
Document Identifier: DSP0274

Date: 2019-10-18

Version: 0.99.0a

Security Protocol and Data Model (SPDM)
Specification

Supersedes: 0.95.0a

Document Class: Normative

Document Status: Work In Progress

Document Language: en-US

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the DMTF

or its members. Because this document is a Work in Progress, this document may still change,

perhaps profoundly and without notice. This document is available for public review and comment until

superseded.

Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/standards/

feedback

http://www.dmtf.org/standards/feedback
http://www.dmtf.org/standards/feedback

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2019 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

2 Work in Progress Version 0.99.0a

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1 Foreword . 5

2 Acknowledgments . 6

3 Abstract . 7

4 Document conventions . 8

4.1 Scope . 8

4.2 Normative references . 8

4.3 Terms and definitions. 10

4.4 Symbols and abbreviated terms . 12

4.5 Conventions. 13

4.5.1 Reserved and unassigned values . 13

4.5.2 Byte ordering. 13

4.5.3 SPDM data types . 13

4.5.4 Version encoding. 13

4.5.5 Notations . 14

4.6 SPDM message exchanges . 14

4.6.1 Security capability discovery and negotiation . 15

4.6.2 Identity authentication . 15

4.6.3 Firmware and configuration measurement . 16

4.7 SPDM messaging protocol . 16

4.7.1 Generic SPDM message format . 18

4.7.2 SPDM request codes . 18

4.7.3 SPDM response codes . 19

4.8 Concurrent SPDM message processing . 20

4.8.1 Requirements for Requesters . 20

4.8.2 Requirements for Responders . 21

4.8.3 Timing requirements . 21

4.8.3.0.1 Timing measurements . 21

4.8.3.1 Timing specification table . 21

4.9 SPDM messages. 23

4.9.1 Capability discovery and negotiation. 23

4.9.1.1 GET_VERSION request message and VERSION response message 24

4.9.1.2 GET_CAPABILITIES request message and CAPABILITIES response message. 26

4.9.1.3 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message 28

4.9.2 Responder identity authentication. 33

4.9.2.1 Certificates and certificate chains . 34

4.9.2.2 GET_DIGESTS request message and DIGESTS response message. 35

4.9.2.3 GET_CERTIFICATE request message and CERTIFICATE response message 36

4.9.2.4 Leaf certificate . 11

4.9.2.4.1 Required fields . 38

4.9.2.4.2 Optional fields. 38

4.9.2.4.3 Definition of othername using the DMTF OID . 38

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 3

4.9.2.5 CHALLENGE request message and CHALLENGE_AUTH response message 39

4.9.2.6 CHALLENGE_AUTH Signature generation . 41

4.9.2.7 CHALLENGE_AUTH Signature verification . 42

4.10 Request ordering and message transcript computation rules for M1 and M2 43

4.10.1 Firmware and other measurements . 44

4.10.1.1 GET_MEASUREMENTS request message and MEASUREMENTS response

message . 45

4.10.1.2 Measurement block . 47

4.10.1.3 DMTF Specification for the Measurement field of a Measurement block 47

4.10.1.4 MEASUREMENTS Signature generation . 48

4.10.1.5 MEASUREMENTS Signature verification. 49

4.10.2 ERROR response message . 51

4.10.3 RESPOND_IF_READY request message . 54

4.10.4 VENDOR_DEFINED_REQUEST request message . 55

4.10.5 VENDOR_DEFINED_RESPONSE response message . 56

4.11 SPDM messaging control and discovery examples. 56

4.12 ANNEX A (informative) . 56

4.13 ANNEX B - Leaf certificate example . 57

4.14 Change log . 58

4.15 Bibliography. 58

Security Protocol and Data Model (SPDM) Specification DSP0274

4 Work in Progress Version 0.99.0a

1 Foreword

The Platform Management Components Intercommunication (PMCI) Working Group of the DMTF prepared the

Security Protocol and Data Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry

members that promotes enterprise and systems management and interoperability. For information about the DMTF,

see https://www.dmtf.org.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 5

https://www.dmtf.org/

2 Acknowledgments

The DMTF acknowledges these individuals' contributions to this document:

Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Lee Ballard — Dell Technologies

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yuval Itkin — Mellanox Technologies

• Theo Koulouris — Hewlett Packard Enterprise

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Mathews — Advanced Micro Devices, Inc

• Edward Newman — Hewlett Packard Enterprise

• Mahesh Natu — Intel Corporation

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

Security Protocol and Data Model (SPDM) Specification DSP0274

6 Work in Progress Version 0.99.0a

3 Abstract

The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges between devices over a variety of transport and physical media. The description of

message exchanges includes authentication of hardware identities and measurement for firmware identities. The

SPDM enables efficient access to low-level security capabilities and operations. The SPDM can be used with other

mechanisms, including non-PMCI- and DMTF-defined mechanisms.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 7

4 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

4.1 Scope

This specification describes how to use messages, data objects, and sequences to exchange messages between

two devices over a variety of transports and physical media. This specification contains the message exchanges,

sequence diagrams, message formats, and other relevant semantics for such message exchanges, including

authentication of hardware identities and firmware measurement for firmware identities.

Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

4.2 Normative references

The following referenced documents are indispensable for the application of this specification. For dated or versioned

references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without

a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents,

https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

• IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008, https://tools.ietf.org/html/

rfc5234

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019 https://www.usb.org/

sites/default/files/

USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20J

anuary%207%2C%202019.zip

• TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.27, February 7, 2018

https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/

ASN.1 — ISO-822-1-4

Security Protocol and Data Model (SPDM) Specification DSP0274

8 Work in Progress Version 0.99.0a

https://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/

• ITU-T X.680

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-201508-I!!PDF-E&type=items

• ITU-T X.681

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-201508-I!!PDF-E&type=items

• ITU-T X.682

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-201508-I!!PDF-E&type=items

• ITU-T X.683

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-201508-I!!PDF-E&type=items

DER — ISO-8825-1

• ITU-T X.690

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.690-201508-I!!PDF-E&type=items

X509v3 — ISO-9594-8

• ITU-T X.509

Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items

ECDSA

• NIST-FIPS-186-4, Section 6

Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

• NIST P256, secp256r1; NIST P384, secp384r1; NIST P521, secp521r1: NIST-FIPS-186-4, Appendix D

Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

RSA

• As defined in TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.27, February 7, 2018, Table 3:

https://trustedcomputinggroup.org/wp-content/uploads/TCG_Algorithm_Registry_Rev_1.22.pdf

SHA2-256, SHA2-384, and SHA2-512

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 9

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.690-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Algorithm_Registry_Rev_1.22.pdf

• FIPS PUB 180-4 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION Secure Hash

Standard (SHS)

Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

SHA3-256, SHA3-384, and SHA3-512

• FIPS PUB 202FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions

Available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

4.3 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines

those terms.

The terms "shall" ("required"), "shall not," "should"("recommended"), "should not" ("not recommended"), "may," "need

not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional cases when

the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies

additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English

meaning.

The terms "clause," "subclause," "paragraph," and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative

content. Notes and examples are always informative elements.

This specification uses these terms:

Term Definition

authentication Process of determining whether an entity is who or what it claims to be.

authentication initiator Endpoint that initiates the authentication process by challenging another endpoint.

byte

Eight-bit quantity. Also known as an octet.

Note: SPDM specifications shall use the term byte, not octet.

certificate
Digital form of identification that provides information about an entity and certifies ownership of a particular an

asymmetric key-pair.

Security Protocol and Data Model (SPDM) Specification DSP0274

10 Work in Progress Version 0.99.0a

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

Term Definition

certificate authority (CA) Trusted third-party entity that issues certificates.

certificate chain Series of two or more certificates. Each certificate is signed by the preceding certificate in the chain.

certificate signing

request (CSR)
One of the first steps towards getting a certificate.

component Similar to the PCI Express specification’s definition, a physical entity.

device Physical entity such as a network card or a fan.

endpoint Logical entity that communicates with other endpoints over one or more transport protocol.

intermediate certificate Certificate that is neither a root certificate nor a leaf certificate.

leaf certificate Last certificate in a certificate chain.

message See SPDM message.

message body Portion of an SPDM message that carries additional data.

message originator Original transmitter, or source, of an SPDM message.

message transcript

The concatenation of a sequence of messages in the order in which they are sent and received by an endpoint.

The final message included in the message transcript may be truncated to allow inclusion of a signature in that

message which is computed over the message transcript.

most significant byte

(MSB)
Highest order byte in a number consisting of multiple bytes.

Negotiated State

A set of parameters that represent the state of the communication between a corresponding pair of Requester

and Responder at the successful completion of the NEGOTIATE_ALGORITHMS messages. These parameters may

include values provided in VERSION , CAPABILITIES and ALGORITHMS messages. Additionally, they may include

parameters associated with the transport layer. They may include other values deemed necessary by the

Requester or Responder in order to continue or perserve communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

nonce

Number that is unpredictable to entities other than its generator.

The probability of the same number occurring more than once is negligible.

Nonce may be generated by combining a pseudo random number of at least 64 bits, optionally concatenated with

a monotonic counter of size suitable for the application.

payload

Information-bearing fields of a message.

These fields are separate from the fields and elements, such as address fields, framing bits, checksums, and so

on, that transport the message from one point to another.

In some instances, a field can be both a payload field and a transport field.

physical transport

binding

Specifications that define how a base messaging protocol is implemented on a particular physical transport type

and medium, such as SMBus/I2C, PCI Express™ Vendor Defined Messaging, and so on.

