
1 Document Identifier: DSP0274

2 Date: 2023-10-08

3 Version: 1.0.2

4 Security Protocol and Data Model (SPDM)
Specification

5 Supersedes: 1.0.1

6 Document Class: Normative

7 Document Status: Published

8 Document Language: en-US

9 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

10 Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation

thereof in its product, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner

or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

11 For information about patents held by third parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

12 This document’s normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2023 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

2 Published Version 1.0.2

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

13 CONTENTS

1 Foreword . 5

2 Acknowledgments . 6

3 Abstract . 7

4 Document conventions. 8

4.1 Scope. 8

4.2 Normative references. 8

4.3 Terms and definitions . 9

4.4 Symbols and abbreviated terms . 12

4.5 Conventions . 12

4.5.1 Reserved and unassigned values . 13

4.5.2 Byte ordering . 13

4.5.3 Sizes and lengths . 13

4.5.4 SPDM data types. 13

4.5.5 Version encoding . 13

4.5.6 Notations . 14

4.6 SPDM message exchanges. 15

4.6.1 Security capability discovery and negotiation . 15

4.6.2 Identity authentication . 15

4.6.3 Firmware and configuration measurement . 16

4.7 SPDM messaging protocol . 16

4.7.1 Generic SPDM message format . 18

4.7.2 SPDM request codes. 19

4.7.3 SPDM response codes . 19

4.8 Concurrent SPDM message processing . 20

4.8.1 Requirements for Requesters . 21

4.8.2 Requirements for Responders. 21

4.8.3 Timing requirements . 21

4.8.3.0.1 Timing measurements . 21

4.8.3.1 Timing specification table . 22

4.9 SPDM messages . 24

4.9.1 Capability discovery and negotiation . 24

4.9.1.1 GET_VERSION request message and VERSION response message 25

4.9.1.2 GET_CAPABILITIES request message and CAPABILITIES response message 27

4.9.1.3 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response

message . 30

4.9.2 Responder identity authentication . 38

4.9.2.1 Certificates and certificate chains . 39

4.9.2.2 GET_DIGESTS request message and DIGESTS response message 40

4.9.2.3 GET_CERTIFICATE request message and CERTIFICATE response message 41

4.9.2.4 Leaf certificate . 44

4.9.2.4.1 Required fields . 44

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 3

4.9.2.4.2 Optional fields . 44

4.9.2.4.3 Definition of otherName using the DMTF OID . 44

4.9.2.5 CHALLENGE request message and CHALLENGE_AUTH response message. 45

4.9.2.6 CHALLENGE_AUTH signature generation. 48

4.9.2.7 CHALLENGE_AUTH signature verification. 49

4.10 Request ordering and message transcript computation rules for M1 and M2 50

4.10.1 Firmware and other measurements. 52

4.10.1.1 GET_MEASUREMENTS request message and MEASUREMENTS response

message . 52

4.10.1.2 Measurement block. 55

4.10.1.3 DMTF specification for the Measurement field of a measurement block 56

4.10.1.4 MEASUREMENTS signature generation . 57

4.10.1.5 MEASUREMENTS signature verification . 59

4.10.2 ERROR response message . 61

4.10.3 RESPOND_IF_READY request message. 66

4.10.4 VENDOR_DEFINED_REQUEST request message . 67

4.10.5 VENDOR_DEFINED_RESPONSE response message . 68

4.10.6 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF

specifications . 69

5 ANNEX A (normative) Leaf certificate example . 71

6 ANNEX B (informative) Change log . 73

6.1 Version 1.0.0 (2019-10-16) . 73

6.2 Version 1.0.1 (2021-02-16) . 73

6.3 Version 1.0.2 (2023-10-08) . 73

7 Bibliography . 74

Security Protocol and Data Model (SPDM) Specification DSP0274

4 Published Version 1.0.2

14 1 Foreword

15 The Security Protocols and Data Models (SPDM) Working Group of DMTF prepared the Security Protocol and Data

Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry members that promotes

enterprise and systems management and interoperability. For information about DMTF, see https://www.dmtf.org.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 5

https://www.dmtf.org/

16 2 Acknowledgments

17 DMTF acknowledges the following individuals for their contributions to this document:

18 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Lee Ballard — Dell Technologies

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yuval Itkin — Mellanox Technologies

• Theo Koulouris — Hewlett Packard Enterprise

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Edward Newman — Hewlett Packard Enterprise

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

Security Protocol and Data Model (SPDM) Specification DSP0274

6 Published Version 1.0.2

19 3 Abstract

20 The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges between devices over a variety of transport and physical media. The description of

message exchanges includes authentication of hardware identities and measurement for firmware identities. The

SPDM enables efficient access to low-level security capabilities and operations. Other mechanisms, including non-

SPDM- and DMTF-defined mechanisms, can use the SPDM.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 7

21 4 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

22 4.1 Scope

23 This specification describes how to use messages, data objects, and sequences to exchange messages between two

devices over a variety of transports and physical media. This specification contains the message exchanges, sequence

diagrams, message formats, and other relevant semantics for such message exchanges, including authentication of

hardware identities and firmware measurement.

24 Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

25 4.2 Normative references

26 The following documents are indispensable for the application of this specification. For dated or versioned references,

only the edition cited, including any corrigenda or DMTF update versions, applies. For references without a date or

version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions)

applies.

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0004_3.0.1.pdf

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0223_1.0.1.pdf

• DMTF DSP0233, Management Component Transport Protocol (MCTP) I3C Transport Binding Specification,

https://www.dmtf.org/sites/default/files/standards/documents/DSP0233_1.0.0.pdf

• DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/

DSP0236_1.3.0.pdf

• DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0239_1.6.0.pdf

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0240_1.0.0.pdf

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification, https://www.dmtf.org/

dsp/DSP0275

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/

documents/DSP1001_1.2.0.pdf

Security Protocol and Data Model (SPDM) Specification DSP0274

8 Published Version 1.0.2

https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0233_1.0.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2018 (8th

edition)

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents,

https://www.iso.org/sites/directives/current/part2/index.xhtml

• IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

• IETF RFC5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, May

2008

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

• TCG Algorithm Registry, Family “2.0”, Level 00 Revision 01.27, February 7, 2018

• ASN.1 — ISO-822-1-4

◦ ITU-T X.680, 08/2015

◦ ITU-T X.681, 08/2015

◦ ITU-T X.682, 08/2015

◦ ITU-T X.683, 08/2015

• DER — ISO-8825-1

◦ ITU-T X.690, 08/2015

• X.509 — ISO-9594-8

◦ ITU-T X.509, 10/2012

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-4 Digital Signature

Standard (DSS)

◦ Appendix D: Recommended Elliptic Curves for Federal Government Use in FIPS PUB 186-4 Digital Signature

Standard (DSS)

• RSA

◦ Table 3 in TCG Algorithm Registry Family “2.0” Level 00 Revision 01.22, February 9, 2015

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

27 4.3 Terms and definitions

28 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines those

terms.

29 The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), “may”, “need

not” (“not required”), “can” and “cannot” in this document are to be interpreted as described in ISO/IEC Directives, Part

2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional cases when the

preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies

additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English

meaning.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 9

https://www.sae.org/works/committeeResources.do?resourceID=642585
https://www.sae.org/works/committeeResources.do?resourceID=642585
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5280
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://web.archive.org/web/20170730214031/https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-201508-I!!PDF-E&type=items
https://web.archive.org/web/20170730214119/https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-201508-I!!PDF-E&type=items
https://web.archive.org/web/20170730214127/https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-201508-I!!PDF-E&type=items
https://web.archive.org/web/20170731012302/https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-201508-I!!PDF-E&type=items
https://web.archive.org/web/20200515075832/https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.690-201508-I!!PDF-E&type=items
https://web.archive.org/web/20150616113008/https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Algorithm_Registry_Rev_1.22.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

30 The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as described in ISO/

IEC Directives, Part 2, Clause 6.

31 The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)” do not contain normative

content. Notes and examples are always informative elements.

32 The terms that DSP0004, DSP0233, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this document.

33 This specification uses these terms:

Term Definition

authentication Process of determining whether an entity is who or what it claims to be.

authentication initiator Endpoint that initiates the authentication process by challenging another endpoint.

byte
Eight-bit quantity. Also known as an octet. SPDM specifications shall use the term byte, not

octet.

certificate
Digital form of identification that provides information about an entity and certifies

ownership of a particular asymmetric key-pair.

certificate authority (CA) Trusted third-party entity that issues certificates.

certificate chain
Series of two or more certificates. Each certificate is signed by the preceding certificate in the

chain.

certificate signing request (CSR) One of the first steps towards getting a certificate.

component Physical entity similar to the PCI Express specification’s definition.

device Physical entity such as a network card or a fan.

DMTF

Formerly known as the Distributed Management Task Force, DMTF creates open

manageability standards that span diverse emerging and traditional information technology

(IT) infrastructures, including cloud, virtualization, network, servers, and storage. Member

companies and alliance partners worldwide collaborate on standards to improve the

interoperable management of IT.

endpoint
Logical entity that communicates with other endpoints over one or more transport

protocols.

intermediate certificate Certificate that is neither a root certificate nor a leaf certificate.

leaf certificate Last certificate in a certificate chain.

message See SPDM message.

message body Portion of an SPDM message that carries additional data.

message originator Original transmitter, or source, of an SPDM message.

Security Protocol and Data Model (SPDM) Specification DSP0274

10 Published Version 1.0.2

Term Definition

message transcript

The concatenation of a sequence of messages in the order in which an endpoint sends and

receives them. The final message included in the message transcript may be truncated to

allow inclusion of a signature in that message, which is computed over the message

transcript.

most significant byte (MSB) Highest order byte in a number consisting of multiple bytes.

Negotiated State

Set of parameters that represent the state of the communication between a corresponding

pair of Requester and Responder at the successful completion of the

NEGOTIATE_ALGORITHMS messages.

These parameters may include values provided in VERSION , CAPABILITIES and

ALGORITHMS messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to

continue or preserve communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

nonce

Number that is unpredictable to entities other than its generator. The probability of the same

number occurring more than once is negligible. Nonce may be generated by combining a

pseudo random number of at least 64 bits, optionally concatenated with a monotonic

counter of size suitable for the application.

payload

Information-bearing fields of a message. These fields are separate from the fields and

elements, such as address fields, framing bits, checksums, and so on, that transport the

message from one point to another. In some instances, a field can be both a payload field

and a transport field.

physical transport binding

Specifications that define how a base messaging protocol is implemented on a particular

physical transport type and medium, such as SMBus/I2C, PCI Express™ Vendor Defined

Messaging, and so on.

