
1 Document Identifier: DSP0274

2 Date: 2023-10-08

3 Version: 1.1.3

4 Security Protocol and Data Model (SPDM)
Specification

5 Supersedes: 1.1.2

6 Document Class: Normative

7 Document Status: Published

8 Document Language: en-US

9 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

10 Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation

thereof in its product, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner

or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

11 For information about patents held by third parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

12 This document’s normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2023 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

2 Published Version 1.1.3

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

13 CONTENTS

1 Foreword . 6

1.1 Acknowledgments . 6

2 Introduction. 7

2.1 Conventions . 7

2.1.1 Document conventions . 7

2.1.2 Reserved and unassigned values . 7

2.1.3 Byte ordering . 7

2.1.4 Sizes and lengths . 7

2.1.5 SPDM data types. 7

2.1.6 Version encoding . 8

2.1.7 Notations . 8

3 Scope . 10

4 Normative references . 11

5 Terms and definitions . 13

6 Symbols and abbreviated terms. 17

7 SPDM message exchanges . 18

7.1 Security capability discovery and negotiation . 18

7.2 Identity authentication . 18

7.2.1 Identity provisioning. 19

7.2.2 Runtime authentication . 19

7.3 Firmware and configuration measurement . 19

7.4 Secure sessions. 19

7.5 Mutual authentication overview . 20

8 SPDM messaging protocol . 21

8.1 SPDM bits-to-bytes mapping . 23

8.2 Generic SPDM message format . 23

8.3 SPDM request codes . 24

8.4 SPDM response codes . 26

8.5 SPDM request and response code issuance allowance . 27

8.6 Concurrent SPDM message processing . 28

8.7 Requirements for Requesters . 29

8.8 Requirements for Responders . 29

9 Timing requirements. 30

9.1 Timing measurements . 30

9.2 Timing specification table. 30

10 SPDM messages . 35

10.1 Capability discovery and negotiation . 35

10.2 GET_VERSION request and VERSION response messages . 35

10.3 GET_CAPABILITIES request and CAPABILITIES response messages 38

10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages. 45

10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS . 64

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 3

10.5 Responder identity authentication . 65

10.6 Requester identity authentication. 67

10.6.1 Certificates and certificate chains . 67

10.7 GET_DIGESTS request and DIGESTS response messages . 68

10.8 GET_CERTIFICATE request and CERTIFICATE response messages . 69

10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE

messages . 72

10.8.2 Leaf certificate . 72

10.9 CHALLENGE request and CHALLENGE_AUTH response messages . 73

10.9.1 CHALLENGE_AUTH signature generation . 77

10.9.2 CHALLENGE_AUTH signature verification . 79

10.9.2.1 Request ordering and message transcript computation rules for M1 and M2. 80

10.9.3 Basic mutual authentication. 81

10.9.3.1 Mutual authentication message transcript. 83

10.10 Firmware and other measurements . 84

10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages 85

10.11.1 Measurement block . 89

10.11.1.1 DMTF specification for the Measurement field of a measurement block. 90

10.11.2 MEASUREMENTS signature generation. 91

10.11.3 MEASUREMENTS signature verification. 93

10.12 ERROR response message. 95

10.13 RESPOND_IF_READY request message format . 101

10.14 VENDOR_DEFINED_REQUEST request message . 102

10.15 VENDOR_DEFINED_RESPONSE response message . 104

10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF

specifications . 105

10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages. 105

10.16.1 Mutual authentication . 113

10.16.2 Specifying Requester certificate for mutual authentication . 113

10.17 FINISH request and FINISH_RSP response messages . 114

10.17.1 Transcript hash calculation rules . 117

10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages. 120

10.19 PSK_FINISH request and PSK_FINISH_RSP response messages . 126

10.20 HEARTBEAT request and HEARTBEAT_ACK response messages . 128

10.20.1 Heartbeat additional information . 129

10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages 129

10.21.1 Session key update synchronization . 130

10.21.2 KEY_UPDATE transport allowances . 133

10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response

messages. 136

10.22.1 Encapsulated request flow . 136

10.22.2 Optimized encapsulated request flow . 136

10.22.3 Triggering GET_ENCAPSULATED_REQUEST . 139

Security Protocol and Data Model (SPDM) Specification DSP0274

4 Published Version 1.1.3

10.22.4 Additional constraints . 140

10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK

response messages. 140

10.23.1 Additional information . 143

10.24 END_SESSION request and END_SESSION_ACK response messages 143

11 Session . 145

11.1 Session handshake phase . 145

11.2 Application phase . 146

11.3 Session termination phase . 146

11.4 Simultaneous active sessions . 146

11.5 Records and session ID . 147

12 Key schedule . 148

12.1 Transcript hash in key derivation . 150

12.2 TH1 definition. 150

12.3 TH2 definition. 151

12.4 Key schedule major secrets . 151

12.4.1 Request-direction handshake secret . 152

12.4.2 Response-direction handshake secret . 152

12.4.3 Requester-direction data secret . 152

12.4.4 Responder-direction data secret . 152

12.5 Encryption key and IV derivation . 153

12.6 finished_key derivation . 153

12.7 Deriving additional keys from the Export Master Secret . 154

12.8 Major secrets update . 154

13 Application data . 155

13.1 Nonce derivation . 155

14 ANNEX A (informative) TLS 1.3 . 156

15 ANNEX B (normative) Leaf certificate example . 157

16 ANNEX C (informative) Change log . 159

16.1 Version 1.0.0 (2019-10-16) . 159

16.2 Version 1.1.0 (2020-07-15) . 159

16.3 Version 1.1.1 (2021-05-12) . 159

16.4 Version 1.1.2 (2022-03-09) . 160

16.5 Version 1.1.3 (2023-10-08) . 160

17 Bibliography . 162

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 5

14 1 Foreword

15 The Security Protocols and Data Models (SPDM) Working Group of DMTF prepared the Security Protocol and Data

Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry members that promotes

enterprise and systems management and interoperability. For information about DMTF, see https://www.dmtf.org.

16 1.1 Acknowledgments

17 DMTF acknowledges the following individuals for their contributions to this document:

18 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Lee Ballard — Dell Technologies

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yuval Itkin — Mellanox Technologies

• Theo Koulouris — Hewlett Packard Enterprise

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Edward Newman — Hewlett Packard Enterprise

• Alexander Novitskiy — Intel Corporation

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

Security Protocol and Data Model (SPDM) Specification DSP0274

6 Published Version 1.1.3

https://www.dmtf.org/

19 2 Introduction

20 The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges between devices over a variety of transport and physical media. The description of

message exchanges includes authentication of hardware identities, measurement for firmware identities, and session

key exchange protocols to enable confidentiality and integrity protected data communication. The SPDM enables

efficient access to low-level security capabilities and operations. Other mechanisms, including non-SPDM- and DMTF-

defined mechanisms, can use the SPDM.

21 2.1 Conventions

22 The following conventions apply to all SPDM specifications.

23 2.1.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

24 2.1.2 Reserved and unassigned values

25 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric ranges

are reserved for future definition by DMTF.

26 Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

27 2.1.3 Byte ordering

28 Unless otherwise specified, for all SPDM specifications byte ordering of multibyte numeric fields or multibyte bit fields

is “little endian” (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

29 2.1.4 Sizes and lengths

30 Unless otherwise specified, all sizes and lengths are in units of bytes.

31 2.1.5 SPDM data types

32 The SPDM data types table lists the abbreviations and descriptions for common data types that SPDM message fields

and data structure definitions use. These definitions follow DSP0240.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 7

33 SPDM data types

Data type Interpretation

ver8
Eight-bit encoding of the SPDM version number. Version encoding defines the

encoding of the version number.

bitfield8 Byte with eight bit fields. Each bit field can be separately defined.

bitfield16 Two-byte word with 16-bit fields. Each bit field can be separately defined.

34 2.1.6 Version encoding

35 The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major

Major version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification breaks backward compatibility.

Minor

Minor version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification maintains backward compatibility.

36 EXAMPLE:

37 Version 3.7 → 0x37

38 Version 1.0 → 0x10

39 Version 1.2 → 0x12

40 An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 only, but the

available functionality is limited to what SPDM specification Version 1.0 defines.

41 An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

42 The detailed version encoding that the VERSION response message returns contains an additional byte that indicates

specification bug fixes or development versions. See the Successful VERSION response message format table.

43 2.1.7 Notations

44 SPDM specifications use the following notations:

Security Protocol and Data Model (SPDM) Specification DSP0274

8 Published Version 1.1.3

Notation Description

M:N

In field descriptions, this notation typically represents a range of byte offsets

starting from byte M and continuing to and including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit ([LSb])

offset = 0.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the

right.

1b
A lowercase b after a number consisting of 0 s and 1 s indicates that the

number is in binary format.

0x12A Hexadecimal, indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

{ Payload }

Used mostly in figures, this notation indicates the payload specified in the

enclosing curly brackets is encrypted and/or authenticated by the keys derived

from one or more major secrets. The specific secret used is described

throughout this specification. For example, { HEARTBEAT } shows that the

Heartbeat message is encrypted and/or authenticated by the keys derived

from one or more major secrets.

{ Payload }::[[SX]]

Used mostly in figures, this notation indicates the payload specified in the

enclosing curly brackets is encrypted and/or authenticated by the keys derived

from major Secret X.

For example, { HEARTBEAT }::[[S2]] shows that the Heartbeat message is

encrypted and/or authenticated by the keys derived from major secret S2 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 9

45 3 Scope

46 This specification describes how to use messages, data objects, and sequences to exchange messages between two

devices over a variety of transports and physical media. This specification contains the message exchanges, sequence

diagrams, message formats, and other relevant semantics for such message exchanges, including authentication of

hardware identities and firmware measurement.

47 Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

Security Protocol and Data Model (SPDM) Specification DSP0274

10 Published Version 1.1.3

48 4 Normative references

49 The following documents are indispensable for the application of this specification. For dated or versioned references,

only the edition cited, including any corrigenda or DMTF update versions, applies. For references without a date or

version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions)

applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2018 (8th

edition)

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0004_3.0.1.pdf

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0223_1.0.1.pdf

• DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/

DSP0236_1.3.0.pdf

• DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0239_1.6.0.pdf

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0240_1.0.0.pdf

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification, https://www.dmtf.org/

dsp/DSP0275

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/

documents/DSP1001_1.2.0.pdf

• IETF RFC4716, The Secure Shell (SSH) Public Key File Format, November 2006

• IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

• IETF RFC5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, May

2008

• IETF RFC7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security

(DTLS), June 2014

• IETF RFC7919, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS),

August 2016

• IETF RFC8446, The Transport Layer Security (TLS) Protocol Version 1.3, August 2018

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

• TCG Algorithm Registry, Family “2.0”, Level 00 Revision 01.27, February 7, 2018

• NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

(GCM) and GMAC, November 2007

• IETF RFC8439, ChaCha20 and Poly1305 for IETF Protocols, June 2018

• ASN.1 — ISO-822-1-4, DER — ISO-8825-1

◦ ITU-T X.680, X.681, X.682, X.683, X.690, 08/2015

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 11

https://www.sae.org/works/committeeResources.do?resourceID=642585
https://www.sae.org/works/committeeResources.do?resourceID=642585
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc8446
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://tools.ietf.org/html/rfc8439
https://www.itu.int/rec/T-REC-X.680-X.693-201508-S/en

• X.509 — ISO-9594-8

◦ ITU-T X.509, 10/2012

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-4 Digital Signature

Standard (DSS)

◦ Appendix D: Recommended Elliptic Curves for Federal Government Use in FIPS PUB 186-4 Digital Signature

Standard (DSS)

• RSA

◦ Table 3 in TCG Algorithm Registry Family “2.0” Level 00 Revision 01.22, February 9, 2015

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

• Transport Layer Security 1.3

◦ TLS 1.3 RFC 8446

Security Protocol and Data Model (SPDM) Specification DSP0274

12 Published Version 1.1.3

https://web.archive.org/web/20150616113008/https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Algorithm_Registry_Rev_1.22.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://tools.ietf.org/html/rfc8446

50 5 Terms and definitions

51 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines those

terms.

52 The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), “may”, “need

not” (“not required”), “can” and “cannot” in this document are to be interpreted as described in ISO/IEC Directives, Part

2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional cases when the

preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies

additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English

meaning.

53 The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as described in ISO/

IEC Directives, Part 2, Clause 6.

54 The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)” do not contain normative

content. Notes and examples are always informative elements.

55 The terms that DSP0004, DSP0223, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this document.

56 This specification uses these terms:

Term Definition

application data

Data that is specific to the application and whose definition and format is outside the scope

of this specification. Application data usually exist at the application layer, which is, in

general, the layer above SPDM and the transport layer. Examples of data that could be

application data include: messages carried as DMTF MCTP payloads; Internet traffic (PCIe

transaction layer packets (TLPs)); camera images and video (MIPI CSI-2 packets); video

display stream (MIPI DSI-2 packets) and touchscreen data (MIPI I3C Touch).

authentication Process of determining whether an entity is who or what it claims to be.

authentication initiator Endpoint that initiates the authentication process by challenging another endpoint.

byte Eight-bit quantity. Also known as an octet.

certificate
Digital form of identification that provides information about an entity and certifies

ownership of a particular asymmetric key-pair.

certificate authority (CA) Trusted entity that issues certificates.

certificate chain
Series of two or more certificates. Each certificate is signed by the preceding certificate in the

chain.

component Physical entity similar to the PCI Express specification’s definition.

device Physical entity such as a network controller or a fan.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 13

Term Definition

DMTF

Formerly known as the Distributed Management Task Force, DMTF creates open

manageability standards that span diverse emerging and traditional information technology

(IT) infrastructures, including cloud, virtualization, network, servers, and storage. Member

companies and alliance partners worldwide collaborate on standards to improve the

interoperable management of IT.

endpoint
Logical entity that communicates with other endpoints over one or more transport

protocols.

intermediate certificate Certificate that is neither a root certificate nor a leaf certificate.

leaf certificate Last certificate in a certificate chain.

measurement Representation of firmware/software or configuration data on an endpoint.

message See SPDM message.

message body Portion of an SPDM message that carries additional data.

message originator Original transmitter, or source, of an SPDM message.

message transcript

The concatenation of a sequence of messages in the order in which they are sent and

received by an endpoint. The final message included in the message transcript may be

truncated to allow inclusion of a signature in that message which is computed over the

message transcript. If an endpoint is communicating with multiple peer endpoints

concurrently, the message transcripts for the peers are accumulated separately and

independently.

most significant byte (MSB) Highest order byte in a number consisting of multiple bytes.

Negotiated State

Set of parameters that represent the state of the communication between a corresponding

pair of Requester and Responder at the successful completion of the

NEGOTIATE_ALGORITHMS messages.

These parameters may include values provided in VERSION , CAPABILITIES and

ALGORITHMS messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to

continue or preserve communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

nonce

Number that is unpredictable to entities other than its generator. The probability of the same

number occurring more than once is negligible. Nonce may be generated by combining a

pseudo random number of at least 64 bits, optionally concatenated with a monotonic

counter of size suitable for the application.

opaque data

Opaque data fields transfer data that is outside of the scope of this specification. The

semantics and usage of this data are implementation specific and also outside of the scope

of this specification.

Security Protocol and Data Model (SPDM) Specification DSP0274

14 Published Version 1.1.3

Term Definition

payload

Information-bearing fields of a message. These fields are separate from the fields and

elements, such as address fields, framing bits, checksums, and so on, that transport the

message from one point to another. In some instances, a field can be both a payload field

and a transport field.

physical transport binding

Specifications that define how a base messaging protocol is implemented on a particular

physical transport type and medium, such as SMBus/I2C, PCI Express™ Vendor Defined

Messaging, and so on.

record A record is a unit or chunk of data that is either encrypted and/or authenticated.

Requester
Original transmitter, or source, of an SPDM request message. It is also the ultimate receiver,

or destination, of an SPDM response message.

Responder
Ultimate receiver, or destination, of an SPDM request message. It is also the original

transmitter, or source of an SPDM response message.

root certificate First certificate in a certificate chain, which is self-signed.

Security Protocols and Data Models (SPDM)

Working group under DMTF that is responsible for the SPDM Specification, which focuses on

enabling authentication, attestation, and key exchange to enhance infrastructure security. In

addition to developing the core SPDM Specification, the group collaborates with other

standards organizations and developers to support alignment across the industry in the

areas of component authentication, confidentiality, and integrity.

session keys
Session Keys are any secrets, derived cryptographic keys, or any cryptographic information

bound to the session.

Session-Secrets-Exchange

This term denotes any SPDM request and its corresponding response that initiates a session

and provides initial cryptographic exchange. Examples of such requests are KEY_EXCHANGE

and PSK_EXCHANGE .

Session-Secrets-Finish

This term denotes any SPDM request and its corresponding response that finalizes a session

setup and provides the final exchange of cryptographic or other information before

application data can be securely transmitted. Examples of such requests are FINISH and

PSK_FINISH .

secure session
A secure session is a session that provides either or both of encryption or message

authentication for communicating data over a transport.

SPDM message Unit of communication in SPDM communications.

SPDM message payload

Portion of the message body of an SPDM message. This portion of the message is separate

from those fields and elements that identify the SPDM version, the SPDM request and

response codes, and the two parameters.

SPDM request message
Message that is sent to an endpoint to request a specific SPDM operation. A corresponding

SPDM response message acknowledges receipt of an SPDM request message.

SPDM response message
Message that is sent in response to a specific SPDM request message. This message includes

a Response Code field that indicates whether the request completed normally.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 15

https://www.dmtf.org/standards/spdm

Term Definition

trusted computing base (TCB)

Set of all hardware, firmware, and/or software components that are critical to its security, in

the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize the security

properties of the entire system. By contrast, parts of a computer system outside the TCB shall

not be able to misbehave in a way that would leak any more privileges than are granted to

them in accordance to the security policy.

Reference: https://en.wikipedia.org/wiki/Trusted_computing_base

Security Protocol and Data Model (SPDM) Specification DSP0274

16 Published Version 1.1.3

https://en.wikipedia.org/wiki/Trusted_computing_base

57 6 Symbols and abbreviated terms

58 The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

59 The following additional abbreviations are used in this document.

Abbreviation Definition

AEAD Authenticated Encryption with Associated Data

CA certificate authority

DMTF Formerly the Distributed Management Task Force

MAC Message Authentication Code

MSB most significant byte

SPDM Security Protocol and Data Model

TCB trusted computing base

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 17

60 7 SPDM message exchanges

61 The message exchanges defined in this specification are between two endpoints and are performed and exchanged

through sending and receiving of SPDM messages defined in SPDM messages. The SPDM message exchanges are

defined in a generic fashion that allows the messages to be communicated across different physical mediums and

over different transport protocols.

62 The specification-defined message exchanges enable Requesters to:

• Discover and negotiate the security capabilities of a Responder.

• Authenticate the identity of a Responder.

• Retrieve the measurements of a Responder.

• Securely establish cryptographic session keys to construct a secure communication channel for the transmission

or reception of application data.

63 These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. The following clauses provide a brief overview of each message exchange capability. Some

message exchange capabilities are based on the security model that the USB Authentication Specification Rev 1.0 with

ECN and Errata through January 7, 2019 defines.

64 7.1 Security capability discovery and negotiation

65 This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that are defined in this specification.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the

Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

66 7.2 Identity authentication

67 In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

68 At a high-level, the authentication of the identity of a Responder involves these processes:

• Identity provisioning

• Runtime authentication

Security Protocol and Data Model (SPDM) Specification DSP0274

18 Published Version 1.1.3

69 7.2.1 Identity provisioning

70 Identity provisioning is the process that device vendors follow during or after hardware manufacturing. A trusted root

certificate authority (CA) generates a root certificate (RootCert) that is provisioned to the authentication initiator. The

authentication initiator uses this certificate to verify the validity of certificate chains. A device carries a certificate

chain, which has the RootCert as the root of the certificate chain and a device certificate (DeviceCert) as the leaf

certificate of the certificate chain. The device certificate contains the public key that corresponds to the device private

key.

71 Through the certificate chain, the root CA indirectly endorses the per-device public/private key pair in the

DeviceCert , where the private key is provisioned to or generated by the endpoint.

72 Alternatively to certificate chains, the vendor may provision the raw public key of the Responder to the Requester in a

trusted environment; for example, during the secure manufacturing process. In this case, trust of the public key of the

Responder is established without the need for a certificate-based public key infrastructure.

73 The format of the provisioned public key is out of scope of this specification. Vendors can use proprietary formats or

public key formats that other standards define, such as RFC7250 and RFC4716.

74 7.2.2 Runtime authentication

75 Runtime authentication is the process by which an authentication initiator, or Requester, interacts with a Responder in

a running system. The authentication initiator can retrieve the certificate chains from the Responder and send a

unique challenge to the Responder. The Responder uses the private key to sign the challenge. The authentication

initiator verifies the signature by using the public key of the Responder, and any intermediate public keys within the

certificate chain by using the root certificate as the trusted anchor.

76 If the public key of the Responder was provisioned to the Requester in a trusted environment, the authentication

initiator sends a unique challenge to the Responder. The Responder signs the challenge with the private key. The

authentication initiator verifies the signature by using the public key of the Responder. The transport layer should

handle device identification, which is outside the scope of this specification.

77 7.3 Firmware and configuration measurement

78 A measurement is a representation of firmware/software or configuration data on an endpoint. A measurement is

typically a cryptographic hash value of the data, or the raw data itself. The endpoint optionally binds a measurement

with the endpoint identity through the use of digital signatures. This binding enables an authentication initiator to

establish the identity and measurement of the firmware/software or configuration running on the endpoint.

79 7.4 Secure sessions

80 Many devices exchange data with other devices that may require protection. In this specification, the device-specific

data that is communicated is generically referred to as application data. The protocol of the application data usually

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 19

exists at a higher layer and it is outside the scope of this specification. This protocol of the application data usually

allows for encrypted and/or authenticated data transfer.

81 This specification provides a method to perform a cryptographic key exchange such that the protocol of the

application data can use the exchanged keys to provide a secure channel of communication by using encryption and

message authentication. This cryptographic key exchange provides either Responder-only authentication or mutual

authentication which can be considered equivalent to Runtime authentication. For more details, see the Session

clause.

82 Lastly, but not least, many SPDM requests and their corresponding responses can also be afforded the same

protection. See the SPDM request and response messages validity table and SPDM request and response code

issuance allowance clause for more details.

83 The SPDM messaging protocol flow gives a very high-level view of when the secure session actually starts.

84 7.5 Mutual authentication overview

85 The ability for a Responder to verify the authenticity of the Requester is called mutual authentication. Several

mechanisms in this specification are detailed to provide mutual authentication capabilities. The cryptographic means

to verify the identity of the Requester is the same as verifying the identity of the Responder. The Identity

authentication discusses identity in regards to the Responder but the details apply to the Requester as well.

86 In general, when this specification places requirements or recommendations for Responders in the context of identity,

those same rules also apply to Requesters in the context of mutual authentication. The various clauses in this

specification will provide more details.

Security Protocol and Data Model (SPDM) Specification DSP0274

20 Published Version 1.1.3

87 8 SPDM messaging protocol

88 The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to with

an SPDM response message as defined in this specification unless otherwise stated in this specification.

89 The SPDM messaging protocol flow depicts the high-level request-response flow diagram for SPDM. An endpoint

that acts as the Requester sends an SPDM request message to another endpoint that acts as the Responder, and the

Responder returns an SPDM response message to the Requester.

90 SPDM messaging protocol flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 21

91

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

If necessary

ResponderRequester

GET_VERSION

VERSION

CAPABILITIES

If supported

CHALLENGE

CHALLENGE_AUTH

GET_CERTIFICATE

CERTIFICATE

If supported

MEASUREMENTS

KEY_EXCHANGE

GET_MEASUREMENTS

FINISH

FINISH_RSP

Secure Session

Application Data

KEY_EXCHANGE_RSP

Mutual Authentication

GET_CAPABILITIES

If supported

92 All SPDM request-response messages share a common data format, that consists of a four-byte message header and

zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages details each of the request and response messages.

93 The Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS request messages before

issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS may be saved by the requester so that after reset the requester may skip these requests.

Security Protocol and Data Model (SPDM) Specification DSP0274

22 Published Version 1.1.3

94 8.1 SPDM bits-to-bytes mapping

95 All SPDM fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned

byte in monotonically decreasing order until the least numerically assigned byte of that field. The following two

figures illustrate this mapping.

96 One-byte field bit map

97

Byte 1

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A One-Byte Field

98 Two-byte field bit map

99

Byte 2

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A Two-Byte Field

Byte 3

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

100 8.2 Generic SPDM message format

101 The Generic SPDM message field definitions table defines the fields that constitute a generic SPDM message,

including the message header and payload.

