUEST response message format

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x6A = ENCAPSULATED_REQUEST Response

2 Param1 1

Request ID.

This field should be unique to help the Responder match response to request.

3 Param2 1 Reserved.

4 Encapsulated Request Variable

SPDM Request Message.

The value of this field shall represent a valid SPDM request message. The length of this field is

dependent on the SPDM Request message. The field shall start with the SPDMVersion field.

The SPDMVersion field of the Encapsulated Request shall be the same as SPDMVersion of

the ENCAPSULATED_REQUEST response. Both GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid requests and the Requester should respond

with ErrorCode=UnexpectedRequest if these requests are encapsulated.

560 10.22.3 Triggering GET_ENCAPSULATED_REQUEST

561 Once a session has been established, the Responder may wish to send a request asynchronously such as a

KEY_UPDATE request but cannot due to the limitations of the physical bus or transport protocol. In such a scenario,

the transport and/or physical layer is responsible for defining an alerting mechanism for the Requester. Upon

receiving the alert, the Requester shall issue a GET_ENCAPSULATED_REQUEST to the Responder.

562 10.22.4 Additional constraints

563 The GET_ENCAPSULATED_REQUEST and ENCAPSULATED_REQUEST messages shall only be allowed to encapsulate

Security Protocol and Data Model (SPDM) Specification DSP0274

132 Work in Progress Version 1.2.0a

certain requests in certain scenarios. For details on these constraints, see the Session, Basic mutual authentication,

and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

564 10.23 DELIVER_ENCAPSULATED_RESPONSE request and

ENCAPSULATED_RESPONSE_ACK response messages

565 As a Requester processes an encapsulated request, it needs a mechanism to deliver back the corresponding

response. That mechanism shall be the DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK

messages. The DELIVER_ENCAPSULATED_RESPONSE , which is an SPDM request, encapsulates the response and

delivers it to the Responder. The ENCAPSULATED_RESPONSE_ACK , which is an SPDM response, acknowledges the

reception of the encapsulated response.

566 Furthermore, if there are additional requests from the Responder, the Responder shall provide the next request in the

ENCAPSULATED_RESPONSE_ACK response message.

567 In an encapsulated request flow and after the successful reception of the first encapsulated request, the Requester

shall not send any other requests with the exception of DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY and

GET_VERSION . After the successful reception of the first DELIVER_ENCAPSULATED_RESPONSE and if a Responder

receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY or GET_VERSION , the

Responder should respond with ErrorCode=RequestInFlight .

568 If Param2 of ENCAPSULATED_RESPONSE_ACK is set to 0x00 or 0x02 then this shall be the final encapsulated flow

message that the Responder shall issue and the encapsulated flow shall be completed.

569 The timing parameters for the response shall depend on the encapsulated request. This enables the Responder to

process the response before delivering the next request. See Additional Information for more details.

570 The request message format is described in DELIVER_ENCAPSULATED_RESPONSE Request Message Format Table.

571 DELIVER_ENCAPSULATED_RESPONSE request message format

Offsets Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xEB = DELIVER_ENCAPSULATED_RESPONSE Request

2 Param1 1

Request ID.

The Requester shall use the same Request ID (i.e., Param1) as provided by the Responder in

the corresponding of either ENCAPSULATED_REQUEST or ENCAPSULATED_RESPONSE_ACK .

3 Param2 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 133

Offsets Field
Size

(bytes)
Value

4
Encapsulated

Response
Variable

SPDM Response Message.

The value of this field shall represent a valid SPDM response message. The length of this field

is dependent on the SPDM Response message. The field shall start with the SPDMVersion

field. The SPDMVersion field of the Encapsulated Response shall be the same as

SPDMVersion of the DELIVER_ENCAPSULATED_RESPONSE request. Both ENCAPSULATED_REQUEST

and ENCAPSULATED_RESPONSE_ACK shall be invalid responses and the Responder should

respond with ErrorCode=InvalidResponseCode if these responses are encapsulated.

572 The ENCAPSULATED_RESPONSE_ACK response message format describes the response message format.

573 ENCAPSULATED_RESPONSE_ACK response message format

Offsets Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x6B = ENCAPSULATED_RESPONSE_ACK

2 Param1 1

Request ID.

If EncapsulatedRequest is present and Param2 = 0x01 , then this field should contain a

unique, non-zero number to help the Responder match response to request. Otherwise, this

field shall be 0x00 .

3 Param2 1

Payload Type.

If set to 0x00 no request message is encapsulated and the EncapsulatedRequest field is

absent.

If set to 0x01 the EncapsulatedRequest field follows.

If set to 0x02 a 1-byte EncapsulatedRequest field follows containing the SlotID of the

Requester's certificate chain used for mutual authentication. The value in this field shall be

between 0 and 7 inclusive.

All other values Reserved.

4 AckRequestID 1

This field shall be the same as Param1 of the DELIVER_ENCAPSULATED_RESPONSE request

message. The purpose of this field is to help the Requester distinguish between new requests

and a retry.

5 Reserved 3 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

134 Work in Progress Version 1.2.0a

Offsets Field
Size

(bytes)
Value

8 EncapsulatedRequest Variable

If Param2 = 0x01 , the value of this field shall represent a valid SPDM request message. The

length of this field is dependent on the SPDM Request message. The field shall start with the

SPDMVersion field. The SPDMVersion field of the EncapsulatedRequest shall be the same as

SPDMVersion of the ENCAPSULATED_REQUEST response. Both GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid requests and the Requester shall respond

with ErrorCode=UnexpectedRequest if these requests are encapsulated.

If Param2 = 0x02 , the value of this field shall contain the SlotID corresponding to the

certificate chain the Requester shall use for mutual authentication. The field size shall be 1 byte.

If Param2 = 0x00 , this field shall be absent.

574 10.23.1 Additional information

575 Using a unique request ID is highly recommended to aid the Responder in avoiding confusion between a retry and a

new DELIVER_ENCAPSULATED_RESPONSE message. For example, if the Responder sent the

ENCAPSULATED_RESPONSE_ACK with a new encapsulated request and that failed in transmission over the wire, the

Requester would send a retry but that retry would still contain the response to the previous encapsulated request.

Without a different request ID, the Responder might mistake the retried DELIVER_ENCAPSULATED_RESPONSE for a new

request when, in fact, it was a retry. This mistake may cause additional mistakes to occur.

576 In general, the response timing for ENCAPSULATED_RESP_ACK shall be subject to the same timing constraints as the

encapsulated request. For example, if the encapsulated request was CHALLENGE_AUTH , the Responder, too, shall

adhere to CT timing rules when it has a subsequent request. The Requester may return

ErrorCode=ResponseNotReady .

577 The DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages shall only be allowed to

encapsulate certain requests in certain scenarios. For details on these constraints, see Session, Basic mutual

authentication, and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

578 10.23.2 Allowance for encapsulated requests

579 Only certain requests can be encapsulated in any encapsulated request flow. Their corresponding response,

including ERROR , can be encapsulated too. Additionally, these requests are only allowed in certain flows, such as

Basic Mutual Authentication, and are described in various parts of this specification. The consolidated list of requests

allowed to be encapsulated shall be these requests:

• CHALLENGE

• GET_CERTIFICATE

• GET_DIGEST

• KEY_UPDATE

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 135

• SUBSCRIBE_EVENT_GROUP

• SEND_EVENT

• GET_SUPPORTED_EVENT_GROUPS

580 If a request is not in the list, then the request and its corresponding response shall be prohibited from being

encapsulated.

581 10.23.3 Certain error handling in encapsulated flows

582 These clauses describe special error scenarios and their handling requirements.

583 10.23.3.1 Response not ready

584 In an encapsulated request flow, a Responder may issue an encapsulated request that can take up to CT time to

fulfill. When the Requester delivers an ERROR message with a ResponseNotReady error code, the Responder shall

not encapsulate another request by setting Param2 in ENCAPSULATED_RESPONSE_ACK to a value of zero. This

effectively and naturally terminates the encapsulated request flow.

585 The Responder should wait the amount of time indicated in the ERROR message for this particular error code.

586 When the timeout is near expiration, the Responder should perform the following:

1. Trigger its transport-defined alert mechanism to initiate the Encapsulated request flow.

2. When the Requester issues a GET_ENCAPSULATED_REQUEST , the Responder should encapsulate the

RESPOND_IF_READY request populated with the information from the previous ERROR with

ResponseNotReady message.

◦ If the Responder does not, the Requester can drop the original response.

587 10.23.3.2 Timeouts

588 If the Responder is not receiving a response to its encapsulated request, the Responder can trigger its transport-

defined alert mechanism. When this occurs, if the Requester is in the middle of an existing encapsulated request flow

with the same Responder, then the existing flow shall terminate and the Requester shall restart the encapsulated

request flow.

589 Both Responder and Request should comply with the timing requirements laid forth in Timing requirements.

590 10.24 END_SESSION request and END_SESSION_ACK response

messages

591 This request shall terminate a session. Further communication between the Requester and Responder using the

same session ID shall be prohibited. See Session termination phase clause for details.

Security Protocol and Data Model (SPDM) Specification DSP0274

136 Work in Progress Version 1.2.0a

592 The END_SESSION request message format table describes this format.

593 END_SESSION request message format

Offset Value Field Description

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xEC = END_SESSION

2 Param1 1 See the End session request attributes table.

3 Param2 1 Reserved.

594 End session request attributes

Offset Value Field Description

0 0

Negotiated

State

Preservation

Indicator

If the Responder supports Negotiated State caching (CACHE_CAP=1), the Responder shall preserve the

Negotiated State. Otherwise, this field shall be ignored.

0 1

Negotiated

State

Preservation

Indicator

If the Responder supports Negotiated State caching (CACHE_CAP=1), the Responder shall also clear the

Negotiated State as part of session termination. If there is no Negotiated State to be cleared due to a

previous END_SESSION request message with this field set to 1, this field shall be ignored. If the responder

does not support Negotiated State caching (CACHE_CAP=1), this field shall be ignored.

[7:1] Reserved Reserved Reserved.

595 The END_SESSION_ACK response message format describes the response message.

596 END_SESSION_ACK response message format

Offset Value Field Description

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x6C = END_SESSION_ACK

2 Param1 1 Reserved.

3 Param2 1 Reserved.

597 END_SESSION protocol flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 137

598

ResponderRequester

KEY_EXCHANGE

KEY_EXCHANGE_RSP

FINISH(K1)

FINISH_RSP(K1)

END_SESSION(K1)

END_SESSION_ACK(K1)

Enables authenticated and/or
 encrypted data transfer (K1)

599 10.25 Certificate Provisioning

600 These clauses describe the request and response messages used for provisioning a device with certificate chains.

Provisioning of Slot 0 should be only done in a secure manufacturing environment.

601 10.25.1 GET_CSR request and CSR response messages

602 The GET_CSR request message shall retrieve a Certificate Signing Request (CSR) from the Responder. For the

provisioning of Slot 0, this command should be run in a secure manufacturing environment. For all additional slots,

the Requester shall issue this command inside a secure session. Verification of request authorization for slots 1-7 is

outside the scope of the current revision of the specification.