Requester
Original transmitter, or source, of an SPDM request message. It is also the ultimate receiver,

or destination, of an SPDM response message.

Responder
Ultimate receiver, or destination, of an SPDM request message. It is also the original

transmitter, or source of an SPDM response message.

root certificate First certificate in a certificate chain, which is self-signed.

Security Protocols and Data Models (SPDM)

Working group under DMTF that is responsible for the SPDM Specification, which focuses on

enabling authentication, attestation, and key exchange to enhance infrastructure security. In

addition to developing the core SPDM Specification, the group collaborates with other

standards organizations and developers to support alignment across the industry in the

areas of component authentication, confidentiality, and integrity.

SPDM message Unit of communication in SPDM communications.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 11

https://www.dmtf.org/standards/spdm

Term Definition

SPDM message payload

Portion of the message body of an SPDM message. This portion of the message is separate

from those fields and elements that identify the SPDM version, the SPDM request and

response codes, and the two parameters.

SPDM request message
Message that is sent to an endpoint to request a specific SPDM operation. A corresponding

SPDM response message acknowledges receipt of an SPDM request message.

SPDM response message
Message that is sent in response to a specific SPDM request message. This message includes

a Response Code field that indicates whether the request completed normally.

trusted computing base (TCB)

Set of all hardware, firmware, and/or software components that are critical to its security, in

the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize the security

properties of the entire system. By contrast, parts of a computer system outside the TCB

must not be able to misbehave in a way that would leak any more privileges than are

granted to them in accordance to the security policy.

Reference: Trusted computing base

34 4.4 Symbols and abbreviated terms

35 The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

36 The following additional abbreviations are used in this document.

Abbreviation Definition

CA certificate authority

CSR certificate signing request

MAC Message Authentication Code

DMTF Formerly the Distributed Management Task Force

MSB most significant byte

SPDM Security Protocol and Data Model

TCB trusted computing base

37 4.5 Conventions

38 The following conventions apply to all SPDM specifications.

Security Protocol and Data Model (SPDM) Specification DSP0274

12 Published Version 1.0.2

https://en.wikipedia.org/wiki/Trusted_computing_base

39 4.5.1 Reserved and unassigned values

40 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric ranges

are reserved for future definition by the DMTF.

41 Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

42 4.5.2 Byte ordering

43 Unless otherwise specified, for all SPDM specifications byte ordering of multibyte numeric fields or multibyte bit fields

is little endian. That is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes.

44 4.5.3 Sizes and lengths

45 Unless otherwise specified, all sizes and lengths are in units of bytes.

46 4.5.4 SPDM data types

47 The SPDM data types table lists the abbreviations and descriptions for common data types that SPDM message fields

and data structure definitions use. These definitions follow DSP0240.

48 SPDM data types

Data type Interpretation

ver8
Eight-bit encoding of the SPDM version number. Version encoding defines the

encoding of the version number.

bitfield8 Byte with eight bit fields. Each bit field can be separately defined.

bitfield16 Two-byte word with 16-bit fields. Each bit field can be separately defined.

49 4.5.5 Version encoding

50 The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

51 Version encoding

Version Matches Incremented when

Major

Major version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification breaks backward compatibility.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 13

Version Matches Incremented when

Minor

Minor version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification maintains backward compatibility.

52 EXAMPLE:

53 Version 3.7 → 0x37

54 Version 1.0 → 0x10

55 Version 1.2 → 0x12

56 An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 only, but the

available functionality is limited to what SPDM specification Version 1.0 defines.

57 An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

58 The detailed version encoding that the VERSION response message returns contains an additional byte that indicates

specification bug fixes or development versions. See the Successful VERSION response message table.

59 4.5.6 Notations

60 SPDM specifications use the following notations:

61 SPDM notations

Notation Description

M:N

In field descriptions, this notation typically represents a range of byte offsets

starting from byte M and continuing to and including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit ([LSb])

offset = 0.

[7:5]

A range of bit offsets.

The most significant bit is on the left, and the least significant bit is on the

right.

1b
A lowercase b after a number consisting of 0 s and 1 s indicates that the

number is in binary format.

0x12A A leading 0x indicates that the number is in hexadecimal format.

7+ This indicates a variable length byte range that starts at byte offset 7.

Security Protocol and Data Model (SPDM) Specification DSP0274

14 Published Version 1.0.2

62 4.6 SPDM message exchanges

63 The message exchanges defined in this specification are between two endpoints and are performed and exchanged

through sending and receiving of SPDM messages defined in SPDM messages. The SPDM message exchanges are

defined in a generic fashion that allows the messages to be communicated across different physical mediums and

over different transport protocols.

64 The two endpoints have a role of either a Requester or Responder. All messages are paired as request/response with

the Requester initiating all communication and the Responder replying to the communication.

65 Endpoints may implement both Requester and Responder capabilities. It is possible for a pair of endpoints to be

involved with two SPDM message streams between each other with each endpoint having a Requester role and a

Responder role. These two streams are mutually exclusive.

66 The message exchanges defined in this specification include Requesters that:

• Discover and negotiate the security capabilities of a Responder.

• Authenticate the identity of a Responder.

• Retrieve the firmware measurements of a Responder.

67 These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. A brief overview for each of the message exchange capabilities is described in the following

clauses. Some of the message exchange capabilities are based on the security model defined in USB Authentication

Specification Rev 1.0.

68 4.6.1 Security capability discovery and negotiation

69 This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that are defined in this specification.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the

Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

70 4.6.2 Identity authentication

71 In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

72 At a high-level, the authentication of the identity of a Responder involves these processes:

•73 Identity provisioning

74 The process followed by device vendors during or after hardware manufacturing. A trusted root certificate

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 15

authority (CA) generates a root certificate (RootCert) that is provisioned to the authentication initiator to allow the

authentication initiator to verify the validity of the digital signatures generated by the endpoint during runtime

authentication.

75 The root CA also indirectly through the certificate chain endorses a per-part public/private key pair, where the

private key is provisioned to or generated by the endpoint. A device carries a certificate chain, with the root

being the RootCert and the leaf being the device certificate (DeviceCert), which contains the public key that

corresponds to the device private key.

•76 Runtime authentication

77 The process by which an authentication initiator (Requester) interacts with a Responder in a running system. The

authentication initiator can retrieve the certificate chain(s) from the Responder and send a unique challenge to

the Responder. The Responder then signs the challenge with the private key. The authentication initiator verifies

the signature using the public key of the Responder as well as any intermediate public keys within the certificate

chain using the root certificate as the trusted anchor.

78 4.6.3 Firmware and configuration measurement

79 Measurement is a term that describes the process of calculating the cryptographic hash value of a piece of firmware/

software or configuration data and tying the cryptographic hash value with the endpoint identity through the use of

digital signatures. This allows an authentication initiator to establish that the identity and measurement of the

firmware/software or configuration running on the endpoint.

80 4.7 SPDM messaging protocol

81 The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to with

an SPDM response message as defined in this specification unless otherwise stated in this specification.

82 The SPDM messaging protocol flow depicts the high-level request-response flow diagram for SPDM. An endpoint

that acts as the Requester sends an SPDM request message to another endpoint that acts as the Responder, and the

Responder returns an SPDM response message to the Requester.

83 SPDM messaging protocol flow

Security Protocol and Data Model (SPDM) Specification DSP0274

16 Published Version 1.0.2

84

85 All SPDM request-response messages share a common data format, that consists of a four-byte message header and

zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages details each of the request and response messages.

86 The Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS request messages before

issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES , and

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 17

NEGOTIATE_ALGORITHMS may be saved by the requester so that after the next reset the requester may skip these

requests.

87 4.7.1 Generic SPDM message format

88 The Generic SPDM message field definitions table defines the fields that constitute a generic SPDM message,

including the message header and payload.

89 Generic SPDM message field definitions

Byte Bits Length (bits) Field name Description

0 [7:4] 4 SPDM Major Version

The major version of the SPDM

Specification. An endpoint shall

not communicate by using an

incompatible SPDM version value.

See Version encoding.

0 [3:0] 4 SPDM Minor Version

The minor version of the SPDM

Specification. A specification with

a given minor version extends a

specification with a lower minor

version as long as they share the

major version. See Version

encoding.

1 [7:0] 8 Request Response Code

The request message code or

response code, which are

enumerated in Table 4 and Table 5.

0x00 through 0x7F represent

response codes and 0x80

through 0xFF represent request

codes. In request messages, this

field is considered the request

code. In response messages, this

field is considered the response

code.

2 [7:0] 8 Param1

The first one-byte parameter. The

contents of the parameter is

specific to the Request Response

Code.

3 [7:0] 8 Param2

The second one-byte parameter.

The contents of the parameter is

specific to the Request Response

Code.

4
See

Description
Variable SPDM message payload

Zero or more bytes that are

specific to the Request Response

Code.

Security Protocol and Data Model (SPDM) Specification DSP0274

18 Published Version 1.0.2

90 4.7.2 SPDM request codes

91 The SPDM request codes table defines the SPDM request codes. The Implementation Requirement column

indicates requirements on the Requester.

92 All SPDM-compatible implementations shall use the following SPDM request codes.

93 Unsupported request codes shall return an ERROR response message with ErrorCode=UnsupportedRequest .

94 SPDM request codes

Request Code value Implementation requirement Message format

GET_DIGESTS 0x81 Optional
See the GET_DIGESTS request

message table.

GET_CERTIFICATE 0x82 Optional
See the GET_CERTIFICATE request

message table.

CHALLENGE 0x83 Optional
See the CHALLENGE request

message table.

GET_VERSION 0x84 Required
See the GET_VERSION request

message table.

GET_MEASUREMENTS 0xE0 Optional
See the GET_MEASUREMENTS

request message table.

GET_CAPABILITIES 0xE1 Required
See the GET_CAPABILITIES request

message table.

NEGOTIATE_ALGORITHMS 0xE3 Required
See the NEGOTIATE_ALGORITHMS

request message table.

RESPOND_IF_READY 0xFF Required
See the RESPOND_IF_READY

request message table.

VENDOR_DEFINED_REQUEST 0xFE Optional

See the

VENDOR_DEFINED_REQUEST

request message table.

Reserved

0x80 ,

0x85 - 0xDF ,

0xE2 ,

0xE4 - 0xFD

SPDM implementations compatible with this

version shall not use the reserved request codes.

95 4.7.3 SPDM response codes

96 The Request Response Code field in the SPDM response message shall specify the appropriate response code for a

request. All SPDM-compatible implementations shall use the following SPDM response codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 19

97 On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of an SPDM operation, the ERROR response message shall be returned.

98 The SPDM response codes table defines the response codes for SPDM. The Implementation Requirement column

indicates requirements on the Responder.