102 Generic SPDM message field definitions

Byte Bits Length (bits) Field Description

0 [7:4] 4 SPDM Major Version

The major version of the

SPDM Specification. An

endpoint shall not

communicate by using an

incompatible SPDM version

value. See Version

encoding.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 23

Byte Bits Length (bits) Field Description

0 [3:0] 4 SPDM Minor Version

The minor version of the

SPDM Specification. A

specification with a given

minor version extends a

specification with a lower

minor version as long as

they share the major

version. See Version

encoding.

1 [7:0] 8 Request Response Code

The request message code

or response code, which

Table 4 and Table 5

enumerate. 0x00 through

0x7F represent response

codes and 0x80 through

0xFF represent request

codes. In request

messages, this field is

considered the request

code. In response

messages, this field is

considered the response

code.

2 [7:0] 8 Param1

The first one-byte

parameter. The contents of

the parameter is specific to

the Request Response

Code .

3 [7:0] 8 Param2

The second one-byte

parameter. The contents of

the parameter is specific to

the Request Response

Code .

4
See the

description.
Variable SPDM message payload

Zero or more bytes that are

specific to the Request

Response Code .

103 8.3 SPDM request codes

104 The SPDM request codes table defines the SPDM request codes. The Implementation requirement column indicates

requirements on the Requester.

105 All SPDM-compatible implementations shall use the following SPDM request codes.

106 If an ERROR response is sent for unsupported request codes, the ErrorCode shall be UnsupportedRequest .

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Published Version 1.1.3

107 SPDM request codes

Request Code value Implementation requirement Message format

GET_DIGESTS 0x81 Optional
GET_DIGESTS request message

format

GET_CERTIFICATE 0x82 Optional
GET_CERTIFICATE request message

format

CHALLENGE 0x83 Optional CHALLENGE request message format

GET_VERSION 0x84 Required
GET_VERSION request message

format

GET_MEASUREMENTS 0xE0 Optional
GET_MEASUREMENTS request

message format

GET_CAPABILITIES 0xE1 Required
GET_CAPABILITIES request message

format

NEGOTIATE_ALGORITHMS 0xE3 Required
NEGOTIATE_ALGORITHMS request

message format

KEY_EXCHANGE 0xE4 Optional
KEY_EXCHANGE request message

format

FINISH 0xE5 Optional FINISH request message format

PSK_EXCHANGE 0xE6 Optional
PSK_EXCHANGE request message

format

PSK_FINISH 0xE7 Optional PSK_FINISH request message format

HEARTBEAT 0xE8 Optional HEARTBEAT request message format

KEY_UPDATE 0xE9 Optional
KEY_UPDATE request message

format

GET_ENCAPSULATED_REQUEST 0xEA Optional
GET_ENCAPSULATED_REQUEST

request message format

DELIVER_ENCAPSULATED_RESPONSE 0xEB Optional
DELIVER_ENCAPSULATED_RESPONSE

request message format

END_SESSION 0xEC Optional
END_SESSION request message

format

RESPOND_IF_READY 0xFF Required
RESPOND_IF_READY request

message format

VENDOR_DEFINED_REQUEST 0xFE Optional
VENDOR_DEFINED_REQUEST

request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 25

Request Code value Implementation requirement Message format

Reserved

0x80 ,

0x85 - 0xDF ,

0xE2 ,

0xED - 0xFD

SPDM implementations compatible

with this version shall not use the

reserved request codes.

108 8.4 SPDM response codes

109 The Request Response Code field in the SPDM response message shall specify the appropriate response code for a

request. All SPDM-compatible implementations shall use the following SPDM response codes.

110 On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of an SPDM operation, the ERROR response message should be returned.

111 The SPDM response codes table defines the response codes for SPDM. The Implementation requirement column

indicates requirements on the Responder.

112 SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Optional
Successful DIGESTS response

message format

CERTIFICATE 0x02 Optional
Successful CERTIFICATE response

message format

CHALLENGE_AUTH 0x03 Optional
Successful CHALLENGE_AUTH

response message format

VERSION 0x04 Required
Successful VERSION response

message format

MEASUREMENTS 0x60 optional
Successful MEASUREMENTS

response message format

CAPABILITIES 0x61 Required
Successful CAPABILITIES

response message format

ALGORITHMS 0x63 Required
Successful ALGORITHMS

response message format

KEY_EXCHANGE_RSP 0x64 Optional
Successful KEY_EXCHANGE_RSP

response message format

FINISH_RSP 0x65 Optional
Successful FINISH_RSP response

message format

PSK_EXCHANGE_RSP 0x66 Optional
PSK_EXCHANGE_RSP response

message format

Security Protocol and Data Model (SPDM) Specification DSP0274

26 Published Version 1.1.3

Response Value Implementation requirement Message format

PSK_FINISH_RSP 0x67 Optional
Successful PSK_FINISH_RSP

response message format

HEARTBEAT_ACK 0x68 Optional
HEARTBEAT_ACK response

message format

KEY_UPDATE_ACK 0x69 Optional
KEY_UPDATE_ACK response

message format

ENCAPSULATED_REQUEST 0x6A Optional
ENCAPSULATED_REQUEST

response message format

ENCAPSULATED_RESPONSE_ACK 0x6B Optional
ENCAPSULATED_RESPONSE_ACK

response message format

END_SESSION_ACK 0x6C Optional
END_SESSION_ACK response

message format

VENDOR_DEFINED_RESPONSE 0x7E Optional
VENDOR_DEFINED_RESPONSE

response message format

ERROR 0x7F
ERROR response message

format

Reserved

0x00 ,

0x05 - 0x5F ,

0x62 ,

0x6D - 0x7D

SPDM implementations compatible with

this version shall not use the reserved

response codes.

113 8.5 SPDM request and response code issuance allowance

114 The SPDM request and response messages validity table describes the conditions under which a request and

response can be issued.

115 The Session column describes whether the respective request and response can be sent in a session. If the value is

“Allowed”, the issuer of the request and response shall be able to send it in a secure session; thereby, affording them

the protection of a secure session. If the Session column value is Prohibited , the issuer shall be prohibited from

sending the respective request and response in a secure session.

116 The Outside of a session column indicates which requests and responses are allowed to be sent free and

independent of a session; thereby lacking the protection of a secure session. An “Allowed” in this column indicates

that the respective request and response shall be able to be sent outside the context of a secure session. Likewise, a

“Prohibited” in this column shall prohibit the issuer from sending the respective request or response outside the

context of a session.

117 A request and its corresponding response can have the Allowed value in both the Session and Outside of a session

columns, in which case, they can be sent and received in both scenarios but may have additional restrictions. See the

respective request and response clause for further details.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 27

118 A request and its corresponding response that has Allowed value in the Session and Prohibited in the Outside of

a session columns are commands used by the session. These commands only operate on the session that they were

sent under, which is outside of the SPDM specification. The session ID is implicit from the session used to transmit the

commands.

119 Finally, the Session phases column describes which phases of a session the respective request and response shall be

issued when they are allowed to be issued in a session.

120 For details, see the Session clause.

121 SPDM request and response messages validity

Request Response Session
Outside of a

session
Session phases

GET_MEASUREMENT MEASUREMENT Allowed Allowed Application Phase

FINISH FINISH_RSP Allowed Conditional (*) Session Handshake

PSK_FINISH PSK_FINISH_RSP Allowed Allowed Session Handshake

HEARTBEAT HEARTBEAT_ACK Allowed Prohibited Application Phase

KEY_UPDATE KEY_UPDATE_ACK Allowed Prohibited Application Phase

END_SESSION END_SESSION_ACK Allowed Prohibited Application Phase

Not Applicable ERROR Allowed Allowed All Phases

GET_ENCAPSULATED_REQUEST ENCAPSULATED_REQUEST Allowed Allowed All Phases

DELIVER_ENCAPSULATED_RESPONSE ENCAPSULATED_RESPONSE_ACK Allowed Allowed All Phases

VENDOR_DEFINED_REQUEST VENDOR_DEFINED_RESPONSE Allowed Allowed Application Phase

All others All others Prohibited Allowed Not Applicable

122 (*) Prohibited when HANDSHAKE_IN_THE_CLEAR_CAP = 0 , Allowed when HANDSHAKE_IN_THE_CLEAR_CAP = 1 .

123 For ERROR response in session handshake or application phase of a session, the Requester is only allowed in certain

situations to send the ERROR response.

124 8.6 Concurrent SPDM message processing

125 This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

126 If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

Security Protocol and Data Model (SPDM) Specification DSP0274

28 Published Version 1.1.3

127 8.7 Requirements for Requesters

128 A Requester shall not have multiple outstanding requests to the same Responder, with the following exception: as

addressed in GET_VERSION request and VERSION response messages, a Requester may issue a GET_VERSION to a

Responder to restart the protocol due to an internal error or reset, even if the Requester has existing outstanding

requests to the same Responder.

129 If the Requester has sent a request to a Responder and wants to send a subsequent request to the same Responder,

then the Requester shall wait to send the subsequent request until after the Requester completes one of the following

actions:

• Receives the response from the Responder for the outstanding request.

• Times out waiting for a response.

• Receives an indication, from the transport layer, that transmission of the request message failed.

• The Requester encounters an internal error or reset.

130 A Requester may send simultaneous request messages to different Responders.

131 8.8 Requirements for Responders

132 A Responder is not required to process more than one request message at a time.

133 A Responder that is not ready to accept a new request message shall either respond with an ERROR response

message with ErrorCode=Busy or silently discard the request message.

134 If a Responder is working on a request message from a Requester, the Responder may respond with

ErrorCode=Busy .

135 If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 29

136 9 Timing requirements

137 The Timing specification for SPDM messages table shows the timing specifications for Requesters and Responders.

138 If the Requester does not receive a response within T1 or T2 time accordingly, the Requester may retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

Because a retried message is identical to the first, a retried message shall not be used in transcript hash calculations.

139 If the transport is not reliable, then the Responder should support retry by identifying whether a received request is a

retried one or a new one. If the Responder supports retry, then the response to a retried request shall be identical to

the original response. If the transport is reliable, then the Responder may support retry.

140 The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) may retry, but

that is outside of the SPDM specification.

141 9.1 Timing measurements

142 A Requester shall measure timing parameters, applicable to it, from the end of a successful transmission of an SPDM

request to the beginning of the reception of the corresponding SPDM response. With the exception of RDT , a

Responder shall measure timing parameters, applicable to it, from the end of the reception of the SPDM request to

the beginning of transmission of the response. The requirement assumes that the Responder has immediate access to

the transport.

143 9.2 Timing specification table

144 The Ownership column in the Timing specification for SPDM messages table specifies whether the timing parameter

applies to the Responder or Requester.

145 Timing specification for SPDM messages

Security Protocol and Data Model (SPDM) Specification DSP0274

30 Published Version 1.1.3

Timing parameter Ownership Value Units Description

RTT Requester See the description. µs

Worst case round-trip transport

timing.

The maximum value shall be the

worst case total time for the

complete transmission and

delivery of an SPDM message

round trip at the transport

layer(s). The actual value for this

parameter is transport- or

media-specific. Both the actual

value and how an endpoint

obtains this value are outside

the scope of this specification.

ST1 Responder 100,000 µs

Shall be the maximum amount

of time the Responder has to

provide a response to requests

that do not require

cryptographic processing, such

as the GET_CAPABILITIES ,

GET_VERSION , or

NEGOTIATE_ALGORITHMS

request messages.

T1 Requester RTT+ST1 µs

Shall be the minimum amount

of time the Requester shall wait

before issuing a retry for

requests that do not require

cryptographic processing.

For details, see ST1 .

CT Requester and Responder 2 CTExponent µs

CTExponent is reported in

GET_CAPABILITIES and

CAPABILITIES messages.

This timing parameter shall be

the maximum amount of time

the endpoint has to provide any

response requiring

cryptographic processing, such

as the GET_MEASUREMENTS or

CHALLENGE request messages.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 31

Timing parameter Ownership Value Units Description

T2 Requester RTT+CT µs

Shall be the minimum amount

of time the Requester shall wait

before issuing a retry for

requests that require

cryptographic processing.

For details, see CT .

RDT Responder 2 RDTExponent µs

Recommended additional

amount of time, in

microseconds that the

Responder needs to complete

the requested cryptographic

operation. When the Responder

cannot complete cryptographic

processing response within the

CT time, it shall provide

RDTExponent as part of the

ERROR response. See the

ResponseNotReady extended

error data table for the

RDTExponent value.

For details, see

ErrorCode=ResponseNotReady

in the ResponseNotReady

extended error data table. An

SPDM responder measures the

RDT value from the end of the

transmission of the ERROR

message of

ErrorCode=ResponseNotReady ,

to the reception of the next

RESPOND_IF_READY request

message.

Security Protocol and Data Model (SPDM) Specification DSP0274

32 Published Version 1.1.3

Timing parameter Ownership Value Units Description

WT Requester RDT µs

Amount of time that the

Requester should wait before

issuing the RESPOND_IF_READY

request message.

The Requester shall measure

this timing parameter from the

reception of the ERROR

response to the transmission of

RESPOND_IF_READY request.

The Requester can include the

transmission time of the ERROR

from the Responder to

Requester as time spent waiting

for WT to expire. For example,

if a Responder indicates WT is

two seconds and the ERROR

response takes one second to

transport to the Requester, the

Requester only needs to wait an

additional one second upon

reception of the ERROR

response.

For details, see RDT .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 33

Timing parameter Ownership Value Units Description

WT Max Requester (RDT*RDTM)-RTT µs

Maximum wait time the

Requester has to issue

RESPOND_IF_READY request

unless the Requester issued a

successful RESPOND_IF_READY

request message earlier.

After this time the Responder is

allowed to drop the response.

The Requester shall take into

account the transmission time

of the ERROR from the

Responder to Requester when

calculating WT Max .

The RDTM value appears in the

ResponseNotReady extended

error data.

The Responder should ensure

that WT Max does not result in

less than WT in determination

of RDTM .

For details, see

ErrorCode=ResponseNotReady

in the ResponseNotReady

extended error data table.

HeartbeatPeriod Requester and Responder Variable s

See HEARTBEAT request and

HEARTBEAT_ACK response for

detail.

Security Protocol and Data Model (SPDM) Specification DSP0274

34 Published Version 1.1.3

146 10 SPDM messages

147 SPDM messages can be divided into the following categories, supporting different aspects of security exchanges

between a Requester and Responder:

• Capability discovery and negotiation

• Responder identity authentication

• Firmware measurements

• Key agreement for secure channel establishment

148 10.1 Capability discovery and negotiation

149 All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS .

150 The Capability discovery and negotiation flow shows the high-level request-response flow and sequence for the

capability discovery and negotiation:

151 Capability discovery and negotiation flow

152

Selected
cryptographic
algorithm set

Supported
cryptographic
algorithm set

ResponderRequester

1. The Requester sends a
GET_VERSION request
message.

2. The Requester sends a
GET_CAPABILITIES request
message.

3. Determine device capability
and feature support.

4. The Requester sends a

NEGOTIATE_ALGORITHMS
request message to advertise
the supported algorithms.

5. The Requester uses the
selected cryptographic
algorithm set for all following
exchanges, until the next
GET_VERSION or the next
reset.

1. The Responder
sends a VERSION
response message.

2. The Responder
sends a
CAPABILITIES
response message.

3. The Responder
selects the algorithm
set and sends a
ALGORITHMS
response message.

Measurement
support,

authentication
support,

timeout, etc.

NEGOTIATE_ALGORITHMS

GET_CAPABILITIES

CAPABILITIES

GET_VERSION

VERSION

ALGORITHMS

153 10.2 GET_VERSION request and VERSION response messages

154 This request message shall retrieve the SPDM version of an endpoint. The GET_VERSION request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 35

table shows the GET_VERSION request message format and the Successful VERSION response message format table

shows the VERSION response message format.

155 In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with all

earlier versions.

156 The Requester shall begin the discovery process by sending a GET_VERSION request message with major version

0x1 . All Responders shall always support the GET_VERSION request message with major version 0x1 and provide a

VERSION response containing all supported versions, as the GET_VERSION request message format table describes.

157 The Requester shall consult the VERSION response to select a common supported version, which is typically the

latest supported common version. The Requester shall use the selected version in all future communication of other

requests. A Requester shall not issue other requests until it receives a successful VERSION response and identifies a

common version that both sides support. A Responder shall not respond to the GET_VERSION request message an

ERROR message except for ErrorCode s specified in this clause.

158 A Requester can issue a GET_VERSION request message to a Responder at any time, which is as an exception to

Requirements for Requesters to allow for scenarios where a Requester shall restart the protocol due to an internal

error or reset.

159 After receiving a GET_VERSION request, the Responder shall cancel all previous requests from the same Requester. All

active sessions between the Requester and the Responder are terminated, i.e., information (such as session keys,

session IDs) for those sessions should not be used anymore. Additionally, this message shall clear or reset the

previously Negotiated State, if any, in both the Requester and its corresponding Responder.

160 All Responders that have completed a firmware update shall either respond with ErrorCode=RequestResynch to any

request until a GET_VERSION request is received or silently discard the request.

161 Discovering the common major version

Security Protocol and Data Model (SPDM) Specification DSP0274

36 Published Version 1.1.3

162

ResponderRequester

GET_VERSION (version=1.0)

VERSION (6.4, 6.3, 6.2, 6.1)

Request version always
uses version = 1.0

Supports versions 6.4,
6.3, 6.2, 6.1

GET_CAPABILITIES (version=6.3)

CAPABILITIES

Supports versions 7.1, 7.0, 6.3,
6.2, 6.1, 6.0

Version information
response

Settle on version 6.3

NEGOTIATE_ALGORITHMS (Version = 6.3)

ALGORITHMS ()

163 GET_VERSION request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x84=GET_VERSION

2 Param1 1 Reserved.

3 Param2 1 Reserved.

164 Successful VERSION response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x04=VERSION

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 37

Offset Field Size (bytes) Value

5 VersionNumberEntryCount 1
Number of version entries present in this table

(=n).

6 VersionNumberEntry1:<n> 2*n
16-bit version entry. See the VersionNumberEntry

definition table.

165 VersionNumberEntry definition

Bit Field Value

[15:12] MajorVersion

Version of the specification with changes that are incompatible

with one or more functions in earlier major versions of the

specification.

[11:8] MinorVersion

Version of the specification with changes that are compatible

with functions in earlier minor versions of this major version

specification.

[7:4] UpdateVersionNumber

Version of the specification with editorial updates but no

functionality additions or changes. Informational; possible errata

fixes. Ignore when checking versions for interoperability.

[3:0] Alpha

Pre-release work-in-progress version of the specification.

Backward compatible with earlier minor versions of this major

version specification. However, because the Alpha value

represents an in-development version of the specification,

versions that share the same major and minor version numbers

but have different Alpha versions may not be fully

interoperable. Released versions shall have an Alpha value of

zero (0).

166 10.3 GET_CAPABILITIES request and CAPABILITIES response messages

167 This request message shall retrieve the SPDM capabilities of an endpoint.

168 The GET_CAPABILITIES request message format table shows the GET_CAPABILITIES request message format.

169 The Successful CAPABILITIES response message format table shows the CAPABILITIES response message format.

170 The Requester flag fields definitions table shows the flag fields definitions for the Requester.

171 Likewise, the Responder flag fields definitions table shows the flag fields definitions for the Responder.

172 GET_CAPABILITIES request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE1=GET_CAPABILITIES

Security Protocol and Data Model (SPDM) Specification DSP0274

38 Published Version 1.1.3

Offset Field Size (bytes) Value

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be exponent of base 2, which is used to

calculate CT .

See the Timing specification for SPDM messages

table.

The equation for CT shall be 2 CTExponent

microseconds (µs).

For example, if CTExponent is 10 , CT is

2 10 =1024 µs .

6 Reserved 2 Reserved.

8 Flags 4 See the Requester flag fields definitions table.

173 Successful CAPABILITIES response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x61=CAPABILITIES

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be the exponent of base 2, which used to

calculate CT .

See the Timing specification for SPDM messages

table.

The equation for CT shall be 2 CTExponent

microseconds (µs).

For example, if CTExponent is 10 , CT is

2 10 =1024 µs .

6 Reserved 2 Reserved.

8 Flags 4 See the Responder flag fields definitions table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 39

174 Requester flag fields definitions

175 Unless otherwise stated, if a Requester indicates support of a capability associated with an SPDM request or response

message, it means the Requester can receive the corresponding request and produce a successful response. In other

words, the Requester is acting as a Responder to that SPDM request associated with that capability. For example, if a

Requester sets CERT_CAP bit to 1 , the Requester can receive a GET_CERTIFICATE request and send back a

successful CERTIFICATE response message.

Byte Bit Field Value

0 0 Reserved Reserved.

0 1 CERT_CAP
If set, Requester shall support DIGESTS and

CERTIFICATE response messages.

0 2 CHAL_CAP
If set, Requester shall support

CHALLENGE_AUTH response message.

0 4:3 MEAS_CAP

The corresponding bits of the Responder flag

fields definitions indicate MEASUREMENT

response capabilities. These bits shall be set to

00b .

0 5 MEAS_FRESH_CAP

The corresponding bit of the Responder flag

fields definitions indicate MEASUREMENT

response capabilities. This bit shall be set to

0b .

0 6 ENCRYPT_CAP

If set, Requester shall support message

encryption in a secure session. If set, when the

Requester chooses to start a secure session,

the Requester shall send one of the Session-

Secrets-Exchange request messages supported

by the Responder.

0 7 MAC_CAP

If set, Requester shall support message

authentication in a secure session. If set, when

the Requester chooses to start a secure

session, the Requester shall send one of the

Session-Secrets-Exchange request messages

supported by the Responder. MAC_CAP is not

the same as the HMAC in the

RequesterVerifyData or

ResponderVerifyData fields of Session-

Secrets-Exchange and Session-Secrets-Finish

messages.

1 0 MUT_AUTH_CAP
If set, Requester shall support mutual

authentication.

1 1 KEY_EX_CAP

If set, Requester shall support KEY_EXCHANGE

messages. If set, one or more of ENCRYPT_CAP

and MAC_CAP shall be set.

Security Protocol and Data Model (SPDM) Specification DSP0274

40 Published Version 1.1.3

Byte Bit Field Value

1 3:2 PSK_CAP

Pre-shared key capabilities of the Requester.

00b . Requester shall not support pre-shared

key capabilities.

01b . Requester shall support pre-shared key

10b and 11b . Reserved.

If supported, one or more of ENCRYPT_CAP

and MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Requester shall support

GET_ENCAPSULATED_REQUEST ,

ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and

ENCAPSULATED_RESPONSE_ACK messages. If

mutual authentication is supported, this field

shall be set.

1 5 HBEAT_CAP
If set, Requester shall support HEARTBEAT

messages.

1 6 KEY_UPD_CAP
If set, Requester shall support KEY_UPDATE

messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Requester can support a Responder

that can only send and receive all SPDM

messages exchanged during the Session

Handshake Phase in the clear (such as without

encryption and message authentication).

Application data is encrypted and/or

authenticated using the negotiated

cryptographic algorithms as normal. Setting

this bit leads to changes in the contents of

certain SPDM messages, discussed in other

parts of this specification.

If this bit is cleared, the Requester signals that

it requires encryption and/or message

authentication of SPDM messages exchanged

during the Session Handshake Phase.

If the Requester does not support encryption

and message authentication, then this bit shall

be zero.

In other words, this bit indicates whether

message authentication and/or encryption (

MAC_CAP and ENCRYPT_CAP) are used in the

handshake phase of a secure session.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 41

Byte Bit Field Value

2 0 PUB_KEY_ID_CAP

If set, the public key of the Requester was

provisioned to the Responder. The transport

layer is responsible for identifying the

Responder. In this case, the CERT_CAP of the

Requester shall be 0 .

2 7:1 Reserved Reserved.

3 7:0 Reserved Reserved.

176 Responder flag fields definitions

177 Unless otherwise stated, if a Responder indicates support of a capability associated with an SPDM request or

response message, it means the Responder can receive the corresponding request and produce a successful

response. For example, if a Responder sets CERT_CAP bit to 1 , the Responder can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

Byte Bit Field Value

0 0 CACHE_CAP

If set, the Responder shall support the ability to

cache the Negotiated State across a reset. This

allows the Requester to skip reissuing the

GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS requests after a reset.

The Responder shall cache the selected

cryptographic algorithms as one of the

parameters of the Negotiated State. If the

Requester chooses to skip issuing these requests

after the reset, the Requester shall also cache the

same selected cryptographic algorithms.

0 1 CERT_CAP
If set, Responder shall support DIGESTS and

CERTIFICATE response messages.

0 2 CHAL_CAP
If set, Responder shall support CHALLENGE_AUTH

response message.