SPDM message Unit of communication in SPDM communications.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 11

Term Definition

SPDM message payload

Portion of the message body of an SPDM message.

This portion of the message is separate from those fields and elements that identify the SPDM version, the

SPDM request and response codes, and the two parameters.

SPDM request message
Message that is sent to an endpoint to request a specific SPDM operation.

A corresponding SPDM response message acknowledges receipt of an SPDM request message.

SPDM response

message

Message that is sent in response to a specific SPDM request message.

This message includes a Response Code field that indicates whether the request completed normally.

Platform Management

Component

Intercommunications

(PMCI)

Name of a working group under the Distributed Management Task Force that defines standardized

communication protocols, low-level data models, and transport definitions that support communications with and

between management controllers and management devices that form a platform management subsystem within

a managed computer system.

Requester
Original transmitter, or source, of an SPDM request message.

It is also the ultimate receiver, or destination, of an SPDM response message.

Responder
Ultimate receiver, or destination, of an SPDM request message.

It is also the original transmitter, or source of an SPDM response message.

root certificate First certificate in a certificate chain, which is self-signed.

Trusted Computing

Base (TCB)

(Reference: https://en.wikipedia.org/wiki/Trusted_computing_base) The trusted computing base (TCB) of a

computer system is the set of all hardware, firmware, and/or software components that are critical to its security,

in the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize the security properties of the

entire system. By contrast, parts of a computer system outside the TCB must not be able to misbehave in a way

that would leak any more privileges than are granted to them in accordance to the security policy.

4.4 Symbols and abbreviated terms

This specification uses these abbreviations:

Abbreviation Definition

CA certificate authority

CSR certificate signing request

MSB most significant byte

PMCI Platform Management Component Intercommunications

SPDM Security Protocol and Data Model

Security Protocol and Data Model (SPDM) Specification DSP0274

12 Work in Progress Version 0.99.0a

https://en.wikipedia.org/wiki/Trusted_computing_base

4.5 Conventions

The following conventions apply to all SPDM specifications.

4.5.1 Reserved and unassigned values

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by the DMTF.

Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

4.5.2 Byte ordering

Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit

fields is "Little Endian"(that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

4.5.3 SPDM data types

Table 1 lists the abbreviations and descriptions for common data types that SPDM message fields and data structure

definitions use. These definitions follow DSP0240 — PLDM Base Specification.

Table 1: SPDM data types

Data type Interpretation

ver8 Eight-bit encoding of the SPDM version number. Version Encoding defines the encoding of the version number.

bitfield8 Byte with eight bit fields. Each bit field can be separately defined.

bitfield16 Two-byte word with 16-bit fields. Each bit field can be separately defined.

4.5.4 Version encoding

The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major
Major version field in the SPDMVersion field in the SPDM message

header.
Protocol modification breaks backward compatibility.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 13

Version Matches Incremented when

Minor
Minor version field in the SPDMVersion field in the SPDM message

header.

Protocol modification maintains backward

compatibility.

EXAMPLE:

Version 3.7 → 0x37

Version 1.0 → 0x10

Version 1.2 → 0x12

An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 only, but the

available functionality is limited to what is defined in SPDM specification Version 1.0.

An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

The detailed version encoding returned by the VERSION response message contains an additional byte indicating

specification bug fixes or development versions. See VersionNumberEntry definition.

4.5.5 Notations

The following notations are used for SPDM specifications:

Notation Description

M:N

In field descriptions, this notation typically represents a range of byte offsets starting from byte M and continuing to and including

byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]
Square brackets around a number typically indicate a bit offset. Bit offsets are zero-based values. That is, the least significant bit

[LSb] offset = 0.

[7:5] A range of bit offsets. The most significant is on the left, and the least significant is on the right.

1b A lowercase b after a number consisting of 0s and 1s indicates that the number is in binary format.

0x12A A leading 0x indicates that the number is in hexadecimal format.

4.6 SPDM message exchanges

The message exchanges defined in this specification are between two endpoints and are performed and exchanged

through sending and receiving of SPDM messages defined in SPDM messages. The SPDM message exchanges are

Security Protocol and Data Model (SPDM) Specification DSP0274

14 Work in Progress Version 0.99.0a

defined in a generic fashion that allows the messages to be communicated across different physical mediums and

over different transport protocols.

The two endpoints have a role of either a Requester or Responder. All messages are paired as command/response

with the Requester initiating all communication and the Responder replying to the communication.

Endpoints may implement both Requester and Responder capabilities. It is possible for a pair of endpoints to be

involved with two SPDM message streams between each other with each endpoint having a Requester role and a

Responder role. These two streams are mutually exclusive.

The message exchanges defined in this specification include Requesters that:

1. Discover and negotiate the security capabilities of a Responder.

2. Authenticate the identity of a Responder.

3. Retrieve the firmware measurement of a Responder.

These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. A brief overview for each of the message exchange capabilities is described in the following

sections. Some of the message exchange capabilities are based on the security model defined in USB

Authentication Specification Rev 1.0.

4.6.1 Security capability discovery and negotiation

This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that are defined in this specification.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to be used for all following message exchanges before another negotiation is initiated by

the Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

4.6.2 Identity authentication

In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

At a high-level, the authentication of a Responder's identity involves these processes:

• Identity provisioning

The process followed by device vendors during or after hardware manufacturing. A trusted root certificate

authority (CA) generates a root certificate (RootCert) that is provisioned to the authentication initiator to allow the

authentication initiator to verify the validity of the digital signatures generated by the endpoint during runtime

authentication.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 15

The root CA also indirectly through the certificate chain endorses a per-part public/private key pair, where the

private key is provisioned to or generated by the endpoint. A device carries a certificate chain, with the root

being the RootCert and the leaf being the device certificate (DeviceCert), which contains the public key

corresponding to the device private key.

• Runtime authentication

The process by which an authentication initiator (Requester) interacts with a Responder in a running system.

The authentication initiator can retrieve the certificate chain(s) from the Responder and send a unique challenge

to the Responder. The Responder then signs the challenge with the private key. The authentication initiator

verifies the signature using the public key of the Responder as well as any intermediate public keys within the

certificate chain using the root certificate as the trusted anchor.

4.6.3 Firmware and configuration measurement

Measurement is a term that describes the process of calculating the cryptographic hash value of a piece of firmware/

software or configuration data and tying the cryptographic hash value with the endpoint identity through the use of

digital signatures. This allows an authentication initiator to establish that the identity and measurement of the

firmware/software or configuration running on the endpoint.

4.7 SPDM messaging protocol

The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to

with an SPDM response message as defined in this specification unless otherwise stated in this specification.

Figure 1 depicts the high-level request-response flow diagram for SPDM. An endpoint that acts as the Requester

sends an SPDM request message to another endpoint that acts as the Responder, and the Responder returns an

SPDM response message to the Requester.

Security Protocol and Data Model (SPDM) Specification DSP0274

16 Work in Progress Version 0.99.0a

Figure 1 — SPDM messaging protocol flow

All SPDM request-response messages share a common data format, that consists of a four-byte message header

and zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages details each of the request and response messages.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 17

The Requester shall issue GET_VERSION , GET_CAPABILTIES , and NEGOTIATE_ALGORITHMS request messages

before issuing any other request messages.

4.7.1 Generic SPDM message format

Table 2 defines the fields that constitute a generic SPDM message, including the message header and payload. The

fields within the SPDM messages are transferred from the lowest offset first.

Table 2 — Generic SPDM message formats

Byte 1 Byte 2 Byte 3 Byte 4

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SPDM Major Version SPDM Minor Version Request Response Code Param1 Param2

SPDM message payload (zero or more bytes)

Table 3 defines the fields that are part of a generic SPDM message.

Table 3 — Generic SPDM message field definitions

Field name

Field

size

(bits)

Description

SPDM Major Version 4
The major version of the SPDM Specification. An endpoint shall not communicate by using an

incompatible SPDM version value. See Version encoding.

SPDM Minor Version 4
The minor version of the SPDM Specification. A specification with a given minor version extends a

specification with a lower minor version as long as they share the major version. See Version encoding.

Request Response

Code
8

The request message code or response code, which are enumerated in Table 4 and Table 5. 0x00

through 0x7F represent response codes and 0x80 through 0xFF represent request codes.

Param1 8 The first one-byte parameter. The contents of the parameter is specific to the Request Response Code.

Param2 8
The second one-byte parameter. The contents of the parameter is specific to the Request Response

Code.

SPDM message payload Variable Zero or more bytes that are specific to the Request Response Code.

4.7.2 SPDM request codes

Table 4 defines the SPDM request codes. The Implementation Requirement column indicate requirements on the

Requester.

All SPDM-compatible implementations shall use the following request codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

18 Work in Progress Version 0.99.0a

Unsupported request codes shall return an ERROR response message with ErrorCode=UnsupportedRequest .

Table 4 — SPDM request codes

Request Code value Implementation Requirement
Message

format

GET_DIGESTS 0x81 Optional See Table 16.

GET_CERTIFICATE 0x82 Optional See Table 18.

CHALLENGE 0x83 Optional See Table 20.

GET_VERSION 0x84 Required See Table 7.

GET_MEASUREMENTS 0xE0 Optional See Table 22.

GET_CAPABILITIES 0xE1 Required See Table 10.

NEGOTIATE_ALGORITHMS 0xE3 Required See Table 13.

RESPOND_IF_READY 0xFF Required See Table 31.

VENDOR_DEFINED_REQUEST 0xFE Optional
See Table

104.