99 SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Optional
Successful DIGESTS response

message format

CERTIFICATE 0x02 Optional
Successful CERTIFICATE response

message format

CHALLENGE_AUTH 0x03 Optional
Successful CHALLENGE_AUTH

response message format

DIGESTS 0x01 Optional
See the Successful DIGESTS

response message table.

VERSION 0x04 Required
See the Successful VERSION

response message table.

MEASUREMENTS 0x60 optional
Successful MEASUREMENTS

response message format

CAPABILITIES 0x61 Required
See the Successful CAPABILITIES

response message table.

ALGORITHMS 0x63 Required
See the Successful ALGORITHMS

response message table.

VENDOR_DEFINED_RESPONSE 0x7E Optional

See the

VENDOR_DEFINED_RESPONSE

response message table.

ERROR 0x7F
See the ERROR response message

table.

Reserved

0x00 ,

0x05 - 0x5F ,

0x62 ,

0x64 - 0x7D

SPDM implementations compatible with this version shall

not use the reserved response codes.

100 4.8 Concurrent SPDM message processing

101 This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

Security Protocol and Data Model (SPDM) Specification DSP0274

20 Published Version 1.0.2

102 If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

103 4.8.1 Requirements for Requesters

104 A Requester shall not have multiple outstanding requests to the same Responder, with the exception of

GET_VERSION addressed in GET_VERSION request message and VERSION response message. If the Requester has

sent a request to a Responder and wants to send a subsequent request to the same Responder, then the Requester

shall wait to send the subsequent request until after the Requester completes one of the following actions:

• Receives the response from the Responder for the outstanding request.

• Times out waiting for a response.

• Receives an indication, from the transport layer, that transmission of the request message failed.

105 A Requester may send simultaneous request messages to different Responders.

106 4.8.2 Requirements for Responders

107 A Responder is not required to process more than one request message at a time.

108 A Responder that is not ready to accept a new request message shall either respond with an ERROR response

message with ErrorCode=Busy or silently discard the request message.

109 If a Responder is working on a request message from a Requester, the Responder may respond with

ErrorCode=Busy .

110 If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

111 4.8.3 Timing requirements

112 The Timing specification for SPDM messages table shows the timing specifications for Requesters and Responders.

113 If the Requester does not receive a response within T1 or T2 time accordingly, the Requester may retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

114 The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) may retry, but

that is outside of the SPDM specification.

115 4.8.3.0.1 Timing measurements

116 A Requester shall measure timing parameters, applicable to it, from the end of a successful transmission of an SPDM

request to the beginning of the reception of the corresponding SPDM response. A Responder shall measure timing

parameters, applicable to it, from the end of the reception of the SPDM request to the beginning of transmission of

the response.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 21

117 4.8.3.1 Timing specification table

118 The Ownership column in the Timing specification for SPDM messages table specifies whether the timing parameter

applies to the Responder or Requester.

119 Timing specification for SPDM messages

Timing parameter Ownership Value Units Description

RTT Requester
See the

description.
ms

Worst-case round-trip transport

timing.

The maximum value shall be

the worst case total time for the

complete transmission and

delivery of an SPDM message

round trip at the transport

layer(s). The actual value for

this parameter is transport- or

media-specific.

ST1 Responder 100 ms

Shall be the maximum amount

of time the Responder has to

provide a response to requests

that do not require

cryptographic processing, such

as the GET_CAPABILITIES ,

GET_VERSION , or

NEGOTIATE_ALGORITHMS

request messages.

T1 Requester RTT + ST1 ms

Shall be the minimum amount

of time the Requester shall wait

before issuing a retry for

requests that do not require

cryptographic processing.

For details, see ST1 .

CT Responder 2CTExponent μs

The CAPABILITIES message

reports the cryptographic

timeout, in microseconds.

CTExponent is reported in .

This timing parameter shall be

the maximum amount of time

the Responder has to provide

any response requiring

cryptographic processing, such

as the GET_MEASUREMENTS or

CHALLENGE request messages.

Security Protocol and Data Model (SPDM) Specification DSP0274

22 Published Version 1.0.2

Timing parameter Ownership Value Units Description

T2 Requester RTT + CT μs

Shall be the minimum amount

of time the Requester shall wait

before issuing a retry for

requests that require

cryptographic processing.

For details, see CT .

RDT Responder 2RDTExponent μs

Recommended delay, in

microseconds. When the

Responder cannot complete

cryptographic processing

response within the CT time, it

shall provide RDTExponent as

part of the ERROR response.

See the ResponseNotReady

extended error data table for

the RDTExponent value.

For details, see

ErrorCode=ResponseNotReady

in the ResponseNotReady

extended error data table.

WT Requester RDT μs

Amount of time that the

Requester should wait before

issuing the RESPOND_IF_READY

request message.

The Requester shall measure

this time parameter from the

reception of the ERROR

response to the transmission of

RESPOND_IF_READY request.

The Requester may take into

account the transmission time

of the ERROR from the

Responder to Requester when

calculating WT .

For details, see RDT .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 23

Timing parameter Ownership Value Units Description

WTMax Requester
(RDT * RDTM) -

RTT
μs

Maximum wait time the

Requester has to issue

RESPOND_IF_READY request

unless the Requester issued a

successful RESPOND_IF_READY

request message earlier.

After this time the Responder is

allowed to drop the response.

The Requester shall take into

account the transmission time

of the ERROR from the

Responder to Requester when

calculating WTMax .

The RDTM value appears in the

ResponseNotReady extended

error data.

The Responder should ensure

that WT Max does not result in

less than WT in determination

of RDTM .

For details, see

ErrorCode=ResponseNotReady

in the ResponseNotReady

extended error data table.

120 4.9 SPDM messages

121 SPDM messages can be divided into the following categories, supporting different aspects of security exchanges

between a Requester and Responder:

• Capability discovery and negotiation

• Responder identity authentication

• Request ordering and message transcript computation rules for M1 and M2

122 4.9.1 Capability discovery and negotiation

123 All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES and NEGOTIATE_ALGORITHMS .

124 The Capability discovery and negotiation flow shows the high-level request-response flow and sequence for the

capability discovery and negotiation:

125 Capability discovery and negotiation flow

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Published Version 1.0.2

126

127 4.9.1.1 GET_VERSION request message and VERSION response message

128 This request message shall retrieve the SPDM version of an endpoint. The GET_VERSION request message table

shows the GET_VERSION request message format and the Successful VERSION response message table shows the

VERSION response message format.

129 In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with all

previous versions.

130 The Requester shall begin the discovery process by sending a GET_VERSION request message with major version 0x1.

All Responders must always support GET_VERSION request message with major version 0x1 and provide a

VERSION response containing all supported versions, as the GET_VERSION request message table describes.

131 The Requester shall consult the VERSION response to select a common (typically highest) version supported. The

Requester shall use the selected version in all future communication of other requests. A Requester shall not issue

other requests until it has received a successful VERSION response and has identified a common version supported

by both sides. A Responder shall not respond to GET_VERSION request message with an ERROR message except for

ErrorCode s specified in this clause.

132 A Requester may issue a GET_VERSION request message to a Responder at any time, which is as an exception to

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 25

Requirements for Requesters for the case where a Requester must restart the protocol due to an internal error or

reset.

133 After receiving a GET_VERSION request, the Responder shall cancel all previous requests from the same Requester.

Additionally, this message shall clear or reset the previously Negotiated State, if any, in both the Requester and its

corresponding Responder.

134 Discovering the common major version

135

136 GET_VERSION request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x84=GET_VERSION

2 Param1 1 Reserved

3 Param2 1 Reserved

137 Successful VERSION response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

Security Protocol and Data Model (SPDM) Specification DSP0274

26 Published Version 1.0.2

Offset Field Size (bytes) Value

1 RequestResponseCode 1 0x04=VERSION

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 VersionNumberEntryCount 1

Number of version

entries present in this

table (=n).

6 VersionNumberEntry1:n 2 x n

16-bit version entry. See

the GET_VERSION

request message table.

138 VersionNumberEntry definition

Bit Field Value

[15:12] MajorVersion

Version of the specification with changes that are

incompatible with one or more functions in earlier

major versions of the specification.

[11:8] MinorVersion

Version of the specification with changes that are

compatible with functions in earlier minor versions

of this major version specification.

[7:4] UpdateVersionNumber

Version of the specification with editorial updates

but no functionality additions or changes.

Informational; possible errata fixes. Ignore when

checking versions for interoperability.

[3:0] Alpha

Pre-release work-in-progress version of the

specification. Backward compatible with earlier

minor versions of this major version specification.

However, because the Alpha value represents an

in-development version of the specification,

versions that share the same major and minor

version numbers but have different Alpha

versions may not be fully interoperable. Released

versions must have an Alpha value of zero.

139 4.9.1.2 GET_CAPABILITIES request message and CAPABILITIES response message

140 This request message shall retrieve the security capabilities of an endpoint.

141 The GET_CAPABILITIES request message table shows the GET_CAPABILITIES request message format.

142 The Successful CAPABILITIES response message table shows the CAPABILITIES response message format.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 27

143 The Flag fields definitions table shows the flag fields definitions.

144 A Responder shall not respond to GET_CAPABILITIES request message with ErrorCode=ResponseNotReady .

145 GET_CAPABILITIES request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xE1=GET_CAPABILITIES

2 Param1 1 Reserved

3 Param2 1 Reserved

146 Successful CAPABILITIES response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x61=CAPABILITIES

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 CTExponent 1

Shall be the exponent of

base 2, which is used to

calculate CT .

See the Timing

specification for SPDM

messages table.

The equation for CT

shall be 2CT microseconds

(μs).

For example, if

CTExponent is 10, CT is

210=1024 μs.

6 Reserved 2 Reserved

8 Flags 4
See the SPDM data types

table.

147 Flag fields definitions

Security Protocol and Data Model (SPDM) Specification DSP0274

28 Published Version 1.0.2

Byte Bit Field Value

0 0 CACHE_CAP

If set, the Responder shall support the

ability to cache the Negotiated State

across a reset. This allows the

Requester to skip reissuing the

GET_VERSION , GET_CAPABILITIES

and NEGOTIATE_ALGORITHMS requests

after a reset. The Responder shall

cache the selected cryptographic

algorithms as one of the parameters

of the Negotiated State. If the

Requester chooses to skip issuing

these requests after the reset, the

Requester shall also cache the same

selected cryptographic algorithms.

0 1 CERT_CAP

If set, Responder shall support

GET_DIGESTS and GET_CERTIFICATE

messages.

0 2 CHAL_CAP
If set, Responder shall support

CHALLENGE request message.

0 4:3 MEAS_CAP

MEASUREMENT capabilities of the

Responder.