Security Protocol and Data Model (SPDM) Specification DSP0274

42 Published Version 1.1.3

Byte Bit Field Value

0 4:3 MEAS_CAP

MEASUREMENT response capabilities of the

Responder.

00b . The Responder shall not support

MEASUREMENTS response capabilities.

01b . The Responder shall support

MEASUREMENTS response but cannot perform

signature generation.

10b . The Responder shall support

MEASUREMENTS response and can generate

signatures.

11b . Reserved.

0 5 MEAS_FRESH_CAP

0 . As part of MEASUREMENTS response message,

the Responder may return MEASUREMENTS that

were computed during the last Responder’s reset.

1 . The Responder shall support recomputing all

MEASUREMENTS without requiring a reset or

restart, and shall always return fresh

MEASUREMENTS as part of MEASUREMENTS

response message.

0 6 ENCRYPT_CAP

If set, Responder shall support message

encryption in a secure session. If set, one or more

of PSK_CAP or KEY_EX_CAP fields shall be

specified accordingly to indicate support.

0 7 MAC_CAP

If set, Responder shall support message

authentication in a secure session. If set, one or

more of PSK_CAP or KEY_EX_CAP fields shall be

specified accordingly to indicate support.

MAC_CAP is not the same as the HMAC in the

RequesterVerifyData or ResponderVerifyData

fields of Session-Secrets-Exchange and Session-

Secrets-Finish messages.

1 0 MUT_AUTH_CAP
If set, Responder shall support mutual

authentication.

1 1 KEY_EX_CAP

If set, Responder shall support KEY_EXCHANGE

messages. If set, one or more of ENCRYPT_CAP

and MAC_CAP shall be set.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 43

Byte Bit Field Value

1 3:2 PSK_CAP

Pre-Shared Key capabilities of the Responder.

00b . Responder does not support Pre-Shared

Key capabilities.

01b . Responder shall support Pre-Shared Key

but does not provide ResponderContext for

session key derivation.

10b . Responder shall support Pre-Shared Key

and provides ResponderContext for session key

derivation.

11b . Reserved.

If supported, one or more of ENCRYPT_CAP and

MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Responder shall support

GET_ENCAPSULATED_REQUEST ,

ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and

ENCAPSULATED_RESPONSE_ACK messages. If

mutual authentication is supported, this field shall

be set.

1 5 HBEAT_CAP
If set, Responder shall support HEARTBEAT

messages.

1 6 KEY_UPD_CAP
If set, Responder shall support KEY_UPDATE

messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Responder can only send and receive

messages without encryption and message

authentication during the Session Handshake

Phase. If set, KEY_EX_CAP shall also be set.

Setting this bit leads to changes in the contents of

certain SPDM messages, discussed in other parts

of this specification.

If the Responder does not support encryption and

message authentication, then this bit shall be zero.

In other words, this bit indicates whether message

authentication and/or encryption (MAC_CAP and

ENCRYPT_CAP) are used in the handshake phase

of a secure session.

Security Protocol and Data Model (SPDM) Specification DSP0274

44 Published Version 1.1.3

Byte Bit Field Value

2 0 PUB_KEY_ID_CAP

If set, the public key of the Responder was

provisioned to the Requester. The transport layer

is responsible for identifying the Requester. In this

case, CERT_CAP of the Responder shall be 0 .

2 7:1 Reserved Reserved.

3 7:0 Reserved Reserved.

178 10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response
messages

179 This request message shall negotiate cryptographic algorithms. A Requester shall not issue a

NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES response message.

180 A Requester shall not issue any other SPDM requests, with the exception of GET_VERSION until it receives a

successful ALGORITHMS response message.

181 The NEGOTIATE_ALGORITHMS request message format table shows the NEGOTIATE_ALGORITHMS request message

format.

182 The Successful ALGORITHMS response message format table shows the ALGORITHMS response message format.

183 NEGOTIATE_ALGORITHMS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE3=NEGOTIATE_ALGORITHMS

2 Param1 1

Number of algorithms structure

tables in this request using

ReqAlgStruct

3 Param2 1 Reserved

4 Length 2

Length of the entire request

message, in bytes. Length shall

be less than or equal to 128

bytes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 45

Offset Field Size (bytes) Value

6 MeasurementSpecification 1

Bit mask. The measurement

specification is used in the

MEASUREMENTS response.

Requester can set all available

algorithms defined in the

measurement specification

format. The Requester can set

zero bits if MEASUREMENTS are

not supported.

Bit 0: This bit shall indicate

support for the DMTF-defined

measurement specification. See

DMTF specification for the

Measurement field of a

measurement block clauses for

details.

7 Reserved 1 Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

46 Published Version 1.1.3

Offset Field Size (bytes) Value

8 BaseAsymAlgo 4

Bit mask listing Requester-

supported SPDM-enumerated

asymmetric key signature

algorithms for the purpose of

signature verification. If the

capabilities do not support this

algorithm, this value is not used

and shall be set to zero. Let S be

the size of the signature in bytes.

If the size of a signature

component is less than specified

size, then 0x00 octets are

padded to the left of the most

significant byte.

Byte 0 Bit 0.

TPM_ALG_RSASSA_2048 where

S=256.

Byte 0 Bit 1.

TPM_ALG_RSAPSS_2048 where

S=256.

Byte 0 Bit 2.

TPM_ALG_RSASSA_3072 where

S=384.

Byte 0 Bit 3.

TPM_ALG_RSAPSS_3072 where

S=384.

Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256

where S=64 (32-byte r followed

by 32-byte s).

Byte 0 Bit 5.

TPM_ALG_RSASSA_4096 where

S=512.

Byte 0 Bit 6.

TPM_ALG_RSAPSS_4096 where

S=512.

Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384

where S=96 (48-byte r followed

by 48-byte s).

Byte 1 Bit 0.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 47

Offset Field Size (bytes) Value

TPM_ALG_ECDSA_ECC_NIST_P521

where S=132 (66-byte r followed

by 66-byte s).

All other values reserved.

12 BaseHashAlgo 4

Bit mask listing Requester-

supported SPDM-enumerated

cryptographic hashing

algorithms. If the capabilities do

not support this algorithm, this

value is not used and shall be set

to zero.

Byte 0 Bit 0. TPM_ALG_SHA_256

Byte 0 Bit 1. TPM_ALG_SHA_384

Byte 0 Bit 2. TPM_ALG_SHA_512

Byte 0 Bit 3. TPM_ALG_SHA3_256

Byte 0 Bit 4. TPM_ALG_SHA3_384

Byte 0 Bit 5. TPM_ALG_SHA3_512

All other values reserved.

16 Reserved 12 Reserved

28 ExtAsymCount 1

Number of Requester-supported

extended asymmetric key

signature algorithms (=A) for the

purpose of signature verification.

A + E + ExtAlgCount2 +

ExtAlgCount3 + ExtAlgCount4 +

ExtAlgCount5 shall be less than

or equal to 20. If the capabilities

do not support this algorithm,

this value is not used and shall

be set to zero.

29 ExtHashCount 1

Number of Requester-supported

extended hashing algorithms

(=E). A + E + ExtAlgCount2 +

ExtAlgCount3 + ExtAlgCount4 +

ExtAlgCount5 shall be less than

or equal to 20. If the capabilities

do not support this algorithm,

this value is not used and shall

be set to zero.

Security Protocol and Data Model (SPDM) Specification DSP0274

48 Published Version 1.1.3

Offset Field Size (bytes) Value

30 Reserved 2 Reserved

32 ExtAsym 4*A

List of Requester-supported

extended asymmetric key

signature algorithms for the

purpose of signature verification.

The Extended algorithm field

format table describes the format

of this field.

32 + 4*A ExtHash 4*E

List of the extended hashing

algorithms supported by

Requester. The Extended

algorithm field format table

describes the format of this field.

32 + 4*A + 4*E ReqAlgStruct AlgStructSize
See the AlgStructure request

field.

184 AlgStructSize is the sum of the size of the following algorithm structure tables. The algorithm structure table shall

be present only if the Requester supports that AlgType . AlgType shall monotonically increase for subsequent

entries.

185 Algorithm request structure

Offset Field Size (bytes) Value

0 AlgType 1

Type of algorithm.

[1:0] = Reserved

2 = DHE

3 = AEADCipherSuite

4 = ReqBaseAsymAlg

5 = KeySchedule

All other values reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 49

Offset Field Size (bytes) Value

1 AlgCount 1

Requester supported

fixed algorithms.

Bit [7:4]. Number of Bytes

required to describe

Requester supported

SPDM-enumerated fixed

algorithms (=

FixedAlgCount).

FixedAlgCount + 2 shall

be a multiple of 4

Bit [3:0] Number of

Requester supported

extended algorithms (=

ExtAlgCount).

2 AlgSupported FixedAlgCount

Bit mask listing

Requester-supported

SPDM-enumerated

algorithms.

2 + FixedAlgCount AlgExternal 4*ExtAlgCount

List of Requester-

supported extended

algorithms. The Extended

algorithm field format

table describes the format

of this field.

186 The following tables describe the associated fixed fields for the individual types.

187 DHE structure

Offset Field Size (bytes) Value

0 AlgType 1 0x2=DHE

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester-supported

extended DHE groups (=

ExtAlgCount2).

Security Protocol and Data Model (SPDM) Specification DSP0274

50 Published Version 1.1.3

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing

Requester-supported

SPDM-enumerated Diffie-

Hellman Ephemeral (DHE)

groups. Values in

parentheses specify the

size of the corresponding

public values associated

with each group.

Byte 0 Bit 0. ffdhe2048 (D

= 256)

Byte 0 Bit 1. ffdhe3072 (D

= 384)

Byte 0 Bit 2. ffdhe4096 (D

= 512)

Byte 0 Bit 3. secp256r1 (D

= 64, C = 32)

Byte 0 Bit 4. secp384r1 (D

= 96, C = 48)

Byte 0 Bit 5. secp521r1 (D

= 132, C = 66)

All other values reserved.

4 AlgExternal 4*ExtAlgCount2

List of Requester-

supported extended DHE

groups. The Extended

algorithm field format

table describes the format

of this field.

188 AEAD structure

Offset Field Size (bytes) Value

0 AlgType 1 0x3=AEAD

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester supported

extended AEAD

algorithms (=

ExtAlgCount3).

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 51

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing

Requester-supported

SPDM-enumerated AEAD

algorithms.

Byte 0 Bit 0.

AES-128-GCM. 128-bit

key; 96-bit IV

(initialization vector); tag

size is specified by

transport layer.

Byte 0 Bit 1.

AES-256-GCM. 256-bit

key; 96-bit IV; tag size is

specified by transport

layer.

Byte 0 Bit 2.

CHACHA20_POLY1305.

256-bit key; 96-bit IV;

128-bit tag.

All other values reserved.

4 AlgExternal 4*ExtAlgCount3

List of Requester-

supported extended

AEAD algorithms. The

Extended algorithm field

format table describes the

format of this field.

189 ReqBaseAsymAlg structure

Offset Field Size (bytes) Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester

supported extended asymmetric

key signature algorithms for the

purpose of signature

generation.(= ExtAlgCount4).

Security Protocol and Data Model (SPDM) Specification DSP0274

52 Published Version 1.1.3

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing Requester-

supported SPDM-enumerated

asymmetric key signature

algorithms for the purposes of

signature generation.

Byte 0 Bit 0.

TPM_ALG_RSASSA_2048

Byte 0 Bit 1.

TPM_ALG_RSAPSS_2048

Byte 0 Bit 2.

TPM_ALG_RSASSA_3072

Byte 0 Bit 3.

TPM_ALG_RSAPSS_3072

Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5.

TPM_ALG_RSASSA_4096

Byte 0 Bit 6.

TPM_ALG_RSAPSS_4096

Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

4 AlgExternal 4*ExtAlgCount4

List of Requester-supported

extended asymmetric key

signature algorithms for the

purpose of signature generation.

The Extended algorithm field

format table describes the format

of this field.

190 KeySchedule structure

Offset Field Size (bytes) Value

0 AlgType 1 0x5=KeySchedule

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 53

Offset Field Size (bytes) Value

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester supported

extended key schedule

algorithms (=

ExtAlgCount5).

2 AlgSupported 2

Bit mask listing

Requester-supported

SPDM-enumerated Key

Schedule algorithms.

Byte 0 Bit 0. SPDM Key

Schedule.

All other values reserved.

4 AlgExternal 4*ExtAlgCount5

List of Requester-

supported extended key

schedule algorithms. The

Extended algorithm field

format table describes the

format of this field.

191 Successful ALGORITHMS response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x63=ALGORITHMS

2 Param1 1

Number of algorithms

structure tables in this

response using

RespAlgStruct

3 Param2 1 Reserved

4 Length 2
Length of the response

message, in bytes.

Security Protocol and Data Model (SPDM) Specification DSP0274

54 Published Version 1.1.3

Offset Field Size (bytes) Value

6 MeasurementSpecificationSel 1

Bit mask. The Responder

shall select one of the

measurement specifications

supported by the Requester

and Responder. Thus, no

more than one bit shall be

set. The

MeasurementSpecification

field in

NEGOTIATE_ALGORITHMS

defines the format of this

field.

7 Reserved 1 Reserved

8 MeasurementHashAlgo 4

Bit mask indicating the

SPDM-enumerated hashing

algorithm selected for

measurements.

Bit 0. Raw Bit Stream Only

Bit 1. TPM_ALG_SHA_256

Bit 2. TPM_ALG_SHA_384

Bit 3. TPM_ALG_SHA_512

Bit 4. TPM_ALG_SHA3_256

Bit 5. TPM_ALG_SHA3_384

Bit 6. TPM_ALG_SHA3_512

If the Responder supports

GET_MEASUREMENTS , exactly

one bit in this bit field shall

be set. Otherwise, the

Responder shall set this field

to 0 .

A Responder shall only select

bit 0 if the Responder

supports raw bit streams as

the only form of

measurement; otherwise, it

shall select one of the other

bits.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 55

Offset Field Size (bytes) Value

12 BaseAsymSel 4

Bit mask indicating the

SPDM-enumerated

asymmetric key signature

algorithm selected for the

purpose of signature

generation. If the capabilities

do not support this

algorithm, this value is not

used and shall be set to zero.

The Responder shall set no

more than one bit.

16 BaseHashSel 4

Bit mask indicating the

SPDM-enumerated hashing

algorithm selected. If the

capabilities do not support

this algorithm, this value is

not used and shall be set to

zero. The Responder shall set

no more than one bit.

20 Reserved 12 Reserved

32 ExtAsymSelCount 1

Number of extended

asymmetric key signature

algorithms selected for the

purpose of signature

generation. Shall be either

0 or 1 (=A’). If the

capabilities do not support

this algorithm, this value is

not used and shall be set to

zero.

33 ExtHashSelCount 1

The number of extended

hashing algorithms selected.

Shall be either 0 or 1

(=E’). If the capabilities do

not support this algorithm,

this value is not used and

shall be set to zero.

34 Reserved 2 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

56 Published Version 1.1.3

Offset Field Size (bytes) Value

36 ExtAsymSel 4*A’

The extended asymmetric

key signature algorithm

selected for the purpose of

signature generation. The

Responder shall use this

asymmetric signature

algorithm for all subsequent

applicable response

messages to the Requester.

The Extended algorithm field

format table describes the

format of this field.

36+4*A' ExtHashSel 4*E’

Extended hashing algorithm

selected. The Responder

shall use this hashing

algorithm during all

subsequent response

messages to the Requester.

The Requester shall use this

hashing algorithm during all

subsequent applicable

request messages to the

Responder. The Extended

algorithm field format table

describes the format of this

field.

36+4*A'+4*E' RespAlgStruct AlgStructSize
See Response AlgStructure

field format

192 AlgStructSize is the sum of the size of all Algorithm structure tables, as the following tables show. The algorithm

structure table need be present only if the responder supports that AlgType . AlgType shall monotonically increase

for subsequent entries.

193 Response AlgStructure field format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 57

Offset Field Size (bytes) Value

0 AlgType 1

Type of algorithm.

[1:0] = Reserved

2 = DHE

3 = AEADCipherSuite

4 = ReqBaseAsymAlg

5 = KeySchedule

All other values reserved.

1 AlgCount 1

Bit mask listing

Responder supported

fixed algorithm requested

by the Requester.

Bit [7:4]. Number of Bytes

required to describe

Requester supported

SPDM-enumerated fixed

algorithms (=

FixedAlgCount).

FixedAlgCount + 2 shall

be a multiple of 4

Bit [3:0] Number of

Requester-supported,

Responder-selected,

extended algorithms (=

ExtAlgCount’). This value

shall be either 0 or 1.

2 AlgSupported FixedAlgCount

Bit mask for indicating a

Requester-supported,

Responder-selected,

SPDM-enumerated

algorithm. Responder

shall set at most one bit

to 1.

Security Protocol and Data Model (SPDM) Specification DSP0274

58 Published Version 1.1.3

Offset Field Size (bytes) Value

2 + FixedAlgCount AlgExternal 4*ExtAlgCount’

If present: a Requester-

supported, Responder-

selected, extended

algorithm. Responder

shall select at most one

external algorithm. The

Extended algorithm field

format table describes the

format of this field.

194 The tables for each of the individual type with the associated fixed fields are described below.

195 DHE structure

Offset Field Size (bytes) Value

0 AlgType 1 0x2=DHE

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester-supported,

Responder-selected,

extended DHE groups (=

ExtAlgCount2’). This value

shall be either 0 or 1.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 59

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask for indicating a

Requester-supported,

Responder-selected,

SPDM-enumerated DHE

group. Values in

parentheses specify the

size of the corresponding

public values associated

with each group.

Byte 0 Bit 0. ffdhe2048 (D

= 256)

Byte 0 Bit 1. ffdhe3072 (D

= 384)

Byte 0 Bit 2. ffdhe4096 (D

= 512)

Byte 0 Bit 3. secp256r1 (D

= 64, C = 32)

Byte 0 Bit 4. secp384r1 (D

= 96, C = 48)

Byte 0 Bit 5. secp521r1 (D

= 132, C = 66)

All other values reserved.

4 AlgExternal 4*ExtAlgCount2’

If present: a Requester-

supported, Responder-

selected, extended DHE

algorithm. The Extended

algorithm field format

table describes the format

of this field.

196 AEAD structure

Offset Field Size (bytes) Value

0 AlgType 1 0x3=AEAD

Security Protocol and Data Model (SPDM) Specification DSP0274

60 Published Version 1.1.3

Offset Field Size (bytes) Value

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester-supported,

Responder-selected,

extended AEAD

algorithms (=

ExtAlgCount3’). This value

shall be either 0 or 1.

2 AlgSupported 2

Bit mask for indicating a

Requester-supported,

Responder-selected,

SPDM-enumerated AEAD

algorithm.

Byte 0 Bit 0.

AES-128-GCM

Byte 0 Bit 1.

AES-256-GCM

Byte 0 Bit 2.

CHACHA20_POLY1305

All other values reserved.

4 AlgExternal 4*ExtAlgCount3’

If present: a Requester-

supported, Responder-

selected, extended AEAD

algorithm. The Extended

algorithm field format

table describes the format

of this field.

197 ReqBaseAsymAlg structure

Offset Field Size (bytes) Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-

supported, Responder-selected,

extended asymmetric key

signature algorithms (=

ExtAlgCount4’) for the purpose

of signature verification. This

value shall be either 0 or 1.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 61

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask for indicating a

Requester-supported,

Responder-selected, SPDM-

enumerated asymmetric key

signature algorithm for the

purposes of signature

verification.

Byte 0 Bit 0.

TPM_ALG_RSASSA_2048

Byte 0 Bit 1.

TPM_ALG_RSAPSS_2048

Byte 0 Bit 2.

TPM_ALG_RSASSA_3072

Byte 0 Bit 3.

TPM_ALG_RSAPSS_3072

Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5.

TPM_ALG_RSASSA_4096

Byte 0 Bit 6.

TPM_ALG_RSAPSS_4096

Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

4 AlgExternal 4*ExtAlgCount4’

If present: a Requester-

supported, Responder-selected,

extended asymmetric key

signature algorithm for the

purpose of signature verification.

The Extended algorithm field

format table describes the format

of this field.

198 KeySchedule structure

Security Protocol and Data Model (SPDM) Specification DSP0274

62 Published Version 1.1.3

Offset Field Size (bytes) Value

0 AlgType 1 0x5=KeySchedule

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] Number of

Requester-supported,

Responder-selected,

extended key schedule

algorithms (=

ExtAlgCount5’). This value

shall be either 0 or 1.

2 AlgSupported 2

Bit mask for indicating a

Requester-supported,

Responder-selected,

SPDM-enumerated Key

Schedule algorithm.

Byte 0 Bit 0. SPDM Key

Schedule.

All other values reserved.

4 AlgExternal 4*ExtAlgCount5’

If present: a Requester-

supported, Responder-

selected, extended key

schedule algorithm. The

Extended algorithm field

format table describes the

format of this field.

199 Extended Algorithm field format

200 Describes algorithms that are external to this specification.

Offset Field Description

0 Registry ID

Shall represent the registry or standards body. The ID column in

the Registry or standards body ID table describes the value of

this field.

1 Reserved Reserved

[2:3] Algorithm ID

Shall indicate the desired algorithm. The registry or standards

body owns the value of this field. For details, see the Registry or

standards body ID table.

201 For each algorithm type, a Responder shall not select both an SPDM-enumerated algorithm and an extended

algorithm.

202 Hashing algorithm selection: Example 1 illustrates how two endpoints negotiate a base hashing algorithm.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 63

203 In Hashing algorithm selection: Example 1, endpoint A issues NEGOTIATE_ALGORITHMS request message and endpoint

B selects an algorithm of which both endpoints are capable.

204 Hashing algorithm selection: Example 1

205

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384)

ALGORITHMS (SHA-384)

If supported

CHALLENGE (256-bit Nonce)

CHALLENGE_AUTH (384-bit CertChainHash,
and MeasurementSummaryHash, 256-bit Nonce)

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

Supports SHA-384

and SHA3-384
Supports SHA-256

and SHA-384

Select SHA-384
Agree on SHA-384

returns SHA-384 digest

206 The SPDM protocol accounts for the possibility that both endpoints may issue NEGOTIATE_ALGORITHMS request

messages independently of each other. In this case, the endpoint A Requester and endpoint B Responder

communication pair may select a different algorithm compared to the endpoint B Requester and endpoint A

Responder communication pair.

207 10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS

208 With the successful completion of the ALGORITHMS message, all of the parameters for further SPDM message

exchanges between the same pair of Requester and Responder have been determined. Thus, all SPDM message

exchanges after the VERSION , CAPABILITIES AND ALGORITHMS messages shall comply with the selected

parameters in ALGORITHMS , with the exception of GET_VERSION and VERSION messages, or unless otherwise stated

Security Protocol and Data Model (SPDM) Specification DSP0274

64 Published Version 1.1.3

in this specification. To explain this behavior, suppose a Responder supports both RSA and ECDSA asymmetric

algorithms. The Responder selects the TPM_ALG_RSASSA_2048 asymmetric algorithm in BaseAsymSel and the

TPM_ALG_SHA_256 hash algorithm in BaseHashSel . If the corresponding Requester issues a GET_DIGESTS , the

Responder returns TPM_ALG_SHA_256 digests only for those populated slots that can provide a

TPM_ALG_RSASSA_2048 signature for a CHALLENGE_AUTH response. The Responder would violate this requirement if

the Responder returns one or more digests of populated slots that perform ECDSA signatures or uses a different hash

algorithm.

209 Unless otherwise stated in this specification and with the exception of GET_VERSION , if a Requester issues a request

that violates one or more of the negotiated or selected parameters, the corresponding Responder shall either silently

discard the request or return an ERROR message with an appropriate error code.

210 10.5 Responder identity authentication

211 This clause describes request messages and response messages associated with the identity of the Responder

authentication operations. The GET_DIGESTS and GET_CERTIFICATE messages shall be supported by a Responder that

returns CERT_CAP =1 in the CAPABILITIES response message. The CHALLENGE message defined in this clause shall be

supported by a Responder that returns CHAL_CAP =1 in the CAPABILITIES response message. The GET_DIGESTS and

GET_CERTIFICATE messages are not applicable if the public key of the Responder was provisioned to the Requester in

a trusted environment.

212 The Responder authentication: Example certificate retrieval flow shows the high-level request-response message flow

and sequence for certificate retrieval.

213 Responder authentication: Example certificate retrieval flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 65

214

RootCert

…

VendorCert

…

ModelCert

DeviceCert

SHA384Slot0

…

SHA384Slot3

…

SHA384Slotn-2

SHA384Slotn-1

Offset (0)
Length (0x2000H)

ResponderRequester

1. The requester sends a GET_DIGESTS
request message. 1. The responder sends a DIGESTS

message.

