
Document Identifier: DSP0274

Date: 2020-03-18

Version: 1.1.0b

Security Protocol and Data Model (SPDM)
Specification

Supersedes: 1.1.0a

Document Class: Normative

Document Status: Work In Progress

Document Language: en-US

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the DMTF

or its members. Because this document is a Work in Progress, this document may still change,

perhaps profoundly and without notice. This document is available for public review and comment until

superseded.

Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/

feedback

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://www.dmtf.org/standards/feedback
http://www.dmtf.org/standards/feedback

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2020 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

2 Work in Progress Version 1.1.0b

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1 Foreword . 6

2 Acknowledgments . 7

3 Abstract . 8

3.1 Scope . 8

3.2 Normative references . 8

3.3 Terms and definitions. 9

3.4 Symbols and abbreviated terms . 12

3.5 Conventions. 13

3.5.1 Document conventions . 13

3.5.2 Reserved and unassigned values . 13

3.5.3 Byte ordering. 13

3.5.4 SPDM data types . 14

3.5.5 Version encoding. 14

3.5.6 Notations . 15

4 SPDM message exchanges. 16

4.1 Security capability discovery and negotiation . 16

4.2 Identity authentication . 16

4.3 Firmware and configuration measurement . 17

4.4 Secure Session . 12

5 SPDM messaging protocol . 18

5.1 SPDM Bits to Bytes Mapping . 20

5.2 Generic SPDM message format . 20

5.3 SPDM request codes. 21

5.4 SPDM response codes . 23

5.5 SPDM Request and Response Code Issuance Allowance . 24

5.6 Concurrent SPDM message processing . 25

5.7 Requirements for Requesters . 25

5.8 Requirements for Responders. 26

6 Timing requirements . 27

6.1 Timing measurements . 27

6.2 Timing specification table . 27

7 SPDM messages . 30

7.1 Capability discovery and negotiation . 30

7.2 GET_VERSION request message and VERSION response message. 31

7.3 GET_CAPABILITIES request message and CAPABILITIES response message 33

7.4 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message. 37

7.5 Responder identity authentication . 48

7.5.1 Certificates and certificate chains . 49

7.6 GET_DIGESTS request message and DIGESTS response message . 50

7.7 GET_CERTIFICATE request message and CERTIFICATE response message. 51

7.7.1 Leaf certificate . 53

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 3

7.8 CHALLENGE request message and CHALLENGE_AUTH response message 54

7.8.1 CHALLENGE_AUTH signature generation. 56

7.8.2 CHALLENGE_AUTH signature verification. 58

7.8.2.1 Request ordering and message transcript computation rules for M1 and M2 59

7.9 Firmware and other measurements. 60

7.10 GET_MEASUREMENTS request message and MEASUREMENTS response message 61

7.10.1 Measurement block. 63

7.10.1.1 DMTF specification for the Measurement field of a measurement block 64

7.10.2 MEASUREMENTS signature generation . 65

7.10.3 MEASUREMENTS signature verification . 67

7.11 ERROR response message. 68

7.12 RESPOND_IF_READY request message. 72

7.13 VENDOR_DEFINED_REQUEST request message . 73

7.13.1 VENDOR_DEFINED_RESPONSE response message . 74

7.14 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages 75

7.15 FINISH request and FINISH_RSP response messages . 80

7.15.1 Transcript Hash calculation rules . 82

7.16 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages 84

7.17 PSK_FINISH request and PSK_FINISH_RSP response messages . 89

7.18 HEARTBEAT Request and HEARTBEAT_ACK Response . 91

7.18.1 Heartbeat Additional Information. 92

7.19 KEY_UPDATE Request and KEY_UPDATE_ACK Response. 92

7.19.1 Session Key Update Synchronization . 93

7.19.2 KEY_UPDATE Transport Allowances . 96

7.20 GET_ENCAPSULATED_REQUEST Request and ENCAPSULATED_REQUEST Response 99

7.20.1 GET_ENCAPSULATED_REQUEST Attention . 102

7.21 DELIVER_ENCAPSULATED_RESPONSE Request and ENCAPSULATED_RESPONSE_ACK

Received Message . 102

7.21.1 Additional Information . 104

7.22 END_SESSION Request and END_SESSION_ACK Response . 104

8 Session . 107

8.1 Session Handshake Phase . 107

8.2 Application Phase . 108

8.3 Session Termination Phase . 108

8.4 Maximum Simultaneous Active Session . 108

8.5 Records and Session ID . 108

9 Key Schedule. 110

9.1 Transcript Hash in Key Derivation . 112

9.2 TH1 Definition . 112

9.3 TH2 Definition . 113

9.4 Key Schedule Major Secrets . 114

9.4.1 Request-Direction Handshake Secret . 114

9.4.2 Response-Direction Handshake Secret . 115

Security Protocol and Data Model (SPDM) Specification DSP0274

4 Work in Progress Version 1.1.0b

9.4.3 Requester-Direction Data Secret . 115

9.4.4 Responder-Direction Data Secret . 115

9.5 Encryption Key and Salt Derivation . 116

9.6 Finish Key Derivation. 117

9.7 Major Secret Update . 117

10 Application data . 10

10.1 Nonce Derivation . 118

11 ANNEX A (informative). 119

12 ANNEX B - Leaf certificate example . 120 .

12.1 Change log . 121

12.2 Bibliography. 121

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 5

1 Foreword

The Platform Management Components Intercommunication (PMCI) working group of the DMTF prepared the

Security Protocol and Data Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry

members that promotes enterprise and systems management and interoperability. For information about the DMTF,

see https://www.dmtf.org.

Security Protocol and Data Model (SPDM) Specification DSP0274

6 Work in Progress Version 1.1.0b

https://www.dmtf.org/

2 Acknowledgments

The DMTF acknowledges these individuals' contributions to this document:

Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Lee Ballard — Dell Technologies

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yuval Itkin — Mellanox Technologies

• Theo Koulouris — Hewlett Packard Enterprise

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Mathews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Edward Newman — Hewlett Packard Enterprise

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 7

3 Abstract

The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges between devices over a variety of transport and physical media. The description of

message exchanges includes authentication of hardware identities, measurement for firmware identities and session

key exchange protocols to enable confidentiality and integrity protected data communication. The SPDM enables

efficient access to low-level security capabilities and operations. Other mechanisms, including non-PMCI- and

DMTF-defined mechanisms, can use the SPDM.

3.1 Scope

This specification describes how to use messages, data objects, and sequences to exchange messages between

two devices over a variety of transports and physical media. This specification contains the message exchanges,

sequence diagrams, message formats, and other relevant semantics for such message exchanges, including

authentication of hardware identities and firmware measurement.

Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

3.2 Normative references

The following documents are indispensable for the application of this specification. For dated or versioned

references, only the edition cited, including any corrigenda or DMTF update versions, applies. For references without

a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2018

(8th edition)

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0004_3.0.1.pdf

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0223_1.0.1.pdf

• DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/

DSP0236_1.3.0.pdf

• DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0239_1.6.0.pdf

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0240_1.0.0.pdf

Security Protocol and Data Model (SPDM) Specification DSP0274

8 Work in Progress Version 1.1.0b

https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification,

https://www.dmtf.org/dsp/DSP0275

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/

documents/DSP1001_1.2.0.pdf

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents,

https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

• IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

• TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.27, February 7, 2018

• ASN.1 — ISO-822-1-4

◦ ITU-T X.680, 08/2015

◦ ITU-T X.681, 08/2015

◦ ITU-T X.682, 08/2015

◦ ITU-T X.683, 08/2015

• DER — ISO-8825-1

◦ ITU-T X.690, 08/2015

• X.509 — ISO-9594-8

◦ ITU-T X.509, 08/2015

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-4 Digital Signature

Standard (DSS)

◦ Appendix D: Recommended Elliptic Curves for Federal Government Use in FIPS PUB 186-4 Digital

Signature Standard (DSS)

• RSA

◦ Table 3 in TCG Algorithm Registry Family “2.0" Level 00 Revision 01.22, February 9, 2015

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

• Transport Layer Security 1.3

◦ TLS 1.3 RFC 8446

3.3 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines

those terms.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 9

https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
https://tools.ietf.org/html/rfc5234
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.690-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Algorithm_Registry_Rev_1.22.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://tools.ietf.org/html/rfc8446

cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7

specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal

English meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative

content. Notes and examples are always informative elements.

The terms that DSP0004, DSP0233, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this

document.

This specification uses these terms:

Term Definition

application data

Data that is specific to the application and whose definition and format is outside the scope of this specification.

Application data usually exist at the application layer, which is, in general, the layer above SPDM and the transport

layer.

authentication Process of determining whether an entity is who or what it claims to be.

authentication

initiator
Endpoint that initiates the authentication process by challenging another endpoint.

byte Eight-bit quantity. Also known as an octet.

certificate
Digital form of identification that provides information about an entity and certifies ownership of a particular

asymmetric key-pair.

certificate authority

(CA)
Trusted third-party entity that issues certificates.

certificate chain Series of two or more certificates. Each certificate is signed by the preceding certificate in the chain.

component Physical entity similar to the PCI Express specification’s definition.

device Physical entity such as a network controller or a fan.

DMTF

Formerly known as the Distributed Management Task Force, the DMTF creates open manageability standards that

span diverse emerging and traditional information technology (IT) infrastructures, including cloud, virtualization,

network, servers, and storage. Member companies and alliance partners worldwide collaborate on standards to

improve the interoperable management of IT.

endpoint Logical entity that communicates with other endpoints over one or more transport protocol.

intermediate

certificate
Certificate that is neither a root certificate nor a leaf certificate.

Security Protocol and Data Model (SPDM) Specification DSP0274

10 Work in Progress Version 1.1.0b

Term Definition

leaf certificate Last certificate in a certificate chain.

measurement Representation of firmware/software or configuration data on an endpoint.

message See SPDM message.

message body Portion of a SPDM message that carries additional data.

message originator Original transmitter, or source, of a SPDM message.

message transcript

The concatenation of a sequence of messages in the order in which they are sent and received by an endpoint. The

final message included in the message transcript may be truncated to allow inclusion of a signature in that message

which is computed over the message transcript. If an endpoint is communicating with multiple peer endpoints

concurrently, the message transcripts for the peers are accumulated separately and independently.

most significant byte

(MSB)
Highest order byte in a number consisting of multiple bytes.

Negotiated State

Set of parameters that represent the state of the communication between a corresponding pair of Requester and

Responder at the successful completion of the NEGOTIATE_ALGORITHMS messages.

These parameters may include values provided in VERSION , CAPABILITIES and ALGORITHMS messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to continue or preserve

communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

nonce

Number that is unpredictable to entities other than its generator. The probability of the same number occurring more

than once is negligible. Nonce may be generated by combining a pseudo random number of at least 64 bits,

optionally concatenated with a monotonic counter of size suitable for the application.

payload

Information-bearing fields of a message. These fields are separate from the fields and elements, such as address

fields, framing bits, checksums, and so on, that transport the message from one point to another. In some instances,

a field can be both a payload field and a transport field.

physical transport

binding

Specifications that define how a base messaging protocol is implemented on a particular physical transport type and

medium, such as SMBus/I2C, PCI Express™ Vendor Defined Messaging, and so on.

Platform

Management

Component

Intercommunications

(PMCI)

Working group under the DMTF that defines standardized communication protocols, low-level data models, and

transport definitions that support communications with and between management controllers and management

devices that form a platform management subsystem within a managed computer system.

record A record is a unit or chunk of data that is either encrypted and/or authenticated.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 11

Term Definition

Requester
Original transmitter, or source, of a SPDM request message. It is also the ultimate receiver, or destination, of a

SPDM response message.

Responder
Ultimate receiver, or destination, of a SPDM request message. It is also the original transmitter, or source of a SPDM

response message.

root certificate First certificate in a certificate chain, which is self-signed.

session keys Session Keys are any secrets, derived cryptographic keys or any cryptographic information bound to the session.

Session-Secrets-

Exchange

This term denotes any SPDM request and their corresponding response that initiates a session and provides initial

cryptographic exchange. Examples of such requests are KEY_EXCHANGE and PSK_EXCHANGE .

Session-Secrets-

Finish

This term denotes any SPDM request and their corresponding response that finalizes a session setup and provides

the final exchange of cryptographic or other information before application data can be securely transmitted.

Examples of such requests are FINISH and PSK_FINISH .

secure session
A secure session is a session that provides either or both of encryption or message authentication for communicating

data over a transport.

SPDM message Unit of communication in SPDM communications.

SPDM message

payload

Portion of the message body of a SPDM message. This portion of the message is separate from those fields and

elements that identify the SPDM version, the SPDM request and response codes, and the two parameters.

SPDM request

message

Message that is sent to an endpoint to request a specific SPDM operation. A corresponding SPDM response

message acknowledges receipt of a SPDM request message.

SPDM response

message

Message that is sent in response to a specific SPDM request message. This message includes a Response Code

field that indicates whether the request completed normally.

trusted computing

base (TCB)

Set of all hardware, firmware, and/or software components that are critical to its security, in the sense that bugs or

vulnerabilities occurring inside the TCB might jeopardize the security properties of the entire system. By contrast,

parts of a computer system outside the TCB must not be able to misbehave in a way that would leak any more

privileges than are granted to them in accordance to the security policy.

Reference: https://en.wikipedia.org/wiki/Trusted_computing_base

3.4 Symbols and abbreviated terms

The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

The following additional abbreviations are used in this document.

Security Protocol and Data Model (SPDM) Specification DSP0274

12 Work in Progress Version 1.1.0b

https://en.wikipedia.org/wiki/Trusted_computing_base

Abbreviation Definition

CA certificate authority

MAC Message Authentication Code

DMTF Formerly the Distributed Management Task Force

MSB most significant byte

PMCI Platform Management Component Intercommunications

SPDM Security Protocol and Data Model

TCB trusted computing base

AEAD Authenticated Encryption with Associated Data

3.5 Conventions

The following conventions apply to all SPDM specifications.

3.5.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

3.5.2 Reserved and unassigned values

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by the DMTF.

Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

3.5.3 Byte ordering

Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit

fields is "Little Endian"(that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 13

3.5.4 SPDM data types

The SPDM data types table lists the abbreviations and descriptions for common data types that SPDM message

fields and data structure definitions use. These definitions follow DSP0240.

SPDM data types

Data type Interpretation

ver8 Eight-bit encoding of the SPDM version number. Version encoding defines the encoding of the version number.

bitfield8 Byte with eight bit fields. Each bit field can be separately defined.

bitfield16 Two-byte word with 16-bit fields. Each bit field can be separately defined.

3.5.5 Version encoding

The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major
Major version field in the SPDMVersion field in the SPDM message

header.
Protocol modification breaks backward compatibility.

Minor
Minor version field in the SPDMVersion field in the SPDM message

header.

Protocol modification maintains backward

compatibility.

EXAMPLE:

Version 3.7 → 0x37

Version 1.0 → 0x10

Version 1.2 → 0x12

An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 only, but the

available functionality is limited to what SPDM specification Version 1.0 defines.

An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

Security Protocol and Data Model (SPDM) Specification DSP0274

14 Work in Progress Version 1.1.0b

The detailed version encoding that the VERSION response message returns contains an additional byte that

indicates specification bug fixes or development versions. See the Successful VERSION response message table.

3.5.6 Notations

SPDM specifications use the following notations:

Notation Description

M:N

In field descriptions, this notation typically represents a range of byte offsets starting from byte M and continuing to and

including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the right.

1b A lowercase b after a number consisting of 0 s and 1 s indicates that the number is in binary format.

0x12A A leading 0x indicates that the number is in hexadecimal format.

N+ This indicates a variable length byte range that starts at byte offset N.

{

Payload

}

Used mostly in figures, this notation indicates the payload specified in the enclosing curly brackets is encrypted and/or

authenticated by the keys derived from one or more major secrets. The specific secret used is described throughout this

specification. For example, { HEARTBEAT } shows that the Heartbeat message is encrypted and/or authenticated by the keys

derived from one or more major secrets.

{

Payload

}::[[SX]]

Used mostly in figures, this notation indicates the payload specified in the enclosing curly brackets is encrypted and/or

authenticated by the keys derived from major Secret X. For example, { HEARTBEAT }::[[S2]] shows that the Heartbeat

message is encrypted and/or authenticated by the keys derived from major secret S2.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 15

4 SPDM message exchanges

The message exchanges defined in this specification are between two endpoints and are performed and exchanged

through sending and receiving of SPDM messages defined in SPDM messages. The SPDM message exchanges are

defined in a generic fashion that allows the messages to be communicated across different physical mediums and

over different transport protocols.

The specification-defined message exchanges enable Requesters to:

• Discover and negotiate the security capabilities of a Responder.

• Authenticate the identity of a Responder.

• Retrieve the measurements of a Responder.

• Securely establish cryptographic session keys to construct a secure communication channel for the transmission

or reception of application data.

These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. A brief overview for each of the message exchange capabilities is described in the following

clauses. Some of the message exchange capabilities are based on the security model defined in USB Authentication

Specification Rev 1.0.

4.1 Security capability discovery and negotiation

This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that are defined in this specification.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the

Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

4.2 Identity authentication

In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

At a high-level, the authentication of a Responder's identity involves these processes:

• Identity provisioning

The process followed by device vendors during or after hardware manufacturing. A trusted root certificate

Security Protocol and Data Model (SPDM) Specification DSP0274

16 Work in Progress Version 1.1.0b

authority (CA) generates a root certificate (RootCert) that is provisioned to the authentication initiator. The

authentication initiator uses this certificate to verify the validity of certificate chains. A device carries a certificate

chain, which has the RootCert as the root of the certificate chain and a device certificate (DeviceCert) as the leaf

certificate of the certificate chain. The device certificate contains the public key that corresponds to the device

private key.

Through the certificate chain, the root CA indirectly endorses the per-device public/private key pair in the

DeviceCert, where the private key is provisioned to or generated by the endpoint.

• Runtime authentication

The process by which an authentication initiator (Requester) interacts with a Responder in a running system.

The authentication initiator can retrieve the certificate chain(s) from the Responder and send a unique challenge

to the Responder. The Responder then signs the challenge with the private key. The authentication initiator

verifies the signature using the public key of the Responder as well as any intermediate public keys within the

certificate chain using the root certificate as the trusted anchor.

4.3 Firmware and configuration measurement

A measurement is a representation of firmware/software or configuration data on an endpoint. A measurement is

typically a cryptographic hash value of the data, or the raw data itself. The endpoint optionally binds a measurement

with the endpoint identity through the use of digital signatures. This binding enables an authentication initiator to

establish the identity and measurement of the firmware/software or configuration running on the endpoint.

4.4 Secure Session

Many devices communicate to other devices and the data they exchange may require protection. In this specification,

the device-specific data that is communicated is generically referred to as application data. The application data's

protocol usually exists at a higher layer and it is outside the scope of this specification.