603 A Responder shall only process a GET_CSR request if it already possesses an appropriate asymmetric key pair for

each of the signature suites (algorithms and associated parameters) it supports. If more than one signature suites

are supported, selection of the appropriate signature suite (and thus key pair) shall be determined via the most

recent ALGORITHMS response. Upon receiving a GET_CSR request, a Responder shall generate and sign a CSR for

the corresponding public key. The CSR shall be populated with a combination of attributes provided by the

Requester via the RequesterInfo field, and others contributed by the Responder itself. RequesterInfo format

shall comply to the PKCS #10 specification in RFC2986, specifically the CertificationRequestInfo format. OEM

extensions (i.e. OEM OIDs) shall be encoded using the Attributes type. The Responder shall return an ERROR

message with error code InvalidRequest if it cannot support all of the fields included in the RequesterInfo .

Security Protocol and Data Model (SPDM) Specification DSP0274

138 Work in Progress Version 1.2.0a

604 The attributes of the resulting CSR and their values shall comply with the clauses presented in the Leaf certificate

section.

605 The GET_CSR request message format table shows the GET_CSR request message format.

606 The CSR response message format table shows the CSR response message format.

607 The resulting CSR contained in a successful CSR response will have to be signed by an appropriate Certificate

Authority. The details of the Public Key Infrastructure used to verify and sign the CSR, and make the final certificate

available for provisioning are outside the scope of this specification.

608 GET_CSR request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xED=GET_CSR

2 Param1 1 Reserved

3 Param2 1 Reserved

4 RequesterInfoLength 2
Length of RequesterInfo field in bytes provided by the Requester.

This field can be 0.

6 OpaqueDataLength 2
Size of the OpaqueData field that follows in bytes. The value should not

be greater than 1024 bytes. Shall be 0 if no OpaqueData is provided.

8 RequesterInfo RequesterInfoLength Optional information provided by the Requester.

8 +

RequesterInfo
OpaqueData OpaqueDataLength

The Requester may include vendor-specific information for the

Responder to generate the CSR. This field is optional.

609 CSR response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x6D=CSR

2 Param1 1 Reserved

3 Param2 1 Reserved

4 CSRLength 2 Length of the CSRdata in bytes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 139

Offset Field Size (bytes) Value

6 Reserved 2 Reserved

8 CSRdata CSRLength Requested contents of the CSR. DER-encoded.

610 The CSRdata format shall comply to the PKCS #10 specification in RFC2986.

611 10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages

612 For Slot 0 provisioning, the Requester should issue SET_CERTIFICATE only in a secure manufacturing environment.

The Requester shall issue SET_CERTIFICATE inside a secure session for slot 1-7 provisioning. Responder

verification of Requester authorization to issue this request is outside the scope of the current revision of the

specification. The device may require a reset to complete the SET_CERTIFICATE request, potentially so that the

device can generate AliasCert certificates using lower firmware layers. If the device requires a reset to complete

the SET_CERTIFICATE request, then the device shall respond with an ErrorCode=ResetRequired response.

613 The SET_CERTIFICATE request message format table shows the SET_CERTIFICATE request message format.

614 The SET_CERTIFICATE_RSP response message format table shows the SET_CERTIFICATE_RSP response

message format.

615 SET_CERTIFICATE request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xEE=SET_CERTIFICATE

2 Param1 1

Bit [7:4] = Reserved.

Bit[3:0] = SlotID where the new certificate is written The value in this field shall be between 0

and 7 inclusive.

3 Param2 1 Reserved

4 CertChain Variable Contents of target certificate chain, as specified in Certificates and certificate chains.

616 Successful SET_CERTIFICATE_RSP response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

140 Work in Progress Version 1.2.0a

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x6E=SET_CERTIFICATE_RSP

2 Param1 1

Bit [7:4] = Reserved.

Bit[3:0] = SlotID where the new certificate is written The value in this field shall be between 0

and 7 inclusive.

3 Param2 1 Reserved.

617 10.26 Event mechanism

618 An SPDM endpoint may want to be notified of changes from another SPDM endpoint. These changes are called

events. The SPDM event mechanism provides a framework for the asynchronous notification of events over a secure

session. An SPDM endpoint sending an event is called an Event Notifier and an SPDM endpoint receiving an event

is called an Event Recipient. An SPDM endpoint can be both an Event Notifier and an Event Recipient in the same

secure session. See Session for details on secure sessions. There can be multiple sessions between the same

Responder and same Requester. The event mechanism applies to each session individually.

619 An event is identified by its event group, event type and an event instance ID. An event group is a group of all events

from a given standards body or vendor. The event instance ID is a unique numeric value that represents that

occurrence of an event.

620 An Event Recipient can select the event types that it wants to receive. An event subscription is a list of event types

an Event Recipient wants to receive. The event subscription is managed by the Event Notifier. An Event Notifier shall

only send events that are in the event subscription.

621 At the start of a secure session, an Event Notifier shall not send any events in that session until an Event Recipient

subscribes to one or more event groups.

622 Lastly, the Event Notifier shall start with an event instance ID of zero for that secure session.

623 The Event Flow diagram illustrates a typical event flow for event subscription and event delivery over a transport

capable of asynchronous bi-directional communication.

624 Event Flow Diagram

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 141

625

…

SUBSCRIBE_EVENT_GROUP

,

SUBSCRIBE_EVENT_GROUP_ACK

Event Group ID indicates DMTF
Event Instance ID == 0

Measurement Event Details

SEND_EVENT

Ack-ed Event Instance ID == 0

EVENT_ACK

…

Event Group ID indicates DMTF
Event Instance ID == 1

Measurement Event Details

SEND_EVENT

Ack-ed Event Instance ID == 1

EVENT_ACK

…

Session-Secrets-Exchange

GET_SUPPORTED_EVENT_GROUPS

SUPPORTED_EVENT_GROUPS

Event
Notifier

Event
Recipient

Legend:

Authenticated and
Encrypted Session

626 When EVENT_CAP is set, an Event Notifier shall support SUBSCRIBE_EVENT_GROUP , GET_SUPPORTED_EVENT_GROUPS ,

SEND_EVENT and their corresponding response messages.

Security Protocol and Data Model (SPDM) Specification DSP0274

142 Work in Progress Version 1.2.0a

627 10.26.1 SUBSCRIBE_EVENT_GROUP request and SUBSCRIBE_EVENT_GROUP_ACK

response message

628 This request and response messages allow an Event Recipient to communicate the list of SPDM event groups it is

interested in receiving. In addition, the same request and response message can be used to communicate SPDM

event groups an Event Recipient is no longer interested in receiving. This request subscribes or unsubscribes all

events for a given event group.

629 The event group the Event Recipient is interested in receiving shall be added to the event subscription. Event groups

the Event Recipient is no longer interested in receiving shall be removed from the event subscription.

630 An Event Notifier shall be able to begin sending events once the Event Recipient registers at least one event group

into the event subscription.

631 To subscribe or unsubscribe to an event group, an Event Recipient shall send the SUBSCRIBE_EVENT_GROUP request

message. An Event Notifier shall add or remove event types from the event subscription based on the content of this

request message. The SUBSCRIBE_EVENT_GROUP request message format describes the message format.

632 The variables F0 and F1 are scoped locally within the following table.

633 SUBSCRIBE_EVENT_GROUP request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xEF = SUBSCRIBE_EVENT_GROUP

2 Param1 1

SubscribeLen. Shall be the number of SVH elements in SubscribeList .

A value of zero shall indicate the Event Recipient no longer wants to receive any events. This is

the equivalent of an empty event subscription or the removal of all event groups in an event

subscription.

3 Param2 1 Reserved.

4 SubscribeList F0

Shall be a list of SVH. If a standard body or vendor is in this list, all events from that standard body

or vendor shall be added to the event subscription for that Event Recipient. The size, indicated by

F0, of this field shall be the size of this list. This field shall contain the complete list of all event

groups the Event Recipient wants to subscribe to. This list shall replace the current event

subscription.

634 The SUBSCRIBE_EVENT_GROUP_ACK response message format describes the response format for the

SUBSCRIBE_EVENT_GROUP request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 143

635 SUBSCRIBE_EVENT_GROUP_ACK request message format

Offsets Field

Size

in

bytes

Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x6F = SUBSCRIBE_EVENT_GROUP_ACK Response

2 Param1 1
SubscriptionTotal . This field shall indicate the total number of subscribed event groups for the

Event Recipient. This field shall be the same as SubscribeLen in SUBSCRIBE_EVENT_GROUP .

3 Param2 1 Reserved.

636 For event types defined by this specification, see DMTF event types.

637 10.26.2 GET_SUPPORTED_EVENT_GROUPS request and

SUPPORTED_EVENT_GROUPS response message

638 This request and response message is used to retrieve the list of all event groups supported by the Event Notifier.

639 The GET_SUPPORTED_EVENT_GROUPS request message format describes the message format.

640 GET_SUPPORTED_EVENT_GROUPS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xE2 = GET_SUPPORTED_EVENT_GROUPS

2 Param1 1 Reserved.

3 Param2 1 Reserved.

641 The SUPPORTED_EVENT_GROUPS response message format describes the message format for this response.

642 SUPPORTED_EVENT_GROUPS response message format

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

Security Protocol and Data Model (SPDM) Specification DSP0274

144 Work in Progress Version 1.2.0a

Offsets Field
Size in

bytes
Value

1 RequestResponseCode 1 0x62 = SUPPORTED_EVENT_TYPES Response

2 Param1 1
EventGroupCount. Shall be the number of event groups listed in

SupportedEventGroupsList .

3 Param2 1 Reserved.

4 SupportedEventGroupsList Variable

Shall be a list of all event groups supported by the Event Notifier. This list shall include the

DMTF event group. The format of this field shall be a list of SVH to identify the event group.

The size of this field shall be the size of this list.

643 10.26.3 SEND_EVENT request and EVENT_ACK response message

644 To deliver subscribed events to an Event Recipient, the Event Notifier shall use this request message. More than one

event can accompany this request. The maximum size of a request shall be less than or equal to the

DataTransferSize of the Event Recipient.

645 The SEND_EVENT request message format table describes this request.

646 SEND_EVENT request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0xF0 = SEND_EVENT

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 EventCount 4 Shall be the number of elements in EventsList .

8 EventsList Variable
Shall be a list of Event Data. The list should be sorted in numerically increasing event instance ID

order. The size of this field shall be the size of this list.

647 The Event Data table describes the format for details of each event.

648 The variables F0 , F1 , and F2 are scoped locally within the following table.

649 Event data table

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 145

Offset Field
Size

(bytes)
Value

0 EventInstanceId 4 Shall be the event instance id for the event.

4 EventGroupId F0 Shall indicate the event group the event type belongs to. The format of this field shall be the SVH format.

4 + F0 Padding F1
If the size of EventGroupId is not a multiple of 4, this field shall be present and have a length of 1, 2 or 3

to ensure the size of EventGroupId + Padding be a multiple of 4.

4 + F0

+ F1
EventType 2 Shall be the event type for the event.

6 + F0

+ F1
EventDetailLen 2 Shall be the length of EventDetail .

8 + F0

+ F1
EventDetail F2

Shall be the event specific details. This field is specific to the event type in the event group. For the

DMTF event group, see Event type details clauses for further information. The size, indicated by F2, shall

be the size of this event specific details.

