
1

2

3

4

Document Identifier: DSP0274

Date: 2022-03-09

Version: 1.1.2

5 Security Protocol and Data Model (SPDM)
Specification

6

7

8

9

Supersedes: 1.1.1 Document

Class: DMTF Standard

Status: Published

Language: en-US

Published

10 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

11 Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

12 For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

13 This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2022 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

2 Published Version 1.1.2

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

14 CONTENTS

1 Foreword . 6

1.1 Acknowledgments . 6

2 Introduction . 7

2.1 Conventions. 7

2.1.1 Document conventions . 7

2.1.2 Reserved and unassigned values . 7

2.1.3 Byte ordering. 7

2.1.4 SPDM data types . 7

2.1.5 Version encoding. 8

2.1.6 Notations . 8

3 Scope. 10

4 Normative references. 11

5 Terms and definitions . 13

6 Symbols and abbreviated terms . 17

7 SPDM message exchanges. 18

7.1 Security capability discovery and negotiation . 18

7.2 Identity authentication . 18

7.2.1 Identity provisioning . 19

7.2.2 Runtime authentication . 19

7.3 Firmware and configuration measurement . 19

7.4 Secure sessions . 20

7.5 Mutual authentication overview . 20

8 SPDM messaging protocol . 21

8.1 SPDM bits-to-bytes mapping. 23

8.2 Generic SPDM message format . 23

8.3 SPDM request codes. 24

8.4 SPDM response codes . 25

8.5 SPDM request and response code issuance allowance . 27

8.6 Concurrent SPDM message processing . 28

8.7 Requirements for Requesters . 28

8.8 Requirements for Responders. 29

9 Timing requirements . 30

9.1 Timing measurements . 30

9.2 Timing specification table . 30

10 SPDM messages . 33

10.1 Capability discovery and negotiation . 33

10.2 GET_VERSION request and VERSION response messages. 34

10.3 GET_CAPABILITIES request and CAPABILITIES response messages . 36

10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages 41

10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS . 54

10.5 Responder identity authentication . 55

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 3

10.6 Requester identity authentication . 57

10.6.1 Certificates and certificate chains . 57

10.7 GET_DIGESTS request and DIGESTS response messages . 58

10.8 GET_CERTIFICATE request and CERTIFICATE response messages. 59

10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE

messages . 61

10.8.2 Leaf certificate . 61

10.9 CHALLENGE request and CHALLENGE_AUTH response messages . 63

10.9.1 CHALLENGE_AUTH signature generation. 65

10.9.2 CHALLENGE_AUTH signature verification. 66

10.9.2.1 Request ordering and message transcript computation rules for M1 and M2 67

10.9.3 Basic mutual authentication . 69

10.9.3.1 Mutual authentication message transcript . 70

10.10 Firmware and other measurements. 71

10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages. 72

10.11.1 Measurement block . 74

10.11.1.1 DMTF specification for the Measurement field of a measurement block 75

10.11.2 MEASUREMENTS signature generation . 76

10.11.3 MEASUREMENTS signature verification . 78

10.12 ERROR response message . 80

10.13 RESPOND_IF_READY request message format . 84

10.14 VENDOR_DEFINED_REQUEST request message . 85

10.15 VENDOR_DEFINED_RESPONSE response message . 86

10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages 87

10.16.1 Mutual authentication . 93

10.16.2 Specifying Requester certificate for mutual authentication . 93

10.17 FINISH request and FINISH_RSP response messages . 94

10.17.1 Transcript hash calculation rules. 95

10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages 98

10.19 PSK_FINISH request and PSK_FINISH_RSP response messages . 103

10.20 HEARTBEAT request and HEARTBEAT_ACK response messages. 104

10.20.1 Heartbeat additional information . 105

10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages 106

10.21.1 Session key update synchronization. 107

10.21.2 KEY_UPDATE transport allowances. 110

10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response

messages. 113

10.22.1 Encapsulated request flow . 113

10.22.2 Optimized encapsulated request flow . 113

10.22.3 Triggering GET_ENCAPSULATED_REQUEST . 117

10.22.4 Additional constraints . 117

10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK

response messages. 118

Security Protocol and Data Model (SPDM) Specification DSP0274

4 Published Version 1.1.2

10.23.1 Additional information . 120

10.24 END_SESSION request and END_SESSION_ACK response messages 120

11 Session. 123

11.1 Session handshake phase. 123

11.2 Application phase. 124

11.3 Session termination phase. 124

11.4 Simultaneous active sessions . 124

11.5 Records and session ID. 125

12 Key schedule . 126

12.1 Transcript hash in key derivation . 128

12.2 TH1 definition . 128

12.3 TH2 definition . 129

12.4 Key schedule major secrets . 130

12.4.1 Request-direction handshake secret. 130

12.4.2 Response-direction handshake secret . 130

12.4.3 Requester-direction data secret . 130

12.4.4 Responder-direction data secret . 130

12.5 Encryption key and IV derivation . 131

12.6 finished_key derivation . 131

12.7 Deriving additional keys from the Export Master Secret . 132

12.8 Major secrets update . 132

13 Application data . 133

13.1 Nonce derivation . 133

14 ANNEX A (informative) TLS 1.3. 134

15 ANNEX B (normative) Leaf certificate example . 135

16 ANNEX C (informative) Change log. 137

16.1 Version 1.0.0 (2019-10-16) . 137

16.2 Version 1.1.0 (2020-07-15) . 137

16.3 Version 1.1.1 (2021-05-12) . 137

16.4 Version 1.1.2 (2022-03-22) . 138

17 Bibliography . 139

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 5

15 1 Foreword

16 The Platform Management Components Intercommunication (PMCI) working group of the DMTF prepared the

Security Protocol and Data Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry

members that promotes enterprise and systems management and interoperability. For information about the DMTF,

see DMTF.

17 1.1 Acknowledgments

18 The DMTF acknowledges the following individuals for their contributions to this document:

19 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Lee Ballard — Dell Technologies

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yuval Itkin — Mellanox Technologies

• Theo Koulouris — Hewlett Packard Enterprise

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Edward Newman — Hewlett Packard Enterprise

• Alexander Novitskiy — Intel Corporation

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

Security Protocol and Data Model (SPDM) Specification DSP0274

6 Published Version 1.1.2

https://www.dmtf.org/

20 2 Introduction

21 The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges between devices over a variety of transport and physical media. The description of

message exchanges includes authentication of hardware identities, measurement for firmware identities and session

key exchange protocols to enable confidentiality and integrity protected data communication. The SPDM enables

efficient access to low-level security capabilities and operations. Other mechanisms, including non-PMCI- and

DMTF-defined mechanisms, can use the SPDM.

22 2.1 Conventions

23 The following conventions apply to all SPDM specifications.

24 2.1.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

25 2.1.2 Reserved and unassigned values

26 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by the DMTF.

27 Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

28 2.1.3 Byte ordering

29 Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit

fields is "Little Endian"(that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

30 2.1.4 SPDM data types

31 The SPDM data types table lists the abbreviations and descriptions for common data types that SPDM message

fields and data structure definitions use. These definitions follow DSP0240.

32 SPDM data types

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 7

Data type Interpretation

ver8 Eight-bit encoding of the SPDM version number. Version encoding defines the encoding of the version number.

bitfield8 Byte with eight bit fields. Each bit field can be separately defined.

bitfield16 Two-byte word with 16-bit fields. Each bit field can be separately defined.

33 2.1.5 Version encoding

34 The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major
Major version field in the SPDMVersion field in the SPDM message

header.
Protocol modification breaks backward compatibility.

Minor
Minor version field in the SPDMVersion field in the SPDM message

header.

Protocol modification maintains backward

compatibility.

35 EXAMPLE:

36 Version 3.7 → 0x37

37 Version 1.0 → 0x10

38 Version 1.2 → 0x12

39 An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 only, but the

available functionality is limited to what SPDM specification Version 1.0 defines.

40 An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

41 The detailed version encoding that the VERSION response message returns contains an additional byte that

indicates specification bug fixes or development versions. See the Successful VERSION response message format

table.

42 2.1.6 Notations

43 SPDM specifications use the following notations:

Security Protocol and Data Model (SPDM) Specification DSP0274

8 Published Version 1.1.2

Notation Description

M:N

In field descriptions, this notation typically represents a range of byte offsets starting from byte M and

continuing to and including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit ([LSb]) offset = 0.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the right.

1b A lowercase b after a number consisting of 0 s and 1 s indicates that the number is in binary format.

0x12A Hexadecimal, indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

{ Payload }

Used mostly in figures, this notation indicates the payload specified in the enclosing curly brackets is

encrypted and/or authenticated by the keys derived from one or more major secrets. The specific secret

used is described throughout this specification. For example, { HEARTBEAT } shows that the Heartbeat

message is encrypted and/or authenticated by the keys derived from one or more major secrets.

{ Payload }::[[SX]]

Used mostly in figures, this notation indicates the payload specified in the enclosing curly brackets is

encrypted and/or authenticated by the keys derived from major Secret X.

For example, { HEARTBEAT }::[[S2]] shows that the Heartbeat message is encrypted and/or

authenticated by the keys derived from major secret S2 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 9

44 3 Scope

45 This specification describes how to use messages, data objects, and sequences to exchange messages between

two devices over a variety of transports and physical media. This specification contains the message exchanges,

sequence diagrams, message formats, and other relevant semantics for such message exchanges, including

authentication of hardware identities and firmware measurement.

46 Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

Security Protocol and Data Model (SPDM) Specification DSP0274

10 Published Version 1.1.2

47 4 Normative references

48 The following documents are indispensable for the application of this specification. For dated or versioned

references, only the edition cited, including any corrigenda or DMTF update versions, applies. For references without

a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2018

(8th edition)

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0004_3.0.1.pdf

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0223_1.0.1.pdf

• DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/

DSP0236_1.3.0.pdf

• DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0239_1.6.0.pdf

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0240_1.0.0.pdf

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification,

https://www.dmtf.org/dsp/DSP0275

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/

documents/DSP1001_1.2.0.pdf

• IETF RFC4716, The Secure Shell (SSH) Public Key File Format, November 2006

• IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

• IETF RFC5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,

May 2008

• IETF RFC7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS), June 2014

• IETF RFC7919, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security

(TLS), August 2016

• IETF RFC8446, The Transport Layer Security (TLS) Protocol Version 1.3, August 2018

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

• TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.27, February 7, 2018

• NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC, November 2007

• IETF RFC8439, ChaCha20 and Poly1305 for IETF Protocols, June 2018

• ASN.1 — ISO-822-1-4, DER — ISO-8825-1

◦ ITU-T X.680, X.681, X.682, X.683, X.690, 08/2015

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 11

https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc8446
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://tools.ietf.org/html/rfc8439
https://www.itu.int/rec/T-REC-X.680-X.693-201508-I/en

• X.509 — ISO-9594-8

◦ ITU-T X.509, 08/2015

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-4 Digital Signature

Standard (DSS)

◦ Appendix D: Recommended Elliptic Curves for Federal Government Use in FIPS PUB 186-4 Digital

Signature Standard (DSS)

• RSA

◦ Table 3 in TCG Algorithm Registry Family “2.0" Level 00 Revision 01.22, February 9, 2015

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

• Transport Layer Security 1.3

◦ TLS 1.3 RFC 8446

Security Protocol and Data Model (SPDM) Specification DSP0274

12 Published Version 1.1.2

https://www.iso.org/standard/72557.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Algorithm_Registry_Rev_1.22.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://tools.ietf.org/html/rfc8446

49 5 Terms and definitions

50 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines

those terms.

51 The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional

cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7

specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal

English meaning.

52 The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

53 The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative

content. Notes and examples are always informative elements.

54 The terms that DSP0004, DSP0223, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this

document.

55 This specification uses these terms:

Term Definition

application data

Data that is specific to the application and whose definition and format is outside the scope of this specification.

Application data usually exist at the application layer, which is, in general, the layer above SPDM and the transport

layer. Examples of data that could be application data include: messages carried as DMTF MCTP payloads; Internet

traffic (PCIe transaction layer packets (TLPs)); camera images and video (MIPI CSI-2 packets); video display stream

(MIPI DSI-2 packets) and touchscreen data (MIPI I3C Touch).

authentication Process of determining whether an entity is who or what it claims to be.

authentication

initiator
Endpoint that initiates the authentication process by challenging another endpoint.

byte Eight-bit quantity. Also known as an octet.

certificate
Digital form of identification that provides information about an entity and certifies ownership of a particular

asymmetric key-pair.

certificate authority

(CA)
Trusted entity that issues certificates.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 13

Term Definition

certificate chain Series of two or more certificates. Each certificate is signed by the preceding certificate in the chain.

component Physical entity similar to the PCI Express specification’s definition.

device Physical entity such as a network controller or a fan.

DMTF

Formerly known as the Distributed Management Task Force, the DMTF creates open manageability standards that

span diverse emerging and traditional information technology (IT) infrastructures, including cloud, virtualization,

network, servers, and storage. Member companies and alliance partners worldwide collaborate on standards to

improve the interoperable management of IT.

endpoint Logical entity that communicates with other endpoints over one or more transport protocol.

intermediate

certificate
Certificate that is neither a root certificate nor a leaf certificate.

leaf certificate Last certificate in a certificate chain.

measurement Representation of firmware/software or configuration data on an endpoint.

message See SPDM message.

message body Portion of a SPDM message that carries additional data.

message originator Original transmitter, or source, of a SPDM message.

message transcript

The concatenation of a sequence of messages in the order in which they are sent and received by an endpoint. The

final message included in the message transcript may be truncated to allow inclusion of a signature in that message

which is computed over the message transcript. If an endpoint is communicating with multiple peer endpoints

concurrently, the message transcripts for the peers are accumulated separately and independently.

most significant byte

(MSB)
Highest order byte in a number consisting of multiple bytes.

Negotiated State

Set of parameters that represent the state of the communication between a corresponding pair of Requester and

Responder at the successful completion of the NEGOTIATE_ALGORITHMS messages.

These parameters may include values provided in VERSION , CAPABILITIES and ALGORITHMS messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to continue or preserve

communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

nonce

Number that is unpredictable to entities other than its generator. The probability of the same number occurring more

than once is negligible. Nonce may be generated by combining a pseudo random number of at least 64 bits,

optionally concatenated with a monotonic counter of size suitable for the application.

Security Protocol and Data Model (SPDM) Specification DSP0274

14 Published Version 1.1.2

Term Definition

opaque data
Opaque data fields transfer data that is outside of the scope of this specification. The semantics and usage of this

data are implementation specific and also outside of the scope of this specification.

payload

Information-bearing fields of a message. These fields are separate from the fields and elements, such as address

fields, framing bits, checksums, and so on, that transport the message from one point to another. In some instances,

a field can be both a payload field and a transport field.

physical transport

binding

Specifications that define how a base messaging protocol is implemented on a particular physical transport type and

medium, such as SMBus/I2C, PCI Express™ Vendor Defined Messaging, and so on.

Platform

Management

Component

Intercommunications

(PMCI)

Working group under the DMTF that defines standardized communication protocols, low-level data models, and

transport definitions that support communications with and between management controllers and management

devices that form a platform management subsystem within a managed computer system.

record A record is a unit or chunk of data that is either encrypted and/or authenticated.

Requester
Original transmitter, or source, of a SPDM request message. It is also the ultimate receiver, or destination, of a

SPDM response message.

Responder
Ultimate receiver, or destination, of a SPDM request message. It is also the original transmitter, or source of a SPDM

response message.

root certificate First certificate in a certificate chain, which is self-signed.

session keys Session Keys are any secrets, derived cryptographic keys or any cryptographic information bound to the session.

Session-Secrets-

Exchange

This term denotes any SPDM request and their corresponding response that initiates a session and provides initial

cryptographic exchange. Examples of such requests are KEY_EXCHANGE and PSK_EXCHANGE .

Session-Secrets-

Finish

This term denotes any SPDM request and their corresponding response that finalizes a session setup and provides

the final exchange of cryptographic or other information before application data can be securely transmitted.

Examples of such requests are FINISH and PSK_FINISH .

secure session
A secure session is a session that provides either or both of encryption or message authentication for communicating

data over a transport.

SPDM message Unit of communication in SPDM communications.

SPDM message

payload

Portion of the message body of a SPDM message. This portion of the message is separate from those fields and

elements that identify the SPDM version, the SPDM request and response codes, and the two parameters.

SPDM request

message

Message that is sent to an endpoint to request a specific SPDM operation. A corresponding SPDM response

message acknowledges receipt of a SPDM request message.

SPDM response

message

Message that is sent in response to a specific SPDM request message. This message includes a Response Code

field that indicates whether the request completed normally.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 15

Term Definition

trusted computing

base (TCB)

Set of all hardware, firmware, and/or software components that are critical to its security, in the sense that bugs or

vulnerabilities occurring inside the TCB might jeopardize the security properties of the entire system. By contrast,

parts of a computer system outside the TCB shall not be able to misbehave in a way that would leak any more

privileges than are granted to them in accordance to the security policy.

Reference: https://en.wikipedia.org/wiki/Trusted_computing_base

Security Protocol and Data Model (SPDM) Specification DSP0274

16 Published Version 1.1.2

https://en.wikipedia.org/wiki/Trusted_computing_base
https://en.wikipedia.org/wiki/Trusted_computing_base

56 6 Symbols and abbreviated terms

57 The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

58 The following additional abbreviations are used in this document.

Abbreviation Definition

CA certificate authority

MAC Message Authentication Code

DMTF Formerly the Distributed Management Task Force

MSB most significant byte

PMCI Platform Management Component Intercommunications

SPDM Security Protocol and Data Model

TCB trusted computing base

AEAD Authenticated Encryption with Associated Data

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 17

59 7 SPDM message exchanges

60 The message exchanges defined in this specification are between two endpoints and are performed and exchanged

through sending and receiving of SPDM messages defined in SPDM messages. The SPDM message exchanges are

defined in a generic fashion that allows the messages to be communicated across different physical mediums and

over different transport protocols.

61 The specification-defined message exchanges enable Requesters to:

• Discover and negotiate the security capabilities of a Responder.

• Authenticate the identity of a Responder.

• Retrieve the measurements of a Responder.

• Securely establish cryptographic session keys to construct a secure communication channel for the transmission

or reception of application data.

62 These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. The following clauses provide a brief overview of each message exchange capability. Some

message exchange capabilities are based on the security model that the USB Authentication Specification Rev 1.0

with ECN and Errata through January 7, 2019 defines.

63 7.1 Security capability discovery and negotiation

64 This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that are defined in this specification.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the

Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

65 7.2 Identity authentication

66 In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

67 At a high-level, the authentication of the identity of a Responder involves these processes:

• Identity provisioning

• Runtime authentication

Security Protocol and Data Model (SPDM) Specification DSP0274

18 Published Version 1.1.2

68 7.2.1 Identity provisioning

69 Identity provisioning is the process that device vendors follow during or after hardware manufacturing. A trusted root

certificate authority (CA) generates a root certificate (RootCert) that is provisioned to the authentication initiator.

The authentication initiator uses this certificate to verify the validity of certificate chains. A device carries a certificate

chain, which has the RootCert as the root of the certificate chain and a device certificate (DeviceCert) as the leaf

certificate of the certificate chain. The device certificate contains the public key that corresponds to the device private

key.

70 Through the certificate chain, the root CA indirectly endorses the per-device public/private key pair in the

DeviceCert , where the private key is provisioned to or generated by the endpoint.

71 Alternatively to certificate chains, the vendor may provision the raw public key of the Responder to the Requester in a

trusted environment; for example, during the secure manufacturing process. In this case, trust of the public key of the

Responder is established without the need for a certificate-based public key infrastructure.

72 The format of the provisioned public key is out of scope of this specification. Vendors can use proprietary formats or

public key formats that other standards define, such as RFC7250 and RFC4716.

73 7.2.2 Runtime authentication

74 Runtime authentication is the process by which an authentication initiator, or Requester, interacts with a Responder

in a running system. The authentication initiator can retrieve the certificate chains from the Responder and send a

unique challenge to the Responder. The Responder uses the private key to sign the challenge. The authentication

initiator verifies the signature by using the public key of the Responder, and any intermediate public keys within the

certificate chain by using the root certificate as the trusted anchor.

75 If the public key of the Responder was provisioned to the Requester in a trusted environment, the authentication

initiator sends a unique challenge to the Responder. The Responder signs the challenge with the private key. The

authentication initiator verifies the signature by using the public key of the Responder. The transport layer should

handle device identification, which is outside the scope of this specification.

76 7.3 Firmware and configuration measurement

77 A measurement is a representation of firmware/software or configuration data on an endpoint. A measurement is

typically a cryptographic hash value of the data, or the raw data itself. The endpoint optionally binds a measurement

with the endpoint identity through the use of digital signatures. This binding enables an authentication initiator to

establish the identity and measurement of the firmware/software or configuration running on the endpoint.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 19

78 7.4 Secure sessions

79 Many devices exchange data with other devices that may require protection. In this specification, the device-specific

data that is communicated is generically referred to as application data. The protocol of the application data usually

exists at a higher layer and it is outside the scope of this specification. This protocol of the application data usually

allows for encrypted and/or authenticated data transfer.

80 This specification provides a method to perform a cryptographic key exchange such that the protocol of the

application data can use the exchanged keys to provide a secure channel of communication by using encryption and

message authentication. This cryptographic key exchange provides either Responder-only authentication or mutual

authentication which can be considered equivalent to Runtime authentication. For more details, see the Session

clause.

81 Lastly, but not least, many SPDM requests and their corresponding responses can also be afforded the same

protection. See the SPDM request and response messages validity table and SPDM request and response code

issuance allowance clause for more details.

82 The SPDM messaging protocol flow gives a very high-level view of when the secure session actually starts.

83 7.5 Mutual authentication overview

84 The ability for a Responder to verify the authenticity of the Requester is called mutual authentication. Several

mechanisms in this specification are detailed to provide mutual authentication capabilities. The cryptographic means

to verify the identity of the Requester is the same as verifying the identity of the Responder. The Identity

authentication discusses identity in regards to the Responder but the details apply to the Requester as well.

85 In general, when this specification places requirements or recommendations for Responders in the context of

identity, those same rules also apply to Requesters in the context of mutual authentication. The various clauses in

this specification will provide more details.

Security Protocol and Data Model (SPDM) Specification DSP0274

20 Published Version 1.1.2

86 8 SPDM messaging protocol

87 The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to

with a SPDM response message as defined in this specification unless otherwise stated in this specification.

88 The SPDM messaging protocol flow depicts the high-level request-response flow diagram for SPDM. An endpoint

that acts as the Requester sends a SPDM request message to another endpoint that acts as the Responder, and the

Responder returns a SPDM response message to the Requester.

89 SPDM messaging protocol flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 21

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

If necessary

ResponderRequester

GET_VERSION

VERSION

CAPABILITIES

If supported

CHALLENGE

CHALLENGE_AUTH

GET_CERTIFICATE

CERTIFICATE

If supported

MEASUREMENTS

KEY_EXCHANGE

GET_MEASUREMENTS

FINISH

FINISH_RSP

Secure Session

Application Data

KEY_EXCHANGE_RSP

Mutual Authentication

GET_CAPABILITIES

If supported

90 All SPDM request-response messages share a common data format, that consists of a four-byte message header

and zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages details each of the request and response messages.

91 The Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS request messages

before issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS may be saved by the requester so that after reset the requester may skip these requests.