To protect the application data as it is traverses over a physical medium, this specification arranges for initial

cryptographic information exchange and derivation of secrets in order to establish a protected channel of

communication. This protection is achieved through the use of encryption and message authentication. For more

details, please see the Session section.

Lastly, but not the least, many SPDM requests and their corresponding responses are also afforded the same

protection. Thus, these requests and responses are only allowed to be sent in a secure session. See the SPDM

Request and Response Validity Table and SPDM Request and Response Code Issuance Allowance section for more

details.

The SPDM messaging protocol flow gives a very high level view on when the secure session actually starts.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 17

5 SPDM messaging protocol

The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to

with a SPDM response message as defined in this specification unless otherwise stated in this specification.

The SPDM messaging protocol flow depicts the high-level request-response flow diagram for SPDM. An endpoint

that acts as the Requester sends a SPDM request message to another endpoint that acts as the Responder, and the

Responder returns a SPDM response message to the Requester.

Security Protocol and Data Model (SPDM) Specification DSP0274

18 Work in Progress Version 1.1.0b

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

If necessary

ResponderRequester

GET_VERSION

VERSION

CAPABILITIES

If supported

CHALLENGE

CHALLENGE_AUTH

GET_CERTIFICATE

CERTIFICATE

If supported

MEASUREMENTS

KEY_EXCHANGE

GET_MEASUREMENTS

FINISH

FINISH_RSP

Secure Session

Application Data

KEY_EXCHANGE_RSP

Mutual Authentication

GET_CAPABILITIES

If supported

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 19

All SPDM request-response messages share a common data format, that consists of a four-byte message header

and zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages details each of the request and response messages.

The Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS request messages

before issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS may be saved by the requester so that after reset the requester may skip these requests.

5.1 SPDM Bits to Bytes Mapping

All SPDM fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned

byte in monotonically decreasing order until the the least numerically assigned byte of that field. The following two

figures illustrate this mapping.

One-Byte Field Bit Map

Byte 1

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A One-Byte Field

Two-Byte Field Bit Map

Byte 2

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A Two-Byte Field

Byte 3

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

5.2 Generic SPDM message format

Table 3 defines the fields that constitute a generic SPDM message, including the message header and payload.

Table 3 — Generic SPDM message field definitions

Security Protocol and Data Model (SPDM) Specification DSP0274

20 Work in Progress Version 1.1.0b

Byte Bits
Length

(bits)

Field

name
Description

0 [7:4] 4

SPDM

Major

Version

The major version of the SPDM Specification. An endpoint shall not communicate by using an

incompatible SPDM version value. See Version encoding.

0 [3:0] 4

SPDM

Minor

Version

The minor version of the SPDM Specification. A specification with a given minor version extends a

specification with a lower minor version as long as they share the major version. See Version

encoding.

1 [7:0] 8

Request

Response

Code

The request message code or response code, which are enumerated in Table 4 and Table 5. 0x00

through 0x7F represent response codes and 0x80 through 0xFF represent request codes. In

request messages, this field is considered the request code. In response messages, this field is

considered the response code.

2 [7:0] 8 Param1
The first one-byte parameter. The contents of the parameter is specific to the Request Response

Code.

3 [7:0] 8 Param2
The second one-byte parameter. The contents of the parameter is specific to the Request

Response Code.

4
See

Description
Variable

SPDM

message

payload

Zero or more bytes that are specific to the Request Response Code.

5.3 SPDM request codes

The SPDM request codes table defines the SPDM request codes. The Implementation Requirement column

indicates requirements on the Requester.

All SPDM-compatible implementations shall use the following SPDM request codes.

Unsupported request codes shall return an ERROR response message with ErrorCode=UnsupportedRequest .

SPDM request codes

Request Code value Implementation requirement Message format

GET_DIGESTS 0x81 Optional
See the GET_DIGESTS request message

table.

GET_CERTIFICATE 0x82 Optional
See the GET_CERTIFICATE request

message table.

CHALLENGE 0x83 Optional
See the CHALLENGE request message

table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 21

Request Code value Implementation requirement Message format

GET_VERSION 0x84 Required
See the GET_VERSION request message

table.

GET_MEASUREMENTS 0xE0 Optional
See the GET_MEASUREMENTS request

message table.

GET_CAPABILITIES 0xE1 Required
See the GET_CAPABILITIES request

message table.

NEGOTIATE_ALGORITHMS 0xE3 Required
See the NEGOTIATE_ALGORITHMS

request message table.

KEY_EXCHANGE 0xE4 Optional
See the KEY_EXCHANGE request

message table.

FINISH 0xE5 Optional See the FINISH request message table.

PSK_EXCHANGE 0xE6 Optional
See the PSK_EXCHANGE request

message table.

PSK_FINISH 0xE7 Optional
See the PSK_FINISH request message

table.

HEARTBEAT 0xE8 Optional
See the HEARTBEAT request message

table.

KEY_UPDATE 0xE9 Optional
See the KEY_UPDATE request message

table.

GET_ENCAPSULATED_REQUEST 0xEA Optional

See the

GET_ENCAPSULATED_REQUEST

request message table.

DELIVER_ENCAPSULATED_RESPONSE 0xEB Optional

See the

DELIVER_ENCAPSULATED_RESPONSE

request message table.

END_SESSION 0xEC Optional
See the END_SESSION request message

table.

RESPOND_IF_READY 0xFF Required
See the RESPOND_IF_READY request

message table.

VENDOR_DEFINED_REQUEST 0xFE Optional
See the VENDOR_DEFINED_REQUEST

request message table.

Reserved

0x80 ,

0x85 - 0xDF ,

0xE2 ,

0xED - 0xFD

SPDM implementations compatible with this

version shall not use the reserved request

codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

22 Work in Progress Version 1.1.0b

5.4 SPDM response codes

The Request Response Code field in the SPDM response message shall specify the appropriate response code for a

request. All SPDM-compatible implementations shall use the following SPDM response codes.

On a successful completion of a SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of a SPDM operation, the ERROR response message shall be returned.

The SPDM response codes table defines the response codes for SPDM. The Implementation Requirement column

indicates requirements on the Responder.

SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Optional
See the GET_DIGESTS request

message table.

CERTIFICATE 0x02 Optional
See the GET_CERTIFICATE request

message table.

CHALLENGE_AUTH 0x03 Optional
See the CHALLENGE request

message table.

VERSION 0x04 Required
See the Successful VERSION

response message table.

MEASUREMENTS 0x60 optional
See the GET_MEASUREMENTS

request message table.

CAPABILITIES 0x61 Required
See the Successful CAPABILITIES

response message table.

ALGORITHMS 0x63 Required
See the Successful ALGORITHMS

response message table.

KEY_EXCHANGE_RSP 0x64 Optional
See the KEY_EXCHANGE_RSP

response message table.

FINISH_RSP 0x65 Optional
See the FINISH_RSP response

message table.

PSK_EXCHANGE_RSP 0x66 Optional
See the PSK_EXCHANGE_RSP

response message table.

PSK_FINISH_RSP 0x67 Optional
See the PSK_FINISH_RSP response

message table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 23

Response Value Implementation requirement Message format

HEARTBEAT_ACK 0x68 Optional
See the HEARTBEAT_ACK response

message table.

KEY_UPDATE_ACK 0x69 Optional
See the KEY_UPDATE_ACK response

message table.

ENCAPSULATED_REQUEST 0x6A Optional
See the ENCAPSULATED_REQUEST

response message table.

ENCAPSULATED_RESPONSE_ACK 0x6B Optional

See the

ENCAPSULATED_RESPONSE_ACK

response message table.

END_SESSION_ACK 0x6C Optional
See the END_SESSION_ACK

response message table.

VENDOR_DEFINED_RESPONSE 0x7E Optional

See the

VENDOR_DEFINED_RESPONSE

response message table.

ERROR 0x7F
See the ERROR response message

table.

Reserved

0x00 ,

0x05 - 0x5F ,

0x62 ,

0x6D - 0x7D

SPDM implementations compatible with this version

shall not use the reserved response codes.

5.5 SPDM Request and Response Code Issuance Allowance

The SPDM Request and Response Validity Table describes the conditions under which a request and response can

be issued.

The Session column describes whether the respective request and response can be sent in a session. If the value is

"Allowed", the issuer of the request and response shall only send it in a secure session; thereby, affording them the

protection of a secure session. If the value is "Prohibited" in the Session column, the issuer shall be prohibited from

sending the respective request and response in a secure session.

The column, Outside of a Session, indicates which requests and responses are allowed to be sent free and

independent of a session; thereby lacking the protection of a secure session. An "Allowed" in this column shall

require the respective request and response to only be sent outside the context of a secure session. Likewise, a

"Prohibited" in this column shall prohibit the issuer from sending the respective request or response outside the

context of a session.

A request and its corresponding response can have an "Allowed" in both the Session column and Outside of a

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Work in Progress Version 1.1.0b

Session column, in which case, they are allowed to be sent and received in both scenarios but may have additional

restrictions. See the respective request and response section for further details.

Finally, the Session Phases column describes which phases of a session the respective request and response shall

be issued when they are allowed to be issued in a session.

Please see the Session Section for further session details.

SPDM Request and Response Validity Table

Request Response Session Outside of a Session Session Phases

FINISH FINISH_RSP Allowed Prohibited Session Handshake

PSK_FINISH PSK_FINISH_RSP Allowed Prohibited Session Handshake

HEARTBEAT HEARTBEAT_ACK Allowed Prohibited Application Phase

KEY_UPDATE KEY_UPDATE_ACK Allowed Prohibited Application Phase

Not Applicable ERROR Allowed Allowed All Phases

GET_ENCAPSULATED_REQUEST ENCAPSULATED_REQUEST Allowed Allowed All Phases

DELIVER_ENCAPSULATED_RESPONSE ENCAPSULATED_RESPONSE_ACK Allowed Allowed All Phases

VENDOR_DEFINED_REQUEST VENDOR_DEFINED_RESPONSE Allowed Allowed Application Phase

All Others All others Prohibited Allowed Not Applicable

For ERROR response in Session Handshake or Application Phase of a session, the Requester is only allowed in

certain situations to send the ERROR response.

5.6 Concurrent SPDM message processing

This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

5.7 Requirements for Requesters

A Requester shall not have multiple outstanding requests to the same Responder, with the exception of

GET_VERSION addressed in GET_VERSION request message and VERSION response message. If the Requester

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 25

has sent a request to a Responder and wants to send a subsequent request to the same Responder, then the

Requester shall wait to send the subsequent request until after the Requester completes one of the following actions:

• Receives the response from the Responder for the outstanding request.

• Times out waiting for a response.

• Receives an indication, from the transport layer, that transmission of the request message failed.

A Requester may send simultaneous request messages to different Responders.

5.8 Requirements for Responders

A Responder is not required to process more than one request message at a time.

A Responder that is not ready to accept a new request message shall either respond with an ERROR response

message with ErrorCode=Busy or silently discard the request message.

If a Responder is working on a request message from a Requester, the Responder may respond with

ErrorCode=Busy .

If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

Security Protocol and Data Model (SPDM) Specification DSP0274

26 Work in Progress Version 1.1.0b

6 Timing requirements

The Timing specification for SPDM messages table shows the timing specifications for Requesters and Responders.

If the Requester does not receive a response within T1 or T2 time accordingly, the Requester may retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) may retry,

but that is outside of the SPDM specification.

6.1 Timing measurements

A Requester shall measure timing parameters, applicable to it, from the end of a successful transmission of a SPDM

request to the beginning of the reception of the corresponding SPDM response. A Responder shall measure timing

parameters, applicable to it, from the end of the reception of the SPDM request to the beginning of transmission of

the response.

6.2 Timing specification table

The Ownership column in the Timing specification for SPDM messages table specifies whether the timing parameter

applies to the Responder or Requester.

Timing specification for SPDM messages

Timing

parameter
Ownership Value Units Description

RTT Requester
See the

description.
us

Worst case round-trip transport timing.

The maximum value shall be the worst case total time for the complete transmission

and delivery of a SPDM message round trip at the transport layer(s). The actual value

for this parameter is transport- or media-specific. Both the actual value and how an

endpoint obtains this value are outside the scope of this specification.

ST1 Responder 100,000 us

Shall be the maximum amount of time the Responder has to provide a response to

requests that do not require cryptographic processing, such as the GET_CAPABILITIES ,

GET_VERSION , or NEGOTIATE_ALGORITHMS request messages.

T1 Requester RTT + ST1 us

Shall be the minimum amount of time the Requester shall wait before issuing a retry for

requests that do not require cryptographic processing.

For details, see ST1 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 27

Timing

parameter
Ownership Value Units Description

CT Responder 2CTExponent us

The CAPABILITIES message reports the cryptographic timeout, in microseconds.

CTExponent is reported in GET_CAPABILITIES .

This timing parameter shall be the maximum amount of time the Responder has to

provide any response requiring cryptographic processing, such as the

GET_MEASUREMENTS or CHALLENGE request messages.

T2 Requester RTT + CT us

Shall be the minimum amount of time the Requester shall wait before issuing a retry for

requests that require cryptographic processing.

For details, see CT .

RDT Responder 2RDTExponent us

Recommended delay, in microseconds that the Responder needs to complete the

requested cryptographic operation. When the Responder is unable to complete

cryptographic processing response within the CT time, it shall provide RDTExponent

as part of the ERROR response. See the ResponseNotReady extended error data table

for the RDTExponent value.

For details, see ErrorCode=ResponseNotReady in the ResponseNotReady extended

error data table.

WT Requester RDT us

Amount of time that the Requester should wait before issuing the RESPOND_IF_READY

request message.

The Requester shall measure this time parameter from the reception of the ERROR

response to the transmission of RESPOND_IF_READY request. The Requester may take

into account the transmission time of the ERROR from the Responder to Requester

when calculating WT .

For details, see RDT .

WTMax Requester

(RDT *

RDTM) -

RTT

us

Maximum wait time the Requester has to issue RESPOND_IF_READY request unless the

Requester issued a successful RESPOND_IF_READY request message earlier.

After this time the Responder is allowed to drop the response. The Requester shall take

into account the transmission time of the ERROR from the Responder to Requester

when calculating WT Max.

The RDTM value appears in the ResponseNotReady extended error data.

The Responder should ensure that WT Max does not result in less than WT in

determination of RDTM .

For details, see ErrorCode=ResponseNotReady in the ResponseNotReady extended

error data table.

Security Protocol and Data Model (SPDM) Specification DSP0274

28 Work in Progress Version 1.1.0b

Timing

parameter
Ownership Value Units Description

HeartbeatPeriod

Requester

and

Responder

Variable s See HEARTBEAT Request and HEARTBEAT_ACK Response for detail.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 29

7 SPDM messages

SPDM messages can be divided into the following categories, supporting different aspects of security exchanges

between a Requester and Responder:

• Capability discovery and negotiation

• Responder identity authentication

• Firmware measurements

• Key agreement for secure channel establishment

7.1 Capability discovery and negotiation

All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES and NEGOTIATE_ALGORITHMS .

The Capability discovery and negotiation flow shows the high-level request-response flow and sequence for the

capability discovery and negotiation:

Security Protocol and Data Model (SPDM) Specification DSP0274

30 Work in Progress Version 1.1.0b

7.2 GET_VERSION request message and VERSION response message

This request message shall retrieve an endpoint's SPDM version. The GET_VERSION request message table shows

the GET_VERSION request message format and the Successful VERSION response message table shows the

VERSION response message format.

In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with

all previous versions.

The Requester shall begin the discovery process by sending a GET_VERSION request message with major version

0x1. All Responders must always support GET_VERSION request message with major version 0x1 and provide a

VERSION response containing all supported versions, as the GET_VERSION request message table describes.

The Requester shall consult the VERSION response to select a common supported version, which is typically the

latest supported common version. The Requester shall use the selected version in all future communication of other

requests. A Requester shall not issue other requests until it receives a successful VERSION response and identifies

a common version that both sides support. A Responder shall not respond to the GET_VERSION request message

with ErrorCode=ResponseNotReady .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 31

A Requester may issue a GET_VERSION request message to a Responder at any time, which is as an exception to

Requirements for Requesters for the case where a Requester must restart the protocol due to an internal error or

reset.

After receiving a GET_VERSION request, the Responder shall cancel all previous requests from the same Requester.

Additionally, this message shall clear or reset the previously Negotiated State, if any, in both the Requester and its

corresponding Responder.

GET_VERSION request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x84=GET_VERSION

2 Param1 1 Reserved

3 Param2 1 Reserved

Successful VERSION response message

Security Protocol and Data Model (SPDM) Specification DSP0274

32 Work in Progress Version 1.1.0b

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x04=VERSION

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 VersionNumberEntryCount 1 Number of version entries present in this table (=n).

6 VersionNumberEntry1:n 2 * n 16-bit version entry. See the GET_VERSION request message table.

VersionNumberEntry definition

Bit Field Value

[15:12] MajorVersion
Version of the specification with changes that are incompatible with one or more functions in earlier

major versions of the specification.

[11:8] MinorVersion
Version of the specification with changes that are compatible with functions in earlier minor versions of

this major version specification.

[7:4] UpdateVersionNumber
Version of the specification with editorial updates but no functionality additions or changes.

Informational; possible errata fixes. Ignore when checking versions for interoperability.

[3:0] Alpha

Pre-release work-in-progress version of the specification. Backward compatible with earlier minor

versions of this major version specification. However, because the Alpha value represents an in-

development version of the specification, versions that share the same major and minor version

numbers but have different Alpha versions may not be fully interoperable. Released versions must

have an Alpha value of zero.

7.3 GET_CAPABILITIES request message and CAPABILITIES response

message

This request message shall retrieve an endpoint's SPDM capabilities.

The GET_CAPABILITIES request message table shows the GET_CAPABILITIES request message format.

The Successful CAPABILITIES response message table shows the CAPABILITIES response message format.

The Flag fields definitions table shows the flag fields definitions.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 33

A Responder shall not respond to GET_CAPABILITIES request message with ErrorCode=ResponseNotReady .

GET_CAPABILITIES request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xE1=GET_CAPABILITIES

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 CTExponent 1

Shall be exponent of base 2, which is used to calculate CT .

See the Timing specification for SPDM messages table.

The equation for CT shall be 2CTExponent microseconds (us).

For example, if CTExponent is 10, CT is 210=1024 us.

6 Reserved 2 Reserved

8 Flags 4 See the Requester Flag fields definitions table.

Successful CAPABILITIES response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x61=CAPABILITIES

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 CTExponent 1

Shall be the exponent of base 2, which used to calculate CT .

See the Timing specification for SPDM messages table.

The equation for CT shall be 2CTExponent microseconds (us).

For example, if CTExponent is 10, CT is 210=1024 us.