8 + F0

+ F1 +

F2

EventPadding
0, 1, 2

or 3

Shall be zero-filled. This field shall be a length of zero, one, two or three bytes to ensure the total size of

event data is a multiple of four.

650 The EVENT_ACK response message format table describes the format for the response.

651 EVENT_ACK response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x70 = EVENT_ACK Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 AckEventInstanceId 4 Shall be the highest EventInstanceId in the corresponding request.

652 If the Event Recipient does not acknowledge the request, the Event Notifier shall resend the unacknowledged event

instance IDs as a new SEND_EVENT request at least once. The Event Notifier should resend the unacknowledged

event instance IDs at least three times. The Event Notifier should only send unacknowledged event instance IDs.

The interval between resending shall be at least 100 ms + RTT . The new request may also include new event

instance IDs. The Event Notifier can retire the event if it remains unacknowledged. If the event is retired because it is

not acknowledged, the Event Notifier shall send an event lost event.

653 The size of SEND_EVENT can exceed the DataTransferSize of the Event Recipient especially if multiple events

Security Protocol and Data Model (SPDM) Specification DSP0274

146 Work in Progress Version 1.2.0a

happen concurrently. While it is possible to use the Large SPDM message transfer mechanism, the Event Notifier

should try to divide the events into multiple SEND_EVENT Requests to ensure efficient delivery of the events instead

of combining all events into a single SEND_EVENT Request. If the size of a SEND_EVENT Request with only one event

is greater than the MaxSPDMmsgSize of the Event Recipient, an Event Notifier shall, instead, send a SEND_EVENT

Request with only an Event Lost event (i.e., EventType == EventLost) as an indication that the original event was

too big in size. To ensure an Event Recipient can receive an Event Lost event, the Event Recipient shall have a

MaxSPDMmsgSize greater than or equal to 28 bytes. If the MaxSPDMmsgSize of the Event Recipient does not meet the

minimum size requirement, an Event Notifier shall prohibit an Event Recipient from successfully subscribing to any

event groups.

654 10.26.4 Event Instance ID

655 Event Instance ID typically reflects the order of changes in the Event Notifier from a chronologically perspective. The

event instance ID shall start at zero and monotonically increase for every new event. This method also allows the

Event Recipient to determine if an event was lost.

656 10.27 Large SPDM message transfer mechanism

657 A Large SPDM message is an SPDM message whose size is greater than the DataTransferSize of the receiving

SPDM endpoint. These clauses provide a transport agnostic mechanism to transfer Large SPDM messages. This

mechanism will be used only when the size of an SPDM message exceeds the DataTransferSize of the receiving

SPDM endpoint. Additionally, the transport may provide an alternative method to transfer Large SPDM messages.

For SPDM messages that are less than or equal to the DataTransferSize of the receiving SPDM endpoint, the

sending SPDM endpoint shall not utilize this transfer mechanism.

658 This transfer mechanism divides a Large SPDM message into smaller fragments. With the exception of the first and

last fragment, all fragments are equal in size. These fragments are called chunks. The chunks shall be numbered

and shall transfer in sequence. The chunks and transfer sequence are as such:

• The first chunk shall be assigned a numeric value of 0, the second chunk shall be assigned a numeric value of 1,

the third chunk shall be assigned a numeric value of 2 and this pattern shall continue until the last chunk. These

numeric values are called a chunk sequence number.

• The first chunk shall contain the first set of bytes of the Large SPDM message, the second chunk shall contain

the second set of bytes, the third chunk shall contain the third set of bytes and this pattern shall continue until

the last chunk.

• All chunks shall represent all bytes of the Large SPDM message without altering the message in any way.

• The sequence of transfer shall start with chunk sequence number 0 and shall continue in a monotonically

increasing chunk sequence number until the last chunk.

• CHUNK_SEND , CHUNK_GET and their corresponding Responses shall be used to transfer these chunks.

659 The ChunkSeqNo fields indicate the chunk sequence number for a given chunk.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 147

660 The Requests and Responses, defined in these clauses, handle the transfer of each chunk.

661 10.27.1 CHUNK_SEND request and CHUNK_SEND_ACK response message

662 CHUNK_SEND request and CHUNK_SEND_ACK response shall be used to send a request to an SPDM endpoint when

the size of the request is greater than the DataTransferSize of the receiving SPDM endpoint.

663 The CHUNK_SEND request format table describes the format for the request.

664 CHUNK_SEND request format table

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x85 = CHUNK_SEND Request

2 Param1 1 Request Attributes. See Chunk Sender Attributes.

3 Param2 1

Handle. This field should uniquely identify the transfer of a large SPDM message. The value of

this field shall be the same for all chunks of the same Large SPDM message. The value of this

field should either entirely monotonically increase or entirely monotonically decrease with each

Large SPDM message and with the expectation that it will wrap around after reaching the

maximum or minimum value, respectively, of this field.

4 ChunkSeqNo 2 This field shall identify the chunk number associated with SPDMChunk .

6 Reserved 2 Reserved

8 ChunkSize 4
This field shall indicate the size of SPDMchunk . See Additional chunk transfer requirements for

details.

12 LargeMessageSize
L0 = 0

or 4

This field shall indicate the size of the Large SPDM message being transferred. This field shall

only be present when ChunkSeqNo is zero and shall have a non-zero value. The value of this

field should be greater than the DataTransferSize of the receiving SPDM endpoint.

12 +

L0
SPDMchunk Variable This field shall contain the chunk of the Large SPDM Request associated with ChunkSeqNo .

665 Chunk Sender Attributes

Bit Field Description

0 LastChunk If set, the chunk, indicated by ChunkSeqNo , shall represent the last chunk of the Large SPDM message.

[7:1] Reserved Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

148 Work in Progress Version 1.2.0a

666 The CHUNK_SEND_ACK response format table describes the format for the response.

667 CHUNK_SEND_ACK response format table

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x5 = CHUNK_SEND_ACK Request

2 Param1 1 Response Attributes. See Chunk Receiver Attributes.

3 Param2 1
Handle. This field should uniquely identify the transfer of a large SPDM message. The value

of this field shall be the same for all chunks of the same SPDM message.

4 ChunkSeqNo 2 This field shall be the same as ChunkSeqNo in the corresponding request.

5+ ResponseToLargeRequest Variable

This field shall be present on the last chunk (i.e. LastChunk is set) or when the

EarlyErrorDetected bit in Param1 is set. This field shall contain the Response to the

Large SPDM Request. When the EarlyErrorDetected bit in Param1 is set, this field shall

contain an ERROR message.

668 Chunk Receiver Attributes

Bit Field Description

0 EarlyErrorDetected

If set, the receiver of a Large SPDM Request detected an error in the Request before the last chunk was

received. If set, the sender of the Large SPDM Request shall terminate the transfer of any remaining chunks.

After addressing the issue, the sender of the failed Large SPDM Request can transfer the fixed Large SPDM

Request as a new transfer.

[7:1] Reserved Reserved.

669 The CHUNK_SEND_ACK response format table describes the format for the response.

670 Upon reception of the last chunk, the receiving SPDM endpoint shall respond with the response corresponding to the

Large SPDM Request in ResponseToLargeRequest . If placing the response in ResponseToLargeRequest causes

the size of the CHUNK_SEND_ACK to exceed DataTransferSize , the receiving end point shall, instead, respond to

CHUNK_SEND with an ERROR message using ErrorCode == LargeResponse . An ERROR message with an

ErrorCode == LargeResponse shall not be allowed in ResponseToLargeRequest . An ERROR messages with other

ErrorCodes can be placed in ResponseToLargeRequest to distinguish between an ERROR message to the

CHUNK_SEND request and an ERROR message that is a Response to the Large SPDM Request.

671 The Large SET_CERTIFICATE example illustrates the sending of a Large SPDM Request to a Responder.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 149

672 Large SET_CERTIFICATE example

Large SET_CERTIFICATE Message

SPDM Header

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Requester Responder

CHUNK_SEND
Handle 5
Chunk Sequence 0
Chunk Size 250 Bytes
Large Message Size 800 Bytes
Chunk 0 Data

(DataTransferSize 266 Bytes)

Total Message Size = 800

CHUNK_SEND_ACK
Handle 5
Chunk Sequence 0

CHUNK_SEND
Handle 5
Chunk Sequence 1
Chunk Size 254 Bytes
Chunk 1 Data

CHUNK_SEND_ACK
Handle 5
Chunk Sequence 1

CHUNK_SEND
Handle 5
Chunk Sequence 3
Last Chunk
Chunk Size 42 Bytes
Chunk 3 Data

...
Handle 5
Chunk Sequence 3
Last Chunk
Response: SET_CERTIFICATE_RSP

CHUNK_SEND_ACK

Chunk Size is DataTransferSize minus
the sizes of all the fields (except for SPDMchunk) of
CHUNK_SEND_REQUEST. Thus, 266 - 12 = 254 bytes.

Chunk Sequence 0 contains an extra field. Thus,
the Chunk Size for the first chunk is 266 - 16 = 250 bytes.

SET_CERTIFICATE_RSP

SPDM Header

673 10.27.2 CHUNK_GET request and CHUNK_RESPONSE response message

674 CHUNK_GET request and CHUNK_RESPONSE response shall be used to retrieve a Large SPDM Response from an

SPDM endpoint when the size of the Response is greater than the DataTransferSize of the SPDM endpoint

receiving the Response.

675 When responding to a Request of any size, if the corresponding response will be a Large SPDM Response, the

responding SPDM endpoint shall respond with an ERROR message using ErrorCode == LargeResponse . This

ERROR message contains a handle to uniquely identify the given Large SPDM Response. The handle shall be used

for all CHUNK_GET Requests retrieving the same Large SPDM message. The value of the handle is indicated in the

Handle field of the ERROR message with ErrorCode == LargeResponse .

676 The CHUNK_GET request format table describes the format for the request.

677 CHUNK_GET request format table

Security Protocol and Data Model (SPDM) Specification DSP0274

150 Work in Progress Version 1.2.0a

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x86 = CHUNK_GET Request

2 Param1 1 Reserved.

3 Param2 1
Handle. This field shall be the same value as given in the Handle field of the ERROR

message with ErrorCode = LargeResponse .

4 ChunkSeqNo 2
This field shall indicate the desired chunk sequence number of the Large SPDM Response to

retrieve.

678 The CHUNK_RESPONSE response format table describes the format for the response.

679 CHUNK_RESPONSE response format table

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 Shall be the SPDMVersion as described in SPDM version.

1 RequestResponseCode 1 0x85 = CHUNK_RESPONSE Response

2 Param1 1 Response Attributes. See Chunk Sender Attributes.

3 Param2 1
Handle. This field shall be the same for all chunks of the same Large SPDM Response. The

value of this field shall be the same value as in Param2 field of CHUNK_GET .

4 ChunkSeqNo 2
This field shall identify the chunk sequence number associated with SPDMChunk . The value of

this field shall be the same value as ChunkSeqNo in the CHUNK_GET .

6 Reserved 2 Reserved

8 ChunkSize 4
This field shall indicate the size of SPDMchunk . See Additional chunk transfer requirements for

details.