Reserved

0x80 ,

0x85 - 0xDF ,

0xE2 ,

0xE4 - 0xFD

SPDM implementations compatible with this version shall not use the reserved

request codes.

4.7.3 SPDM response codes

The Request Response Code field in the SPDM response message shall specify the appropriate response code for a

request. All SPDM-compatible implementations shall use the following response codes.

On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of an SPDM operation, the ERROR response message shall be returned.

Table 5 defines the response codes for SPDM. The Implementation Requirement column indicate requirements on

the Responder.

Table 5 — SPDM response codes

Response Value Implementation Requirement
Message

format

DIGESTS 0x01 Optional See Table 16.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 19

Response Value Implementation Requirement
Message

format

CERTIFICATE 0x02 Optional See Table 18.

CHALLENGE_AUTH 0x03 Optional See Table 20.

VERSION 0x04 Required See Table 8.

MEASUREMENTS 0x60 optional See Table 24.

CAPABILITIES 0x61 Required See Table 11.

ALGORITHMS 0x63 Required See Table 14.

VENDOR_DEFINED_RESPONSE 0x7E Optional
See Table

105.

ERROR 0x7F See Table 26.

Reserved

0x00 ,

0x05 - 0x5F ,

0x62 ,

0x64 - 0x7D

SPDM implementations compatible with this version shall not use the reserved

response codes.

4.8 Concurrent SPDM message processing

This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

4.8.1 Requirements for Requesters

A Requester shall not have multiple outstanding requests to the same Responder, with the exception of

GET_VERSION addressed in GET_VERSION request message and VERSION response message. If the Requester

has sent a request to a Responder and wants to send a subsequent request to the same Responder, then the

Requester shall wait to send the subsequent request until after the Requester completes one of the following actions:

• Receives the response from the Responder for the outstanding request.

• Times out waiting for a response.

• Receives an indication, from the transport layer, that transmission of the request message failed.

A Requester may send simultaneous request messages to different Responders.

Security Protocol and Data Model (SPDM) Specification DSP0274

20 Work in Progress Version 0.99.0a

4.8.2 Requirements for Responders

A Responder is not required to process more than one request message at a time.

A Responder that is not ready to accept a new request message shall either respond with an ERROR response

message with ErrorCode=Busy or silently discard the request message.

If a Responder is working on a request message from a Requester, the Responder may respond with

ErrorCode=Busy .

If a Responder allows simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

4.8.3 Timing requirements

Table 6 shows the timing specifications for Requesters and Responders.

If the Requester does not receive a response within T1 or T2 time accordingly, the Requester may retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) may retry

failed packages, but that is outside of the SPDM specification.

4.8.3.0.1 Timing measurements

A Requester shall measure timing parameters, applicable to it, from the end of a successful transmission of an

SPDM request to the beginning of the reception of the corresponding SPDM response. A Responder shall measure

timing parameters, applicable to it, from the end of the reception of the SPDM request to the beginning of

transmission of the response.

4.8.3.1 Timing specification table

In Table 6, the Ownership column specifies whether the timing parameter applies to the Responder or Requester.

Table 6 — Timing specification for SPDM Messages

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 21

Timing

Parameter
Ownership Value Units Description

RTT Requester
See

Description

See

Description

This is the worst case round trip transport timing.

The max value shall be the worst case total time for the complete transmission and

delivery of an SPDM message round trip at the transport layer(s). The actual value for

this parameter is transport/media specific.

ST1 Responder 100 ms

This shall be the maximum amount of time the Responder has to provide a response to

requests that do not require cryptographic processing, such as GET_CAPABILITIES ,

GET_VERSION or NEGOTIATE_ALGORITHMS .

T1 Requester RTT + ST1 ms

This shall be the minimum amount of time the Requester shall wait before issuing a

retry for requests that do not require cryptographic processing.

For details, see ST1 .

CT Responder 2CTExponent us

This is the cryptographic timeout in microseconds. CTExponent is reported in the

CAPABILITIES message.

This timing parameter shall be the maximum amount of time the Responder has to

provide any response requiring cryptographic processing, such as GET_MEASUREMENTS

and CHALLENGE .

T2 Requester RTT + CT us

This shall be the minimum amount of time the Requester shall wait before issuing a

retry for requests that require cryptographic processing.

For details, see CT .

RDT Responder 2RDTExponent us

This is the Recommended Delay in microseconds. When the Responder is unable to

complete cryptographic processing response within the CT time, it shall provide

RDTExponent as part of the ERROR Response. See Table 28 for the RDTExponent

value.

For details, see ErrorCode=ResponseNotReady .

WT Requester RDT us

This is the amount of time the Requester should wait before issuing

RESPOND_IF_READY request. The Requester shall measure this time parameter from

the reception of the ERROR response to the transmission of RESPOND_IF_READY

request. The Requester may take into account the transission time of the ERROR from

the Responder to Requester when calculating WT .

For details, see RDT .

Security Protocol and Data Model (SPDM) Specification DSP0274

22 Work in Progress Version 0.99.0a

Timing

Parameter
Ownership Value Units Description

WTMax Requester

(RDT *

RDTM) -

RTT

us

This is the maximum wait time the Requester has to to issue RESPOND_IF_READY

request unless the Requester issued a successful RESPOND_IF_READY earlier. After this

time the Responder is allowed to drop the response. The Requester shall take into

account the transmission time of the ERROR from the Responder to Requester when

calculating WTMax . The value of RDTM is given in Table 28. The Responder should

ensure WT_{Max} does not result less than WT in determination of RDTM .

For details, see ErrorCode=ResponseNotReady .

4.9 SPDM messages

SPDM messages can be divided into the following categories, supporting different aspects of security exchanges

between a Requester and Responder:

1. Capability discovery and negotiation.

2. Hardware identity authentication.

3. Firmware measurement.

4.9.1 Capability discovery and negotiation

All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES and NEGOTIATE_ALGORITHMS .

Figure 2 shows the high-level request-response flow and sequence for the capability discovery and negotiation.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 23

Figure 2 — Capability discovery and negotiation flow

4.9.1.1 GET_VERSION request message and VERSION response message

This request message shall retrieve an endpoint's SPDM version. Table 7 shows the GET_VERSION request

message format and Table 8 shows the VERSION response message format.

In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with

all previous versions.

The Requester shall begin the discovery process by sending a GET_VERSION request message with major version

0x1. All Responders must always support GET_VERSION request message with major version 0x1 and provide a

VERSION response containing all supported versions as described in Table 7.

The Requester shall consult the VERSION response to select a common (typically highest) version supported. The

Requester shall use the selected version in all future communication of other requests. A Requester shall not issue

other requests until it has received a successful VERSION response and has identified a common version supported

by both sides. A Responder shall not respond to GET_VERSION request message with

ErrorCode=ResponseNotReady .

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Work in Progress Version 0.99.0a

A Requester may issue GET_VERSION request message at any time to a Responder, which is as an exception to the

rules in Requirements for Requesters for the case where a Requester must restart the protocol because of internal

error or reset. After receiving a GET_VERSION request the Responder shall cancel all previous requests from the

same Requester. Additionally, this message shall clear or reset the previously Negotiated State, if any, in both the

Requester and its corresponding Responder.

Figure 3 — Discovering common major version

Table 7 — GET_VERSION request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x84 = GET_VERSION

2 Param1 1 Reserved

3 Param2 1 Reserved

Table 8 — Successful VERSION response message

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 25

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x04 = VERSION

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 VersionNumberEntryCount 1 Number of version entries present in this table (=n).

6 VersionNumberEntry1:n 2 x n 16-bit version entry. See Table 7.

Table 9 — VersionNumberEntry definition

Bit Field Value

[15:12] MajorVersion
Version of the specification with changes that are incompatible with one or more functions in earlier major

versions of the specification.

[11:8] MinorVersion
Version of the specification with changes that are compatible with functions in earlier minor versions of this

major version specification.

[7:4] UpdateVersionNumber
Version of the specification with editorial updates but no functionality additions or changes. Informational;

possible errata fixes. Ignore when checking versions for interoperability.

[3:0] Alpha

Pre-release work-in-progress version of the specification. Backward compatible with earlier minor versions

of this major version specification. However, because the Alpha value represents an in-development

version of the specification, versions that share the same major and minor version numbers but have

different Alpha versions may not be fully interoperable. Released versions must have an Alpha value of

zero.

4.9.1.2 GET_CAPABILITIES request message and CAPABILITIES response message

This request message shall retrieve an endpoint's security capabilities.

Table 10 shows the GET_CAPABILITIES request message format.

Table 11 shows the CAPABILITIES response message format.

Table 12 shows the flag fields definitions.

A Responder shall not respond to GET_CAPABILITIES request message with ErrorCode= ResponseNotReady .

Table 10 — GET_CAPABILITIES request message

Security Protocol and Data Model (SPDM) Specification DSP0274

26 Work in Progress Version 0.99.0a

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0xE1 = GET_CAPABILITIES

2 Param1 1 Reserved

3 Param2 1 Reserved

Table 11 — Successful CAPABILITIES response message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x61 = CAPABILITIES

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Reserved 1 Reserved

5 CTExponent 1

The value of this shall be the exponent of base 2. Used to calculate CT , as described in Table 6.

The equation for CT shall be 2CT microseconds (us).

For example, if CTExponent is 10, CT is 210 = 1024 us.