Security Protocol and Data Model (SPDM) Specification DSP0274

34 Work in Progress Version 1.1.0b

Offset Field Size (bytes) Value

6 Reserved 2 Reserved

8 Flags 4 See the Responder Flag fields definitions table.

Requester Flag fields definitions

Byte Bit Field Value

0 0 Reserved Reserved

0 1 CERT_CAP If set, Requester supports DIGESTS and CERTIFICATE response messages.

0 2 CHAL_CAP If set, Requester supports CHALLENGE_AUTH response message.

0 4:3 MEAS_CAP

The Requester's MEASUREMENT response capabilities.

• 00b . The Requester does not support MEASUREMENTS response capabilities.

• 01b . The Requester supports MEASUREMENTS response but cannot perform signature

generation.

• 10b . The Requester supports MEASUREMENTS response and can generate signatures.

• 11b . Reserved

0 5 MEAS_FRESH_CAP

• 0 . As part of MEASUREMENTS response message, the Requester may return

MEASUREMENTS that were computed during the last Requester’s reset.

• 1 . The Requester can recompute all MEASUREMENTS in a manner that is transparent to

the rest of the system and shall always return fresh MEASUREMENTS as part of

MEASUREMENTS response message.

0 6 ENCRYPT_CAP
If set, Requester supports message encryption. If set, one or more of PSK_CAP or

KEY_EX_CAP fields shall be specified accordingly to indicate support.

0 7 MAC_CAP
If set, Requester supports message authentication. If set, one or more of PSK_CAP or

KEY_EX_CAP fields shall be specified accordingly to indicate support.

1 0 MUT_AUTH_CAP If set, Requester supports mutual authentication.

1 1 KEY_EX_CAP
If set, Requester supports KEY_EXCHANGE messages. If set, one or more of ENCRYPT_CAP and

MAC_CAP shall be set.

1 3:2 PSK_CAP

Requester's Pre-Shared Key capabilities.

• 00b . Requester does not support Pre-Shared Key capabilities.

• 01b . Requester supports Pre-Shared Key

• 10b and 11b . Reserved.

If supported, one or more of ENCRYPT_CAP and MAC_CAP shall be set.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 35

Byte Bit Field Value

1 4 ENCAP_CAP

If set, Requester supports GET_ENCAPSULATED_REQUEST , ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages. If mutual

authentication is also supported by the Requester, this field shall be set also.

1 5 HBEAT_CAP If set, Requester supports HEARTBEAT messages.

1 6 KEY_UPD_CAP If set, Requester supports KEY_UPDATE messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP
if set, Requester supports Delayed verified data capability during KEY_EXCHANGE messages. If

set, KEY_EX_CAP shall be set.

2 7:0 Reserved Reserved

3 7:0 Reserved Reserved

Responder Flag fields definitions

Byte Bit Field Value

0 0 CACHE_CAP

If set, the Responder supports the ability to cache the Negotiated State across a reset. This

allows the Requester to skip reissuing the GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS requests after a reset. The Responder shall cache the selected

cryptographic algorithms as one of the parameters of the Negotiated State. If the Requester

chooses to skip issuing these requests after the reset, the Requester shall also cache the

same selected cryptographic algorithms.

0 1 CERT_CAP If set, Responder supports DIGESTS and CERTIFICATE response messages.

0 2 CHAL_CAP If set, Responder supports CHALLENGE_AUTH response message.

0 4:3 MEAS_CAP

The Responder's MEASUREMENT response capabilities.

• 00b . The Responder does not support MEASUREMENTS response capabilities.

• 01b . The Responder supports MEASUREMENTS response but cannot perform signature

generation.

• 10b . The Responder supports MEASUREMENTS response and can generate signatures.

• 11b . Reserved

0 5 MEAS_FRESH_CAP

• 0 . As part of MEASUREMENTS response message, the Responder may return

MEASUREMENTS that were computed during the last Responder’s reset.

• 1 . The Responder can recompute all MEASUREMENTS in a manner that is transparent to

the rest of the system and shall always return fresh MEASUREMENTS as part of

MEASUREMENTS response message.

0 6 ENCRYPT_CAP
If set, Responder supports message encryption. If set, one or more of PSK_CAP or

KEY_EX_CAP fields shall be specified accordingly to indicate support.

Security Protocol and Data Model (SPDM) Specification DSP0274

36 Work in Progress Version 1.1.0b

Byte Bit Field Value

0 7 MAC_CAP
If set, Responder supports message authentication. If set, one or more of PSK_CAP or

KEY_EX_CAP fields shall be specified accordingly to indicate support.

1 0 MUT_AUTH_CAP If set, Responder supports mutual authentication.

1 1 KEY_EX_CAP
If set, Responder supports KEY_EXCHANGE messages. If set, one or more of ENCRYPT_CAP

and MAC_CAP shall be set.

1 3:2 PSK_CAP

Responder's Pre-Shared Key capabilities.

• 00b . Responder does not support Pre-Shared Key capabilities.

• 01b . Responder supports Pre-Shared Key but does not provide ResponderContext for

session key derivation.

• 10b . Responder supports Pre-Shared Key and provides ResponderContext for session

key derivation.

• 11b . Reserved

If supported, one or more of ENCRYPT_CAP and MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Responder supports GET_ENCAPSULATED_REQUEST , ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages. If mutual

authentication is also supported by the Requester, this field shall be set also.

1 5 HBEAT_CAP If set, Responder supports HEARTBEAT messages.

1 6 KEY_UPD_CAP If set, Responder supports KEY_UPDATE messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP
if set, Responder supports Delayed verified data capability during KEY_EXCHANGE messages.

If set, KEY_EX_CAP shall be set

2 7:0 Reserved Reserved

3 7:0 Reserved Reserved

7.4 NEGOTIATE_ALGORITHMS request message and ALGORITHMS

response message

This request message shall negotiate cryptographic algorithms. A Requester shall not issue a

NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES response message.

A Requester shall not issue any other SPDM requests, with the exception of GET_VERSION until it receives a

successful ALGORITHMS response message.

A Responder shall not respond to NEGOTIATE_ALGORITHMS request message with ErrorCode=ResponseNotReady .

The NEGOTIATE_ALGORITHMS request message table shows the NEGOTIATE_ALGORITHMS request message

format.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 37

The Successful ALGORITHMS response message table shows the ALGORITHMS response message format.

NEGOTIATE_ALGORITHMS request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xE3=NEGOTIATE_ALGORITHMS

2 Param1 1 Number of Algorithms Structure Tables in this request using ReqAlgStruct

3 Param2 1 Reserved

4 Length 2
Length of the entire request message, in bytes. Length shall be less than or equal to

128 bytes.

6 MeasurementSpecification 1

Bit mask. The MeasurementSpecification field of the GET_MEASUREMENTS

request message and MEASUREMENTS response message shall define the values

for this field. The Requester may set more than one bit to indicate multiple

measurement specification support.

7 Reserved 1 Reserved

8 BaseAsymAlgo 4

Bit mask listing Requester-supported SPDM-enumerated asymmetric key signature

algorithms for the purposes of signature verification.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

• Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

• Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

• Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

38 Work in Progress Version 1.1.0b

Offset Field Size (bytes) Value

12 BaseHashAlgo 4

Bit mask listing Requester-supported SPDM-enumerated cryptographic hashing

algorithms.

• Byte 0 Bit 0. TPM_ALG_SHA_256

• Byte 0 Bit 1. TPM_ALG_SHA_384

• Byte 0 Bit 2. TPM_ALG_SHA_512

• Byte 0 Bit 3. TPM_ALG_SHA3_256

• Byte 0 Bit 4. TPM_ALG_SHA3_384

• Byte 0 Bit 5. TPM_ALG_SHA3_512

All other values reserved.

16 ExtAsymCount 1
Number of Requester-supported extended asymmetric key signature algorithms (=A).

A + E + R + S + L shall be less than or equal to 20.

17 ExtHashCount 1
Number of Requester-supported extended hashing algorithms (=E). A + E + R + S + L

shall be less than or equal to 20.

18 Reserved 2 Reserved

20 ExtAsym 4*A
List of Requester-supported extended asymmetric key signature algorithms. The

Extended algorithm field format table describes the format of this field.

20 +

4*A
ExtHash 4*E

List of the extended hashing algorithms supported by Requester. The Extended

algorithm field format table describes the format of this field.

20 +

4*A +

4*E

ReqAlgStruct AlgStructSize See Request AlgStructure field

AlgStructSize is the sum of the size of all Algorithm structure tables enumerated below. The algorithm structure table

need be present only if the requester supports that AlgType.

Request Algorithm structure table

Offset Field
Size

(bytes)
Value

0 AlgType 1
Type of algorithm. 0 = DHE, 1 = AEADCipherSuite, 2 = ReqBaseAsymAlg, 3 = KeySchedule, 4 to 255

reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 39

Offset Field
Size

(bytes)
Value

1 AlgCount 1

Requester supported fixed algorithms.

• Bit [7:4]. Number of Bytes required to describe Requester supported SPDM-enumerated fixed

Algorithms (= M). M + 2 must be a multiple of 4

• Bit [3:0] Number of Requester supported extended algorithms (= L).

2 AlgSupported M Bit mask listing Requester-supported SPDM-enumerated algorithms.

2 + M AlgExternal 4*L
List of Requester-supported extended algorithms. The Extended algorithm field format table describes the

format of this field.

The tables for each of the individual type with the associated fixed fields are described below.

DHE structure table

Offset Field Size (bytes) Value

0 AlgType 1 Type of algorithm 0 = DHE

1 AlgCount 1 Bit [7:4] = 2

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated cryptographic Diffie-Hellman algorithms.

• Byte 0 Bit 0. ffdhe2048

• Byte 0 Bit 1. ffdhe3072

• Byte 0 Bit 2. ffdhe4096

• Byte 0 Bit 3. secp256r1

• Byte 0 Bit 4. secp384r1

• Byte 0 Bit 5. secp521r1

All other values reserved.

AEAD structure table

Offset Field
Size

(bytes)
Value

0 AlgType 1 Type of algorithm 1 = AEAD

1 AlgCount 1 Bit [7:4] = 2

Security Protocol and Data Model (SPDM) Specification DSP0274

40 Work in Progress Version 1.1.0b

Offset Field
Size

(bytes)
Value

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated cryptographic Encryption Cipher Suite

algorithms.

• Byte 0 Bit 0. AES-128-GCM

• Byte 0 Bit 1. AES-256-GCM

• Byte 0 Bit 2. CHACHA20_POLY1305

All other values reserved.

ReqBaseAsymAlg structure table

Offset Field
Size

(bytes)
Value

0 AlgType 1 Type of algorithm 2 = ReqBaseAsymAlg

1 AlgCount 1 Bit [7:4] = 2

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated asymmetric key signature algorithms for the

purposes of signature generation.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

• Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

• Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

• Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

KeySchedule structure table

Offset Field Size (bytes) Value

0 AlgType 1 Type of algorithm 3 = KeySchedule

1 AlgCount 1 Bit [7:4] = 2

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 41

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing Requester-supported SPDM-enumerated Key Schedule algorithms.

• Byte 0 Bit 0. HMAC-HASH.

All other values reserved.

Successful ALGORITHMS response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x63=ALGORITHMS

2 Param1 1 Number of Algorithms Structure Tables in this request using RespAlgStruct

3 Param2 1 Reserved

4 Length 2 Length of the response message, in bytes.

6 MeasurementSpecificationSel 1

Bit mask. The Responder shall select one of the measurement specifications

supported by the Requester. Thus, no more than one bit shall be set. The

MeasurementSpecification field of the Measurement block format table defines

the values in this field.

7 Reserved 1 Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

42 Work in Progress Version 1.1.0b

Offset Field Size (bytes) Value

8 MeasurementHashAlgo 4

Bit mask listing SPDM-enumerated hashing algorithm for measurements. M

represents the length of the measurement hash field in measurement block

structure. See the CHALLENGE request message table. The Responder shall

ensure the length of measurement hash field during all subsequent MEASUREMENT

response messages to the Requester until the next ALGORITHMS response

message is M.

• Bit 0. Raw Bit Stream Only, M=0

• Bit 1. TPM_ALG_SHA_256, M=32

• Bit 2. TPM_ALG_SHA_384, M=48

• Bit 3. TPM_ALG_SHA_512, M=64

• Bit 4. TPM_ALG_SHA3_256, M=32

• Bit 5. TPM_ALG_SHA3_384, M=48

• Bit 6. TPM_ALG_SHA3_512, M=64

If the Responder supports GET_MEASUREMENTS , exactly one bit in this bit field shall

be set. Otherwise, the Responder shall set this field to 0 .

A Responder shall only select bit 0 if the Responder supports raw bit streams as

the only form of measurement; otherwise, it shall select one of the other bits.

12 BaseAsymSel 4

Bit mask listing the SPDM-enumerated asymmetric key signature algorithm

selected. A Responder that returns CHAL_CAP=0 and MEAS_CAP!=2 shall set this

field to 0 . Other Responders shall set no more than one bit.

16 BaseHashSel 4

Bit mask listing the SPDM-enumerated hashing algorithm selected. A Responder

that returns CHAL_CAP=0 and MEAS_CAP!=2 shall set this field to 0 . Other

Responders shall set no more than one bit.

20 ExtAsymSelCount 1

Number of extended asymmetric key signature algorithms selected. Shall be either

0 or 1 (=A'). A Requester that returns CHAL_CAP=0 and MEAS_CAP!=2 shall set

this field to 0 .

21 ExtHashSelCount 1

The number of extended hashing algorithms selected. Shall be either 0 or 1

(=E'). A Requester that returns CHAL_CAP=0 and MEAS_CAP!=2 shall set this field

to 0 .

22 Reserved 2 Reserved.

24 ExtAsymSel 4*A'

The extended asymmetric key signature algorithm selected. Responder must be

able to sign a response message using this algorithm and Requester must have

listed this algorithm in the request message indicating it can verify a response

message by using this algorithm. The Responder shall use this asymmetric

signature algorithm for all subsequent applicable response messages to the

Requester. The Extended algorithm field format table describes the format of this

field.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 43

Offset Field Size (bytes) Value

24 +

4*A'
ExtHashSel 4*E'

Extended hashing algorithm selected. The Responder shall use this hashing

algorithm during all subsequent response messages to the Requester. The

Requester shall use this hashing algorithm during all subsequent applicable

request messages to the Responder. The Extended algorithm field format table

describes the format of this field.

24 +

4*A' +

4*E'

RespAlgStruct AlgStructSize See Response AlgStructure field

AlgStructSize is the sum of the size of all Algorithm structure tables enumerated below. The algorithm structure table

need be present only if the requester requested that AlgType.

Response Algorithm structure table

Offset Field
Size

(bytes)
Value

0 AlgType 1
Type of algorithm. 0 = DHE, 1 = AEADCipherSuite, 2 = ReqBaseAsymAlg, 3 = KeySchedule, 4 to 255

reserved

1 AlgCount 1

Bit mask listing Responder supported fixed algorithm requested by the Requester.

• Bit [7:4]. Number of Bytes required to describe Requester supported SPDM-enumerated fixed

Algorithms (= M). M + 2 must be a multiple of 4

• Bit [3:0] Number of Requester supported extended algorithms (= L).

2 AlgSupported M
Bit mask listing Requester requested, Responder selected fixed algorithm. Responder shall set at most one

bit to 1.

2 + M AlgExternal 4*L
List of Requester-supported Responder supported extended algorithm. Responder shall select at most one

external algorithm. The Extended algorithm field format table describes the format of this field.

The tables for each of the individual type with the associated fixed fields are described below.

DHE structure table

Offset Field
Size

(bytes)
Value

0 AlgType 1 Type of algorithm 0 = DHE

1 AlgCount 1 Bit [7:4] = 2

Security Protocol and Data Model (SPDM) Specification DSP0274

44 Work in Progress Version 1.1.0b

Offset Field
Size

(bytes)
Value

2 AlgSupported 2

Bit mask listing Responder selected, Requester requested, cryptographic Diffie-Hellman algorithm. A

Responder that returns ENCRPT_CAP=0 and MAC_CAP=0 shall set this field to 0 .

• Byte 0 Bit 0. ffdhe2048

• Byte 0 Bit 1. ffdhe3072

• Byte 0 Bit 2. ffdhe4096

• Byte 0 Bit 3. secp256r1

• Byte 0 Bit 4. secp384r1

• Byte 0 Bit 5. secp521r1

All other values reserved.

AEAD structure table

Offset Field
Size

(bytes)
Value

0 AlgType 1 Type of algorithm 1 = AEADCipherSuite

1 AlgCount 1 Bit [7:4] = 2

2 AlgSupported 2

Bit mask listing Responder selected Requester requested cryptographic Encryption Cipher Suite

algorithm.

• Byte 0 Bit 0. AES-128-GCM

• Byte 0 Bit 1. AES-256-GCM

• Byte 0 Bit 2. CHACHA20_POLY1305

All other values reserved.

ReqBaseAsymAlg structure table

Offset Field
Size

(bytes)
Value

0 AlgType 1 Type of algorithm 2 = ReqBaseAsymAlg

1 AlgCount 1 Bit [7:4] = 2

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 45

Offset Field
Size

(bytes)
Value

2 AlgSupported 2

Bit mask listing Responder selected, Requester requested, asymmetric key signature algorithm for the

purposes of signature generation.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

• Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

• Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

• Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

KeySchedule structure table

Offset Field
Size

(bytes)
Value

0 AlgType 1 Type of algorithm 3 = KeySchedule

1 AlgCount 1 Bit [7:4] = 2

2 AlgSupported 2

Bit mask listing Responder selected, Requester requested, SPDM-enumerated Key Schedule

algorithm.

• Byte 0 Bit 0. HMAC-HASH.

All other values reserved.

Extended algorithm field format

Offset Field Description

0
Registry

ID

Shall represent the registry or standards body. The ID column in the Registry or standards body ID table describes this

field's value.

1 Reserved Reserved

[2:3]
Algorithm

ID

Shall indicate the desired algorithm. The registry or standards body owns the value of this field. For details, see the

Registry or standards body ID table.

Security Protocol and Data Model (SPDM) Specification DSP0274

46 Work in Progress Version 1.1.0b

A Responder shall not select both a SPDM-enumerated asymmetric key signature algorithm and an extended

asymmetric key signature algorithm. A Responder shall not select both a SPDM-enumerated hashing algorithm and

an extended hashing algorithm.

Hashing algorithm selection: Example 1 illustrates how two endpoints negotiate a base hashing algorithm.

In Hashing algorithm selection: Example 1, endpoint A issues NEGOTIATE_ALGORITHMS request message and

endpoint B selects an algorithm of which both endpoints are capable.