12 LargeMessageSize
L0 = 0

or 4

This field shall indicate the size of the Large SPDM message being transferred. This field shall

only be present when ChunkSeqNo is zero and shall have a non-zero value. The value of this

field should be greater than the DataTransferSize of the receiving SPDM endpoint.

12 +

L0
SPDMchunk Variable This field shall contain the chunk of the Large SPDM Request associated with ChunkSeqNo .

680 The Large MEASUREMENT example illustrates the sending and retrieval of a Large SPDM Response to a

Requester that issued a GET_MEASUREMENT request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 151

681 Large MEASUREMENT example

Requester Responder

GET_MEASUREMENT
Mesurement Type Raw Bits

(DataTransferSize 312 Bytes)

CHUNK_RESPONSE
Handle 17
Chunk Sequence 0
Chunk Size 296 Bytes
Large Message Size 1000 Bytes
Chunk 0 Data

CHUNK_GET
Handle 17
Chunk Sequence 1

CHUNK_RESPONSE
Handle 17
Chunk Sequence 1
Chunk Size 300 Bytes
Chunk 1 Data

CHUNK_GET
Handle 17
Chunk Sequence 3

CHUNK_RESPONSE
Handle 17
Chunk Sequence 3
Chunk Size: 104 Bytes
Chunk 3 Data
Last Chunk

...

Responder creates the
MEASUREMENT response with a
total size of 1000 bytes.
This is > 312 bytes

Chunk Size is DataTransferSize
minus the sizes of all the fields
(except for SPDMchunk) of
CHUNK_RESPONSE.
Thus, 312 - 12 = 300 bytes.

Chunk Sequence 0 contains an extra
field. Thus, the Chunk Size for the first
chunk is 312 - 16 = 296 bytes.

ERROR
ErrorCode=LargeResponse
Handle = 17

CHUNK_GET
Handle 17
Chunk Sequence 0

Large MEASUREMENTS Message

SPDM Header

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Total Message Size = 1000

682 10.27.3 Additional chunk transfer requirements

683 When transferring a Large SPDM message, an SPDM endpoint shall be prohibited from transferring a chunk

sequence number (i.e. ChunkSeqNo) less than the current chunk sequence number. In other words, an SPDM

endpoint cannot go backwards in the transfer or re-send or re-retrieve a chunk sequence number less than the

current one in the transfer. However, due to retries, an SPDM endpoint may re-send or re-retrieve the current chunk

number in the transfer. Additionally, if the receiving SPDM endpoint receives an out-of-order chunk sequence

Security Protocol and Data Model (SPDM) Specification DSP0274

152 Work in Progress Version 1.2.0a

number, the receiving SPDM endpoint shall silent discard the request or respond with an ERROR message with

ErrorCode = InvalidRequest .

684 In general, the value of ChunkSize fields shall be one that ensures the total size of CHUNK_SEND or

CHUNK_RESPONSE does not exceed the DataTransferSize of the receiving SPDM endpoint. For all chunks that are

not the last chunk, ChunkSize shall be a value where the total size of CHUNK_SEND or CHUNK_RESPONSE shall equal

the DataTransferSize of the receiving SPDM endpoint. For the last chunk, ChunkSize shall be a value where the

total size of CHUNK_SEND or CHUNK_RESPONSE shall be equal to or less than the DataTransferSize of the receiving

SPDM endpoint.

685 While this transfer mechanism can carry any Request or Response, this transfer mechanism shall prohibit

CHUNK_SEND , CHUNK_GET and their corresponding responses to be transferred as chunks themselves. Additionally to

ensure reliability of this transfer mechanism and general interoperability, these messages shall be prohibited from

being transferred in chunks using this transfer mechanism:

• GET_VERSION

• GET_CAPABILITIES

• CAPABILITIES

• ERROR

◦ An ERROR message with ErrorCodes other than LargeResponse can be placed in

ResponseToLargeRequest of CHUNK_SEND_ACK response.

686 This transfer mechanism can carry Requests and Responses that are involved in signature generation or verification

and other cryptographic computations. However, this transfer mechanism is not part of any signature generation or

verification or cryptographic computation. In other words, CHUNK_SEND , CHUNK_GET and their corresponding

responses shall not become part of any data or bit stream (e.g., message transcript, transcript, etc...) that are used to

verify or generate a signature or other cryptographic information. Signature generation, signature verification and

other cryptographic computation operate on the Large SPDM messages, themselves, as defined in other parts of this

specification.

687 The response to a CHUNK_SEND or CHUNK_GET request, themselves, shall not be ErrorCode ==

ResponseNotReady . However, the ResponseToLargeRequest can contain an ERROR message with ErrorCode ==

ResponseNotReady .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 153

688 11 Session

689 Sessions enable a Requester and Responder to have multiple channels of communication. More importantly, it

enables a Requester and Responder to build a secure communication channel with cryptographic information that is

bound ephemerally. Specifically, an SPDM session provides either or both of encryption or message authentication.

690 There are three phases in a session, as Session phases shows: the handshake, the application, and termination.

691 Session phases

692

Requester

END_SESSION and END_SESSION_ACK

Session-Secrets-Exchange

Session Handshake Phase

Application Phase

Legend

Session Terminated!

Responder

Secure
Session

Session-Secrets-Finish

693 11.1 Session handshake phase

694 The session handshake phase begins with either KEY_EXCHANGE or PSK_EXCHANGE . This phase also allows for

authentication of the Requester if the Responder indicated that earlier in ALGORITHMS response. Furthermore, this

phase of the session uses the handshake secrets to secure the communication as described in the Key Schedule.

695 The purpose of this phase is to build trust between the Responder and Requester, first, before either side can send

application data. Additionally, it also ensures the integrity of the handshake and to a certain degree, synchronicity

with the derived handshake secrets.

Security Protocol and Data Model (SPDM) Specification DSP0274

154 Work in Progress Version 1.2.0a

696 In this phase of the session, GET_ENCAPSULATED_REQUEST and DELIVER_ENCAPSULATED_RESPONSE shall be used to

obtain requests from the Responder to complete the authentication of the Requester, if the Responder indicated this

in ALGORITHMS message. The only requests allowed to be encapsulated shall be GET_DIGESTS and

GET_CERTIFICATE . The Requester shall provide a signature in the FINISH request, as the FINISH request and

FINISH_RSP response messages clause describes.

697 If an error occurs in this phase with ErrorCode = DecryptError , the session shall immediately terminate and

proceed to session termination.

698 A successful handshake ends with either FINISH_RSP or PSK_FINISH_RSP and the application phase begins.

699 11.2 Application phase

700 Once the handshake completes and all validation passes, the session reaches the application phase where either

the Responder and Requester may send application data.

701 The application phase ends when either the HEARTBEAT requirements fail, END_SESSION or an ERROR message

with ErrorCode = DecryptError . The next phase is the session termination phase.

702 11.3 Session termination phase

703 This phase signals the end of the Application phase and the enactment of internal clean-up procedures by the

endpoints. Requesters and Responders may have various reasons for terminating a session, outside the scope of

this specification.

704 SPDM provides the END_SESSION / END_SESSION_ACK message pair to explicitly trigger the session termination

phase if needed, but depending on the transport it may simply be an internal phase with no explicit SPDM messages

sent or received.

705 When a session terminates, both Requester and Responder shall destroy or clean up all session secrets such as

derived major secrets, DHE secrets and encryption keys. Endpoints may have other internal data associated with a

session that they should also clean up.

706 11.4 Simultaneous active sessions

707 If a Responder supports key exchanges, the maximum number of simultaneous active sessions shall be a minimum

of one. If the KEY_EXCHANGE or PSK_EXCHANGE request will exceed the maximum number of simultaneous active

sessions of the Responder, the Responder shall respond with an Errorcode = SessionLimitExceeded .

708 This specification does not prohibit concurrent sessions in which the same Requester and Responder reverses role.

For example, SPDM endpoint ABC, acting as a Requester, can establish a session to SPDM endpoint XYZ, which is

acting as a Responder. At the same time, SPDM endpoint XYZ, now acting as a Requester, can establish a session

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 155

to SPDM endpoint ABC, now acting as a Responder. Since these two sessions are distinct and separate, the two

endpoints should ensure they do not mix sessions. To ensure proper session handling, each endpoint should ensure

their portion of the session IDs are unique at time of Session-Secrets-Exchange. This would form a final unique

session ID for that new session. Additionally, the endpoints may use information at the transport layer to further

ensure proper handling of sessions.

709 11.5 Records and session ID

710 When the session starts, the communication of secured data is done using records. A record represents a chunk or

unit of data that is either or both encrypted or authenticated. This data can be either an SPDM message or

application data. Usually, the record contains the session ID resulting from one of the Session-Secrets-Exchange

messages to aid both the Responder and Requester in binding the record to the respective derived session secrets.

711 The actual format and other details of a record is outside the scope of this specification. It is generally assumed that

the transport protocol will define the format and other details of the record.

Security Protocol and Data Model (SPDM) Specification DSP0274

156 Work in Progress Version 1.2.0a

712 12 Key schedule

713 A key schedule describes how the various keys such as encryption keys used by a session are derived, and when

each key is used. The default SPDM key schedule makes heavy use of HMAC as defined by RFC2104 and HKDF-

Expand as described in RFC5869. SPDM defines the following additional functions:

BinConcat(Length, Version, Label, Context)

714 where BinConcat shall be the concatenation of binary data, in the order shown in BinConcat Details Table:

715 BinConcat details

Order Data Type Endianness Size

1 Length Binary Little 16 bits

2 Version Text Text 8 bytes

3 Label Text Text Variable

4 Context Binary Little Hash.Length

716 If Context is null, then BinConcat is the concatenation of the first three components only.

717 Version details

SPDM version Version text

SPDM 1.1 "spdm1.1 "

718 The HKDF-Expand function prototype, as used by the default SPDM key schedule, is as follows:

HKDF-Expand(secret, context, Hash.Length)

719 The HMAC-Hash function prototype is described as follows:

HMAC-Hash(salt, IKM);

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 157

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc5869

720 where IKM is the Input Keying Material and HMAC-Hash uses HMAC as defined in RFC2104.

721 For HKDF-Expand and HMAC-Hash , the hash function shall be the selected hash function in ALGORITHMS response.

Hash.Length shall be the length of the output of the hash function selected by the ALGORITHMS response.

722 Both Responder and Requester shall use the key schedule shown in the Key Schedule Figure.

723 Key schedule

724

HMAC-Hash (Salt_0, _____)

Handshake-Secret

HKDF-Expand (Handshake-Secret, bin_str1, Hash.Length)
Request Direction
Handshake Secret

HKDF-Expand (Handshake-Secret, bin_str2, Hash.Length)
Response Direction Handshake

Secret

DHE Secret or Pre-shared Key

HKDF-Expand (Handshake-Secret, bin_str0, Hash.Length)

Master-Secret

HKDF-Expand (Master-Secret, bin_str3, Hash.Length) Requester Direction Data Secret

HKDF-Expand (Master-Secret, bin_str4, Hash.Length) Responder Direction Data Secret

HMAC-Hash (Salt_1, 0_filled)

Salt_1

HKDF-Expand (Master-Secret, bin_str8, Hash.Length)
Export Master Secret

725 In the figure, arrows going out of the box are outputs of that box. Arrows going into the box are inputs into the box

and point to the specific input parameter they are used in. All boxes represent a single function producing a single

output and are given a name for clarity.