Security Protocol and Data Model (SPDM) Specification DSP0274

22 Published Version 1.1.2

92 8.1 SPDM bits-to-bytes mapping

93 All SPDM fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned

byte in monotonically decreasing order until the least numerically assigned byte of that field. The following two figures

illustrate this mapping.

94 One-byte field bit map

95

Byte 1

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A One-Byte Field

96 Two-byte field bit map

97

Byte 2

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A Two-Byte Field

Byte 3

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

98 8.2 Generic SPDM message format

99 The Generic SPDM message field definitions table defines the fields that constitute a generic SPDM message,

including the message header and payload.

100 Generic SPDM message field definitions

Byte Bits
Length

(bits)
Field Description

0 [7:4] 4

SPDM

Major

Version

The major version of the SPDM Specification. An endpoint shall not communicate by using an

incompatible SPDM version value. See Version encoding.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 23

Byte Bits
Length

(bits)
Field Description

0 [3:0] 4

SPDM

Minor

Version

The minor version of the SPDM Specification. A specification with a given minor version extends a

specification with a lower minor version as long as they share the major version. See Version

encoding.

1 [7:0] 8

Request

Response

Code

The request message code or response code, which Table 4 and Table 5 enumerate. 0x00 through

0x7F represent response codes and 0x80 through 0xFF represent request codes. In request

messages, this field is considered the request code. In response messages, this field is considered

the response code.

2 [7:0] 8 Param1
The first one-byte parameter. The contents of the parameter is specific to the Request Response

Code .

3 [7:0] 8 Param2
The second one-byte parameter. The contents of the parameter is specific to the Request Response

Code .

4
See the

description.
Variable

SPDM

message

payload

Zero or more bytes that are specific to the Request Response Code .

101 8.3 SPDM request codes

102 The SPDM request codes table defines the SPDM request codes. The Implementation requirement column

indicates requirements on the Requester.

103 All SPDM-compatible implementations shall use the following SPDM request codes.

104 If an ERROR response is sent for unsupported request codes, the ErrorCode shall be UnsupportedRequest .

105 SPDM request codes

Request Code value Implementation requirement Message format

GET_DIGESTS 0x81 Optional GET_DIGESTS request message format

GET_CERTIFICATE 0x82 Optional
GET_CERTIFICATE request message

format

CHALLENGE 0x83 Optional CHALLENGE request message format

GET_VERSION 0x84 Required GET_VERSION request message format

GET_MEASUREMENTS 0xE0 Optional
GET_MEASUREMENTS request message

format

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Published Version 1.1.2

Request Code value Implementation requirement Message format

GET_CAPABILITIES 0xE1 Required
GET_CAPABILITIES request message

format

NEGOTIATE_ALGORITHMS 0xE3 Required
NEGOTIATE_ALGORITHMS request

message format

KEY_EXCHANGE 0xE4 Optional
KEY_EXCHANGE request message

format

FINISH 0xE5 Optional FINISH request message format

PSK_EXCHANGE 0xE6 Optional
PSK_EXCHANGE request message

format

PSK_FINISH 0xE7 Optional PSK_FINISH request message format

HEARTBEAT 0xE8 Optional HEARTBEAT request message format

KEY_UPDATE 0xE9 Optional KEY_UPDATE request message format

GET_ENCAPSULATED_REQUEST 0xEA Optional
GET_ENCAPSULATED_REQUEST

request message format

DELIVER_ENCAPSULATED_RESPONSE 0xEB Optional
DELIVER_ENCAPSULATED_RESPONSE

request message format

END_SESSION 0xEC Optional END_SESSION request message format

RESPOND_IF_READY 0xFF Required
RESPOND_IF_READY request message

format

VENDOR_DEFINED_REQUEST 0xFE Optional
VENDOR_DEFINED_REQUEST request

message format

Reserved

0x80 ,

0x85 - 0xDF ,

0xE2 ,

0xED - 0xFD

SPDM implementations compatible with this

version shall not use the reserved request

codes.

106 8.4 SPDM response codes

107 The Request Response Code field in the SPDM response message shall specify the appropriate response code for

a request. All SPDM-compatible implementations shall use the following SPDM response codes.

108 On a successful completion of a SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of a SPDM operation, the ERROR response message should be returned.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 25

109 The SPDM response codes table defines the response codes for SPDM. The Implementation requirement column

indicates requirements on the Responder.

110 SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Optional
Successful DIGESTS response

message format

CERTIFICATE 0x02 Optional
Successful CERTIFICATE response

message format

CHALLENGE_AUTH 0x03 Optional
Successful CHALLENGE_AUTH

response message format

VERSION 0x04 Required
Successful VERSION response

message format

MEASUREMENTS 0x60 optional
Successful MEASUREMENTS

response message format

CAPABILITIES 0x61 Required
Successful CAPABILITIES response

message format

ALGORITHMS 0x63 Required
Successful ALGORITHMS response

message format

KEY_EXCHANGE_RSP 0x64 Optional
Successful KEY_EXCHANGE_RSP

response message format

FINISH_RSP 0x65 Optional
Successful FINISH_RSP response

message format

PSK_EXCHANGE_RSP 0x66 Optional
PSK_EXCHANGE_RSP response

message format

PSK_FINISH_RSP 0x67 Optional
Successful PSK_FINISH_RSP

response message format

HEARTBEAT_ACK 0x68 Optional
HEARTBEAT_ACK response

message format

KEY_UPDATE_ACK 0x69 Optional
KEY_UPDATE_ACK response

message format

ENCAPSULATED_REQUEST 0x6A Optional
ENCAPSULATED_REQUEST

response message format

ENCAPSULATED_RESPONSE_ACK 0x6B Optional
ENCAPSULATED_RESPONSE_ACK

response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

26 Published Version 1.1.2

Response Value Implementation requirement Message format

END_SESSION_ACK 0x6C Optional
END_SESSION_ACK response

message format

VENDOR_DEFINED_RESPONSE 0x7E Optional
VENDOR_DEFINED_RESPONSE

response message format

ERROR 0x7F ERROR response message format

Reserved

0x00 ,

0x05 - 0x5F ,

0x62 ,

0x6D - 0x7D

SPDM implementations compatible with this version

shall not use the reserved response codes.

111 8.5 SPDM request and response code issuance allowance

112 The SPDM request and response messages validity table describes the conditions under which a request and

response can be issued.

113 The Session column describes whether the respective request and response can be sent in a session. If the value is

"Allowed", the issuer of the request and response shall be able to send it in a secure session; thereby, affording them

the protection of a secure session. If the Session column value is Prohibited , the issuer shall be prohibited from

sending the respective request and response in a secure session.

114 The Outside of a session column indicates which requests and responses are allowed to be sent free and

independent of a session; thereby lacking the protection of a secure session. An "Allowed" in this column indicates

that the respective request and response shall be able to be sent outside the context of a secure session. Likewise, a

"Prohibited" in this column shall prohibit the issuer from sending the respective request or response outside the

context of a session.

115 A request and its corresponding response can have the Allowed value in both the Session and Outside of a

session columns, in which case, they can be sent and received in both scenarios but may have additional

restrictions. See the respective request and response clause for further details.

116 A request and its corresponding response that has Allowed value in the Session and Prohibited in the Outside

of a session columns are commands used by the session. These commands only operate on the session that they

were sent under, which is outside of the SPDM specification. The session ID is implicit from the session used to

transmit the commands.

117 Finally, the Session phases column describes which phases of a session the respective request and response shall

be issued when they are allowed to be issued in a session.

118 For details, see the Session clause.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 27

119 SPDM request and response messages validity

Request Response Session Outside of a session Session phases

GET_MEASUREMENT MEASUREMENT Allowed Allowed Application Phase

FINISH FINISH_RSP Allowed Allowed Session Handshake

PSK_FINISH PSK_FINISH_RSP Allowed Allowed Session Handshake

HEARTBEAT HEARTBEAT_ACK Allowed Prohibited Application Phase

KEY_UPDATE KEY_UPDATE_ACK Allowed Prohibited Application Phase

END_SESSION END_SESSION_ACK Allowed Prohibited Application Phase

Not Applicable ERROR Allowed Allowed All Phases

GET_ENCAPSULATED_REQUEST ENCAPSULATED_REQUEST Allowed Allowed All Phases

DELIVER_ENCAPSULATED_RESPONSE ENCAPSULATED_RESPONSE_ACK Allowed Allowed All Phases

VENDOR_DEFINED_REQUEST VENDOR_DEFINED_RESPONSE Allowed Allowed Application Phase

All others All others Prohibited Allowed Not Applicable

120 For ERROR response in session handshake or application phase of a session, the Requester is only allowed in

certain situations to send the ERROR response.

121 8.6 Concurrent SPDM message processing

122 This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

123 If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

124 8.7 Requirements for Requesters

125 A Requester shall not have multiple outstanding requests to the same Responder, with the following exception: as

addressed in GET_VERSION request and VERSION response messages, a Requester may issue a GET_VERSION

to a Responder to restart the protocol due to an internal error or reset, even if the Requester has existing outstanding

requests to the same Responder.

126 If the Requester has sent a request to a Responder and wants to send a subsequent request to the same

Security Protocol and Data Model (SPDM) Specification DSP0274

28 Published Version 1.1.2

Responder, then the Requester shall wait to send the subsequent request until after the Requester completes one of

the following actions:

• Receives the response from the Responder for the outstanding request.

• Times out waiting for a response.

• Receives an indication, from the transport layer, that transmission of the request message failed.

• The Requester encounters an internal error or reset.

127 A Requester may send simultaneous request messages to different Responders.

128 8.8 Requirements for Responders

129 A Responder is not required to process more than one request message at a time.

130 A Responder that is not ready to accept a new request message shall either respond with an ERROR response

message with ErrorCode=Busy or silently discard the request message.

131 If a Responder is working on a request message from a Requester, the Responder may respond with

ErrorCode=Busy .

132 If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 29

133 9 Timing requirements

134 The Timing specification for SPDM messages table shows the timing specifications for Requesters and Responders.

135 If the Requester does not receive a response within T1 or T2 time accordingly, the Requester may retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

Because a retried message is identical to the first, a retried message shall not be used in transcript hash

calculations.

136 The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) may retry,

but that is outside of the SPDM specification.

137 9.1 Timing measurements

138 A Requester shall measure timing parameters, applicable to it, from the end of a successful transmission of a SPDM

request to the beginning of the reception of the corresponding SPDM response. A Responder shall measure timing

parameters, applicable to it, from the end of the reception of the SPDM request to the beginning of transmission of

the response. The requirement assumes that the Responder has immediate access to the transport.

139 9.2 Timing specification table

140 The Ownership column in the Timing specification for SPDM messages table specifies whether the timing parameter

applies to the Responder or Requester.

141 Timing specification for SPDM messages

Timing

parameter
Ownership Value Units Description

RTT Requester
See the

description.
µs

Worst case round-trip transport timing.

The maximum value shall be the worst case total time for the

complete transmission and delivery of a SPDM message round trip

at the transport layer(s). The actual value for this parameter is

transport- or media-specific. Both the actual value and how an

endpoint obtains this value are outside the scope of this

specification.

Security Protocol and Data Model (SPDM) Specification DSP0274

30 Published Version 1.1.2

Timing

parameter
Ownership Value Units Description

ST1 Responder 100,000 µs

Shall be the maximum amount of time the Responder has to provide

a response to requests that do not require cryptographic processing,

such as the GET_CAPABILITIES , GET_VERSION , or

NEGOTIATE_ALGORITHMS request messages.

T1 Requester RTT+ST1 µs

Shall be the minimum amount of time the Requester shall wait before

issuing a retry for requests that do not require cryptographic

processing.

For details, see ST1 .

CT Requester and Responder 2 CTExponent µs

CTExponent is reported in GET_CAPABILITIES and CAPABILITIES

messages.

This timing parameter shall be the maximum amount of time the

endpoint has to provide any response requiring cryptographic

processing, such as the GET_MEASUREMENTS or CHALLENGE request

messages.

T2 Requester RTT+CT µs

Shall be the minimum amount of time the Requester shall wait before

issuing a retry for requests that require cryptographic processing.

For details, see CT .

RDT Responder 2 RDTExponent µs

Recommended delay, in microseconds that the Responder needs to

complete the requested cryptographic operation. When the

Responder cannot complete cryptographic processing response

within the CT time, it shall provide RDTExponent as part of the

ERROR response. See the ResponseNotReady extended error data

table for the RDTExponent value.

For details, see ErrorCode=ResponseNotReady in the

ResponseNotReady extended error data table.

WT Requester RDT µs

Amount of time that the Requester should wait before issuing the

RESPOND_IF_READY request message.

The Requester shall measure this time parameter from the reception

of the ERROR response to the transmission of RESPOND_IF_READY

request. The Requester can include the transmission time of the

ERROR from the Responder to Requester as time spent waiting for

WT to expire. For example, if a Responder indicates WT is two

seconds and the ERROR response takes one second to transport to

the Requester, the Requester only needs to wait an additional one

second upon reception of the ERROR response.

For details, see RDT .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 31

Timing

parameter
Ownership Value Units Description

WT Max Requester
(RDT*RDTM)-

RTT
µs

Maximum wait time the Requester has to issue RESPOND_IF_READY

request unless the Requester issued a successful

RESPOND_IF_READY request message earlier.

After this time the Responder is allowed to drop the response. The

Requester shall take into account the transmission time of the

ERROR from the Responder to Requester when calculating WT Max .

The RDTM value appears in the ResponseNotReady extended error

data.

The Responder should ensure that WT Max does not result in less

than WT in determination of RDTM .

For details, see ErrorCode=ResponseNotReady in the

ResponseNotReady extended error data table.

HeartbeatPeriod Requester and Responder Variable s
See HEARTBEAT request and HEARTBEAT_ACK response for

detail.

Security Protocol and Data Model (SPDM) Specification DSP0274

32 Published Version 1.1.2

142 10 SPDM messages

143 SPDM messages can be divided into the following categories, supporting different aspects of security exchanges

between a Requester and Responder:

• Capability discovery and negotiation

• Responder identity authentication

• Firmware measurements

• Key agreement for secure channel establishment

144 10.1 Capability discovery and negotiation

145 All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS .

146 The Capability discovery and negotiation flow shows the high-level request-response flow and sequence for the

capability discovery and negotiation:

147 Capability discovery and negotiation flow

148

Selected
cryptographic
algorithm set

Supported
cryptographic
algorithm set

ResponderRequester

1. The Requester sends a
GET_VERSION request
message.

2. The Requester sends a
GET_CAPABILITIES request
message.

3. Determine device capability
and feature support.

4. The Requester sends a
NEGOTIATE_ALGORITHMS
request message to advertise
the supported algorithms.

5. The Requester uses the
selected cryptographic
algorithm set for all following
exchanges, until the next
GET_VERSION or the next
reset.

1. The Responder
sends a VERSION
response message.

2. The Responder
sends a
CAPABILITIES
response message.

3. The Responder
selects the algorithm
set and sends a
ALGORITHMS
response message.

Measurement
support,

authentication
support,

timeout, etc.

NEGOTIATE_ALGORITHMS

GET_CAPABILITIES

CAPABILITIES

GET_VERSION

VERSION

ALGORITHMS

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 33

149 10.2 GET_VERSION request and VERSION response messages

150 This request message shall retrieve the SPDM version of an endpoint. The GET_VERSION request message format

table shows the GET_VERSION request message format and the Successful VERSION response message format

table shows the VERSION response message format.

151 In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with

all earlier versions.

152 The Requester shall begin the discovery process by sending a GET_VERSION request message with major version

0x1 . All Responders shall always support the GET_VERSION request message with major version 0x1 and provide

a VERSION response containing all supported versions, as the GET_VERSION request message format table

describes.

153 The Requester shall consult the VERSION response to select a common supported version, which is typically the

latest supported common version. The Requester shall use the selected version in all future communication of other

requests. A Requester shall not issue other requests until it receives a successful VERSION response and identifies

a common version that both sides support. A Responder shall not respond to the GET_VERSION request message

with ErrorCode=ResponseNotReady .

154 A Requester can issue a GET_VERSION request message to a Responder at any time, which is as an exception to

Requirements for Requesters to allow for scenarios where a Requester shall restart the protocol due to an internal

error or reset.

155 After receiving a GET_VERSION request, the Responder shall cancel all previous requests from the same Requester.

All active sessions between the Requester and the Responder are terminated, i.e., information (such as session

keys, session IDs) for those sessions should not be used anymore. Additionally, this message shall clear or reset the

previously Negotiated State, if any, in both the Requester and its corresponding Responder.

156 All Responders that have completed a firmware update shall either respond with ErrorCode=RequestResynch to any

request until a GET_VERSION request is received or silently discard the request.

157 Discovering the common major version

Security Protocol and Data Model (SPDM) Specification DSP0274

34 Published Version 1.1.2

158

ResponderRequester

GET_VERSION (version=1.0)

VERSION (6.4, 6.3, 6.2, 6.1)

Request version always
uses version = 1.0

Supports versions 6.4,
6.3, 6.2, 6.1

GET_CAPABILITIES (version=6.3)

CAPABILITIES

Supports versions 7.1, 7.0, 6.3,
6.2, 6.1, 6.0

Version information
response

Settle on version 6.3

NEGOTIATE_ALGORITHMS (Version = 6.3)

ALGORITHMS ()

159 GET_VERSION request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x84=GET_VERSION

2 Param1 1 Reserved.

3 Param2 1 Reserved.

160 Successful VERSION response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x04=VERSION

2 Param1 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 35

Offset Field Size (bytes) Value

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 VersionNumberEntryCount 1 Number of version entries present in this table (=n).

6 VersionNumberEntry1:<n> 2*n 16-bit version entry. See the VersionNumberEntry definition table.

161 VersionNumberEntry definition

Bit Field Value

[15:12] MajorVersion
Version of the specification with changes that are incompatible with one or more functions in earlier

major versions of the specification.

[11:8] MinorVersion
Version of the specification with changes that are compatible with functions in earlier minor versions of

this major version specification.

[7:4] UpdateVersionNumber
Version of the specification with editorial updates but no functionality additions or changes.

Informational; possible errata fixes. Ignore when checking versions for interoperability.

[3:0] Alpha

Pre-release work-in-progress version of the specification. Backward compatible with earlier minor

versions of this major version specification. However, because the Alpha value represents an in-

development version of the specification, versions that share the same major and minor version

numbers but have different Alpha versions may not be fully interoperable. Released versions shall

have an Alpha value of zero (0).

162 10.3 GET_CAPABILITIES request and CAPABILITIES response

messages

163 This request message shall retrieve the SPDM capabilities of an endpoint.

164 The GET_CAPABILITIES request message format table shows the GET_CAPABILITIES request message format.

165 The Successful CAPABILITIES response message format table shows the CAPABILITIES response message

format.

166 The Requester flag fields definitions table shows the flag fields definitions for the Requester.

167 Likewise, the Responder flag fields definitions table shows the flag fields definitions for the Responder.

168 A Responder shall not respond to GET_CAPABILITIES request message with ErrorCode=ResponseNotReady .

Security Protocol and Data Model (SPDM) Specification DSP0274

36 Published Version 1.1.2

169 GET_CAPABILITIES request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE1=GET_CAPABILITIES

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be exponent of base 2, which is used to calculate CT .

See the Timing specification for SPDM messages table.

The equation for CT shall be 2 CTExponent microseconds (µs).

For example, if CTExponent is 10 , CT is 2 10 =1024 µs .

6 Reserved 2 Reserved.

8 Flags 4 See the Requester flag fields definitions table.

170 Successful CAPABILITIES response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x61=CAPABILITIES

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be the exponent of base 2, which used to calculate CT .

See the Timing specification for SPDM messages table.

The equation for CT shall be 2 CTExponent microseconds (µs).

For example, if CTExponent is 10 , CT is 2 10 =1024 µs .

6 Reserved 2 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 37

Offset Field Size (bytes) Value

8 Flags 4 See the Responder flag fields definitions table.

171 Requester flag fields definitions

172 Unless otherwise stated, if a Requester indicates support of a capability associated with an SPDM request or

response message, it means the Requester can receive the corresponding request and produce a successful

response. In other words, the Requester is acting as a Responder to that SPDM request associated with that

capability. For example, if a Requester sets CERT_CAP bit to 1 , the Requester can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

Byte Bit Field Value

0 0 Reserved Reserved.

0 1 CERT_CAP If set, Requester supports DIGESTS and CERTIFICATE response messages.

0 2 CHAL_CAP If set, Requester supports CHALLENGE_AUTH response message.

0 4:3 MEAS_CAP
The corresponding bits of the Responder flag fields definitions indicate MEASUREMENT

response capabilities. These bits shall be set to 00b .

0 5 MEAS_FRESH_CAP
The corresponding bit of the Responder flag fields definitions indicate MEASUREMENT response

capabilities. This bit shall be set to 0b .

0 6 ENCRYPT_CAP

If set, Requester supports message encryption in a secure session. If set, when the

Requester chooses to start a secure session, the Requester shall send one of the Session-

Secrets-Exchange request messages supported by the Responder. This capability applies to

all phases of a secure session.

0 7 MAC_CAP

If set, Requester supports message authentication in a secure session. If set, when the

Requester chooses to start a secure session, the Requester shall send one of the Session-

Secrets-Exchange request messages supported by the Responder. This capability applies to

all phases of a secure session. MAC_CAP is not the same as the HMAC in the

RequesterVerifyData or ResponderVerifyData fields of Session-Secrets-Exchange and

Session-Secrets-Finish messages.

1 0 MUT_AUTH_CAP If set, Requester supports mutual authentication.

1 1 KEY_EX_CAP
If set, Requester supports KEY_EXCHANGE messages. If set, one or more of ENCRYPT_CAP and

MAC_CAP shall be set.

Security Protocol and Data Model (SPDM) Specification DSP0274

38 Published Version 1.1.2

Byte Bit Field Value

1 3:2 PSK_CAP

Pre-shared key capabilities of the Requester.

00b . Requester does not support pre-shared key capabilities.

01b . Requester supports pre-shared key

10b and 11b . Reserved.

If supported, one or more of ENCRYPT_CAP and MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Requester supports GET_ENCAPSULATED_REQUEST , ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and ENCAPSULATED_RESPONSE_ACK messages. If mutual

authentication is supported, this field shall be set.

1 5 HBEAT_CAP If set, Requester supports HEARTBEAT messages.

1 6 KEY_UPD_CAP If set, Requester supports KEY_UPDATE messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Requester can support a Responder that can only send and receive all SPDM

messages exchanged during the Session Handshake Phase in the clear (such as without

encryption and message authentication). Application data is encrypted and/or authenticated

using the negotiated cryptographic algorithms as normal. Setting this bit leads to changes in

the contents of certain SPDM messages, discussed in other parts of this specification.

If this bit is cleared, the Requester signals that it requires encryption and/or message

authentication of SPDM messages exchanged during the Session Handshake Phase.

If the Requester does not support encryption and message authentication, then this bit shall

be zero.

In other words, this bit indicates whether message authentication and/or encryption (

MAC_CAP and ENCRYPT_CAP) are used in the handshake phase of a secure session.

2 0 PUB_KEY_ID_CAP

If set, the public key of the Requester was provisioned to the Responder. The transport layer

is responsible for identifying the Responder. In this case, the CERT_CAP of the Requester

shall be 0 .

2 7:1 Reserved Reserved.

3 7:0 Reserved Reserved.