6 Reserved 2 Reserved

8 Flags 4 See Table 1.

Table 12 — Flag fields definitions

Byte Bit Field Value

0 0 CACHE_CAP

If set, the Responder supports the ability to cache the Negotiated State across a reset. This allows the

Requester to skip reissuing the GET_VERSION , GET_CAPABILITIES and NEGOTIATE_ALGORITHMS requests

after a reset. The Responder shall cache the selected cryptographic algorithms as one of the parameters of

the Negotiated State. If the Requester chooses to skip issuing these requests after the reset, the Requester

shall also cache the same selected cryptographic algorithms.

0 1 CERT_CAP If set, Responder supports GET_DIGESTS and GET_CERTIFICATE messages.

0 2 CHAL_CAP If set, Responder supports CHALLENGE request message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 27

Byte Bit Field Value

0 4:3 MEAS_CAP

The Responder's MEASUREMENT capabilities.

• 00b . The Responder does not support MEASUREMENTS capabilities.

• 01b . The Responder supports MEASUREMENTS but cannot perform signature generation.

• 10b . The Responder supports MEASUREMENTS and can generate signatures.

• 11b . Reserved

0 5 MEAS_FRESH_CAP

• 0 . As part of MEASUREMENTS response message, the Responder may return MEASUREMENTS that were

computed during the last Responder’s reset.

• 1 . The Responder can recompute all MEASUREMENTS in a manner that is transparent to the rest of the

system and shall always return fresh MEASUREMENTS as part of MEASUREMENTS response message.

0 7:6 Reserved Reserved

1 7:0 Reserved Reserved

2 7:0 Reserved Reserved

3 7:0 Reserved Reserved

4.9.1.3 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message

This request message shall negotiate cryptographic algorithms. A Requester shall not issue a

NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES response message.

A Requester shall not issue any other SPDM requests, with the exception of GET_VERSION until it receives a

successful ALGORITHMS response message with exactly one asymmetric algorithm and exactly one hashing

algorithm.

A Responder shall not respond to NEGOTIATE_ALGORITHMS request message with ErrorCode=ResponseNotReady .

Table 13 shows the NEGOTIATE_ALGORITHMS request message format.

Table 14 shows the ALGORITHMS response message format.

Table 13 — NEGOTIATE_ALGORITHMS request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0xE3 = NEGOTIATE_ALGORITHMS

2 Param1 1 Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

28 Work in Progress Version 0.99.0a

Offset Field
Size

(bytes)
Value

3 Param2 1 Reserved

4 Length 2 Length of the entire request message, in bytes. Length shall be less than 64 bytes.

6 MeasurementSpecification 1

This field is a bitmask. The values for this field shall be those defined in the

MeasurementSpecification field of GET_MEASUREMENTS request message and

MEASUREMENTS response message. The Requester may set more than one bit to

indicate multiple measurement specification support.

7 Reserved 1 Reserved

8 BaseAsymAlgo 4

Bit mask listing Requester-supported SPDM-enumerated asymmetric key signature

algorithms for the purposes of signature verification.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

• Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

• Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

• Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

12 BaseHashAlgo 4

Bit mask listing Requester-supported SPDM-enumerated cryptographic hashing algorithms

.

• Byte 0 Bit 0. TPM_ALG_SHA_256

• Byte 0 Bit 1. TPM_ALG_SHA_384

• Byte 0 Bit 2. TPM_ALG_SHA_512

• Byte 0 Bit 3. TPM_ALG_SHA3_256

• Byte 0 Bit 4. TPM_ALG_SHA3_384

• Byte 0 Bit 5. TPM_ALG_SHA3_512

All other values reserved.

16 Reserved 12 Reserved

28 ExtAsymCount 1
Number of Requester-supported extended asymmetric key signature algorithms (=A). A + E

shall be less than or equal to 8.

29 ExtHashCount 1
Number of Requester-supported extended hashing algorithms (=E). A + E shall be less

than or equal to 8.

30 Reserved 2 Reserved for future use

32 ExtAsym 4*A
List of Requester-supported extended asymmetric key signature algorithms. The format of

this field is described in Extended Algorithm Field Format Table.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 29

Offset Field
Size

(bytes)
Value

32+4*A ExtHash 4*E
List of the extended hashing algorithms supported by Requester. The format of this field is

described in Extended Algorithm Field Format Table.

Table 14 — Successful ALGORITHMS response message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x63 = ALGORITHMS

2 Param1 1 Reserved

3 Param2 1 Reserved

4 Length 2 Length of the response message, in bytes.

6 MeasurementSpecificationSel 1

Bit mask. The Responder shall select one of the measurement specifications supported

by the Requester. Thus, no more than one bit shall be set. The values in this field shall

be those defined in the MeasurementSpecification field of Table 25.

7 Reserved 1 Reserved

8 MeasurementHashAlgo 4

Bit mask listing SPDM-enumerated hashing algorithm for measurements. M represents

the length of the measurement hash field in measurement block structure (Table 20).

The Responder shall ensure the length of measurement hash field during all

subsequent MEASUREMENT response messages to the Requester until the next

ALGORITHMS response message is M.

• Bit 0. Raw Bit Stream Only, M=0

• Bit 1. TPM_ALG_SHA_256, M=32

• Bit 2. TPM_ALG_SHA_384, M=48

• Bit 3. TPM_ALG_SHA_512, M=64

• Bit 4. TPM_ALG_SHA3_256, M=32

• Bit 5. TPM_ALG_SHA3_384, M=48

• Bit 6. TPM_ALG_SHA3_512, M=64

If the Responder supports GET_MEASUREMENTS , exactly one bit in this bit field shall be

set. Otherwise, the Responder shall set this field to 0 .

A Responder shall only select Bit 0 if the Responder supports Raw Bit Streams as the

only form of measurement; otherwise, it shall select one of the other bits.

12 BaseAsymSel 4

Bit mask listing the SPDM-enumerated asymmetric key signature algorithm selected. A

Responder that returns CHAL_CAP=0 and MEAS_CAP != 2 shall set this field 0. Other

Responders shall set no more than one bit.

Security Protocol and Data Model (SPDM) Specification DSP0274

30 Work in Progress Version 0.99.0a

Offset Field
Size

(bytes)
Value

16 BaseHashSel 4

Bit mask listing the SPDM-enumerated hashing algorithm selected. A Responder that

returns CHAL_CAP=0 and MEAS_CAP != 2 shall set this field 0. Other Responders shall

set no more than one bit.

20 Reserved 12 Reserved.

32 ExtAsymSelCount 1

The number of extended asymmetric key signature algorithms selected. Shall be either

0 or 1 (=A'). A Requester that returns CHAL_CAP=0 and MEAS_CAP != 2 shall set this

field 0.

33 ExtHashSelCount 1
The number of extended hashing algorithms selected. Shall be either 0 or 1 (=E'). A

Requester that returns CHAL_CAP=0 and MEAS_CAP != 2 shall set this field 0.

34 Reserved 2 Reserved

36 ExtAsymSel 4*A'

The extended asymmetric key signature algorithm selected.

Responder must be able to sign a response message using this algorithm and

Requester must have listed this algorithm in the request message indicating it can verify

a response message using this algorithm. The Responder shall use this asymmetric

signature algorithm for all subsequent applicable response messages to the Requester.

The format of this field is described in Extended Algorithm Field Format Table.

36+4*A ExtHashSel 4*E'

The extended Hashing algorithm selected.

The Responder shall use this hashing algorithm during all subsequent response

messages to the Requester. The Requester shall use this hashing algorithm during all

subsequent applicable request messages to the Responder.

The format of this field is described in Extended Algorithm Field Format Table.

Extended Algorithm Field Format Table

Offset Field Description

0
Registry

ID

This field shall represent the registry or standards body. This field's value shall be one listed in the ID column of Table

29.

1 Reserved Reserved

[2:3]
Algorithm

ID

This field shall indicate the desired algorithm. The value of this field is owned by the registry or standards body. For

details, see Table 29

A Responder shall not select both a SPDM-enumerated asymmetric key signature algorithm and an extended

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 31

asymmetric key signature algorithm. A Responder shall not select both a SPDM-enumerated hashing algorithm and

an extended Hashing algorithm.

This clause illustrates how two endpoints negotiate base hashing algorithm.

In Figure 4, endpoint A issues NEGOTIATE_ALGORITHMS request message and endpoint B selects an algorithm of

which both endpoints are capable.

Figure 4 — Hashing algorithm selection: Example 1

SPDM protocol accounts for the possibility that both endpoints may issue NEGOTIATE_ALGORITHMS request

messages independently of each other. In this case, the endpoint A Requester / endpoint B Responder

communication pair may select a different algorithm compared to the endpoint B Requester / endpoint A Responder

communication pair.

Security Protocol and Data Model (SPDM) Specification DSP0274

32 Work in Progress Version 0.99.0a

4.9.2 Responder identity authentication

This clause describes request messages and response messages associated with the Responder's identity

authentication operations. All request messages in this clause shall be supported by a Responder that returns

CERT_CAP=1 and/or CHAL_CAP=1 in the CAPABILITIES response message.

Figure 5 shows the high-level request-response message flow and sequence for Responder's identity authentication

for certificate retrieval.

Figure 5 — Responder authentication: example certificate retrieval flow

The GET_DIGESTS request message and DIGESTS response message may optimize the amount of data required to

be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of each of the certificate chains stored on an endpoint is returned with the DIGESTS

response message, such that the Requester can cache the previously retrieved certificate chain hash values to

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 33

detect any change to the certificate chains stored on the device before issuing the GET_CERTIFICATE request

message.