726 The Key Schedule table accompanies the figure to complete the Key Schedule. The Responder and Requester shall

also adhere to the definition of this table.

Security Protocol and Data Model (SPDM) Specification DSP0274

158 Work in Progress Version 1.2.0a

https://tools.ietf.org/html/rfc2104

727 Key schedule

Variable Definition

Salt_0 A zero filled array of Hash.Length length.

0_filled A zero filled array of Hash.Length length.

bin_str0 BinConcat(Hash.Length, Version, "derived", NULL).

bin_str1 BinConcat(Hash.Length, Version, "req hs data", TH1).

bin_str2 BinConcat(Hash.Length, Version, "rsp hs data", TH1).

bin_str3 BinConcat(Hash.Length, Version, "req app data", TH2)

bin_str4 BinConcat(Hash.Length, Version, "rsp app data", TH2)

DHE Secret This shall be the secret derived from KEY_EXCHANGE/KEY_EXCHANGE_RSP

Pre-shared Key PSK

728 Note: With common hash functions, any label longer than 12 characters requires an additional iteration of the hash

function to compute. As in RFC8446 the labels defined above have all been chosen to fit within this limit.

729 12.1 DHE secret computation

730 The DHE secret is a shared secret and its computation is different per algorithm or algorithm class. These clauses

define the format and computation for DHE algorithms.

731 For ffdhe2048 , ffdhe4096 , secp256r1 , secp384r1 and secp521r1 , the format and computation of the DHE

secret shall be the shared secret as defined in section 7.4 of RFC 8446.

732 For SM2_P256 , the DHE secret shall be KA and KB as defined in GB/T 32918.3-2016. The Requester shall compute

KA and the Responder shall compute KB in order to arrive to the same secret value. Furthermore, KA and KB utilizes

a KDF, also defined by GB/T 32918.3-2016, that allows for a flexible hash algorithm. This hash algorithm shall be the

selected hashing algorithm in BashHashSel or ExtHashSel .

733 12.2 Transcript hash in key derivation

734 There are two transcript hashes used in the key schedule, namely, TH1 and TH2.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 159

735 12.3 TH1 definition

736 If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2) or hash of the

public key in its provisioned format, if a certificate is not used

3. [KEY_EXCHANGE].*

4. [KEY_EXCHANGE_RSP].* except the ResponderVerifyData field

737 If the Requester and Responder used PSK_EXCHANGE/PSK_EXCHANGE_RSP to exchange initial keying information, then

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [PSK_EXCHANGE].*

3. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

738 12.4 TH2 definition

739 If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2) or hash of the

public key in its provisioned format, if a certificate is not used

3. [KEY_EXCHANGE].*

4. [KEY_EXCHANGE_RSP].*

5. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2) or hash of the public key

in its provisioned format, if a certificate is not used. (Valid only in mutual authentication)

6. [FINISH].*

7. [FINISH_RSP].*

740 If the Requester and Responder used PSK_EXCHANGE/PSK_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [PSK_EXCHANGE].*

3. [PSK_EXCHANGE_RSP].*

Security Protocol and Data Model (SPDM) Specification DSP0274

160 Work in Progress Version 1.2.0a

4. [PSK_FINISH].* (if issued)

5. [PSK_FINISH_RSP].* (if issued)

741 12.5 Key schedule major secrets

742 The key schedule produces four major secrets:

• Request-direction handshake secret (S0)

• Response-direction handshake secret (S1)

• Request-direction data secret (S2)

• Response-direction data secret (S3)

743 Each secret applies in a certain direction of transmission and only valid during a certain time frame. These four major

secrets, each, will be used to derive their respective encryption key and IV to be used in the AEAD function as

selected in the ALGORITHMS response.

744 12.5.1 Request-direction handshake secret

745 This secret shall only be used during the session handshake phase and shall be applied to all requests after

KEY_EXCHANGE or PSK_EXCHANGE up to and including FINISH or PSK_FINISH .

746 12.5.2 Response-direction handshake secret

747 This secret shall only be used during the session handshake phase and shall be applied to all responses after

KEY_EXCHANGE_RSP or PSK_EXCHANGE_RSP up to and including FINISH_RSP or PSK_FINISH_RSP .

748 12.5.3 Requester-direction data secret

749 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Requester to the Responder.

750 12.5.4 Responder-direction data secret

751 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Responder to the Requester.

752 The Secrets Usage Figure illustrates where each of the major secrets are used as described previously.

753 Secrets usage

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 161

754

Secure
Session

Requester

Session Terminated!

Responder

S
0

S
2

S
1

S
3

Session Handshake Phase

Application Phase

Legend

END_SESSION
END_SESSION_ACK

Session-Secrets-Exchange Request
Session-Secrets-Exchange Response

Session-Secrets-Finish Request

Session-Secrets-Finish Response

755 12.6 Encryption key and IV derivation

756 For each key schedule major secret, the following function shall be applied to obtain the encryption key and IV value.

EncryptionKey = HDKF-Expand(major-secret, bin_str5, key_length);
IV = HKDF-Expand(major-secret, bin_str6, iv_length);

bin_str5 = BinConcat(key_length, Version, "key", NULL);
bin_str6 = BinConcat(iv_length, Version, "iv", NULL);

757 Both key_length and iv_length shall be the lengths associated with the selected AEAD algorithm in

ALGORITHMS message.

758 12.7 finished_key derivation

759 This key shall be used to compute the RequesterVerifyData and ResponderVerifyData fields used in various

SPDM messages. The key, finished_key is defined as follows:

Security Protocol and Data Model (SPDM) Specification DSP0274

162 Work in Progress Version 1.2.0a

finished_key = HKDF-Expand(handshake-secret, bin_str7, Hash.Length);
bin_str7 = BinConcat(Hash.Length, Version, "finished", NULL);

760 The handshake-secret shall either be request-direction handshake secret or response-direction handshake secret.

761 12.8 Deriving additional keys from the Export Master Secret

762 After a successful SPDM key exchange, additional keys can be derived from the Export Master Secret. How keys are

derived is outside the scope of this specification.

Export Master Secret = HKDF-Expand(Master-Secret, bin_str8, Hash.Length);
bin_str8 = BinConcat(Hash.Length, Version, "exp master", TH2);

763 12.9 Major secrets update

764 The major secrets can be updated during an active session to avoid the overhead of closing down a session and

recreating the session. This is achieved by issuing the KEY_UPDATE request.

765 The major secrets are re-keyed as a result of this. To compute the new secret for each new major data secret, the

following algorithm shall be applied.

new_secret = HKDF-Expand(current_secret, bin_str9, Hash.Length);
bin_str9 = BinConcat(Hash.Length, Version, "traffic upd", NULL);

766 In computing the new secret, current_secret shall either be the current Requester-Direction Data Secret or

Responder-Direction Data Secret. As a consequence of updating these secrets, new encryption keys and salts shall

be derived from the new secrets and used immediately.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 163

767 13 Application data

768 SPDM utilizes authenticated encryption with associated data (AEAD) cipher algorithms in much the same way that

TLS 1.3 does to protect both the confidentiality and integrity of data that shall remain secret, as well as the integrity of

data that need to be transmitted in the clear, such as protocol headers, but shall be protected from manipulation.

AEAD algorithms provide both encryption and message authentication. Each algorithm specifies the details such as

the size of the nonce, the position and length of the MAC and many other factors to ensure a strong cryptographic

algorithm.

769 AEAD functions shall provide the following functions and comply with the requirements defined in RFC5116:

AEAD_Encrypt(encryption_key, nonce, associated_data, plaintext);
AEAD_Decrypt(encryption_key, nonce, associated_data, ciphertext);

770 where

Value Description

AEAD_Encrypt
Function that fully encrypts the plaintext , computes the MAC across both the associated_data and plaintext ,

and produces the ciphertext , which includes the MAC.

AEAD_Decrypt
Function that verifies the MAC and if validation is successful, fully decrypts the ciphertext and produces the original

plaintext .

encryption_key Derived encryption key for the respective direction. For details, see the Key schedule clause.

nonce Nonce computation. For details, see the Nonce derivation clause.

associated_data Associated data.

plaintext Data to encrypt.

ciphertext Data to decrypt.

771 13.1 Nonce derivation

772 Certain AEAD ciphers have specific requirements on nonce construction, as their security properties may be

compromised by the accidental reuse of a nonce value. Implementations should follow the requirements, such as

those provided in RFC5116 for nonce derivation.

Security Protocol and Data Model (SPDM) Specification DSP0274

164 Work in Progress Version 1.2.0a

https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

773 14 General opaque data

774 The General opaque data format allows for a mixture of vendors, standard organizations or transport-specific data to

accompany an SPDM message without namespace collisions.

775 The General opaque data table defines the format for opaque data fields in this specification. All opaque data fields

in SPDM messages shall utilize the format defined by the General opaque data.

776 General opaque data table

Offset Field Length (bytes) Description

0 TotalElements 1 Shall be the total number of elements in OpaqueList .

2 Reserved 3 Reserved

8+ OpaqueList Variable Shall be a list of Opaque Elements.

777 The Opaque element table defines the format for each element in OpaqueList .

778 Opaque element table

Offset Field
Length

(bytes)
Description

0 ID 1 Shall be one of the values in the ID column of Registry or standards body ID.

1 VendorLen 1

Length in bytes of the VendorID field.

If the data in OpaqueElementData belongs to a standards body, this field shall be

0.

Otherwise, the data in OpaqueElementData belongs to the vendor and therefore,

this field shall be the length indicated in the Vendor ID column of Registry and

standards body ID table for the respective ID .

2 VendorID VendorLen
If VendorLen is greater than zero, this field shall be the ID of the vendor

corresponding to the ID field. Otherwise, this field shall be absent.

2 + VendorLen OpaqueElementDataLen 2 Shall be the length of OpaqueElementData .

X : 4 + VendorLen OpaqueElementData Variable Shall be the data defined by the vendor or standards body.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 165

Offset Field
Length

(bytes)
Description

Y : X + 1 AlignPadding 1, 2 or 3

If X does not fall on a 4-byte boundary, this field shall be present and of the

correct length to ensure Y ends on a 4-byte boundary. This field shall be all

zeros.

Security Protocol and Data Model (SPDM) Specification DSP0274

166 Work in Progress Version 1.2.0a

779 15 Signature generation

780 The SPDMsign function, used in various part of this specification, defines the signature generation algorithm while

accounting for the differences in the various supported cryptographic signing algorithms in ALGORITHMS message.

781 The signature generation function takes this form:

signature = SPDMsign(PrivKey, data_to_be_signed, context);

782 The SPDMsign function shall take these input parameters:

• Privkey : a secret key

• data_to_be_signed : a bit stream of the data that will be signed

• context : a string

783 The function shall output a signature using PrivKey and a selected cryptographic signing algorithm.

784 The signing function shall follow these steps to create spdm_prefix and spdm_context (See Text or string

encoding for encoding rules):

1. Create spdm_prefix . The spdm_prefix shall be the repetition, four times, of the concatenation of

"dmtf-spdm-v" and the string form of the version of this specification. This will form a 64 character

string.