00b . The Responder shall not

support MEASUREMENTS capabilities.

01b . The Responder shall support

MEASUREMENTS but cannot generate

signatures.

10b . The Responder shall support

MEASUREMENTS and can generate

signatures.

11b . Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 29

Byte Bit Field Value

0 5 MEAS_FRESH_CAP

0 . As part of MEASUREMENTS

response message, the Responder

may return MEASUREMENTS that were

computed during the last Responder’s

reset.

1 . The Responder can recompute all

MEASUREMENTS in a manner that is

transparent to the rest of the system

and shall always return fresh

MEASUREMENTS as part of

MEASUREMENTS response message.

0 7:6 Reserved Reserved

1 7:0 Reserved Reserved

2 7:0 Reserved Reserved

3 7:0 Reserved Reserved

148 4.9.1.3 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message

149 This request message shall negotiate cryptographic algorithms. A Requester shall not issue a

NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES response message.

150 A Requester shall not issue any other SPDM requests, with the exception of GET_VERSION until it receives a

successful ALGORITHMS response message.

151 A Responder shall not respond to NEGOTIATE_ALGORITHMS request message with ErrorCode=ResponseNotReady .

152 The NEGOTIATE_ALGORITHMS request message table shows the NEGOTIATE_ALGORITHMS request message format.

153 The Successful ALGORITHMS response message table shows the ALGORITHMS response message format.

154 NEGOTIATE_ALGORITHMS request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xE3=NEGOTIATE_ALGORITHMS

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Length 2

Length of the entire request

message, in bytes. Length shall

be less than 64 bytes.

Security Protocol and Data Model (SPDM) Specification DSP0274

30 Published Version 1.0.2

Offset Field Size (bytes) Value

6 MeasurementSpecification 1

Bit mask. The

MeasurementSpecification

field of the GET_MEASUREMENTS

request message and

MEASUREMENTS response

message shall define the values

for this field. The Requester may

set more than one bit to indicate

multiple measurement

specification support.

7 Reserved 1 Reserved

8 BaseAsymAlgo 4

Bit mask listing Requester-

supported SPDM-enumerated

asymmetric key signature

algorithms for the purposes of

signature verification.

Byte 0 Bit 0.

TPM_ALG_RSASSA_2048

Byte 0 Bit 1.

TPM_ALG_RSAPSS_2048

Byte 0 Bit 2.

TPM_ALG_RSASSA_3072

Byte 0 Bit 3.

TPM_ALG_RSAPSS_3072

Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5.

TPM_ALG_RSASSA_4096

Byte 0 Bit 6.

TPM_ALG_RSAPSS_4096

Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 31

Offset Field Size (bytes) Value

12 BaseHashAlgo 4

Bit mask listing Requester-

supported SPDM-enumerated

cryptographic hashing

algorithms.

155

Byte 0 Bit 0. TPM_ALG_SHA_256

Byte 0 Bit 1. TPM_ALG_SHA_384

Byte 0 Bit 2. TPM_ALG_SHA_512

Byte 0 Bit 3. TPM_ALG_SHA3_256

Byte 0 Bit 4. TPM_ALG_SHA3_384

Byte 0 Bit 5. TPM_ALG_SHA3_512

All other values reserved.

16 Reserved 12 Reserved

28 ExtAsymCount 1

Number of Requester-supported

extended asymmetric key

signature algorithms (=A). A + E

shall be less than or equal to 8.

29 ExtHashCount 1

Number of Requester-supported

extended hashing algorithms

(=E). A + E shall be less than or

equal to 8.

30 Reserved 2 Reserved for future use

32 ExtAsym 4*A

List of Requester-supported

extended asymmetric key

signature algorithms. The

Extended algorithm field format

table describes the format of this

field.

32+4*A ExtHash 4*E

List of the extended hashing

algorithms supported by

Requester. The Extended

algorithm field format table

describes the format of this field.

156 Successful ALGORITHMS response message

Security Protocol and Data Model (SPDM) Specification DSP0274

32 Published Version 1.0.2

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x63=ALGORITHMS

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Length 2
Length of the response

message, in bytes.

6 MeasurementSpecificationSel 1

Bit mask. The Responder

shall select one of the

measurement specifications

supported by the Requester.

Thus, no more than one bit

shall be set. The

MeasurementSpecification

field of the Measurement

block format table defines

the values in this field.

7 Reserved 1 Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 33

Offset Field Size (bytes) Value

8 MeasurementHashAlgo 4

Bit mask listing SPDM-

enumerated hashing

algorithm for measurements.

M represents the length of

the measurement hash field

in measurement block

structure. See the

CHALLENGE request

message table. The

Responder shall ensure the

length of measurement hash

field during all subsequent

MEASUREMENT response

messages to the Requester

until the next ALGORITHMS

response message is M.

157

Bit 0. Raw Bit Stream Only,

M=0

Bit 1. TPM_ALG_SHA_256,

M=32

Bit 2. TPM_ALG_SHA_384,

M=48

Bit 3. TPM_ALG_SHA_512,

M=64

Bit 4. TPM_ALG_SHA3_256,

M=32

Bit 5. TPM_ALG_SHA3_384,

M=48

Bit 6. TPM_ALG_SHA3_512,

M=64

If the Responder supports

GET_MEASUREMENTS , exactly

one bit in this bit field shall

be set. Otherwise, the

Responder shall set this field

to 0 .

A Responder shall only select

bit 0 if the Responder

supports raw bit streams as

the only form of

Security Protocol and Data Model (SPDM) Specification DSP0274

34 Published Version 1.0.2

Offset Field Size (bytes) Value

measurement; otherwise, it

shall select one of the other

bits.

12 BaseAsymSel 4

Bit mask listing the SPDM-

enumerated asymmetric key

signature algorithm selected.

A Responder that returns

CHAL_CAP=0 and

MEAS_CAP!=2 shall set this

field to 0 . Other

Responders shall set no

more than one bit.

16 BaseHashSel 4

Bit mask listing the SPDM-

enumerated hashing

algorithm selected. A

Responder that returns

CHAL_CAP=0 and

MEAS_CAP!=2 shall set this

field to 0 . Other

Responders shall set no

more than one bit.

20 Reserved 12 Reserved.

32 ExtAsymSelCount 1

Number of extended

asymmetric key signature

algorithms selected. Shall be

either 0 or 1 (=A’). A

Requester that returns

CHAL_CAP=0 and

MEAS_CAP!=2 shall set this

field to 0 .

33 ExtHashSelCount 1

The number of extended

hashing algorithms selected.

Shall be either 0 or 1

(=E’). A Requester that

returns CHAL_CAP=0 and

MEAS_CAP!=2 shall set this

field to 0 .

34 Reserved 2 Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 35

Offset Field Size (bytes) Value

36 ExtAsymSel 4*A’

The extended asymmetric

key signature algorithm

selected. Responder must be

able to sign a response

message using this algorithm

and Requester must have

listed this algorithm in the

request message indicating it

can verify a response

message by using this

algorithm. The Responder

shall use this asymmetric

signature algorithm for all

subsequent applicable

response messages to the

Requester. The Extended

algorithm field format table

describes the format of this

field.

36+4*A’ ExtHashSel 4*E’

Extended hashing algorithm

selected. The Responder

shall use this hashing

algorithm during all

subsequent response

messages to the Requester.

The Requester shall use this

hashing algorithm during all

subsequent applicable

request messages to the

Responder. The Extended

algorithm field format table

describes the format of this

field.

158 Extended algorithm field format

Offset Field Description

0 Registry ID

Shall represent the registry or standards body. The ID column in

the Registry or standards body ID table describes the value of

this field.

1 Reserved Reserved

[2:3] Algorithm ID

Shall indicate the desired algorithm. The registry or standards

body owns the value of this field. For details, see the Registry or

standards body ID table.

159 A Responder shall not select both an SPDM-enumerated asymmetric key signature algorithm and an extended

Security Protocol and Data Model (SPDM) Specification DSP0274

36 Published Version 1.0.2

asymmetric key signature algorithm. A Responder shall not select both an SPDM-enumerated hashing algorithm and

an extended hashing algorithm.

160 This clause illustrates how two endpoints negotiate a base hashing algorithm.

161 In Hashing algorithm selection: Example 1, endpoint A issues NEGOTIATE_ALGORITHMS request message and endpoint

B selects an algorithm of which both endpoints are capable.

162 Hashing algorithm selection: Example 1

163

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384)

ALGORITHMS (SHA-384)

If supported

CHALLENGE (256-bit Nonce)

CHALLENGE_AUTH (384-bit CertChainHash,
and MeasurementSummaryHash, 256-bit Nonce)

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

Supports SHA-384

and SHA3-384
Supports SHA-256

and SHA-384

Select SHA-384
Agree on SHA-384

returns SHA-384 digest

164 The SPDM protocol accounts for the possibility that both endpoints may issue NEGOTIATE_ALGORITHMS request

messages independently of each other. In this case, the endpoint A Requester and endpoint B Responder

communication pair may select a different algorithm compared to the endpoint B Requester and endpoint A

Responder communication pair.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 37

165 4.9.2 Responder identity authentication

166 This clause describes request messages and response messages associated with the identity authentication

operations of a Responder. All request messages in this clause shall be supported by a Responder that returns

CERT_CAP=1 and/or CHAL_CAP=1 in the CAPABILITIES response message.

167 The Responder authentication: Example certificate retrieval flow shows the high-level request-response message flow

and sequence for the identity authentication for certificate retrieval of a Responder.

168 Responder authentication: Example certificate retrieval flow

169

170 The GET_DIGESTS request message and DIGESTS response message may optimize the amount of data required to

be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of each of the certificate chains stored on an endpoint is returned with the DIGESTS

response message, such that the Requester can cache the previously retrieved certificate chain hash values to detect

any change to the certificate chains stored on the device before issuing the GET_CERTIFICATE request message.

171 For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload shall

Security Protocol and Data Model (SPDM) Specification DSP0274

38 Published Version 1.0.2

be signed by using the device private key over the hash of the message transcript. See the Request ordering and

message transcript computation rules for M1/M2 table.

172 This ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder and enables the Requester to detect the presence of an active adversary

attempting to downgrade cryptographic algorithms or SPDM versions.

173 Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a

Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates. The

signature computation is restarted with the latest GET_VERSION request received.

174 4.9.2.1 Certificates and certificate chains

175 Each Responder that supports identity authentication shall carry at least one certificate chain. A certificate chain

contains an ordered list of certificates, presented as the binary (byte) concatenation of the fields that the Certificate

chain format shows.