For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload

shall be signed using the device private key over the hash of the message transcript defined in Table 103. This

ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder and allows the Requester to detect the presence of an active

adversary attempting to downgrade cryptographic algorithms or SPDM Versions. Furthermore, a nonce generated by

the Requester protects the challenge-response from replay attacks, whereas a nonce generated by the Responder

prevents the Responder from signing over arbitrary data dictated by the Requester. The signature computation is

restarted with the latest GET_VERSION request received.

4.9.2.1 Certificates and certificate chains

Each Responder that supports identity authentication shall carry at least one certificate chain. A certificate chain

contains an ordered list of certificates, presented as the binary (byte) concatenation of the fields shown in Table 11.

Each certificate shall be in ASN.1 DER-encoded X509v3 format. The ASN.1 DER encoding of each individual

certificate can be analyzed to determine its length. The minimum number of certificates within a chain shall be one, in

which case the single certificate is the device-specific certificate. The Responder shall contain a single public-private

key pair per supported algorithm for its hardware identity, regardless of how many certificate chains are stored on the

device. The Responder selects a single asymmetric key signature algorithm per Requester.

Certificate chains are stored in locations called slots. Each slot shall either be empty or contain one complete

certificate chain. A Product shall not contain more than 8 slots. Slot 0 is populated by default. Additional slots may be

populated through the supply chain such as by a platform integrator or by an end user such as the IT administrator. A

slot mask is used to identify the certificate chains from the 8 slots.

In this document, H refers to the output size (bytes) of the hash algorithm agreed upon in NEGOTIATE_ALGORITHMS .

Table 15 — Certificate chain format

Offset Field Size Description

0 Length 2 Total length of the certificate chain, in bytes, including all fields in this table. This field is little endian.

2 Reserved 2 Reserved.

4 RootHash H
Digest of the Root Certificate. Note that Root Certificate is ASN.1 DER-encoded for this digest. This field is

big endian.

4 + H Certificates

Length

- (4 +

H)

One or more ASN.1 DER-encoded X509v3 certificates where the first certificate is signed by the Root

Certificate or is the Root Certificate itself and each subsequent certificate is signed by the preceding

certificate. The last certificate is the Leaf Certificate. This field is big endian.

Security Protocol and Data Model (SPDM) Specification DSP0274

34 Work in Progress Version 0.99.0a

4.9.2.2 GET_DIGESTS request message and DIGESTS response message

This request message shall be used to retrieve the certificate chain digests.

Table 16 shows the GET_DIGESTS request message format.

Table 17 shows the DIGESTS response message format.

The digests in Table 13 are in big endian.

Table 16 — GET_DIGESTS request message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0=0x10

1 RequestResponseCode 1 0x81=GET_DIGESTS

2 Param1 1 Reserved

3 Param2 1 Reserved

Table 17 — Successful DIGESTS response message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x01 = DIGESTS

2 Param1 1 Reserved

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and only if slot number K contains

a certificate chain for the protocol version in the SPDMVersion field. (Bit 0 is the least significant

bit of the byte.) The number of digests returned shall be equal to the number of bits set in this

byte. The digests shall be returned in order of increasing slot number.

4 Digest[0] H Digest of the first certificate chain.

...

4 + (H

* (n

-1))

Digest[n-1] H Digest of the last (nth) certificate chain.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 35

4.9.2.3 GET_CERTIFICATE request message and CERTIFICATE response message

This request message shall retrieve the certificate chains.

Table 18 shows the GET_CERTIFICATE request message format.

Table 19 shows the CERTIFICATE response message format.

The Requester should, at a minimum save the public key of the leaf certificate and associate it with each of the

digests returned by DIGESTS message response. The Requester sends one or more GET_CERTIFICATE requests to

retrieve Responder's certificate chain.

Table 18 — GET_CERTIFICATE request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x82 = GET_CERTIFICATE

2 Param1 1
Slot number of the target certificate chain to read from. The value in this field shall be between 0

and 7 inclusive.

3 Param2 1 Reserved

4 Offset 2

Offset in bytes from the start of the certificate chain to where the read request message begins.

The Responder should send its certificate chain starting from this offset. For the first

GET_CERTIFICATE request, the Requester must set this field to 0. For non-first requests, Offset

is the sum of PortionLength values in all previous GET_CERTIFICATE responses.

6 Length 2

Length of certificate chain data, in bytes, to be returned in the corresponding response. Length is

an unsigned 16-bit integer. This is the smaller of the following two values: capacity of Requester's

internal buffer for receiving Responder's certificate chain, and, RemainderLength of the preceding

GET_CERTIFICATE response. For the first GET_CERTIFICATE request, the Requester should use

the capacity of the Requester's receiving buffer. If offset=0 and length=0xFFFF , the Requester

is requesting the entire chain.

Table 19 — Successful CERTIFICATE response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x02 = CERTIFICATE

2 Param1 1 Slot number of the certificate chain returned.

Security Protocol and Data Model (SPDM) Specification DSP0274

36 Work in Progress Version 0.99.0a

Offset Field Size (bytes) Value

3 Param2 1 Reserved.

4 PortionLength 2

Number of bytes of this portion of certificate chain. This should be less than or equal to

Length received as part of the request. For example, the Responder might set this field to

a value less than Length received as part of the request due limitations on the

Responder's internal buffer.

6 RemainderLength 2

Number of bytes of the certificate chain that have not been sent yet after the current

response. For the last response, this field shall be 0 as an indication to the Requester that

the entire certificate chain has been sent.

8 CertChain PortionLength Requested contents of target certificate chain, formatted in DER. This field is big endian.

Figure 6-1 shows the high-level request-response message flow for Responder response when it cannot return the

entire data requested by the Requester in the first response.

Figure 6 — Responder unable to return full length data flow

4.9.2.4 Leaf certificate

The SPDM endpoints for authentication must be provisioned with DER-encoded X.509 v3 format certificates. The

leaf certificate must be signed by a trusted CA and provisioned to the device. For endpoint devices to verify the

certificate, the following required fields must be present. In addition, to provide device information, use the Subject

Alternative Name certificate extension othername field.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 37

4.9.2.4.1 Required fields

Field Description

Version The version of the encoded certificate shall be present and shall be 3 , or value 2.

Serial

Number
The CA assigned serial number shall be present with a positive integer value.

Signature

Algorithm
The signature algorithm used by CA shall be present.

Issuer The CA distinguished name shall be specified.

Subject

Name
The subject name shall be present and shall represent the distinguished name associated with the leaf certificate.

Validity

The certificate may include this attribute. If the validity attribute is present, the value for notBefore field should be assigned

the generalized 19700101000000Z time value and notAfter field should be assigned the generalized 99991231235959Z time

value.

Subject

Public Key

Info

The device public key and the algorithm shall be present.

Extended

Key Usage
The Extended Key Usage field shall be present and key usage bit for digital signature shall be set.

4.9.2.4.2 Optional fields

Field Description

Basic

Constraints
If present, the CA value shall be FALSE .

Subject

Alternative

Name

otherName

In some cases it might be desirable to provide device specific information as part of the device certificate. DMTF chose the

otherName field to be used with a specific format to represent the device information. The use of othername field also

provides flexibility for other alliances to be able to provide device specific information as part of the device certificate.

4.9.2.4.3 Definition of othername using the DMTF OID

DMTFOtherName :== SEQUENCE {
type-id [0] id-DMTF-device-info
value [1] ub-DMTF-device-info

}
-- OID for DMTF device info --

Security Protocol and Data Model (SPDM) Specification DSP0274

38 Work in Progress Version 0.99.0a

id-DMTF-device-info OBJECT IDENTIFIER ::== { 1 3 6 1 4 1 412 274 1 }

-- All printable characters except ":" --
DMTF-device-string PrintableString ::== (ALL EXCEPT ":")

-- Device Manufacturer --
DMTF-manufacturer ::== DMTF-device-string

-- Device Product --
DMTF-product ::== DMTF-device-string

-- Device Serial Number --
DMTF-serialNumber ::== DMTF-device-string

-- Device information string --
ub-DMTF-device-info UTF8String ::== (DMTF-manufacturer":"DMTF-product":"DMTF-serialNumber)

Annex B shows an example leaf certificate.

4.9.2.5 CHALLENGE request message and CHALLENGE_AUTH response message

This request message shall authenticate an endpoint through the challenge-response protocol.

Table 20 shows the CHALLENGE request message format.

Table 21 shows the CHALLENGE_AUTH response message format.

Table 20 — CHALLENGE request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x83 = CHALLENGE

2 Param1 1 Slot number of the Responder's certificate chain that shall be used for authentication.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 39

Offset Field
Size

(bytes)
Value

3 Param2 1

Requested Measurement Summary Hash Type:

0x0 = No Measurement Summary Hash,

0x1 = TCB Component Measurement Hash,

0xFF = All measurements Hash.

All other values reserved.

When Responder does not support any measurements, Requester shall set this value to

0x0 .

4 Nonce 32 The Requester should choose a random value.

Table 21 — Successful CHALLENGE_AUTH response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x03 = CHALLENGE_AUTH

2 Param1 1

Shall contain the Slot number in the Param1 field of the corresponding

CHALLENGE request. This value can be used, by the Requester, to check that

the certificate matched what was requested.

3 Param2 1

Slot mask. The bit in position K of this byte shall be set to 1b if and only if

slot number K contains a certificate chain for the protocol version in the

SPDMVersion field. (Bit 0 is the least significant bit of the byte.)

4 CertChainHash H

Hash of the certificate chain used for authentication. This field is big endian.

This value can be used, by the Requester, to check that the certificate

matched what was requested.

4 + H Nonce 32 Responder-selected random value.