2.For each received
GET_CERTIFICATE request, the
responder verifies that Offset is
within the certificate chain and then
sends the CERTIFICATE response
message based on the requested
Length. If the actual CERTIFICATE
chain length is less than or equal to
the requested Length (e.g. 1076
bytes), the Responder returns entire
certificate and a RemainderLength 0.

2. Compare digests in DIGESTS response
message to cached digests. Continue if
no match is found.

3. The requester sends a
GET_CERTIFICATE request

4. Verify validity of the signatures of each
certificate (X.509 containing the public
key) in the certificate chain against the
root certificate, then proceed to the
challenge-response.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE (1076, 0)

If necessary

RootCert

215 The GET_DIGESTS request message and DIGESTS response message may optimize the amount of data required to

be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of each of the certificate chains stored on an endpoint is returned with the DIGESTS

response message, such that the Requester can cache the previously retrieved certificate chain hash values to detect

any change to the certificate chains stored on the device before issuing the GET_CERTIFICATE request message.

216 For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload shall

be signed by using the device private key over the hash of the message transcript. See the Request ordering and

message transcript computation rules for M1/M2 table.

217 This ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder and enables the Requester to detect the presence of an active adversary

attempting to downgrade cryptographic algorithms or SPDM versions.

218 Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a

Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates. The

message transcript generation for the signature computation is restarted with the latest GET_VERSION request

received.

Security Protocol and Data Model (SPDM) Specification DSP0274

66 Published Version 1.1.3

219 10.6 Requester identity authentication

220 If the Requester supports mutual authentication, the requirements placed on the Responder in Responder identity

authentication shall also apply to the Requester.

221 If the Responder supports mutual authentication, the requirements placed on the Requester in Responder identity

authentication shall also apply to the Responder. These two statements essentially describe a role reversal.

222 10.6.1 Certificates and certificate chains

223 Each SPDM endpoint that supports identity authentication using certificates shall carry at least one certificate chain. A

certificate chain contains an ordered list of certificates, presented as the binary (byte) concatenation of the fields that

the Certificate chain format shows.

224 Each certificate shall be in ASN.1 DER-encoded X.509 v3 format. The ASN.1 DER encoding of each individual

certificate can be analyzed to determine its length. The minimum number of certificates within a chain shall be one, in

which case the single certificate is the device-specific certificate. The SPDM endpoint shall contain a single public-

private key pair per supported algorithm for its hardware identity, regardless of how many certificate chains are

stored on the device. The Responder selects a single asymmetric key signature algorithm per Requester.

225 Certificate chains are stored in locations called slots. Each slot shall either be empty or contain one complete

certificate chain. A device shall not contain more than eight slots. Slot 0 is populated by default. Additional slots may

be populated through the supply chain such as by a platform integrator or by an end user such as the IT

administrator. A slot mask identifies the certificate chains from the eight slots.

226 In this document, H refers to the output size, in bytes, of the hash algorithm agreed upon in

NEGOTIATE_ALGORITHMS .

227 Certificate chain format

Offset Field Size Description

0 Length 2

Total length of the certificate chain, in bytes,

including all fields in this table. This field is little

endian.

2 Reserved 2 Reserved.

4 RootHash H

Digest of the Root Certificate. Note that Root

Certificate is ASN.1 DER-encoded for this digest. This

field shall be big endian.

4 + H Certificates Length - (4 + H)

One or more ASN.1 DER-encoded X.509 v3

certificates where the first certificate is signed by the

Root Certificate or is the Root Certificate itself and

each subsequent certificate is signed by the

preceding certificate. The last certificate is the leaf

certificate. This field shall be big endian.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 67

228 10.7 GET_DIGESTS request and DIGESTS response messages

229 This request message shall be used to retrieve the certificate chain digests.

230 The GET_DIGESTS request message format table shows the GET_DIGESTS request message format.

231 The Successful DIGESTS response message table shows the DIGESTS response message format.

232 The digests in the Successful DIGESTS response message table shall be big endian, and the digest shall be computed

over the certificate chain as shown in Certificate chain format.

233 GET_DIGESTS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x81=GET_DIGESTS

2 Param1 1 Reserved

3 Param2 1 Reserved

234 Successful DIGESTS response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x01=DIGESTS

2 Param1 1 Reserved

3 Param2 1

Slot mask. The bit in

position K of this byte

shall be set to 1b if and

only if slot number K

contains a certificate

chain for the protocol

version in the

SPDMVersion field. (Bit 0

is the least significant bit

of the byte.) The number

of digests returned shall

be equal to the number

of bits set in this byte.

The digests shall be

returned in order of

increasing slot number.

4 Digest[0] H
Digest of the first

certificate chain.

Security Protocol and Data Model (SPDM) Specification DSP0274

68 Published Version 1.1.3

Offset Field Size (bytes) Value

...

4 + (H * (n -1)) Digest[n-1] H
Digest of the last (nth)

certificate chain.

235 10.8 GET_CERTIFICATE request and CERTIFICATE response messages

236 This request message shall retrieve the certificate chains.

237 The GET_CERTIFICATE request message format table shows the GET_CERTIFICATE request message format.

238 The Successful CERTIFICATE response message table shows the CERTIFICATE response message format.

239 The Requester should, at a minimum, save the public key of the leaf certificate and associate it with each of the

digests returned by DIGESTS message response. The Requester sends one or more GET_CERTIFICATE requests to

retrieve the certificate chain of the Responder.

240 GET_CERTIFICATE request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x82=GET_CERTIFICATE

2 Param1 1

Slot number of the target

certificate chain to read

from. The value in this

field shall be between 0

and 7 inclusive.

3 Param2 1 Reserved

4 Offset 2

Offset in bytes from the

start of the certificate

chain to where the read

request message begins.

The Responder should

send its certificate chain

starting from this offset.

For the first

GET_CERTIFICATE

request for a given slot,

the Requester shall set

this field to 0. For

subsequent requests,

Offset is set to the next

portion of the certificate

in that slot.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 69

Offset Field Size (bytes) Value

6 Length 2

Length of certificate chain

data, in bytes, to be

returned in the

corresponding response.

Length is an unsigned

16-bit integer.

This value is the smaller

of the following values:

Capacity of the internal

buffer of the Requester

for receiving the

certificate chain of the

Responder.

The RemainderLength of

the preceding

GET_CERTIFICATE

response.

If offset=0 and

length=0xFFFF , the

Requester is requesting

the entire chain.

241 Successful CERTIFICATE response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x02=CERTIFICATE

2 Param1 1
Slot number of the

certificate chain returned.

3 Param2 1 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

70 Published Version 1.1.3

Offset Field Size (bytes) Value

4 PortionLength 2

Number of bytes of this

portion of certificate

chain. This should be less

than or equal to Length

received as part of the

request. For example, the

Responder might set this

field to a value less than

Length received as part

of the request due to

limitations on the internal

buffer of the Responder.

6 RemainderLength 2

Number of bytes of the

certificate chain that have

not been sent yet after

the current response. For

the last response, this

field shall be 0 as an

indication to the

Requester that the entire

certificate chain has been

sent.

8 CertChain PortionLength

Requested contents of

target certificate chain, as

described in Certificates

and certificate chains.

242 The Responder unable to return full length data flow shows the high-level request-response message flow for

Responder response when it cannot return the entire data requested by the Requester in the first response.

243 Responder unable to return full length data flow

244

ResponderRequester

GET CERTIFICATE(0, 0x1000)

CERTIFICATE (0x800, 0x200)

GET_CERTIFICATE (0x800, 0x200)

CertificateLength = 0xA00
PortionLength = 0x800

RemainderLength = 0x200

CERTIFICATE (0x200, 0)
PortionLength = 0x200
RemainderLength = 0

Responder Buffer Size
 = 0x800

Requests remaining portion,
Offset 0x800, Length 0x0200

Requester Buffer Size
 = 0x1000

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 71

245 10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE
messages

246 If the Requester supports mutual authentication, the requirements placed on the Responder in GET_CERTIFICATE

request and CERTIFICATE response messages clause shall also apply to the Requester. If the Responder supports

mutual authentication, the requirements placed on the Requester in GET_CERTIFICATE request and CERTIFICATE

response messages clause shall also apply to the responder. These two statements essentially describes a role

reversal.

247 10.8.2 Leaf certificate

248 The SPDM endpoints for authentication shall be provisioned with DER-encoded X.509 v3 format certificates. The leaf

certificate shall be signed by a trusted CA and provisioned to the device. For endpoint devices to verify the certificate,

the following required fields shall be present. In addition, to provide device information, use the Subject

Alternative Name certificate extension otherName field. See the Definition of otherName using the DMTF OID.

249 Required fields

Field Description

Version Version of the encoded certificate shall be present and shall be 3 (encoded as value 2).

Serial Number CA-assigned serial number shall be present with a positive integer value.

Signature Algorithm Signature algorithm that CA uses shall be present.

Issuer CA distinguished name shall be specified.

Subject Name
Subject name shall be present and shall represent the distinguished name associated with

the leaf certificate.

Validity Certificates may include this attribute. See RFC5280 for further details.

Subject Public Key Info Device public key and the algorithm shall be present.

Key Usage Shall be present and key usage bit for digital signature shall be set.

250 Optional fields

Field Description

Basic Constraints If present, the CA value shall be FALSE .

Subject Alternative Name otherName

In some cases, it might be desirable to provide device specific information as part of the

device certificate. DMTF chose the otherName field with a specific format to represent the

device information. The use of the otherName field also provides flexibility for other

alliances to provide device specific information as part of the device certificate. See the

Definition of otherName using the DMTF OID.

Security Protocol and Data Model (SPDM) Specification DSP0274

72 Published Version 1.1.3

251 Definition of otherName using the DMTF OID

DMTFOtherName ::= SEQUENCE {
type-id DMTF-oid
value [0] EXPLICIT ub-DMTF-device-info

}
-- OID for DMTF device info --
id-DMTF-device-info OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 1 }
DMTF-oid ::= OBJECT IDENTIFIER (id-DMTF-device-info)

-- All printable characters except ":" --
DMTF-device-string ::= UTF8String (ALL EXCEPT ":")

-- Device Manufacturer --
DMTF-manufacturer ::= DMTF-device-string

-- Device Product --
DMTF-product ::= DMTF-device-string

-- Device Serial Number --
DMTF-serialNumber ::= DMTF-device-string

-- Device information string --
ub-DMTF-device-info ::= UTF8String({DMTF-manufacturer":"DMTF-

product":"DMTF-serialNumber})

252 The Leaf certificate example shows an example leaf certificate.

253 10.9 CHALLENGE request and CHALLENGE_AUTH response messages

254 This request message shall authenticate a Responder through the challenge-response protocol.

255 The CHALLENGE request message format table shows the CHALLENGE request message format.

256 The Successful CHALLENGE_AUTH response message table shows the CHALLENGE_AUTH response message format.

257 CHALLENGE request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x83=CHALLENGE

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 73

Offset Field Size (bytes) Value

2 Param1 1

Slot number of the

certificate chain of the

Responder that shall be

used for authentication. It

shall be 0xFF if the

public key of the

Responder was

provisioned to the

Requester in a trusted

environment.

3 Param2 1

Requested measurement

summary hash Type:

0x0 . No measurement

summary hash.

0x1 . TCB measurement

hash.

0xFF . All measurements

hash.

All other values reserved.

When Responder does

not support any

measurements, Requester

shall set this value to

0x0 .

4 Nonce 32
The Requester should

choose a random value.

258 Successful CHALLENGE_AUTH response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x03=CHALLENGE_AUTH

2 Param1 1

Response Attribute Field. Please see

CHALLENGE_AUTH Response Attribute

Table for details.

Security Protocol and Data Model (SPDM) Specification DSP0274

74 Published Version 1.1.3

Offset Field Size (bytes) Value

3 Param2 1

Slot mask. The bit in position K of this byte

shall be set to 1b if and only if slot

number K contains a certificate chain for

the protocol version in the SPDMVersion

field. Bit 0 is the least significant bit of the

byte. This field is reserved if the public key

of the Responder was provisioned to the

Requester in a trusted environment.

4 CertChainHash H

Hash of the certificate chain or public key

(if the public key of the Responder was

provisioned to the Requester in a trusted

environment) used for authentication. The

Requester can use this value to check that

the certificate chain or public key matches

the one requested. This field is big endian.

4 + H Nonce 32 Responder-selected random value.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 75

Offset Field Size (bytes) Value

36 + H MeasurementSummaryHash H

When the Responder does not support

measurements (MEAS_CAP=00b in

CAPABILITIES response) or requested

Param2 =0, this field shall be absent.

When the requested Param2 =1, this field

shall be the combined hash of

Measurements of all measurable

components considered to be in the TCB

required to generate this response,

computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], …)) where

MeasurementBlock[x] denotes a

measurement of an element in the TCB.

Measurements are concatenated in

ascending order based on their

measurement index.

When the requested Param2 =1 and there

are no measurable components in the TCB

required to generate this response, this

field shall be 0 .

When requested Param2=0xFF , this field

is computed as the

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], …,

MeasurementBlock[n])) of all supported

measurement blocks available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order.

Indices with no associated measurements

shall not be included in the hash

calculation.

36 + 2H OpaqueLength 2
Size of the OpaqueData field. The value

shall not be greater than 1024 bytes.

38 + 2H OpaqueData OpaqueLength

Free-form field, if present. The Responder

may include Responder-specific

information and/or information defined by

its transport.

Security Protocol and Data Model (SPDM) Specification DSP0274

76 Published Version 1.1.3

Offset Field Size (bytes) Value

38 + 2H +

OpaqueLength
Signature S

S is the size of the asymmetric-signing

algorithm output that the Responder

selected through the last ALGORITHMS

response message to the Requester. The

CHALLENGE_AUTH signature generation

and CHALLENGE_AUTH signature

verification clauses, respectively, define the

signature generation and verification

processes.

259 CHALLENGE_AUTH response attribute

Bit Offset Field Name Description

[3:0] SlotID

This field shall contain the slot number in

the Param1 field of the corresponding

CHALLENGE request. If the Responder’s

public key was provisioned to the

Requester previously, this field shall be

0xF. The Requester can use this value to

check that the certificate matched what

was requested.

[6:4] Reserved Reserved.

7 BasicMutAuthReq

When mutual authentication is supported

by both Responder and Requester, the

Responder shall set this bit to indicate the

Responder wants to authenticate the

identity of the Requester using the basic

mutual authentication flow. The

Requester shall not set this bit in a basic

mutual authentication flow. See Basic

mutual authentication flow for more

details.

If mutual authentication is not supported,

this bit shall be zero; otherwise, it should

be considered an error.

260 10.9.1 CHALLENGE_AUTH signature generation

261 To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

1.262 The Responder shall construct M1 and the Requester shall construct M2 message transcripts. For

Responder authentication, see the Request ordering and message transcript computation rules for M1/

M2 table. For Requester authentication in the mutual authentication scenario, see the Mutual

authentication message transcript clause.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 77

263 where:

264 Concatenate() is the standard concatenation function that is performed only after a successful

completion response on the entire request and response contents.

◦265 If a response contains ErrorCode=ResponseNotReady :

266 Concatenation function is performed on the contents of both the original request and the

response received during RESPOND_IF_READY .

◦267 If a response contains an ErrorCode other than ResponseNotReady :

268 No concatenation function is performed on the contents of both the original request and

response.

2.269 The Responder shall generate:

Signature = Sign(SK, Hash(M1));

270 where:

◦271 Sign

272 Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS

response message that the Responder sent.

273 The Successful ALGORITHMS response message format table describes the BaseAsymSel ,

ExtAsymSel and RespAlgStruct (when AlgType == ReqBaseAsymAlg) fields.

◦274 SK

275 Private key associated with the leaf certificate of the Responder in slot=Param1 of the

CHALLENGE request message. If the public key of the Responder was provisioned to the

Requester, then SK is the associated private key.

◦276 Hash

277 Hashing algorithm the Responder selected through the last ALGORITHMS response message that

the Responder sent.

278 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

Security Protocol and Data Model (SPDM) Specification DSP0274

78 Published Version 1.1.3

279 If the signing algorithm first hashes the message before generating the signature, the signing

algorithm’s hashing step shall be skipped.

280 10.9.2 CHALLENGE_AUTH signature verification

281 Modifications to the previous request messages or the corresponding response messages by an active person-in-the-

middle adversary or media error result in M2!=M1 and lead to verification failure.

282 To complete the CHALLENGE_AUTH signature verification process, the Requester shall complete this step:

1.283 The Requester shall perform:

Verify(PK, Hash(M2), Signature);

284 where:

◦285 Verify

286 Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS

response message that the Requester received.

287 The Successful ALGORITHMS response message format table describes the BaseAsymSel ,

ExtAsymSel and RespAlgStruct (when AlgType == ReqBaseAsymAlg) fields.

◦288 PK

289 Public key associated with the leaf certificate of the Responder with slot=Param1 of the

CHALLENGE request message. If the public key of the Responder was provisioned to the

Requester, then PK is the provisioned public key.

◦290 Hash

291 Hashing algorithm the Responder selected through the last sent ALGORITHMS response message

as received by the Requester.

292 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

293 If the verification algorithm first hashes the message before generating the signature, the verification

algorithm’s hashing step shall be skipped.

294 The Responder authentication: Runtime challenge-response flow shows the high-level request-response message

flow and sequence for the authentication of the Responder for runtime challenge-response.

295 Responder authentication: Runtime challenge-response flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 79

296

Nonce

ResponderRequester

1. The Requester sends a
CHALLENGE request message.

2. The Requester verifies
Responder's signature.

1. The Responder computes signature using
the Nonce and generates a
CHALLENGE_AUTH response message

CHALLENGE

Cert Chain Hash, Nonce,
Measurement SummaryHash,

OpaqueData, Signature

CHALLENGE_AUTH

297 10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

298 This clause applies to Responder-only authentication.

299 The Request ordering and message transcript computation rules for M1/M2 table defines how the message transcript

is constructed for M1 and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH

response message.

300 The possible request orderings after reset leading up to and including CHALLENGE are:

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , GET_CERTIFICATE , CHALLENGE

(A1, B1, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , CHALLENGE (A1, B3, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , CHALLENGE (A1, B2, C1)

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A2, B1, C1)

• GET_DIGESTS , CHALLENGE (A2, B3, C1)

• CHALLENGE (A2, B2, C1)

301 Immediately after reset, M1 and M2 shall be null.

302 After the Requester receives a successful CHALLENGE_AUTH response or the Requester sends a GET_MEASUREMENTS

request, M1 and M2 shall be set to null. If a Negotiated State has been established, this will remain intact.

303 If a Requester sends a GET_VERSION message, the Requester and Responder shall reset M1 and M2 to null, clear all

Negotiated State and recommence construction of M1 and M2 starting with the new GET_VERSION message.

304 Request ordering and message transcript computation rules for M1/M2

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

Reset N/A M1/M2=null

Security Protocol and Data Model (SPDM) Specification DSP0274

80 Published Version 1.1.3

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

GET_VERSION issued

Requester issues this request to allow the Requester and

Responder to determine an agreed upon Negotiated

State . Also issued if the Requester detects an out of

sync condition, when the signature verification fails or

when the Responder provides an unexpected error

response.

M1/M2=null

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Issued

Requester shall always issue these requests in this order.

A1=Concatenate(GET_VERSION, VERSION,

GET_CAPABILITIES, CAPABILITIES,

NEGOTIATE_ALGORITHMS, ALGORITHMS)

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Skipped

Requester skipped issuing these requests after a new

reset if the Responder has previously indicated

CACHE_CAP=1 . In this case, the Requester and

Responder shall proceed with the previously determined

Negotiated State .

A2=null

GET_DIGESTS ,

GET_CERTIFICATE

issued

Requester issued these requests in this order after

NEGOTIATE_ALGORITHMS request completion or

immediately after reset, if it chose to skip the previous

three requests.

B1=Concatenate(GET_DIGESTS, DIGESTS,

GET_CERTFICATE, CERTIFICATE)

GET_DIGESTS ,

GET_CERTIFICATE

skipped

Requester skipped both requests after a new reset since

it could use previously cached certificate information.
B2=null

GET_DIGESTS issued,

GET_CERTIFICATE

skipped

Requester skipped GET_CERTIFICATE request after a

new reset since it could use the previously cached

CERTIFICATE response.

B3=(GET DIGESTS, DIGESTS)

CHALLENGE issued

Requester issued this request to complete security

verification of current requests and responses. The

Signature bytes of CHALLENGE_AUTH shall not be

included in C.

C1=(CHALLENGE, CHALLENGE_AUTH\Signature) . See

the CHALLENGE request message format table.

CHALLENGE completion Completion of CHALLENGE resets M1 and M2. M1/M2=null

Other issued

If the Requester issued GET_MEASUREMENTS or

KEY_EXCHANGE or FINISH or PSK_EXCHANGE or

PSK_FINISH or KEY_UPDATE or HEARTBEAT or

GET_ENCAPSULATED_REQUEST or

DELIVER_ENCAPSULATED_RESPONSE or END_SESSSION

request(s) and skipped CHALLENGE completion, M1 and

M2 are reset to null .

M1/M2=null

305 10.9.3 Basic mutual authentication

306 Unless otherwise stated, if the Requester supports mutual authentication, the requirements placed on the Responder

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Requester.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 81

Unless otherwise stated, if the Responder supports mutual authentication, the requirements placed on the Requester

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Responder.

These two statements essentially describe a role reversal, unless otherwise stated.

307 The basic mutual authentication flow shall start when the Requester successfully receives a CHALLENGE_AUTH with

BasicMutAuthReq set. This flow shall utilize message encapsulation as described in GET_ENCAPSULATED_REQUEST

request and ENCAPSULATED_REQUEST response messages to retrieve request messages. The basic mutual

authentication flow shall end when the encapsulated request flow ends.

308 This flow shall only allow GET_DIGESTS , GET_CERTIFICATE , CHALLENGE and their corresponding responses to be

encapsulated.

309 The Mutual authentication basic flow illustrates, as an example, the basic mutual authentication flow.

310 Mutual authentication basic flow

Security Protocol and Data Model (SPDM) Specification DSP0274

82 Published Version 1.1.3

311

BASIC
MUTUAL
AUTHENTICATION
FLOW

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

CHALLENGE

CHALLENGE_AUTH

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

ENCAPSULATED_RESPONSE_ACK (CHALLENGE)

DELIVER_ENCAPSULATED_RESPONSE (CHALLENGE_AUTH)

BasicMutAuthReq is
set in the response.

Both Requester
and Responder
set MUT_AUTH_CAP
bits.

312 10.9.3.1 Mutual authentication message transcript

313 This clause applies to the Responder authenticating the Requester in a basic mutual authentication scenario.

314 The Basic mutual authentication message transcript table defines how the message transcript is constructed for M1

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 83

and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH response message when the

Responder authenticates the Requester.

315 The possible request orderings for the basic mutual authentication flow shall be one of the following (the Flow ID is in

parenthesis):

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (BMAF0)

• GET_DIGESTS , CHALLENGE (BMAF1)

• GET_CERTIFICATE , CHALLENGE (BMAF2)

• CHALLENGE (BMAF3)

316 When the basic mutual authentication flow starts (i.e., when GET_ENCAPSULATED_REQUEST is issued) M1 and M2 shall

be set to NULL.

317 Basic mutual authentication message transcript

Flow ID M1/M2

BMAF0

Concatenate(GET_DIGESTS , DIGESTS , GET_CERTIFICATE ,

CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the

signature)

BMAF1
Concatenate(GET_DIGESTS , DIGESTS , CHALLENGE ,

CHALLENGE_AUTH without the signature)

BMAF2
Concatenate(GET_CERTIFICATE , CERTIFICATE ,

CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF3
Concatenate(CHALLENGE , CHALLENGE_AUTH without the

signature)

318 For GET_CERTIFICATE and CERTIFICATE , these messages may need to be issued multiple times to retrieve the

entire certificate chain. Thus, each instance of the request and response shall be part of M1/M2 in the order that they

are issued.

319 10.10 Firmware and other measurements

320 This clause describes request messages and response messages associated with endpoint measurement. All request

messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in

CAPABILITIES response.

321 The Measurement retrieval flow shows the high-level request-response flow and sequence for endpoint

measurement. If MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0, and the Requester requires

fresh measurements, the Responder shall be reset before GET_MEASUREMENTS is resent. The mechanisms employed

for resetting the Responder are outside the scope of this specification.

322 Measurement retrieval flow

Security Protocol and Data Model (SPDM) Specification DSP0274

84 Published Version 1.1.3

323

Nonce

ResponderRequester

1. The Requester sends a
GET_MEASUREMENTS request
message.

2. Verify signature and verify
measurements match expected
values.

1. The Responder sends a
MEASUREMENTS response message.

GET_MEASUREMENTS

Number of
measurements,
length, Nonce,
measurement

blocks,
signature.