2. Create spdm_context . If the Requester is generating the signature, then spdm_context shall be the

concatenation of "requester-" and context . If the Responder is generating the signature, the

spdm_context shall be the concatenation of "responder-" and context .

785 Here is an example, named Example 1:

786 If the version of this specification is 1.4.0, the Responder is generating a signature and context is "my example

context". The sdpm_prefix is "dmtf-spdm-v1.4.0dmtf-spdm-v1.4.0dmtf-spdm-v1.4.0dmtf-spdm-v1.4.0". The

spdm_context is "responder-my example context".

787 Next, form combined_spdm_prefix . The combined_spdm_prefix shall be the concatenation of spdm_prefix , a

byte with a value of zero, zero_pad and spdm_context . The size of zero_pad shall be the number of bytes

needed to ensure the length of combined_spdm_prefix is 100 bytes. The size of zero_pad can be zero. The value

of zero_pad shall be zero.

788 Continuing Example 1, the Combined SPDM Prefix table shows the combined_spdm_prefix with offsets. Offsets

increase from left to right and top to bottom. As shown, the length of combined_spdm_prefix is 100 bytes long.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 167

Furthermore, a number surrounded by double quotation marks indicates the ASCII value of that number is used. See

Text or string encoding for encoding rules.

789 Combined SPDM Prefix table

790 | Offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0xA | 0xB | 0xC | 0xD | 0xE | 0xF | |--------|-----|-----|--- |--- |--- |-----|--- |-----|---

|---|-----|-----|----- |-----|-----| | 0 | d | m | t | f | - | s | p | d | m | - | v | "1" | . | "4" | . | "0" | | 0x10 | d | m | t | f | - | s | p | d | m

| - | v | "1" | . | "4" | . | "0" | | 0x20 | d | m | t | f | - | s | p | d | m | - | v | "1" | . | "4" | . | "0" | | 0x30 | d | m | t | f | - | s | p | d |

m | - | v | "1" | . | "4" | . | "0" | | 0x40 | 0x0 | 0x0 | 0x0 | 0x0 | 0x0 | 0x0 | 0x0 | 0x0 | r | e | s | p | o | n | d | e | | 0x50 | r | - |

m | y | space (0x20) | e | x | a | m | p | l | e | space (0x20) | c | o | n | | 0x60 | t | e | x | t | | | | | | | | | | | | |

791 The next step is to form the message_hash . The message_hash shall be the hash of data_to_be_signed using the

selected hash function in either BaseHashSel or ExtHashSel .

792 If the Responder is generating the signature, the selected cryptographic signing algorithm is indicated in exactly one

of BaseAsymSel or ExtAsymSel in ALGORITHMS message. If the Requester is generating the signature, the selected

cryptographic signing algorithm is indicated in ReqBaseAsymAlg of RespAlgStruct in ALGORITHMS message.

793 Because each cryptographic signing algorithm is vastly different, these clauses define the binding of SPDMsign to

those algorithms.

794 15.1 Signing algorithms in extensions

795 If an algorithm is selected in either the ExtAsymSel or AlgExternal of ReqBaseAsymAlg of RespAlgStruct in

ALGORITHMS response, its binding is out of scope of this specification.

796 15.2 RSA and ECDSA signing algorithms

797 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

hash function selected by the Responder in BaseHashSel or ExtHashSel .

798 The private key, defined by the specification for these algorithms, shall be PrivKey .

799 In the specification for these algorithms, the letter M denotes the message to be signed. M shall be the

concatenation of combined_spdm_prefix and message_hash .

800 For ECDSA algorithms, these algorithms shall follow section 6 of FIPS PUB 186-4.

801 15.3 EdDSA signing algorithms

802 These algorithms are described in RFC 8032.

Security Protocol and Data Model (SPDM) Specification DSP0274

168 Work in Progress Version 1.2.0a

803 The private key, defined by RFC 8032, shall be PrivKey .

804 In the specification for these algorithms, the letter M denotes the message to be signed.

805 15.3.1 Ed25519 sign

806 This specification only defines Ed25519 usage and not its variants.

807 M shall be the concatenation of combined_spdm_prefix and message_hash .

808 15.3.2 Ed448 sign

809 This specification only defines Ed448 usage and not its variants.

810 M shall be the concatenation of combined_spdm_prefix and message_hash .

811 Ed448 defines a context string, C . C shall be the spdm_context .

812 15.4 SM2 signing algorithm

813 This algorithm is described in GB/T 32918.2-2016. GB/T 32918.2-2016 also defines the variable M and IDA.

814 The private key, defined by GB/T 32918.2-2016, shall be PrivKey .

815 In the specification for SM2, the letter M denotes the message to be signed. M shall be the concatenation of

combined_spdm_prefix and message_hash .

816 The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the hash

function selected by the Responder in BaseHashSel or ExtHashSel .

817 Lastly, SM2 expects a distinguishing identifier, which identifies the signer, and is indicated by the variable IDA. If

DMTFOthername is present in the leaf certificate, IDA shall be the concatenation of ub-DMTF-device-info and any

transport specific identity. If DMTFOtherName is not present in the leaf certificate, the IDA shall be the transport

specific identity. The transport should specify the transport specific identity.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 169

818 16 Signature verification

819 The SPDMsignatureVerify function, used in various part of this specification, defines the signature verification

algorithm while accounting for the differences in the various supported cryptographic signing algorithms in

ALGORITHMS message.

820 The signature verification function takes this form:

SPDMsignatureVerify(PubKey, signature, unverified_data, context);

821 The SPDMsignatureVerify function shall take these input parameters:

• PubKey : the public key

• signature : a digital signature

• unverified_data : a bit stream of data that needs to be verified

• context : a string

822 The function shall verify the unverified_data using signature , PubKey , and a selected cryptographic signing

algorithm. SPDMsignatureVerify shall return success if the signature verifies correctly and failure otherwise. Each

cryptographic signing algorithm states the verification steps or criteria for successful verification.

823 The verifier of the signature shall create spdm_prefix , spdm_context and combined_spdm_context as described

in Signature generation.

824 The next step is to form the unverified_message_hash . The unverified_message_hash shall be the hash of

unverified_data using the selected hash function in either BaseHashSel or ExtHashSel .

825 If the Responder generated the signature, the selected cryptographic signature verification algorithm is indicated in

exactly one of BaseAsymSel or ExtAsymSel in ALGORITHMS message. If the Requester generated the signature,

the selected cryptographic signature verification algorithm is indicated in ReqBaseAsymAlg of RespAlgStruct in

ALGORITHMS message.

826 Because each cryptographic signature verification algorithm is vastly different, these clauses define the binding of

SPDMsignatureVerify to those algorithms.

827 16.1 Signature verification algorithms in extensions

828 If an algorithm is selected in either the ExtAsymSel or AlgExternal of ReqBaseAsymAlg of RespAlgStruct in

ALGORITHMS response, its binding is out of scope of this specification.

Security Protocol and Data Model (SPDM) Specification DSP0274

170 Work in Progress Version 1.2.0a

829 16.2 RSA and ECDSA signature verification algorithms

830 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

hash function selected by the Responder in BaseHashSel or ExtHashSel .

831 The public key, defined in the specification for these algorithms, shall be PubKey .

832 In the specification for these algorithms, the letter M denotes the message that is signed. M shall be concatenation

of the combined_spdm_prefix and unverified_message_hash .

833 For ECDSA algorithms, these algorithms shall follow section 6 of FIPS PUB 186-4.

834 For RSA algorithms, SPDMsignatureVerify shall return success when the output of the signature verification

operation, as defined in the RSA specification, is "valid signature". Otherwise, SPDMsignatureVerify shall return a

failure.

835 For ECDSA algorithms, SPDMsignatureVerify shall return success when the output of "Verification with the Public

Key", as defined in ANSI X9.62-2005, is "valid". Otherwise, SPDMsignatureVerify shall return failure.

836 16.3 EdDSA signature verification algorithms

837 These algorithms are described in RFC 8032. RFC 8032, also, defines the variable M , PH and C .

838 The public key, also defined in RFC 8032, shall be PubKey .

839 In the specification for these algorithms, the letter M denotes the message to be signed.

840 16.3.1 Ed25519 verify

841 M shall be the concatenation of combined_spdm_prefix and unverified_message_hash .

842 SPDMsignatureVerify shall return success when step 1 does not result in an invalid signature and the constraints of

the group equation in step 3 are met as described in RFC 8032 section 5.1.7. Otherwise, SPDMsignatureVerify

shall return failure.

843 16.3.2 Ed448 verify

844 M shall be the concatenation of combined_spdm_prefix and unverified_message_hash .

845 Ed448 defines a context string, C . C shall be the spdm_context .

846 SPDMsignatureVerify shall return success when step 1 does not result in an invalid signature and the constraints of

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 171

the group equation in step 3 are met as described in RFC 8032 section 5.2.7. Otherwise, SPDMsignatureVerify

shall return failure.

847 16.4 SM2 signature verification algorithm

848 This algorithm is described in GB/T 32918.2-2016, which also defines the variable M and IDA.

849 The public key, also defined in GB/T 32918.2-2016, shall be PubKey .

850 In the specification for SM2, the variable M' is used to denote the message that is signed. M' shall be the

concatenation of combined_spdm_prefix and unverified_message_hash .

851 The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the hash

function selected by the Responder in BaseHashSel or ExtHashSel .

852 Lastly, SM2 expects a distinguishing identifier, which identifies the signer, and is indicated by the variable IDA. See

SM2 signing algorithm to create the value for IDA.

853 SPDMsignatureVerify shall return success when the Digital signature verification algorithm, as described in GB/T

32918.2-2016, outputs an "accept". Otherwise, SPDMsignatureVerify shall return failure.

Security Protocol and Data Model (SPDM) Specification DSP0274

172 Work in Progress Version 1.2.0a

854 17 General ordering rules

855 With the exception of GET_VERSION , a Responder shall either return an ERROR message with

ErrorCode=UnexpectedRequest or silently discard the request if the request is sent out of order. Additionally, the

Responder may continue to silently discard all requests or return an ERROR message with

ErrorCode=RequestResynch until the Requester issues a GET_VERSION . A Requester may retry messages but the

retries shall be identical to the first, excluding transport variances. However, if the Responder sees two or more non-

identical GET_CAPABILITIES or NEGOTIATE_ALGORITHMS , the Responder shall return an ERROR message with

ErrorCode=UnexpectedRequest or silently discard non-identical messages. Furthermore, the Responder may

continue to silently discard all messages or return an ERROR message until the Requester issues a GET_VERSION .

856 For CHALLENGE and Session-Secrets-Exchange, the Responder should ensure it can distinguish between the

respective retry and the respective original message. Failure to distinguish correctly may lead to an authentication

failure, session handshake failures and other failures. The response to a retried request should be identical to the

original response.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 173

857 18 DMTF Event Types

858 The DMTF Event Types table shows the supported DMTF event types for the DMTF event group.

859 DMTF event types table

Event Type Event Name Requirement Description

0 Reserved Reserved Reserved.

1 MeasurementEvent Optional A measurement changed.

2 EventLost Mandatory Events were lost.

All others Reserved Reserved Reserved.