The SPDM protocol accounts for the possibility that both endpoints may issue NEGOTIATE_ALGORITHMS request

messages independently of each other. In this case, the endpoint A Requester and endpoint B Responder

communication pair may select a different algorithm compared to the endpoint B Requester and endpoint A

Responder communication pair.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 47

7.5 Responder identity authentication

This clause describes request messages and response messages associated with the Responder's identity

authentication operations. The GET_DIGESTS and GET_CERTIFICATE messages shall be supported by a

Responder that returns CERT_CAP =1 in the CAPABILITIES response message. The CHALLENGE message defined

in this clause shall be supported by a Responder that returns CHAL_CAP =1 in the CAPABILITIES response message.

The Responder authentication: Example certificate retrieval flow shows the high-level request-response message

flow and sequence for certificate retrieval.

The GET_DIGESTS request message and DIGESTS response message may optimize the amount of data required to

be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of each of the certificate chains stored on an endpoint is returned with the DIGESTS

response message, such that the Requester can cache the previously retrieved certificate chain hash values to

Security Protocol and Data Model (SPDM) Specification DSP0274

48 Work in Progress Version 1.1.0b

detect any change to the certificate chains stored on the device before issuing the GET_CERTIFICATE request

message.

For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload

shall be signed by using the device private key over the hash of the message transcript. See the Request ordering

and message transcript computation rules for M1/M2 table.

This ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder and enables the Requester to detect the presence of an active

adversary attempting to downgrade cryptographic algorithms or SPDM versions.

Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a

Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates.

The message transcript generation for the signature computation is restarted with the latest GET_VERSION request

received.

7.5.1 Certificates and certificate chains

Each Responder that supports identity authentication shall carry at least one certificate chain. A certificate chain

contains an ordered list of certificates, presented as the binary (byte) concatenation of the fields that the Certificate

chain format shows.

Each certificate shall be in ASN.1 DER-encoded X.509 v3 format. The ASN.1 DER encoding of each individual

certificate can be analyzed to determine its length. The minimum number of certificates within a chain shall be one, in

which case the single certificate is the device-specific certificate. The Responder shall contain a single public-private

key pair per supported algorithm for its hardware identity, regardless of how many certificate chains are stored on the

device. The Responder selects a single asymmetric key signature algorithm per Requester.

Certificate chains are stored in locations called slots. Each slot shall either be empty or contain one complete

certificate chain. A device shall not contain more than eight slots. Slot 0 is populated by default. Additional slots may

be populated through the supply chain such as by a platform integrator or by an end user such as the IT

administrator. A slot mask identifies the certificate chains from the eight slots.

In this document, H refers to the output size, in bytes, of the hash algorithm agreed upon in

NEGOTIATE_ALGORITHMS .

Certificate chain format

Offset Field Size Description

0 Length 2 Total length of the certificate chain, in bytes, including all fields in this table. This field is little endian.

2 Reserved 2 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 49

Offset Field Size Description

4 RootHash H
Digest of the Root Certificate. Note that Root Certificate is ASN.1 DER-encoded for this digest. This field

shall be big endian.

4 + H Certificates

Length

- (4 +

H)

One or more ASN.1 DER-encoded X.509 v3 certificates where the first certificate is signed by the Root

Certificate or is the Root Certificate itself and each subsequent certificate is signed by the preceding

certificate. The last certificate is the leaf certificate. This field shall be big endian.

7.6 GET_DIGESTS request message and DIGESTS response message

This request message shall be used to retrieve the certificate chain digests.

The GET_DIGESTS request message table shows the GET_DIGESTS request message format.

The Successful DIGESTS response message table shows the DIGESTS response message format.

The digests in the Successful DIGESTS response message table shall be big endian.

GET_DIGESTS request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x81=GET_DIGESTS

2 Param1 1 Reserved

3 Param2 1 Reserved

Successful DIGESTS response message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x01=DIGESTS

2 Param1 1 Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

50 Work in Progress Version 1.1.0b

Offset Field
Size

(bytes)
Value

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and only if slot number K contains

a certificate chain for the protocol version in the SPDMVersion field. (Bit 0 is the least significant

bit of the byte.) The number of digests returned shall be equal to the number of bits set in this

byte. The digests shall be returned in order of increasing slot number.

4 Digest[0] H Digest of the first certificate chain.

...

4 + (H

* (n

-1))

Digest[n-1] H Digest of the last (nth) certificate chain.

7.7 GET_CERTIFICATE request message and CERTIFICATE response

message

This request message shall retrieve the certificate chains.

The GET_CERTIFICATE request message table shows the GET_CERTIFICATE request message format.

The Successful CERTIFICATE response message table shows the CERTIFICATE response message format.

The Requester should, at a minimum, save the public key of the leaf certificate and associate it with each of the

digests returned by DIGESTS message response. The Requester sends one or more GET_CERTIFICATE requests to

retrieve Responder's certificate chain.

GET_CERTIFICATE request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x82=GET_CERTIFICATE

2 Param1 1
Slot number of the target certificate chain to read from. The value in this field shall be between 0

and 7 inclusive.

3 Param2 1 Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 51

Offset Field
Size

(bytes)
Value

4 Offset 2

Offset in bytes from the start of the certificate chain to where the read request message begins.

The Responder should send its certificate chain starting from this offset. For the first

GET_CERTIFICATE request, the Requester must set this field to 0. For non-first requests, Offset is

the sum of PortionLength values in all previous GET_CERTIFICATE responses.

6 Length 2

Length of certificate chain data, in bytes, to be returned in the corresponding response.

Length is an unsigned 16-bit integer.

This value is the smaller of the following values:

• Capacity of Requester's internal buffer for receiving Responder's certificate chain.

• The RemainderLength of the preceding GET_CERTIFICATE response.

For the first GET_CERTIFICATE request, the Requester should use the capacity of the Requester's

receiving buffer.

If offset=0 and length=0xFFFF , the Requester is requesting the entire chain.

Successful CERTIFICATE response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x02=CERTIFICATE

2 Param1 1 Slot number of the certificate chain returned.

3 Param2 1 Reserved.

4 PortionLength 2

Number of bytes of this portion of certificate chain. This should be less than or equal to

Length received as part of the request. For example, the Responder might set this field

to a value less than Length received as part of the request due limitations on the

Responder's internal buffer.

6 RemainderLength 2

Number of bytes of the certificate chain that have not been sent yet after the current

response. For the last response, this field shall be 0 as an indication to the Requester

that the entire certificate chain has been sent.

8 CertChain PortionLength Requested contents of target certificate chain, formatted in DER. This field is big endian.

The Responder unable to return full length data flow shows the high-level request-response message flow for

Responder response when it cannot return the entire data requested by the Requester in the first response.

Security Protocol and Data Model (SPDM) Specification DSP0274

52 Work in Progress Version 1.1.0b

7.7.1 Leaf certificate

The SPDM endpoints for authentication must be provisioned with DER-encoded X.509 v3 format certificates. The

leaf certificate must be signed by a trusted CA and provisioned to the device. For endpoint devices to verify the

certificate, the following required fields must be present. In addition, to provide device information, use the Subject

Alternative Name certificate extension otherName field.

Required fields

Field Description

Version Version of the encoded certificate shall be present and shall be 3 or 2 .

Serial

Number
CA-assigned serial number shall be present with a positive integer value.

Signature

Algorithm
Signature algorithm that CA uses shall be present.

Issuer CA distinguished name shall be specified.

Subject

Name
Subject name shall be present and shall represent the distinguished name associated with the leaf certificate.

Validity

Certificate may include this attribute. If the validity attribute is present, the value for notBefore field should be assigned the

generalized 19700101000000Z time value and notAfter field should be assigned the generalized 99991231235959Z time

value.

Subject

Public Key

Info

Device public key and the algorithm shall be present.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 53

Field Description

Extended

Key Usage
Shall be present and key usage bit for digital signature shall be set.

Optional fields

Field Description

Basic

Constraints
If present, the CA value shall be FALSE .

Subject

Alternative

Name

otherName

In some cases, it might be desirable to provide device specific information as part of the device certificate. DMTF chose the

otherName field with a specific format to represent the device information. The use of the otherName field also provides

flexibility for other alliances to provide device specific information as part of the device certificate.

Definition of otherName using the DMTF OID

DMTFOtherName ::= SEQUENCE {
type-id DMTF-oid
value [0] EXPLICIT ub-DMTF-device-info

}
-- OID for DMTF device info --
id-DMTF-device-info OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 1 }
DMTF-oid ::= OBJECT IDENTIFIER (id-DMTF-device-info)

-- All printable characters except ":" --
DMTF-device-string ::= UTF8String (ALL EXCEPT ":")

-- Device Manufacturer --
DMTF-manufacturer ::= DMTF-device-string

-- Device Product --
DMTF-product ::= DMTF-device-string

-- Device Serial Number --
DMTF-serialNumber ::= DMTF-device-string

-- Device information string --
ub-DMTF-device-info ::= UTF8String({DMTF-manufacturer":"DMTF-product":"DMTF-serialNumber})

ANNEX B - Leaf certificate example shows an example leaf certificate.

7.8 CHALLENGE request message and CHALLENGE_AUTH response

Security Protocol and Data Model (SPDM) Specification DSP0274

54 Work in Progress Version 1.1.0b

message

This request message shall initiate authenticating a Responder through the challenge-response protocol.

The CHALLENGE request message table shows the CHALLENGE request message format.

The Successful CHALLENGE_AUTH response message table shows the CHALLENGE_AUTH response message

format.

CHALLENGE request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x83=CHALLENGE

2 Param1 1 Slot number of the Responder's certificate chain that shall be used for authentication.

3 Param2 1

Requested measurement summary hash Type:

• 0x0 . No measurement summary hash.

• 0x1=TCB . Component measurement hash.

• 0xFF . All measurements hash.

All other values reserved.

When Responder does not support any measurements, Requester shall set this value to

0x0 .

4 Nonce 32 The Requester should choose a random value.

Successful CHALLENGE_AUTH response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x03=CHALLENGE_AUTH

2 Param1 1

Shall contain the slot number in the Param1 field of the corresponding

CHALLENGE request. The Requester can use this value to check that the

certificate matched what was requested.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 55

Offset Field Size (bytes) Value

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and only if

slot number K contains a certificate chain for the protocol version in the

SPDMVersion field. Bit 0 is the least significant bit of the byte.

4 CertChainHash H

Hash of the certificate chain used for authentication. The Requester can use

this value to check that the certificate chain matches the one requested.

This field is big endian.

4 + H Nonce 32 Responder-selected random value.

36 + H MeasurementSummaryHash H

When the Responder does not support measurement or requested

Param2 =0, the field shall be absent.

When the requested Param2 =1, this field shall be the combined hash of

Measurements of all measurable components considered to be in the TCB

required to generate this response, computed as

hash(Concatenation(MeasurementBlock[0].Measurement,

MeasurementBlock[1].Measurement, ...)) where

MeasurementBlock[x].Measurement is a measurement in TCB.

When the requested Param2 =1 and there are no measurable components in

the TCB required to generate this response, this field shall be 0 .

When requested Param2=0xFF , this field is computed as the

hash(Concatenation(MeasurementBlock[0].Measurement,

MeasurementBlock[1].Measurement, ...,

MeasurementBlock[n].Measurement)) of all supported measurements.

36 + 2H OpaqueLength 2 Size of the OpaqueData field. The value shall not be greater than 1024 bytes.

38 + 2H OpaqueData OpaqueLength
Free-form field, if present. The Responder may include Responder-specific

information and/or information defined by its transport.

38 + 2H +

OpaqueLength
Signature S

S is the size of the asymmetric-signing algorithm output that the Responder

selected through the last ALGORITHMS response message to the Requester.

The CHALLENGE_AUTH signature generation and CHALLENGE_AUTH

signature verification clauses, respectively, define the signature generation

and verification processes.

7.8.1 CHALLENGE_AUTH signature generation

To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

1. The Responder shall construct M1 and the Requester shall construct M2 message transcripts. See the

Request ordering and message transcript computation rules for M1/M2 table.

Security Protocol and Data Model (SPDM) Specification DSP0274

56 Work in Progress Version 1.1.0b

where:

Concatenate() is the standard concatenation function that is performed only after a successful

completion response on the entire request and response contents.

◦ If a response contains ErrorCode=ResponseNotReady :

Concatenation function is performed on the contents of both the original request and the response

received during RESPOND_IF_READY .

◦ If a response contains an ErrorCode other than ResponseNotReady :

No concatenation function is performed on the contents of both the original request and response.

2. The Responder shall generate:

Signature = Sign(SK, Hash(M1));

where:

◦ Sign

Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS

response message that the Responder sent.

The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

◦ SK

Private Key associated with the Responder's leaf certificate in slot=Param1 of the CHALLENGE

request message.

◦ Hash

Hashing algorithm the Responder selected through the last ALGORITHMS response message that

the Responder sent.

The Successful ALGORITHMS response message table describes the BaseHashSel and

ExtHashSel fields.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 57

7.8.2 CHALLENGE_AUTH signature verification

Modifications to the previous request messages or the corresponding response messages by an active person-in-

the-middle adversary or media error result in M2!=M1 and lead to verification failure.

To complete the CHALLENGE_AUTH signature verification process, the Requester shall complete this step:

1. The Requester shall perform:

Verify(PK, Hash(M2), Signature);

where:

◦ Verify

Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS

response message that the Requester received.

The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

◦ PK

Public key associated with the leaf certificate of the Responder with slot=Param1 of the

CHALLENGE request message.

◦ Hash

Hashing algorithm the Responder selected through the last sent ALGORITHMS response message

as received by the Requester.

The Successful ALGORITHMS response message table describes the BaseHashSel and

ExtHashSel fields.

The Responder authentication: Runtime challenge-response flow shows the high-level request-response message

flow and sequence for Responder's authentication for runtime challenge-response.

Security Protocol and Data Model (SPDM) Specification DSP0274

58 Work in Progress Version 1.1.0b

7.8.2.1 Request ordering and message transcript computation rules for M1 and M2

The Request ordering and message transcript computation rules for M1/M2 table defines how the message transcript

is constructed for M1 and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH

response message.

The possible request orderings after reset leading up to and including CHALLENGE are:

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , GET_CERTIFICATE , CHALLENGE

(A1, B1, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , CHALLENGE (A1, B3, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , CHALLENGE (A1, B2, C1)

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A2, B1, C1)

• GET_DIGESTS , CHALLENGE (A2, B3, C1)

• CHALLENGE (A2, B2, C1)

The possible request orderings after reset without CHALLENGE are:

• GET_DIGESTS (A2, B3, C2)

• NULL (A2, B2, C2)

After the Requester receives a successful CHALLENGE_AUTH response or the Requester sends a GET_MEASUREMENTS

request, M1 and M2 shall be set to null. Immediately after reset, M1 and M2 shall be null. If a Requester sends a

GET_VERSION message, the Requester and Responder shall reset M1 and M2 to null and recommence construction

of M1 and M2 starting with the new GET_VERSION message.

Request ordering and message transcript computation rules for M1/M2

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

Reset NA M1/M2=null

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 59

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

GET_VERSION issued

Requester issued this request to allow the Requester and Responder to

determine an agreed upon Negotiated State. A Requester may detect out of

sync condition typically on first power on, or when the signature verification fails

or the Responder provides an unexpected error response.

M1/M2=null

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Issued

Requester shall always issue these requests in this order.

A1=Concatenate(GET_VERSION,

VERSION, GET_CAPABILITIES,

CAPABILITIES,

NEGOTIATE_ALGORITHMS,

ALGORITHMS)

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Skipped

Requester skipped issuing these requests after a new reset if the Responder

has previously indicated CACHE_CAP=1 . In this case, the Requester and

Responder shall proceed with the previously Negotiated State.

A2=null

GET_DIGESTS ,

GET_CERTIFICATE

issued

Requester issued these requests in this order after NEGOTIATE_ALGORITHMS

request completion or immediately after reset, if it chose to skip the previous

three requests.

B1=Concatenate(GET_DIGEST,

DIGEST, GET_CERTFICATE,

CERTIFICATE)

GET_DIGESTS ,

GET_CERTFICATE

skipped

Requester skipped both requests after a new reset since it could use previously

cached response to these requests.
B2=null

GET_DIGESTS issued,

GET_CERTIFICATE

skipped

Requester skipped GET_CERTIFICATE request after a new reset since it could

use the previously cached CERTIFICATE response.
B3=(GET DIGESTS, DIGEST)

CHALLENGE issued

Requester issued this request to complete security verification of current

requests and responses. The Signature bytes of CHALLENGE_AUTH shall not be

included in C.

C1=(CHALLENGE,

CHALLENGE_AUTH\Signature) .

See the CHALLENGE request

message table.

CHALLENGE completion Completion of CHALLENGE resets M1 and M2. M1/M2=null

CHALLENGE skipped

Requester skipped this request and forwent security verification of previous

requests and responses. Requester may typically skip CHALLENGE when it

issues GET_DIGESTS directly after reset.

C2 = M1\M2 unchanged

Other issued

If the Requester issued GET_MEASUREMENTS or KEY_EXCHANGE or FINISH or

PSK_EXCHANGE or PSK_FINISH or KEY_UPDATE or HEARTBEAT or

GET_ENCAPSULATED_REQUEST or DELIVER_ENCAPSULATED_RESPONSE or

END_SESSSION request(s) and skipped CHALLENGE completion, M1 and M2 are

reset to null .

M1/M2=null

7.9 Firmware and other measurements

This clause describes request messages and response messages associated with endpoint measurement. All

Security Protocol and Data Model (SPDM) Specification DSP0274

60 Work in Progress Version 1.1.0b

request messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in

CAPABILITIES response.

The Measurement retrieval flow shows the high-level request-response flow and sequence for endpoint

measurement. If MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0, and the Requester

requires fresh measurements, the Responder must be reset before GET_MEASUREMENTS is resent. The mechanisms

employed for resetting the Responder are outside the scope of this specification.

7.10 GET_MEASUREMENTS request message and MEASUREMENTS

response message

This request message shall retrieve measurements in the form of measurements blocks. A Requester should not

send this message until it has received at least one successful CHALLENGE_AUTH response message from the

responder. The successful CHALLENGE_AUTH response may have been received before the last reset.

The GET_MEASUREMENTS request message table shows the GET_MEASUREMENTS request message format.

The GET_MEASUREMENTS request attributes table shows the GET_MEASUREMENTS request message attributes.

The Successful MEASUREMENTS response message table shows the MEASUREMENTS response message format.

GET_MEASUREMENTS request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xE0=GET_MEASUREMENTS

2 Param1 1 Request attributes. See the GET_MEASUREMENTS request attributes table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 61

Offset Field
Size

(bytes)
Value

3 Param2 1

Measurement operation.

• A value of 0x0 shall query the Responder for the total number of measurement blocks

available.

• A value of 0xFF shall request all measurement blocks.

• A value between 0x1 and 0xFE , inclusively, shall request the measurement block at the

index corresponding to that value.