173 Responder flag fields definitions

174 Unless otherwise stated, if a Responder indicates support of a capability associated with an SPDM request or

response message, it means the Responder can receive the corresponding request and produce a successful

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 39

response. For example, if a Responder sets CERT_CAP bit to 1 , the Responder can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

Byte Bit Field Value

0 0 CACHE_CAP

If set, the Responder supports the ability to cache the Negotiated State across a reset. This

allows the Requester to skip reissuing the GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS requests after a reset. The Responder shall cache the selected

cryptographic algorithms as one of the parameters of the Negotiated State. If the Requester

chooses to skip issuing these requests after the reset, the Requester shall also cache the

same selected cryptographic algorithms.

0 1 CERT_CAP If set, Responder supports DIGESTS and CERTIFICATE response messages.

0 2 CHAL_CAP If set, Responder supports CHALLENGE_AUTH response message.

0 4:3 MEAS_CAP

MEASUREMENT response capabilities of the Responder.

00b . The Responder does not support MEASUREMENTS response capabilities.

01b . The Responder supports MEASUREMENTS response but cannot perform signature

generation.

10b . The Responder supports MEASUREMENTS response and can generate signatures.

11b . Reserved.

0 5 MEAS_FRESH_CAP

0 . As part of MEASUREMENTS response message, the Responder may return MEASUREMENTS

that were computed during the last Responder’s reset.

1 . The Responder supports recomputing all MEASUREMENTS without requiring a reset or

restart, and shall always return fresh MEASUREMENTS as part of MEASUREMENTS response

message.

0 6 ENCRYPT_CAP

If set, Responder supports message encryption in a secure session. If set, one or more of

PSK_CAP or KEY_EX_CAP fields shall be specified accordingly to indicate support. This

capability applies to all phases of a secure session.

0 7 MAC_CAP

If set, Responder supports message authentication in a secure session. If set, one or more of

PSK_CAP or KEY_EX_CAP fields shall be specified accordingly to indicate support. This

capability applies to all phases of a secure session. MAC_CAP is not the same as the HMAC in

the RequesterVerifyData or ResponderVerifyData fields of Session-Secrets-Exchange

and Session-Secrets-Finish messages.

1 0 MUT_AUTH_CAP If set, Responder supports mutual authentication.

1 1 KEY_EX_CAP
If set, Responder supports KEY_EXCHANGE messages. If set, one or more of ENCRYPT_CAP

and MAC_CAP shall be set.

Security Protocol and Data Model (SPDM) Specification DSP0274

40 Published Version 1.1.2

Byte Bit Field Value

1 3:2 PSK_CAP

Pre-Shared Key capabilities of the Responder.

00b . Responder does not support Pre-Shared Key capabilities.

01b . Responder supports Pre-Shared Key but does not provide ResponderContext for

session key derivation.

10b . Responder supports Pre-Shared Key and provides ResponderContext for session key

derivation.

11b . Reserved.

If supported, one or more of ENCRYPT_CAP and MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Responder supports GET_ENCAPSULATED_REQUEST , ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and ENCAPSULATED_RESPONSE_ACK messages. If mutual

authentication is supported, this field shall be set.

1 5 HBEAT_CAP If set, Responder supports HEARTBEAT messages.

1 6 KEY_UPD_CAP If set, Responder supports KEY_UPDATE messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Responder can only send and receive messages without encryption and message

authentication during the Session Handshake Phase. If set, KEY_EX_CAP shall also be set.

Setting this bit leads to changes in the contents of certain SPDM messages, discussed in

other parts of this specification.

If the Responder does not support encryption and message authentication, then this bit shall

be zero.

In other words, this bit indicates whether message authentication and/or encryption (

MAC_CAP and ENCRYPT_CAP) are used in the handshake phase of a secure session.

2 0 PUB_KEY_ID_CAP

If set, the public key of the Responder was provisioned to the Requester. The transport layer

is responsible for identifying the Requester. In this case, CERT_CAP of the Responder shall be

0 .

2 7:1 Reserved Reserved.

3 7:0 Reserved Reserved.

175 10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response

messages

176 This request message shall negotiate cryptographic algorithms. A Requester shall not issue a

NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES response message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 41

177 A Requester shall not issue any other SPDM requests, with the exception of GET_VERSION until it receives a

successful ALGORITHMS response message.

178 A Responder shall not respond to NEGOTIATE_ALGORITHMS request message with ErrorCode=ResponseNotReady .

179 The NEGOTIATE_ALGORITHMS request message format table shows the NEGOTIATE_ALGORITHMS request

message format.

180 The Successful ALGORITHMS response message format table shows the ALGORITHMS response message format.

181 NEGOTIATE_ALGORITHMS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE3=NEGOTIATE_ALGORITHMS

2 Param1 1 Number of algorithms structure tables in this request using ReqAlgStruct

3 Param2 1 Reserved

4 Length 2
Length of the entire request message, in bytes. Length shall be less than or equal to 128

bytes.

6 MeasurementSpecification 1

Bit mask. The measurement specification is used in the MEASUREMENTS response.

Requester can set all available algorithms defined in the measurement specification

format. The Requester can set zero bits if MEASUREMENTS are not supported.

Bit 0: This bit shall indicate support for the DMTF-defined measurement specification.

See DMTF specification for the Measurement field of a measurement block clauses for

details.

7 Reserved 1 Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

42 Published Version 1.1.2

Offset Field Size (bytes) Value

8 BaseAsymAlgo 4

Bit mask listing Requester-supported SPDM-enumerated asymmetric key signature

algorithms for the purpose of signature verification. If the capabilities do not support this

algorithm, this value is not used and shall be set to zero. Let S be the size of the

signature in bytes. If the size of a signature component is less than specified size, then

0x00 octets are padded to the left of the most significant byte.

Byte 0 Bit 0. TPM_ALG_RSASSA_2048 where S=256.

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048 where S=256.

Byte 0 Bit 2. TPM_ALG_RSASSA_3072 where S=384.

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072 where S=384.

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256 where S=64 (32-byte r followed by

32-byte s).

Byte 0 Bit 5. TPM_ALG_RSASSA_4096 where S=512.

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096 where S=512.

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384 where S=96 (48-byte r followed by

48-byte s).

Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521 where S=132 (66-byte r followed by

66-byte s).

All other values reserved.

12 BaseHashAlgo 4

Bit mask listing Requester-supported SPDM-enumerated cryptographic hashing

algorithms. If the capabilities do not support this algorithm, this value is not used and

shall be set to zero.

Byte 0 Bit 0. TPM_ALG_SHA_256

Byte 0 Bit 1. TPM_ALG_SHA_384

Byte 0 Bit 2. TPM_ALG_SHA_512

Byte 0 Bit 3. TPM_ALG_SHA3_256

Byte 0 Bit 4. TPM_ALG_SHA3_384

Byte 0 Bit 5. TPM_ALG_SHA3_512

All other values reserved.

16 Reserved 12 Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 43

Offset Field Size (bytes) Value

28 ExtAsymCount 1

Number of Requester-supported extended asymmetric key signature algorithms (=A) for

the purpose of signature verification. A + E + ExtAlgCount2 + ExtAlgCount3 +

ExtAlgCount4 + ExtAlgCount5 shall be less than or equal to 20. If the capabilities do not

support this algorithm, this value is not used and shall be set to zero.

29 ExtHashCount 1

Number of Requester-supported extended hashing algorithms (=E). A + E +

ExtAlgCount2 + ExtAlgCount3 + ExtAlgCount4 + ExtAlgCount5 shall be less than or

equal to 20. If the capabilities do not support this algorithm, this value is not used and

shall be set to zero.

30 Reserved 2 Reserved

32 ExtAsym 4*A

List of Requester-supported extended asymmetric key signature algorithms for the

purpose of signature verification. The Extended algorithm field format table describes the

format of this field.

32 +

4*A
ExtHash 4*E

List of the extended hashing algorithms supported by Requester. The Extended

algorithm field format table describes the format of this field.

32 +

4*A +

4*E

ReqAlgStruct AlgStructSize See the AlgStructure request field.

182 AlgStructSize is the sum of the size of the following algorithm structure tables. The algorithm structure table shall

be present only if the Requester supports that AlgType . AlgType shall monotonically increase for subsequent

entries.

183 Algorithm request structure

Offset Field Size (bytes) Value

0 AlgType 1

Type of algorithm.

[1:0] = Reserved

2 = DHE

3 = AEADCipherSuite

4 = ReqBaseAsymAlg

5 = KeySchedule

All other values reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

44 Published Version 1.1.2

Offset Field Size (bytes) Value

1 AlgCount 1

Requester supported fixed algorithms.

Bit [7:4]. Number of Bytes required to describe Requester supported SPDM-enumerated

fixed algorithms (= FixedAlgCount). FixedAlgCount + 2 shall be a multiple of 4

Bit [3:0] Number of Requester supported extended algorithms (= ExtAlgCount).

2 AlgSupported FixedAlgCount Bit mask listing Requester-supported SPDM-enumerated algorithms.

2 +

FixedAlgCount
AlgExternal 4*ExtAlgCount

List of Requester-supported extended algorithms. The Extended algorithm field format

table describes the format of this field.

184 The following tables describe the associated fixed fields for the individual types.

185 DHE structure

Offset Field Size (bytes) Value

0 AlgType 1 0x2=DHE

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-supported extended DHE groups (= ExtAlgCount2).

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated Diffie-Hellman Ephemeral (DHE)

groups. Values in parentheses specify the size of the corresponding public values associated with

each group.

Byte 0 Bit 0. ffdhe2048 (D = 256)

Byte 0 Bit 1. ffdhe3072 (D = 384)

Byte 0 Bit 2. ffdhe4096 (D = 512)

Byte 0 Bit 3. secp256r1 (D = 64, C = 32)

Byte 0 Bit 4. secp384r1 (D = 96, C = 48)

Byte 0 Bit 5. secp521r1 (D = 132, C = 66)

All other values reserved.

4 AlgExternal 4*ExtAlgCount2
List of Requester-supported extended DHE groups. The Extended algorithm field format table

describes the format of this field.

186 AEAD structure

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 45

Offset Field Size (bytes) Value

0 AlgType 1 0x3=AEAD

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester supported extended AEAD algorithms (= ExtAlgCount3).

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated AEAD algorithms.

Byte 0 Bit 0. AES-128-GCM. 128-bit key; 96-bit IV (initialization vector); tag size is specified by

transport layer.

Byte 0 Bit 1. AES-256-GCM. 256-bit key; 96-bit IV; tag size is specified by transport layer.

Byte 0 Bit 2. CHACHA20_POLY1305. 256-bit key; 96-bit IV; 128-bit tag.

All other values reserved.

4 AlgExternal 4*ExtAlgCount3
List of Requester-supported extended AEAD algorithms. The Extended algorithm field format

table describes the format of this field.

187 ReqBaseAsymAlg structure

Offset Field Size (bytes) Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester supported extended asymmetric key signature algorithms for the

purpose of signature generation.(= ExtAlgCount4).

Security Protocol and Data Model (SPDM) Specification DSP0274

46 Published Version 1.1.2

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated asymmetric key signature algorithms for

the purposes of signature generation.

Byte 0 Bit 0. TPM_ALG_RSASSA_2048

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

Byte 0 Bit 2. TPM_ALG_RSASSA_3072

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5. TPM_ALG_RSASSA_4096

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

4 AlgExternal 4*ExtAlgCount4
List of Requester-supported extended asymmetric key signature algorithms for the purpose of

signature generation. The Extended algorithm field format table describes the format of this field.

188 KeySchedule structure

Offset Field Size (bytes) Value

0 AlgType 1 0x5=KeySchedule

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester supported extended key schedule algorithms (= ExtAlgCount5).

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated Key Schedule algorithms.

Byte 0 Bit 0. SPDM Key Schedule.

All other values reserved.

4 AlgExternal 4*ExtAlgCount5
List of Requester-supported extended key schedule algorithms. The Extended algorithm field

format table describes the format of this field.

189 Successful ALGORITHMS response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 47

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x63=ALGORITHMS

2 Param1 1 Number of algorithms structure tables in this request using RespAlgStruct

3 Param2 1 Reserved

4 Length 2 Length of the response message, in bytes.

6 MeasurementSpecificationSel 1

Bit mask. The Responder shall select one of the measurement

specifications supported by the Requester and Responder. Thus, no more

than one bit shall be set. The MeasurementSpecification field in

NEGOTIATE_ALGORITHMS defines the format of this field.

7 Reserved 1 Reserved

8 MeasurementHashAlgo 4

Bit mask indicating the SPDM-enumerated hashing algorithm selected for

measurements.

Bit 0. Raw Bit Stream Only

Bit 1. TPM_ALG_SHA_256

Bit 2. TPM_ALG_SHA_384

Bit 3. TPM_ALG_SHA_512

Bit 4. TPM_ALG_SHA3_256

Bit 5. TPM_ALG_SHA3_384

Bit 6. TPM_ALG_SHA3_512

If the Responder supports GET_MEASUREMENTS , exactly one bit in this bit

field shall be set. Otherwise, the Responder shall set this field to 0 .

A Responder shall only select bit 0 if the Responder supports raw bit

streams as the only form of measurement; otherwise, it shall select one of

the other bits.

12 BaseAsymSel 4

Bit mask indicating the SPDM-enumerated asymmetric key signature

algorithm selected for the purpose of signature generation. If the

capabilities do not support this algorithm, this value is not used and shall

be set to zero. The Responder shall set no more than one bit.

16 BaseHashSel 4

Bit mask indicating the SPDM-enumerated hashing algorithm selected. If

the capabilities do not support this algorithm, this value is not used and

shall be set to zero. The Responder shall set no more than one bit.

Security Protocol and Data Model (SPDM) Specification DSP0274

48 Published Version 1.1.2

Offset Field Size (bytes) Value

20 Reserved 12 Reserved

32 ExtAsymSelCount 1

Number of extended asymmetric key signature algorithms selected for the

purpose of signature generation. Shall be either 0 or 1 (=A'). If the

capabilities do not support this algorithm, this value is not used and shall

be set to zero.

33 ExtHashSelCount 1

The number of extended hashing algorithms selected. Shall be either 0

or 1 (=E'). If the capabilities do not support this algorithm, this value is

not used and shall be set to zero.

34 Reserved 2 Reserved.

36 ExtAsymSel 4*A'

The extended asymmetric key signature algorithm selected for the

purpose of signature generation. The Responder shall use this

asymmetric signature algorithm for all subsequent applicable response

messages to the Requester. The Extended algorithm field format table

describes the format of this field.

36+4*A' ExtHashSel 4*E'

Extended hashing algorithm selected. The Responder shall use this

hashing algorithm during all subsequent response messages to the

Requester. The Requester shall use this hashing algorithm during all

subsequent applicable request messages to the Responder. The

Extended algorithm field format table describes the format of this field.

36+4*A'+4*E' RespAlgStruct AlgStructSize See Response AlgStructure field format

190 AlgStructSize is the sum of the size of all Algorithm structure tables, as the following tables show. The algorithm

structure table need be present only if the responder supports that AlgType . AlgType shall monotonically increase

for subsequent entries.

191 Response AlgStructure field format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 49

Offset Field Size (bytes) Value

0 AlgType 1

Type of algorithm.

[1:0] = Reserved

2 = DHE

3 = AEADCipherSuite

4 = ReqBaseAsymAlg

5 = KeySchedule

All other values reserved.

1 AlgCount 1

Bit mask listing Responder supported fixed algorithm requested by the Requester.

Bit [7:4]. Number of Bytes required to describe Requester supported SPDM-enumerated

fixed algorithms (= FixedAlgCount). FixedAlgCount + 2 shall be a multiple of 4

Bit [3:0] Number of Requester-supported, Responder-selected, extended algorithms (=

ExtAlgCount'). This value shall be either 0 or 1.

2 AlgSupported FixedAlgCount
Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated

algorithm. Responder shall set at most one bit to 1.

2 +

FixedAlgCount
AlgExternal 4*ExtAlgCount'

If present: a Requester-supported, Responder-selected, extended algorithm. Responder

shall select at most one external algorithm. The Extended algorithm field format table

describes the format of this field.

192 The tables for each of the individual type with the associated fixed fields are described below.

193 DHE structure

Offset Field Size (bytes) Value

0 AlgType 1 0x2=DHE

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-supported, Responder-selected, extended DHE groups (=

ExtAlgCount2'). This value shall be either 0 or 1.

Security Protocol and Data Model (SPDM) Specification DSP0274

50 Published Version 1.1.2

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated DHE

group. Values in parentheses specify the size of the corresponding public values associated with

each group.

Byte 0 Bit 0. ffdhe2048 (D = 256)

Byte 0 Bit 1. ffdhe3072 (D = 384)

Byte 0 Bit 2. ffdhe4096 (D = 512)

Byte 0 Bit 3. secp256r1 (D = 64, C = 32)

Byte 0 Bit 4. secp384r1 (D = 96, C = 48)

Byte 0 Bit 5. secp521r1 (D = 132, C = 66)

All other values reserved.

4 AlgExternal 4*ExtAlgCount2'
If present: a Requester-supported, Responder-selected, extended DHE algorithm. The Extended

algorithm field format table describes the format of this field.

194 AEAD structure

Offset Field Size (bytes) Value

0 AlgType 1 0x3=AEAD

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-supported, Responder-selected, extended AEAD algorithms (=

ExtAlgCount3'). This value shall be either 0 or 1.

2 AlgSupported 2

Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated AEAD

algorithm.

Byte 0 Bit 0. AES-128-GCM

Byte 0 Bit 1. AES-256-GCM

Byte 0 Bit 2. CHACHA20_POLY1305

All other values reserved.

4 AlgExternal 4*ExtAlgCount3'
If present: a Requester-supported, Responder-selected, extended AEAD algorithm. The

Extended algorithm field format table describes the format of this field.

195 ReqBaseAsymAlg structure

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 51

Offset Field Size (bytes) Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-supported, Responder-selected, extended asymmetric key

signature algorithms (= ExtAlgCount4') for the purpose of signature verification. This value shall

be either 0 or 1.

2 AlgSupported 2

Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated

asymmetric key signature algorithm for the purposes of signature verification.

Byte 0 Bit 0. TPM_ALG_RSASSA_2048

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

Byte 0 Bit 2. TPM_ALG_RSASSA_3072

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5. TPM_ALG_RSASSA_4096

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

4 AlgExternal 4*ExtAlgCount4'

If present: a Requester-supported, Responder-selected, extended asymmetric key signature

algorithm for the purpose of signature verification. The Extended algorithm field format table

describes the format of this field.

196 KeySchedule structure

Offset Field Size (bytes) Value

0 AlgType 1 0x5=KeySchedule

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] Number of Requester-supported, Responder-selected, extended key schedule

algorithms (= ExtAlgCount5'). This value shall be either 0 or 1.

Security Protocol and Data Model (SPDM) Specification DSP0274

52 Published Version 1.1.2

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask for indicating a Requester-supported, Responder-selected, SPDM-enumerated Key

Schedule algorithm.

Byte 0 Bit 0. SPDM Key Schedule.

All other values reserved.

4 AlgExternal 4*ExtAlgCount5'
If present: a Requester-supported, Responder-selected, extended key schedule algorithm. The

Extended algorithm field format table describes the format of this field.

197 Extended Algorithm field format

198 Describes algorithms that are external to this specification.

Offset Field Description

0
Registry

ID

Shall represent the registry or standards body. The ID column in the Registry or standards body ID table describes the

value of this field.

1 Reserved Reserved

[2:3]
Algorithm

ID

Shall indicate the desired algorithm. The registry or standards body owns the value of this field. For details, see the

Registry or standards body ID table.

199 For each algorithm type, a Responder shall not select both a SPDM-enumerated algorithm and an extended

algorithm.

200 Hashing algorithm selection: Example 1 illustrates how two endpoints negotiate a base hashing algorithm.

201 In Hashing algorithm selection: Example 1, endpoint A issues NEGOTIATE_ALGORITHMS request message and

endpoint B selects an algorithm of which both endpoints are capable.

202 Hashing algorithm selection: Example 1

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 53

203

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384)

ALGORITHMS (SHA-384)

If supported

CHALLENGE (256-bit Nonce)

CHALLENGE_AUTH (384-bit CertChainHash,
and MeasurementSummaryHash, 256-bit Nonce)

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

Supports SHA-384

and SHA3-384
Supports SHA-256

and SHA-384

Select SHA-384
Agree on SHA-384

returns SHA-384 digest

204 The SPDM protocol accounts for the possibility that both endpoints may issue NEGOTIATE_ALGORITHMS request

messages independently of each other. In this case, the endpoint A Requester and endpoint B Responder

communication pair may select a different algorithm compared to the endpoint B Requester and endpoint A

Responder communication pair.

205 10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS

206 With the successful completion of the ALGORITHMS message, all of the parameters for further SPDM message

exchanges between the same pair of Requester and Responder have been determined. Thus, all SPDM message

exchanges after the VERSION , CAPABILITIES AND ALGORITHMS messages shall comply with the selected

parameters in ALGORITHMS , with the exception of GET_VERSION and VERSION messages, or unless otherwise

stated in this specification. To explain this behavior, suppose a Responder supports both RSA and ECDSA

asymmetric algorithms. The Responder selects the TPM_ALG_RSASSA_2048 asymmetric algorithm in BaseAsymSel

Security Protocol and Data Model (SPDM) Specification DSP0274

54 Published Version 1.1.2

and the TPM_ALG_SHA_256 hash algorithm in BaseHashSel . If the corresponding Requester issues a GET_DIGESTS ,

the Responder returns TPM_ALG_SHA_256 digests only for those populated slots that can provide a

TPM_ALG_RSASSA_2048 signature for a CHALLENGE_AUTH response. The Responder would violate this requirement if

the Responder returns one or more digests of populated slots that perform ECDSA signatures or uses a different

hash algorithm.

207 Unless otherwise stated in this specification and with the exception of GET_VERSION , if a Requester issues a request

that violates one or more of the negotiated or selected parameters, the corresponding Responder shall either silently

discard the request or return an ERROR message with an appropriate error code.

208 10.5 Responder identity authentication

209 This clause describes request messages and response messages associated with the identity of the Responder

authentication operations. The GET_DIGESTS and GET_CERTIFICATE messages shall be supported by a

Responder that returns CERT_CAP =1 in the CAPABILITIES response message. The CHALLENGE message defined

in this clause shall be supported by a Responder that returns CHAL_CAP =1 in the CAPABILITIES response message.

The GET_DIGESTS and GET_CERTIFICATE messages are not applicable if the public key of the Responder was

provisioned to the Requester in a trusted environment.

210 The Responder authentication: Example certificate retrieval flow shows the high-level request-response message

flow and sequence for certificate retrieval.

211 Responder authentication: Example certificate retrieval flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 55

212

RootCert

…

VendorCert

…

ModelCert

DeviceCert

SHA384Slot0

…

SHA384Slot3

…

SHA384Slotn-2

SHA384Slotn-1

Offset (0)
Length (0x2000H)

ResponderRequester

1. The requester sends a GET_DIGESTS
request message. 1. The responder sends a DIGESTS

message.

2.For each received
GET_CERTIFICATE request, the
responder verifies that Offset is
within the certificate chain and then
sends the CERTIFICATE response
message based on the requested
Length. If the actual CERTIFICATE
chain length is less than or equal to
the requested Length (e.g. 1076
bytes), the Responder returns entire
certificate and a RemainderLength 0.