176 Each certificate shall be in ASN.1 DER-encoded X.509 v3 format. The ASN.1 DER encoding of each individual

certificate can be analyzed to determine its length. The minimum number of certificates within a chain shall be one, in

which case the single certificate is the device-specific certificate. The Responder shall contain a single public-private

key pair per supported algorithm for its hardware identity, regardless of how many certificate chains are stored on the

device. The Responder selects a single asymmetric key signature algorithm per Requester.

177 Certificate chains are stored in locations called slots. Each slot shall either be empty or contain one complete

certificate chain. A Product shall not contain more than eight slots. Slot 0 is populated by default. Additional slots

may be populated through the supply chain such as by a platform integrator or by an end user such as the IT

administrator. A slot mask identifies the certificate chains from the eight slots.

178 In this document, H refers to the output size, in bytes, of the hash algorithm agreed upon in

NEGOTIATE_ALGORITHMS .

179 Certificate chain format

Offset Field Size Description

0 Length 2

Total length of the certificate chain, in bytes,

including all fields in this table. This field is little

endian.

2 Reserved 2 Reserved.

4 RootHash H

Digest of the Root Certificate. Note that Root

Certificate is ASN.1 DER-encoded for this digest. This

field is big endian.

4 + H Certificates Length - (4 + H)

One or more ASN.1 DER-encoded X.509 v3

certificates where the first certificate is signed by the

Root Certificate or is the Root Certificate itself and

each subsequent certificate is signed by the

preceding certificate. The last certificate is the leaf

certificate. This field is big endian.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 39

180 4.9.2.2 GET_DIGESTS request message and DIGESTS response message

181 This request message shall be used to retrieve the certificate chain digests.

182 The GET_DIGESTS request message table shows the GET_DIGESTS request message format.

183 The Successful DIGESTS response message table shows the DIGESTS response message format.

184 The digests in the Successful DIGESTS response message table shall be big endian, and the digest shall be computed

over the certificate chain as shown in Certificate chain format.

185 GET_DIGESTS request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x81=GET_DIGESTS

2 Param1 1 Reserved

3 Param2 1 Reserved

186 Successful DIGESTS response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x01=DIGESTS

2 Param1 1 Reserved

3 Param2 1

Slot mask. The bit in

position K of this byte

shall be set to 1b if and

only if slot number K

contains a certificate

chain for the protocol

version in the

SPDMVersion field. (Bit 0

is the least significant bit

of the byte.) The number

of digests returned shall

be equal to the number

of bits set in this byte.

The digests shall be

returned in order of

increasing slot number.

4 Digest[0] H
Digest of the first

certificate chain.

Security Protocol and Data Model (SPDM) Specification DSP0274

40 Published Version 1.0.2

Offset Field Size (bytes) Value

...

4 + (H * (n -1)) Digest[n-1] H
Digest of the last (nth)

certificate chain.

187 4.9.2.3 GET_CERTIFICATE request message and CERTIFICATE response message

188 This request message shall retrieve the certificate chains.

189 The GET_CERTIFICATE request message table shows the GET_CERTIFICATE request message format.

190 The Successful CERTIFICATE response message table shows the CERTIFICATE response message format.

191 The Requester should, at a minimum, save the public key of the leaf certificate and associate it with each of the

digests returned by DIGESTS message response. The Requester sends one or more GET_CERTIFICATE requests to

retrieve the certificate chain of the Responder.

192 GET_CERTIFICATE request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x82=GET_CERTIFICATE

2 Param1 1

Slot number of the target

certificate chain to read

from. The value in this

field shall be between 0

and 7 inclusive.

3 Param2 1 Reserved

4 Offset 2

Offset in bytes from the

start of the certificate

chain to where the read

request message begins.

The Responder should

send its certificate chain

starting from this offset.

For the first

GET_CERTIFICATE

request, the Requester

must set this field to 0.

For non-first requests,

Offset is the sum of

PortionLength values in

all previous

GET_CERTIFICATE

responses.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 41

Offset Field Size (bytes) Value

6 Length 2

Length of certificate chain

data, in bytes, to be

returned in the

corresponding response.

Length is an unsigned

16-bit integer.

This value is the smaller

of the following values:

Capacity of the internal

buffer of the Requester

for receiving the

certificate chain of the

Responder.

The RemainderLength of

the preceding

GET_CERTIFICATE

response.

For the first

GET_CERTIFICATE

request, the Requester

should use the capacity of

the receiving buffer of the

Requester.

If offset=0 and

length=0xFFFF , the

Requester is requesting

the entire chain.

193 Successful CERTIFICATE response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x02=CERTIFICATE

2 Param1 1
Slot number of the

certificate chain returned.

3 Param2 1 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

42 Published Version 1.0.2

Offset Field Size (bytes) Value

4 PortionLength 2

Number of bytes of this

portion of certificate

chain. This should be less

than or equal to Length

received as part of the

request. For example, the

Responder might set this

field to a value less than

Length received as part

of the request due

limitations on the internal

buffer of the Responder.

6 RemainderLength 2

Number of bytes of the

certificate chain that have

not been sent yet after

the current response. For

the last response, this

field shall be 0 as an

indication to the

Requester that the entire

certificate chain has been

sent.

8 CertChain PortionLength

Requested contents of

target certificate chain, as

described in Certificates

and certificate chains.

194 The Responder unable to return full length data flow shows the high-level request-response message flow for

Responder response when it cannot return the entire data requested by the Requester in the first response.

195 Responder unable to return full length data flow

196

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 43

197 4.9.2.4 Leaf certificate

198 The SPDM endpoints for authentication must be provisioned with DER-encoded X.509 v3 format certificates. The leaf

certificate must be signed by a trusted CA and provisioned to the device. For endpoint devices to verify the

certificate, the following required fields must be present. In addition, to provide device information, use the Subject

Alternative Name certificate extension otherName field.

199 4.9.2.4.1 Required fields

Field Description

Version
Version of the encoded certificate shall be present and shall be 3

(encoded as value 2).

Serial Number CA-assigned serial number shall be present with a positive integer value.

Signature Algorithm Signature algorithm that CA uses shall be present.

Issuer CA distinguished name shall be specified.

Subject Name
Subject name shall be present and shall represent the distinguished name

associated with the leaf certificate.

Validity Certificates may include this attribute. See RFC5280 for further details.

Subject Public Key Info Device public key and the algorithm shall be present.

Extended Key Usage Shall be present and key usage bit for digital signature shall be set.

200 4.9.2.4.2 Optional fields

Field Description

Basic Constraints If present, the CA value shall be FALSE .

Subject Alternative Name otherName

In some cases, it might be desirable to provide device specific information as part of the

device certificate. DMTF chose the otherName field with a specific format to represent the

device information. The use of the otherName field also provides flexibility for other

alliances to provide device specific information as part of the device certificate. See the

Definition of otherName using the DMTF OID.

201 4.9.2.4.3 Definition of otherName using the DMTF OID

DMTFOtherName ::= SEQUENCE {
type-id DMTF-oid
value [0] EXPLICIT ub-DMTF-device-info

Security Protocol and Data Model (SPDM) Specification DSP0274

44 Published Version 1.0.2

}
-- OID for DMTF device info --
id-DMTF-device-info OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 1 }
DMTF-oid ::= OBJECT IDENTIFIER (id-DMTF-device-info)

-- All printable characters except ":" --
DMTF-device-string ::= UTF8String (ALL EXCEPT ":")

-- Device Manufacturer --
DMTF-manufacturer ::= DMTF-device-string

-- Device Product --
DMTF-product ::= DMTF-device-string

-- Device Serial Number --
DMTF-serialNumber ::= DMTF-device-string

-- Device information string --
ub-DMTF-device-info ::= UTF8String({DMTF-manufacturer":"DMTF-

product":"DMTF-serialNumber})

202 ANNEX A (normative) Leaf certificate example shows an example leaf certificate.

203 4.9.2.5 CHALLENGE request message and CHALLENGE_AUTH response message

204 This request message shall authenticate an endpoint through the challenge-response protocol.

205 The CHALLENGE request message table shows the CHALLENGE request message format.

206 The Successful CHALLENGE_AUTH response message table shows the CHALLENGE_AUTH response message format.

207 CHALLENGE request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x83=CHALLENGE

2 Param1 1

Slot number of the

certificate chain of the

Responder that shall be

used for authentication.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 45

Offset Field Size (bytes) Value

3 Param2 1

Requested measurement

summary hash Type:

0x0 . No measurement

summary hash.

0x1=TCB . Component

measurement hash.

0xFF . All measurements

hash.

All other values reserved.

When Responder does

not support any

measurements, Requester

shall set this value to

0x0 .

4 Nonce 32
The Requester should

choose a random value.

208 Successful CHALLENGE_AUTH response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x03=CHALLENGE_AUTH

2 Param1 1

Shall contain the slot number in

the Param1 field of the

corresponding CHALLENGE

request. The Requester can use

this value to check that the

certificate matched what was

requested.

3 Param2 1

Slot mask. The bit in position K of

this byte shall be set to 1b if and

only if slot number K contains a

certificate chain for the protocol

version in the SPDMVersion field.

Bit 0 is the least significant bit of

the byte.

Security Protocol and Data Model (SPDM) Specification DSP0274

46 Published Version 1.0.2

Offset Field Size (bytes) Value

4 CertChainHash H

Hash of the certificate chain.

It is used for authentication.

This field is big endian.

The Requester can use this value

to check that the certificate

matched what was requested.

4 + H Nonce 32 Responder-selected random value.

36 + H MeasurementSummaryHash H

When the Responder does not

support measurement or

requested param2 =0, the field

shall be absent.

When the requested param2 =1,

this field shall be the combined

hash of all measurements of all

measurable components

considered to be in the TCB

required to generate this

response.

When the requested param2 =1

and there are no measurable

components in the TCB required

to generate this response, this

field shall be 0 .

When requested param2=0xFF ,

this field is computed as the

hash(Concatenation(Measurement

1, Measurement 2, ….,

Measurement N)) of all supported

measurements.

36 + 2H OpaqueLength 2

Size of the OpaqueData field. The

value shall not be greater than

1024 bytes.

38 + 2H OpaqueData OpaqueLength

Free-form field, if present. The

Responder may include

Responder-specific information

and/or information defined by its

transport.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 47

Offset Field Size (bytes) Value

38 + 2H +

OpaqueLength
Signature S

S is the size of the asymmetric-

signing algorithm output that the

Responder selected through the

last ALGORITHMS response

message to the Requester. The

CHALLENGE_AUTH signature

generation and

CHALLENGE_AUTH signature

verification clauses, respectively,

define the signature generation

and verification processes.

209 4.9.2.6 CHALLENGE_AUTH signature generation

210 To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

1.211 The Responder shall construct M1 and the Requester shall construct M2 message transcripts. See the

Request ordering and message transcript computation rules for M1/M2 table.