MEASUREMENTS

324 10.11 GET_MEASUREMENTS request and MEASUREMENTS response
messages

325 This request message shall retrieve measurements in the form of measurements blocks. A Requester should not send

this message until it has received at least one successful CHALLENGE_AUTH response message from the Responder, or

should send this message in a secure session. The successful CHALLENGE_AUTH response may have been received

before the last reset.

326 The GET_MEASUREMENTS request message format table shows the GET_MEASUREMENTS request message format.

327 The GET_MEASUREMENTS request attributes table shows the GET_MEASUREMENTS request message attributes.

328 The Successful MEASUREMENTS response message format table shows the MEASUREMENTS response message

format. The measurement blocks in MeasurementRecord shall be placed contiguously from index 1 and shall be

sorted in ascending order by index.

329 GET_MEASUREMENTS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE0=GET_MEASUREMENTS

2 Param1 1

Request attributes. See

the GET_MEASUREMENTS

request attributes table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 85

Offset Field Size (bytes) Value

3 Param2 1

Measurement operation.

A value of 0x0 shall query

the Responder for the

total number of

measurement blocks

available.

A value of 0xFF shall

request all measurement

blocks.

A value between 0x1

and 0xFE , inclusively,

shall request the

measurement block at the

index corresponding to

that value.

4 Nonce 32

The Requester should

choose a random value.

This field is only present if

a signature is required on

the response. See the

GET_MEASUREMENTS

request attributes table.

36 SlotIDParam 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. Slot

number of the certificate

chain of the Responder

that shall be used for

authenticating the

measurement(s). If the

Responder’s public key

was provisioned to the

Requester previously, this

field shall be 0xF . This

field is only present if a

signature is required on

the response. See the

GET_MEASUREMENTS

request attributes table.

330 GET_MEASUREMENTS request attributes

Security Protocol and Data Model (SPDM) Specification DSP0274

86 Published Version 1.1.3

Bits Value Description

0 1

If the Responder can generate a signature (MEAS_CAP is 10b in the

CAPABILITIES response), the value of this bit shall indicate to the

Responder that a signature is required. The Responder shall generate

a signature in the corresponding response. The Nonce field shall be

present in the request.

0 0

For Responders that can generate signatures, the value of this bit shall

indicate that the Requester does not require a signature. The

Responder shall not generate a signature in the response. The Nonce

field shall be absent in the request.

For Responders that cannot generate a signature (MEAS_CAP is 01b

in the CAPABILITIES response) the Requester shall always use this

value.

[7:1] Reserved Reserved

331 Successful MEASUREMENTS response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x60=MEASUREMENTS

2 Param1 1

When Param2 in the

requested measurement

operation is 0 , this

parameter shall return

the total number of

measurement indices on

the device. Otherwise,

this field is reserved.

3 Param2 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. If this

message contains a

signature, this field

contains the slot number

of the certificate chain

specified in the

GET_MEASUREMENTS

request, or 0xF if the

Responder’s public key

was provisioned to the

Requester previously. If

this message does not

contain a signature, this

field shall be set to 0x0 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 87

Offset Field Size (bytes) Value

4 NumberOfBlocks 1

Number of measurement

blocks (N) in

MeasurementRecord . If

Param2 in the requested

measurement operation

is 0 , this field shall be

0 .

5 MeasurementRecordLength 3

Size of the

MeasurementRecord

field in bytes. If Param2

in the requested

measurement operation

is 0 , this field shall be

0 .

8 MeasurementRecord L= MeasurementRecordLength

Concatenation of all

measurement blocks that

correspond to the

requested Measurement

operation. Measurement

block defines the

measurement block

structure.

8 + L Nonce 32
The Responder should

choose a random value.

40 + L OpaqueLength 2

Size of the OpaqueData

field in bytes. The value

shall not be greater than

1024 bytes.

42 + L OpaqueData OpaqueLength

Free-form field, if

present. The Responder

may include Responder-

specific information and/

or information defined

by its transport.

Security Protocol and Data Model (SPDM) Specification DSP0274

88 Published Version 1.1.3

Offset Field Size (bytes) Value

42 + L + OpaqueLength Signature S

Signature of the

GET_MEASUREMENTS

request and

MEASUREMENTS response

messages, excluding the

Signature field and

signed using the device

private key. The

Responder shall use the

asymmetric signing

algorithm it selected

during the last

ALGORITHMS response

message to the

Requester, and S is the

size of that asymmetric

signing algorithm output.

This field is conditional.

332 10.11.1 Measurement block

333 Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,

offsets 0 through 3, followed by the measurement data that correspond to a particular measurement index and

measurement type. The blocks are ordered by Index .

334 The Measurement block format table shows the format for a measurement block:

335 Measurement block format

Offset Field Size (bytes) Value

0 Index 1

Index. Shall represent the

index of the measurement. In

the range of [1, N].

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 89

Offset Field Size (bytes) Value

1 MeasurementSpecification 1

Bit mask. The value shall

indicate the measurement

specification that the

requested Measurement

follows and shall match the

selected measurement

specification in the

ALGORITHMS message. See

the Successful ALGORITHMS

response message format

table. Only one bit shall be

set in the measurement

block.

Bit 0=DMTF, as specified in

the Measurement field

format when

MeasurementSpecification

field is Bit 0 = DMTF table.

All other bits are reserved.

2 MeasurementSize 2
Size of Measurement , in

bytes.

4 Measurement MeasurementSize

The

MeasurementSpecification

defines the format of this

field.

336 10.11.1.1 DMTF specification for the Measurement field of a measurement block

337 The present clause is the specification for the format of the Measurement field in a measurement block when the

MeasurementSpecification field selects Bit 0=DMTF. This format is specified in Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF.

338 The measurement manifest of DMTFSpecMeasurementValueType refers to a manifest that describes contents of other

indexes. For example, the set of firmware modules executing on the Responder may change at runtime. The

measurement manifest tells the Requester which firmware modules’ measurements are reported in this response and

their indexes. The format of measurement manifest is out of scope of this specification.

339 Measurement field format when MeasurementSpecification field is bit 0 = DMTF

Security Protocol and Data Model (SPDM) Specification DSP0274

90 Published Version 1.1.3

Offset Field Size (bytes) Value

0 DMTFSpecMeasurementValueType 1

Composed of:

Bit [7] indicates the representation in

DMTFSpecMeasurementValue .

Bits [6:0] indicate what is being measured

by DMTFSpecMeasurementValue .

These values are set independently and

are interpreted as follows:

[7]=0b . Digest.

[7]=1b . Raw bit stream.

[6:0]=00h . Immutable ROM.

[6:0]=01h . Mutable firmware.

[6:0]=02h . Hardware configuration,

such as straps, debug modes.

[6:0]=03h . Firmware configuration,

such as configurable firmware policy.

[6:0]=04h . Measurement manifest.

All other values reserved.

1 DMTFSpecMeasurementValueSize 2

Size of DMTFSpecMeasurementValue , in

bytes.

When

DMTFSpecMeasurementValueType[7]=0b ,

the DMTFSpecMeasurementValueSize

shall be derived from the measurement

hash algorithm that the ALGORITHM

response message returns.

3 DMTFSpecMeasurementValue DMTFSpecMeasurementValueSize

DMTFSpecMeasurementValueSize bytes

of cryptographic hash or raw bit stream,

as indicated in

DMTFSpecMeasurementValueType[7] .

340 10.11.2 MEASUREMENTS signature generation

341 While a Requester may opt to require a signature in each individual MEASUREMENTS response, it is advisable that the

cost of the signature generation process is minimized by amortizing it over multiple MEASUREMENTS responses where

applicable. In this scheme, the Requester issues a number of GET_MEASUREMENTS requests without requiring

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 91

signatures followed by a final GET_MEASUREMENTS request requiring a signature over the entire set of

GET_MEASUREMENTS requests and corresponding MEASUREMENTS responses exchanged. The steps to complete this

scheme are as follows:

1.342 The Responder shall construct L1 and the Requester shall construct L2 over their observed messages:

L1/L2 = Concatenate(GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,
GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,
GET_MEASUREMENTS_REQUESTn, MEASUREMENTS_RESPONSEn)

343 where:

◦344 Concatenate()

345 Standard concatenation function.

◦346 GET_MEASUREMENTS_REQUEST1

347 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

not requested a signature on that specific GET_MEASUREMENTS request.

◦348 MEASUREMENTS_RESPONSE1

349 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUEST1 .

◦350 GET_MEASUREMENTS_REQUESTn-1

351 Entire last consecutive GET_MEASUREMENTS request message under consideration, where the

Requester has not requested a signature on that specific GET_MEASUREMENTS request.

◦352 MEASUREMENTS_RESPONSEn-1

353 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn-1 .

◦354 GET_MEASUREMENTS_REQUESTn

355 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

requested a signature on that specific GET_MEASUREMENTS request.

356 n is a number greater than or equal to 1 .

357 When n equals 1 , the Requester has not made any GET_MEASUREMENTS requests without

signature prior to issuing a GET_MEASUREMENTS request with signature.

Security Protocol and Data Model (SPDM) Specification DSP0274

92 Published Version 1.1.3

◦358 MEASUREMENTS_RESPONSEn

359 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn .

360 Any communication between Requester and Responder other than a GET_MEASUREMENTS request or

response resets L1/L2 computation to null.

2.361 The Responder shall generate:

Signature = Sign(SK, Hash(L1));

362 where:

◦363 Sign

364 Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS

response message that the Responder sent.

365 The Successful ALGORITHMS response message format table describes the BaseAsymSel and

ExtAsymSel fields.

◦366 SK

367 Private key of the Responder associated with the leaf certificate stored in SlotID . If the public

key of the Responder was provisioned to the Requester, then SK is the associated private key.

◦368 Hash

369 Hashing algorithm that the Responder selected through the last ALGORITHMS response message

that the Responder sent.

370 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

371 If the signing algorithm first hashes the message before generating the signature, the signing

algorithm’s hashing step shall be skipped.

372 10.11.3 MEASUREMENTS signature verification

373 To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

1.374 The Requester shall perform:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 93

Verify(PK, Hash(L2), Signature)

375 where:

◦376 PK

377 Public key associated with the slot 0 certificate of the Responder. PK is extracted from the

CERTIFICATES response. If the public key of the Responder was provisioned to the Requester,

then PK is the provisioned public key.

◦378 Verify

379 Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS

response message that the Requester received.

380 The Successful ALGORITHMS response message format table describes the BaseAsymSel and

ExtAsymSel fields.

◦381 Hash

382 Hashing algorithm the Responder selected through the last sent ALGORITHMS response message

that the Requester sent.

383 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

384 If the verification algorithm first hashes the message before generating the signature, the verification

algorithm’s hashing step shall be skipped.

385 The Measurement signature computation example shows an example of a typical Requester Responder protocol

where the Requester issues 1 to n-1 GET_MEASUREMENTS requests without a signature, followed by a single

GET_MEASUREMENTS request n with a signature.

386 Measurement signature computation example

Security Protocol and Data Model (SPDM) Specification DSP0274

94 Published Version 1.1.3

387

GET_MEASUREMENTS (n-1, NoSig)

MEASUREMENTS (n-1, NoSig)

GET_MEASUREMENTS (n, Sig)

MEASUREMENTS (n, Sig)

Responder

GET_MEASUREMENTS (1, NoSig)

MEASUREMENTS (1, NoSig)
MEASUREMENT

response 1 with no

signature

...

...

MEASUREMENT response

n-1 with no signature

GET_MEASUREMENT
request 1 with no

signature request

GET_MEASUREMENT
request n-1 with no

signature request

GET_MEASUREMENT
request n with signature

request

MEASUREMENT response
n with signature computed

as described

Requester

Verify Signature computed

as described

388 10.12 ERROR response message

389 For an SPDM operation that results in an error, the Responder should send an ERROR response message to the

Requester.

390 The ERROR response message format table shows the ERROR response format.

391 The Error code and error data table shows the detailed error code, error data, and extended error data.

392 The ResponseNotReady extended error data table shows the ResponseNotReady extended error data.

393 The Registry or standards body ID table shows the registry or standards body ID.

394 The ExtendedErrorData format for vendor or other standards-defined ERROR response message table shows the

ExtendedErrorData format definition for vendor or other standards-defined ERROR response message.

395 ERROR response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x7F=ERROR

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 95

Offset Field Size (bytes) Value

2 Param1 1
Error Code. See Error

code and error data.

3 Param2 1
Error Data. See Error code

and error data.

4 ExtendedErrorData 0-32

Optional extended data.

See Error code and error

data.

396 Error code and error data

Error code Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved Reserved Reserved

InvalidRequest 0x01
One or more request

fields are invalid
0x00 No extended error data is provided.

Reserved 0x02 Reserved Reserved Reserved

Busy 0x03

The Responder received

the request message and

the Responder decided

to ignore the request

message, but the

Responder may be able

to process the request

message if the request

message is sent again in

the future.

0x00 No extended error data is provided.

UnexpectedRequest 0x04

The Responder received

an unexpected request

message. For example,

CHALLENGE before

NEGOTIATE_ALGORITHMS .

0x00 No extended error data is provided.

Unspecified 0x05
Unspecified error

occurred.
0x00 No extended error data is provided.

DecryptError 0x06

The receiver of the

record cannot decrypt

the record or verify data

during the session

handshake.

Reserved No extended error data is provided.

UnsupportedRequest 0x07

The

RequestResponseCode

in the request message

is unsupported.

RequestResponseCode

in the request

message.

No extended error data is provided

Security Protocol and Data Model (SPDM) Specification DSP0274

96 Published Version 1.1.3

Error code Value Description Error data ExtendedErrorData

RequestInFlight 0x08

The Responder has

delivered an

encapsulated request to

which it is still waiting for

the response.

Reserved No extended error data is provided.

InvalidResponseCode 0x09

The Requester delivered

an invalid response for

an encapsulated

response.

Reserved No extended error data is provided.

SessionLimitExceeded 0x0A

Maximum number of

concurrent sessions

reached.

Reserved No extended error data is provided.

Reserved 0x0b - 0x40 Reserved Reserved Reserved

MajorVersionMismatch 0x41
Requested SPDM Major

Version is not supported.
0x00 No extended error data provided.

ResponseNotReady 0x42

See the

RESPOND_IF_READY

request message format.

0x00
See the ResponseNotReady

extended error data table.

RequestResynch 0x43

Responder is requesting

Requester to reissue

GET_VERSION to

resynchronize. An

example is following a

firmware update.

0x00 No extended error data provided.

Reserved 0x44 - 0xFE Reserved Reserved. Reserved

Vendor/Other Standards Defined 0xFF
Vendor or Other

Standards defined

Shall indicate the

registry or standard

body using one of the

values in the ID column

in the Registry or

standards body ID

table.

See the ExtendedErrorData format

for vendor or other standards-

defined ERROR response message

table for format definition.

397 ResponseNotReady extended error data

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 97

Offset Field Size (bytes) Value

0 RDTExponent 1

Exponent expressed in

logarithmic (base 2 scale)

to calculate RDT time in

µs after which the

Responder can provide

successful completion

response.

For example, the raw

value 8 indicates that the

Responder will be ready

in 28=256 µs.

Requester should use

RDT to avoid continuous

pinging and issue the

RESPOND_IF_READY

request message after

RDT time.

For timing requirement

details, see the Timing

specification for SPDM

messages table.

1 RequestCode 1
The request code that

triggered this response.

2 Token 1

The opaque handle that

the Requester shall pass

in with the

RESPOND_IF_READY

request message.

Security Protocol and Data Model (SPDM) Specification DSP0274

98 Published Version 1.1.3

Offset Field Size (bytes) Value

3 RDTM 1

Multiplier used to

compute WT Max in µs to

indicate the response may

be dropped after this

delay.

The multiplier shall always

be greater than 1.

The Responder may also

stop processing the initial

request if the same

Requester issues a

different request.

For timing requirement

details, see the Timing

specification for SPDM

messages table.

398 Registry or standards body ID

399 For algorithm encoding in extended algorithm fields, unless otherwise specified, consult the respective registry or

standards body.

ID Vendor ID length (bytes) Registry or standards body name Description

0x0 0 DMTF

DMTF does not have a

Vendor ID registry. At

present, DMTF does

not have any

algorithms defined for

use in extended

algorithms fields.

0x1 2 TCG

VendorID is identified

by using TCG Vendor

ID Registry. For

extended algorithms,

see TCG Algorithm

Registry.

0x2 2 USB

VendorID is identified

by using the vendor ID

assigned by USB.

0x3 2 PCI-SIG

VendorID is identified

using PCI-SIG Vendor

ID.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 99

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://pcisig.com/membership/member-companies

ID Vendor ID length (bytes) Registry or standards body name Description

0x4 4 IANA

The Private Enterprise

Number (PEN)

assigned by the

Internet Assigned

Numbers Authority

(IANA) identifies the

vendor.

0x5 4 HDBaseT

VendorID is identified

by using HDBaseT

HDCD entity.

0x6 2 MIPI

The Manufacturer ID

assigned by MIPI

identifies the vendor.

0x7 2 CXL

VendorID is identified

by using CXL vendor

ID.

0x8 2 JEDEC

VendorID is identified

by using JEDEC vendor

ID.

0x9 0 VESA

For fields and formats

defined by the VESA

standards body, there

is no Vendor ID

registry.

400 ExtendedErrorData format for vendor or other standards-defined ERROR response message

Security Protocol and Data Model (SPDM) Specification DSP0274

100 Published Version 1.1.3

https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/
https://mipi.org/
https://mid.mipi.org/
https://www.computeexpresslink.org/
https://www.jedec.org/
https://vesa.org/

Byte offset Length Field name Description

0 1 Len

Length of the VendorID field.

If the ERROR is vendor defined, the

value of this field shall equal the

Vendor ID Len , as the Registry or

standards body ID table describes, of

the corresponding registry or standard

body name.

If the ERROR is defined by a registry

or a standard, this field shall be zero

(0), which also indicates that the

VendorID field is not present.

The Error Data field in the ERROR

message indicates the registry or

standards body name, such as

Param2 , and is one of the values in

the ID column in the Registry or

standards body ID table.

1 Len VendorID

The value of this field shall indicate

the Vendor ID, as assigned by the

registry or standards body. The

Registry or standards body ID table

describes the length of this field. Shall

be in little endian format.

The registry or standards body name

in the ERROR is indicated in the

Error Data field, such as Param2 ,

and is one of the values in the ID

column in the Registry or standards

body ID table.

1 + Len Variable OpaqueErrorData
Defined by the vendor or other

standards.

401 10.13 RESPOND_IF_READY request message format

402 This request message shall ask for the response to the original request upon receipt of ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return the ERROR response message, set

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 101

403

CHALLENGE_AUTH()

ResponderRequester

CHALLENGE(0x83)

ERROR (ResponseNotReady, 0x7, 8, 4)

RESPOND_IF_READY(0x83, 0x7)

Sends response in less than CT
μs to meet the crypto timeout

requirement.
ResponseNotReady with

Token=0x7, RDTExponent = 8 and
RDTM = 4

Waits for more than
WT = 2 ^ 8 μs but

less than WTMax =
((2 ^ 8) x 4) – μs

Processing is complete

Less than CT μs

Less than CT μs

RTT = 1

404 The RESPOND_IF_READY request message format table shows the RESPOND_IF_READY request message format.

405 RESPOND_IF_READY request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xFF=RESPOND_IF_READY

2 Param1 1

The original request code

that triggered the

ResponseNotReady error

code response. Shall

match the request code

returned as part of the

ResponseNotReady

extended error data.

3 Param2 1

The token that was

returned as part of the

ResponseNotReady

extended error data.

406 10.14 VENDOR_DEFINED_REQUEST request message

407 A Requester intending to define a unique request to meet its need can use this request message. The

VENDOR_DEFINED_REQUEST request message format table defines the format.

408 The Requester should send this request message only after sending GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS request sequence.

Security Protocol and Data Model (SPDM) Specification DSP0274

102 Published Version 1.1.3

409 If the vendor intends that these messages are to be used before a session has been established, and the vendor

wishes to have the requests authenticated, then the vendor shall indicate how the transcript hashes and/or message

transcript are changed to add the vendor defined commands.

410 The VENDOR_DEFINED_REQUEST request message format table shows the VENDOR_DEFINED_REQUEST request

message format.

411 VENDOR_DEFINED_REQUEST request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xFE=VENDOR_DEFINED_REQUEST

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2

Shall indicate the registry or

standards body by using one of

the values in the ID column in

the Registry or standards body

ID table.

6 Len 1

Length of the Vendor ID field.

If the VendorDefinedRequest is

standard defined, Len shall be

0 . If the

VendorDefinedRequest is

vendor-defined, Len shall equal

Vendor ID Len , as the Registry

or standards body ID table

describes.

7 VendorID Len

Vendor ID, as assigned by the

registry or standards body. Shall

be in little endian format.

7 + Len ReqLength 2
Length of the

VendorDefinedReqPayload .

7 + Len + 2 VendorDefinedReqPayload ReqLength

The standard or vendor shall use

this field to send the request

payload.

412 Other DMTF specifications may define VENDOR_DEFINED_REQUEST with StandardID set to 0. See

VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications for more information.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 103

413 10.15 VENDOR_DEFINED_RESPONSE response message

414 A Responder can use this response message in response to VENDOR_DEFINED_REQUEST . The

VENDOR_DEFINED_RESPONSE response message format table defines the format.

415 The VENDOR_DEFINED_RESPONSE response message format table shows the response message format.

416 VENDOR_DEFINED_RESPONSE response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x7E=VENDOR_DEFINED_RESPONSE

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2

Shall indicate the registry or

standard body using one of the

values in the ID column in the

Registry or standards body ID

table.

6 Len 1

Length of the Vendor ID field. If

the VendorDefinedRequest is

standards-defined, length shall be

0 . If the

VendorDefinedRequest is

vendor-defined, length shall

equal Vendor ID Len , as the

Registry or standards body ID

table describes.

7 VendorID Len

Shall indicate the Vendor ID, as

assigned by the registry or

standards body. Shall be in little

endian format.

7 + Len RespLength 2
Length of the

VendorDefinedRespPayload

7 + Len + 2 VendorDefinedRespPayload ReqLength

Standard or vendor shall use this

value to send the response

payload.

Security Protocol and Data Model (SPDM) Specification DSP0274

104 Published Version 1.1.3

417 10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF
specifications

418 Other DMTF specifications may define VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages with

StandardID set to 0 (“DMTF”, as defined in the Registry or standards body ID table) and Len set to 0. In this case,

VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages shall specify the underlying DMTF

specification that defines them. A DMTF specification which defines the data model of VendorDefinedReqPayload

for VENDOR_DEFINED_REQUEST and the data model of VendorDefinedRespPayload for VENDOR_DEFINED_RESPONSE

shall follow the Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF

table.

419 Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF

Byte offset Field Size (bytes) Description

0 DSPNumber 2

Shall be the DMTF specification’s DSP number in a

16-bit integer. For example, DSP0287 shall use

0x011F.

2 DSPVersion 2

Shall be the version number of the DMTF

specification whose DSP number is populated in the

DSPNumber field. The format of the version number

shall follow the VersionNumberEntry definition table.

4 VendorPayload Variable

Shall be the actual payload data defined by the

DMTF specification whose DSP number is populated

in the DSPNumber field.

420 10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response
messages

421 This request message shall initiate a handshake between Requester and Responder intended to authenticate the

Responder (or optionally both parties), negotiate cryptographic parameters (in addition to those negotiated in the

last NEGOTIATE_ALGORITHMS / ALGORITHMS exchange), and establish shared keying material. The KEY_EXCHANGE

request message format table shows the KEY_EXCHANGE request message format and the Successful

KEY_EXCHANGE_RSP response message format table shows the KEY_EXCHANGE_RSP response message format. The

handshake is completed by the successful exchange of the FINISH request and FINISH_RSP response messages,

presented in the next clause, and depends on the tight coupling between the two request/response message pairs.

422 The Requester and Responder pair may support two modes of handshakes. If HANDSHAKE_IN_THE_CLEAR_CAP is set in

both the Requester and the Responder all SPDM messages exchanged during the Session Handshake Phase are sent

in the clear (outside of a secure session). Otherwise both the Requester and the Responder use encryption and/or

message authentication during the Session Handshake Phase using the Handshake secret derived at the completion

of KEY_EXCHANGE_RSP message for subsequent message communication until FINISH_RSP message completion.