2. Compare digests in DIGESTS response
message to cached digests. Continue if
no match is found.

3. The requester sends a
GET_CERTIFICATE request

4. Verify validity of the signatures of each
certificate (X.509 containing the public
key) in the certificate chain against the
root certificate, then proceed to the
challenge-response.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE (1076, 0)

If necessary

RootCert

213 The GET_DIGESTS request message and DIGESTS response message may optimize the amount of data required to

be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of each of the certificate chains stored on an endpoint is returned with the DIGESTS

response message, such that the Requester can cache the previously retrieved certificate chain hash values to

detect any change to the certificate chains stored on the device before issuing the GET_CERTIFICATE request

message.

214 For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload

shall be signed by using the device private key over the hash of the message transcript. See the Request ordering

and message transcript computation rules for M1/M2 table.

215 This ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder and enables the Requester to detect the presence of an active

adversary attempting to downgrade cryptographic algorithms or SPDM versions.

216 Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a

Security Protocol and Data Model (SPDM) Specification DSP0274

56 Published Version 1.1.2

Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates.

The message transcript generation for the signature computation is restarted with the latest GET_VERSION request

received.

217 10.6 Requester identity authentication

218 If the Requester supports mutual authentication, the requirements placed on the Responder in Responder identity

authentication shall also apply to the Requester.

219 If the Responder supports mutual authentication, the requirements placed on the Requester in Responder identity

authentication shall also apply to the Responder. These two statements essentially describe a role reversal.

220 10.6.1 Certificates and certificate chains

221 Each SPDM endpoint that supports identity authentication using certificates shall carry at least one certificate chain.

A certificate chain contains an ordered list of certificates, presented as the binary (byte) concatenation of the fields

that the Certificate chain format shows.

222 Each certificate shall be in ASN.1 DER-encoded X.509 v3 format. The ASN.1 DER encoding of each individual

certificate can be analyzed to determine its length. The minimum number of certificates within a chain shall be one, in

which case the single certificate is the device-specific certificate. The SPDM endpoint shall contain a single public-

private key pair per supported algorithm for its hardware identity, regardless of how many certificate chains are

stored on the device. The Responder selects a single asymmetric key signature algorithm per Requester.

223 Certificate chains are stored in locations called slots. Each slot shall either be empty or contain one complete

certificate chain. A device shall not contain more than eight slots. Slot 0 is populated by default. Additional slots may

be populated through the supply chain such as by a platform integrator or by an end user such as the IT

administrator. A slot mask identifies the certificate chains from the eight slots.

224 In this document, H refers to the output size, in bytes, of the hash algorithm agreed upon in

NEGOTIATE_ALGORITHMS .

225 Certificate chain format

Offset Field Size Description

0 Length 2 Total length of the certificate chain, in bytes, including all fields in this table. This field is little endian.

2 Reserved 2 Reserved.

4 RootHash H
Digest of the Root Certificate. Note that Root Certificate is ASN.1 DER-encoded for this digest. This field

shall be big endian.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 57

Offset Field Size Description

4 + H Certificates

Length

- (4 +

H)

One or more ASN.1 DER-encoded X.509 v3 certificates where the first certificate is signed by the Root

Certificate or is the Root Certificate itself and each subsequent certificate is signed by the preceding

certificate. The last certificate is the leaf certificate. This field shall be big endian.

226 10.7 GET_DIGESTS request and DIGESTS response messages

227 This request message shall be used to retrieve the certificate chain digests.

228 The GET_DIGESTS request message format table shows the GET_DIGESTS request message format.

229 The Successful DIGESTS response message table shows the DIGESTS response message format.

230 The digests in the Successful DIGESTS response message table shall be big endian, and the digest shall be

computed over the certificate chain as shown in Certificate chain format.

231 GET_DIGESTS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x81=GET_DIGESTS

2 Param1 1 Reserved

3 Param2 1 Reserved

232 Successful DIGESTS response message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x01=DIGESTS

2 Param1 1 Reserved

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and only if slot number K contains

a certificate chain for the protocol version in the SPDMVersion field. (Bit 0 is the least significant

bit of the byte.) The number of digests returned shall be equal to the number of bits set in this

byte. The digests shall be returned in order of increasing slot number.

Security Protocol and Data Model (SPDM) Specification DSP0274

58 Published Version 1.1.2

Offset Field
Size

(bytes)
Value

4 Digest[0] H Digest of the first certificate chain.

...

4 + (H

* (n

-1))

Digest[n-1] H Digest of the last (nth) certificate chain.

233 10.8 GET_CERTIFICATE request and CERTIFICATE response messages

234 This request message shall retrieve the certificate chains.

235 The GET_CERTIFICATE request message format table shows the GET_CERTIFICATE request message format.

236 The Successful CERTIFICATE response message table shows the CERTIFICATE response message format.

237 The Requester should, at a minimum, save the public key of the leaf certificate and associate it with each of the

digests returned by DIGESTS message response. The Requester sends one or more GET_CERTIFICATE requests to

retrieve the certificate chain of the Responder.

238 GET_CERTIFICATE request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x82=GET_CERTIFICATE

2 Param1 1
Slot number of the target certificate chain to read from. The value in this field shall be between 0

and 7 inclusive.

3 Param2 1 Reserved

4 Offset 2

Offset in bytes from the start of the certificate chain to where the read request message begins.

The Responder should send its certificate chain starting from this offset. For the first

GET_CERTIFICATE request for a given slot, the Requester shall set this field to 0. For subsequent

requests, Offset is set to the next portion of the certificate in that slot.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 59

Offset Field
Size

(bytes)
Value

6 Length 2

Length of certificate chain data, in bytes, to be returned in the corresponding response.

Length is an unsigned 16-bit integer.

This value is the smaller of the following values:

Capacity of the internal buffer of the Requester for receiving the certificate chain of the

Responder.

The RemainderLength of the preceding GET_CERTIFICATE response.

If offset=0 and length=0xFFFF , the Requester is requesting the entire chain.

239 Successful CERTIFICATE response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x02=CERTIFICATE

2 Param1 1 Slot number of the certificate chain returned.

3 Param2 1 Reserved.

4 PortionLength 2

Number of bytes of this portion of certificate chain. This should be less than or equal to

Length received as part of the request. For example, the Responder might set this field

to a value less than Length received as part of the request due to limitations on the

internal buffer of the Responder.

6 RemainderLength 2

Number of bytes of the certificate chain that have not been sent yet after the current

response. For the last response, this field shall be 0 as an indication to the Requester

that the entire certificate chain has been sent.

8 CertChain PortionLength
Requested contents of target certificate chain, as described in Certificates and certificate

chains.

240 The Responder unable to return full length data flow shows the high-level request-response message flow for

Responder response when it cannot return the entire data requested by the Requester in the first response.

241 Responder unable to return full length data flow

Security Protocol and Data Model (SPDM) Specification DSP0274

60 Published Version 1.1.2

242

ResponderRequester

GET CERTIFICATE(0, 0x1000)

CERTIFICATE (0x800, 0x200)

GET_CERTIFICATE (0x800, 0x200)

CertificateLength = 0xA00
PortionLength = 0x800

RemainderLength = 0x200

CERTIFICATE (0x200, 0)
PortionLength = 0x200
RemainderLength = 0

Responder Buffer Size
 = 0x800

Requests remaining portion,
Offset 0x800, Length 0x0200

Requester Buffer Size
 = 0x1000

243 10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE

messages

244 If the Requester supports mutual authentication, the requirements placed on the Responder in GET_CERTIFICATE

request and CERTIFICATE response messages clause shall also apply to the Requester. If the Responder supports

mutual authentication, the requirements placed on the Requester in GET_CERTIFICATE request and CERTIFICATE

response messages clause shall also apply to the responder. These two statements essentially describes a role

reversal.

245 10.8.2 Leaf certificate

246 The SPDM endpoints for authentication shall be provisioned with DER-encoded X.509 v3 format certificates. The leaf

certificate shall be signed by a trusted CA and provisioned to the device. For endpoint devices to verify the certificate,

the following required fields shall be present. In addition, to provide device information, use the Subject

Alternative Name certificate extension otherName field. See the Definition of otherName using the DMTF OID.

247 Required fields

Field Description

Version Version of the encoded certificate shall be present and shall be 3 (encoded as value 2).

Serial Number CA-assigned serial number shall be present with a positive integer value.

Signature Algorithm Signature algorithm that CA uses shall be present.

Issuer CA distinguished name shall be specified.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 61

Field Description

Subject Name Subject name shall be present and shall represent the distinguished name associated with the leaf certificate.

Validity Certificates may include this attribute. See RFC5280 for further details.

Subject Public Key Info Device public key and the algorithm shall be present.

Key Usage Shall be present and key usage bit for digital signature shall be set.

248 Optional fields

Field Description

Basic

Constraints
If present, the CA value shall be FALSE .

Subject

Alternative

Name

otherName

In some cases, it might be desirable to provide device specific information as part of the device certificate. DMTF chose the

otherName field with a specific format to represent the device information. The use of the otherName field also provides

flexibility for other alliances to provide device specific information as part of the device certificate. See the Definition of

otherName using the DMTF OID.

249 Definition of otherName using the DMTF OID

DMTFOtherName ::= SEQUENCE {
type-id DMTF-oid
value [0] EXPLICIT ub-DMTF-device-info

}
-- OID for DMTF device info --
id-DMTF-device-info OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 1 }
DMTF-oid ::= OBJECT IDENTIFIER (id-DMTF-device-info)

-- All printable characters except ":" --
DMTF-device-string ::= UTF8String (ALL EXCEPT ":")

-- Device Manufacturer --
DMTF-manufacturer ::= DMTF-device-string

-- Device Product --
DMTF-product ::= DMTF-device-string

-- Device Serial Number --
DMTF-serialNumber ::= DMTF-device-string

-- Device information string --
ub-DMTF-device-info ::= UTF8String({DMTF-manufacturer":"DMTF-product":"DMTF-serialNumber})

Security Protocol and Data Model (SPDM) Specification DSP0274

62 Published Version 1.1.2

250 The Leaf certificate example shows an example leaf certificate.

251 10.9 CHALLENGE request and CHALLENGE_AUTH response messages

252 This request message shall authenticate a Responder through the challenge-response protocol.

253 The CHALLENGE request message format table shows the CHALLENGE request message format.

254 The Successful CHALLENGE_AUTH response message table shows the CHALLENGE_AUTH response message

format.

255 CHALLENGE request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x83=CHALLENGE

2 Param1 1

Slot number of the certificate chain of the Responder that shall be used for authentication. It shall

be 0xFF if the public key of the Responder was provisioned to the Requester in a trusted

environment.

3 Param2 1

Requested measurement summary hash Type:

0x0 . No measurement summary hash.

0x1 . TCB measurement hash.

0xFF . All measurements hash.

All other values reserved.

When Responder does not support any measurements, Requester shall set this value to 0x0 .

4 Nonce 32 The Requester should choose a random value.

256 Successful CHALLENGE_AUTH response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x03=CHALLENGE_AUTH

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 63

Offset Field Size (bytes) Value

2 Param1 1
Response Attribute Field. Please see CHALLENGE_AUTH Response

Attribute Table for details.

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and only if

slot number K contains a certificate chain for the protocol version in the

SPDMVersion field. Bit 0 is the least significant bit of the byte. This field is

reserved if the public key of the Responder was provisioned to the Requester

in a trusted environment.

4 CertChainHash H

Hash of the certificate chain or public key (if the public key of the Responder

was provisioned to the Requester in a trusted environment) used for

authentication. The Requester can use this value to check that the certificate

chain or public key matches the one requested. This field is big endian.

4 + H Nonce 32 Responder-selected random value.

36 + H MeasurementSummaryHash H

When the Responder does not support measurements (MEAS_CAP=00b in

CAPABILITIES response) or requested Param2 =0, this field shall be absent.

When the requested Param2 =1, this field shall be the combined hash of

Measurements of all measurable components considered to be in the TCB

required to generate this response, computed as

hash(Concatenation(MeasurementBlock[0], MeasurementBlock[1], ...)) where

MeasurementBlock[x] denotes a measurement of an element in the TCB.

Measurements are concatenated in ascending order based on their

measurement index.

When the requested Param2 =1 and there are no measurable components in

the TCB required to generate this response, this field shall be 0 .

When requested Param2=0xFF , this field is computed as the

hash(Concatenation(MeasurementBlock[0], MeasurementBlock[1], ...,

MeasurementBlock[n])) of all supported measurement blocks available in the

measurement index range 0x01 - 0xFE , concatenated in ascending index

order. Indices with no associated measurements shall not be included in the

hash calculation.

36 + 2H OpaqueLength 2 Size of the OpaqueData field. The value shall not be greater than 1024 bytes.

38 + 2H OpaqueData OpaqueLength
Free-form field, if present. The Responder may include Responder-specific

information and/or information defined by its transport.

38 + 2H +

OpaqueLength
Signature S

S is the size of the asymmetric-signing algorithm output that the Responder

selected through the last ALGORITHMS response message to the Requester.

The CHALLENGE_AUTH signature generation and CHALLENGE_AUTH

signature verification clauses, respectively, define the signature generation

and verification processes.

257 CHALLENGE_AUTH response attribute

Security Protocol and Data Model (SPDM) Specification DSP0274

64 Published Version 1.1.2

Bit

Offset
Field Name Description

[3:0] SlotID

This field shall contain the slot number in the Param1 field of the corresponding CHALLENGE request. If the

Responder’s public key was provisioned to the Requester previously, this field shall be 0xF. The Requester can

use this value to check that the certificate matched what was requested.

[6:4] Reserved Reserved.

7 BasicMutAuthReq

When mutual authentication is supported by both Responder and Requester, the Responder shall set this bit to

indicate the Responder wants to authenticate the identity of the Requester using the basic mutual authentication

flow. The Requester shall not set this bit in a basic mutual authentication flow. See Basic mutual authentication

flow for more details.

If mutual authentication is not supported, this bit shall be zero; otherwise, it should be considered an error.

258 10.9.1 CHALLENGE_AUTH signature generation

259 To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

1.260 The Responder shall construct M1 and the Requester shall construct M2 message transcripts. For

Responder authentication, see the Request ordering and message transcript computation rules for M1/M2

table. For Requester authentication in the mutual authentication scenario, see the Mutual authentication

message transcript clause.

261 where:

262 Concatenate() is the standard concatenation function that is performed only after a successful

completion response on the entire request and response contents.

◦263 If a response contains ErrorCode=ResponseNotReady :

264 Concatenation function is performed on the contents of both the original request and the response

received during RESPOND_IF_READY .

◦265 If a response contains an ErrorCode other than ResponseNotReady :

266 No concatenation function is performed on the contents of both the original request and response.

2.267 The Responder shall generate:

Signature = Sign(SK, Hash(M1));

268 where:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 65

◦269 Sign

270 Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS response

message that the Responder sent.

271 The Successful ALGORITHMS response message format table describes the BaseAsymSel ,

ExtAsymSel and RespAlgStruct (when AlgType == ReqBaseAsymAlg) fields.

◦272 SK

273 Private key associated with the leaf certificate of the Responder in slot=Param1 of the CHALLENGE

request message. If the public key of the Responder was provisioned to the Requester, then SK is

the associated private key.

◦274 Hash

275 Hashing algorithm the Responder selected through the last ALGORITHMS response message that the

Responder sent.

276 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

277 10.9.2 CHALLENGE_AUTH signature verification

278 Modifications to the previous request messages or the corresponding response messages by an active person-in-

the-middle adversary or media error result in M2!=M1 and lead to verification failure.

279 To complete the CHALLENGE_AUTH signature verification process, the Requester shall complete this step:

1.280 The Requester shall perform:

Verify(PK, Hash(M2), Signature);

281 where:

◦282 Verify

283 Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS response

message that the Requester received.

284 The Successful ALGORITHMS response message format table describes the BaseAsymSel ,

ExtAsymSel and RespAlgStruct (when AlgType == ReqBaseAsymAlg) fields.

Security Protocol and Data Model (SPDM) Specification DSP0274

66 Published Version 1.1.2

◦285 PK

286 Public key associated with the leaf certificate of the Responder with slot=Param1 of the CHALLENGE

request message. If the public key of the Responder was provisioned to the Requester, then PK is

the provisioned public key.

◦287 Hash

288 Hashing algorithm the Responder selected through the last sent ALGORITHMS response message as

received by the Requester.

289 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

290 The Responder authentication: Runtime challenge-response flow shows the high-level request-response message

flow and sequence for the authentication of the Responder for runtime challenge-response.

291 Responder authentication: Runtime challenge-response flow

292

Nonce

ResponderRequester

1. The Requester sends a
CHALLENGE request message.

2. The Requester verifies
Responder's signature.

1. The Responder computes signature using
the Nonce and generates a
CHALLENGE_AUTH response message

CHALLENGE

Cert Chain Hash, Nonce,
Measurement SummaryHash,

OpaqueData, Signature

CHALLENGE_AUTH

293 10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

294 This clause applies to Responder-only authentication.

295 The Request ordering and message transcript computation rules for M1/M2 table defines how the message transcript

is constructed for M1 and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH

response message.

296 The possible request orderings after reset leading up to and including CHALLENGE are:

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , GET_CERTIFICATE , CHALLENGE

(A1, B1, C1)

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 67

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , CHALLENGE (A1, B3, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , CHALLENGE (A1, B2, C1)

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A2, B1, C1)

• GET_DIGESTS , CHALLENGE (A2, B3, C1)

• CHALLENGE (A2, B2, C1)

297 Immediately after reset, M1 and M2 shall be null.

298 After the Requester receives a successful CHALLENGE_AUTH response or the Requester sends a GET_MEASUREMENTS

request, M1 and M2 shall be set to null. If a Negotiated State has been established, this will remain intact.

299 If a Requester sends a GET_VERSION message, the Requester and Responder shall reset M1 and M2 to null, clear

all Negotiated State and recommence construction of M1 and M2 starting with the new GET_VERSION message.

300 Request ordering and message transcript computation rules for M1/M2

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

Reset N/A M1/M2=null

GET_VERSION issued

Requester issues this request to allow the Requester and Responder to

determine an agreed upon Negotiated State . Also issued if the Requester

detects an out of sync condition, when the signature verification fails or when

the Responder provides an unexpected error response.

M1/M2=null

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Issued

Requester shall always issue these requests in this order.

A1=Concatenate(GET_VERSION,

VERSION, GET_CAPABILITIES,

CAPABILITIES,

NEGOTIATE_ALGORITHMS,

ALGORITHMS)

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Skipped

Requester skipped issuing these requests after a new reset if the Responder

has previously indicated CACHE_CAP=1 . In this case, the Requester and

Responder shall proceed with the previously determined Negotiated State .

A2=null

GET_DIGESTS ,

GET_CERTIFICATE

issued

Requester issued these requests in this order after NEGOTIATE_ALGORITHMS

request completion or immediately after reset, if it chose to skip the previous

three requests.

B1=Concatenate(GET_DIGESTS,

DIGESTS, GET_CERTFICATE,

CERTIFICATE)

GET_DIGESTS ,

GET_CERTIFICATE

skipped

Requester skipped both requests after a new reset since it could use previously

cached certificate information.
B2=null

GET_DIGESTS issued,

GET_CERTIFICATE

skipped

Requester skipped GET_CERTIFICATE request after a new reset since it could

use the previously cached CERTIFICATE response.
B3=(GET DIGESTS, DIGESTS)

Security Protocol and Data Model (SPDM) Specification DSP0274

68 Published Version 1.1.2

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

CHALLENGE issued

Requester issued this request to complete security verification of current

requests and responses. The Signature bytes of CHALLENGE_AUTH shall not be

included in C.

C1=(CHALLENGE,

CHALLENGE_AUTH\Signature) .

See the CHALLENGE request

message format table.

CHALLENGE completion Completion of CHALLENGE resets M1 and M2. M1/M2=null

Other issued

If the Requester issued GET_MEASUREMENTS or KEY_EXCHANGE or FINISH or

PSK_EXCHANGE or PSK_FINISH or KEY_UPDATE or HEARTBEAT or

GET_ENCAPSULATED_REQUEST or DELIVER_ENCAPSULATED_RESPONSE or

END_SESSSION request(s) and skipped CHALLENGE completion, M1 and M2 are

reset to null .

M1/M2=null

301 10.9.3 Basic mutual authentication

302 Unless otherwise stated, if the Requester supports mutual authentication, the requirements placed on the Responder

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Requester.

Unless otherwise stated, if the Responder supports mutual authentication, the requirements placed on the Requester

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Responder.

These two statements essentially describe a role reversal, unless otherwise stated.

303 The basic mutual authentication flow shall start when the Requester successfully receives a CHALLENGE_AUTH with

BasicMutAuthReq set. This flow shall utilize message encapsulation as described in

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages to retrieve

request messages. The basic mutual authentication flow shall end when the encapsulated request flow ends.

304 This flow shall only allow GET_DIGESTS , GET_CERTIFICATE , CHALLENGE and their corresponding responses to be

encapsulated.

305 The Mutual authentication basic flow illustrates, as an example, the basic mutual authentication flow.

306 Mutual authentication basic flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 69

307

BASIC
MUTUAL
AUTHENTICATION
FLOW

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

CHALLENGE

CHALLENGE_AUTH

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

ENCAPSULATED_RESPONSE_ACK (CHALLENGE)

DELIVER_ENCAPSULATED_RESPONSE (CHALLENGE_AUTH)

BasicMutAuthReq is
set in the response.

Both Requester
and Responder
set MUT_AUTH_CAP
bits.

308 10.9.3.1 Mutual authentication message transcript

309 This clause applies to the Responder authenticating the Requester in a basic mutual authentication scenario.

310 The Basic mutual authentication message transcript table defines how the message transcript is constructed for M1

Security Protocol and Data Model (SPDM) Specification DSP0274

70 Published Version 1.1.2

and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH response message when

the Responder authenticates the Requester.

311 The possible request orderings for the basic mutual authentication flow shall be one of the following (the Flow ID is in

parenthesis):

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (BMAF0)

• GET_DIGESTS , CHALLENGE (BMAF1)

• GET_CERTIFICATE , CHALLENGE (BMAF2)

• CHALLENGE (BMAF3)

312 When the basic mutual authentication flow starts (i.e., when GET_ENCAPSULATED_REQUEST is issued) M1 and M2 shall

be set to NULL.

313 Basic mutual authentication message transcript

Flow ID M1/M2

BMAF0 Concatenate(GET_DIGESTS , DIGESTS , GET_CERTIFICATE , CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF1 Concatenate(GET_DIGESTS , DIGESTS , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF2 Concatenate(GET_CERTIFICATE , CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF3 Concatenate(CHALLENGE , CHALLENGE_AUTH without the signature)

314 For GET_CERTIFICATE and CERTIFICATE , these messages may need to be issued multiple times to retrieve the

entire certificate chain. Thus, each instance of the request and response shall be part of M1/M2 in the order that they

are issued.

315 10.10 Firmware and other measurements

316 This clause describes request messages and response messages associated with endpoint measurement. All

request messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in

CAPABILITIES response.

317 The Measurement retrieval flow shows the high-level request-response flow and sequence for endpoint

measurement. If MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0, and the Requester

requires fresh measurements, the Responder shall be reset before GET_MEASUREMENTS is resent. The mechanisms

employed for resetting the Responder are outside the scope of this specification.