212 where:

213 Concatenate() is the standard concatenation function that is performed only after a successful

completion response on the entire request and response contents.

◦214 If a response contains ErrorCode=ResponseNotReady

215 Concatenation function is performed on the contents of both the original request and the

response received during RESPOND_IF_READY .

◦216 If a response contains ErrorCode~=ResponseNotReady

217 No concatenation function is performed on the contents of both the original request and

response.

2.218 The Responder shall generate:

Signature = Sign(SK, Hash(M1));

219 where:

◦220 Sign

221 Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS

response message that the Responder sent.

Security Protocol and Data Model (SPDM) Specification DSP0274

48 Published Version 1.0.2

222 The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

◦223 SK

224 Private key associated with the leaf certificate of the Responder in slot=Param1 of the

CHALLENGE request message.

◦225 Hash

226 Hashing algorithm the Responder selected through the last ALGORITHMS response message that

the Responder sent.

227 The Successful ALGORITHMS response message table describes the BaseHashSel and

ExtHashSel fields.

228 If the signing algorithm first hashes the message before generating the signature, the signing

algorithm’s hashing step shall be skipped.

229 4.9.2.7 CHALLENGE_AUTH signature verification

230 Modifications to the previous request messages or the corresponding response messages by an active person-in-the-

middle adversary or media error result in M2!=M1 and lead to verification failure.

231 To complete the CHALLENGE_AUTH signature verification process, the Requester shall complete this step:

1.232 The Requester shall perform:

Verify(PK, Hash(M2), Signature);

233 where:

◦234 Verify

235 Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS

response message that the Requester received.

236 The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

◦237 PK

238 Public key associated with the leaf certificate of the Responder with slot=Param1 of the

CHALLENGE request message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 49

◦239 Hash

240 Hashing algorithm the Responder selected through the last sent ALGORITHMS response message

as received by the Requester.

241 The Successful ALGORITHMS response message table describes the BaseHashSel and

ExtHashSel fields.

242 If the verification algorithm first hashes the message before generating the signature, the verification

algorithm’s hashing step shall be skipped.

243 The Responder authentication: Runtime challenge-response flow shows the high-level request-response message

flow and sequence for the authentication of the Responder for runtime challenge-response.

244 Responder authentication: Runtime challenge-response flow

245

246 4.10 Request ordering and message transcript computation rules for M1
and M2

247 The Request ordering and message transcript computation rules for M1/M2 table defines how the message transcript

is constructed for M1 and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH

response message.

248 The possible request orderings after reset are:

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , GET_CERTIFICATE , CHALLENGE

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , CHALLENGE

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , CHALLENGE

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE

• GET_DIGESTS , CHALLENGE

• GET_DIGESTS

• CHALLENGE

249 After the Requester receives a successful CHALLENGE_AUTH response or the Requester sends a GET_MEASUREMENTS

Security Protocol and Data Model (SPDM) Specification DSP0274

50 Published Version 1.0.2

request, M1 and M2 shall be set to null. Immediately after reset, M1 and M2 shall be null. If a Requester sends a

GET_VERSION message, the Requester and Responder shall reset M1 and M2 to null and recommence construction

of M1 and M2 starting with the new GET_VERSION message.

250 Request ordering and message transcript computation rules for M1/M2

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

Reset NA M1/M2=null

GET_VERSION issue

The Requester may choose to issue this request any

time to allow the Requester and Responder to

determine an agreed upon Negotiated State. A

Requester may detect out of sync condition typically

when either the signature verification fails or the

Responder provides an unexpected error response.

M1/M2=null

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Requester shall always issue these requests in this order.

A=Concatenate(GET_VERSION, VERSION,

GET_CAPABILITIES, CAPABILITIES,

NEGOTIATE_ALGORITHMS, ALGORITHMS)

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Requester may skip issuing these requests after a new

reset if the Responder has previously indicated

CACHE_CAP=1 . In this case, the Requester and

Responder shall proceed with the previously Negotiated

State.

A=null

GET_DIGESTS ,

GET_CERTIFICATE

Requester shall always issue these requests in this order

after NEGOTIATE_ALGORITHMS request completion or

immediately after reset, if it chose to skip the previous

three requests.

B=Concatenate(GET_DIGEST, DIGEST,

GET_CERTFICATE, CERTIFICATE)

GET_DIGESTS ,

GET_CERTFICATE

Requester may choose to skip both requests after a new

reset if it can use previously cached response to these

requests.

B=null

GET_DIGESTS ,

GET_CERTIFICATE

Requester may choose to skip GET_CERTIFICATE

request after a new reset if it can use the previously

cached CERTIFICATE response.

B=(GET DIGESTS, DIGEST)

CHALLENGE

Requester shall issue this request to complete security

verification of current requests and responses. The

Signature bytes of CHALLENGE_AUTH shall not be

included in C.

C=(CHALLENGE, CHALLENGE_AUTH\Signature) . See the

CHALLENGE request message table.

CHALLENGE completion Completion of CHALLENGE resets M1 and M2. M1/M2=null

CHALLENGE

Requester may choose to skip this request and forgo

security verification of previous requests and responses.

Requester may typically skip CHALLENGE when it issues

GET_DIGESTS directly after reset.

NA

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 51

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

GET_MEASUREMENTS

If the Requester chooses to issue GET_MEASUREMENTS

and skips CHALLENGE completion, M1 and M2 are reset

to null .

M1/M2=null

251 4.10.1 Firmware and other measurements

252 This clause describes request messages and response messages associated with endpoint measurement. All request

messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in

CAPABILITIES response.

253 The Firmware measurement retrieval flow shows the high-level request-response flow and sequence for endpoint

measurement. If MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0, and the Requester requires

fresh measurements, the Responder must be reset before GET_MEASUREMENTS is resent. The mechanisms employed

for resetting the Responder are outside the scope of this specification.

254 Firmware measurement retrieval flow

255

(Opt) Nonce

ResponderRequester

1. The Requester sends a
GET_MEASUREMENTS request
message.

2. (Opt) Verify signature
3. Verify measurements match

expected values.

1. The Responder sends a
MEASUREMENTS response message.

GET_MEASUREMENTS

Number of
measurements,

length,
(opt) Nonce,

measurement blocks,
(opt) signature.

MEASUREMENTS

256 4.10.1.1 GET_MEASUREMENTS request message and MEASUREMENTS response message

257 This request message shall retrieve firmware measurements. A Requester should not send this message until it has

received at least one successful CHALLENGE_AUTH response message from the responder. The successful

CHALLENGE_AUTH response may have been received before the last reset.

258 The GET_MEASUREMENTS request message table shows the GET_MEASUREMENTS request message format.

259 The GET_MEASUREMENTS request attributes table shows the GET_MEASUREMENTS request message attributes.

260 The Successful MEASUREMENTS response message table shows the MEASUREMENTS response message format.

261 GET_MEASUREMENTS request message

Security Protocol and Data Model (SPDM) Specification DSP0274

52 Published Version 1.0.2

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xE0=GET_MEASUREMENTS

2 Param1 1

Request attributes. See

the GET_MEASUREMENTS

request attributes table.

3 Param2 1

Measurement operation.

A value of 0x0 shall query

the Responder for the

total number of

measurements available.

A value of 0xFF shall

request all measurements.

A value between 0x1

and 0xFE , inclusively,

shall request the

measurement at the index

corresponding to that

value.

4 Nonce 32

The Requester should

choose a random value.

This field is only present if

a signature is required on

the response. See the

GET_MEASUREMENTS

request attributes table.

262 GET_MEASUREMENTS request attributes

Bits Value Description

0 1

If the Responder can generate a signature as shown in

CAPABILITIES message, the value of this bit shall indicate to the

Responder to generate a signature. The Responder shall generate a

signature in the corresponding response. The Nonce field shall be

present in the request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 53

Bits Value Description

0 0

Responders that cannot generate a signature as shown in the

CAPABILITIES message shall use the value of this bit.

For Responders that can generate signatures, the value of this bit shall

indicate that the Requester does not want a signature.

The Responder shall not generate a signature in the response. The

Nonce field shall be absent in the request.

[7:1] Reserved Reserved

263 Successful MEASUREMENTS response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x60=MEASUREMENTS

2 Param1 1

When Param2 in the

requested measurement

operation is 0 , this

parameter shall return

the total number of

measurement indices on

the device. Otherwise,

this field is reserved.

3 Param2 1 Reserved

4 NumberOfBlocks 1

Number of measurement

blocks (N) in

MeasurementRecord .

Shall reflect the number

of measurement blocks

in MeasurementRecord .

If Param2 in the

requested measurement

operation is 0 , this field

shall be 0 .

5 MeasurementRecordLength 3

Size of the

MeasurementRecord

field in bytes. If Param2

in the requested

measurement operation

is 0 , this field shall be

0 .

Security Protocol and Data Model (SPDM) Specification DSP0274

54 Published Version 1.0.2

Offset Field Size (bytes) Value

8 MeasurementRecord L= MeasurementRecordLength

Concatenation of all

measurement blocks that

correspond to the

requested Measurement

operation. Measurement

block defines the

measurement block

structure.

8 + L Nonce 32
The Responder should

choose a random value.

40 + L OpaqueLength 2

Size of the OpaqueData

field in bytes. The value

shall not be greater than

1024 bytes.

42 + L OpaqueData OpaqueLength

Free-form field, if

present. The Responder

may include Responder-

specific information and/

or information defined

by its transport.

42 + L + OpaqueLength Signature S

Signature of the

GET_MEASUREMENTS

request and

MEASUREMENTS response

messages, excluding the

Signature field and

signed using the device

private key (slot 0 leaf

certificate private key).

The Responder shall use

the asymmetric signing

algorithm it selected

during the last

ALGORITHMS response

message to the

Requester, and S is the

size of that asymmetric

signing algorithm output.

264 4.10.1.2 Measurement block

265 Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,

offsets 0 through 3, followed by the measurement data that correspond to a particular measurement index and

measurement type. The blocks are ordered by Index .

266 The Measurement block format table shows the format for a measurement block:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 55

267 Measurement block format

Offset Field Size (bytes) Value

0 Index 1
Index. Shall represent the

index of the measurement.

1 MeasurementSpecification 1

Bit mask. The value shall

indicate the measurement

specification that the

requested Measurement

follows and shall match the

selected measurement

specification in the

Algorithms message. See

the Successful ALGORITHMS

response message table.

Only one bit shall be set in

the measurement block.

Bit 0=DMTF, as specified in

the Measurement field

format when

MeasurementSpecification

field is Bit 0 = DMTF table.

All other bits are reserved.

2 MeasurementSize 2
Size of Measurement , in

bytes.