4 Nonce 32
The Requester should choose a random value. This field is only present if a signature is required

on the response. See the GET_MEASUREMENTS request attributes table.

GET_MEASUREMENTS request attributes

Bits Value Description

0 1

If the Responder can generate a signature as shown in CAPABILITIES message, this bit's value shall indicate to the

Responder to generate a signature. The Responder shall generate a signature in the corresponding response. The

Nonce field shall be present in the request.

0 0

Responders that cannot generate a signature as shown in the CAPABILITIES message shall use this bit's value.

For Responders that can generate signatures, this bit's value shall indicate that the Requester does not want a

signature.

The Responder shall not generate a signature in the response. The Nonce field shall be absent in the request.

[7:1] Reserved Reserved

Successful MEASUREMENTS response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x60=MEASUREMENTS

2 Param1 1

When Param2 in the requested measurement operation is

0 , this parameter shall return the total number of

measurement indices on the device. Otherwise, this field is

reserved.

3 Param2 1 Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

62 Work in Progress Version 1.1.0b

Offset Field Size (bytes) Value

4 NumberOfBlocks 1

Number of measurement blocks (N) in MeasurementRecord .

Shall reflect the number of measurement blocks in

MeasurementRecord . If Param2 in the requested

measurement operation is 0 , this field shall be 0 .

5 MeasurementRecordLength 3

Size of the MeasurementRecord field in bytes. If Param2 in

the requested measurement operation is 0 , this field shall

be 0 .

8 MeasurementRecord L= MeasurementRecordLength

Concatenation of all measurement blocks that correspond to

the requested Measurement operation. Measurement block

defines the measurement block structure.

8 + L Nonce 32 The Responder should choose a random value.

40 + L OpaqueLength 2
Size of the OpaqueData field in bytes. The value shall not be

greater than 1024 bytes.

42 + L OpaqueData OpaqueLength

Free-form field, if present. The Responder may include

Responder-specific information and/or information defined by

its transport.

42 + L +

OpaqueLength
Signature S

Signature of the GET_MEASUREMENTS request and

MEASUREMENTS response messages, excluding the Signature

field and signed using the device private key. The Responder

shall use the asymmetric signing algorithm it selected during

the last ALGORITHMS response message to the Requester,

and S is the size of that asymmetric signing algorithm output.

7.10.1 Measurement block

Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,

offsets 0 through 3, followed by the measurement data that correspond to a particular measurement index and

measurement type. The blocks are ordered by Index .

The Measurement block format table shows the format for a measurement block:

Measurement block format

Offset Field Size (bytes) Value

0 Index 1 Index. Shall represent the index of the measurement.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 63

Offset Field Size (bytes) Value

1 MeasurementSpecification 1

Bit mask. The value shall indicate the measurement specification that the

requested Measurement follows and shall match the selected measurement

specification in the ALGORITHMS message. See the Successful ALGORITHMS

response message table. Only one bit shall be set in the measurement block.

• Bit 0=DMTF, as specified in the Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF table.

All other bits are reserved.

2 MeasurementSize 2 Size of Measurement , in bytes.

4 Measurement MeasurementSize The MeasurementSpecification defines the format of this field.

7.10.1.1 DMTF specification for the Measurement field of a measurement block

The present clause is the specification for the format of the Measurement field in a measurement block when the

MeasurementSpecification field selects Bit 0=DMTF. This format is specified in Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF.

Measurement field format when MeasurementSpecification field is Bit 0 = DMTF

Security Protocol and Data Model (SPDM) Specification DSP0274

64 Work in Progress Version 1.1.0b

Offset Field Size (bytes) Value

0 DMTFSpecMeasurementValueType 1

Composed of:

• Bit [7] indicates the representation in

DMTFSpecMeasurementValue .

• Bits [6:0] indicate what is being measured by

DMTFSpecMeasurementValue .

These values are set independently and are interpreted as

follows:

• [7]=0b . Hash.

• [7]=1b . Raw bit stream.

• [6:0]=00h . Immutable ROM.

• [6:0]=0x1 . Mutable firmware.

• [6:0]=02h . Hardware configuration, such as straps,

debug modes.

• [6:0]=03h . Firmware configuration, such as,

configurable firmware policy.

All other values reserved.

1 DMTFSpecMeasurementValueSize 2

Size of DMTFSpecMeasurementValue , in bytes.

When DMTFSpecMeasurementValueType[7]=0b , the

DMTFSpecMeasurementValueSize shall be derived from the

measurement hash algorithm that the ALGORITHM response

message returns.

3 DMTFSpecMeasurementValue DMTFSpecMeasurementValueSize

DMTFSpecMeasurementValueSize bytes of cryptographic

hash or raw bit stream, as indicated in

DMTFSpecMeasurementType[7] .

7.10.2 MEASUREMENTS signature generation

To complete the MEASUREMENTS signature generation process, the Responder shall complete these steps:

1. The Responder shall construct L1 and the Requester shall construct L2 over their observed

messages:

L1/L2 = Concatenate(GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,
GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,
GET_MEASUREMENTS_REQUESTn, MEASUREMENTS_RESPONSEn)

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 65

where:

◦ Concatenate()

Standard concatenation function.

◦ GET_MEASUREMENTS_REQUEST1

Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

not requested a signature on that specific GET_MEASUREMENTS request.

◦ MEASUREMENTS_RESPONSE1

Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUEST1 .

◦ GET_MEASUREMENTS_REQUESTn-1

Entire last consecutive GET_MEASUREMENTS request message under consideration, where the

Requester has not requested a signature on that specific GET_MEASUREMENTS request.

◦ MEASUREMENTS_RESPONSEn-1

Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn-1 .

◦ GET_MEASUREMENTS_REQUESTn

Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

requested a signature on that specific GET_MEASUREMENTS request.

n is a number greater than or equal to 1 .

When n equals 1 , the Requester has not made any GET_MEASUREMENTS requests without

signature prior to issuing a GET_MEASUREMENTS request with signature.

◦ MEASUREMENTS_RESPONSEn

Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn .

Any communication between Requester and Responder other than a GET_MEASUREMENTS request or

response resets L1/L2 computation to null.

2. The Responder shall generate:

Security Protocol and Data Model (SPDM) Specification DSP0274

66 Work in Progress Version 1.1.0b

Signature = Sign(SK, Hash(L1));

where:

◦ Sign

Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS

response message that the Responder sent.

The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

◦ SK

Private key associated with the Responder's slot 0 leaf certificate.

◦ Hash

Hashing algorithm that the Responder selected through the last ALGORITHMS response message

that the Responder sent.

The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

7.10.3 MEASUREMENTS signature verification

To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

1. The Requester shall perform:

Verify(PK, Hash(L2), Signature)

where:

◦ PK

Public key associated with the slot 0 certificate of the Responder.

PK is extracted from the CERTIFICATES response.

◦ Verify

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 67

Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS

response message that the Requester received.

The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

◦ Hash

Hashing algorithm the Responder selected through the last sent ALGORITHMS response message

that the Requester sent.

The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

The Measurement signature computation example shows an example of a typical Requester Responder protocol

where the Requester issues 0 to n-1 GET_MEASUREMENTS requests without a signature, followed by a single

GET_MEASUREMENTS request n with a signature.

7.11 ERROR response message

For a SPDM operation that results in an error, the Responder shall send an ERROR response message to the

Requester.

Security Protocol and Data Model (SPDM) Specification DSP0274

68 Work in Progress Version 1.1.0b

The ERROR response message table shows the ERROR response format.

The Error code and error data table shows the detailed error code, error data, and extended error data.

The ResponseNotReady extended error data table shows the ResponseNotReady extended error data.

The Registry or standards body ID table shows the registry or standards body ID.

The ExtendedErrorData format definition for vendor or other standards-defined ERROR response message table

shows the ExtendedErrorData format definition for vendor or other standards-defined ERROR response message.

ERROR response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x7F=ERROR

2 Param1 1 Error Code. See Error code and error data.

3 Param2 1 Error Data. See Error code and error data.

4 ExtendedErrorData 0-32 Optional extended data. See Error code and error data.

Error code and error data

Error code Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved Reserved Reserved

InvalidRequest 0x01 One or more request fields are invalid 0x00
No extended error data is

provided.

InvalidSession 0x02 The record layer used an invalid session ID.
This shall be the invalid

session ID.
Reserved

Busy 0x03

The Responder received the request

message and the Responder decided to

ignore the request message, but the

Responder may be able to process the

request message if the request message is

sent again in the future.

0x00
No extended error data is

provided.

UnexpectedRequest 0x04

The Responder received an unexpected

request message. For example, CHALLENGE

before NEGOTIATE_ALGORITHMS .

0x00
No extended error data is

provided.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 69

Error code Value Description Error data ExtendedErrorData

Unspecified 0x05 Unspecified error occurred. 0x00
No extended error data is

provided.

DecryptError 0x06

The receiver of the record cannot decrypt

the record or verify data during the session

handshake.

Reserved Reserved

UnsupportedRequest 0x07
The RequestResponseCode in the request

message is unsupported.

RequestResponseCode

in the request message.

No extended error data is

provided

RequestInFlight 0x08
The Responder has an delivered a request

to which it is still waiting for the response.
Reserved Reserved

InvalidResponseCode 0x09
The Requester delivered an invalid

response for an encapsulated response.
Reserved Reserved

SessionLimitExceeded 0x0A Reserved Reserved Reserved

Reserved 0x0b - 0x40 Reserved Reserved Reserved

MajorVersionMismatch 0x41
Requested SPDM Major Version is not

supported.
0x00

No extended error data

provided.

ResponseNotReady
0x42

See the RESPOND_IF_READY request

message.
0x00

See the

ResponseNotReady

extended error data table.

RequestResynch 0x43
Responder is requesting Requester to

reissue GET_VERSION to resynchronize.
0x00

No extended error data

provided.

Reserved 0x44 - 0xFE Reserved Reserved. Reserved

Vendor/Other Standards

Defined
0xFF Vendor or Other Standards defined

Shall indicate the

registry or standard body

using one of the values

in the ID column in the

Registry or standards

body ID table.

See the

ExtendedErrorData format

definition for vendor or

other standards-defined

ERROR response

message table for format

definition.

ResponseNotReady extended error data

Security Protocol and Data Model (SPDM) Specification DSP0274

70 Work in Progress Version 1.1.0b

Offset Field
Size

(bytes)
Value

0 RDTExponent 1

Exponent expressed in logarithmic (base 2 scale) to calculate RDT time in uS after which the Responder

can provide successful completion response.

For example, the raw value 8 indicates that the Responder will be ready in 28=256 uS.

Responder should use RDT to avoid continuous pinging and issue the RESPOND_IF_READY request

message after RDT time.

For timing requirement details, see the Timing specification for SPDM messages table.

1 RequestCode 1 The request code that triggered this response.

2 Token 1 The opaque handle that the Requester shall pass in with the RESPOND_IF_READY request message.

3 RDTM 1

Multiplier used to compute WT Max in uS to indicate the response may be dropped after this delay.

The multiplier shall always be greater than 1.

The Responder may also stop processing the initial request if the same Requester issues a different

request.

For timing requirement details, see the Timing specification for SPDM messages table.

Registry or standards body ID

For algorithm encoding in extended algorithm fields, unless otherwise specified, consult the respective registry or

standards body.

ID
Vendor ID

length (bytes)

Registry or standards

body name
Description

0x0 0 DMTF
DMTF does not have a Vendor ID registry. At present, DMTF does not have any

algorithms defined for use in extended algorithms fields.

0x1 2 TCG
Vendor is identified by using TCG Vendor ID Registry. For extended algorithms, see TCG

Algorithm Registry.

0x2 2 USB Vendor is identified by using USB's vendor ID.

0x3 2 PCI-SIG Vendor is identified using PCI-SIG Vendor ID.

0x4 4 IANA
Vendor is identified by using the Internet Assigned Numbers Authority's Private Enterprise

Number (PEN).

0x5 4 HDBaseT Vendor is identified by using HDBaseT HDCD entity.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 71

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/

ID
Vendor ID

length (bytes)

Registry or standards

body name
Description

0x6 2 MIPI Vendor is identified by using MIPI's Manufacturer ID.

ExtendedErrorData format definition for vendor or other standards-defined ERROR response message

Byte

offset
Length Field name Description

0 1 Len

Length of the VendorID field.

If the ERROR is vendor defined, the value of this field shall equal the Vendor ID Len , as the Registry

or standards body ID table describes, of the corresponding registry or standard body name.

If the ERROR is defined by a registry or a standard, this field shall be zero (0), which also indicates

that the VendorID field is not present.

The Error Data field in the ERROR message indicates the registry or standards body name, such as

Param2 , and is one of the values in the ID column in the Registry or standards body ID table.

1 Len VendorID

The value of this field shall indicate the Vendor ID, as assigned by the registry or standards body. The

Registry or standards body ID table describes the length of this field. Shall be in little endian format.

The registry or standards body name in the ERROR is indicated in the Error Data field, such as

Param2 , and is one of the values in the ID column in the Registry or standards body ID table.

1 +

Len
Variable OpaqueErrorData Defined by the vendor or other standards.

7.12 RESPOND_IF_READY request message

This request message shall ask for the response to the original request upon receipt of ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return the ERROR response message, set

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response

message.

Security Protocol and Data Model (SPDM) Specification DSP0274

72 Work in Progress Version 1.1.0b

https://mipi.org/
https://mid.mipi.org/

The RESPOND_IF_READY request message table shows the RESPOND_IF_READY request message format.

RESPOND_IF_READY request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xFF=RESPOND_IF_READY

2 Param1 1
The original request code that triggered the ResponseNotReady error code response. Shall match

the request code returned as part of the ResponseNotReady extended error data.

3 Param2 1 The token that was returned as part of the ResponseNotReady extended error data.

7.13 VENDOR_DEFINED_REQUEST request message

A Requester intending to define a unique request to meet its need can use this request message. The

VENDOR_DEFINED_REQUEST request message table defines the format.

The Requester should send this request message only after sending GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS request sequence.

The VENDOR_DEFINED_REQUEST request message table shows the VENDOR_DEFINED_REQUEST request

message format.

VENDOR_DEFINED_REQUEST request message

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 73

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xFE=VENDOR_DEFINED_REQUEST

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2
Shall indicate the registry or standards body by using one of the values in the ID column

in the Registry or standards body ID table.

6 Len 1

Length of the Vendor ID field. If the VendorDefinedRequest is standard defined, Len

shall be 0 . If the VendorDefinedRequest is vendor-defined, Len shall equal Vendor ID

Len , as the Registry or standards body ID table describes.

7 VendorID Len Vendor ID, as assigned by the registry or standards body. Shall be in little endian format.

7 +

Len
ReqLength 2 Length of the VendorDefinedReqPayload .

7 +

Len +

2

VendorDefinedReqPayload ReqLength The standard or vendor shall use this field to send the request payload.

7.13.1 VENDOR_DEFINED_RESPONSE response message

A Responder can use this response message in response to VENDOR_DEFINED_REQUEST . The

VENDOR_DEFINED_RESPONSE response message table defines the format.

The VENDOR_DEFINED_RESPONSE response message table shows the VENDOR_DEFINED_RESPONSE response

message format.

VENDOR_DEFINED_RESPONSE response message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x7E=VENDOR_DEFINED_RESPONSE

2 Param1 1 Reserved

3 Param2 1 Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

74 Work in Progress Version 1.1.0b

Offset Field
Size

(bytes)
Value

4 StandardID 2
Shall indicate the registry or standard body using one of the values in the ID column in

the Registry or standards body ID table.

6 Len 1

Length of the Vendor ID field. If the VendorDefinedRequest is standards-defined,

length shall be 0 . If the VendorDefinedRequest is vendor-defined, length shall equal

Vendor ID Len , as the Registry or standards body ID table describes.

7 VendorID Len
Shall indicate the Vendor ID, as assigned by the registry or standards body. Shall be in

little endian format.

7 +

Len
RespLength 2 Length of the VendorDefinedRespPayload

7 +

Len +

2

VendorDefinedRespPayload ReqLength Standard or vendor shall use this value to send the response payload.

7.14 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response

messages

This request message shall initiate a handshake between Requester and Responder intended to authenticate the

Responder (or optionally both parties), negotiate cryptographic parameters (in addition to those negotiated in the last

NEGOTIATE_ALGORITHMS / ALGORITHMS exchange), and establish shared keying material. The KEY_EXCHANGE

request message table shows the KEY_EXCHANGE request message format and the KEY_EXCHANGE_RSP

response message table shows the KEY_EXCHANGE_RSP response message format. The handshake is completed by

the successful exchange of the FINISH request and FINISH_RSP response messages, presented in the next

section, and depends on the tight coupling between the two request/response message pairs.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 75

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

KEY_EXCHANGE

KEY_EXCHANGE_RSP

GET_CERTIFICATE

CERTIFICATE

If supported

FINISH

FINISH_RSP

Security Protocol and Data Model (SPDM) Specification DSP0274

76 Work in Progress Version 1.1.0b

The figure below provides an example of multiple sessions using two independent sets of root session keys

coexisting at the same time. The specification does not require a specific temporal relationship between the second

KEY_EXCHANGE request message and first FINISH response message. However a Responder may generate an

ErrorCode=Busy response to second KEY_EXCHANGE request message until first FINISH response message is

complete in order to simplify implementation.

KEY_EXCHANGE request message

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 77

Offset Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE4 = KEY_EXCHANGE

2 Param1 1

Requested measurement summary hash Type:

• 0x0 . No measurement summary hash.

• 0x1=TCB . Component measurement hash.

• 0xFF . All measurements hash.

All other values reserved.

When Responder does not support any measurements, Requester shall set this value to 0x0 .

3 Param2 1
The slot number of the target certificate chain that the Responder will use for authentication. The

value in this field shall be between 0 and 7 inclusive to identify a valid certificate slot.

4 DHE_Named_Group 4

• Byte 0 Bit 0 – Finite Field ffdhe2048 (D = 256) – RFC 7919 Appendix A.1

• Byte 0 Bit 1 – Finite Field ffdhe3072 (D = 384) – RFC 7919 Appendix A.2

• Byte 0 Bit 2 – Finite Field ffdhe4096 (D = 512) – RFC 7919 Appendix A.3

• Byte 0 Bit 3 – ECDHE secp256r1 (D = 64, C = 32) – RFC 8446 Section 4.2.8.2

• Byte 0 Bit 4 – ECDHE secp384r1 (D = 96, C = 48) – RFC 8446 Section 4.2.8.2

• Byte 0 Bit 5 – ECDHE secp521r1 (D = 132 C = 66) – RFC 8446 Section 4.2.8.2

All other values reserved.