318 Measurement retrieval flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 71

319

Nonce

ResponderRequester

1. The Requester sends a
GET_MEASUREMENTS request
message.

2. Verify signature and verify
measurements match expected
values.

1. The Responder sends a
MEASUREMENTS response message.

GET_MEASUREMENTS

Number of
measurements,
length, Nonce,
measurement

blocks,
signature.

MEASUREMENTS

320 10.11 GET_MEASUREMENTS request and MEASUREMENTS response

messages

321 This request message shall retrieve measurements in the form of measurements blocks. A Requester should not

send this message until it has received at least one successful CHALLENGE_AUTH response message from the

Responder, or should send this message in a secure session. The successful CHALLENGE_AUTH response may have

been received before the last reset.

322 The GET_MEASUREMENTS request message format table shows the GET_MEASUREMENTS request message format.

323 The GET_MEASUREMENTS request attributes table shows the GET_MEASUREMENTS request message attributes.

324 The Successful MEASUREMENTS response message format table shows the MEASUREMENTS response message

format. The measurement blocks in MeasurementRecord shall be placed contiguously from index 1.

325 GET_MEASUREMENTS request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE0=GET_MEASUREMENTS

2 Param1 1 Request attributes. See the GET_MEASUREMENTS request attributes table.

Security Protocol and Data Model (SPDM) Specification DSP0274

72 Published Version 1.1.2

Offset Field
Size

(bytes)
Value

3 Param2 1

Measurement operation.

A value of 0x0 shall query the Responder for the total number of measurement blocks available.

A value of 0xFF shall request all measurement blocks.

A value between 0x1 and 0xFE , inclusively, shall request the measurement block at the index

corresponding to that value.

4 Nonce 32
The Requester should choose a random value. This field is only present if a signature is required

on the response. See the GET_MEASUREMENTS request attributes table.

36 SlotIDParam 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. Slot number of the certificate chain of the Responder that shall be used for

authenticating the measurement(s). If the Responder’s public key was provisioned to the

Requester previously, this field shall be 0xF . This field is only present if a signature is required on

the response. See the GET_MEASUREMENTS request attributes table.

326 GET_MEASUREMENTS request attributes

Bits Value Description

0 1

If the Responder can generate a signature (MEAS_CAP is 10b in the CAPABILITIES response), the value of this bit

shall indicate to the Responder that a signature is required. The Responder shall generate a signature in the

corresponding response. The Nonce field shall be present in the request.

0 0

For Responders that can generate signatures, the value of this bit shall indicate that the Requester does not require a

signature. The Responder shall not generate a signature in the response. The Nonce field shall be absent in the

request.

For Responders that cannot generate a signature (MEAS_CAP is 01b in the CAPABILITIES response) the Requester

shall always use this value.

[7:1] Reserved Reserved

327 Successful MEASUREMENTS response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x60=MEASUREMENTS

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 73

Offset Field Size (bytes) Value

2 Param1 1

When Param2 in the requested measurement operation is

0 , this parameter shall return the total number of

measurement indices on the device. Otherwise, this field is

reserved.

3 Param2 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. If this message contains a signature, this

field contains the slot number of the certificate chain specified

in the GET_MEASUREMENTS request, or 0xF if the

Responder’s public key was provisioned to the Requester

previously. If this message does not contain a signature, this

field shall be set to 0x0 .

4 NumberOfBlocks 1

Number of measurement blocks (N) in MeasurementRecord .

If Param2 in the requested measurement operation is 0 , this

field shall be 0 .

5 MeasurementRecordLength 3

Size of the MeasurementRecord field in bytes. If Param2 in

the requested measurement operation is 0 , this field shall

be 0 .

8 MeasurementRecord L= MeasurementRecordLength

Concatenation of all measurement blocks that correspond to

the requested Measurement operation. Measurement block

defines the measurement block structure.

8 + L Nonce 32 The Responder should choose a random value.

40 + L OpaqueLength 2
Size of the OpaqueData field in bytes. The value shall not be

greater than 1024 bytes.

42 + L OpaqueData OpaqueLength

Free-form field, if present. The Responder may include

Responder-specific information and/or information defined by

its transport.

42 + L +

OpaqueLength
Signature S

Signature of the GET_MEASUREMENTS request and

MEASUREMENTS response messages, excluding the Signature

field and signed using the device private key. The Responder

shall use the asymmetric signing algorithm it selected during

the last ALGORITHMS response message to the Requester,

and S is the size of that asymmetric signing algorithm output.

This field is conditional.

328 10.11.1 Measurement block

329 Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,

offsets 0 through 3, followed by the measurement data that correspond to a particular measurement index and

measurement type. The blocks are ordered by Index .

Security Protocol and Data Model (SPDM) Specification DSP0274

74 Published Version 1.1.2

330 The Measurement block format table shows the format for a measurement block:

331 Measurement block format

Offset Field Size (bytes) Value

0 Index 1 Index. Shall represent the index of the measurement. In the range of [1, N].

1 MeasurementSpecification 1

Bit mask. The value shall indicate the measurement specification that the

requested Measurement follows and shall match the selected measurement

specification in the ALGORITHMS message. See the Successful ALGORITHMS

response message format table. Only one bit shall be set in the measurement

block.

Bit 0=DMTF, as specified in the Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF table.

All other bits are reserved.

2 MeasurementSize 2 Size of Measurement , in bytes.

4 Measurement MeasurementSize The MeasurementSpecification defines the format of this field.

332 10.11.1.1 DMTF specification for the Measurement field of a measurement block

333 The present clause is the specification for the format of the Measurement field in a measurement block when the

MeasurementSpecification field selects Bit 0=DMTF. This format is specified in Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF.

334 The measurement manifest of DMTFSpecMeasurementValueType refers to a manifest that describes contents of other

indexes. For example, the set of firmware modules executing on the Responder may change at runtime. The

measurement manifest tells the Requester which firmware modules' measurements are reported in this response and

their indexes. The format of measurement manifest is out of scope of this specification.

335 Measurement field format when MeasurementSpecification field is bit 0 = DMTF

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 75

Offset Field Size (bytes) Value

0 DMTFSpecMeasurementValueType 1

Composed of:

Bit [7] indicates the representation in

DMTFSpecMeasurementValue .

Bits [6:0] indicate what is being measured by

DMTFSpecMeasurementValue .

These values are set independently and are interpreted as

follows:

[7]=0b . Digest.

[7]=1b . Raw bit stream.

[6:0]=00h . Immutable ROM.

[6:0]=01h . Mutable firmware.

[6:0]=02h . Hardware configuration, such as straps, debug

modes.

[6:0]=03h . Firmware configuration, such as configurable

firmware policy.

[6:0]=04h . Measurement manifest.

All other values reserved.

1 DMTFSpecMeasurementValueSize 2

Size of DMTFSpecMeasurementValue , in bytes.

When DMTFSpecMeasurementValueType[7]=0b , the

DMTFSpecMeasurementValueSize shall be derived from the

measurement hash algorithm that the ALGORITHM response

message returns.

3 DMTFSpecMeasurementValue DMTFSpecMeasurementValueSize

DMTFSpecMeasurementValueSize bytes of cryptographic

hash or raw bit stream, as indicated in

DMTFSpecMeasurementValueType[7] .

336 10.11.2 MEASUREMENTS signature generation

337 While a Requester may opt to require a signature in each individual MEASUREMENTS response, it is advisable that the

cost of the signature generation process is minimized by amortizing it over multiple MEASUREMENTS responses where

applicable. In this scheme, the Requester issues a number of GET_MEASUREMENTS requests without requiring

signatures followed by a final GET_MEASUREMENTS request requiring a signature over the entire set of

Security Protocol and Data Model (SPDM) Specification DSP0274

76 Published Version 1.1.2

GET_MEASUREMENTS requests and corresponding MEASUREMENTS responses exchanged. The steps to complete this

scheme are as follows:

1.338 The Responder shall construct L1 and the Requester shall construct L2 over their observed messages:

L1/L2 = Concatenate(GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,
GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,
GET_MEASUREMENTS_REQUESTn, MEASUREMENTS_RESPONSEn)

339 where:

◦340 Concatenate()

341 Standard concatenation function.

◦342 GET_MEASUREMENTS_REQUEST1

343 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has not

requested a signature on that specific GET_MEASUREMENTS request.

◦344 MEASUREMENTS_RESPONSE1

345 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUEST1 .

◦346 GET_MEASUREMENTS_REQUESTn-1

347 Entire last consecutive GET_MEASUREMENTS request message under consideration, where the

Requester has not requested a signature on that specific GET_MEASUREMENTS request.

◦348 MEASUREMENTS_RESPONSEn-1

349 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn-1 .

◦350 GET_MEASUREMENTS_REQUESTn

351 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

requested a signature on that specific GET_MEASUREMENTS request.

352 n is a number greater than or equal to 1 .

353 When n equals 1 , the Requester has not made any GET_MEASUREMENTS requests without signature

prior to issuing a GET_MEASUREMENTS request with signature.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 77

◦354 MEASUREMENTS_RESPONSEn

355 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn .

356 Any communication between Requester and Responder other than a GET_MEASUREMENTS request or

response resets L1/L2 computation to null.

2.357 The Responder shall generate:

Signature = Sign(SK, Hash(L1));

358 where:

◦359 Sign

360 Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS response

message that the Responder sent.

361 The Successful ALGORITHMS response message format table describes the BaseAsymSel and

ExtAsymSel fields.

◦362 SK

363 Private key of the Responder associated with the leaf certificate stored in SlotID . If the public key of

the Responder was provisioned to the Requester, then SK is the associated private key.

◦364 Hash

365 Hashing algorithm that the Responder selected through the last ALGORITHMS response message that

the Responder sent.

366 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

367 10.11.3 MEASUREMENTS signature verification

368 To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

1.369 The Requester shall perform:

Security Protocol and Data Model (SPDM) Specification DSP0274

78 Published Version 1.1.2

Verify(PK, Hash(L2), Signature)

370 where:

◦371 PK

372 Public key associated with the slot 0 certificate of the Responder. PK is extracted from the

CERTIFICATES response. If the public key of the Responder was provisioned to the Requester, then

PK is the provisioned public key.

◦373 Verify

374 Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS response

message that the Requester received.

375 The Successful ALGORITHMS response message format table describes the BaseAsymSel and

ExtAsymSel fields.

◦376 Hash

377 Hashing algorithm the Responder selected through the last sent ALGORITHMS response message that

the Requester sent.

378 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

379 The Measurement signature computation example shows an example of a typical Requester Responder protocol

where the Requester issues 1 to n-1 GET_MEASUREMENTS requests without a signature, followed by a single

GET_MEASUREMENTS request n with a signature.

380 Measurement signature computation example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 79

381

GET_MEASUREMENTS (n-1, NoSig)

MEASUREMENTS (n-1, NoSig)

GET_MEASUREMENTS (n, Sig)

MEASUREMENTS (n, Sig)

Responder

GET_MEASUREMENTS (1, NoSig)

MEASUREMENTS (1, NoSig)
MEASUREMENT

response 1 with no

signature

...

...

MEASUREMENT response

n-1 with no signature

GET_MEASUREMENT
request 1 with no

signature request

GET_MEASUREMENT
request n-1 with no

signature request

GET_MEASUREMENT
request n with signature

request

MEASUREMENT response
n with signature computed

as described

Requester

Verify Signature computed

as described

382 10.12 ERROR response message

383 For a SPDM operation that results in an error, the Responder should send an ERROR response message to the

Requester.

384 The ERROR response message format table shows the ERROR response format.

385 The Error code and error data table shows the detailed error code, error data, and extended error data.

386 The ResponseNotReady extended error data table shows the ResponseNotReady extended error data.

387 The Registry or standards body ID table shows the registry or standards body ID.

388 The ExtendedErrorData format for vendor or other standards-defined ERROR response message table shows the

ExtendedErrorData format definition for vendor or other standards-defined ERROR response message.

389 ERROR response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

80 Published Version 1.1.2

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x7F=ERROR

2 Param1 1 Error Code. See Error code and error data.

3 Param2 1 Error Data. See Error code and error data.

4 ExtendedErrorData 0-32 Optional extended data. See Error code and error data.

390 Error code and error data

Error code Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved Reserved Reserved

InvalidRequest 0x01 One or more request fields are invalid 0x00
No extended error data is

provided.

Reserved 0x02 Reserved Reserved Reserved

Busy 0x03

The Responder received the request

message and the Responder decided to

ignore the request message, but the

Responder may be able to process the

request message if the request message is

sent again in the future.

0x00
No extended error data is

provided.

UnexpectedRequest 0x04

The Responder received an unexpected

request message. For example, CHALLENGE

before NEGOTIATE_ALGORITHMS .

0x00
No extended error data is

provided.

Unspecified 0x05 Unspecified error occurred. 0x00
No extended error data is

provided.

DecryptError 0x06

The receiver of the record cannot decrypt the

record or verify data during the session

handshake.

Reserved
No extended error data is

provided.

UnsupportedRequest 0x07
The RequestResponseCode in the request

message is unsupported.

RequestResponseCode

in the request message.

No extended error data is

provided

RequestInFlight 0x08

The Responder has delivered an

encapsulated request to which it is still

waiting for the response.

Reserved
No extended error data is

provided.

InvalidResponseCode 0x09
The Requester delivered an invalid response

for an encapsulated response.
Reserved

No extended error data is

provided.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 81

Error code Value Description Error data ExtendedErrorData

SessionLimitExceeded 0x0A
Maximum number of concurrent sessions

reached.
Reserved

No extended error data is

provided.

Reserved 0x0b - 0x40 Reserved Reserved Reserved

MajorVersionMismatch 0x41
Requested SPDM Major Version is not

supported.
0x00

No extended error data

provided.

ResponseNotReady 0x42
See the RESPOND_IF_READY request

message format.
0x00

See the

ResponseNotReady

extended error data

table.

RequestResynch 0x43

Responder is requesting Requester to

reissue GET_VERSION to resynchronize. An

example is following a firmware update.

0x00
No extended error data

provided.

Reserved 0x44 - 0xFE Reserved Reserved. Reserved

Vendor/Other Standards

Defined
0xFF Vendor or Other Standards defined

Shall indicate the registry

or standard body using

one of the values in the

ID column in the Registry

or standards body ID

table.

See the

ExtendedErrorData

format for vendor or other

standards-defined

ERROR response

message table for format

definition.

391 ResponseNotReady extended error data

Offset Field
Size

(bytes)
Value

0 RDTExponent 1

Exponent expressed in logarithmic (base 2 scale) to calculate RDT time in µs after which the Responder

can provide successful completion response.

For example, the raw value 8 indicates that the Responder will be ready in 28=256 µs.

Requester should use RDT to avoid continuous pinging and issue the RESPOND_IF_READY request

message after RDT time.

For timing requirement details, see the Timing specification for SPDM messages table.

1 RequestCode 1 The request code that triggered this response.

2 Token 1 The opaque handle that the Requester shall pass in with the RESPOND_IF_READY request message.

Security Protocol and Data Model (SPDM) Specification DSP0274

82 Published Version 1.1.2

Offset Field
Size

(bytes)
Value

3 RDTM 1

Multiplier used to compute WT Max in µs to indicate the response may be dropped after this delay.

The multiplier shall always be greater than 1.

The Responder may also stop processing the initial request if the same Requester issues a different

request.

For timing requirement details, see the Timing specification for SPDM messages table.

392 Registry or standards body ID

393 For algorithm encoding in extended algorithm fields, unless otherwise specified, consult the respective registry or

standards body.

ID
Vendor ID

length (bytes)

Registry or standards

body name
Description

0x0 0 DMTF
DMTF does not have a Vendor ID registry. At present, DMTF does not have any

algorithms defined for use in extended algorithms fields.

0x1 2 TCG
Vendor is identified by using TCG Vendor ID Registry. For extended algorithms, see TCG

Algorithm Registry.

0x2 2 USB Vendor is identified by using the vendor ID assigned by USB.

0x3 2 PCI-SIG Vendor is identified using PCI-SIG Vendor ID.

0x4 4 IANA
The Private Enterprise Number (PEN) assigned by the Internet Assigned Numbers

Authority (IANA) identifies the vendor.

0x5 4 HDBaseT Vendor is identified by using HDBaseT HDCD entity.

0x6 2 MIPI The Manufacturer ID assigned by MIPI identifies the vendor.

0x7 2 CXL Vendor is identified by using CXL vendor ID.

0x8 2 JEDEC Vendor is identified by using JEDEC vendor ID.

394 ExtendedErrorData format for vendor or other standards-defined ERROR response message

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 83

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/
https://mipi.org/
https://mid.mipi.org/
https://www.computeexpresslink.org/
https://www.jedec.org/

Byte

offset
Length Field name Description

0 1 Len

Length of the VendorID field.

If the ERROR is vendor defined, the value of this field shall equal the Vendor ID Len , as the Registry

or standards body ID table describes, of the corresponding registry or standard body name.

If the ERROR is defined by a registry or a standard, this field shall be zero (0), which also indicates

that the VendorID field is not present.

The Error Data field in the ERROR message indicates the registry or standards body name, such as

Param2 , and is one of the values in the ID column in the Registry or standards body ID table.

1 Len VendorID

The value of this field shall indicate the Vendor ID, as assigned by the registry or standards body. The

Registry or standards body ID table describes the length of this field. Shall be in little endian format.

The registry or standards body name in the ERROR is indicated in the Error Data field, such as

Param2 , and is one of the values in the ID column in the Registry or standards body ID table.

1 +

Len
Variable OpaqueErrorData Defined by the vendor or other standards.

395 10.13 RESPOND_IF_READY request message format

396 This request message shall ask for the response to the original request upon receipt of ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return the ERROR response message, set

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response

message.

Security Protocol and Data Model (SPDM) Specification DSP0274

84 Published Version 1.1.2

397

CHALLENGE_AUTH()

ResponderRequester

CHALLENGE(0x83)

ERROR (ResponseNotReady, 0x7, 8, 4)

RESPOND_IF_READY(0x83, 0x7)

Sends response in less than CT
us to meet the crypto timeout

requirement.
ResponseNotReady with

Token=0x7, RDTExponent = 8 and
RDTM = 4

Waits for more than
WT = 2 ^ 8 us but

less than WTMax =
((2 ^ 8) x 4) – us

Processing is complete

Less than CT us

Less than CT us

RTT = 1

398 The RESPOND_IF_READY request message format table shows the RESPOND_IF_READY request message format.

399 RESPOND_IF_READY request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xFF=RESPOND_IF_READY

2 Param1 1
The original request code that triggered the ResponseNotReady error code response. Shall match

the request code returned as part of the ResponseNotReady extended error data.

3 Param2 1 The token that was returned as part of the ResponseNotReady extended error data.

400 10.14 VENDOR_DEFINED_REQUEST request message

401 A Requester intending to define a unique request to meet its need can use this request message. The

VENDOR_DEFINED_REQUEST request message format table defines the format.

402 The Requester should send this request message only after sending GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS request sequence.

403 If the vendor intends that these messages are to be used before a session has been established, and the vendor

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 85

wishes to have the requests authenticated, then the vendor shall indicate how the transcript hashes and/or message

transcript are changed to add the vendor defined commands.

404 The VENDOR_DEFINED_REQUEST request message format table shows the VENDOR_DEFINED_REQUEST request

message format.

405 VENDOR_DEFINED_REQUEST request message format

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xFE=VENDOR_DEFINED_REQUEST

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2
Shall indicate the registry or standards body by using one of the values in the ID column

in the Registry or standards body ID table.

6 Len 1

Length of the Vendor ID field. If the VendorDefinedRequest is standard defined, Len

shall be 0 . If the VendorDefinedRequest is vendor-defined, Len shall equal Vendor ID

Len , as the Registry or standards body ID table describes.

7 VendorID Len Vendor ID, as assigned by the registry or standards body. Shall be in little endian format.

7 +

Len
ReqLength 2 Length of the VendorDefinedReqPayload .

7 +

Len +

2

VendorDefinedReqPayload ReqLength The standard or vendor shall use this field to send the request payload.

406 10.15 VENDOR_DEFINED_RESPONSE response message

407 A Responder can use this response message in response to VENDOR_DEFINED_REQUEST . The

VENDOR_DEFINED_RESPONSE response message format table defines the format.

408 The VENDOR_DEFINED_RESPONSE response message format table shows the response message format.

409 VENDOR_DEFINED_RESPONSE response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

86 Published Version 1.1.2

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x7E=VENDOR_DEFINED_RESPONSE

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2
Shall indicate the registry or standard body using one of the values in the ID column in

the Registry or standards body ID table.

6 Len 1

Length of the Vendor ID field. If the VendorDefinedRequest is standards-defined,

length shall be 0 . If the VendorDefinedRequest is vendor-defined, length shall equal

Vendor ID Len , as the Registry or standards body ID table describes.

7 VendorID Len
Shall indicate the Vendor ID, as assigned by the registry or standards body. Shall be in

little endian format.

7 +

Len
RespLength 2 Length of the VendorDefinedRespPayload

7 +

Len +

2

VendorDefinedRespPayload ReqLength Standard or vendor shall use this value to send the response payload.

410 10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response

messages

411 This request message shall initiate a handshake between Requester and Responder intended to authenticate the

Responder (or optionally both parties), negotiate cryptographic parameters (in addition to those negotiated in the last

NEGOTIATE_ALGORITHMS / ALGORITHMS exchange), and establish shared keying material. The KEY_EXCHANGE

request message format table shows the KEY_EXCHANGE request message format and the Successful

KEY_EXCHANGE_RSP response message format table shows the KEY_EXCHANGE_RSP response message format.

The handshake is completed by the successful exchange of the FINISH request and FINISH_RSP response

messages, presented in the next clause, and depends on the tight coupling between the two request/response

message pairs.

412 The Requester and Responder pair may support two modes of handshakes. If HANDSHAKE_IN_THE_CLEAR_CAP is set

in both the Requester and the Responder all SPDM messages exchanged during the Session Handshake Phase are

sent in the clear (outside of a secure session). Otherwise both the Requester and the Responder use encryption and/

or message authentication during the Session Handshake Phase using the Handshake secret derived at the

completion of KEY_EXCHANGE_RSP message for subsequent message communication until FINISH_RSP

message completion.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 87

413 Responder authentication key exchange example

414

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

KEY_EXCHANGE

KEY_EXCHANGE_RSP

GET_CERTIFICATE

CERTIFICATE

If supported

FINISH

FINISH_RSP

415 The Responder authentication multiple key exchange example provides an example of multiple sessions using two

independent sets of root session keys that coexist at the same time. The specification does not require a specific

temporal relationship between the second KEY_EXCHANGE request message and the first FINISH_RSP response

message. To simplify implementation, however a Responder may generate an ErrorCode=Busy response to the

second KEY_EXCHANGE request message until the first FINISH_RSP response message is complete.

Security Protocol and Data Model (SPDM) Specification DSP0274

88 Published Version 1.1.2

416 Responder authentication multiple key exchange example

417

KEY_EXCHANGE(K2)

KEY_EXCHANGE_RSP (K2)

ResponderRequester

KEY_EXCHANGE (K1)

KEY_EXCHANGE_RSP (K1)

FINISH (K1)

FINISH_RSP (K1)

FINISH (K2)

FINISH_RSP (K2)

Enables authenticated and/or
 encrypted data transfer (K2)

Enables authenticated and/or
 encrypted data transfer (K1)

Authenticated and/or encrypted
data transfer (K1) continues

418 The handshake includes an ephemeral Diffie-Hellman (DHE) key exchange in which the Requester and Responder

each generate an ephemeral (that is, temporary) Diffie-Hellman key pair and exchange the public keys of those key

pairs in the ExchangeData fields of the KEY_EXCHANGE request message and KEY_EXCHANGE_RSP response

message. The Responder generates a DHE secret by using the private key of the DHE key pair of the Responder

and the public key of the DHE key pair of the Requester provided in the KEY_EXCHANGE request message. Similarly,

the Requester generates a DHE secret by using the private key of the DHE key pair of the Requester and the public

key of the DHE key pair of the Responder provided in the KEY_EXCHANGE_RSP response message. The DHE secrets

are computed as specified in clause 7.4 of RFC 8446. Assuming that the public keys were received correctly, both

the Requester and Responder generate identical DHE secrets from which session secrets are generated.