860 18.1 Event type details

861 Each DMTF event type has its own event specific information, referred to as EventDetail , to describe the event.

These clauses describes the format for each DMTF event type. The event types are listed in the DMTF event types

table.

862 18.1.1 Measurement Event

863 The measurement event (EventType == MeasurementEvent) notifies the Event Recipient when a certain

measurement has changed and its new measurement. The EventDetail format for this measurement is the same

format as the Measurement block format.

864 For this event type, the MeasurementSpecification field of the measurement block shall be the same measurement

specification as selected by the Responder in the MeasurementSpecificationSel field of ALGORITHMS response.

865 When the MeasurementSpecification is DMTF and the measurement event is for a raw bit stream, the size of

DMTFSpecMeasurementValue shall be from one to 100 bytes, inclusively. The Event Recipient is expected to retrieve

the raw bit stream using GET_MEASUREMENT Request.

866 18.1.2 Event Lost

867 This event (EventType == EventLost) notifies the Event Recipient that certain events are lost. The reasons for

event lost are varied and numerous but some examples are lost in transport or lost due to insufficient resources. This

event shall always be resent indefinitely until the Event Recipient acknowledges it. Resending this event means this

event was not acknowledged previously.

Security Protocol and Data Model (SPDM) Specification DSP0274

174 Work in Progress Version 1.2.0a

868 The Event lost format table describes the format for EventDetails .

869 Event lost format

Offset Field Size (bytes) Value

0 LastAckedEventID 4 Shall be the last event ID acknowledged by the Event Recipient.

4 CurrentEventID 4 Shall be the current event ID.

870 If the Event Notifier cannot or can no longer track the information in Event lost format, then LastAckedEventID and

CurrentEventID shall be both 0xFFFF_FFFF.

871 When resending an event lost event, the Event Notifier can update the fields in Event lost format if new events are

lost since the previous send. The LostEventList shall be cleared when the Event Recipient acknowledges this

event.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 175

872 19 ANNEX A (informative) TLS 1.3

873 This specification heavily models TLS 1.3. TLS 1.3 and consequently this specification assumes the transport layers

provide these capabilities or attributes:

• Reliability in transmission and reception of data.

• Transmission of data is either in order or the order of data can be reconstructed at reception.

874 While not all transports are created equal, if a transport cannot meet these capabilities, adoption of SPDM is still

possible. In these transports, this specification recommends DTLS 1.3, which at the time of this specification is still in

draft form.

Security Protocol and Data Model (SPDM) Specification DSP0274

176 Work in Progress Version 1.2.0a

https://github.com/tlswg/dtls13-spec

875 20 ANNEX B (normative) Device certificate example

876 The Device certificate example shows an example device certificate:

877 Device certificate example

Certificate:

Data:
Version: 3 (0x2)
Serial Number: 8 (0x8)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C = CA, ST = NC, L = city, O = ACME, OU = ACME Devices, CN = CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 23:59:59 9999 GMT

Subject: C = US, ST = NC, O = ACME Widget Manufacturing, OU = ACME Widget Manufacturing Unit, CN = w0123456789
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:
e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:
5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:
ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:
23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:
52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:
a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:
1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:
ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:
98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:
a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:
95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:
70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:
a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:
2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:
66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:
01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:
e8:67

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:
othername: 1.3.6.1.4.1.412.274.1::ACME:WIDGET:0123456789

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 177

Signature Algorithm: ecdsa-with-SHA256
Signature Value:

30:45:02:20:1e:5a:a6:ed:5c:b6:2b:f5:9e:22:28:9c:ef:c7:
aa:db:1c:87:83:48:c1:50:cb:25:04:ab:c9:6e:7c:f5:6b:01:
02:21:00:da:48:d4:49:a5:65:5c:2c:83:fc:05:00:66:48:98:
f8:f0:cb:63:b7:2e:87:db:c8:63:58:6c:21:91:7a:68:95

-----BEGIN CERTIFICATE-----
MIIC4jCCAoigAwIBAgIBCDAKBggqhkjOPQQDAjBcMQswCQYDVQQGEwJDQTELMAkG
A1UECAwCTkMxDTALBgNVBAcMBGNpdHkxDTALBgNVBAoMBEFDTUUxFTATBgNVBAsM
DEFDTUUgRGV2aWNlczELMAkGA1UEAwwCQ0EwIBcNNzAwMTAxMDAwMDAwWhgPOTk5
OTEyMzEyMzU5NTlaMH0xCzAJBgNVBAYTAlVTMQswCQYDVQQIDAJOQzEiMCAGA1UE
CgwZQUNNRSBXaWRnZXQgTWFudWZhY3R1cmluZzEnMCUGA1UECwweQUNNRSBXaWRn
ZXQgTWFudWZhY3R1cmluZyBVbml0MRQwEgYDVQQDDAt3MDEyMzQ1Njc4OTCCASIw
DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALpnR3J42iiB2YGb24gD4RCkkbhI
7WtwPOyiaKk7X3j8rkrRHGN2VKhAMSZ//z7gv5VcSrRvEVbKyBFTI+Edonql8CLY
svtD2t29UmvmpT8PO2C4dNtWCNnuoDBKAyEe7mCt5AB6bmsyHCh+nOjDVNtj/R/R
RiCe74CIAF8l289DRsYfUBl/mCOEOIhHXVGOEWJvDyh3pyAO83QngnCnllsbuxDn
lWL1N0u6IE48yRiyzUtYcKuivPYv7S9Ikr5azFxeqOqdYOj4hX3ADS9qCHTRL+he
Pbc1ph3SpgSZ05BDZjXhdBColztJBVFhB8YIARzcqF+eMJeoGGz5sSxW6GcCAwEA
AaNNMEswCQYDVR0TBAIwADALBgNVHQ8EBAMCBeAwMQYDVR0RBCowKKAmBgorBgEE
AYMcghIBoBgMFkFDTUU6V0lER0VUOjAxMjM0NTY3ODkwCgYIKoZIzj0EAwIDSAAw
RQIgHlqm7Vy2K/WeIiic78eq2xyHg0jBUMslBKvJbnz1awECIQDaSNRJpWVcLIP8
BQBmSJj48Mtjty6H28hjWGwhkXpolQ==
-----END CERTIFICATE-----

Security Protocol and Data Model (SPDM) Specification DSP0274

178 Work in Progress Version 1.2.0a

878 21 ANNEX C (informative) OID reference

879 The following table lists all Object Identifiers (OIDs) defined in this specification.

OID Identifier Name Definition Use

{ 1 3 6 1 4 1 412 274

1 }
id-DMTF-device-info Leaf certificate Certificate device information.

{ 1 3 6 1 4 1 412 274

2 }
id-DMTF-hardware-identity

Identity

provisioning
Hardware certificate identifier.

{ 1 3 6 1 4 1 412 274

3 }

id-DMTF-eku-responder-

auth
Leaf certificate

Certificate Extended Key Usage - SPDM Responder

Authentication.

{ 1 3 6 1 4 1 412 274

4 }

id-DMTF-eku-requester-

auth
Leaf certificate

Certificate Extended Key Usage - SPDM Requester

Authentication.

{ 1 3 6 1 4 1 412 274

5 }

id-DMTF-mutable-

certificate

Identity

provisioning
Mutable certificate identifier.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 179

880 22 ANNEX D (informative) variable name reference

881 Throughout this document, various sizes and offsets are referred to by a variable. The following table lists variables

used in this document, the definition of the variable, and the location in this document that shows how the variable is

set.

Symbol Definition Set location

A Number of Requester-supported extended asymmetric key signature algorithms.
NEGOTIATE_ALGORITHMS

request message format

A' Number of extended asymmetric key signature algorithms selected by the Requester.
Successful ALGORITHMS

response message format

D The size of D (and C for ECDHE) is derived from the selected DHE group.
KEY_EXCHANGE request

message format

E Number of Requester-supported extended hashing algorithms.
NEGOTIATE_ALGORITHMS

request message format

E' The number of extended hashing algorithms selected requested by the Requester.
Successful ALGORITHMS

response message format

F0 The length of the SubscribeList .
SUBSCRIBE_EVENT_GROUP

request message format

F1 The length of Padding added after SubscribeList .
SUBSCRIBE_EVENT_GROUP

request message format

F2 The size of the event specific details. Event Details

H The output size, in bytes, of the hash algorithm agreed upon in NEGOTIATE_ALGORITHMS .
Successful ALGORITHMS

response message format

J The length of the UnsubscribeList .
SUBSCRIBE_EVENT_GROUP

request message format

MS
The length of the cryptographic hash or raw bit stream, as indicated in

DMTFSpecMeasurementValueType[7] .

DMTF measurement specification

format

NL
The length of the Nonce field in the GET_MEASUREMENTS request and the MEASUREMENTS

response.

GET_MEASUREMENTS request

attributes

n Number of version entries in the VERSION response message.
Successful VERSION response

message format

Q Length of the ResponderContext.
PSK_EXCHANGE_RSP response

message format

Security Protocol and Data Model (SPDM) Specification DSP0274

180 Work in Progress Version 1.2.0a

Symbol Definition Set location

P Length of the PSKHint.
PSK_EXCHANGE request

message format

R Length of the RequesterContext.
PSK_EXCHANGE request

message format

SigLen
The size of the asymmetric-signing algorithm output, in bytes, that the Responder selected

through the last ALGORITHMS response message.

Successful ALGORITHMS

response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 181

882 23 ANNEX E (informative) change log

883 23.1 Version 1.0.0 (2019-10-16)

• Initial Release

884 23.2 Version 1.1.0 (2020-07-15)

• Minor typographical fixes

• USB Authentication Specification 1.0 link updated

• Tables are no longer numbered. They are now named.

• Fix internal document links in SPDM response codes table.

• Added sentence to paragraph 97 to clarify on the potential to skip messages after a reset.

• Removed text at paragraph 181.

• Subject Alternative Name otherName field in Optional fields references DMTF OID section.

• DMTFOtherName definition changed to properly meet ASN.1 syntax.

• Text in figures are now searchable.

• Corrected example of a leaf certificate in Annex A.

• Minor edits to figures for clarity.

• Clarified that transcript hash could include hash of the raw public key if a certificate is not used.

• New:

◦ Added Session support.

▪ Added SPDM request and response messages to support initiating, maintaining and terminating a

secure session.

▪ Added Key Schedule for session secrets derivation.

▪ Added Application Data to provide overview of how data is encrypted and authenticated in a session.

◦ Introduce new terms and definitions.

◦ Added Measurement Manifest to DMTFSpecMeasurementValueType .

◦ Added mutual authentication.

◦ Added Encapsulated request flow to support master-slave types of transports.

885 23.3 Version 1.2.0 (Pending)

• Fix improper reference in DMTFSpecMeasurementValue field in "Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF" table.

• Certificate digests in DIGEST calculation clarified.

Security Protocol and Data Model (SPDM) Specification DSP0274

182 Work in Progress Version 1.2.0a

• Format of certificate in CertChain parameter of CERTIFICATE message clarified.