NOTE: This field is a duplicate of that found in the NEGOTIATE_ALGORITHMS/ALGORITHMS

commands. This is included for early error detection and must be the same algorithm as selected in

NEGOTIATE_ALGORITHMS/ALGORITHMS

8 RandomData 32 Requester-provided random data.

40 ExchangeData D

If the selected DHE_Named_Group is finite field, then ExchangeData represents the computed

public information. If the selected DHE_Named_Group is ECDHE, the exchange data represents

the X and Y values in network byte order. Specifically, X is [0: C - 1] and Y is [C : D – 1]. In both

cases the size of D (and C for ECDHE) is derived from the selected DHE_Named_Group.

40 +

D
L 2 Length of the OpaqueData to follow.

40 +

D + L
OpaqueData L

If present, OpaqueData sent by the Requester. Used to indicate any parameters that Requester

wishes to pass to the Responder for key schedule and/or usage.

Successful KEY_EXCHANGE_RSP response message

Security Protocol and Data Model (SPDM) Specification DSP0274

78 Work in Progress Version 1.1.0b

Offset Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x64 = KEY_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if Heartbeat is not supported. Otherwise, the value shall

be in units of seconds.

3 Param2 1
Session ID. The Responder shall choose a session ID. It should be different from the 5

previous sessions or active sessions to the same endpoint.

4 Length 2 Length of the entire request in bytes.

6 Mut_Auth_Requested 1

• Bit 0 – If set, Responder is requesting a Mutual Authentication flow. Requester shall

initiate a GET_ENCAPSULATED_REQUEST request.

• Bit 1 - If set, Responder is requesting a Mutual Authentication flow with implicit

GET_DIGESTS request. Requester shall initiate a

DELIVER_ENCAPSULATED_RESPONSE request which encapsulates DIGESTS

response.

Bit [7:2] reserved.

7 Reserved 1 reserved.

8 RandomData 32 Responder-provided random data.

40 ExchangeData D

If the selected DHE_Named_Group is finite field, then ExchangeData represents the

computed public information. If the selected DHE_Named_Group is ECDHE, the exchange

data represents the X and Y values in network byte order. Specifically, X is [0: C - 1] and Y

is [C : D – 1]. In both cases the size of D (and C for ECDHE) is derived from the selected

DHE_Named_Group.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 79

Offset Field

Size

in

bytes

Value

40+D MeasurementSummaryHash H

When the Responder does not support measurement or requested Param1 =0, the field

shall be absent.

When the requested Param1 =1, this field shall be the combined hash of Measurements of

all measurable components considered to be in the TCB required to generate this

response, computed as hash(Concatenation(MeasurementBlock[0].Measurement,

MeasurementBlock[1].Measurement, ...)) where MeasurementBlock[x].Measurement is a

measurement in TCB.

When the requested Param1 =1 and there are no measurable components in the TCB

required to generate this response, this field shall be 0 .

When requested Param1=0xFF , this field is computed as the

hash(Concatenation(MeasurementBlock[0].Measurement,

MeasurementBlock[1].Measurement, ..., MeasurementBlock[n].Measurement)) of all

supported measurements.

40+D+H Signature S

Signature over the transcript hash. S is the size of the asymmetric signing algorithm output

the Responder selected via the last ALGORITHMS response message to the Requester. The

construction of the transcript hash is defined in Transcript Hash for KEY_EXCHANGE_RSP

signature.

40+D+H+S ResponderVerifyData O

Conditional field. If both the requester and responder support

HANDSHAKE_IN_THE_CLEAR_CAP this field is absent with length 0. (O=0). In this mode the

entire handshake until FINISH_RSP is carried out in the clear. If either requester or

responder do not support HANDSHAKE_IN_THE_CLEAR_CAP field this field is of length H (O =

H) and it equals HMAC of the transcript hash using a MAC key derived from the shared

session keys generated by the Requester and Responder. The construction of the

transcript hash is defined in Transcript Hash for KEY_EXCHANGE_RSP HMAC.

7.15 FINISH request and FINISH_RSP response messages

This request message shall complete the handshake between Requester and Responder initiated by a

KEY_EXCHANGE request. The purpose of the FINISH request and FINISH_RSP response messages is to provide key

confirmation, bind each party's identity to the exchanged keys and protect the entire handshake against manipulation

by an active attacker. The FINISH request message table shows the FINISH request message format and the

FINISH_RSP response message table shows the FINISH_RSP response message format.

FINISH request message

Security Protocol and Data Model (SPDM) Specification DSP0274

80 Work in Progress Version 1.1.0b

Offset Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE5 = FINISH

2 Param1 1
Bit 0 – If set, the Signature field is included. This bit shall be set when mutual authentication occurs.

All other bits reserved.

3 Param2 1
Slot ID. Only valid if Param1= 0x01, otherwise reserved. Slot number of the target Certificate Chain

being authenticated in signature field. The value in this field shall be between 0 and 7 inclusive.

4 Signature S

Signature over the transcript hash. S is the size of the asymmetric signing algorithm output the

Responder selected via the last ALGORITHMS response message to the Requester. S is zero and

field not present if Param1 = 0x00. The construction of the transcript hash is defined in Transcript

Hash for FINISH request signature, mutual authentication.

4+S VerifyData H

An HMAC of the transcript hash using a MAC key derived from the shared session keys generated

by the Requester and Responder. The construction of the transcript hash is defined in Transcript

Hash for FINISH request HMAC, Responder-only authentication and Transcript Hash for FINISH

request HMAC, mutual authentication.

Successful FINISH_RSP response message

Offset Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x65 = FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 ResponderVerifyData O

Conditional field. If either the requester or the responder do not support

HANDSHAKE_IN_THE_CLEAR_CAP this field is absent with length 0. (O = 0). If both the requester and

responder support HANDSHAKE_IN_THE_CLEAR_CAP field this field is of length H (O = H) and it equals

HMAC of the transcript hash using a MAC key derived from the shared session keys generated by

the Requester and Responder. The construction of the transcript hash is defined in Transcript Hash

for FINISH_RSP response HMAC and Transcript Hash for FINISH_RSP request HMAC, mutual

authentication.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 81

7.15.1 Transcript Hash calculation rules

The Transcript Hash is calculated by concatenating the prescribed full messages or message fields in order. In the

following, the notation: [${message_name}] . ${field_name} is used, where:

• ${message_name} is the name of the request or response message.

• ${field_name} is the name of the field in the request or response message. The asterisk (*) means all fields

in that message.

Transcript Hash for KEY_EXCHANGE_RSP signature:

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].*
4. [CAPABILITIES].*
5. [NEGOTIATE_ALGORITHMS].*
6. [ALGORITHMS].*
7. The specified certificate chain in DER format(i.e. KEY_EXCHANGE Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].SPDM Header Fields
10. [KEY_EXCHANGE_RSP].Length
11. [KEY_EXCHANGE_RSP].Mut_Auth_Requested
12. [KEY_EXCHANGE_RSP].Reserved
13. [KEY_EXCHANGE_RSP].RandomData
14. [KEY_EXCHANGE_RSP].ExchangeData

Transcript Hash for KEY_EXCHANGE_RSP HMAC:

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].*
4. [CAPABILITIES].*
5. [NEGOTIATE_ALGORITHMS].*
6. [ALGORITHMS].*
7. The specified certificate chain in DER format (i.e. KEY_EXCHANGE Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].SPDM Header Fields
10. [KEY_EXCHANGE_RSP].Length
11. [KEY_EXCHANGE_RSP].Mut_Auth_Requested
12. [KEY_EXCHANGE_RSP].Reserved
13. [KEY_EXCHANGE_RSP].RandomData
14. [KEY_EXCHANGE_RSP].ExchangeData
15. [KEY_EXCHANGE_RSP].Signature

Transcript Hash for FINISH signature, mutual authentication:

Security Protocol and Data Model (SPDM) Specification DSP0274

82 Work in Progress Version 1.1.0b

1. [GET_VERSION].*
2. [VERSION].*
2. [GET_CAPABILITIES].*
3. [CAPABILITIES].*
4. [NEGOTIATE_ALGORITHMS].*
5. [ALGORITHMS].*
6. The specified certificate chain in DER format (i.e. KEY_EXCHANGE Param2)
7. [KEY_EXCHANGE].*
8. [KEY_EXCHANGE_RSP].*
9. The specified certificate chain in DER format (i.e. FINISH Param2)
10. [FINISH].SPDM Header Fields

Transcript Hash for FINISH HMAC, Responder-only authentication:

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].*
4. [CAPABILITIES].*
5. [NEGOTIATE_ALGORITHMS].*
6. [ALGORITHMS].*
7. The specified certificate chain in DER format (i.e. KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. [FINISH].SPDM Header Fields

Transcript Hash for FINISH HMAC, mutual authentication:

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].*
4. [CAPABILITIES].*
5. [NEGOTIATE_ALGORITHMS].*
6. [ALGORITHMS].*
7. The specified certificate chain in DER format (i.e. KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. The specified certificate chain in DER format (i.e. FINISH’s Param2).
11. [FINISH].SPDM Header Fields
12. [FINISH].Signature

Transcript Hash for FINISH_RES HMAC, Responder-only authentication:

1. [GET_VERSION].*
2. [VERSION].*

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 83

3. [GET_CAPABILITIES].*
4. [CAPABILITIES].*
5. [NEGOTIATE_ALGORITHMS].*
6. [ALGORITHMS].*
7. The specified certificate chain in DER format (i.e. KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. [FINISH].* Fields
11. [FINISH_RSP].SPDM Header fields

Transcript Hash for FINISH_RES Response HMAC, mutual authentication:

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].*
4. [CAPABILITIES].*
5. [NEGOTIATE_ALGORITHMS].*
6. [ALGORITHMS].*
7. The specified certificate chain in DER format (i.e. KEY_EXCHANGE’s request Param2)
8. [KEY_EXCHANGE].*
9. [KEY_EXCHANGE_RSP].*
10. The specified certificate chain in DER format (i.e. FINISH’s Param2).
11. [FINISH].*
12. [FINISH_RSP].SPDM Header fields

When multiple session keys are being established between the same Requester and Responder pair, Signature over

Transcript HASH during FINISH request is computed using only the corresponding KEY_EXCHANGE,

KEY_EXCHANGE_RSP and FINISH request parameters.

7.16 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response

messages

The Pre-Shared Key (PSK) key exchange scheme provides an option for a Requester and a Responder to perform

mutual authentication and session key establishment with symmetric-key cryptography. This option is especially

useful for endpoints that do not support asymmetric-key cryptography or certificate processing. This option can also

be leveraged to expedite the session key establishment, even if asymmetric-key cryptography is supported.

This option requires the Requester and the Responder to have prior knowledge of a common PSK before the

handshake. Essentially, the PSK serves as a mutual authentication credential and the base of the session key

establishment. As such, only the two endpoints and potentially a trusted third party that provisions the PSK to the two

endpoints may know the value of the PSK.

A Requester may be paired with multiple Responders. Likewise, a Responder may be paired with multiple

Security Protocol and Data Model (SPDM) Specification DSP0274

84 Work in Progress Version 1.1.0b

Requesters. A pair of Requester and Responder may be provisioned with one or more PSKs. An endpoint may act

as a Requester to one device and simultaneously a Responder to another device. It is the responsibility of the

transport layer to identify the peer and establish communication between the two endpoints, before the PSK-based

session key exchange starts.

The PSK may be provisioned in a trusted environment, for example, during the secure manufacturing process. In an

untrusted environment, the PSK may be agreed upon between the two endpoints using a secure protocol. The

mechanism for PSK provisioning is out of scope of this specification. The size of the provisioned PSK is determined

by the requirement of security strength of the application, but should be at least 128 bits and recommended to be 256

bits or larger. During PSK provisioning, an endpoint's capabilities and supported algorithms may be communicated to

the peer. Therefore, SPDM commands GET_CAPABILITIES and NEGOTIATE_ALGORITHMS are not required during

session key establishment with the PSK option.

Two message pairs are defined for this option: PSK_EXCHANGE/PSK_EXCHANGE_RSP and PSK_FINISH/

PSK_FINISH_RSP.

The PSK_EXCHANGE message carries three responsibilities:

1. Prompts the Responder to retrieve the specific PSK.

2. Exchanges contexts between the Requester and the Responder.

3. Proves to the Requester that the Responder knows the correct PSK and has derived the correct

session keys.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 85

PSK_EXCHANGE request message

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE6 = PSK_EXCHANGE

Security Protocol and Data Model (SPDM) Specification DSP0274

86 Work in Progress Version 1.1.0b

Offsets Field
Size in

bytes
Value

2 Param1 1

Requested measurement summary hash Type:

• 0x0 . No measurement summary hash.

• 0x1=TCB . Component measurement hash.

• 0xFF . All measurements hash.

All other values reserved.

When Responder does not support any measurements, Requester shall set this value to 0x0 .

3 Param2 1 Reserved

4 P 2 Length of the OpaquePSKData.

6 R 1
Length of the RequesterContext. R must be equal to or greater than H, where H is the size of

the underlying MAC used in key derivation.

7 Reserved 1 Reserved

8 RequesterContext R Requester's context. Must include random nonce and optionally Requester's information.

8+R OpaquePSKData P Opaque data required by the Responder to retrieve the PSK. Optional.

The field OpaquePSKData is optional (absent if P is set to 0). It is introduced to address two scenarios:

• The Responder is provisioned with multiple PSKs and stores them in secure storage. The Requester uses

OpaquePSKData as an ID to specify which PSK will be used in this session.

• The Responder does not store the value of the PSK, but can derive the PSK using OpaquePSKData. For

example, if the Responder has an immutable UDS (Unique Device Secret) in fuses, then during provisioning, a

PSK may be derived from the UDS or its derivative and a non-secret salt provided by the Requester. During

session key establishment, the same salt is sent to the Responder in OpaquePSKData of PSK_EXCHANGE.

This mechanism allows the Responder to support any number of PSKs, without consuming secure storage.

The RequesterContext is the Requester's contribution to session key derivation. It must contain a random nonce to

make sure the derived session keys are ephemeral for this session only to mitigate against replay attacks. It may

also contain other information from the Requester.

Upon receiving PSK_EXCHANGE request, the Responder:

1. Acquires PSK from OpaquePSKData, if necessary.

2. Generates ResponderContext, if supported.

3. Derives the Responder's finished_key by following Key Schedule.

4. Constructs PSK_EXCHANGE_RSP response message and sends to the Requester.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 87

PSK_EXCHANGE_RSP message

Offsets Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x66 = PSK_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if Heartbeat is not supported. Otherwise, the value shall be

in units of seconds.

3 Param2 1
Session ID. The Responder shall choose a session ID. It should be different from the 5

previous sessions or active sessions to the same endpoint.

4 Q 1 Length of ResponderContext in bytes. Must be multiple of 4 and should be at most 64.

5 Reserved 3 Reserved

8 ResponderContext Q
Responder's context. Optional. If present, must include a nonce and/or Responder's

information.

8+Q MeasurementSummaryHash H

When the Responder does not support measurement or requested param1 =0, the field shall

be absent.

When the requested param1 =1, this field shall be the combined hash of Measurements of all

measurable components considered to be in the TCB required to generate this response,

computed as hash(Concatenation(MeasurementBlock[0].Measurement,

MeasurementBlock[1].Measurement, ...)) where MeasurementBlock[x].Measurement is a

measurement in TCB.

When the requested param1 =1 and there are no measurable components in the TCB required

to generate this response, this field shall be 0 .

When requested param1=0xFF , this field is computed as the

hash(Concatenation(MeasurementBlock[0].Measurement,

MeasurementBlock[1].Measurement, ..., MeasurementBlock[n].Measurement)) of all supported

measurements.

8+Q+H ResponderVerifyData H Data to be verified by the Requester using the Responder's finished_key.

The ResponderContext is the Responder's contribution to session key derivation. It should contain a nonce (random

number or monotonic counter) and other information of the Responder. Because the Responder may be a

constrained device that is not able to generate nonce, ResponderContext is optional. However, the Responder is

required to use ResponderContext if it can generate a nonce.

It should be noted that the nonce in ResponderContext is critical for anti-replay. If a nonce is not present in

Security Protocol and Data Model (SPDM) Specification DSP0274

88 Work in Progress Version 1.1.0b

ResponderContext, then the Responder is not challenging the Requester for real-time knowledge of PSK. Such a

session is subject to replay attacks - a man-in-the-middle attacker could record and replay prior PSK_EXCHANGE

and PSK_FINISH messages and set up a session with the Responder. But the bogus session would not leak secrets,

so long as the PSK or session keys of the prior replayed session are not compromised.

If ResponderContext is present in the response (i.e., PSK_CAP in Responder's CAPABILITIES is 10b), then the

Requester must send PSK_FINISH with requester_verify_data to prove that it has derived correct session keys.

However, if ResponderContext is absent (i.e., PSK_CAP in Responder's CAPABILITIES is 01b), then the Requester

is not required to send PSK_FINISH, as the session keys are solely determined by the Requester. In other words, if

the Responder demands session key verification, then it must use ResponderContext, even if a nonce is not

included, to signal the Requester to send PSK_FINISH request.

To calculate ResponderVerifyData, the Responder calculates a MAC. The MAC key is the Responder's finished_key.

The data is the concatenation of all data sent so far between the Requester and the Responder:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].SPDMVersion

9. [PSK_EXCHANGE_RSP].RequestResponseCode

10. [PSK_EXCHANGE_RSP].Param1

11. [PSK_EXCHANGE_RSP].Param2

12. [PSK_EXCHANGE_RSP].responder_context

Upon receiving PSK_EXCHANGE_RSP, the Requester:

1. Derives the Responder's finish key by following Key Schedule.

2. Verify ResponderVerifyData by calculating the MAC in the same manner as the Responder. If

verification fails, the Requester aborts the session.

3. If the Responder contributes to session key derivation (PSK_CAP in Responder's CAPABILITIES is

10b), construct PSK_FINISH request and send to the Responder.

7.17 PSK_FINISH request and PSK_FINISH_RSP response messages

The PSK_FINISH request proves to the Responder that the Requester knows the PSK and has derived the correct

session keys. This is achieved by a MAC value calculated with the Requester's finished_key and messages of this

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 89

session. The Requester is required to send the PSK_FINISH only if ResponderContext is present in

PSK_EXCHANGE_RSP. Otherwise, PSK_FINISH is optional.

PSK_FINISH request message

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE7 = PSK_FINISH

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 RequesterVerifyData H Data to be verified by the Responder using the Requester's finished_key.

To calculate RequesterVerifyData, the Requester calculates a MAC. The key is the Requester's finished_key, as

described in Key Schedule. The data is the concatenation of all data sent so far between the Requester and the

Responder:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].*

9. [PSK_FINISH].SPDMVersion

10. [PSK_FINISH].RequestResponseCode

11. [PSK_FINISH].Param1

12. [PSK_FINISH].Param2

Upon receiving PSK_FINISH request, the Responder derives the Requester's finished_key and calculates the MAC

independently in the same manner and verifies the result matches RequesterVerifyData. If verified, then the

Responder constructs PSK_FINISH_RSP response and sends to the Requester. Otherwise, the Responder sends

ERROR response message to the Requester.