419 Diffie-Hellman group parameters are determined by the DHE group in use, which is selected in the most recent

ALGORITHMS response. The contents of the ExchangeData field are computed as specified in clause 4.2.8 of RFC

8446. Specifically, if the DHE key exchange is based on finite-fields (FFDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the computed public value (Y = g^X mod p) for the specified

group (see DHE structure for group definitions) encoded as a big-endian integer and padded to the left with zeros to

the size of p in bytes. If the key exchange is based on elliptic curves (ECDHE), the ExchangeData field in

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 89

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the serialization of X and Y, which are the binary

representations of the x and y values respectively in network byte order, padded on the left by zeros if necessary.

The size of each number representation occupies as many octets as implied by the curve parameters selected.

Specifically, X is [0: C - 1] and Y is [C : D – 1], where C and D are determined by the group.

420 A Requester should generate a fresh DHE key pair for each KEY_EXCHANGE request message that the Requester

sends. A Responder should generate a fresh DHE key pair for each KEY_EXCHANGE_RSP response message that the

Responder sends.

421 KEY_EXCHANGE request message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE4 = KEY_EXCHANGE

2 Param1 1

Requested MeasurementSummaryHash type:

0x0 . No measurement summary hash.

0x1 . TCB measurement hash.

0xFF . All measurements hash.

All other values reserved.

When Responder does not support any measurements, Requester shall set this value

to 0x0 .

3 Param2 1

The slot number of the target certificate chain that the Responder will use for

authentication. The value in this field shall be between 0 and 7 inclusive to identify a

valid certificate slot. It shall be 0xFF if the public key of the Responder was

provisioned to the Requester previously.

4 ReqSessionID 2

Two-byte Requester contribution to allow construction of a unique four-byte session

ID between a Requester-Responder pair. The final session ID = Concatenate

(ReqSessionID, RspSessionID).

6 Reserved 2 Reserved

8 RandomData 32 Requester-provided random data.

40 ExchangeData D

DHE public information generated by the Requester. If the DHE group selected in the

most recent ALGORITHMS response is finite-field-based (FFDHE), the ExchangeData

represents the computed public value. If the selected DHE group is elliptic curve-

based (ECDHE), the ExchangeData represents the X and Y values in network byte

order. Specifically, X is [0: C - 1] and Y is [C : D – 1]. In both cases the size of D (and

C for ECDHE) is derived from the selected DHE group.

Security Protocol and Data Model (SPDM) Specification DSP0274

90 Published Version 1.1.2

Offset Field Size in bytes Value

40 +

D
OpaqueDataLength 2

Size of the OpaqueData field that follows in bytes. Shall be 0 if no OpaqueData is

provided.

42 +

D
OpaqueData OpaqueDataLength

If present, OpaqueData sent by the Requester. Used to indicate any parameters that

Requester wishes to pass to the Responder as part of key exchange.

422 Successful KEY_EXCHANGE_RSP response message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x64 = KEY_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if Heartbeat is not supported.

Otherwise, the value shall be in units of seconds. Zero is a legal

value if Heartbeat is supported, but means that a heartbeat is not

desired on this session.

3 Param2 1 Reserved.

4 RspSessionID 2

Two-byte Responder contribution to allow construction of a unique

four-byte session ID between a Requester-Responder pair. The final

session ID = Concatenate (ReqSessionID, RspSessionID).

6 MutAuthRequested 1

Bit 0 - If set, the Responder is requesting to authenticate the

Requester (mutual authentication) without using the encapsulated

request flow.

Bit 1 - If set, Responder is requesting mutual authentication with the

encapsulated request flow.

Bit 2 - If set, Responder is requesting mutual authentication with an

implicit GET_DIGESTS request. The Responder and Requester

shall follow the optimized encapsulated request flow.

Bit [7:3] - Reserved.

Only one of Bit 0, Bit 1 and Bit 2 shall be set.

For details on the encapsulated request flow or the optimized

encapsulated request flow, see the

GET_ENCAPSULATED_REQUEST request and

ENCAPSULATED_REQUEST response messages clause.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 91

Offset Field Size in bytes Value

7 SlotIDParam 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. The slot number of the certificate chain of the

Requester to be used for mutual authentication. The value in this

field shall be between 0 and 7 inclusive, or 0xF if the public key of

the Requester was provisioned to the Responder through other

means. All other values Reserved. If MutAuthRequested = 0x00 this

field shall be set to 0 and ignored by the Requester.

8 RandomData 32 Responder-provided random data.

40 ExchangeData D

DHE public information generated by the Responder. If the DHE

group selected in the most recent ALGORITHMS response is finite-

field-based (FFDHE), the ExchangeData represents the computed

public value. If the selected DHE group is elliptic curve-based

(ECDHE), the ExchangeData represents the X and Y values in

network byte order. Specifically, X is [0: C - 1] and Y is [C : D – 1]. In

both cases the size of D (and C for ECDHE) is derived from the

selected DHE group.

40 + D MeasurementSummaryHash H

When the Responder does not support measurements

(MEAS_CAP=00b in CAPABILITIES response) or requested

Param1 =0, this field shall be absent.

When the requested Param1 =1, this field shall be the combined

hash of Measurements of all measurable components considered to

be in the TCB required to generate this response, computed as

hash(Concatenation(MeasurementBlock[0], MeasurementBlock[1],

...)) where MeasurementBlock[x] denotes a measurement of an

element in the TCB. Measurements are concatenated in ascending

order based on their measurement index.

When the requested Param1 =1 and there are no measurable

components in the TCB required to generate this response, this field

shall be 0 .

When requested Param1=0xFF , this field is computed as the

hash(Concatenation(MeasurementBlock[0], MeasurementBlock[1],

..., MeasurementBlock[n])) of all supported measurement blocks

available in the measurement index range 0x01 - 0xFE ,

concatenated in ascending index order. Indices with no associated

measurements shall not be included in the hash calculation.

40 + D + H OpaqueDataLength 2
Size of the OpaqueData field that follows in bytes. Shall be 0 if no

OpaqueData is provided.

42 + D + H OpaqueData OpaqueDataLength

If present, OpaqueData sent by the Responder. Used to indicate

any parameters that the Responder wishes to pass to the Requester

as part of key exchange.

Security Protocol and Data Model (SPDM) Specification DSP0274

92 Published Version 1.1.2

Offset Field Size in bytes Value

42 + D + H +

OpaqueDataLength
Signature S

Signature over the transcript hash. S is the size of the asymmetric

signing algorithm output the Responder selected via the last

ALGORITHMS response message using the private key of the leaf

certificate of the Responder. The construction of the transcript hash

is defined in Transcript Hash for KEY_EXCHANGE_RSP signature.

42 + D + H +

OpaqueDataLength

+ S

ResponderVerifyData H

Conditional field.

If the Session Handshake Phase is encrypted and/or message

authenticated, then this field shall be of length H and it shall equal

the HMAC of the transcript hash, using finished_key as the secret

key and using the negotiated hash algorithm as the hash function.

The transcript hash shall be the Transcript Hash for

KEY_EXCHANGE_RSP HMAC. The finished_key shall be derived

from the Response Direction Handshake Secret and is described in

the finished_key derivation clause. HMAC is described in RFC 2104.

If both the Requester and Responder set

HANDSHAKE_IN_THE_CLEAR_CAP to 1, then this field shall be absent.

423 10.16.1 Mutual authentication

424 To perform authentication of the Requester in the KEY_EXCHANGE flow, either the encapsulated request flow or the

optimized encapsulated request flow shall be used. For details and illustration of this flow, see

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

425 The only messages that shall be encapsulated in this case are GET_DIGESTS , DIGESTS , GET_CERTIFICATE , and

CERTIFICATE .

426 10.16.2 Specifying Requester certificate for mutual authentication

427 The SPDM key exchange protocol is optimized to perform key exchange with the least number of messages

exchanged. When Responder-only authentication, or mutual authentication where the Responder has obtained the

certificate chains of the Requester in a previous interaction is performed, key exchange is carried out with two

request/response message pairs (KEY_EXCHANGE , KEY_EXCHANGE_RSP , FINISH and FINISH_RSP). In other cases

where mutual authentication is desired, additional encapsulated messages are exchanged between

KEY_EXCHANGE_RSP and FINISH to enable the Responder to obtain the certificate chains and certificate chain

digests of the Requester. However, in all cases the certificate chain (or raw public key) the Requester should

authenticate against is specified by the Responder via the SlotID field in KEY_EXCHANGE_RSP , which precedes the

aforementioned encapsulated messages. This means that a Responder authenticating a Requester whose

certificates it has not obtained in a previous interaction, using a slot other than the default (slot 0), has no way of

knowing in advance which SlotID value to use.

428 To address this case, the Responder explicitly designates the certificate chain to be used via the final

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 93

https://tools.ietf.org/html/rfc2104

ENCAPSULATED_RESPONSE_ACK request issued inside the encapsulated request flow. Specifically, if either Bit 1 or 2 in

MutAuthRequested is set to 1 and SlotID is set to 0 , the Responder shall use a ENCAPSULATED_RESPONSE_ACK

request with Param2 = 0x02 and an 1-byte long Encapsulated Request field containing the SlotID value. This

shall be interpreted by the Requester as a valid request indicating the slot number to be used, and the SlotID field

in KEY_EXCHANGE_RSP shall be ignored.

429 If Bit 0 of MutAuthRequested is set, then mutual authentication shall be performed without exchanging any

messages between KEY_EXCHANGE_RSP and FINISH request. The certificate chain of the Requester is determined

by the value of SlotID . This is useful for Responders which have obtained a certificate chains of the Requester in a

previous interaction.

430 10.17 FINISH request and FINISH_RSP response messages

431 This request message shall complete the handshake between Requester and Responder initiated by a

KEY_EXCHANGE request. The purpose of the FINISH request and FINISH_RSP response messages is to provide key

confirmation, bind the identify of each party to the exchanged keys and protect the entire handshake against

manipulation by an active attacker. The FINISH request message format table shows the FINISH request message

format and the Successful FINISH_RSP response message format table shows the FINISH_RSP response message

format.

432 FINISH request message format

Offset Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE5 = FINISH

2 Param1 1
Bit 0 – If set, the Signature field is included. This bit shall be set when mutual authentication occurs.

All other bits reserved.

3 Param2 1

Slot ID. Only valid if Param1 = 0x01 , otherwise reserved. Slot number of the Requester Certificate

Chain being authenticated in Signature field. The value in this field shall be between 0 and 7

inclusive. It shall be 0xFF if the public key of the Requester was provisioned to the Responder

through other means.

4 Signature S

Signature over the transcript hash. S is the size of the asymmetric signing algorithm output the

Responder selected via the last ALGORITHMS response message using the private key of the leaf

certificate of the Requester. S is zero and field not present if Param1 = 0x00 . The construction of

the transcript hash is defined in Transcript Hash for FINISH signature, mutual authentication.

Security Protocol and Data Model (SPDM) Specification DSP0274

94 Published Version 1.1.2

Offset Field

Size

in

bytes

Value

4+S RequesterVerifyData H

This field shall be an HMAC of the transcript hash using the finished_key as the secret key and

using the negotiated hash algorithm as the hash function. For mutual authentication, the transcript

hash shall be the Transcript Hash for FINISH HMAC, mutual authentication. Otherwise, it shall be

the Transcript Hash for FINISH HMAC, Responder-only authentication. The finished_key shall

be derived from Request Direction Handshake Secret and is described in the finished_key

derivation clauses. HMAC is described in RFC 2104.

433 Successful FINISH_RSP response message format

Offset Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x65 = FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 ResponderVerifyData H

Conditional field.

If the Session Handshake Phase is encrypted and/or message authenticated (i.e., if either the

Requester or the Responder set HANDSHAKE_IN_THE_CLEAR_CAP to 0), this field shall be absent.

If both the Requester and Responder support HANDSHAKE_IN_THE_CLEAR_CAP field, this field shall

be of length H and it shall equal the HMAC of the transcript hash using finished_key as the

secret key and using the negotiated hash algorithm as the hash function. For mutual authentication,

the transcript shall be the Transcript Hash for FINISH_RSP HMAC, mutual authentication.

Otherwise, the transcript hash shall be the Transcript Hash for FINISH_RSP HMAC, Responder

Only authentication. The finished_key shall be derived from Response Direction Handshake

Secret and is described in the finished_key derivation clause. HMAC is described in RFC 2104.

434 10.17.1 Transcript hash calculation rules

435 The transcript hash is calculated by hashing the concatenation of the prescribed full messages or message fields in

order. For messages that are encrypted, the plaintext messages shall be used in calculating the transcript hash.

436 The notation [${message_name}] . ${field_name} is used, where:

• ${message_name} is the name of the request or response message.

• ${field_name} is the name of the field in the request or response message. The asterisk (*) means all fields

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 95

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

in that message, except from any conditional fields that are empty (for example KEY_EXCHANGE.OpaqueData).

437 Transcript hash for KEY_EXCHANGE_RSP signature

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].* except the `Signature` and `ResponderVerifyData` fields.

438 Transcript hash for KEY_EXCHANGE_RSP HMAC

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].* except the `ResponderVerifyData` field.

439 Transcript hash for FINISH signature, mutual authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. Hash of the specified certificate chain in DER format (i.e., FINISH Param2)
11. [FINISH].SPDM Header Fields

440 Transcript hash for FINISH HMAC, Responder-only authentication

1. [GET_VERSION].* (if issued)

Security Protocol and Data Model (SPDM) Specification DSP0274

96 Published Version 1.1.2

2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. [FINISH].SPDM Header Fields

441 Transcript hash for FINISH HMAC, mutual authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2).
11. [FINISH].SPDM Header Fields
12. [FINISH].Signature

442 Transcript hash for FINISH_RSP HMAC, Responder-only authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. [FINISH].*
11. [FINISH_RSP].SPDM Header fields

443 Transcript hash for FINISH_RSP HMAC, mutual authentication

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 97

4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2).
11. [FINISH].*
12. [FINISH_RSP].SPDM Header fields

444 When multiple session keys are being established between the same Requester and Responder pair, Signature over

Transcript HASH during FINISH request is computed using only the corresponding KEY_EXCHANGE,

KEY_EXCHANGE_RSP and FINISH request parameters.

445 10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response

messages

446 The Pre-Shared Key (PSK) key exchange scheme provides an option for a Requester and a Responder to perform

mutual authentication and session key establishment with symmetric-key cryptography. This option is especially

useful for endpoints that do not support asymmetric-key cryptography or certificate processing. This option can also

be leveraged to expedite the session key establishment, even if asymmetric-key cryptography is supported.

447 This option requires the Requester and the Responder to have prior knowledge of a common PSK before the

handshake. Essentially, the PSK serves as a mutual authentication credential and the base of the session key

establishment. As such, only the two endpoints and potentially a trusted third party that provisions the PSK to the two

endpoints may know the value of the PSK.

448 A Requester may be paired with multiple Responders. Likewise, a Responder may be paired with multiple

Requesters. A pair of Requester and Responder may be provisioned with one or more PSKs. If both endpoints can

act as Requester or Responder, then the endpoints shall use different PSKs for each role.

449 An endpoint may act as a Requester to one device and simultaneously a Responder to another device. It is the

responsibility of the transport layer to identify the peer and establish communication between the two endpoints,

before the PSK-based session key exchange starts.

450 The PSK may be provisioned in a trusted environment, for example, during the secure manufacturing process. In an

untrusted environment, the PSK may be agreed upon between the two endpoints using a secure protocol. The

mechanism for PSK provisioning is out of scope of this specification. The size of the provisioned PSK is determined

by the requirement of security strength of the application, but should be at least 128 bits and recommended to be 256

bits or larger, to resist dictionary attacks especially when the Requester and Responder cannot both contribute

sufficient entropy during the exchange. During PSK provisioning, the capabilities of an endpoint and supported

algorithms may be communicated to the peer. Therefore, SPDM commands GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS are not required during session key establishment with the PSK option.

Security Protocol and Data Model (SPDM) Specification DSP0274

98 Published Version 1.1.2

451 Two message pairs are defined for this option: PSK_EXCHANGE / PSK_EXCHANGE_RSP and

PSK_FINISH / PSK_FINISH_RSP .

452 The PSK_EXCHANGE message carries three responsibilities:

1. Prompts the Responder to retrieve the specific PSK.

2. Exchanges contexts between the Requester and the Responder.

3. Proves to the Requester that the Responder knows the correct PSK and has derived the correct session

keys.

453 PSK_EXCHANGE: Example

454

NEGOTIATE_ALGORITHMS

ALGORITHMS

PSK_EXCHANGE

PSK_EXCHANGE_RSP

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

PSK_FINISH

PSK_FINISH_RSP

If supported

455 PSK_EXCHANGE request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 99

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE6 = PSK_EXCHANGE

2 Param1 1

Requested measurement summary hash Type:

0x0 . No measurement summary hash.

0x1 . TCB measurement hash.

0xFF . All measurements hash.

All other values reserved.

When Responder does not support any measurements, Requester shall set this

value to 0x0 .

3 Param2 1 Reserved.

4 ReqSessionID 2

Two-byte Requester contribution to allow construction of a unique four-byte session

ID between a Requester-Responder pair. The final session ID = Concatenate

(ReqSessionID, RspSessionID).

6 P 2 Length of PSKHint in bytes.

8 R 2
Length of RequesterContext in bytes. R shall be equal to or greater than H, where H

is the size of the underlying HMAC used in the context of the Requester.

10 OpaqueDataLength 2 Length of OpaqueData in bytes.

12 PSKHint P Information required by the Responder to retrieve the PSK. Optional.

12 + P RequesterContext R

The context of the Requester. Shall include a nonce (random number or monotonic

counter) of at least 32 bytes and optionally the information belonging to the

Requester.

12 + P

+ R
OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent by the Requester is used to indicate any

parameters that Requester wishes to pass to the Responder as part of PSK-based

key exchange.

456 The field PSKHint is optional (absent if P is set to 0). It is introduced to address two scenarios:

• The Responder is provisioned with multiple PSKs and stores them in secure storage. The Requester uses

PSKHint as an identifier to specify which PSK will be used in this session.

• The Responder does not store the value of the PSK, but can derive the PSK using PSKHint. For example, if the

Responder has an immutable UDS (Unique Device Secret) in fuses, then during provisioning, a PSK may be

derived from the UDS or its derivative and a non-secret salt known by the Requester. During session key

establishment, the same salt is sent to the Responder in PSKHint of PSK_EXCHANGE. This mechanism allows

Security Protocol and Data Model (SPDM) Specification DSP0274

100 Published Version 1.1.2

the Responder to support any number of PSKs, without consuming secure storage.

457 The RequesterContext is the contribution of the Requester to session key derivation. It shall contain a nonce of at

least 32 bytes to make sure that the derived session keys are ephemeral to mitigate against replay attacks. It is

recommended that the Requester use random number as the nonce. If a random number generator is not available,

the Requester may use a monotonic counter with protection against reset attacks. The RequesterContext may also

contain other information from the Requester.

458 Upon receiving PSK_EXCHANGE request, the Responder:

1. Generates PSK from PSKHint, if necessary.

2. Generates ResponderContext, if supported.

3. Derives the finished_key of the Responder by following Key Schedule.

4. Constructs PSK_EXCHANGE_RSP response message and sends to the Requester.

459 PSK_EXCHANGE_RSP response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x66 = PSK_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if Heartbeat is not supported.

Otherwise, the value shall be in units of seconds. Zero is a legal

value if Heartbeat is supported, but means that a heartbeat is not

desired on this session.

3 Param2 1 Reserved.

4 RspSessionID 2

Two-byte Responder contribution to allow construction of a unique

four-byte session ID between a Requester-Responder pair. The final

session ID = Concatenate (ReqSessionID, RspSessionID).

6 Reserved 2 Reserved.

8 Q 2 Length of ResponderContext in bytes.

10 OpaqueDataLength 2 Length of OpaqueData in bytes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 101

Offsets Field Size in bytes Value

12 MeasurementSummaryHash H

When the Responder does not support measurements

(MEAS_CAP=00b in CAPABILITIES response) or requested

Param1 =0, this field shall be absent.

When the requested Param1 =1, this field shall be the combined

hash of Measurements of all measurable components considered to

be in the TCB required to generate this response, computed as

hash(Concatenation(MeasurementBlock[0], MeasurementBlock[1],

...)) where MeasurementBlock[x] denotes a measurement of an

element in the TCB. Measurements are concatenated in ascending

order based on their measurement index.

When the requested Param1 =1 and there are no measurable

components in the TCB required to generate this response, this field

shall be 0 .

When requested Param1=0xFF , this field is computed as the

hash(Concatenation(MeasurementBlock[0], MeasurementBlock[1],

..., MeasurementBlock[n])) of all supported measurement blocks

available in the measurement index range 0x01 - 0xFE ,

concatenated in ascending index order. Indices with no associated

measurements shall not be included in the hash calculation.

12 + H ResponderContext Q
Context of the Responder. Optional. If present, shall include a nonce

and/or information belonging to the Responder.

12 + H + Q OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent by the Responder is used

to indicate any parameters that Responder wishes to pass to the

Requester as part of PSK-based key exchange.

12 + H + Q +

OpaqueDataLength
ResponderVerifyData H

Data to be verified by the Requester using the finished_key of the

Responder.

460 The ResponderContext is the contribution of the Responder to session key derivation. It should contain a nonce

(random number or monotonic counter) and other information of the Responder. Because the Responder may be a

constrained device that is not able to generate a nonce, ResponderContext is optional. However, the Responder is

required to use ResponderContext if it can generate a nonce.

461 It should be noted that the nonce in ResponderContext is critical for anti-replay. If a nonce is not present in

ResponderContext, then the Responder is not challenging the Requester for real-time knowledge of PSK. Such a

session is subject to replay attacks - a man-in-the-middle attacker could record and replay prior PSK_EXCHANGE

and PSK_FINISH messages and set up a session with the Responder. But the bogus session would not leak secrets,

so long as the PSK or session keys of the prior replayed session are not compromised.

462 If ResponderContext is absent, such as when PSK_CAP in the CAPABILITIES of the Responder is 01b , the

Requester shall not send PSK_FINISH , because the session keys are solely determined by the Requester and the

Session immediately enters the Application Phase. If and only the ResponderContext is present in the response,

Security Protocol and Data Model (SPDM) Specification DSP0274

102 Published Version 1.1.2

such as when PSK_CAP in the CAPABILITIES of the Responder is 10b , the Requester shall send PSK_FINISH with

RequesterVerifyData to prove that it has derived correct session keys.

463 To calculate ResponderVerifyData , the Responder calculates a HMAC. The HMAC key is the finished_key of

the Responder. The data is the hash of the concatenation of specific messages, listed in ResponderVerifyData

messages, needed to fully establish the new session between the Requester and the Responder. For messages that

are encrypted, the plaintext messages shall be used in calculating the hash.