Security Protocol and Data Model (SPDM) Specification DSP0274

40 Work in Progress Version 0.99.0a

Offset Field Size (bytes) Value

36 + H MeasurementSummaryHash H

When the Responder does not support measurement or requested param2 =

0, the field shall be absent.

When the requested param2 = 1, this field shall be the combined hash of all

measurements of all measurable components considered to be in the TCB

required to generate this response.

When the requested param2 = 1 and there are no measurable components

in the TCB required to generate this response, this field shall be 0.

When requested param2 = 0xFF , this field is computed as the

hash(Concatenation(Measurement 1, Measurement 2,, Measurement N))

of all supported measurements.

36 + 2H OpaqueLength 2 Size of the OpaqueData field. The value shall not be greater than 1024 bytes.

38 + 2H OpaqueData OpaqueLength
Free-form field, if present. The Responder may include Responder-specific

information and/or information defined by its transport.

38 + 2H +

OpaqueLength
Signature S

S is the size of the asymmetric signing algorithm output the Responder

selected via the last ALGORITHMS response message to the Requester.

Signature generation and verification processes are defined in the

CHALLENGE_AUTH Signature generation and CHALLENGE_AUTH

Signature verification clauses, respectively.

4.9.2.6 CHALLENGE_AUTH Signature generation

1. The Responder shall construct M1 and the Requester shall construct M2, message transcripts, as

defined in Table 103

where:

◦ Concatenate() is the standard concatenation function.

◦ Concatenate() operation is performed only after a successful completion response on the

entire contents of the request and the response.

◦ If a response contains ErrorCode= ResponseNotReady , the Concatenate() operation is

performed on contents of the original request and the contents of the response received during

RESPOND_IF_READY .

◦ If a response contains ErrorCode ~= ResponseNotReady , no concatenate operation is performed

on the original request and the response.

2. The Responder shall generate:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 41

Signature = Sign(SK, Hash(M1))

where:

◦ Sign is the asymmetric signing algorithm the Responder selected via the last ALGORITHMS

response message sent by the Responder. See BaseAsymSel or ExtAsymSel fields in Table 11.

◦ Hash is the hashing algorithm the Responder selected via the last ALGORITHMS response

message sent by the Responder. See BaseHashSel or ExtHashSel fields in Table 11.

◦ SK is the private Key associated with the Responder's leaf certificate in slot=Param1 of

CHALLENGE request message.

4.9.2.7 CHALLENGE_AUTH Signature verification

Modifications to the previous request messages or the corresponding response messages by an active person-in-

the-middle adversary or media error result in M2!=M1 and lead to verification failure.

1. The Requester shall perform:

Verify(PK, Hash(M2), Signature)

where:

◦ PK is the public key associated with the leaf certificate of the Responder with slot=Param1 of

the CHALLENGE request message.

◦ Verify is the asymmetric verification algorithm the Responder selected through the last

ALGORITHMS response message as received by the Requester. See the BaseAsymSel or

ExtAsymSel field in Table 11.

◦ Hash is the hashing algorithm the Responder selected via the last ALGORITHMS response

message sent as received by the Requester. See the BaseHashSel or ExtHashSel field in Table

11.

Figure 5a shows the high-level request-response message flow and sequence for Responder's authentication for

runtime challenge-response.

Security Protocol and Data Model (SPDM) Specification DSP0274

42 Work in Progress Version 0.99.0a

Figure 5a — Responder authentication: runtime challenge-response flow

4.10 Request ordering and message transcript computation rules for M1

and M2

Table 103 defines how the message transcipt is constructed for M1 and M2 which are used in signature calculation

and verification in the CHALLENGE_AUTH response message. The possible request orderings after Power on Reset

are listed below explicitly:

• GET_VERSION, GET_CAPABILITY, NEGOTIATE_ALGORITHMS, GET_DIGESTS, GET_CERTIFICATE,

CHALLENGE

• GET_VERSION, GET_CAPABILITY, NEGOTIATE_ALGORITHMS, GET_DIGESTS, CHALLENGE

• GET_VERSION, GET_CAPABILITY, NEGOTIATE_ALGORITHMS, CHALLENGE

• GET_DIGESTS, GET_CERTIFICATE, CHALLENGE

• GET_DIGESTS, CHALLENGE

• GET_DIGESTS

• CHALLENGE

After a successful CHALLENGE_AUTH response is received by the Requestor, or the Requestor sends a

GET_MEASUREMENTS request, M1 and M2 shall be set to null. Immediately after Power on Reset M1 and M2 shall

be null. If a Requestor sends a GET_VERSION message the Requestor and Responder shall reset M1 and M2 to

null and recommence construction of M1 and M2 starting with the new GET_VERSION message.

Table 103 — Request ordering and message transcript computation rules for M1/M2

Requests Implementation Requirements M1/M2 = Concatenate (A, B, C)

Power on Reset NA M1/M2 = null

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 43

Requests Implementation Requirements M1/M2 = Concatenate (A, B, C)

GET_VERSION issue

The Requester may choose to issue this request any time, to allow Requester

/ Responder to determine an agreed upon Negotiated State . A Requester

may detect out of synch condition typically when signature verification fails or

when the Responder provides an unexpected error response.

M1/M2 = null

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Requester shall always issue these requests in the order shown.

A = Concatenate

(GET_VERSION, VERSION,

GET_CAPABILITIES,

CAPABILITIES,

NEGOTIATE_ALGORITHMs,

ALGORITHMS)

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Requester may skip issuing these requests after a new Power on Reset, if the

Responder has previously indicated CACHE_CAP = 1. In this case the

Requester and Responder shall proceed with the previously Negotiated

State

A = null

GET_DIGESTS ,

GET_CERTIFICATE

Requester shall always issue these requests in the order shown after

NEGOTIATE_ALGORITHMS request completion or immediately after Power on

Reset, if it chose to skip the previous three requests.

B = Concatenate (GET_DIGEST,

DIGEST, GET_CERTFICATE,

CERTIFICATE)

GET_DIGESTS ,

GET_CERTFICATE

Requester may choose to skip both requests after a new Power on Reset if it

is capable of using previously cached response to these requests.
B = Null

GET_DIGESTS ,

GET_CERTIFICATE

Requester may choose to skip GET_CERTIFICATE request after a new

Power on Reset if it is capable of using previously cached CERTIFICATE

response.

B = (GET DIGESTS, DIGEST)

CHALLENGE

Requester shall issue this request to complete security verification of current

requests and responses. The Signature bytes of CHALLENGE_AUTH shall

not be included in C.

C = (CHALLENGE,

CHALLENGE_AUTH\Signature).

CHALLENGE completion Completion of CHALLENGE resets M1 and M2 M1/M2 = null

CHALLENGE

Requester may choose to skip this request and forgo security verification of

previous requests and responses. Requester may typically skip CHALLENGE

when it issues GET_DIGESTS directly after Power on Reset.

NA

GET_MEASUREMENTS
If the Requester chooses to issue GET_MEASUREMENTS and skips CHALLENGE

completion, M1 and M2 are reset to null
M1/M2 = null

4.10.1 Firmware and other measurements

This clause describes request messages and response messages associated with endpoint measurement. All

request messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in

CAPABILITIES response.

Figure 7 shows the high-level request-response flow and sequence for endpoint measurement. If MEAS_FRESH_CAP

bit in the CAPABILITIES response message returns 0, and the Requester requires fresh measurements, the

Security Protocol and Data Model (SPDM) Specification DSP0274

44 Work in Progress Version 0.99.0a

Responder must be reset before GET_MEASUREMENTS is resent. The mechanisms employed for resetting the

Responder are outside the scope of this specification.

Figure 7 — Firmware measurement retrieval flow

4.10.1.1 GET_MEASUREMENTS request message and MEASUREMENTS response message

This request message shall retrieve firmware measurements. A Requester should not send this message until it has

received at least one successful CHALLENGE_AUTH response message from the responder. The successful

CHALLENGE_AUTH response may have been received before the last Power on Reset.

Table 22 shows the GET_MEASUREMENTS request message format.

Table 23 shows the GET_MEASUREMENTS request message attributes.

Table 24 shows the MEASUREMENTS response message format.

Table 22 — GET_MEASUREMENTS request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0xE0 = GET_MEASUREMENTS

2 Param1 1 Request attributes. See Table 23.

3 Param2 1

Measurement operation.

A value of 0x0 shall query the Responder for the total number of measurements available.

A value of 0xFF shall request all measurements.

A value between 0x1 and 0xFE inclusively shall request the measurement at the index

corresponding to that value.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 45

Offset Field
Size

(bytes)
Value

4 Nonce 32
The Requester should choose a random value. This field is only present if a signature is required

on the response. See Table 23.

Table 23 — GET_MEASUREMENTS request attributes

Bit(s) Value Description

0 1

If the Responder can generate a signature as indicated in CAPABILITIES message, this bit's value shall indicate to the

Responder to generate a signature. The Responder shall generate a signature in the corresponding response. The

Nonce field shall be present in the request.

0 0

This bit's value shall be used for Responders incapable of generating a signature as indicated in CAPABILITIES

message. For Responders capable of signature generation, this bit's value shall indicate the Requester does not want a

signature. The Responder shall not generate a signature in the response. The Nonce field shall be absent in the request.

[7:1] Reserved Reserved

Table 24 — Successful MEASUREMENTS response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x60 = MEASUREMENTS

2 Param1 1

When Param2 in the requested measurement operation is

0 , this parameter shall return the total number of

measurement indices on the device. Otherwise, this field is

reserved.