423 Responder authentication key exchange example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 105

424

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

KEY_EXCHANGE

KEY_EXCHANGE_RSP

GET_CERTIFICATE

CERTIFICATE

If supported

FINISH

FINISH_RSP

425 The Responder authentication multiple key exchange example provides an example of multiple sessions using two

independent sets of root session keys that coexist at the same time. When HANDSHAKE_IN_THE_CLEAR_CAP = 0 for

both Requester and Responder, the specification does not require a specific temporal relationship between the

second KEY_EXCHANGE request message and the first FINISH_RSP response message. However, to simplify

implementation, a Responder might respond with an ERROR message of ErrorCode=Busy to the second

KEY_EXCHANGE request message until the first FINISH_RSP response message is complete. If the handshake is

performed in the clear (that is, if HANDSHAKE_IN_THE_CLEAR_CAP = 1 for both Requester and Responder), a Requester

shall not send a second KEY_EXCHANGE request message until the first FINISH_RSP response message is received. A

Security Protocol and Data Model (SPDM) Specification DSP0274

106 Published Version 1.1.3

Responder shall respond with an ERROR message of ErrorCode=UnexpectedRequest if it receives a second

KEY_EXCHANGE request message before the first FINISH request is received.

426 Responder authentication multiple key exchange example

427

KEY_EXCHANGE(K2)

KEY_EXCHANGE_RSP (K2)

ResponderRequester

KEY_EXCHANGE (K1)

KEY_EXCHANGE_RSP (K1)

FINISH (K1)

FINISH_RSP (K1)

FINISH (K2)

FINISH_RSP (K2)

Enables authenticated and/or
 encrypted data transfer (K2)

Enables authenticated and/or
 encrypted data transfer (K1)

Authenticated and/or encrypted
data transfer (K1) continues

428 The handshake includes an ephemeral Diffie-Hellman (DHE) key exchange in which the Requester and Responder

each generate an ephemeral (that is, temporary) Diffie-Hellman key pair and exchange the public keys of those key

pairs in the ExchangeData fields of the KEY_EXCHANGE request message and KEY_EXCHANGE_RSP response

message. The Responder generates a DHE secret by using the private key of the DHE key pair of the Responder and

the public key of the DHE key pair of the Requester provided in the KEY_EXCHANGE request message. Similarly, the

Requester generates a DHE secret by using the private key of the DHE key pair of the Requester and the public key of

the DHE key pair of the Responder provided in the KEY_EXCHANGE_RSP response message. The DHE secrets are

computed as specified in clause 7.4 of RFC 8446. Assuming that the public keys were received correctly, both the

Requester and Responder generate identical DHE secrets from which session secrets are generated.

429 Diffie-Hellman group parameters are determined by the DHE group in use, which is selected in the most recent

ALGORITHMS response. The contents of the ExchangeData field are computed as specified in clause 4.2.8 of RFC

8446. Specifically, if the DHE key exchange is based on finite-fields (FFDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the computed public value (Y = g^X mod p) for the specified

group (see DHE structure for group definitions) encoded as a big-endian integer and padded to the left with zeros to

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 107

the size of p in bytes. If the key exchange is based on elliptic curves (ECDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the serialization of X and Y, which are the binary

representations of the x and y values respectively in network byte order, padded on the left by zeros if necessary. The

size of each number representation occupies as many octets as implied by the curve parameters selected. Specifically,

X is [0: C - 1] and Y is [C : D – 1], where C and D are determined by the group.

430 A Requester should generate a fresh DHE key pair for each KEY_EXCHANGE request message that the Requester

sends. A Responder should generate a fresh DHE key pair for each KEY_EXCHANGE_RSP response message that the

Responder sends.

431 KEY_EXCHANGE request message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE4 = KEY_EXCHANGE

2 Param1 1

Requested

MeasurementSummaryHash

type:

0x0 . No measurement

summary hash.

0x1 . TCB measurement

hash.

0xFF . All measurements

hash.

All other values reserved.

When Responder does not

support any

measurements, Requester

shall set this value to 0x0 .

3 Param2 1

The slot number of the

target certificate chain that

the Responder will use for

authentication. The value

in this field shall be

between 0 and 7 inclusive

to identify a valid

certificate slot. It shall be

0xFF if the public key of

the Responder was

provisioned to the

Requester previously.

Security Protocol and Data Model (SPDM) Specification DSP0274

108 Published Version 1.1.3

Offset Field Size in bytes Value

4 ReqSessionID 2

Two-byte Requester

contribution to allow

construction of a unique

four-byte session ID

between a Requester-

Responder pair. The final

session ID = Concatenate

(ReqSessionID,

RspSessionID).

6 Reserved 2 Reserved

8 RandomData 32
Requester-provided

random data.

40 ExchangeData D

DHE public information

generated by the

Requester. If the DHE

group selected in the most

recent ALGORITHMS

response is finite-field-

based (FFDHE), the

ExchangeData represents

the computed public

value. If the selected DHE

group is elliptic curve-

based (ECDHE), the

ExchangeData represents

the X and Y values in

network byte order.

Specifically, X is [0: C - 1]

and Y is [C : D – 1]. In both

cases the size of D (and C

for ECDHE) is derived from

the selected DHE group.

40 + D OpaqueDataLength 2

Size of the OpaqueData

field that follows in bytes.

Shall be 0 if no

OpaqueData is provided.

42 + D OpaqueData OpaqueDataLength

If present, OpaqueData

sent by the Requester.

Used to indicate any

parameters that Requester

wishes to pass to the

Responder as part of key

exchange.

432 Successful KEY_EXCHANGE_RSP response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 109

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x64 = KEY_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if

Heartbeat is not supported. Otherwise, the

value shall be in units of seconds. Zero is a

legal value if Heartbeat is supported, but

means that a heartbeat is not desired on

this session.

3 Param2 1 Reserved.

4 RspSessionID 2

Two-byte Responder contribution to allow

construction of a unique four-byte session

ID between a Requester-Responder pair.

The final session ID = Concatenate

(ReqSessionID, RspSessionID).

6 MutAuthRequested 1

Bit 0 - If set, the Responder is requesting

to authenticate the Requester (mutual

authentication) without using the

encapsulated request flow.

Bit 1 - If set, Responder is requesting

mutual authentication with the

encapsulated request flow.

Bit 2 - If set, Responder is requesting

mutual authentication with an implicit

GET_DIGESTS request. The Responder and

Requester shall follow the optimized

encapsulated request flow.

Bit [7:3] - Reserved.

Only one of Bit 0, Bit 1 and Bit 2 shall be

set.

For details on the encapsulated request

flow or the optimized encapsulated

request flow, see the

GET_ENCAPSULATED_REQUEST request

and ENCAPSULATED_REQUEST response

messages clause.

Security Protocol and Data Model (SPDM) Specification DSP0274

110 Published Version 1.1.3

Offset Field Size in bytes Value

7 SlotIDParam 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. The slot number of the

certificate chain of the Requester to be

used for mutual authentication, if

MutAuthRequested Bit 0 is set. The value

in this field shall be between 0 and 7

inclusive, or 0xF if the public key of the

Requester was provisioned to the

Responder through other means. All other

values Reserved. For any other value of

MutAuthRequested this field shall be set

to 0 and ignored by the Requester.

8 RandomData 32 Responder-provided random data.

40 ExchangeData D

DHE public information generated by the

Responder. If the DHE group selected in

the most recent ALGORITHMS response is

finite-field-based (FFDHE), the

ExchangeData represents the computed

public value. If the selected DHE group is

elliptic curve-based (ECDHE), the

ExchangeData represents the X and Y

values in network byte order. Specifically, X

is [0: C - 1] and Y is [C : D – 1]. In both

cases the size of D (and C for ECDHE) is

derived from the selected DHE group.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 111

Offset Field Size in bytes Value

40 + D MeasurementSummaryHash H

When the Responder does not support

measurements (MEAS_CAP=00b in

CAPABILITIES response) or requested

Param1 =0, this field shall be absent.

When the requested Param1 =1, this field

shall be the combined hash of

Measurements of all measurable

components considered to be in the TCB

required to generate this response,

computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], …)) where

MeasurementBlock[x] denotes a

measurement of an element in the TCB.

Measurements are concatenated in

ascending order based on their

measurement index.

When the requested Param1 =1 and there

are no measurable components in the TCB

required to generate this response, this

field shall be 0 .

When requested Param1=0xFF , this field

is computed as the

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], …,

MeasurementBlock[n])) of all supported

measurement blocks available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order.

Indices with no associated measurements

shall not be included in the hash

calculation.

40 + D + H OpaqueDataLength 2

Size of the OpaqueData field that follows

in bytes. Shall be 0 if no OpaqueData is

provided.

42 + D + H OpaqueData OpaqueDataLength

If present, OpaqueData sent by the

Responder. Used to indicate any

parameters that the Responder wishes to

pass to the Requester as part of key

exchange.

Security Protocol and Data Model (SPDM) Specification DSP0274

112 Published Version 1.1.3

Offset Field Size in bytes Value

42 + D + H +

OpaqueDataLength
Signature S

Signature over the transcript hash. S is the

size of the asymmetric signing algorithm

output the Responder selected via the last

ALGORITHMS response message using the

private key of the leaf certificate of the

Responder. The construction of the

transcript hash is defined in Transcript

Hash for KEY_EXCHANGE_RSP signature.

42 + D + H +

OpaqueDataLength +

S

ResponderVerifyData H

Conditional field.

If the Session Handshake Phase is

encrypted and/or message authenticated,

then this field shall be of length H and it

shall equal the HMAC of the transcript

hash, using finished_key as the secret

key and using the negotiated hash

algorithm as the hash function. The

transcript hash shall be the Transcript Hash

for KEY_EXCHANGE_RSP HMAC. The

finished_key shall be derived from the

Response Direction Handshake Secret and

is described in the finished_key derivation

clause. HMAC is described in RFC 2104.

If both the Requester and Responder set

HANDSHAKE_IN_THE_CLEAR_CAP to 1, then

this field shall be absent.

433 10.16.1 Mutual authentication

434 To perform authentication of the Requester in the KEY_EXCHANGE flow, either the encapsulated request flow or the

optimized encapsulated request flow shall be used. For details and illustration of this flow, see

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

435 The only messages that shall be encapsulated in this case are GET_DIGESTS , DIGESTS , GET_CERTIFICATE , and

CERTIFICATE .

436 10.16.2 Specifying Requester certificate for mutual authentication

437 The SPDM key exchange protocol is optimized to perform key exchange with the least number of messages

exchanged. When Responder-only authentication, or mutual authentication where the Responder has obtained the

certificate chains of the Requester in a previous interaction is performed, key exchange is carried out with two

request/response message pairs (KEY_EXCHANGE , KEY_EXCHANGE_RSP , FINISH and FINISH_RSP). In other cases

where mutual authentication is desired, additional encapsulated messages are exchanged between

KEY_EXCHANGE_RSP and FINISH to enable the Responder to obtain the certificate chains and certificate chain

digests of the Requester. However, in all cases the certificate chain (or raw public key) the Requester should

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 113

https://tools.ietf.org/html/rfc2104

authenticate against is specified by the Responder via the SlotID field in KEY_EXCHANGE_RSP , which precedes the

aforementioned encapsulated messages. This means that a Responder authenticating a Requester whose certificates

it has not obtained in a previous interaction, using a slot other than the default (slot 0), has no way of knowing in

advance which SlotID value to use.

438 To address this case, the Responder explicitly designates the certificate chain to be used via the final

ENCAPSULATED_RESPONSE_ACK request issued inside the encapsulated request flow. Specifically, if either Bit 1 or 2 in

MutAuthRequested is set to 1 and SlotID is set to 0 , the Responder shall use a ENCAPSULATED_RESPONSE_ACK

request with Param2 = 0x02 and an 1-byte long Encapsulated Request field containing the SlotID value. This

shall be interpreted by the Requester as a valid request indicating the slot number to be used, and the SlotID field

in KEY_EXCHANGE_RSP shall be ignored.

439 If Bit 0 of MutAuthRequested is set, then mutual authentication shall be performed without exchanging any

messages between KEY_EXCHANGE_RSP and FINISH request. The certificate chain of the Requester is determined by

the value of SlotID . This is useful for Responders which have obtained a certificate chains of the Requester in a

previous interaction.

440 10.17 FINISH request and FINISH_RSP response messages

441 This request message shall complete the handshake between Requester and Responder initiated by a KEY_EXCHANGE

request. The purpose of the FINISH request and FINISH_RSP response messages is to provide key confirmation,

bind the identify of each party to the exchanged keys and protect the entire handshake against manipulation by an

active attacker. The FINISH request message format table shows the FINISH request message format and the

Successful FINISH_RSP response message format table shows the FINISH_RSP response message format.

442 FINISH request message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE5 = FINISH

2 Param1 1

Bit 0 – If set, the

Signature field is

included. This bit shall

be set when mutual

authentication occurs.

All other bits reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

114 Published Version 1.1.3

Offset Field Size in bytes Value

3 Param2 1

Slot ID. Only valid if

Param1 = 0x01 ,

otherwise reserved. Slot

number of the Requester

Certificate Chain being

authenticated in

Signature field. The

value in this field shall

be between 0 and 7

inclusive. It shall be

0xFF if the public key

of the Requester was

provisioned to the

Responder through

other means.

4 Signature S

Signature over the

transcript hash. S is the

size of the asymmetric

signing algorithm

output the Responder

selected via the last

ALGORITHMS response

message using the

private key of the leaf

certificate of the

Requester. S is zero and

field not present if

Param1 = 0x00 . The

construction of the

transcript hash is

defined in Transcript

Hash for FINISH

signature, mutual

authentication.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 115

Offset Field Size in bytes Value

4+S RequesterVerifyData H

This field shall be an

HMAC of the transcript

hash using the

finished_key as the

secret key and using the

negotiated hash

algorithm as the hash

function. For mutual

authentication, the

transcript hash shall be

the Transcript Hash for

FINISH HMAC, mutual

authentication.

Otherwise, it shall be the

Transcript Hash for

FINISH HMAC,

Responder-only

authentication. The

finished_key shall be

derived from Request

Direction Handshake

Secret and is described

in the finished_key

derivation clauses.

HMAC is described in

RFC 2104.

443 Successful FINISH_RSP response message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x65 = FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

116 Published Version 1.1.3

https://tools.ietf.org/html/rfc2104

Offset Field Size in bytes Value

4 ResponderVerifyData H

Conditional field.

If the Session Handshake Phase

is encrypted and/or message

authenticated (i.e., if either the

Requester or the Responder set

HANDSHAKE_IN_THE_CLEAR_CAP

to 0), this field shall be absent.

If both the Requester and

Responder support

HANDSHAKE_IN_THE_CLEAR_CAP

field, this field shall be of

length H and it shall equal the

HMAC of the transcript hash

using finished_key as the

secret key and using the

negotiated hash algorithm as

the hash function. For mutual

authentication, the transcript

shall be the Transcript Hash for

FINISH_RSP HMAC, mutual

authentication. Otherwise, the

transcript hash shall be the

Transcript Hash for

FINISH_RSP HMAC,

Responder Only authentication.

The finished_key shall be

derived from Response

Direction Handshake Secret

and is described in the

finished_key derivation clause.

HMAC is described in RFC

2104.

444 10.17.1 Transcript hash calculation rules

445 The transcript hash is calculated by hashing the concatenation of the prescribed full messages or message fields in

order. For messages that are encrypted, the plaintext messages shall be used in calculating the transcript hash.

446 The notation [${message_name}] . ${field_name} is used, where:

• ${message_name} is the name of the request or response message.

• ${field_name} is the name of the field in the request or response message. The asterisk (*) means all fields in

that message, except from any conditional fields that are empty (for example KEY_EXCHANGE.OpaqueData).

447 Transcript hash for KEY_EXCHANGE_RSP signature

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 117

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].* except the `Signature` and `ResponderVerifyData` fields.

448 Transcript hash for KEY_EXCHANGE_RSP HMAC

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].* except the `ResponderVerifyData` field.

449 Transcript hash for FINISH signature, mutual authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. Hash of the specified certificate chain in DER format (i.e., FINISH Param2)
11. [FINISH].SPDM Header Fields

450 Transcript hash for FINISH HMAC, Responder-only authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*

Security Protocol and Data Model (SPDM) Specification DSP0274

118 Published Version 1.1.3

10. [FINISH].SPDM Header Fields

451 Transcript hash for FINISH HMAC, mutual authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2).
11. [FINISH].SPDM Header Fields
12. [FINISH].Signature

452 Transcript hash for FINISH_RSP HMAC, Responder-only authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. [FINISH].*
11. [FINISH_RSP].SPDM Header fields

453 Transcript hash for FINISH_RSP HMAC, mutual authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2).
11. [FINISH].*
12. [FINISH_RSP].SPDM Header fields

454 When multiple session keys are being established between the same Requester and Responder pair, Signature over

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 119

Transcript HASH during FINISH request is computed using only the corresponding KEY_EXCHANGE,

KEY_EXCHANGE_RSP and FINISH request parameters.

455 10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response
messages

456 The Pre-Shared Key (PSK) key exchange scheme provides an option for a Requester and a Responder to perform

mutual authentication and session key establishment with symmetric-key cryptography. This option is especially

useful for endpoints that do not support asymmetric-key cryptography or certificate processing. This option can also

be leveraged to expedite the session key establishment, even if asymmetric-key cryptography is supported.

457 This option requires the Requester and the Responder to have prior knowledge of a common PSK before the

handshake. Essentially, the PSK serves as a mutual authentication credential and the base of the session key

establishment. As such, only the two endpoints and potentially a trusted third party that provisions the PSK to the

two endpoints may know the value of the PSK.

458 A Requester may be paired with multiple Responders. Likewise, a Responder may be paired with multiple Requesters.

A pair of Requester and Responder may be provisioned with one or more PSKs. If both endpoints can act as

Requester or Responder, then the endpoints shall use different PSKs for each role.

459 An endpoint may act as a Requester to one device and simultaneously a Responder to another device. It is the

responsibility of the transport layer to identify the peer and establish communication between the two endpoints,

before the PSK-based session key exchange starts.

460 The PSK may be provisioned in a trusted environment, for example, during the secure manufacturing process. In an

untrusted environment, the PSK may be agreed upon between the two endpoints using a secure protocol. The

mechanism for PSK provisioning is out of scope of this specification. The size of the provisioned PSK is determined by

the requirement of security strength of the application, but should be at least 128 bits and recommended to be 256

bits or larger, to resist dictionary attacks especially when the Requester and Responder cannot both contribute

sufficient entropy during the exchange. If the negotiated capabilities and algorithms are provisioned to both

endpoints alongside the PSK, then the Requester shall not issue GET_CAPABILITIES and NEGOTIATE_ALGORITHMS .

461 Two message pairs are defined for this option: PSK_EXCHANGE / PSK_EXCHANGE_RSP and

PSK_FINISH / PSK_FINISH_RSP .

462 The PSK_EXCHANGE message carries three responsibilities:

1. Prompts the Responder to retrieve the specific PSK.

2. Exchanges contexts between the Requester and the Responder.

3. Proves to the Requester that the Responder knows the correct PSK and has derived the correct session

keys.

463 PSK_EXCHANGE: Example

Security Protocol and Data Model (SPDM) Specification DSP0274

120 Published Version 1.1.3

464

NEGOTIATE_ALGORITHMS

ALGORITHMS

PSK_EXCHANGE

PSK_EXCHANGE_RSP

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

PSK_FINISH

PSK_FINISH_RSP

If supported

Optional

465 PSK_EXCHANGE request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE6 = PSK_EXCHANGE

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 121

Offsets Field Size in bytes Value

2 Param1 1

Requested

measurement summary

hash Type:

0x0 . No measurement

summary hash.

0x1 . TCB measurement

hash.

0xFF . All

measurements hash.

All other values

reserved.

When Responder does

not support any

measurements,

Requester shall set this

value to 0x0 .

3 Param2 1 Reserved.

4 ReqSessionID 2

Two-byte Requester

contribution to allow

construction of a unique

four-byte session ID

between a Requester-

Responder pair. The final

session ID =

Concatenate

(ReqSessionID,

RspSessionID).

6 P 2
Length of PSKHint in

bytes.

8 R 2

Length of

RequesterContext in

bytes. R shall be equal

to or greater than H,

where H is the size of

the underlying HMAC

used in the context of

the Requester.

10 OpaqueDataLength 2
Length of OpaqueData

in bytes.

Security Protocol and Data Model (SPDM) Specification DSP0274

122 Published Version 1.1.3

Offsets Field Size in bytes Value

12 PSKHint P

Information required by

the Responder to

retrieve the PSK.

Optional.

12 + P RequesterContext R

The context of the

Requester. Shall include

a nonce (random

number or monotonic

counter) of at least 32

bytes and optionally the

information belonging

to the Requester.

12 + P + R OpaqueData OpaqueDataLength

Optional. If present, the

OpaqueData sent by the

Requester is used to

indicate any parameters

that Requester wishes to

pass to the Responder

as part of PSK-based key

exchange.

466 The field PSKHint is optional (absent if P is set to 0). It is introduced to address two scenarios:

• The Responder is provisioned with multiple PSKs and stores them in secure storage. The Requester uses PSKHint

as an identifier to specify which PSK will be used in this session.

• The Responder does not store the value of the PSK, but can derive the PSK using PSKHint. For example, if the

Responder has an immutable UDS (Unique Device Secret) in fuses, then during provisioning, a PSK may be

derived from the UDS or its derivative and a non-secret salt known by the Requester. During session key

establishment, the same salt is sent to the Responder in PSKHint of PSK_EXCHANGE. This mechanism allows the

Responder to support any number of PSKs, without consuming secure storage.

467 The RequesterContext is the contribution of the Requester to session key derivation. It shall contain a nonce of at

least 32 bytes to make sure that the derived session keys are ephemeral to mitigate against replay attacks. It is

recommended that the Requester use random number as the nonce. If a random number generator is not available,

the Requester may use a monotonic counter with protection against reset attacks. The RequesterContext may also

contain other information from the Requester.

468 Upon receiving PSK_EXCHANGE request, the Responder:

1. Generates PSK from PSKHint, if necessary.

2. Generates ResponderContext, if supported.

3. Derives the finished_key of the Responder by following Key Schedule.

4. Constructs PSK_EXCHANGE_RSP response message and sends to the Requester.

469 PSK_EXCHANGE_RSP response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 123

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x66 = PSK_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if

Heartbeat is not supported. Otherwise, the

value shall be in units of seconds. Zero is a

legal value if Heartbeat is supported, but

means that a heartbeat is not desired on

this session.

3 Param2 1 Reserved.

4 RspSessionID 2

Two-byte Responder contribution to allow

construction of a unique four-byte session

ID between a Requester-Responder pair.

The final session ID = Concatenate

(ReqSessionID, RspSessionID).

6 Reserved 2 Reserved.

8 Q 2 Length of ResponderContext in bytes.

10 OpaqueDataLength 2 Length of OpaqueData in bytes.

Security Protocol and Data Model (SPDM) Specification DSP0274

124 Published Version 1.1.3

Offsets Field Size in bytes Value

12 MeasurementSummaryHash H

When the Responder does not support

measurements (MEAS_CAP=00b in

CAPABILITIES response) or requested

Param1 =0, this field shall be absent.

When the requested Param1 =1, this field

shall be the combined hash of

Measurements of all measurable

components considered to be in the TCB

required to generate this response,

computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], …)) where

MeasurementBlock[x] denotes a

measurement of an element in the TCB.

Measurements are concatenated in

ascending order based on their

measurement index.

When the requested Param1 =1 and there

are no measurable components in the TCB

required to generate this response, this

field shall be 0 .

When requested Param1=0xFF , this field

is computed as the

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], …,

MeasurementBlock[n])) of all supported

measurement blocks available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order.

Indices with no associated measurements

shall not be included in the hash

calculation.

12 + H ResponderContext Q

Context of the Responder. Optional. If

present, shall include a nonce and/or

information belonging to the Responder.

12 + H + Q OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent

by the Responder is used to indicate any

parameters that Responder wishes to pass

to the Requester as part of PSK-based key

exchange.

12 + H + Q +

OpaqueDataLength
ResponderVerifyData H

Data to be verified by the Requester using

the finished_key of the Responder.

470 The ResponderContext is the contribution of the Responder to session key derivation. It should contain a nonce

(random number or monotonic counter) and other information of the Responder. Because the Responder may be a

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 125

constrained device that is not able to generate a nonce, ResponderContext is optional. However, the Responder is

required to use ResponderContext if it can generate a nonce.

471 It should be noted that the nonce in ResponderContext is critical for anti-replay. If a nonce is not present in

ResponderContext, then the Responder is not challenging the Requester for real-time knowledge of PSK. Such a

session is subject to replay attacks - a man-in-the-middle attacker could record and replay prior PSK_EXCHANGE and

PSK_FINISH messages and set up a session with the Responder. But the bogus session would not leak secrets, so long

as the PSK or session keys of the prior replayed session are not compromised.