464 ResponderVerifyData messages

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. [PSK_EXCHANGE].*
8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

465 Upon receiving PSK_EXCHANGE_RSP, the Requester:

1. Derives the finished_key of the Responder by following Key Schedule.

2. Verify ResponderVerifyData by calculating the HMAC in the same manner as the Responder. If

verification fails, the Requester aborts the session.

3. If the Responder contributes to session key derivation, such as when PSK_CAP in the CAPABILITIES of

the Responder is 10b , construct PSK_FINISH request and send to the Responder.

466 10.19 PSK_FINISH request and PSK_FINISH_RSP response messages

467 The PSK_FINISH request proves to the Responder that the Requester knows the PSK and has derived the correct

session keys. This is achieved by an HMAC value calculated with the finished_key of the Requester and

messages of this session. The Requester shall send the PSK_FINISH only if ResponderContext is present in

PSK_EXCHANGE_RSP.

468 PSK_FINISH request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE7 = PSK_FINISH

2 Param1 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 103

Offsets Field Size in bytes Value

3 Param2 1 Reserved.

4 RequesterVerifyData H Data to be verified by the Responder by using the finished_key of the Requester.

469 To calculate RequesterVerifyData, the Requester calculates a HMAC. The key is the finished_key of the

Requester, as described in Key Schedule. The data is the hash of the concatenation of all messages sent so far

between the Requester and the Responder. For messages that are encrypted, the plaintext messages shall be used

in calculating the hash.

1. [GET_VERSION].* (if issued)
2. [VERSION].* (if issued)
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. [PSK_EXCHANGE].*
8. [PSK_EXCHANGE_RSP].*
9. [PSK_FINISH].* except the RequesterVerifyData field

470 Upon receiving PSK_FINISH request, the Responder derives the finished_key of the Requester and calculates the

HMAC independently in the same manner and verifies the result matches RequesterVerifyData. If verified, the

Responder constructs PSK_FINISH_RSP response and sends to the Requester. Otherwise, the Responder sends

ERROR response with error code InvalidRequest to the Requester.

471 Successful PSK_FINISH_RSP response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x67 = PSK_FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

472 10.20 HEARTBEAT request and HEARTBEAT_ACK response messages

473 This request shall keep a session alive if HEARTBEAT is supported by both the Requester and Responder. The

HEARTBEAT request shall be sent periodically as indicated in HeartbeatPeriod in either KEY_EXCHANGE_RSP or

PSK_EXCHANGE_RSP response messages. The Responder shall terminate the session if session traffic is not received

Security Protocol and Data Model (SPDM) Specification DSP0274

104 Published Version 1.1.2

in twice HeartbeatPeriod . Likewise, the Requester shall terminate the session if session traffic, including ERROR

response, is not received in twice HeartbeatPeriod . Session traffic includes encrypted data at the transport layer.

How SPDM is informed of encrypted data at the transport layer is outside of the scope of this specification. The

Requester may retry HEARTBEAT requests.

474 The timer for the Heartbeat period shall start at the transmission, for Responders, or reception, for Requester, of

either the FINISH_RSP or PSK_FINISH_RSP response messages. When determining the value of HeartbeatPeriod,

the Responder should ensure this value is sufficiently greater than T1 .

475 For further details of session termination, see Session termination phase.

476 The HEARTBEAT request message format describes the message format.

477 HEARTBEAT request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE8 = HEARTBEAT Request

2 Param1 1 Reserved.

3 Param2 1 Reserved.

478 The HEARTBEAT_ACK response message formatdescribes the format for the Heartbeat Response.

479 HEARTBEAT_ACK response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x68 = HEARTBEAT_ACK Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

480 10.20.1 Heartbeat additional information

481 The transport layer may allow the HEARTBEAT request to be sent from the Responder to the Requester. This is

recommended for transports capable of asynchronous bidirectional communication.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 105

482 10.21 KEY_UPDATE request and KEY_UPDATE_ACK response

messages

483 To update session keys, this request shall be used. There are many reasons for doing this but an important one is

when the per-record nonce will soon reach its maximum value and rollover. The KEY_UPDATE request can be

issued by the Responder as well using the GET_ENCAPSULATED_REQUEST mechanism. A KEY_UPDATE

request shall update session keys in the direction of the request only. Because the Responder can also send this

request, it is possible that two simultaneous key updates, one for each direction, can occur. However, only one

KEY_UPDATE request for a single direction shall occur. Until the session key update synchronization successfully

completes, subsequent KEY_UPDATE request for the same direction shall be considered a retry of the original

KEY_UPDATE request.

484 KEY_UPDATE request message format

Offsets Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE9 = KEY_UPDATE Request

2 Param1 1 Key Operation. See KEY_UPDATE Operations Table.

3 Param2 1
Tag. This field shall contain a unique number to aid the responder in differentiating between the

original and retry request. A retry request shall contain the same tag number as the original.

485 KEY_UPDATE_ACK response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x69 = KEY_UPDATE_ACK Response

2 Param1 1 Key Operation. This field shall reflect the Key Operation field of the request.

3 Param2 1 Tag. This field shall reflect the Tag number in the KEY_UPDATE request.

486 KEY_UPDATE operations

Security Protocol and Data Model (SPDM) Specification DSP0274

106 Published Version 1.1.2

Value Operation Description

0 Reserved Reserved

1 UpdateKey Update the single-direction key.

2 UpdateAllKeys Update keys for both directions.

3 VerifyNewKey Ensure the key update is successful and the old keys can be safely discarded.

4 - 255 Reserved Reserved

487 10.21.1 Session key update synchronization

488 For clarity, in the key update process, the term, sender, means the SPDM endpoint that issued the KEY_UPDATE

request and the term, receiver, means the SPDM endpoint that received the KEY_UPDATE request. To ensure the key

update process is seamless while still allowing the transmission and reception of records, both sender and receiver

shall follow the prescribed method described in this clause.

489 The data transport layer shall ensure that data transfer during key updates is managed in such a way that the correct

keys are used before, during, and after the key update operation. How this is accomplished by the data transport

layer is outside of the scope of this specification.

490 Both the sender and the receiver shall derive the new keys as detailed in Major secrets update.

491 The sender shall not use the new transmit key until after reception of the KEY_UPDATE_ACK response.

492 The sender and receiver shall use the new key on the KEY_UPDATE request with VerifyNewKey command and all

subsequent commands until another key update is performed.

493 In the case of KEY_UPDATE request with UpdateAllKeys , the receiver shall use the new transmit key for the

KEY_UPDATE_ACK response. The KEY_UPDATE request with UpdateAllKeys should only be used with physical

transports that are single master to ensure that simultaneous UpdateAllKeys requests do not occur.

494 If the sender has not received KEY_UPDATE_ACK , the sender may retry or end the session. The sender shall not

proceed to the next step until successfully receiving the corresponding KEY_UPDATE_ACK .

495 Upon the successful reception of the KEY_UPDATE_ACK , the sender shall transmit a KEY_UPDATE request with

VerifyNewKey operation using the new session keys. The sender may retry until the corresponding

KEY_UPDATE_ACK response is received. However, the sender shall be prohibited, at this point, from restarting this

process or going back to a previous step. Its only recourse in error handling is either to retry the same request or to

terminate the session. Upon successful reception of the KEY_UPDATE with VerifyNewKey operation, the receiver

can now discard the old session keys. After the sender successfully receives the corresponding KEY_UPDATE_ACK ,

the transport layer may start using the new keys.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 107

496 In certain scenarios, the receiver may need additional time to process the KEY_UPDATE request such as processing

data already in its buffer. Thus, the receiver may reply with an ERROR message with ErrorCode=Busy . The sender

should retry the request after a reasonable period of time with a reasonable amount of retries to prevent premature

session termination.

497 Finally, it bears repeating that a key update in one direction can happen simultaneously with a key update in the

opposite direction. Still, the aforementioned synchronization process occurs independently but simultaneously for

each direction.

498 The KEY_UPDATE protocol example flow figure illustrates a typical key update initiated by the Requester to update

its secret. In this example, the Responder and Requester are both capable of message authentication and

encryption.

499 KEY_UPDATE protocol example flow

Security Protocol and Data Model (SPDM) Specification DSP0274

108 Published Version 1.1.2

500

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateKey,

Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateKey,

Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3
]]

Requester Responder

S3S2 S3S2

S
2,new

Key Operation == VerifyNewKey,

Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,

Tag == 0x2

 { KEY_UPDATE_ACK }::[[S
3
]]

S2

S2

{ Application Data }

{ Application Data }

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and Authenticated
by S

2,new
 and S

3
 depending

on direction.

Legend:

Authenticated and
Encrypted Session

S
2,new

Notice new
secrets used!

501 The KEY_UPDATE protocol change all keys example flow illustrates a typical key update initiated by the Requester

to update all secrets. In this example, the Responder and Requester are both capable of message authentication and

encryption.

502 KEY_UPDATE protocol change all keys example flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 109

503

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateAllKeys,

Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateAllKeys,

Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3,new

]]

Requester Responder

S3S2 S3S2

Key Operation == VerifyNewKey,

Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,

Tag == 0x2

S2

S2

{ Application Data }

{ Application Data }

Encrypted and authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and authenticated
by S

2,new
 and S

3,new
depending

on direction.

Legend:

Authenticated and
Encrypted Session

Notice new
secrets used!

S
3,new

S
2,new S

3,new
S

2,new

S3
S3

 { KEY_UPDATE_ACK}::[[S
3,new

]]

504 10.21.2 KEY_UPDATE transport allowances

505 On some transports, bidirectional communication can occur asynchronously. On such transports, the transport may

allow or disallow the KEY_UPDATE to be sent asynchronously without using the GET_ENCAPSULATED_REQUEST

Security Protocol and Data Model (SPDM) Specification DSP0274

110 Published Version 1.1.2

mechanism. The actual method to use should be defined by the transport and is outside the scope of this

specification.

506 The KEY_UPDATE protocol example flow 2 illustrates a key update over a physical transport that has a limitation

whereby only a single device (often called the master) is allowed to initiate all transactions on that bus. This physical

transport specifies that a Responder shall alert the Requester via a sideband mechanism and to utilize the

GET_ENCAPSULATED_REQUEST mechanism to fulfill SPDM-related requirements. Also, in this same example, the

Requester and Responder are both capable of encryption and message authentication.

507 KEY_UPDATE protocol example flow 2

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 111

508

…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

Request == KEY_UPDATE

Key Operation == UpdateKey,

Tag == 0x1

{ ENCAPSULATED_REQUEST }
::[[S3]]

Response == KEY_UPDATE_ACK

Key Operation == UpdateKey,

Tag == 0x1

{ DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

Requester Responder

S3S2 S3S2

S3

S3

{ Application Data }

{ Application Data }

Responder seeks attention from
Requester via Transport-specific

Methodology

{ GET_ENCAPSULATED_REQUEST }
::[[S2]]

Request == KEY_UPDATE

Key Operation == VerifyNewKey,

Tag == 0x2

{ ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Response == KEY_UPDATE_ACK

Key Operation == VerifyNewKey,

Tag == 0x2

 { DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

No More Requests

{ ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Legend:

Authenticated and
Encrypted Session

{ FINISH_RSP }::[[S
1
]]

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

S
3,new

S
3,new

Encrypted and
Authenticated by S

2

and S
3,new

 depending
on direction.

Notice new
secrets used!

Security Protocol and Data Model (SPDM) Specification DSP0274

112 Published Version 1.1.2

509 10.22 GET_ENCAPSULATED_REQUEST request and

ENCAPSULATED_REQUEST response messages

510 In certain use cases, such as mutual authentication, the Responder needs the ability to issue its own SPDM request

messages to the Requester. Certain transports prohibit the Responder from asynchronously sending out data on that

transport. Cases like these are addressed through message encapsulation, which preserves the roles of Requester

and Responder as far as the transport is concerned, but enables the Responder to issue its own requests to the

Requester. Message encapsulation is only allowed in certain scenarios. The Mutual authentication key exchange

figure and Optimized mutual authentication key exchange example figure are examples that illustrate the use of this

scheme.

511 A Requester issues a GET_ENCAPSULATED_REQUEST request message to retrieve an encapsulated SPDM request

message from the Responder. The response to this message (ENCAPSULATED_REQUEST) encapsulates the SPDM

request message as if the Responder was acting as a Requester. The request message format is described in

GET_ENCAPSULATED_REQUEST request format table. The Responder shall use the same SPDM version the Requester

used.

512 10.22.1 Encapsulated request flow

513 The encapsulated request flow starts with the Requester sending a GET_ENCAPSULATED_REQUEST message and ends

with an ENCAPSULATED_RESPONSE_ACK that carries no more encapsulated requests. The

GET_ENCAPSULATED_REQUEST shall only be issued once with the exception of retries. This is also illustrated in Mutual

authentication key exchange.

514 When the Requester issues a GET_ENCAPSULATED_REQUEST , the encapsulated request flow shall start. Upon the

successful reception of the ENCAPSULATED_REQUEST and when the encapsulated response is ready, the Requester

shall continue the flow by issuing the DELIVER_ENCAPSULATED_RESPONSE . During this period, with the exception of

GET_VERSION , RESPOND_IF_READY and DELIVER_ENCAPSULATED_RESPONSE , the Requester shall not issue any other

message. If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY or

GET_VERSION , the Responder should respond with ErrorCode=RequestInFlight .

515 10.22.2 Optimized encapsulated request flow

516 The optimized encapsulated request flow is similar to the encapsulated request flow but without the need of

GET_ENCAPSULATED_REQUEST . This is because the encapsulated request accompanies one of the Session-Secrets-

Exchange responses; thereby, removing the necessity on the Requester from issuing a

GET_ENCAPSULATED_REQUEST . When the Responder includes an encapsulated requests with a Session-Secrets-

Exchange response, the optimized encapsulated request flow shall start. This is also illustrated in Optimized mutual

authentication key exchange.

517 When the Requester successfully receives a Session-Secrets-Exchange response with an included encapsulated

request, the Requester shall send a DELIVER_ENCAPSULATED_RESPONSE after processing the encapsulated request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 113

The Requester shall not issue any other requests except for DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY

and GET_VERSION . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE ,

RESPOND_IF_READY , GET_VERSION or Session-Secrets-Exchange, then the Responder should respond with

ErrorCode=RequestInFlight .

518 Mutual authentication key exchange example

Security Protocol and Data Model (SPDM) Specification DSP0274

114 Published Version 1.1.2

519

MUTUAL AUTH

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

KEY_EXCHANGE

KEY_EXCHANGE_RSP()

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

FINISH

FINISH_RSP

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

Encapsulated

Request

Flow

520 Optimized mutual authentication key exchange example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 115

521

ResponderRequester

MUTUAL AUTH

ENCAPSULATED_RESPONSE_ACK()

DELIVER_ENCAPSULATED_RESPONSE(CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK(GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE(DIGEST)

KEY_EXCHANGE_RSP+GET_DIGEST

KEY_EXCHANGE

CERTIFICATE

GET_CERTIFICATE

DIGESTS

GET_DIGESTS

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

FINISH_RSP

FINISH

Optimized

Encapsulated

Request

Flow

522 GET_ENCAPSULATED_REQUEST request message format

Security Protocol and Data Model (SPDM) Specification DSP0274

116 Published Version 1.1.2

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xEA = GET_ENCAPSULATED_REQUEST

2 Param1 1 Reserved.

3 Param2 1 Reserved.

523 The ENCAPSULATED_REQUEST response message format describes the format this response.

524 ENCAPSULATED_REQUEST response message format

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x6A = ENCAPSULATED_REQUEST Response

2 Param1 1

Request ID.

This field should be unique to help the Responder match response to request.

3 Param2 1 Reserved.

4 Encapsulated Request Variable

SPDM Request Message.

The value of this field shall represent a valid SPDM request message. The length of this field is

dependent on the SPDM Request message. The field shall start with the SPDMVersion field.

The SPDMVersion field of the Encapsulated Request shall be the same as SPDMVersion of

the ENCAPSULATED_REQUEST response. Both GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid requests and the Requester should respond

with ErrorCode=UnexpectedRequest if these requests are encapsulated.

525 10.22.3 Triggering GET_ENCAPSULATED_REQUEST

526 Once a session has been established, the Responder may wish to send a request asynchronously such as a

KEY_UPDATE request but cannot due to the limitations of the physical bus or transport protocol. In such a scenario,

the transport and/or physical layer is responsible for defining an alerting mechanism for the Requester. Upon

receiving the alert, the Requester shall issue a GET_ENCAPSULATED_REQUEST to the Responder.

527 10.22.4 Additional constraints

528 The GET_ENCAPSULATED_REQUEST and ENCAPSULATED_REQUEST messages shall only be allowed to encapsulate

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 117

certain requests in certain scenarios. For details on these constraints, see the Session, Basic mutual authentication,

and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

529 10.23 DELIVER_ENCAPSULATED_RESPONSE request and

ENCAPSULATED_RESPONSE_ACK response messages

530 As a Requester processes an encapsulated request, it needs a mechanism to deliver back the corresponding

response. That mechanism shall be the DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK

messages. The DELIVER_ENCAPSULATED_RESPONSE , which is an SPDM request, encapsulates the response and

delivers it to the Responder. The ENCAPSULATED_RESPONSE_ACK , which is an SPDM response, acknowledges the

reception of the encapsulated response.

531 Furthermore, if there are additional requests from the Responder, the Responder shall provide the next request in the

ENCAPSULATED_RESPONSE_ACK response message.

532 In an encapsulated request flow and after the successful reception of the first encapsulated request, the Requester

shall not send any other requests with the exception of DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY and

GET_VERSION . After the successful reception of the first DELIVER_ENCAPSULATED_RESPONSE and if a Responder

receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY or GET_VERSION , the

Responder should respond with ErrorCode=RequestInFlight .

533 If Param2 of ENCAPSULATED_RESPONSE_ACK is set to 0x00 or 0x02 then this shall be the final encapsulated flow

message that the Responder shall issue and the encapsulated flow shall be completed.

534 The timing parameters for the response shall depend on the encapsulated request. This enables the Responder to

process the response before delivering the next request. See Additional Information for more details.

535 The request message format is described in DELIVER_ENCAPSULATED_RESPONSE Request Message Format Table.

536 DELIVER_ENCAPSULATED_RESPONSE request message format

Offsets Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xEB = DELIVER_ENCAPSULATED_RESPONSE Request

2 Param1 1

Request ID.

The Requester shall use the same Request ID as provided by the Responder in the

corresponding ENCAPSULATED_REQUEST or ENCAPSULATED_RESPONSE_ACK .

3 Param2 1 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

118 Published Version 1.1.2

Offsets Field
Size

(bytes)
Value

4
Encapsulated

Response
Variable

SPDM Response Message.

The value of this field shall represent a valid SPDM response message. The length of this field

is dependent on the SPDM Response message. The field shall start with the SPDMVersion

field. The SPDMVersion field of the Encapsulated Response shall be the same as

SPDMVersion of the DELIVER_ENCAPSULATED_RESPONSE request. Both ENCAPSULATED_REQUEST

and ENCAPSULATED_RESPONSE_ACK shall be invalid responses and the Responder should

respond with ErrorCode=InvalidResponseCode if these responses are encapsulated.

537 The ENCAPSULATED_RESPONSE_ACK response message format describes the response message format.

538 ENCAPSULATED_RESPONSE_ACK response message format

Offsets Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x6B = ENCAPSULATED_RESPONSE_ACK

2 Param1 1

Request ID.

If a request is encapsulated (Param2 = 0x01) this field should contain a unique, non-zero

number to help the Responder match response to request. Otherwise, this field shall be 0x00 .

3 Param2 1

Payload Type.

If set to 0x00 no request message is encapsulated and the Encapsulated_Request field is

absent.

If set to 0x01 the Encapsulated_Request field follows.

If set to 0x02 a 1-byte Encapsulated_Request field follows containing the slot number

corresponding to the certificate chain the Requester shall authenticate against.

All other values Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 119

Offsets Field
Size

(bytes)
Value

4
Encapsulated

Request
Variable

If Param2 = 0x01 , the value of this field shall represent a valid SPDM request message. The

length of this field is dependent on the SPDM Request message. The field shall start with the

SPDMVersion field. The SPDMVersion field of the Encapsulated Request shall be the same

as SPDMVersion of the ENCAPSULATED_REQUEST response. Both GET_ENCAPSULATED_REQUEST

and DELIVER_ENCAPSULATED_RESPONSE shall be invalid requests and the Requester shall

respond with ErrorCode=UnexpectedRequest if these requests are encapsulated.

If Param2 = 0x02 , the value of this filed shall contain the slot number corresponding to the

certificate chain the Requester shall authenticate against. The field size shall be 1 Byte.

If Param2 = 0x00 , this field shall be absent.

539 10.23.1 Additional information

540 Using a unique request ID is highly recommended to aid the Responder in avoiding confusion between a retry and a

new DELIVER_ENCAPSULATED_RESPONSE message. For example, if the Responder sent the

ENCAPSULATED_RESPONSE_ACK with a new encapsulated request and that failed in transmission over the wire, the

Requester would send a retry but that retry would still contain the response to the previous encapsulated request.

Without a different request ID, the Responder might mistake the retried DELIVER_ENCAPSULATED_RESPONSE for a new

request when, in fact, it was a retry. This mistake may cause additional mistakes to occur.

541 In general, the response timing for ENCAPSULATED_RESP_ACK shall be subject to the same timing constraints as the

encapsulated request. For example, if the encapsulated request was CHALLENGE_AUTH , the Responder, too, shall

adhere to CT timing rules when it has a subsequent request. The Responder may return

ErrorCode=ResponseNotReady .

542 The DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages shall only be allowed to

encapsulate certain requests in certain scenarios. For details on these constraints, see Session, Basic mutual

authentication, and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

543 10.24 END_SESSION request and END_SESSION_ACK response

messages

544 This request shall terminate a session. Further communication between the Requester and Responder using the

same session ID shall be prohibited. See Session termination phase clause for details.

545 The END_SESSION request message format table describes this format.

546 END_SESSION request message format

Security Protocol and Data Model (SPDM) Specification DSP0274

120 Published Version 1.1.2

Offset Value Field Description

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xEC = END_SESSION

2 Param1 1 See the End session request attributes table.

3 Param2 1 Reserved.

547 End session request attributes

Offset Value Field Description

0 0
Negotiated State

Preservation Indicator

If the Responder supports Negotiated State caching (CACHE_CAP=1), the Responder shall

preserve the Negotiated State.

0 1
Negotiated State

Preservation Indicator

If the Responder supports Negotiated State caching, the Responder shall also clear the

Negotiated State as part of session termination.

[7:1] Reserved Reserved Reserved.

548 The END_SESSION_ACK response message format describes the response message.

549 END_SESSION_ACK response message format

Offset Value Field Description

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x6C = END_SESSION_ACK

2 Param1 1 Reserved.

3 Param2 1 Reserved.

550 END_SESSION protocol flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 121

551

ResponderRequester

KEY_EXCHANGE

KEY_EXCHANGE_RSP

FINISH(K1)

FINISH_RSP(K1)

END_SESSION(K1)

END_SESSION_ACK(K1)

Enables authenticated and/or
 encrypted data transfer (K1)

Security Protocol and Data Model (SPDM) Specification DSP0274

122 Published Version 1.1.2

552 11 Session

553 Sessions enable a Requester and Responder to have multiple channels of communication. More importantly, it

enables a Requester and Responder to build a secure communication channel with cryptographic information that is

bound ephemerally. Specifically, an SPDM session provides either or both of encryption or message authentication.