PSK_FINISH_RSP response message

Security Protocol and Data Model (SPDM) Specification DSP0274

90 Work in Progress Version 1.1.0b

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x67 = PSK_FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

7.18 HEARTBEAT Request and HEARTBEAT_ACK Response

This request shall keep a session alive if HEARTBEAT is supported by both the Requester and Responder. The

HEARTBEAT request shall be sent periodically as indicated in HeartbeatPeriod in either KEY_EXCHANGE_RSP or

PSK_EXCHANGE_RSP response messages. The Responder shall terminate the session if a HEARTBEAT request is not

received in twice HeartbeatPeriod . Likewise, the Requester shall terminate the session if a HEARTBEAT_ACK

response or ERROR response is not received in twice HeartbeatPeriod . If an Error with

ErrorCode=InvalidSessionID Response is received, the Requester shall terminate the session. The Requester

may retry HEARTBEAT requests. The Requester shall wait ST1 time for the response before retrying.

The timer for the Heartbeat period shall start at the transmission, for Responders, or reception, for Requester, of

either the FINISH_RSP or PSK_FINISH_RSP response messages. When determining the value of HeartbeatPeriod,

the Responder should ensure this value is sufficiently greater than RTT .

For further details of session termination, see Session Termination Handling.

The HEARTBEAT Request Message Format Table describes the format for the Heartbeat Request.

HEARTBEAT Request Message Format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE8 = HEARTBEAT Request

2 Param1 1 Reserved.

3 Param2 1 Reserved.

The HEARTBEAT_ACK Response Message Format Table describes the format for the Heartbeat Response.

HEARTBEAT_ACK Response Message Format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 91

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x68 = HEARTBEAT_ACK Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

7.18.1 Heartbeat Additional Information

The transport layer may allow the HEARTBEAT request to be sent from the Responder to the Requester. This is

recommended for transports capable of asynchronous bidirectional communication.

7.19 KEY_UPDATE Request and KEY_UPDATE_ACK Response

To update session keys, this request shall be used. There are many reasons for doing this but an important one is

when the per-record nonce will soon reach its maximum value and rollover. The KEY_UPDATE request can be

issued by the Responder as well using the GET_ENCAPSULATED_REQUEST mechanism. A KEY_UPDATE

request shall update session keys in the direction of the request only. Because the Responder can also send this

request, it is possible that two simultaneous key updates, one for each direction, can occur. However, only one

KEY_UPDATE request for a single direction shall occur. Until the session key update synchronization successfully

completes, subsequent KEY_UPDATE request for the same direction shall be considered a retry of the original

KEY_UPDATE request.

KEY_UPDATE Request Message Format

Offsets Field

Size

in

bytes

Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE9 = KEY_UPDATE Request

2 Param1 1 Key Operation. See KEY_UPDATE Operations Table.

3 Param2 1
Tag. This field shall contain a unique number to aid the responder in differentiating between the

original and retry request. A retry request shall contain the same tag number as the original.

KEY_UPDATE_ACK Response Message Format

Security Protocol and Data Model (SPDM) Specification DSP0274

92 Work in Progress Version 1.1.0b

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x69 = KEY_UPDATE_ACK Response

2 Param1 1 Key Operation. This field shall reflect the Key Operation field of the request.

3 Param2 1 Tag. This field shall reflect the Tag number in the KEY_UPDATE request.

KEY_UPDATE Operations Table

Value Operation Description

0 Reserved Reserved

1 UpdateKey Update the single-direction key.

2 UpdateAllKeys Update keys for both directions.

3 VerifyNewKey Ensure the key update is successful and the old keys can be safely discarded.

4 - 255 Reserved Reserved

7.19.1 Session Key Update Synchronization

For clarity, in the key update process, the term, sender, means the SPDM endpoint that issued the KEY_UPDATE

request and the term, receiver, means the SPDM endpoint that received the KEY_UPDATE request, acted upon and

responded to it accordingly. Furthermore, the sender only updates session keys in the sending direction and

similarly, the receiver updates keys in the receiving direction.

To ensure the key update process is seamless while still allowing the transmission and reception of records, both

sender and receiver shall follow the prescribed method described in this section.

The Session Key Update Synchronization process shall start with the responsibility on the sender to quiesce all

application data traffic to the receiver. If UpdateAllKeys is the selected operation, the receiver shall also quiesce all

application data traffic to the sender. If UpdateKey is the selected operation, the receiver may also quiesce

application traffic to the sender but this is unnecessary. The actual method used by Requester or Responder to

quiesce the flow of application traffic in either direction is outside the scope of this specification. Once the sender has

quiesced the transportation of application data to the receiver, the sender shall, then, send a KEY_UPDATE request

with UpdateKey or UpdateAllKeys operation.

When the sender sends the KEY_UPDATE request with one of the key update operations, the sender should, at the

same time, derive the new session key for the sending direction. If the selected operation is UpdateAllKeys , the

sender should also, at the same time, derive the new session key for the receiving direction. However, the sender

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 93

shall not use the new session keys yet. Likewise, after the successful reception of the KEY_UPDATE request with

UpdateKey operation, the receiver shall derive the new session keys for the receiving direction. If the selected

operation is UpdateAllKeys , the receiver shall also derive the new session keys for the sending direction and it shall

immediately use this key for the KEY_UPDATE_ACK and subsequent messages. Both the sender and the receiver shall

derive the new keys as detailed in Major Secrets Update. Only upon the reception of the KEY_UPDATE_ACK response,

the sender shall immediately use the new session keys. If the sender has not received KEY_UPDATE_ACK , the sender

may retry or end the session. The sender shall not proceed to the next step until successfully receiving the

corresponding KEY_UPDATE_ACK .

At this time, best practices recommends the sender discards the old session keys. Even though the receiver has

transmitted the KEY_UPDATE_ACK response, the receiver shall use both the the current session keys and the new

session keys for the direction of data traffic from the sender. If the selected operation is UpdateAllKeys , then the

receiver may discard the old session key for the direction of data traffic towards the sender.

Upon the successful reception of the KEY_UPDATE_ACK , the sender shall have ST1 time to transmit a KEY_UPDATE

request with VerifyNewKey operation using the new session keys. The sender may retry until the corresponding

KEY_UPDATE_ACK response is received. However, the sender shall be prohibited, at this point, from restarting this

process or going back to a previous step. Its only recourse in error handling is either to retry the same request or to

terminate the session. Upon successful reception of the KEY_UPDATE with VerifyNewKey operation, the receiver

can now discard the old session keys. After the sender successfully receives the corresponding KEY_UPDATE_ACK ,

transportation of application data may resume. Also, at this point, the transportation of the application data shall now

use the new session keys accordingly.

In certain scenarios, the receiver may need additional time to process the KEY_UPDATE request such as processing

data already in its buffer. Thus, the receiver may reply with an ERROR message with ErrorCode=Busy . The sender

should retry the request after a reasonable period of time with a reasonable amount of retries to prevent premature

session termination.

Finally, it bears repeating that a key update in one direction can happen simultaneously with a key update in the

opposite direction. Still, the aforementioned synchronization process still works and occurs independently but

simultaneously for each direction.

The Key Update Protocol Example Flow figure illustrates a typical key update initiated by the Requester to update its

secret. In this example, the Responder and Requester are both capable of message authentication and encryption.

Security Protocol and Data Model (SPDM) Specification DSP0274

94 Work in Progress Version 1.1.0b

. . .
…

KEY_EXCHANGE_REQ

KEY_EXCHANGE_RES

{ FINISH }::[[S
0
]]

 { FINISH }::[[S
1
]]

Key Operation == UpdateKey,

Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateKey,

Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3
]]

Requester Responder

S3S2 S3S2

S
2,new

Key Operation == VerifyNewKey,

Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,

Tag == 0x2

 { KEY_UPDATE_ACK }::[[S
3
]]

S2

S2

{ Application Data }

{ Application Data }

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and Authenticated
by S

2,new
 and S

3
 depending

on direction.

Legend:

Authenticated and
Encrypted Session

S
2,new

Notice new
secrets used!

The Key Update Protocol Change All Keys Example Flow figure illustrates a typical key update initiated by the

Requester to update all secrets. In this example, the Responder and Requester are both capable of message

authentication and encryption.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 95

. . .
…

KEY_EXCHANGE_REQ

KEY_EXCHANGE_RES

{ FINISH }::[[S
0
]]

 { FINISH }::[[S
1
]]

Key Operation == UpdateAllKeys,

Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateAllKeys,

Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3,new

]]

Requester Responder

S3S2 S3S2

Key Operation == VerifyNewKey,

Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,

Tag == 0x2

S2

S2

{ Application Data }

{ Application Data }

Encrypted and authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and authenticated
by S

2,new
 and S

3,new
depending

on direction.

Legend:

Authenticated and
Encrypted Session

Notice new
secrets used!

S
3,new

S
2,new S

3,new
S

2,new

S3
S3

 { KEY_UPDATE_ACK}::[[S
3,new

]]

7.19.2 KEY_UPDATE Transport Allowances

On some transports, bidirectional communication can occur asynchronously. On such transports, the transport may

allow or disallow the KEY_UPDATE to be sent asynchronously without using the GET_ENCAPSULATED_REQUEST

Security Protocol and Data Model (SPDM) Specification DSP0274

96 Work in Progress Version 1.1.0b

mechanism. The actual method to use should be defined by the transport and is outside the scope of this

specification.

The Key Update Protocol Example Flow 2 figure illustrates a key update over a physical transport that has a

limitation where by only a single device (often called the master) is allowed to initiate all transactions on that bus.

This physical transport specifies that a Responder must alert the Requester via a sideband mechanism and to utilize

the GET_ENCAPSULATED_REQUEST mechanism to fulfill SPDM-related requirements. Also, in this same example, the

Requester and Responder are both capable of encryption and message authentication.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 97

…

KEY_EXCHANGE_REQ

KEY_EXCHANGE_RES

{ FINISH }::[[S
0
]]

Request == KEY_UPDATE

Key Operation == UpdateKey,

Tag == 0x1

{ ENCAPSULATED_REQUEST }
::[[S3]]

Response == KEY_UPDATE_ACK

Key Operation == UpdateKey,

Tag == 0x1

{ DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

Requester Responder

S3S2 S3S2

S3

S3

{ Application Data }

{ Application Data }

Responder seeks attention from
Requester via Transport-specific

Methodology

{ GET_ENCAPSULATED_REQUEST }
::[[S2]]

Request == KEY_UPDATE

Key Operation == VerifyNewKey,

Tag == 0x2

 { ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Response == KEY_UPDATE_ACK

Key Operation == VerifyKey,

Tag == 0x2

 { DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

No More Requests

{ ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Legend:

Authenticated and
Encrypted Session

{ FINISH }::[[S
1
]]

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

S
3,new

S
3,new

Encrypted and
Authenticated by S

2

and S
3,new

 depending
on direction.

Notice new
secrets used!

Security Protocol and Data Model (SPDM) Specification DSP0274

98 Work in Progress Version 1.1.0b

7.20 GET_ENCAPSULATED_REQUEST Request and

ENCAPSULATED_REQUEST Response

This request retrieves an SPDM request message from the Responder. This request is only allowed in certain

scenarios. See Session clauses for details.

The response for this message encapsulates an SPDM request message as if the Responder was a Requester. The

request message format is described in GET_ENCAPSULATED Request Format Table. The Responder shall use the

same SPDM version the Requester used.

Except for this request and DELIVER_ENCAPSULATED_RESPONSE , the Requester shall not send any other SPDM

request message until successfully fulfilling the Responder's request. If a Responder receives a request other than

DELIVER_ENCAPSULATED_RESPONSE or GET_ENCAPSULATED_REQUEST after the Responder already has provided a

request to the Requester to which it has not received a response, the Responder shall respond with

ErrorCode=RequestInFlight .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 99

Security Protocol and Data Model (SPDM) Specification DSP0274

100 Work in Progress Version 1.1.0b

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 101

GET_ENCAPSULATED_REQUEST Request Message Format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xEA = GET_ENCAPSULATED_REQUEST

2 Param1 1 Reserved.

3 Param2 1 Reserved.

The ENCAPSULATED_REQUEST Response Format Table describes the format this response.

ENCAPSULATED_REQUEST Response Format Table

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x6A = ENCAPSULATED_REQUEST Response

2 Param1 1

Request ID.

This field should be unique to help the Responder match response to request.

3 Param2 1 Reserved.

4+ Encapsulated Request Variable

SPDM Request Message.

The value of this field shall represent a valid SPDM request message. The length of this field is

dependent on the SPDM Request message. The field shall start with the

RequestResponseCode field. Both GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid requests and the Requester shall respond

with ErrorCode=UnexpectedRequest if these requests are encapsulated.

7.20.1 GET_ENCAPSULATED_REQUEST Attention

Once a session has been established, the Responder may wish to send a request asynchronously such as a

KEY_UPDATE request but cannot due to the limitations of the physical bus or transport protocol. In such a scenario,

the transport and/or physical layer is responsible for defining an alerting mechanism for the Requester. Upon

receiving the alert, the Requester shall issue a GET_ENCAPSULATED_REQUEST to the Responder.

7.21 DELIVER_ENCAPSULATED_RESPONSE Request and

Security Protocol and Data Model (SPDM) Specification DSP0274

102 Work in Progress Version 1.1.0b

ENCAPSULATED_RESPONSE_ACK Received Message

In order to provide a response to a Responder's request, this request shall be used. This request delivers the

response to the Responder's request which was encapsulated in the previous ENCAPSULATED_REQUEST response

message.

Furthermore, if there are additional requests from the Responder, the Responder shall provide the next request in the

ENCAPSULATED_RESPONSE_ACK response message.

As with the GET_ENCAPSULATED_REQUEST message, the Requester shall not send any other requests with the

exception of DELIVER_ENCAPSULATED_RESPONSE until successfully delivering the response to the current request from

the Responder. If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE after the Responder

already has provided a request to the Requester to which it has not received a response, the Responder shall

respond with ErrorCode=RequestInFlight .

The timing parameters for the response shall depend on the encapsulated request. This allows the Responder to

process the response before delivering the next request. See Additional Information for more details.

The request message format is described in DELIVER_ENCAPSULATED_RESPONSE Request Message Format Table.

DELIVER_ENCAPSULATED_RESPONSE Request Message Format

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xEB = DELIVER_ENCAPSULATED_RESPONSE Request

2 Param1 1

Request ID.

The Requester shall use the same Request ID as provided by the Responder.

3 Param2 1 Reserved.

4+
Encapsulated

Response
Variable

SPDM Response Message.

The value of this field shall represent a valid SPDM response message. The length of this field

is dependent on the SPDM Response message. The field shall start with the

RequestResponseCode field. Both ENCAPSULATED_REQUEST and ENCAPSULATED_RESPONSE_ACK

shall be invalid responses and the Responder shall respond with

ErrorCode=InvalidResponseCode if these responses are encapsulated.

The response message format is described in ENCAPSULATED_RESPONSE_ACK Response Format Table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 103

ENCAPSULATED_RESPONSE_ACK Response Format

Offsets Field
Size in

bytes
Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x6B = ENCAPSULATED_RESPONSE_ACK

2 Param1 1

Request ID.

This field should be unique to help the Responder match response to request. This field shall be

non-zero to indicate the presence of the next request in this message.

3 Param2 1 Reserved.

4+ Encapsulated Request Variable

SPDM Request Message.

The value of this field shall represent a valid SPDM request message. The length of this field is

dependent on the SPDM Request message. The field shall start with the

RequestResponseCode field. Both GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid requests and the Requester shall respond

with ErrorCode=UnexpectedRequest if these requests are encapsulated.

7.21.1 Additional Information

Using a unique request ID is highly recommended to avoid confusion between a retry and a new request of the

DELIVER_ENCAPSULATED_RESPONSE request. For example, if the Responder sent the ENCAPSULATED_RESPONSE_ACK

and that failed in transmission over the wire, the Requester could send a retry. The responder may think the

DELIVER_ENCAPSULATED_RESPONSE was a new request especially if the request encapsulated an ERROR message for

the original request when in fact it was a retry of the original message.

In general, if a Responder has a new request, the response timing for ENCAPSULATED_RESP_ACK shall be subject to

the same timing constraints as the original request. For example, if the encapsulated request was CHALLENGE_AUTH ,

the Responder, too, shall adhere to CT timing rules when it has a subsequent request. The Responder may return

ErrorCode=ResponseNotReady .

7.22 END_SESSION Request and END_SESSION_ACK Response

This request shall terminate a session. Further communication between the Requester and Responder using the

same session ID shall be prohibited. The Responder shall return ErrorCode=InvalidSession after session

termination. See Session Termination Handling clause for details.

The END_SESSION Request Format table describes this request's format.

Security Protocol and Data Model (SPDM) Specification DSP0274

104 Work in Progress Version 1.1.0b

END_SESSION Request Message Format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xEC = END_SESSION

2 Param1 1 See End Session Request Attributes.

3 Param2 1 Reserved.

End Session Request Attributes

Bit

Offset(s)
Value Field Name Description

0 0
Negotiated State

Preservation Indicator

If the Responder supports Negotiated State caching (CAP_CACHE==1), the Responder

shall preserve the Negotiated State.

0 1
Negotiated State

Preservation Indicator

If the Responder supports Negotiated State caching, the Responder shall also clear the

Negotiated State as part of session termination.

[7:1] Reserved Reserved Reserved

The response message for this request is described in END_SESSION_ACK Response Format Table.

END_SESSION_ACK Response Message Format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x6C = END_SESSION_ACK

2 Param1 1 Reserved.

3 Param2 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 105

ResponderRequester

KEY_EXCHANGE

KEY_EXCHANGE_RESP

FINISH(K1)

FINISH_RESP(K1)

END_SESSION(K1)

END_SESSION_ACK(K1)

Enables authenticated and/or
 encrypted data transfer (K1)

Security Protocol and Data Model (SPDM) Specification DSP0274

106 Work in Progress Version 1.1.0b

8 Session

Sessions allows a Requester and Responder to have multiple channels of communication. More importantly, it allows

a Requester and Responder to build a secure communication channel with cryptographic information that is bound

ephemerally. Specifically, an SPDM session provides either or both of encryption or message authentication.

There are 3 phases in a session as illustrated in Session Phases: the handshake, the application and termination.

Requester

END_SESSION and END_SESSION_ACK

Session-Secrets-Exchange

Session Handshake Phase

Application Phase

Legend

Session Terminated!

Responder

Secure
Session

Session-Secrets-Finish

8.1 Session Handshake Phase

The session handshake phase begins with either KEY_EXCHANGE or PSK_EXCHANGE . This phase also allows for

authentication of the Requester if the Responder indicated that earlier in ALGORITHMS response. Furthermore, this

phase of the session uses the handshake secrets to secure the communication as described in the Key Schedule.