• Validity period of X.509v3 certificate clarified in Required Fields

• Remove InvalidSession error code.

• Clarified transport responsibilities in PSK_EXCHANGE and PSK_EXCHANGE_RSP .

• Clarified the usage of MutAuthRequested field in KEY_EXCHANGE_RSP .

• Added recommendation of PSK usage when an SPDM endpoint can be a Requester and Responder.

• Added recommendation for usage of RequesterContext in PSK scenarios.

• Clarified capabilities for Requester and Responder in GET_CAPABILITIES and CAPABILITIES messages.

• Clarified timing requirements for encapsulated requests.

• Clarified out of order and retries

• Clarified error handling actions when unexpected requests occurs during various mutual authentication flows.

• Refer to slot number fields as SlotID and normalize SlotID fields to 4 bits where possible.

• Changed PSK_FINISH and FINISH changes in SPDM request and response messages validity table.

• Clarified HANDSHAKE_IN_THE_CLEAR_CAP usage in PSK_EXCHANGE .

• Change SPDMVersion field in every Request and Response message, except GET_VERSION / VERSION

messages, to point to a cental location in this specification where it explains the appropriate value to populate for

this field.

• Clarified use case for Token field in ResponseNotReady .

• Renamed Measurement field format when MeasurementSpecification field is Bit 0 = DMTF table to

DMTF measurement specification format.

• Clarified the ENCAP_CAP field in the capabilities of the Requester and Responder.

• Renamed Mutual Authentication in KEY_EXCHANGE to Session-based mutual authentication.

• ERROR responses are no longer required in most error scenarios.

• Enhanced requirements for when a firmware update occurred on a Responder in GET_VERSION request and

VERSION response messages.

• Clarified error code ResponseNotReady for M1/M2 and L1/L2 computation.

• Clarified byte order for ASN.1 encoded data, hashes and digests.

• Requester should not use PSK_EXCHANGE if CHALLENGE_AUTH and/or MEASUREMENTS with signature

was received from Responder.

• Allow Responder to specify hash algorithm for each index of measurement.

• Required GET_VERSION , VERSION , GET_CAPABILITIES , CAPABILITIES , NEGOTIATE_ALGORITHMS , and

ALGORITHMS in transcript even if negotiated state is supported.

• Enhanced signature generation and verification with a prefix to mitigate signature misuse attacks.

• Clarified behavior of END_SESSION with respect to Negotiated State when there are multiple active sessions.

• Added new defined term Reset to mean device reset. Updated use of the word reset for M1/M2, L1/L2.

• Clarified that a Measurement Manifest should support both hash and raw bit stream formats.

• Clarified Measurement Summary Hash construction rules.

• New:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 183

◦ Added support for AliasCert s.

▪ Compliant Requesters must support a Responder that uses either DeviceCerts or AliasCert s.

◦ Added Certain error handling in encapsulated flows

◦ Added Slot 0 certificate provisioning methodology.

◦ Added Allowance for encapsulated requests.

◦ Added Event mechanism and DMTF event type.

◦ Allowed GET_CERTIFICATE followed by CHALLENGE flow after a reset in M1 and M2 message transcript.

◦ Added new features for GET_MEASUREMENTS and MEASUREMENTS :

▪ More measurement value types.

▪ Allow Requester to request hash or raw bit stream for measurement from the Responder.

◦ Added Advice.

◦ Added structured representation of device mode Device mode field of a measurement block.

◦ Added Text or string encoding.

◦ Signature Clarification:

▪ Added Signature generation and Signature verification for clarity and interoperability.

▪ Change Sign and Verify abstract function to SPDMsign and SPDMsignatureVerify respectively.

◦ Added General ordering rules and references to it, to describe additional requirements for the various

transcript and message transcripts.

◦ Added additional clause for checking FINISH.Param2 if handshake is in the clear.

◦ Added OIDs to represent:

▪ Hardware certificate identifier (Identity provisioning)

▪ Certificate Extended Key Usage - SPDM Responder Authentication (Leaf certificate)

▪ Certificate Extended Key Usage - SPDM Requester Authentication (Leaf certificate)

▪ Mutable certificate identifier (Identity provisioning)

◦ Added SM2 to Base Asymmetric Algorithms and Key Exchange Protocols.

◦ Added SM3 to Base Hash Algorithms and Measurement Hash Algorithms.

◦ Added SM4 to AEAD Algorithms.

◦ Changed symbol "S" denoting signature size to "SigLen" throughout document.

◦ Removed potentially confusing mention of "mutual authentication" in PSK_EXCHANGE section.

◦ Add method to transfer large SPDM messages. See Large SPDM message transfer mechanism.

◦ Changed Measurement Summary Hash concatenation function inputs.

Security Protocol and Data Model (SPDM) Specification DSP0274

184 Work in Progress Version 1.2.0a

886 24 Bibliography

887 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.2.0a Work in Progress 185

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Advice
	2.2 Conventions
	2.2.1 Document conventions
	2.2.2 Reserved and unassigned values
	2.2.3 Byte ordering
	2.2.3.1 Hash byte ordering
	2.2.3.2 Encoded ASN.1 byte ordering

	2.2.4 SPDM data types
	2.2.5 Version encoding
	2.2.6 Notations
	2.2.7 Text or string encoding
	2.2.8 Deprecated material

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 SPDM message exchanges
	7.1 Security capability discovery and negotiation
	7.2 Identity authentication
	7.2.1 Identity provisioning
	7.2.1.1 Raw public keys

	7.2.2 Runtime authentication

	7.3 Firmware and configuration measurement
	7.4 Secure sessions
	7.5 Mutual authentication overview
	7.6 Notifications overview
	8 SPDM messaging protocol
	8.1 SPDM bits-to-bytes mapping
	8.2 Generic SPDM message format
	8.2.1 SPDM version

	8.3 SPDM request codes
	8.4 SPDM response codes
	8.5 SPDM request and response code issuance allowance
	8.6 Concurrent SPDM message processing
	8.7 Requirements for Requesters
	8.8 Requirements for Responders
	9 Timing requirements
	9.1 Timing measurements
	9.2 Timing specification table
	10 SPDM messages
	10.1 Capability discovery and negotiation
	10.1.1 Negotiated state preamble

	10.2 GET_VERSION request and VERSION response messages
	10.3 GET_CAPABILITIES request and CAPABILITIES response messages
	10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages
	10.5 Responder identity authentication
	10.6 Requester identity authentication
	10.6.1 Certificates and certificate chains

	10.7 GET_DIGESTS request and DIGESTS response messages
	10.8 GET_CERTIFICATE request and CERTIFICATE response messages
	10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages
	10.8.2 Leaf certificate

	10.9 CHALLENGE request and CHALLENGE_AUTH response messages
	10.9.1 CHALLENGE_AUTH signature generation
	10.9.2 CHALLENGE_AUTH signature verification
	10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

	10.9.3 Basic mutual authentication
	10.9.3.1 Mutual authentication message transcript

	10.10 Firmware and other measurements
	10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages
	10.11.1 Measurement block
	10.11.1.1 DMTF specification for the Measurement field of a measurement block
	10.11.1.2 Device mode field of a measurement block

	10.11.2 MEASUREMENTS signature generation
	10.11.3 MEASUREMENTS signature verification

	10.12 ERROR response message
	10.12.1 Standard body or vendor-defined header

	10.13 RESPOND_IF_READY request message format
	10.14 VENDOR_DEFINED_REQUEST request message
	10.15 VENDOR_DEFINED_RESPONSE response message
	10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages
	10.16.1 Session-based mutual authentication
	10.16.1.1 Specifying Requester certificate for Session-based mutual authentication

	10.17 FINISH request and FINISH_RSP response messages
	10.17.1 Transcript hash calculation rules

	10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages
	10.19 PSK_FINISH request and PSK_FINISH_RSP response messages
	10.20 HEARTBEAT request and HEARTBEAT_ACK response messages
	10.20.1 Heartbeat additional information

	10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages
	10.21.1 Session key update synchronization
	10.21.2 KEY_UPDATE transport allowances

	10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages
	10.22.1 Encapsulated request flow
	10.22.2 Optimized encapsulated request flow
	10.22.3 Triggering GET_ENCAPSULATED_REQUEST
	10.22.4 Additional constraints

	10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK response messages
	10.23.1 Additional information
	10.23.2 Allowance for encapsulated requests
	10.23.3 Certain error handling in encapsulated flows
	10.23.3.1 Response not ready
	10.23.3.2 Timeouts

	10.24 END_SESSION request and END_SESSION_ACK response messages
	10.25 Certificate Provisioning
	10.25.1 GET_CSR request and CSR response messages
	10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages

	10.26 Event mechanism
	10.26.1 SUBSCRIBE_EVENT_GROUP request and SUBSCRIBE_EVENT_GROUP_ACK response message
	10.26.2 GET_SUPPORTED_EVENT_GROUPS request and SUPPORTED_EVENT_GROUPS response message
	10.26.3 SEND_EVENT request and EVENT_ACK response message
	10.26.4 Event Instance ID

	10.27 Large SPDM message transfer mechanism
	10.27.1 CHUNK_SEND request and CHUNK_SEND_ACK response message
	10.27.2 CHUNK_GET request and CHUNK_RESPONSE response message
	10.27.3 Additional chunk transfer requirements

	11 Session
	11.1 Session handshake phase
	11.2 Application phase
	11.3 Session termination phase
	11.4 Simultaneous active sessions
	11.5 Records and session ID
	12 Key schedule
	12.1 DHE secret computation
	12.2 Transcript hash in key derivation
	12.3 TH1 definition
	12.4 TH2 definition
	12.5 Key schedule major secrets
	12.5.1 Request-direction handshake secret
	12.5.2 Response-direction handshake secret
	12.5.3 Requester-direction data secret
	12.5.4 Responder-direction data secret

	12.6 Encryption key and IV derivation
	12.7 finished_key derivation
	12.8 Deriving additional keys from the Export Master Secret
	12.9 Major secrets update
	13 Application data
	13.1 Nonce derivation
	14 General opaque data
	15 Signature generation
	15.1 Signing algorithms in extensions
	15.2 RSA and ECDSA signing algorithms
	15.3 EdDSA signing algorithms
	15.3.1 Ed25519 sign
	15.3.2 Ed448 sign

	15.4 SM2 signing algorithm
	16 Signature verification
	16.1 Signature verification algorithms in extensions
	16.2 RSA and ECDSA signature verification algorithms
	16.3 EdDSA signature verification algorithms
	16.3.1 Ed25519 verify
	16.3.2 Ed448 verify

	16.4 SM2 signature verification algorithm
	17 General ordering rules
	18 DMTF Event Types
	18.1 Event type details
	18.1.1 Measurement Event
	18.1.2 Event Lost

	19 ANNEX A (informative) TLS 1.3
	20 ANNEX B (normative) Device certificate example
	21 ANNEX C (informative) OID reference
	22 ANNEX D (informative) variable name reference
	23 ANNEX E (informative) change log
	23.1 Version 1.0.0 (2019-10-16)
	23.2 Version 1.1.0 (2020-07-15)
	23.3 Version 1.2.0 (Pending)
	24 Bibliography