554 There are three phases in a session, as Session phases shows: the handshake, the application, and termination.

555 Session phases

556

Requester

END_SESSION and END_SESSION_ACK

Session-Secrets-Exchange

Session Handshake Phase

Application Phase

Legend

Session Terminated!

Responder

Secure
Session

Session-Secrets-Finish

557 11.1 Session handshake phase

558 The session handshake phase begins with either KEY_EXCHANGE or PSK_EXCHANGE . This phase also allows for

authentication of the Requester if the Responder indicated that earlier in ALGORITHMS response. Furthermore, this

phase of the session uses the handshake secrets to secure the communication as described in the Key Schedule.

559 The purpose of this phase is to build trust between the Responder and Requester, first, before either side can send

application data. Additionally, it also ensures the integrity of the handshake and to a certain degree, synchronicity

with the derived handshake secrets.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 123

560 In this phase of the session, GET_ENCAPSULATED_REQUEST and DELIVER_ENCAPSULATED_RESPONSE shall be used to

obtain requests from the Responder to complete the authentication of the Requester, if the Responder indicated this

in ALGORITHMS message. The only requests allowed to be encapsulated shall be GET_DIGESTS and

GET_CERTIFICATE . The Requester shall provide a signature in the FINISH request, as the FINISH request and

FINISH_RSP response messages clause describes.

561 If an error occurs in this phase with ErrorCode = DecryptError , the session shall immediately terminate and

proceed to session termination.

562 A successful handshake ends with either FINISH_RSP or PSK_FINISH_RSP and the application phase begins.

563 11.2 Application phase

564 Once the handshake completes and all validation passes, the session reaches the application phase where either

the Responder and Requester may send application data.

565 The application phase ends when either the HEARTBEAT requirements fail, END_SESSION or an ERROR message

with ErrorCode = DecryptError . The next phase is the session termination phase.

566 11.3 Session termination phase

567 This phase signals the end of the Application phase and the enactment of internal clean-up procedures by the

endpoints. Requesters and Responders may have various reasons for terminating a session, outside the scope of

this specification.

568 SPDM provides the END_SESSION / END_SESSION_ACK message pair to explicitly trigger the session termination

phase if needed, but depending on the transport it may simply be an internal phase with no explicit SPDM messages

sent or received.

569 When a session terminates, both Requester and Responder shall destroy or clean up all session secrets such as

derived major secrets, DHE secrets and encryption keys. Endpoints may have other internal data associated with a

session that they should also clean up.

570 11.4 Simultaneous active sessions

571 If a Responder supports key exchanges, the maximum number of simultaneous active sessions shall be a minimum

of one. If the KEY_EXCHANGE or PSK_EXCHANGE request will exceed the maximum number of simultaneous active

sessions of the Responder, the Responder shall respond with an Errorcode = SessionLimitExceeded .

572 This specification does not prohibit concurrent sessions in which the same Requester and Responder reverses role.

For example, SPDM endpoint ABC, acting as a Requester, can establish a session to SPDM endpoint XYZ, which is

acting as a Responder. At the same time, SPDM endpoint XYZ, now acting as a Requester, can establish a session

Security Protocol and Data Model (SPDM) Specification DSP0274

124 Published Version 1.1.2

to SPDM endpoint ABC, now acting as a Responder. Since these two sessions are distinct and separate, the two

endpoints should ensure they do not mix sessions. To ensure proper session handling, each endpoint should ensure

their portion of the session IDs are unique at time of Session-Secrets-Exchange. This would form a final unique

session ID for that new session. Additionally, the endpoints may use information at the transport layer to further

ensure proper handling of sessions.

573 11.5 Records and session ID

574 When the session starts, the communication of secured data is done using records. A record represents a chunk or

unit of data that is either or both encrypted or authenticated. This data can be either an SPDM message or

application data. Usually, the record contains the session ID resulting from one of the Session-Secrets-Exchange

messages to aid both the Responder and Requester in binding the record to the respective derived session secrets.

575 The actual format and other details of a record is outside the scope of this specification. It is generally assumed that

the transport protocol will define the format and other details of the record.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 125

576 12 Key schedule

577 A key schedule describes how the various keys such as encryption keys used by a session are derived, and when

each key is used. The default SPDM key schedule makes heavy use of HMAC as defined by RFC2104 and HKDF-

Expand as described in RFC5869. SPDM defines the following additional functions:

BinConcat(Length, Version, Label, Context)

578 where BinConcat shall be the concatenation of binary data, in the order shown in BinConcat Details Table:

579 BinConcat details

Order Data Form Endianness Size

1 Length Binary Little 16 bits

2 Version Text Text 8 bytes

3 Label Text Text Variable

4 Context Binary Little Hash.Length

580 If Context is NULL, then BinConcat is the concatenation of the first three components only.

581 Version details

SPDM version Version text

SPDM 1.1 "spdm1.1 "

582 The HKDF-Expand function prototype, as used by the default SPDM key schedule, is as follows:

HKDF-Expand(secret, context, Hash.Length)

583 The HMAC-Hash function prototype is described as follows:

HMAC-Hash(salt, IKM);

Security Protocol and Data Model (SPDM) Specification DSP0274

126 Published Version 1.1.2

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc5869

584 where IKM is the Input Keying Material and HMAC-Hash uses HMAC as defined in RFC2104.

585 For HKDF-Expand and HMAC-Hash , the hash function shall be the selected hash function in ALGORITHMS response.

Hash.Length shall be the length of the output of the hash function selected by the ALGORITHMS response.

586 Both Responder and Requester shall use the key schedule shown in the Key Schedule Figure.

587 Key schedule

588

HMAC-Hash (Salt_0, _____)

Handshake-Secret

HKDF-Expand (Handshake-Secret, bin_str1, Hash.Length)
Request Direction
Handshake Secret

HKDF-Expand (Handshake-Secret, bin_str2, Hash.Length)
Response Direction Handshake

Secret

DHE Secret or Pre-shared Key

HKDF-Expand (Handshake-Secret, bin_str0, Hash.Length)

Master-Secret

HKDF-Expand (Master-Secret, bin_str3, Hash.Length) Requester Direction Data Secret

HKDF-Expand (Master-Secret, bin_str4, Hash.Length) Responder Direction Data Secret

HMAC-Hash (Salt_1, 0_filled)

Salt_1

HKDF-Expand (Master-Secret, bin_str8, Hash.Length)
Export Master Secret

589 In the figure, arrows going out of the box are outputs of that box. Arrows going into the box are inputs into the box

and point to the specific input parameter they are used in. All boxes represent a single function producing a single

output and are given a name for clarity.

590 The Key Schedule table accompanies the figure to complete the Key Schedule. The Responder and Requester shall

also adhere to the definition of this table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 127

https://tools.ietf.org/html/rfc2104

591 Key schedule

Variable Definition

Salt_0 A zero filled array of Hash.Length length.

0_filled A zero filled array of Hash.Length length.

bin_str0 BinConcat(Hash.Length, Version, "derived", NULL).

bin_str1 BinConcat(Hash.Length, Version, "req hs data", TH1).

bin_str2 BinConcat(Hash.Length, Version, "rsp hs data", TH1).

bin_str3 BinConcat(Hash.Length, Version, "req app data", TH2)

bin_str4 BinConcat(Hash.Length, Version, "rsp app data", TH2)

DHE Secret This shall be the secret derived from KEY_EXCHANGE/KEY_EXCHANGE_RSP

Pre-shared Key PSK

592 Note: With common hash functions, any label longer than 12 characters requires an additional iteration of the hash

function to compute. As in RFC8446 the labels defined above have all been chosen to fit within this limit.

593 12.1 Transcript hash in key derivation

594 There are two transcript hashes used in the key schedule, namely, TH1 and TH2.

595 12.2 TH1 definition

596 If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].* except the ResponderVerifyData field

Security Protocol and Data Model (SPDM) Specification DSP0274

128 Published Version 1.1.2

597 If the Requester and Responder used PSK_EXCHANGE/PSK_EXCHANGE_RSP to exchange initial keying information, then

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

598 12.3 TH2 definition

599 If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].*

10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2). (Valid only in mutual

authentication)

11. [FINISH].*

12. [FINISH_RSP].*

600 If the Requester and Responder used PSK_EXCHANGE/PSK_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 129

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].*

9. [PSK_FINISH].* (if issued)

10. [PSK_FINISH_RSP].* (if issued)

601 12.4 Key schedule major secrets

602 The key schedule produces four major secrets:

• Request-direction handshake secret (S0)

• Response-direction handshake secret (S1)

• Request-direction data secret (S2)

• Response-direction data secret (S3)

603 Each secret applies in a certain direction of transmission and only valid during a certain time frame. These four major

secrets, each, will be used to derive their respective encryption key and IV to be used in the AEAD function as

selected in the ALGORITHMS response.

604 12.4.1 Request-direction handshake secret

605 This secret shall only be used during the session handshake phase and shall be applied to all requests after

KEY_EXCHANGE or PSK_EXCHANGE up to and including FINISH or PSK_FINISH .

606 12.4.2 Response-direction handshake secret

607 This secret shall only be used during the session handshake phase and shall be applied to all responses after

KEY_EXCHANGE_RSP or PSK_EXCHANGE_RSP up to and including FINISH_RSP or PSK_FINISH_RSP .

608 12.4.3 Requester-direction data secret

609 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Requester to the Responder.

610 12.4.4 Responder-direction data secret

611 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Responder to the Requester.

612 The Secrets Usage Figure illustrates where each of the major secrets are used as described previously.

613 Secrets usage

Security Protocol and Data Model (SPDM) Specification DSP0274

130 Published Version 1.1.2

614

Secure
Session

Requester

Session Terminated!

Responder

S
0

S
2

S
1

S
3

Session Handshake Phase

Application Phase

Legend

END_SESSION
END_SESSION_ACK

Session-Secrets-Exchange Request
Session-Secrets-Exchange Response

Session-Secrets-Finish Request

Session-Secrets-Finish Response

615 12.5 Encryption key and IV derivation

616 For each key schedule major secret, the following function shall be applied to obtain the encryption key and IV value.

EncryptionKey = HDKF-Expand(major-secret, bin_str5, key_length);
IV = HKDF-Expand(major-secret, bin_str6, iv_length);

bin_str5 = BinConcat(key_length, Version, "key", NULL);
bin_str6 = BinConcat(iv_length, Version, "iv", NULL);

617 Both key_length and iv_length shall be the lengths associated with the selected AEAD algorithm in

ALGORITHMS message.

618 12.6 finished_key derivation

619 This key shall be used to compute the RequesterVerifyData and ResponderVerifyData fields used in various

SPDM messages. The key, finished_key is defined as follows:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 131

finished_key = HKDF-Expand(handshake-secret, bin_str7, Hash.Length);
bin_str7 = BinConcat(Hash.Length, Version, "finished", NULL);

620 The handshake-secret shall either be request-direction handshake secret or response-direction handshake secret.

621 12.7 Deriving additional keys from the Export Master Secret

622 After a successful SPDM key exchange, additional keys can be derived from the Export Master Secret. How keys are

derived is outside the scope of this specification.

Export Master Secret = HKDF-Expand(Master-Secret, bin_str8, Hash.Length);
bin_str8 = BinConcat(Hash.Length, Version, "exp master", TH2);

623 12.8 Major secrets update

624 The major secrets can be updated during an active session to avoid the overhead of closing down a session and

recreating the session. This is achieved by issuing the KEY_UPDATE request.

625 The major secrets are re-keyed as a result of this. To compute the new secret for each new major data secret, the

following algorithm shall be applied.

new_secret = HKDF-Expand(current_secret, bin_str9, Hash.Length);
bin_str9 = BinConcat(Hash.Length, Version, "traffic upd", NULL);

626 In computing the new secret, current_secret shall either be the current Requester-Direction Data Secret or

Responder-Direction Data Secret. As a consequence of updating these secrets, new encryption keys and salts shall

be derived from the new secrets and used immediately.

Security Protocol and Data Model (SPDM) Specification DSP0274

132 Published Version 1.1.2

627 13 Application data

628 SPDM utilizes authenticated encryption with associated data (AEAD) cipher algorithms in much the same way that

TLS 1.3 does to protect both the confidentiality and integrity of data that shall remain secret, as well as the integrity of

data that need to be transmitted in the clear, such as protocol headers, but shall be protected from manipulation.

AEAD algorithms provide both encryption and message authentication. Each algorithm specifies the details such as

the size of the nonce, the position and length of the MAC and many other factors to ensure a strong cryptographic

algorithm.

629 AEAD functions shall provide the following functions and comply with the requirements defined in RFC5116:

AEAD_Encrypt(encryption_key, nonce, associated_data, plaintext);
AEAD_Decrypt(encryption_key, nonce, associated_data, ciphertext);

630 where

Value Description

AEAD_Encrypt
Function that fully encrypts the plaintext , computes the MAC across both the associated_data and plaintext ,

and produces the ciphertext , which includes the MAC.

AEAD_Decrypt
Function that verifies the MAC and if validation is successful, fully decrypts the ciphertext and produces the original

plaintext .

encryption_key Derived encryption key for the respective direction. For details, see the Key schedule clause.

nonce Nonce computation. For details, see the Nonce derivation clause.

associated_data Associated data.

plaintext Data to encrypt.

ciphertext Data to decrypt.

631 13.1 Nonce derivation

632 Certain AEAD ciphers have specific requirements on nonce construction, as their security properties may be

compromised by the accidental reuse of a nonce value. Implementations should follow the requirements, such as

those provided in RFC5116 for nonce derivation.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 133

https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

633 14 ANNEX A (informative) TLS 1.3

634 This specification heavily models TLS 1.3. TLS 1.3 and consequently this specification assumes the transport layers

provide these capabilities or attributes:

• Reliability in transmission and reception of data.

• Transmission of data is either in order or the order of data can be reconstructed at reception.

635 While not all transports are created equal, if a transport cannot meet these capabilities, adoption of SPDM is still

possible. In these transports, this specification recommends DTLS 1.3, which at the time of this specification is still in

draft form.

Security Protocol and Data Model (SPDM) Specification DSP0274

134 Published Version 1.1.2

https://github.com/tlswg/dtls13-spec

636 15 ANNEX B (normative) Leaf certificate example

637 The Leaf certificate example shows an example leaf certificate:

638 Leaf certificate example

Data:
Version: 3 (0x2)
Serial Number: 8 (0x8)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C=CA, ST=NC, L=city, O=ACME, OU=ACME Devices, CN=CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 23:59:59 9999 GMT

Subject: C=US, ST=NC, O=ACME Widget Manufacturing, OU=ACME Widget Manufacturing Unit, CN=w0123456789
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:
e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:
5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:
ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:
23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:
52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:
a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:
1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:
ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:
98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:
a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:
95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:
70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:
a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:
2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:
66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:
01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:
e8:67

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:
otherName:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256
Signature Value:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 135

30:45:02:21:00:fc:8f:b0:ad:6f:2d:c3:2a:7e:92:6d:29:1d:
c7:fc:0d:48:b0:c6:39:5e:c8:76:d6:40:9a:12:46:c3:39:0e:
36:02:20:1a:ea:3a:59:ca:1e:bc:6d:6e:61:79:af:a2:05:7c:
7d:da:41:a9:45:6d:cb:04:49:43:e6:0b:a8:8d:cd:da:e

Security Protocol and Data Model (SPDM) Specification DSP0274

136 Published Version 1.1.2

639 16 ANNEX C (informative) Change log

640 16.1 Version 1.0.0 (2019-10-16)

• Initial Release

641 16.2 Version 1.1.0 (2020-07-15)

• Minor typographical fixes

• USB Authentication Specification 1.0 link updated

• Tables are no longer numbered. They are now named.

• Fix internal document links in SPDM response codes table.

• Added sentence to paragraph 97 to clarify on the potential to skip messages after a reset.

• Removed text at paragraph 181.

• Subject Alternative Name otherName field in Optional fields references DMTF OID section.

• DMTFOtherName definition changed to properly meet ASN.1 syntax.

• Text in figures are now searchable.

• Corrected example of a leaf certificate in Annex A.

• Minor edits to figures for clarity.

• New:

◦ Added Session support.

▪ Added SPDM request and response messages to support initiating, maintaining and terminating a

secure session.

▪ Added Key Schedule for session secrets derivation.

▪ Added Application Data to provide overview of how data is encrypted and authenticated in a session.

◦ Introduce new terms and definitions.

◦ Added Measurement Manifest to DMTFSpecMeasurementValueType .

◦ Added mutual authentication.

◦ Added Encapsulated request flow to support master-slave types of transports.

642 16.3 Version 1.1.1 (2021-05-12)

• Fix improper reference in DMTFSpecMeasurementValue field in "Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF" table.

• Certificate digests in DIGEST calculation clarified.

• Format of certificate in CertChain parameter of CERTIFICATE message clarified.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 137

• Validity period of X.509v3 certificate clarified in Required Fields

• Clarify which algorithms in NEGOTIATE_ALGORITHMS or ALGORITHMS are for signature generation or verification.

• Remove InvalidSession error code.

• Clarified transport responsibilities in PSK_EXCHANGE and PSK_EXCHANGE_RSP .

• Clarified the usage of MutAuthRequested field in KEY_EXCHANE_RSP .

• Added recommendation of PSK usage when an SPDM endpoint can be a Requester and Responder.

• Added recommendation for usage of RequesterContext in PSK scenarios.

• Clarified capabilities for Requester and Responder in GET_CAPABILITIES and CAPABILITIES messages.

• Clarified that plaintext messages are used when calculating the transcript hash.

• ERROR responses are no longer required in most error scenarios.

• In Sign()and Verify() operations, referenced the correct fields in ALGORITHMS .

• Clarify which key to use in Signature fields of KEY_EXCHANGE_RSP and FINISH .

• Clarify messages to hash for ResponderVerifyData in PSK_EXCHANGE_RSP .

643 16.4 Version 1.1.2 (2022-03-22)

• Fix typo and inconsistency in description of PSK_FINISH.

• Clarified measurement specification related fields in NEGOTIATE_ALGORITHMS and ALGORITHMS .

• Changed Measurement Summary Hash concatenation function inputs.

• Clarified minimum timing for HEARTBEAT request and HEARTBEAT_ACK response messages to be sufficiently

greater than T1 . Removed command specific guidance on retry timing.

• Clarify that Responder Timing measurements are measured under the assumption that the Responder can

access the bus.

• Clarified that ENCRYPT_CAP and MAC_CAP apply to all phases of a secure session.

• Clarified the relationship between MAC_CAP and ResponderVerifyData or RequesterVerifyData in Session-

Secret-Exchange and Session-Secret-Finish messages.

• Provide more description for HANDSHAKE_IN_THE_CLEAR_CAP in GET_CAPABILITIES and CAPABILITIES

messages.

• Clarified Offset and Length fields in GET_CERTIFICATE message.

• Clarified how retried messages affect transcript hash in Timing requirements.

• Clarified that extended algorithms are external to this specification.

• Added definition of opaque data.

• Fixed typo in the ExchangeData field of table "Successful KEY_EXCHANGE_RSP response message format".

Security Protocol and Data Model (SPDM) Specification DSP0274

138 Published Version 1.1.2

644 17 Bibliography

645 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.2 Published 139

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Conventions
	2.1.1 Document conventions
	2.1.2 Reserved and unassigned values
	2.1.3 Byte ordering
	2.1.4 SPDM data types
	2.1.5 Version encoding
	2.1.6 Notations

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 SPDM message exchanges
	7.1 Security capability discovery and negotiation
	7.2 Identity authentication
	7.2.1 Identity provisioning
	7.2.2 Runtime authentication

	7.3 Firmware and configuration measurement
	7.4 Secure sessions
	7.5 Mutual authentication overview
	8 SPDM messaging protocol
	8.1 SPDM bits-to-bytes mapping
	8.2 Generic SPDM message format
	8.3 SPDM request codes
	8.4 SPDM response codes
	8.5 SPDM request and response code issuance allowance
	8.6 Concurrent SPDM message processing
	8.7 Requirements for Requesters
	8.8 Requirements for Responders
	9 Timing requirements
	9.1 Timing measurements
	9.2 Timing specification table
	10 SPDM messages
	10.1 Capability discovery and negotiation
	10.2 GET_VERSION request and VERSION response messages
	10.3 GET_CAPABILITIES request and CAPABILITIES response messages
	10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages
	10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS

	10.5 Responder identity authentication
	10.6 Requester identity authentication
	10.6.1 Certificates and certificate chains

	10.7 GET_DIGESTS request and DIGESTS response messages
	10.8 GET_CERTIFICATE request and CERTIFICATE response messages
	10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages
	10.8.2 Leaf certificate

	10.9 CHALLENGE request and CHALLENGE_AUTH response messages
	10.9.1 CHALLENGE_AUTH signature generation
	10.9.2 CHALLENGE_AUTH signature verification
	10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

	10.9.3 Basic mutual authentication
	10.9.3.1 Mutual authentication message transcript

	10.10 Firmware and other measurements
	10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages
	10.11.1 Measurement block
	10.11.1.1 DMTF specification for the Measurement field of a measurement block

	10.11.2 MEASUREMENTS signature generation
	10.11.3 MEASUREMENTS signature verification

	10.12 ERROR response message
	10.13 RESPOND_IF_READY request message format
	10.14 VENDOR_DEFINED_REQUEST request message
	10.15 VENDOR_DEFINED_RESPONSE response message
	10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages
	10.16.1 Mutual authentication
	10.16.2 Specifying Requester certificate for mutual authentication

	10.17 FINISH request and FINISH_RSP response messages
	10.17.1 Transcript hash calculation rules

	10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages
	10.19 PSK_FINISH request and PSK_FINISH_RSP response messages
	10.20 HEARTBEAT request and HEARTBEAT_ACK response messages
	10.20.1 Heartbeat additional information

	10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages
	10.21.1 Session key update synchronization
	10.21.2 KEY_UPDATE transport allowances

	10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages
	10.22.1 Encapsulated request flow
	10.22.2 Optimized encapsulated request flow
	10.22.3 Triggering GET_ENCAPSULATED_REQUEST
	10.22.4 Additional constraints

	10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK response messages
	10.23.1 Additional information

	10.24 END_SESSION request and END_SESSION_ACK response messages
	11 Session
	11.1 Session handshake phase
	11.2 Application phase
	11.3 Session termination phase
	11.4 Simultaneous active sessions
	11.5 Records and session ID
	12 Key schedule
	12.1 Transcript hash in key derivation
	12.2 TH1 definition
	12.3 TH2 definition
	12.4 Key schedule major secrets
	12.4.1 Request-direction handshake secret
	12.4.2 Response-direction handshake secret
	12.4.3 Requester-direction data secret
	12.4.4 Responder-direction data secret

	12.5 Encryption key and IV derivation
	12.6 finished_key derivation
	12.7 Deriving additional keys from the Export Master Secret
	12.8 Major secrets update
	13 Application data
	13.1 Nonce derivation
	14 ANNEX A (informative) TLS 1.3
	15 ANNEX B (normative) Leaf certificate example
	16 ANNEX C (informative) Change log
	16.1 Version 1.0.0 (2019-10-16)
	16.2 Version 1.1.0 (2020-07-15)
	16.3 Version 1.1.1 (2021-05-12)
	16.4 Version 1.1.2 (2022-03-22)
	17 Bibliography