472 If ResponderContext is absent, such as when PSK_CAP in the CAPABILITIES of the Responder is 01b , the Requester

shall not send PSK_FINISH , because the session keys are solely determined by the Requester and the Session

immediately enters the Application Phase. If and only the ResponderContext is present in the response, such as when

PSK_CAP in the CAPABILITIES of the Responder is 10b , the Requester shall send PSK_FINISH with

RequesterVerifyData to prove that it has derived correct session keys.

473 To calculate ResponderVerifyData , the Responder calculates a HMAC. The HMAC key is the finished_key of the

Responder. The data is the hash of the concatenation of specific messages, listed in ResponderVerifyData messages,

needed to fully establish the new session between the Requester and the Responder. For messages that are

encrypted, the plaintext messages shall be used in calculating the hash.

474 ResponderVerifyData messages

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. [PSK_EXCHANGE].*
8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

475 Upon receiving PSK_EXCHANGE_RSP, the Requester:

1. Derives the finished_key of the Responder by following Key Schedule.

2. Verify ResponderVerifyData by calculating the HMAC in the same manner as the Responder. If

verification fails, the Requester aborts the session.

3. If the Responder contributes to session key derivation, such as when PSK_CAP in the CAPABILITIES

of the Responder is 10b , construct PSK_FINISH request and send to the Responder.

476 10.19 PSK_FINISH request and PSK_FINISH_RSP response messages

477 The PSK_FINISH request proves to the Responder that the Requester knows the PSK and has derived the correct

session keys. This is achieved by an HMAC value calculated with the finished_key of the Requester and messages

of this session. The Requester shall send the PSK_FINISH only if ResponderContext is present in PSK_EXCHANGE_RSP.

478 PSK_FINISH request message format

Security Protocol and Data Model (SPDM) Specification DSP0274

126 Published Version 1.1.3

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE7 = PSK_FINISH

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 RequesterVerifyData H

Data to be verified by

the Responder by using

the finished_key of

the Requester.

479 To calculate RequesterVerifyData, the Requester calculates a HMAC. The key is the finished_key of the Requester,

as described in Key Schedule. The data is the hash of the concatenation of all messages sent so far between the

Requester and the Responder. For messages that are encrypted, the plaintext messages shall be used in calculating

the hash.

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. [PSK_EXCHANGE].*
8. [PSK_EXCHANGE_RSP].*
9. [PSK_FINISH].* except the RequesterVerifyData field

480 Upon receiving PSK_FINISH request, the Responder derives the finished_key of the Requester and calculates the

HMAC independently in the same manner and verifies the result matches RequesterVerifyData. If verified, the

Responder constructs PSK_FINISH_RSP response and sends to the Requester. Otherwise, the Responder sends ERROR

response with error code InvalidRequest to the Requester.

481 Successful PSK_FINISH_RSP response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0x67 =

PSK_FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 127

482 10.20 HEARTBEAT request and HEARTBEAT_ACK response messages

483 This request shall keep a session alive if HEARTBEAT is supported by both the Requester and Responder. The

HEARTBEAT request shall be sent periodically as indicated in HeartbeatPeriod in either KEY_EXCHANGE_RSP or

PSK_EXCHANGE_RSP response messages. The Responder shall terminate the session if session traffic is not received in

twice HeartbeatPeriod . Likewise, the Requester shall terminate the session if session traffic, including ERROR

response, is not received in twice HeartbeatPeriod . Session traffic includes encrypted data at the transport layer.

How SPDM is informed of encrypted data at the transport layer is outside of the scope of this specification. The

Requester may retry HEARTBEAT requests.

484 The timer for the Heartbeat period shall start at the transmission, for Responders, or reception, for Requester, of the

appropriate FINISH_RSP , PSK_FINISH_RSP (PSK_CAP of Responder is 10b), or PSK_EXCHANGE_RSP (PSK_CAP of

Responder is 01b) response messages. When determining the value of HeartbeatPeriod, the Responder should

ensure this value is sufficiently greater than T1 .

485 For further details of session termination, see Session termination phase.

486 The HEARTBEAT request message format describes the message format.

487 HEARTBEAT request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0xE8 = HEARTBEAT

Request

2 Param1 1 Reserved.

3 Param2 1 Reserved.

488 The HEARTBEAT_ACK response message format describes the format for the Heartbeat Response.

489 HEARTBEAT_ACK response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1

0x68 =

HEARTBEAT_ACK

Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

128 Published Version 1.1.3

490 10.20.1 Heartbeat additional information

491 The transport layer may allow the HEARTBEAT request to be sent from the Responder to the Requester. This is

recommended for transports capable of asynchronous bidirectional communication.

492 10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages

493 To update session keys, this request shall be used. There are many reasons for doing this but an important one is

when the per-record nonce will soon reach its maximum value and rollover. The KEY_UPDATE request can be issued

by the Responder as well using the GET_ENCAPSULATED_REQUEST mechanism. A KEY_UPDATE request shall update

session keys in the direction of the request only. Because the Responder can also send this request, it is possible that

two simultaneous key updates, one for each direction, can occur. However, only one KEY_UPDATE request for a single

direction shall occur. Until the session key update synchronization successfully completes, subsequent KEY_UPDATE

request for the same direction shall be considered a retry of the original KEY_UPDATE request.

494 KEY_UPDATE request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0xE9 = KEY_UPDATE

Request

2 Param1 1

Key Operation. See

KEY_UPDATE Operations

Table.

3 Param2 1

Tag. This field shall

contain a unique

number to aid the

responder in

differentiating between

the original and retry

request. A retry request

shall contain the same

tag number as the

original.

495 KEY_UPDATE_ACK response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1

0x69 =

KEY_UPDATE_ACK

Response

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 129

Offsets Field Size in bytes Value

2 Param1 1

Key Operation. This field

shall reflect the Key

Operation field of the

request.

3 Param2 1

Tag. This field shall

reflect the Tag number

in the KEY_UPDATE

request.

496 KEY_UPDATE operations

Value Operation Description

0 Reserved Reserved

1 UpdateKey Update the single-direction key.

2 UpdateAllKeys Update keys for both directions.

3 VerifyNewKey Ensure the key update is successful and the old keys can be safely discarded.

4 - 255 Reserved Reserved

497 10.21.1 Session key update synchronization

498 For clarity, in the key update process, the term, sender, means the SPDM endpoint that issued the KEY_UPDATE

request and the term, receiver, means the SPDM endpoint that received the KEY_UPDATE request. To ensure the key

update process is seamless while still allowing the transmission and reception of records, both sender and receiver

shall follow the prescribed method described in this clause.

499 The data transport layer shall ensure that data transfer during key updates is managed in such a way that the correct

keys are used before, during, and after the key update operation. How this is accomplished by the data transport

layer is outside of the scope of this specification.

500 Both the sender and the receiver shall derive the new keys as detailed in Major secrets update.

501 The sender shall not use the new transmit key until after reception of the KEY_UPDATE_ACK response.

502 The sender and receiver shall use the new key on the KEY_UPDATE request with VerifyNewKey command and all

subsequent commands until another key update is performed.

503 In the case of KEY_UPDATE request with UpdateAllKeys , the receiver shall use the new transmit key for the

KEY_UPDATE_ACK response. The KEY_UPDATE request with UpdateAllKeys should only be used with physical

transports that are single master to ensure that simultaneous UpdateAllKeys requests do not occur.

504 If the sender has not received KEY_UPDATE_ACK , the sender may retry or end the session. The sender shall not

proceed to the next step until successfully receiving the corresponding KEY_UPDATE_ACK .

505 Upon the successful reception of the KEY_UPDATE_ACK , the sender shall transmit a KEY_UPDATE request with

Security Protocol and Data Model (SPDM) Specification DSP0274

130 Published Version 1.1.3

VerifyNewKey operation using the new session keys. The sender may retry until the corresponding

KEY_UPDATE_ACK response is received. However, the sender shall be prohibited, at this point, from restarting this

process or going back to a previous step. Its only recourse in error handling is either to retry the same request or to

terminate the session. Upon successful reception of the KEY_UPDATE with VerifyNewKey operation, the receiver can

now discard the old session keys. After the sender successfully receives the corresponding KEY_UPDATE_ACK , the

transport layer may start using the new keys.

506 In certain scenarios, the receiver may need additional time to process the KEY_UPDATE request such as processing

data already in its buffer. Thus, the receiver may reply with an ERROR message with ErrorCode=Busy . The sender

should retry the request after a reasonable period of time with a reasonable amount of retries to prevent premature

session termination.

507 Finally, it bears repeating that a key update in one direction can happen simultaneously with a key update in the

opposite direction. Still, the aforementioned synchronization process occurs independently but simultaneously for

each direction.

508 The KEY_UPDATE protocol example flow figure illustrates a typical key update initiated by the Requester to update its

secret. In this example, the Responder and Requester are both capable of message authentication and encryption.

509 KEY_UPDATE protocol example flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 131

510

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S 0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateKey,
Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateKey,
Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3
]]

Requester Responder

S3S2 S3S2

S
2,new

Key Operation == VerifyNewKey,
Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,
Tag == 0x2

 { KEY_UPDATE_ACK }::[[S
3
]]

S2

S2

{ Application Data }

{ Application Data }

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and Authenticated
by S

2,new
 and S

3
 depending

on direction.

Legend:

Authenticated and
Encrypted Session

S
2,new

Notice new
secrets used!

511 The KEY_UPDATE protocol change all keys example flow illustrates a typical key update initiated by the Requester to

update all secrets. In this example, the Responder and Requester are both capable of message authentication and

encryption.

512 KEY_UPDATE protocol change all keys example flow

Security Protocol and Data Model (SPDM) Specification DSP0274

132 Published Version 1.1.3

513

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S 0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateAllKeys,
Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateAllKeys,
Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3,new

]]

Requester Responder

S3S2 S3S2

Key Operation == VerifyNewKey,
Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,
Tag == 0x2

S2

S2

{ Application Data }

{ Application Data }

Encrypted and authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and authenticated
by S

2,new
 and S

3,new
depending

on direction.

Legend:

Authenticated and
Encrypted Session

Notice new
secrets used!

S
3,new

S
2,new S

3,new
S

2,new

S3
S3

 { KEY_UPDATE_ACK}::[[S
3,new

]]

514 10.21.2 KEY_UPDATE transport allowances

515 On some transports, bidirectional communication can occur asynchronously. On such transports, the transport may

allow or disallow the KEY_UPDATE to be sent asynchronously without using the GET_ENCAPSULATED_REQUEST

mechanism. The actual method to use should be defined by the transport and is outside the scope of this

specification.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 133

516 The KEY_UPDATE protocol example flow 2 illustrates a key update over a physical transport that has a limitation

whereby only a single device (often called the master) is allowed to initiate all transactions on that bus. This physical

transport specifies that a Responder shall alert the Requester via a sideband mechanism and to utilize the

GET_ENCAPSULATED_REQUEST mechanism to fulfill SPDM-related requirements. Also, in this same example, the

Requester and Responder are both capable of encryption and message authentication.

517 KEY_UPDATE protocol example flow 2

Security Protocol and Data Model (SPDM) Specification DSP0274

134 Published Version 1.1.3

518

…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

Request == KEY_UPDATE
Key Operation == UpdateKey,

Tag == 0x1

{ ENCAPSULATED_REQUEST }
::[[S3]]

Response == KEY_UPDATE_ACK
Key Operation == UpdateKey,

Tag == 0x1

{ DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

Requester Responder

S3S2 S3S2

S3

S3

{ Application Data }

{ Application Data }

Responder seeks attention from
Requester via Transport-specific

Methodology

{ GET_ENCAPSULATED_REQUEST }
::[[S2]]

Request == KEY_UPDATE
Key Operation == VerifyNewKey,

Tag == 0x2

 { ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Response == KEY_UPDATE_ACK
Key Operation == VerifyNewKey,

Tag == 0x2

 { DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

No More Requests

{ ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Legend:

Authenticated and
Encrypted Session

{ FINISH_RSP }::[[S
1
]]

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

S
3,new

S
3,new

Encrypted and
Authenticated by S

2

and S
3,new

 depending
on direction.

Notice new
secrets used!

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 135

519 10.22 GET_ENCAPSULATED_REQUEST request and
ENCAPSULATED_REQUEST response messages

520 In certain use cases, such as mutual authentication, the Responder needs the ability to issue its own SPDM request

messages to the Requester. Certain transports prohibit the Responder from asynchronously sending out data on that

transport. Cases like these are addressed through message encapsulation, which preserves the roles of Requester and

Responder as far as the transport is concerned, but enables the Responder to issue its own requests to the Requester.

Message encapsulation is only allowed in certain scenarios. The Mutual authentication key exchange figure and

Optimized mutual authentication key exchange example figure are examples that illustrate the use of this scheme.

521 A Requester issues a GET_ENCAPSULATED_REQUEST request message to retrieve an encapsulated SPDM request

message from the Responder. The response to this message (ENCAPSULATED_REQUEST) encapsulates the SPDM

request message as if the Responder was acting as a Requester. The request message format is described in

GET_ENCAPSULATED_REQUEST request format table. The Responder shall use the same SPDM version the Requester

used.

522 10.22.1 Encapsulated request flow

523 The encapsulated request flow starts with the Requester sending a GET_ENCAPSULATED_REQUEST message and ends

with an ENCAPSULATED_RESPONSE_ACK that carries no more encapsulated requests. The GET_ENCAPSULATED_REQUEST

shall only be issued once with the exception of retries. This is also illustrated in Mutual authentication key exchange.

524 When the Requester issues a GET_ENCAPSULATED_REQUEST , the encapsulated request flow shall start. Upon the

successful reception of the ENCAPSULATED_REQUEST and when the encapsulated response is ready, the Requester

shall continue the flow by issuing the DELIVER_ENCAPSULATED_RESPONSE . During this period, with the exception of

GET_VERSION , RESPOND_IF_READY and DELIVER_ENCAPSULATED_RESPONSE , the Requester shall not issue any other

message. If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY or

GET_VERSION , the Responder should respond with ErrorCode=RequestInFlight .

525 10.22.2 Optimized encapsulated request flow

526 The optimized encapsulated request flow is similar to the encapsulated request flow but without the need of

GET_ENCAPSULATED_REQUEST . This is because the encapsulated request accompanies one of the Session-Secrets-

Exchange responses; thereby, removing the necessity on the Requester from issuing a GET_ENCAPSULATED_REQUEST .

When the Responder includes an encapsulated requests with a Session-Secrets-Exchange response, the optimized

encapsulated request flow shall start. This is also illustrated in Optimized mutual authentication key exchange.

527 When the Requester successfully receives a Session-Secrets-Exchange response with an included encapsulated

request, the Requester shall send a DELIVER_ENCAPSULATED_RESPONSE after processing the encapsulated request.

The Requester shall not issue any other requests except for DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY

and GET_VERSION . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE ,

RESPOND_IF_READY , GET_VERSION or Session-Secrets-Exchange, then the Responder should respond with

ErrorCode=RequestInFlight .

Security Protocol and Data Model (SPDM) Specification DSP0274

136 Published Version 1.1.3

528 Mutual authentication key exchange example

529

MUTUAL AUTH

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

KEY_EXCHANGE

KEY_EXCHANGE_RSP()

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

FINISH

FINISH_RSP

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

Encapsulated

Request

Flow

530 Optimized mutual authentication key exchange example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 137

531

ResponderRequester

MUTUAL AUTH

ENCAPSULATED_RESPONSE_ACK()

DELIVER_ENCAPSULATED_RESPONSE(CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK(GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE(DIGEST)

KEY_EXCHANGE_RSP+GET_DIGEST

KEY_EXCHANGE

CERTIFICATE

GET_CERTIFICATE

DIGESTS

GET_DIGESTS

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

FINISH_RSP

FINISH

Optimized

Encapsulated

Request

Flow

532 GET_ENCAPSULATED_REQUEST request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

Security Protocol and Data Model (SPDM) Specification DSP0274

138 Published Version 1.1.3

Offsets Field Size in bytes Value

1 RequestResponseCode 1
0xEA =

GET_ENCAPSULATED_REQUEST

2 Param1 1 Reserved.

3 Param2 1 Reserved.

533 The ENCAPSULATED_REQUEST response message format describes the format this response.

534 ENCAPSULATED_REQUEST response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0x6A = ENCAPSULATED_REQUEST

Response

2 Param1 1

Request ID.

This field should be unique to help

the Responder match response to

request.

3 Param2 1 Reserved.

4 Encapsulated Request Variable

SPDM Request Message.

The value of this field shall

represent a valid SPDM request

message. The length of this field is

dependent on the SPDM Request

message. The field shall start with

the SPDMVersion field. The

SPDMVersion field of the

Encapsulated Request shall be

the same as SPDMVersion of the

ENCAPSULATED_REQUEST response.

Both GET_ENCAPSULATED_REQUEST

and

DELIVER_ENCAPSULATED_RESPONSE

shall be invalid requests and the

Requester should respond with

ErrorCode=UnexpectedRequest if

these requests are encapsulated.

535 10.22.3 Triggering GET_ENCAPSULATED_REQUEST

536 Once a session has been established, the Responder may wish to send a request asynchronously such as a

KEY_UPDATE request but cannot due to the limitations of the physical bus or transport protocol. In such a scenario,

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 139

the transport and/or physical layer is responsible for defining an alerting mechanism for the Requester. Upon

receiving the alert, the Requester shall issue a GET_ENCAPSULATED_REQUEST to the Responder.

537 10.22.4 Additional constraints

538 The GET_ENCAPSULATED_REQUEST and ENCAPSULATED_REQUEST messages shall only be allowed to encapsulate

certain requests in certain scenarios. For details on these constraints, see the Session, Basic mutual authentication,

and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

539 10.23 DELIVER_ENCAPSULATED_RESPONSE request and
ENCAPSULATED_RESPONSE_ACK response messages

540 As a Requester processes an encapsulated request, it needs a mechanism to deliver back the corresponding response.

That mechanism shall be the DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages. The

DELIVER_ENCAPSULATED_RESPONSE , which is an SPDM request, encapsulates the response and delivers it to the

Responder. The ENCAPSULATED_RESPONSE_ACK , which is an SPDM response, acknowledges the reception of the

encapsulated response.

541 Furthermore, if there are additional requests from the Responder, the Responder shall provide the next request in the

ENCAPSULATED_RESPONSE_ACK response message.

542 In an encapsulated request flow and after the successful reception of the first encapsulated request, the Requester

shall not send any other requests with the exception of DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY and

GET_VERSION . After the successful reception of the first DELIVER_ENCAPSULATED_RESPONSE and if a Responder

receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY or GET_VERSION , the

Responder should respond with ErrorCode=RequestInFlight .

543 If Param2 of ENCAPSULATED_RESPONSE_ACK is set to 0x00 or 0x02 then this shall be the final encapsulated flow

message that the Responder shall issue and the encapsulated flow shall be completed.

544 The timing parameters for the response shall depend on the encapsulated request. This enables the Responder to

process the response before delivering the next request. See Additional Information for more details.

545 The request message format is described in DELIVER_ENCAPSULATED_RESPONSE Request Message Format Table.

546 DELIVER_ENCAPSULATED_RESPONSE request message format

Offsets Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1

0xEB =

DELIVER_ENCAPSULATED_RESPONSE

Request

Security Protocol and Data Model (SPDM) Specification DSP0274

140 Published Version 1.1.3

Offsets Field Size (bytes) Value

2 Param1 1

Request ID.

The Requester shall use the same

Request ID as provided by the

Responder in the corresponding

ENCAPSULATED_REQUEST or

ENCAPSULATED_RESPONSE_ACK .

3 Param2 1 Reserved.

4 Encapsulated Response Variable

SPDM Response Message.

The value of this field shall

represent a valid SPDM response

message. The length of this field is

dependent on the SPDM Response

message. The field shall start with

the SPDMVersion field. The

SPDMVersion field of the

Encapsulated Response shall be

the same as SPDMVersion of the

DELIVER_ENCAPSULATED_RESPONSE

request. Both

ENCAPSULATED_REQUEST and

ENCAPSULATED_RESPONSE_ACK

shall be invalid responses and the

Responder should respond with

ErrorCode=InvalidResponseCode

if these responses are

encapsulated.

547 The ENCAPSULATED_RESPONSE_ACK response message format describes the response message format.

548 ENCAPSULATED_RESPONSE_ACK response message format

Offsets Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0x6B =

ENCAPSULATED_RESPONSE_ACK

2 Param1 1

Request ID.

If a request is encapsulated

(Param2 = 0x01) this field should

contain a unique, non-zero

number to help the Responder

match response to request.

Otherwise, this field shall be

0x00 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 141

Offsets Field Size (bytes) Value

3 Param2 1

Payload Type.

If set to 0x00 no request message

is encapsulated and the

Encapsulated_Request field is

absent.

If set to 0x01 the

Encapsulated_Request field

follows.

If set to 0x02 a 1-byte

Encapsulated_Request field

follows containing the slot number

corresponding to the certificate

chain the Requester shall

authenticate against.

All other values Reserved.

4 Encapsulated Request Variable

If Param2 = 0x01 , the value of this

field shall represent a valid SPDM

request message. The length of

this field is dependent on the

SPDM Request message. The field

shall start with the SPDMVersion

field. The SPDMVersion field of

the Encapsulated Request shall

be the same as SPDMVersion of

the ENCAPSULATED_REQUEST

response. Both

GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE

shall be invalid requests and the

Requester shall respond with

ErrorCode=UnexpectedRequest if

these requests are encapsulated.

If Param2 = 0x02 , the value of this

filed shall contain the slot number

corresponding to the certificate

chain the Requester shall

authenticate against. The field size

shall be 1 Byte.

If Param2 = 0x00 , this field shall

be absent.

Security Protocol and Data Model (SPDM) Specification DSP0274

142 Published Version 1.1.3

549 10.23.1 Additional information

550 Using a unique request ID is highly recommended to aid the Responder in avoiding confusion between a retry and a

new DELIVER_ENCAPSULATED_RESPONSE message. For example, if the Responder sent the

ENCAPSULATED_RESPONSE_ACK with a new encapsulated request and that failed in transmission over the wire, the

Requester would send a retry but that retry would still contain the response to the previous encapsulated request.

Without a different request ID, the Responder might mistake the retried DELIVER_ENCAPSULATED_RESPONSE for a new

request when, in fact, it was a retry. This mistake may cause additional mistakes to occur.

551 In general, the response timing for ENCAPSULATED_RESP_ACK shall be subject to the same timing constraints as the

encapsulated request. For example, if the encapsulated request was CHALLENGE_AUTH , the Responder, too, shall

adhere to CT timing rules when it has a subsequent request. The Responder may return

ErrorCode=ResponseNotReady .

552 The DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages shall only be allowed to

encapsulate certain requests in certain scenarios. For details on these constraints, see Session, Basic mutual

authentication, and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

553 10.24 END_SESSION request and END_SESSION_ACK response messages

554 This request shall terminate a session. Further communication between the Requester and Responder using the same

session ID shall be prohibited. See Session termination phase clause for details.

555 The END_SESSION request message format table describes this format.

556 END_SESSION request message format

Offset Value Field Description

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xEC = END_SESSION

2 Param1 1 See the End session request attributes table.

3 Param2 1 Reserved.

557 End session request attributes

Offset Value Field Description

0 0 Negotiated State Preservation Indicator

If the Responder

supports Negotiated

State caching

(CACHE_CAP=1), the

Responder shall

preserve the Negotiated

State.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 143

Offset Value Field Description

0 1 Negotiated State Preservation Indicator

If the Responder

supports Negotiated

State caching, the

Responder shall also

clear the Negotiated

State as part of session

termination.

[7:1] Reserved Reserved Reserved.

558 The END_SESSION_ACK response message format describes the response message.

559 END_SESSION_ACK response message format

Offset Value Field Description

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x6C = END_SESSION_ACK

2 Param1 1 Reserved.

3 Param2 1 Reserved.

560 END_SESSION protocol flow

561

ResponderRequester

KEY_EXCHANGE

KEY_EXCHANGE_RSP

FINISH(K1)

FINISH_RSP(K1)

END_SESSION(K1)

END_SESSION_ACK(K1)

Enables authenticated and/or
 encrypted data transfer (K1)

Security Protocol and Data Model (SPDM) Specification DSP0274

144 Published Version 1.1.3

562 11 Session

563 Sessions enable a Requester and Responder to have multiple channels of communication. More importantly, it

enables a Requester and Responder to build a secure communication channel with cryptographic information that is

bound ephemerally. Specifically, an SPDM session provides either or both of encryption or message authentication.

564 There are three phases in a session, as Session phases shows: the handshake, the application, and termination.

565 Session phases

566

Requester

END_SESSION and END_SESSION_ACK

Session-Secrets-Exchange

Session Handshake Phase

Application Phase

Legend

Session Terminated!