4 Measurement MeasurementSize

The

MeasurementSpecification

defines the format of this

field.

268 4.10.1.3 DMTF specification for the Measurement field of a measurement block

269 The present clause is the specification for the format of the Measurement field in a measurement block when the

MeasurementSpecification field selects Bit 0=DMTF. This format is specified in Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF.

270 Measurement field format when MeasurementSpecification field is Bit 0 = DMTF

Security Protocol and Data Model (SPDM) Specification DSP0274

56 Published Version 1.0.2

Offset Field Size (bytes) Value

0 DMTFSpecMeasurementValueType 1

Composed of:

Bit [7] indicates the representation in

DMTFSpecMeasurementValue .

Bits [6:0] indicate what is being measured

by DMTFSpecMeasurementValue .

These values are set independently and

are interpreted as follows:

[7]=0b . Hash.

[7]=1b . Raw bit stream.

[6:0]=00h . Immutable ROM.

[6:0]=0x1 . Mutable firmware.

[6:0]=02h . Hardware configuration,

such as straps, debug modes.

[6:0]=03h . Firmware configuration,

such as, configurable firmware policy.

All other values reserved.

1 DMTFSpecMeasurementValueSize 2

Size of DMTFSpecMeasurementValue , in

bytes.

When

DMTFSpecMeasurementValueType[7]=0b ,

the DMTFSpecMeasurementValueSize

shall be derived from the measurement

hash algorithm that the ALGORITHM

response message returns.

3 DMTFSpecMeasurementValue DMTFSpecMeasurementValueSize

DMTFSpecMeasurementValueSize bytes

of cryptographic hash or raw bit stream,

as indicated in

DMTFSpecMeasurementValueType[7] .

271 4.10.1.4 MEASUREMENTS signature generation

272 To complete the MEASUREMENTS signature generation process, the Responder shall complete these steps:

1.273 The Responder shall construct L1 and the Requester shall construct L2 over their observed messages:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 57

L1/L2 = Concatenate(GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,
GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,
GET_MEASUREMENTS_REQUESTn, MEASUREMENTS_RESPONSEn)

274 where:

◦275 Concatenate()

276 Standard concatenation function.

◦277 GET_MEASUREMENTS_REQUEST1

278 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

not requested a signature on that specific GET_MEASUREMENTS request.

◦279 MEASUREMENTS_RESPONSE1

280 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUEST1 .

◦281 GET_MEASUREMENTS_REQUESTn-1

282 Entire last consecutive GET_MEASUREMENTS request message under consideration, where the

Requester has not requested a signature on that specific GET_MEASUREMENTS request.

◦283 MEASUREMENTS_RESPONSEn-1

284 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn-1 .

◦285 GET_MEASUREMENTS_REQUESTn

286 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

requested a signature on that specific GET_MEASUREMENTS request.

287 n is a number greater than or equal to 1 .

288 When n equals 1 , the Requester has not made any GET_MEASUREMENTS requests without

signature prior to issuing a GET_MEASUREMENTS request with signature.

◦289 MEASUREMENTS_RESPONSEn

290 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn .

Security Protocol and Data Model (SPDM) Specification DSP0274

58 Published Version 1.0.2

291 Any communication between Requester and Responder other than a GET_MEASUREMENTS request or

response resets L1/L2 computation to null.

2.292 The Responder shall generate:

Signature = Sign (SK , Hash (L1));

293 where:

◦294 Sign

295 Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS

response message that the Responder sent.

296 The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

◦297 SK

298 Private key associated with the slot 0 leaf certificate of the Responder.

◦299 Hash

300 Hashing algorithm that the Responder selected through the last ALGORITHMS response message

that the Responder sent.

301 The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

302 If the signing algorithm first hashes the message before generating the signature, the signing

algorithm’s hashing step shall be skipped.

303 4.10.1.5 MEASUREMENTS signature verification

304 To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

1.305 The Requester shall perform:

Verify(PK, Hash(L2), Signature)

306 where:

◦307 PK

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 59

308 Public key associated with the slot 0 certificate of the Responder.

309 PK is extracted from the CERTIFICATES response.

◦310 Verify

311 Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS

response message that the Requester received.

312 The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

◦313 Hash

314 Hashing algorithm the Responder selected through the last sent ALGORITHMS response message

that the Requester sent.

315 The Successful ALGORITHMS response message table describes the BaseAsymSel and

ExtAsymSel fields.

316 If the verification algorithm first hashes the message before generating the signature, the verification

algorithm’s hashing step shall be skipped.

317 The Measurement signature computation example shows an example of a typical Requester Responder protocol

where the Requester issues 0 to n-1 GET_MEASUREMENTS requests without a signature, followed by a single

GET_MEASUREMENTS request n with a signature.

318 Measurement signature computation example

Security Protocol and Data Model (SPDM) Specification DSP0274

60 Published Version 1.0.2

319

320 4.10.2 ERROR response message

321 For an SPDM operation that results in an error, the Responder shall send an ERROR response message to the

Requester.

322 The ERROR response message table shows the ERROR response format.

323 The Error code and error data table shows the detailed error code, error data, and extended error data.

324 The ResponseNotReady extended error data table shows the ResponseNotReady extended error data.

325 The Registry or standards body ID table shows the registry or standards body ID.

326 The ExtendedErrorData format definition for vendor or other standards-defined ERROR response message table

shows the ExtendedErrorData format definition for vendor or other standards-defined ERROR response message.

327 ERROR response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x7F=ERROR

2 Param1 1
Error Code. See Error

code and error data.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 61

Offset Field Size (bytes) Value

3 Param2 1
Error Data. See Error code

and error data.

4 ExtendedErrorData 0-32

Optional extended data.

See Error code and error

data.

328 Error code and error data

Error code Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved Reserved Reserved

InvalidRequest 0x01
One or more request fields

are invalid
0x00 No extended error data is provided.

Reserved 0x02 Reserved Reserved Reserved

Busy 0x03

The Responder received

the request message and

the Responder decided to

ignore the request

message, but the

Responder may be able to

process the request

message if the request

message is sent again in

the future.

0x00 No extended error data is provided.

UnexpectedRequest 0x04

The Responder received an

unexpected request

message. For example,

CHALLENGE before

NEGOTIATE_ALGORITHMS .

0x00 No extended error data is provided.

Unspecified 0x05 Unspecified error occurred. 0x00 No extended error data is provided.

Reserved 0x06 Reserved 0x00 Reserved

UnsupportedRequest 0x07

The

RequestResponseCode in

the request message is

unsupported.

RequestResponseCode

in the request message.
No extended error data is provided

Reserved 0x08 - 0x40 Reserved Reserved Reserved

MajorVersionMismatch 0x41
Requested SPDM Major

Version is not supported.
0x00 No extended error data provided.

ResponseNotReady 0x42

See the

RESPOND_IF_READY

request message.

0x00
See the ResponseNotReady extended

error data table.

Security Protocol and Data Model (SPDM) Specification DSP0274

62 Published Version 1.0.2

Error code Value Description Error data ExtendedErrorData

RequestResynch 0x43

Responder is requesting

Requester to reissue

GET_VERSION to

resynchronize.

0x00 No extended error data provided.

Reserved 0x44 - 0xFE Reserved Reserved. Reserved

Vendor/Other Standards

Defined
0xFF

Vendor or Other Standards

defined

Shall indicate the registry

or standard body using

one of the values in the

ID column in the Registry

or standards body ID

table.

See the ExtendedErrorData format

definition for vendor or other standards-

defined ERROR response message table

for format definition.

329 ResponseNotReady extended error data

Offset Field Size (bytes) Value

0 RDTExponent 1

Exponent expressed in

logarithmic (base 2 scale)

to calculate RDT time in

μs after which the

Responder can provide

successful completion

response.

For example, the raw

value 8 indicates that the

Responder will be ready

in 28=256 μs.

Responder should use

RDT to avoid continuous

pinging and issue the

RESPOND_IF_READY

request message after

RDT time.

For timing requirement

details, see the Timing

specification for SPDM

messages table.

1 RequestCode 1
The request code that

triggered this response.

2 Token 1

The opaque handle that

the Requester shall pass

in with the

RESPOND_IF_READY

request message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 63

Offset Field Size (bytes) Value

3 RDTM 1

Multiplier used to

compute WT Max in μs to

indicate the response may

be dropped after this

delay.

The multiplier shall always

be greater than 1.

The Responder may also

stop processing the initial

request if the same

Requester issues a

different request.

For timing requirement

details, see the Timing

specification for SPDM

messages table.

330 Registry or standards body ID

331 For algorithm encoding in extended algorithm fields, unless otherwise specified, consult the respective registry or

standards body.

ID Vendor ID length (bytes) Registry or standards body name Description

0x0 0 DMTF

DMTF does not have a

Vendor ID registry. At

present, DMTF does

not have any

algorithms defined for

use in extended

algorithms fields.

0x1 2 TCG

VendorID is identified

by using TCG Vendor

ID Registry. For

extended algorithms,

see TCG Algorithm

Registry.

0x2 2 USB

VendorID is identified

by using the vendor ID

assigned by USB.

0x3 2 PCI-SIG

VendorID is identified

using PCI-SIG Vendor

ID.

Security Protocol and Data Model (SPDM) Specification DSP0274

64 Published Version 1.0.2

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://pcisig.com/membership/member-companies

ID Vendor ID length (bytes) Registry or standards body name Description

0x4 4 IANA

The Private Enterprise

Number (PEN)

assigned by the

Internet Assigned

Numbers Authority

(IANA) identifies the

vendor.

0x5 4 HDBaseT

VendorID is identified

by using HDBaseT

HDCD entity.

0x6 2 MIPI

The Manufacturer ID

assigned by MIPI

identifies the vendor.

332 ExtendedErrorData format definition for vendor or other standards-defined ERROR response message

Byte offset Length Field name Description

0 1 Len

Length of the VendorID field.

If the ERROR is vendor defined, the

value of this field shall equal the

Vendor ID Len , as the Registry or

standards body ID table describes, of

the corresponding registry or standard

body name.

If the ERROR is defined by a registry

or a standard, this field shall be zero

(0), which also indicates that the

VendorID field is not present.

The Error Data field in the ERROR

message indicates the registry or

standards body name, such as

Param2 , and is one of the values in

the ID column in the Registry or

standards body ID table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 65

https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/
https://mipi.org/
https://mid.mipi.org/

Byte offset Length Field name Description

1 Len VendorID

The value of this field shall indicate

the Vendor ID, as assigned by the

registry or standards body. The

Registry or standards body ID table

describes the length of this field. Shall

be in little endian format.