3 Param2 1 Reserved

4 NumberOfBlocks 1

Number of measurement blocks (N) in

MeasurementRecord. This field shall reflect the number of

measurement blocks in MeasurementRecord. If Param2 in

the requested measurement operation is 0 , this field shall

be 0 .

5 MeasurementRecordLength 3

Size of the MeasurementRecord field in bytes. If Param2 in

the requested measurement operation is 0 , this field shall

be 0 .

8 MeasurementRecord L= MeasurementRecordLength

Concatenation of all Measurement Blocks that correspond to

the requested Measurement operation. The Measurement

Block structure is defined in Measurement block.

8 + L Nonce 32 The Responder should choose a random value.

Security Protocol and Data Model (SPDM) Specification DSP0274

46 Work in Progress Version 0.99.0a

Offset Field Size (bytes) Value

40 + L OpaqueLength 2
Size of the OpaqueData field in bytes. The value shall not be

greater than 1024 bytes.

42 + L OpaqueData OpaqueLength

Free-form field, if present. The Responder may include

Responder-specific information and/or information defined by

its transport.

42 + L +

OpaqueLength
Signature S

Signature of the GET_MEASUREMENTS Request and

MEASUREMENTS Response messages, excluding the

Signature field and signed using the device private key (slot 0

leaf certificate private key). The Responder shall use the

asymmetric signing algorithm it selected during the last

ALGORITHMS response message to the Requester and S is

the size of that asymmetric signing algorithm output.

4.10.1.2 Measurement block

Each Measurement block defined in the MEASUREMENTS response message shall contain a four-byte descriptor

(offsets 0-3), followed by the Measurement Data corresponding to a particular Measurement Index and Measurement

Type. The blocks are ordered by Index .

The following table shows the format for a measurement block:

Table 25 — Measurement block format

Offset Field Size (bytes) Value

0 Index 1 Index. This field shall represent the index of the measurement.

1 MeasurementSpecification 1

This field is a bitmask. The value shall indicate the measurement specification

that the requested Measurement follows and shall match the selected

measurement specification in Algorithms message (See Table 14). Only one bit

shall be set in the Measurement Block.

• Bit 0 = DMTF, as specified in (See Table 25a)

All other bits are reserved.

2 MeasurementSize 2 Size of Measurement , in bytes.

4 Measurement MeasurementSize For format of this field is defined by MeasurementSpecification

4.10.1.3 DMTF Specification for the Measurement field of a Measurement block

The present clause is the specification for the format of the Measurement field in a Measurement block when the

MeasurementSpecification field selects Bit 0 = DMTF. This format is specified in Table 25a.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 47

Table 25a — Format of the Measurement field in a Measurement block when the MeasurementSpecification

field selects Bit 0 = DMTF

Offset Field Size (bytes) Value

0 DMTFSpecMeasurementValueType 1

This field is composed of two parts: bit [7] indicating the

representation in DMTFSpecMeasurementValue , and bits [6:0]

indicating what is being measured by

DMTFSpecMeasurementValue . These values are set

independently. These values are interpreted as follows:

• [7] = 0b: Hash

• [7] = 1b : Raw Bit Stream

• [6:0] = 00h: immutable ROM

• [6:0] = 01h: mutable firmware

• [6:0] = 02h: hardware configuration, such as straps,

debug modes

• [6:0] = 03h : firmware configuration, e.g., configurable

firmware policy

All other values reserved.

1 DMTFSpecMeasurementValueSize 2

Size of DMTFSpecMeasurementValue , in bytes. When

DMTFSpecMeasurementValueType[7] = 0b : Hash, the

DMTFSpecMeasurementValueSize shall be derived from the

measurement hash algorithm returned in the ALGORITHM

response message.

3 DMTFSpecMeasurementValue DMTFSpecMeasurementValueSize

DMTFSpecMeasurementValueSize bytes of cryptographic

hash or Raw Bit Stream, as indicated in

DMTFSpecMeasurementType[7] .

4.10.1.4 MEASUREMENTS Signature generation

1. The Responder shall construct L1 and the Requester shall construct L2 over their observed

messages:

L1/L2 = Concatenate(GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,
GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,
GET_MEASUREMENTS_REQUESTn, MESUREMENTS_RESPONSEn)

where:

◦ Concatenate () is the standard concatenation function.

◦ GET_MEASUREMENTS_REQUEST1 is the entire first GET_MEASUREMENTS request message under

Security Protocol and Data Model (SPDM) Specification DSP0274

48 Work in Progress Version 0.99.0a

consideration, where the Requester has not requested a signature on that specific

GET_MEASUREMENTS request.

◦ MEASUREMENTS_RESPONSE1 is the entire MEASUREMENTS response message without the signature

bytes, as sent by the Responder in response to GET_MEASUREMENT_REQUEST1 .

◦ GET_MEASUREMENTS_REQUESTn-1 is the entire last consecutive GET_MEASUREMENTS request

message under consideration, where the Requester has not requested a signature on that

specific GET_MEASUREMENTS request.

◦ MEASUREMENTS_RESPONSEn-1 is the entire MEASUREMENTS response message without the

signature bytes, as sent by the Responder in response to GET_MEASUREMENT_REQUESTn-1 .

◦ GET_MEASUREMENTS_REQUESTn is the entire first GET_MEASUREMENTS request message under

consideration, where the Requester has requested a signature on that specific

GET_MEASUREMENTS request. (n is a number greater than equal to 1. When n equals 1, the

Requester has not made any GET_MEASUREMENTS request without signature prior to issuing

GET_MEASUREMENTS request with signature.)

◦ MEASUREMENTS_RESPONSEn is the entire MEASUREMENTS response message without the signature

bytes, as sent by the Responder in response to GET_MEASUREMENT_REQUESTn .

◦ Any communication between Requester and Responder other than GET_MEASUREMENTS request

or response resets L1/L2 computation to null.

2. The Responder shall generate:

Signature = Sign(SK, Hash(L1))

where:

◦ Sign is the asymmetric signing algorithm the Responder selected through the last ALGORITHMS

response message sent by the Responder. See BaseAsymSel or ExtAsymSel fields in Table 11.

◦ Hash is the hashing algorithm the Responder selected through the last ALGORITHMS response

message sent by the Responder. See BaseHashSel or ExtHashSel fields in Table 11.

◦ SK is the private Key associated with the Responder's slot 0 leaf certificate.

4.10.1.5 MEASUREMENTS Signature verification

1. The Requester shall perform:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 49

Verify(PK, Hash(L2), Signature)

where:

◦ PK is the public key associated with the slot 0 certificate of the Responder. PK is extracted from

the CERTIFICATES response.

◦ Verify is the asymmetric verification algorithm the Responder selected through the last

ALGORITHMS response message as received by the Requester. See BaseAsymSel or

ExtAsymSel fields in Table 11.

◦ Hash is the hashing algorithm the Responder selected through the last ALGORITHMS response

message sent as received by the Requester. See the BaseHashSel or ExtHashSel fields in

Table 11.

Figure 8 shows an example of a typical Requester Responder protocol where the Requester issues 0

to n-1 GET_MEASUREMENT requests without signature followed by a single GET_MEASUREMENT

request n with signature.

Figure 8 — Measurement Signature Computation Example

Security Protocol and Data Model (SPDM) Specification DSP0274

50 Work in Progress Version 0.99.0a

4.10.2 ERROR response message

For an SPDM operation that results in an error, the Responder shall send an ERROR response message to the

Requester.

Table 26 shows the ERROR response format.

Table 27 shows the detailed error code, error data, and extended error data.

Table 28 shows the ResponseNotReady extended error data.

Table 29 shows the registry or standards body ID.

Table 30 shows the ExtendedErrorData format definition for vendor or other standards-defined ERROR response

message.

Table 26 — ERROR response message

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x7F = ERROR

2 Param1 1 Error Code. See Table 27.

3 Param2 1 Error Data. See Table 27.

4 ExtendedErrorData 0-32 Optional extended data. See Table 27.

Table 27 — Error code and error data

Error code Value Description Error data ExtendedErrorData

Reserved 00h Reserved Reserved Reserved

InvalidRequest 01h One or more request fields are invalid 0x00
No extended error

data is provided.

Reserved 02h Reserved Reserved Reserved

Busy 03h

The Responder received the request message and

the Responder decided to ignore the request

message, but the Responder may be able to process

the request message if the request message is sent

again in the future.

0x00
No extended error

data is provided.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 51

Error code Value Description Error data ExtendedErrorData

UnexpectedRequest 04h

The Responder received an unexpected request

message. For example, CHALLENGE before

NEGOTIATE_ALGORITHMS .

0x00
No extended error

data is provided.

Unspecified 05h Unspecified error occurred. 00h
No extended error

data is provided.

Reserved 06h Reserved 00h Reserved

UnsupportedRequest 07h
The RequestResponseCode in the Request message

is unsupported.

RequestResponseCode

in the Request message.

No extended error

data is provided

Reserved 08h - 40h Reserved Reserved Reserved

MajorVersionMismatch 41h Requested SPDM Major Version is not supported. 00h
No extended error

data provided.

ResponseNotReady
42h See RESPOND_IF_READY clause. 00h See Table 28.

RequestResynch 43h
Responder is requesting Requester to reissue

GET_VERSION in order to resynch.
0x00

No extended error

data provided.

Reserved 44h - FEh Reserved Reserved. Reserved

Vendor/Other Standards

Defined
FFh Vendor or Other Standards defined

This field shall indicate

the registry or standard

body using one of the

values in the ID column

of Table 29.