Responder

Secure
Session

Session-Secrets-Finish

567 11.1 Session handshake phase

568 The session handshake phase begins with either KEY_EXCHANGE or PSK_EXCHANGE . This phase also allows for

authentication of the Requester if the Responder indicated that earlier in ALGORITHMS response. Furthermore, this

phase of the session uses the handshake secrets to secure the communication as described in the Key Schedule.

569 The purpose of this phase is to build trust between the Responder and Requester, first, before either side can send

application data. Additionally, it also ensures the integrity of the handshake and to a certain degree, synchronicity

with the derived handshake secrets.

570 In this phase of the session, GET_ENCAPSULATED_REQUEST and DELIVER_ENCAPSULATED_RESPONSE shall be used to

obtain requests from the Responder to complete the authentication of the Requester, if the Responder indicated this

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 145

in ALGORITHMS message. The only requests allowed to be encapsulated shall be GET_DIGESTS and

GET_CERTIFICATE . The Requester shall provide a signature in the FINISH request, as the FINISH request and

FINISH_RSP response messages clause describes.

571 If an error occurs in this phase with ErrorCode = DecryptError , the session shall immediately terminate and

proceed to session termination.

572 A successful handshake ends with either FINISH_RSP or PSK_FINISH_RSP and the application phase begins.

573 11.2 Application phase

574 Once the handshake completes and all validation passes, the session reaches the application phase where either the

Responder and Requester may send application data.

575 During this phase, a Requester can send SPDM messages such as GET_MEASUREMENTS . These messages might involve

transcript calculations and if such calculations are required, they shall be calculated on a per session basis. Once a

session has been established, subsequent messages sent outside of a session shall not contribute to the transcript

within a session.

576 The application phase ends when either the HEARTBEAT requirements fail, END_SESSION or an ERROR message with

ErrorCode = DecryptError . The next phase is the session termination phase.

577 11.3 Session termination phase

578 This phase signals the end of the Application phase and the enactment of internal clean-up procedures by the

endpoints. Requesters and Responders may have various reasons for terminating a session, outside the scope of this

specification.

579 SPDM provides the END_SESSION / END_SESSION_ACK message pair to explicitly trigger the session termination phase

if needed, but depending on the transport it may simply be an internal phase with no explicit SPDM messages sent or

received.

580 When a session terminates, both Requester and Responder shall destroy or clean up all session secrets such as

derived major secrets, DHE secrets and encryption keys. Endpoints may have other internal data associated with a

session that they should also clean up.

581 11.4 Simultaneous active sessions

582 If a Responder supports key exchanges, the maximum number of simultaneous active sessions shall be a minimum of

one. If the KEY_EXCHANGE or PSK_EXCHANGE request will exceed the maximum number of simultaneous active

sessions of the Responder, the Responder shall respond with an Errorcode = SessionLimitExceeded .

583 This specification does not prohibit concurrent sessions in which the same Requester and Responder reverses role.

For example, SPDM endpoint ABC, acting as a Requester, can establish a session to SPDM endpoint XYZ, which is

acting as a Responder. At the same time, SPDM endpoint XYZ, now acting as a Requester, can establish a session to

SPDM endpoint ABC, now acting as a Responder. Since these two sessions are distinct and separate, the two

Security Protocol and Data Model (SPDM) Specification DSP0274

146 Published Version 1.1.3

endpoints should ensure they do not mix sessions. To ensure proper session handling, each endpoint should ensure

their portion of the session IDs are unique at time of Session-Secrets-Exchange. This would form a final unique

session ID for that new session. Additionally, the endpoints may use information at the transport layer to further

ensure proper handling of sessions.

584 11.5 Records and session ID

585 When the session starts, the communication of secured data is done using records. A record represents a chunk or

unit of data that is either or both encrypted or authenticated. This data can be either an SPDM message or

application data. Usually, the record contains the session ID resulting from one of the Session-Secrets-Exchange

messages to aid both the Responder and Requester in binding the record to the respective derived session secrets.

586 The actual format and other details of a record is outside the scope of this specification. It is generally assumed that

the transport protocol will define the format and other details of the record.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 147

587 12 Key schedule

588 A key schedule describes how the various keys such as encryption keys used by a session are derived, and when each

key is used. The default SPDM key schedule makes heavy use of HMAC as defined by RFC2104 and HKDF-Expand as

described in RFC5869. SPDM defines the following additional functions:

BinConcat(Length, Version, Label, Context)

589 where BinConcat shall be the concatenation of binary data, in the order shown in BinConcat Details Table:

590 BinConcat details

Order Data Form Endianness Size

1 Length Binary Little 16 bits

2 Version Text Text 8 bytes

3 Label Text Text Variable

4 Context Binary Little Hash.Length

591 If Context is NULL, then BinConcat is the concatenation of the first three components only.

592 Version details

SPDM version Version text

SPDM 1.1 “spdm1.1”

593 The HKDF-Expand function prototype, as used by the default SPDM key schedule, is as follows:

HKDF-Expand(secret, context, Hash.Length)

594 The HMAC-Hash function prototype is described as follows:

HMAC-Hash(salt, IKM);

595 where IKM is the Input Keying Material and HMAC-Hash uses HMAC as defined in RFC2104.

596 For HKDF-Expand and HMAC-Hash , the hash function shall be the selected hash function in ALGORITHMS response.

Hash.Length shall be the length of the output of the hash function selected by the ALGORITHMS response.

597 Both Responder and Requester shall use the key schedule shown in the Key Schedule Figure.

Security Protocol and Data Model (SPDM) Specification DSP0274

148 Published Version 1.1.3

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc2104

598 Key schedule

599

HMAC-Hash (Salt_0, _____)

Handshake-Secret

HKDF-Expand (Handshake-Secret, bin_str1, Hash.Length)
Request Direction
Handshake Secret

HKDF-Expand (Handshake-Secret, bin_str2, Hash.Length)
Response Direction Handshake

Secret

DHE Secret or Pre-shared Key

HKDF-Expand (Handshake-Secret, bin_str0, Hash.Length)

Master-Secret

HKDF-Expand (Master-Secret, bin_str3, Hash.Length) Requester Direction Data Secret

HKDF-Expand (Master-Secret, bin_str4, Hash.Length) Responder Direction Data Secret

HMAC-Hash (Salt_1, 0_filled)

Salt_1

HKDF-Expand (Master-Secret, bin_str8, Hash.Length)
Export Master Secret

600 In the figure, arrows going out of the box are outputs of that box. Arrows going into the box are inputs into the box

and point to the specific input parameter they are used in. All boxes represent a single function producing a single

output and are given a name for clarity.

601 The Key Schedule table accompanies the figure to complete the Key Schedule. The Responder and Requester shall

also adhere to the definition of this table.

602 Key schedule

Variable Definition

Salt_0 A zero filled array of Hash.Length length.

0_filled A zero filled array of Hash.Length length.

bin_str0 BinConcat(Hash.Length, Version, “derived”, NULL).

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 149

Variable Definition

bin_str1 BinConcat(Hash.Length, Version, “req hs data”, TH1).

bin_str2 BinConcat(Hash.Length, Version, “rsp hs data”, TH1).

bin_str3 BinConcat(Hash.Length, Version, “req app data”, TH2)

bin_str4 BinConcat(Hash.Length, Version, “rsp app data”, TH2)

DHE Secret This shall be the secret derived from KEY_EXCHANGE/KEY_EXCHANGE_RSP

Pre-shared Key PSK

603 Note: With common hash functions, any label longer than 12 characters requires an additional iteration of the hash

function to compute. As in RFC8446 the labels defined above have all been chosen to fit within this limit.

604 12.1 Transcript hash in key derivation

605 There are two transcript hashes used in the key schedule, namely, TH1 and TH2.

606 12.2 TH1 definition

607 If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].* except the ResponderVerifyData field

608 If the Requester and Responder used PSK_EXCHANGE/PSK_EXCHANGE_RSP to exchange initial keying information, then

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

Security Protocol and Data Model (SPDM) Specification DSP0274

150 Published Version 1.1.3

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

609 12.3 TH2 definition

610 If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].*

10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2). (Valid only in mutual

authentication)

11. [FINISH].*

12. [FINISH_RSP].*

611 If the Requester and Responder used PSK_EXCHANGE/PSK_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].*

9. [PSK_FINISH].* (if issued)

10. [PSK_FINISH_RSP].* (if issued)

612 12.4 Key schedule major secrets

613 The key schedule produces four major secrets:

• Request-direction handshake secret (S0)

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 151

• Response-direction handshake secret (S1)

• Request-direction data secret (S2)

• Response-direction data secret (S3)

614 Each secret applies in a certain direction of transmission and only valid during a certain time frame. These four major

secrets, each, will be used to derive their respective encryption key and IV to be used in the AEAD function as

selected in the ALGORITHMS response.

615 12.4.1 Request-direction handshake secret

616 This secret shall only be used during the session handshake phase and shall be applied to all requests after

KEY_EXCHANGE or PSK_EXCHANGE up to and including FINISH or PSK_FINISH .

617 12.4.2 Response-direction handshake secret

618 This secret shall only be used during the session handshake phase and shall be applied to all responses after

KEY_EXCHANGE_RSP or PSK_EXCHANGE_RSP up to and including FINISH_RSP or PSK_FINISH_RSP .

619 12.4.3 Requester-direction data secret

620 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only be

applied for all data traveling from the Requester to the Responder.

621 12.4.4 Responder-direction data secret

622 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only be

applied for all data traveling from the Responder to the Requester.

623 The Secrets Usage Figure illustrates where each of the major secrets are used as described previously.

624 Secrets usage

Security Protocol and Data Model (SPDM) Specification DSP0274

152 Published Version 1.1.3

625

Secure
Session

Requester

Session Terminated!

Responder

S
0

S
2

S
1

S
3

Session Handshake Phase

Application Phase

Legend

END_SESSION
END_SESSION_ACK

Session-Secrets-Exchange Request
Session-Secrets-Exchange Response

Session-Secrets-Finish Request

Session-Secrets-Finish Response

626 12.5 Encryption key and IV derivation

627 For each key schedule major secret, the following function shall be applied to obtain the encryption key and IV value.

EncryptionKey = HDKF-Expand(major-secret, bin_str5, key_length);
IV = HKDF-Expand(major-secret, bin_str6, iv_length);

bin_str5 = BinConcat(key_length, Version, "key", NULL);
bin_str6 = BinConcat(iv_length, Version, "iv", NULL);

628 Both key_length and iv_length shall be the lengths associated with the selected AEAD algorithm in ALGORITHMS

message.

629 12.6 finished_key derivation

630 This key shall be used to compute the RequesterVerifyData and ResponderVerifyData fields used in various

SPDM messages. The key, finished_key is defined as follows:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 153

finished_key = HKDF-Expand(handshake-secret, bin_str7, Hash.Length);
bin_str7 = BinConcat(Hash.Length, Version, "finished", NULL);

631 The handshake-secret shall either be request-direction handshake secret or response-direction handshake secret.

632 12.7 Deriving additional keys from the Export Master Secret

633 After a successful SPDM key exchange, additional keys can be derived from the Export Master Secret. How keys are

derived is outside the scope of this specification.

Export Master Secret = HKDF-Expand(Master-Secret, bin_str8, Hash.Length);
bin_str8 = BinConcat(Hash.Length, Version, "exp master", TH2);

634 12.8 Major secrets update

635 The major secrets can be updated during an active session to avoid the overhead of closing down a session and

recreating the session. This is achieved by issuing the KEY_UPDATE request.

636 The major secrets are re-keyed as a result of this. To compute the new secret for each new major data secret, the

following algorithm shall be applied.

new_secret = HKDF-Expand(current_secret, bin_str9, Hash.Length);
bin_str9 = BinConcat(Hash.Length, Version, "traffic upd", NULL);

637 In computing the new secret, current_secret shall either be the current Requester-Direction Data Secret or

Responder-Direction Data Secret. As a consequence of updating these secrets, new encryption keys and salts shall be

derived from the new secrets and used immediately.

Security Protocol and Data Model (SPDM) Specification DSP0274

154 Published Version 1.1.3

638 13 Application data

639 SPDM utilizes authenticated encryption with associated data (AEAD) cipher algorithms in much the same way that

TLS 1.3 does to protect both the confidentiality and integrity of data that shall remain secret, as well as the integrity

of data that need to be transmitted in the clear, such as protocol headers, but shall be protected from manipulation.

AEAD algorithms provide both encryption and message authentication. Each algorithm specifies the details such as

the size of the nonce, the position and length of the MAC and many other factors to ensure a strong cryptographic

algorithm.

640 AEAD functions shall provide the following functions and comply with the requirements defined in RFC5116:

AEAD_Encrypt(encryption_key, nonce, associated_data, plaintext);
AEAD_Decrypt(encryption_key, nonce, associated_data, ciphertext);

641 where

Value Description

AEAD_Encrypt

Function that fully encrypts the plaintext , computes the MAC across both the

associated_data and plaintext , and produces the ciphertext , which includes the

MAC.

AEAD_Decrypt
Function that verifies the MAC and if validation is successful, fully decrypts the

ciphertext and produces the original plaintext .

encryption_key
Derived encryption key for the respective direction. For details, see the Key schedule

clause.

nonce Nonce computation. For details, see the Nonce derivation clause.

associated_data Associated data.

plaintext Data to encrypt.

ciphertext Data to decrypt.

642 13.1 Nonce derivation

643 Certain AEAD ciphers have specific requirements on nonce construction, as their security properties may be

compromised by the accidental reuse of a nonce value. Implementations should follow the requirements, such as

those provided in RFC5116 for nonce derivation.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 155

https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

644 14 ANNEX A (informative) TLS 1.3

645 This specification heavily models TLS 1.3. TLS 1.3 and consequently this specification assumes the transport layers

provide these capabilities or attributes:

• Reliability in transmission and reception of data.

• Transmission of data is either in order or the order of data can be reconstructed at reception.

646 While not all transports are created equal, if a transport cannot meet these capabilities, adoption of SPDM is still

possible. In these transports, this specification recommends DTLS 1.3, which at the time of this specification is still in

draft form.

Security Protocol and Data Model (SPDM) Specification DSP0274

156 Published Version 1.1.3

https://github.com/tlswg/dtls13-spec

647 15 ANNEX B (normative) Leaf certificate example

648 The Leaf certificate example shows an example leaf certificate:

649 Leaf certificate example

Data:
Version: 3 (0x2)
Serial Number: 8 (0x8)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C=CA, ST=NC, L=city, O=ACME, OU=ACME Devices, CN=CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 23:59:59 9999 GMT

Subject: C=US, ST=NC, O=ACME Widget Manufacturing, OU=ACME Widget Manufacturing Unit,
CN=w0123456789

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:
e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:
5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:
ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:
23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:
52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:
a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:
1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:
ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:
98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:
a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:
95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:
70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:
a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:
2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:
66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:
01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:
e8:67

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:
otherName:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256
Signature Value:

30:45:02:21:00:fc:8f:b0:ad:6f:2d:c3:2a:7e:92:6d:29:1d:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 157

c7:fc:0d:48:b0:c6:39:5e:c8:76:d6:40:9a:12:46:c3:39:0e:
36:02:20:1a:ea:3a:59:ca:1e:bc:6d:6e:61:79:af:a2:05:7c:
7d:da:41:a9:45:6d:cb:04:49:43:e6:0b:a8:8d:cd:da:e

Security Protocol and Data Model (SPDM) Specification DSP0274

158 Published Version 1.1.3

650 16 ANNEX C (informative) Change log

651 16.1 Version 1.0.0 (2019-10-16)

• Initial Release

652 16.2 Version 1.1.0 (2020-07-15)

• Minor typographical fixes

• USB Authentication Specification 1.0 link updated

• Tables are no longer numbered. They are now named.

• Fix internal document links in SPDM response codes table.

• Added sentence to paragraph 97 to clarify on the potential to skip messages after a reset.

• Removed text at paragraph 181.

• Subject Alternative Name otherName field in Optional fields references DMTF OID section.

• DMTFOtherName definition changed to properly meet ASN.1 syntax.

• Text in figures are now searchable.

• Corrected example of a leaf certificate in Annex A.

• Minor edits to figures for clarity.

• New:

◦ Added Session support.

▪ Added SPDM request and response messages to support initiating, maintaining and terminating a

secure session.

▪ Added Key Schedule for session secrets derivation.

▪ Added Application Data to provide overview of how data is encrypted and authenticated in a session.

◦ Introduce new terms and definitions.

◦ Added Measurement Manifest to DMTFSpecMeasurementValueType .

◦ Added mutual authentication.

◦ Added Encapsulated request flow to support master-slave types of transports.

653 16.3 Version 1.1.1 (2021-05-12)

• Fix improper reference in DMTFSpecMeasurementValue field in “Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF” table.

• Certificate digests in DIGEST calculation clarified.

• Format of certificate in CertChain parameter of CERTIFICATE message clarified.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 159

• Validity period of X.509v3 certificate clarified in Required Fields

• Clarify which algorithms in NEGOTIATE_ALGORITHMS or ALGORITHMS are for signature generation or verification.

• Remove InvalidSession error code.

• Clarified transport responsibilities in PSK_EXCHANGE and PSK_EXCHANGE_RSP .

• Clarified the usage of MutAuthRequested field in KEY_EXCHANE_RSP .

• Added recommendation of PSK usage when an SPDM endpoint can be a Requester and Responder.

• Added recommendation for usage of RequesterContext in PSK scenarios.

• Clarified capabilities for Requester and Responder in GET_CAPABILITIES and CAPABILITIES messages.

• Clarified that plaintext messages are used when calculating the transcript hash.

• ERROR responses are no longer required in most error scenarios.

• In Sign()and Verify() operations, referenced the correct fields in ALGORITHMS .

• Clarify which key to use in Signature fields of KEY_EXCHANGE_RSP and FINISH .

• Clarify messages to hash for ResponderVerifyData in PSK_EXCHANGE_RSP .

654 16.4 Version 1.1.2 (2022-03-09)

• Fix typo and inconsistency in description of PSK_FINISH.

• Clarified measurement specification related fields in NEGOTIATE_ALGORITHMS and ALGORITHMS .

• Changed Measurement Summary Hash concatenation function inputs.

• Clarified minimum timing for HEARTBEAT request and HEARTBEAT_ACK response messages to be sufficiently

greater than T1 . Removed command specific guidance on retry timing.

• Clarify that Responder Timing measurements are measured under the assumption that the Responder can access

the bus.

• Clarified that ENCRYPT_CAP and MAC_CAP apply to all phases of a secure session.

• Clarified the relationship between MAC_CAP and ResponderVerifyData or RequesterVerifyData in Session-

Secret-Exchange and Session-Secret-Finish messages.

• Provide more description for HANDSHAKE_IN_THE_CLEAR_CAP in GET_CAPABILITIES and CAPABILITIES

messages.

• Clarified Offset and Length fields in GET_CERTIFICATE message.

• Clarified how retried messages affect transcript hash in Timing requirements.

• Clarified that extended algorithms are external to this specification.

• Added definition of opaque data.

• Fixed typo in the ExchangeData field of table “Successful KEY_EXCHANGE_RSP response message format”.

655 16.5 Version 1.1.3 (2023-10-08)

• Clarified capabilities and algorithms provisioning.

• Added the VESA standards body to Registry or standards body ID.

Security Protocol and Data Model (SPDM) Specification DSP0274

160 Published Version 1.1.3

• Clarified that messages are only hashed once before being signed and verified.

• Added clause that sizes and lengths are in units of bytes.

• Added section “ VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications”.

• Clarified that SPDM messages sent outside of a session do not contribute to in-session transcripts.

• Clarified that start of the Heartbeat timer can include PSK_EXCHANGE_RSP .

• Clarified that measurement block indices are to be in ascending order.

• Clarified in Registry or standards body ID that the registry specifies the value used for the VendorID field.

• Clarified that ERROR is only allowed in response to GET_VERSION in cases explicitly defined in this specification.

• Clarified the value of the SlotIDParam field in KEY_EXCHANGE_RSP based on the value of MutAuthRequested .

• Added normative information in the Requester flag fields definitions table and the Responder flag fields

definitions table.

• Clarified sessions can be established one at a time when HANDSHAKE_IN_THE_CLEAR_CAP is set.

• Removed text that ENCRYPT_CAP and MAC_CAP apply to all phases of a secure session.

• Removed text that prohibited error response codes for GET_CAPABILIITES and NEGOTIATE_ALGORITHMS .

• Added explanation as to how the RDT value is measured at the Responder.

• Clarified the definition of RDT as the additional time needed by the responder and not as a delay.

• Clarified Responder’s support for retry.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.3 Published 161

656 17 Bibliography

657 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

Security Protocol and Data Model (SPDM) Specification DSP0274

162 Published Version 1.1.3

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Conventions
	2.1.1 Document conventions
	2.1.2 Reserved and unassigned values
	2.1.3 Byte ordering
	2.1.4 Sizes and lengths
	2.1.5 SPDM data types
	2.1.6 Version encoding
	2.1.7 Notations

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 SPDM message exchanges
	7.1 Security capability discovery and negotiation
	7.2 Identity authentication
	7.2.1 Identity provisioning
	7.2.2 Runtime authentication

	7.3 Firmware and configuration measurement
	7.4 Secure sessions
	7.5 Mutual authentication overview
	8 SPDM messaging protocol
	8.1 SPDM bits-to-bytes mapping
	8.2 Generic SPDM message format
	8.3 SPDM request codes
	8.4 SPDM response codes
	8.5 SPDM request and response code issuance allowance
	8.6 Concurrent SPDM message processing
	8.7 Requirements for Requesters
	8.8 Requirements for Responders
	9 Timing requirements
	9.1 Timing measurements
	9.2 Timing specification table
	10 SPDM messages
	10.1 Capability discovery and negotiation
	10.2 GET_VERSION request and VERSION response messages
	10.3 GET_CAPABILITIES request and CAPABILITIES response messages
	10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages
	10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS

	10.5 Responder identity authentication
	10.6 Requester identity authentication
	10.6.1 Certificates and certificate chains

	10.7 GET_DIGESTS request and DIGESTS response messages
	10.8 GET_CERTIFICATE request and CERTIFICATE response messages
	10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages
	10.8.2 Leaf certificate

	10.9 CHALLENGE request and CHALLENGE_AUTH response messages
	10.9.1 CHALLENGE_AUTH signature generation
	10.9.2 CHALLENGE_AUTH signature verification
	10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

	10.9.3 Basic mutual authentication
	10.9.3.1 Mutual authentication message transcript

	10.10 Firmware and other measurements
	10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages
	10.11.1 Measurement block
	10.11.1.1 DMTF specification for the Measurement field of a measurement block

	10.11.2 MEASUREMENTS signature generation
	10.11.3 MEASUREMENTS signature verification

	10.12 ERROR response message
	10.13 RESPOND_IF_READY request message format
	10.14 VENDOR_DEFINED_REQUEST request message
	10.15 VENDOR_DEFINED_RESPONSE response message
	10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications

	10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages
	10.16.1 Mutual authentication
	10.16.2 Specifying Requester certificate for mutual authentication

	10.17 FINISH request and FINISH_RSP response messages
	10.17.1 Transcript hash calculation rules

	10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages
	10.19 PSK_FINISH request and PSK_FINISH_RSP response messages
	10.20 HEARTBEAT request and HEARTBEAT_ACK response messages
	10.20.1 Heartbeat additional information

	10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages
	10.21.1 Session key update synchronization
	10.21.2 KEY_UPDATE transport allowances

	10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages
	10.22.1 Encapsulated request flow
	10.22.2 Optimized encapsulated request flow
	10.22.3 Triggering GET_ENCAPSULATED_REQUEST
	10.22.4 Additional constraints

	10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK response messages
	10.23.1 Additional information

	10.24 END_SESSION request and END_SESSION_ACK response messages
	11 Session
	11.1 Session handshake phase
	11.2 Application phase
	11.3 Session termination phase
	11.4 Simultaneous active sessions
	11.5 Records and session ID
	12 Key schedule
	12.1 Transcript hash in key derivation
	12.2 TH1 definition
	12.3 TH2 definition
	12.4 Key schedule major secrets
	12.4.1 Request-direction handshake secret
	12.4.2 Response-direction handshake secret
	12.4.3 Requester-direction data secret
	12.4.4 Responder-direction data secret

	12.5 Encryption key and IV derivation
	12.6 finished_key derivation
	12.7 Deriving additional keys from the Export Master Secret
	12.8 Major secrets update
	13 Application data
	13.1 Nonce derivation
	14 ANNEX A (informative) TLS 1.3
	15 ANNEX B (normative) Leaf certificate example
	16 ANNEX C (informative) Change log
	16.1 Version 1.0.0 (2019-10-16)
	16.2 Version 1.1.0 (2020-07-15)
	16.3 Version 1.1.1 (2021-05-12)
	16.4 Version 1.1.2 (2022-03-09)
	16.5 Version 1.1.3 (2023-10-08)
	17 Bibliography