The purpose of this phase is to build trust between the Responder and Requester, first, before either side can send

application data. Additionally, it also ensures the integrity of the handshake and to a certain degree, synchronicity

with the derived handshake secrets.

In this phase of the session, GET_ENCAPSULATED_REQUEST and DELIVER_ENCAPSULATED_RESPONES shall be used to

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 107

obtain requests from the Responder to complete the authentication of the Requester, if the Responder indicated this

in ALGORITHMS message. The only requests allowed to be encapsulated shall be GET_DIGEST and

GET_CERTIFICATE . The Requester shall provide a signature in the FINISH request as described in the Finish

clause.

If an error occurs in this phase with ErrorCode = DecryptError , the session shall immediately terminate and

proceed to session termination.

A successful handshake ends with either FINISH_RSP or PSK_FINISH_RSP and the application phase begins.

8.2 Application Phase

Once the handshake completes and all validation passes, the session reaches the application phase where either

the Responder and Requester may send application data.

The application phase ends when either the HEARTBEAT requirements fail, END_SESSION or an ERROR message

with ErrorCode = DecryptError . The next phase is the session termination phase.

8.3 Session Termination Phase

This phase is simply an internal phase; there are no explicit SPDM messages sent or received. Requesters and

Responders may have other reasons to terminate a session but that is outside the scope of this specification.

When a session terminates, both Requester and Responder shall destroy or clean up all session keys such as

derived session secrets, DHE secrets and encryption keys. Requester and Responder may have other internal data

tied to this session that they may want to also clean up.

8.4 Maximum Simultaneous Active Session

If a Responder supports key exchanges, the maximum number of simultaneous active sessions shall be a minimum

of one. If the KEY_EXCHANGE or PSK_EXCHANGE request will exceed the Responder's maximum number of

simultaneous active session, the Responder shall respond with an Errorcode = SessionLimitExceeded .

8.5 Records and Session ID

When the session starts, the communication of secured data is done using records. A record represents a chunk or

unit of data that is either or both encrypted or authenticated. This data can be either an SPDM message or

application data. Usually, the record contains the session ID resulting from one of the Session-Secrets-Exchange

messages to aid both the Responder and Requester in binding the record to the respective derived session secrets.

Security Protocol and Data Model (SPDM) Specification DSP0274

108 Work in Progress Version 1.1.0b

The actual format and other details of a record is outside the scope of this specification. It is generally assumed that

the transport protocol will define the format and other details of the record.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 109

9 Key Schedule

A key schedule describes how to derive the various keys such as encryption keys used by a session as well as

indicate when each key is used. Key derivation makes heavy use of HMAC as defined by RFC2104 and HKDF-

Expand as described in RFC5869. SPDM defines the following additional functions.

BinConcat(Length, Version, Label, Context)

where BinConcat shall be the concatenation of binary data, in the order shown in BinConcat Details Table:

BinConcat Details Table

Order Data Form Endianness Size

1 Length Binary Little 16 bits

2 Version Text Text 8 bytes

3 Label Text Text Variable

4 Context Binary Little Hash.Length

Version Details Table

SPDM Version Version Text

SPDM 1.1 "spdm1.1 "

The HKDF-Expand function prototype is as follows:

HKDF-Expand(secret, context, Hash.Length)

The HMAC-Hash function prototype is described as follows:

HMAC-Hash(salt, IKM);

where IKM is the Input Keying Material and HMAC-Hash uses HMAC as defined in RFC2104.

Security Protocol and Data Model (SPDM) Specification DSP0274

110 Work in Progress Version 1.1.0b

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc2104

For HKDF-Expand and HMAC-Hash , the hash function shall be the selected hash function in ALGORITHMS response.

Also, Hash.Length notation shall be the length of the hash function in ALGORITHMS response.

Both Responder and Requester shall use the key schedule shown in the Key Schedule Figure.

Key Schedule Figure

HMAC-Hash (Salt_0, _____)

Handshake-Secret

HKDF-Expand (Handshake-Secret, bin_str_1, H.Length)
Request Direction
Handshake Secret

HKDF-Expand (Handshake-Secret, bin_str_2, H.Length)
Response Direction Handshake

Secret

DHE Secret or Pre-shared
Key

HKDF-Expand (Handshake-Secret, bin_str_0, H.Length)

Master-Secret

HKDF-Expand (Master-Secret, bin_str_3, H.Length)
Requester Direction Data Secret

HKDF-Expand (Master-Secret, bin_str_4, H.Length)
Responder Direction Data Secret

HMAC-Hash (Salt_1, 0_filled)

Salt_1

In the figure, arrows going out of the box are outputs of that box. Arrows going into the box are inputs into the box

and point to the specific input parameter they are used in. All boxes represent a single function producing a single

output and are given a name for clarity.

The Key Schedule Table accompanies the figure to complete the Key Schedule. The Responder and Requester shall

also adhere to the definition of this table.

Key Schedule Table

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 111

Variable Name Variable Definition

0_filled A zero filled array of Hash.Length length.

bin_str0 BinConcat(Hash.Length, Version, "derived", NULL).

bin_str1 BinConcat(Hash.Length, Version, "requester traffic", TH1).

bin_str2 BinConcat(Hash.Length, Version, "responder traffic", TH1).

bin_str3 BinConcat(Hash.Length, Version, "requester app traffic", TH2)

bin_str4 BinConcat(Hash.Length, Version, "responder app traffic", TH2)

DHE Secret This shall be the secret derived from KEY_EXCHANGE/KEY_EXCHANGE_RSP

Pre-shared Key PSK

9.1 Transcript Hash in Key Derivation

There are two transcript hashes used in the Key Schedule, namely, TH1 and TH2.

9.2 TH1 Definition

For KEY_EXCHANGE , the transcript hash for TH1 shall be the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. The specified certificate chain in DER format (i.e. KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].*

The PSK-based key exchange scheme derives two keys from Handshake-Secret: Requester's finished_key, and

Responder's finished_key.

To calculate bin_str2 that is used in deriving the Responder's finished_key for PSK_EXCHANGE_RSP response, the

transcript hash for TH1 shall be the following:

1. [GET_VERSION].* (if issued)

Security Protocol and Data Model (SPDM) Specification DSP0274

112 Work in Progress Version 1.1.0b

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].SPDMVersion

9. [PSK_EXCHANGE_RSP].RequestResponseCode

10. [PSK_EXCHANGE_RSP].Param1

11. [PSK_EXCHANGE_RSP].Param2

12. [PSK_EXCHANGE_RSP].ResponderContext

To calculate bin_str1 that is used in deriving the Requester's finished_key for PSK_FINISH request, the transcript

hash for TH1 shall be the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].*

9. [PSK_FINISH].SPDMVersion

10. [PSK_FINISH].RequestResponseCode

11. [PSK_FINISH].Param1

12. [PSK_FINISH].Param2

9.3 TH2 Definition

If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the following:

1. [GET_CAPABILITIES].*

2. [CAPABILITIES].*

3. [NEGOTIATE_ALGORITHMS].*

4. [ALGORITHMS].*

5. The specified certificate chain in DER format (i.e. KEY_EXCHANGE Param2)

6. [KEY_EXCHANGE].*

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 113

7. [KEY_EXCHANGE_RSP].*

8. The specified certificate chain in DER format (i.e. FINISH’s Param2). (Valid only in Mutual

Authentication)

9. [FINISH].* (Valid only in Mutual Authentication)

10. [FINISH_RSP].*

If the Requester and Responder used PSK_EXCHANGE to exchange initial keying information, then TH2 shall be the

following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].*

9. [PSK_FINISH].*

10. [PSK_FINISH_RSP].*

9.4 Key Schedule Major Secrets

The key schedule produces 4 major secrets:

• Request-Direction Handshake Secret (S0)

• Response-Direction Handshake Secret (S1)

• Request-Direction Data Secret (S2)

• Response-Direction Data Secret (S3)

Each secret applies in a certain direction of transmission and only valid during a certain time frame. These four major

secrets, each, will be used to derive their respective encryption key and salt to be used in the AEAD function as

selected in the ALGORITHMS response.

9.4.1 Request-Direction Handshake Secret

This secret shall only be used during the session handshake phase and shall be applied to all requests after

KEY_EXCHANGE up to and including FINISH .

Security Protocol and Data Model (SPDM) Specification DSP0274

114 Work in Progress Version 1.1.0b

9.4.2 Response-Direction Handshake Secret

This secret shall only be used during the session handshake phase and shall be applied to all responses after

KEY_EXCHANGE_RSP up to and including FINISH_RSP .

9.4.3 Requester-Direction Data Secret

This secret shall be used for any data transmitted in the session, including but not limited to SPDM requests that are

allowed to be issued post handshake. This secret shall only be applied for all data traveling from the Requester to the

Responder.

9.4.4 Responder-Direction Data Secret

This secret shall be used for any data transmitted in the session, including but not limited to SPDM responses that

are allowed to be issued post handshake. This secret shall only be applied for all data traveling from the Responder

to the Requester.

The Secrets Usage Figure illustrates where each of the major secrets are used as described previously.

Secrets Usage Figure

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 115

Secure
Session

Requester

Session Terminated!

Responder

S
0

S
2

S
1

S
3

Session Handshake Phase

Application Phase

Legend

END_SESSION
END_SESSION_ACK

Session-Secrets-Exchange Request
Session-Secrets-Exchange Response

Session-Secrets-Finish Request

Session-Secrets-Finish Response

9.5 Encryption Key and Salt Derivation

For each Key Schedule Major Secret, the following function shall be applied to obtain the encryption key and salt

value.

EncryptionKey = HDKF-Expand(major-secret, bin_str_5, key_length);
Salt = HKDF-Expand(major-secret, bin_str_6, iv_length);

bin_str5 = BinConcat(key_length, Version, "key", NULL);
bin_str6 = BinConcat(iv_length, Version, "iv", NULL);

Both key_length and iv_length shall be the lengths associated with the selected AEAD algorithm in

ALGORITHMS message.

Security Protocol and Data Model (SPDM) Specification DSP0274

116 Work in Progress Version 1.1.0b

9.6 Finish Key Derivation

This key shall be used to compute the verify data used in various SPDM messages. The key, finished_key is

defined as follows:

finished_key = HKDF-Expand(handshake-secret, bin_str7, Hash.Length);
bin_str7 = BinConcat(Hash.Length, Version, "finished", NULL);

The handshake-secret shall either be Request-Direction Handshake Secret or Response-Direction Handshake

secret.

9.7 Major Secret Update

The major secrets can be updated during an active session to avoid the overhead of closing down a session and

recreating the session. This is achieved by issuing the KEY_UPDATE request.

The major secrets are rekeyed as a result of this. To compute the new secret for each new major data secret, the

following algorithm shall be applied.

new_secret = HKDF-Expand(current_secret, bin_str8, Hash.Length);
bin_str8 = BinConcat(Hash.Length, Version, "traffic upd", NULL);

In computing the new secret, current_secret shall either be the current Requester-Direction Data Secret or

Responder-Direction Data Secret. As a consequence of updating these secrets, new encryption keys and salts shall

be derived from the new secrets and used immediately.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 117

10 Application data

SPDM utilizes Authenticated Encryption with Associated Data (AEAD) cipher algorithms in much the same way that

TLS 1.3 does to protect both the confidentiality and integrity of data that must remain secret, as well as the integrity

of data that need to be transmitted in the clear (such as protocol headers) but must be protected from manipulation.

AEAD algorithms provide both encryption and message authentication. Each algorithm specifies the details such as

the size of the nonce, the position and length of the MAC and many other factors to ensure a strong cryptographic

algorithm.

AEAD functions shall provide the following functions and comply with the requirements defined in RFC5116:

AEAD_Encrypt(encryption_key, nonce, associated_data, plaintext);
AEAD_Decrypt(encryption_key, nonce, associated_data, ciphertext);

where:

• encryption_key is the derived encryption key for the respective direction. See Key Schedule for details.

• nonce is the nonce. See blah for details on nonce computation.

• associated_data is the associated data.

• plaintext is the data to encrypt.

• ciphertext is the data to decrypt.

The function, AEAD_Encrypt , fully encrypts the plaintext , computes the MAC across both the associated_data

and plaintext and produces the ciphertext which includes the MAC as well. The AEAD_Decrypt function

verifies the MAC and if validation is successful, fully decrypts the ciphertext and produces the original

plaintext .

10.1 Nonce Derivation

Certain AEAD ciphers have specific requirements on nonce construction, as their security properties may be

compromised by the accidental reuse of a nonce value. Implementations should follow the requirements such as

those provided in RFC5116 for nonce derivation.

Security Protocol and Data Model (SPDM) Specification DSP0274

118 Work in Progress Version 1.1.0b

https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

11 ANNEX A (informative)

This specification heavily models TLS 1.3. TLS 1.3 and consequently this specification assumes the transport

layer(s) provides these capabilities or attributes:

• Reliability in transmission and reception of data

• Transmission of data is either in order or the order of data can be reconstructed at reception.

While not all transports are created equal, if a transport cannot meet the above capabilities, adoption of SPDM is still

possible. In these transports, this specification recommends DTLS 1.3 which at the time of this specification is still in

draft form.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 119

https://github.com/tlswg/dtls13-spec

12 ANNEX B - Leaf certificate example

Certificate:

Data:
Version: 3 (0x2)
Serial Number: 8 (0x8)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C=CA, ST=NC, L=city, O=ACME, OU=ACME Devices, CN=CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 23:59:59 9999 GMT

Subject: C=US, ST=NC, O=ACME Widget Manufacturing, OU=ACME Widget Manufacturing Unit, CN=w0123456789
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:
e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:
5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:
ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:
23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:
52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:
a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:
1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:
ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:
98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:
a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:
95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:
70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:
a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:
2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:
66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:
01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:
e8:67

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:
otherName:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256
Signature Value:

30:45:02:21:00:fc:8f:b0:ad:6f:2d:c3:2a:7e:92:6d:29:1d:
c7:fc:0d:48:b0:c6:39:5e:c8:76:d6:40:9a:12:46:c3:39:0e:
36:02:20:1a:ea:3a:59:ca:1e:bc:6d:6e:61:79:af:a2:05:7c:

Security Protocol and Data Model (SPDM) Specification DSP0274

120 Work in Progress Version 1.1.0b

7d:da:41:a9:45:6d:cb:04:49:43:e6:0b:a8:8d:cd:da:e

12.1 Change log

Version Date Description

1.0.0 2019-10-16

12.2 Bibliography

DMTF DSP4014, DMTF Process for Working Bodies 2.6, https://www.dmtf.org/sites/default/files/standards/

documents/DSP4014_2.6.pdf

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.1.0b Work in Progress 121

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	2 Acknowledgments
	3 Abstract
	3.1 Scope
	3.2 Normative references
	3.3 Terms and definitions
	3.4 Symbols and abbreviated terms
	3.5 Conventions
	3.5.1 Document conventions
	3.5.2 Reserved and unassigned values
	3.5.3 Byte ordering
	3.5.4 SPDM data types
	3.5.5 Version encoding
	3.5.6 Notations

	4 SPDM message exchanges
	4.1 Security capability discovery and negotiation
	4.2 Identity authentication
	4.3 Firmware and configuration measurement
	4.4 Secure Session
	5 SPDM messaging protocol
	5.1 SPDM Bits to Bytes Mapping
	5.2 Generic SPDM message format
	5.3 SPDM request codes
	5.4 SPDM response codes
	5.5 SPDM Request and Response Code Issuance Allowance
	5.6 Concurrent SPDM message processing
	5.7 Requirements for Requesters
	5.8 Requirements for Responders
	6 Timing requirements
	6.1 Timing measurements
	6.2 Timing specification table
	7 SPDM messages
	7.1 Capability discovery and negotiation
	7.2 GET_VERSION request message and VERSION response message
	7.3 GET_CAPABILITIES request message and CAPABILITIES response message
	7.4 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message
	7.5 Responder identity authentication
	7.5.1 Certificates and certificate chains

	7.6 GET_DIGESTS request message and DIGESTS response message
	7.7 GET_CERTIFICATE request message and CERTIFICATE response message
	7.7.1 Leaf certificate

	7.8 CHALLENGE request message and CHALLENGE_AUTH response message
	7.8.1 CHALLENGE_AUTH signature generation
	7.8.2 CHALLENGE_AUTH signature verification
	7.8.2.1 Request ordering and message transcript computation rules for M1 and M2

	7.9 Firmware and other measurements
	7.10 GET_MEASUREMENTS request message and MEASUREMENTS response message
	7.10.1 Measurement block
	7.10.1.1 DMTF specification for the Measurement field of a measurement block

	7.10.2 MEASUREMENTS signature generation
	7.10.3 MEASUREMENTS signature verification

	7.11 ERROR response message
	7.12 RESPOND_IF_READY request message
	7.13 VENDOR_DEFINED_REQUEST request message
	7.13.1 VENDOR_DEFINED_RESPONSE response message

	7.14 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages
	7.15 FINISH request and FINISH_RSP response messages
	7.15.1 Transcript Hash calculation rules

	7.16 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages
	7.17 PSK_FINISH request and PSK_FINISH_RSP response messages
	7.18 HEARTBEAT Request and HEARTBEAT_ACK Response
	7.18.1 Heartbeat Additional Information

	7.19 KEY_UPDATE Request and KEY_UPDATE_ACK Response
	7.19.1 Session Key Update Synchronization
	7.19.2 KEY_UPDATE Transport Allowances

	7.20 GET_ENCAPSULATED_REQUEST Request and ENCAPSULATED_REQUEST Response
	7.20.1 GET_ENCAPSULATED_REQUEST Attention

	7.21 DELIVER_ENCAPSULATED_RESPONSE Request and ENCAPSULATED_RESPONSE_ACK Received Message
	7.21.1 Additional Information

	7.22 END_SESSION Request and END_SESSION_ACK Response
	8 Session
	8.1 Session Handshake Phase
	8.2 Application Phase
	8.3 Session Termination Phase
	8.4 Maximum Simultaneous Active Session
	8.5 Records and Session ID
	9 Key Schedule
	9.1 Transcript Hash in Key Derivation
	9.2 TH1 Definition
	9.3 TH2 Definition
	9.4 Key Schedule Major Secrets
	9.4.1 Request-Direction Handshake Secret
	9.4.2 Response-Direction Handshake Secret
	9.4.3 Requester-Direction Data Secret
	9.4.4 Responder-Direction Data Secret

	9.5 Encryption Key and Salt Derivation
	9.6 Finish Key Derivation
	9.7 Major Secret Update
	10 Application data
	10.1 Nonce Derivation
	11 ANNEX A (informative)
	12 ANNEX B - Leaf certificate example
	12.1 Change log
	12.2 Bibliography