The registry or standards body name

in the ERROR is indicated in the

Error Data field, such as Param2 ,

and is one of the values in the ID

column in the Registry or standards

body ID table.

1 + Len Variable OpaqueErrorData
Defined by the vendor or other

standards.

333 4.10.3 RESPOND_IF_READY request message

334 This request message shall ask for the response to the original request upon receipt of ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return the ERROR response message, set

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response message.

335

336 The RESPOND_IF_READY request message table shows the RESPOND_IF_READY request message format.

337 RESPOND_IF_READY request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

Security Protocol and Data Model (SPDM) Specification DSP0274

66 Published Version 1.0.2

Offset Field Size (bytes) Value

1 RequestResponseCode 1 0xFF=RESPOND_IF_READY

2 RequestCode 1

The original request code

that triggered the

ResponseNotReady error

code response. Shall

match the request code

returned as part of the

ResponseNotReady

extended error data.

3 Token 1

The token that was

returned as part of the

ResponseNotReady

extended error data.

338 4.10.4 VENDOR_DEFINED_REQUEST request message

339 A Requester intending to define a unique request to meet its need can use this request message. The

VENDOR_DEFINED_REQUEST request message table defines the format.

340 The Requester should send this request message only after sending GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS request sequence.

341 The VENDOR_DEFINED_REQUEST request message table shows the VENDOR_DEFINED_REQUEST request message

format.

342 VENDOR_DEFINED_REQUEST request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0xFE=VENDOR_DEFINED_REQUEST

2 Reserved 1 Reserved

3 Reserved 1 Reserved

4 StandardID 2

Shall indicate the registry or

standards body by using one of

the values in the ID column in

the Registry or standards body

ID table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 67

Offset Field Size (bytes) Value

6 Len 1

Length of the Vendor ID field.

If the VendorDefinedRequest is

standard defined, Len shall be

0 . If the

VendorDefinedRequest is

vendor-defined, Len shall equal

Vendor ID Len , as the Registry

or standards body ID table

describes.

7 VendorID Len

Vendor ID, as assigned by the

registry or standards body. Shall

be in little endian format.

7 + Len ReqLength 2
Length of the

VendorDefinedReqPayload .

7 + Len + 2 VendorDefinedReqPayload ReqLength

The standard or vendor shall use

this field to send the request

payload.

343 Other DMTF specifications may define VENDOR_DEFINED_REQUEST with StandardID set to 0. See

VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications for more information.

344 4.10.5 VENDOR_DEFINED_RESPONSE response message

345 A Responder can use this response message in response to VENDOR_DEFINED_REQUEST . The

VENDOR_DEFINED_RESPONSE response message table defines the format.

346 The VENDOR_DEFINED_RESPONSE response message table shows the VENDOR_DEFINED_RESPONSE response

message format.

347 VENDOR_DEFINED_RESPONSE response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x7E=VENDOR_DEFINED_RESPONSE

2 Reserved 1 Reserved

3 Reserved 1 Reserved

4 StandardID 2

Shall indicate the registry or

standard body using one of the

values in the ID column in the

Registry or standards body ID

table.

Security Protocol and Data Model (SPDM) Specification DSP0274

68 Published Version 1.0.2

Offset Field Size (bytes) Value

6 Len 1

Length of the Vendor ID field. If

the VendorDefinedRequest is

standards-defined, length shall be

0 . If the

VendorDefinedRequest is

vendor-defined, length shall

equal Vendor ID Len , as the

Registry or standards body ID

table describes.

7 VendorID Len

Shall indicate the Vendor ID, as

assigned by the registry or

standards body. Shall be in little

endian format.

7 + Len RespLength 2
Length of the

VendorDefinedRespPayload

7 + Len + 2 VendorDefinedRespPayload ReqLength

Standard or vendor shall use this

value to send the response

payload.

348 4.10.6 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF
specifications

349 Other DMTF specifications may define VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages with

StandardID set to 0 (“DMTF”, as defined in the Registry or standards body ID table) and Len set to 0. In this case,

VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages shall specify the underlying DMTF

specification that defines them. A DMTF specification which defines the data model of VendorDefinedReqPayload

for VENDOR_DEFINED_REQUEST and the data model of VendorDefinedRespPayload for VENDOR_DEFINED_RESPONSE

shall follow the Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF

table.

350 Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF

Byte offset Field Size (bytes) Description

0 DSPNumber 2

Shall be the DMTF specification’s DSP number in a

16-bit integer. For example, DSP0287 shall use

0x011F.

2 DSPVersion 2

Shall be the version number of the DMTF

specification whose DSP number is populated in the

DSPNumber field. The format of the version number

shall follow the VersionNumberEntry definition table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 69

Byte offset Field Size (bytes) Description

4 VendorPayload Variable

Shall be the actual payload data defined by the

DMTF specification whose DSP number is populated

in the DSPNumber field.

Security Protocol and Data Model (SPDM) Specification DSP0274

70 Published Version 1.0.2

351 5 ANNEX A (normative) Leaf certificate example

352 Certificate:

Data:
Version: 3 (0x2)
Serial Number: 8 (0x8)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C=CA, ST=NC, L=city, O=ACME, OU=ACME Devices, CN=CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 23:59:59 9999 GMT

Subject: C=US, ST=NC, O=ACME Widget Manufacturing, OU=ACME Widget Manufacturing Unit,
CN=w0123456789

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:
e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:
5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:
ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:
23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:
52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:
a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:
1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:
ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:
98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:
a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:
95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:
70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:
a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:
2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:
66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:
01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:
e8:67

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:
otherName:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256
Signature Value:

30:45:02:21:00:fc:8f:b0:ad:6f:2d:c3:2a:7e:92:6d:29:1d:
c7:fc:0d:48:b0:c6:39:5e:c8:76:d6:40:9a:12:46:c3:39:0e:
36:02:20:1a:ea:3a:59:ca:1e:bc:6d:6e:61:79:af:a2:05:7c:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 71

7d:da:41:a9:45:6d:cb:04:49:43:e6:0b:a8:8d:cd:da:e

Security Protocol and Data Model (SPDM) Specification DSP0274

72 Published Version 1.0.2

353 6 ANNEX B (informative) Change log

354 6.1 Version 1.0.0 (2019-10-16)

• Initial Release

355 6.2 Version 1.0.1 (2021-02-16)

• Minor typographical fixes

• USB Authentication Specification 1.0 link updated

• Tables are no longer numbered. They are now named.

• Fix internal document links in SPDM response codes table.

• Added sentence to paragraph 92 to clarify on the potential to skip messages after a reset.

• Removed text at paragraph 156.

• Certificate digests in DIGEST calculation clarified at paragraph 190.

• Format of certificate in CertChain parameter of CERTIFICATE message clarified.

• Validity period of X.509v3 certificate clarified in Required Fields

• Subject Alternative Name otherName field in Optional fields references DMTF OID section.

• DMTFOtherName definition changed to properly meet ASN.1 syntax.

• Text in figures are now searchable.

• Fix improper reference in DMTFSpecMeasurementValue field in “Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF” table.

• Corrected example of a leaf certificate in Annex A.

• Minor edits to figures for clarity.

356 6.3 Version 1.0.2 (2023-10-08)

• Removed PSS_CAP from the CAPABILITIES response (corrects error introduced in DSP0274 1.0.1).

• Fixed Leaf Certificate X.509 version field description (corrects error introduced in DSP0274 1.0.1).

• Clarified that messages are only hashed once before being signed and verified.

• Added clause that sizes and lengths are in units of bytes.

• Fix broken references.

• Clarified in Registry or standards body ID that the registry specifies the value used for the VendorID field.

• Clarified that ERROR is only allowed in response to GET_VERSION in cases explicitly defined in this specification.

• Added VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications clauses.

• Added normative information in the Flag fields definitions table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.0.2 Published 73

357 7 Bibliography

358 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

Security Protocol and Data Model (SPDM) Specification DSP0274

74 Published Version 1.0.2

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	2 Acknowledgments
	3 Abstract
	4 Document conventions
	4.1 Scope
	4.2 Normative references
	4.3 Terms and definitions
	4.4 Symbols and abbreviated terms
	4.5 Conventions
	4.5.1 Reserved and unassigned values
	4.5.2 Byte ordering
	4.5.3 Sizes and lengths
	4.5.4 SPDM data types
	4.5.5 Version encoding
	4.5.6 Notations

	4.6 SPDM message exchanges
	4.6.1 Security capability discovery and negotiation
	4.6.2 Identity authentication
	4.6.3 Firmware and configuration measurement

	4.7 SPDM messaging protocol
	4.7.1 Generic SPDM message format
	4.7.2 SPDM request codes
	4.7.3 SPDM response codes

	4.8 Concurrent SPDM message processing
	4.8.1 Requirements for Requesters
	4.8.2 Requirements for Responders
	4.8.3 Timing requirements
	4.8.3.0.1 Timing measurements
	4.8.3.1 Timing specification table

	4.9 SPDM messages
	4.9.1 Capability discovery and negotiation
	4.9.1.1 GET_VERSION request message and VERSION response message
	4.9.1.2 GET_CAPABILITIES request message and CAPABILITIES response message
	4.9.1.3 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message

	4.9.2 Responder identity authentication
	4.9.2.1 Certificates and certificate chains
	4.9.2.2 GET_DIGESTS request message and DIGESTS response message
	4.9.2.3 GET_CERTIFICATE request message and CERTIFICATE response message
	4.9.2.4 Leaf certificate
	4.9.2.4.1 Required fields
	4.9.2.4.2 Optional fields
	4.9.2.4.3 Definition of otherName using the DMTF OID

	4.9.2.5 CHALLENGE request message and CHALLENGE_AUTH response message
	4.9.2.6 CHALLENGE_AUTH signature generation
	4.9.2.7 CHALLENGE_AUTH signature verification

	4.10 Request ordering and message transcript computation rules for M1 and M2
	4.10.1 Firmware and other measurements
	4.10.1.1 GET_MEASUREMENTS request message and MEASUREMENTS response message
	4.10.1.2 Measurement block
	4.10.1.3 DMTF specification for the Measurement field of a measurement block
	4.10.1.4 MEASUREMENTS signature generation
	4.10.1.5 MEASUREMENTS signature verification

	4.10.2 ERROR response message
	4.10.3 RESPOND_IF_READY request message
	4.10.4 VENDOR_DEFINED_REQUEST request message
	4.10.5 VENDOR_DEFINED_RESPONSE response message
	4.10.6 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications

	5 ANNEX A (normative) Leaf certificate example
	6 ANNEX B (informative) Change log
	6.1 Version 1.0.0 (2019-10-16)
	6.2 Version 1.0.1 (2021-02-16)
	6.3 Version 1.0.2 (2023-10-08)
	7 Bibliography