See Table 30 for

format definition.

Table 28 — ResponseNotReady extended error data

Offset Field
Size

(bytes)
Value

0 RDTExponent 1

Exponent expressed in logarithmic (base 2 scale) to calculate RDT time in uS after which the Responder

will be able to provide successful completion response.

For example, the raw value 8 indicates that the Responder will be ready in 28 = 256 uS. Responder should

use RDT to avoid continuous pinging and issue RESPOND_IF_READY after RDT time.

For timing requirement details, see Table 6.

1 RequestCode 1 The request code that triggered this response.

2 Token 1 The opaque handle that the Requester shall pass in with the RESPOND_IF_READY request message.

Security Protocol and Data Model (SPDM) Specification DSP0274

52 Work in Progress Version 0.99.0a

Offset Field
Size

(bytes)
Value

3 RDTM 1

Multiplier used to compute WT_{Max} in uS to indicate the response may be dropped after this

delay. The multiplier shall always be greater than 1.

The Responder may also stop processing the initial request if the same Requester issues a different

request.

For timing requirement details, see Table 6.

Table 29 — Registry or standards body ID

Unless otherwise specified, for algorithm encoding used in extended algorithm fields, consult the respective registry

or standards body.

ID
Vendor ID Len

(bytes)

Registry or standards

body name
Description

0x0 0 DMTF
DMTF does not have a Vendor ID registry. At present, DMTF does not have any algorithms

defined for use in extended algorithms fields.

0x1 2 TCG
Vendor is identified using TCG Vendor ID Registry. For extended algorithms, see TCG

Algorithm Registry.

0x2 2 USB Vendor is identified using USB's vendor ID.

0x3 2 PCI-SIG Vendor is identified using PCI-SIG Vendor ID.

0x4 4 IANA
Vendor is identified using the Internet Assigned Numbers Authority's Private Enterprise

Number (PEN).

0x5 4 HDBaseT Vendor is identified using HDBaseT HDCD Entity.

0x6 2 MIPI Vendor is identified using MIPI's Manufacturer ID

Table 30 — ExtendedErrorData format definition for vendor or other standards-defined ERROR response

message

Byte

Offset
Len Field name Description

0 1 Len

Length of the VendorID field.

If the ERROR is vendor defined, the value of this field shall equal the Vendor ID Len as described in

Table 29 of the corresponding registry or standard body name.

If the ERROR is defined by a registry or a standard, this field shall be zero, which also indicates the

VendorID field is not present.

The registry or standards body name in the ERROR is indicated in the Error Data field, such as

Param2 , and is one of the values in the ID column of Table 29.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 53

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/
https://mipi.org/
http://mid.mipi.org/

Byte

Offset
Len Field name Description

1 Len VendorID

The value of this field shall indicate the Vendor ID, as assigned by the registry or standards body. The

length of this field is provided in Table 29. This field shall be in little endian format.

The registry or standards body name in the ERROR is indicated in the Error Data field, such as

Param2 , and is one of the values in the ID column of Table 29.

1 +

Len
Variable OpaqueErrorData Defined by the vendor or other standards.

4.10.3 RESPOND_IF_READY request message

This request message shall ask for the response to the original request upon receipt of ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return the ERROR response message, set

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response

message.

Figure 9 — RESPOND_IF_READY flow leading to completion

Table 30 shows the RESPOND_IF_READY request message format.

Table 31 — RESPOND_IF_READY request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

Security Protocol and Data Model (SPDM) Specification DSP0274

54 Work in Progress Version 0.99.0a

Offset Field
Size

(bytes)
Value

1 RequestResponseCode 1 0xFF = RESPOND_IF_READY

2 RequestCode 1
The original request code that triggered the ResponseNotReady error code response. Shall match

the request code returned as part of the ResponseNotReady extended error data.

3 Token 1 The token that was returned as part of the ResponseNotReady extended error data.

4.10.4 VENDOR_DEFINED_REQUEST request message

This request message can be used by a Requester intending to define a unique request to meet its need. The format

is defined in Table 104. The Requester should send this request message only after sending GET_VERSION ,

GET_CAPABILITIES and NEGOTIATE_ALGORITHMS request sequence.

Table 104 shows the VENDOR_DEFINED_REQUEST request message format.

Table 104 — VENDOR_DEFINED_REQUEST` request message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0xFE = VENDOR_DEFINED_REQUEST

2 Reserved 1 Reserved

3 Reserved 1 Reserved

4 StandardID 2
This field shall indicate the registry or standard body using one of the values in the ID

column of Table 29 name.

6 Len 1

Length of the Vendor ID field. If the VendorDefinedRequest is standard defined, Len

shall be 0. If the VendorDefinedRequest is vendor defined, Len shall equal Vendor ID

Len as described in Table 29.

7 VendorID Len
The value of this field shall indicate Vendor ID, as assigned by the registry or standards

body. This field shall be in little endian format.

7 +

Len
ReqLength 2 The length of the VendorDefinedReqPayload

7 +

Len +

2

VendorDefinedReqPayload ReqLength This field shall be used by the standard/vendor to send the request payload

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 55

4.10.5 VENDOR_DEFINED_RESPONSE response message

This response message can be used by a Responder in response to VENDOR_DEFINED_REQUEST . The format is

defined in Table 105.

Table 105 shows the VENDOR_DEFINED_RESPONSE response message format.

Table 105 — VENDOR_DEFINED_RESPONSE` response message

Offset Field
Size

(bytes)
Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x7E = VENDOR_DEFINED_RESPONSE

2 Reserved 1 Reserved

3 Reserved 1 Reserved

4 StandardID 2
This field shall indicate the registry or standard body using one of the values in the ID

column of Table 29 name.

6 Len 1

Length of the Vendor ID field. If the VendorDefinedRequest is standard defined, Len

shall be 0. If the VendorDefinedRequest is vendor defined, Len shall equal Vendor ID

Len as described in Table 29.

7 VendorID Len
The value of this field shall indicate Vendor ID, as assigned by the registry or standards

body. This field shall be in little endian format.

7 +

Len
RespLength 2 The length of the VendorDefinedRespPayload

7 +

Len +

2

VendorDefinedRespPayload ReqLength This field shall be used by the standard/vendor to send the response payload

4.11 SPDM messaging control and discovery examples

4.12 ANNEX A (informative)

The 1.0 revision of this specification will address scenarios where GET_VERSION , VERSION , GET_CAPABILITIES ,

CAPABILITIES , NEGOTIATE_ALGORITHMS and ALGORITHMS messages can be optional.

In the v1.0 release, figures and tables will be renumbered.

Security Protocol and Data Model (SPDM) Specification DSP0274

56 Work in Progress Version 0.99.0a

4.13 ANNEX B - Leaf certificate example

Certificate:

Data:
Version: 3 (0x2)
Serial Number: 8 (0x8)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C = CA, ST = NC, L = city, O = ACME, OU = ACME Devices, CN = CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 23:59:59 9999 GMT

Subject: C = US, ST = NC, O = ACME Widget Manufacturing, OU = ACME Widget Manufacturing Unit, CN = w0123456789
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:
e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:
5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:
ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:
23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:
52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:
a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:
1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:
ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:
98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:
a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:
95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:
70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:
a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:
2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:
66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:
01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:
e8:67

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:
othername:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256
Signature Value:

30:45:02:21:00:fc:8f:b0:ad:6f:2d:c3:2a:7e:92:6d:29:1d:
c7:fc:0d:48:b0:c6:39:5e:c8:76:d6:40:9a:12:46:c3:39:0e:
36:02:20:1a:ea:3a:59:ca:1e:bc:6d:6e:61:79:af:a2:05:7c:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 0.99.0a Work in Progress 57

7d:da:41:a9:45:6d:cb:04:49:43:e6:0b:a8:8d:cd:da:e

4.14 Change log

Version Date Description

0.9.0 2019-05-30 First draft version.

4.15 Bibliography

DMTF DSP4014, DMTF Process for Working Bodies 2.6, https://www.dmtf.org/sites/default/files/standards/

documents/DSP4014_2.6.pdf

Security Protocol and Data Model (SPDM) Specification DSP0274

58 Work in Progress Version 0.99.0a

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	2 Acknowledgments
	3 Abstract
	4 Document conventions
	4.1 Scope
	4.2 Normative references
	4.3 Terms and definitions
	4.4 Symbols and abbreviated terms
	4.5 Conventions
	4.5.1 Reserved and unassigned values
	4.5.2 Byte ordering
	4.5.3 SPDM data types
	4.5.4 Version encoding
	4.5.5 Notations

	4.6 SPDM message exchanges
	4.6.1 Security capability discovery and negotiation
	4.6.2 Identity authentication
	4.6.3 Firmware and configuration measurement

	4.7 SPDM messaging protocol
	4.7.1 Generic SPDM message format
	4.7.2 SPDM request codes
	4.7.3 SPDM response codes

	4.8 Concurrent SPDM message processing
	4.8.1 Requirements for Requesters
	4.8.2 Requirements for Responders
	4.8.3 Timing requirements
	4.8.3.0.1 Timing measurements
	4.8.3.1 Timing specification table

	4.9 SPDM messages
	4.9.1 Capability discovery and negotiation
	4.9.1.1 GET_VERSION request message and VERSION response message
	4.9.1.2 GET_CAPABILITIES request message and CAPABILITIES response message
	4.9.1.3 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response message

	4.9.2 Responder identity authentication
	4.9.2.1 Certificates and certificate chains
	4.9.2.2 GET_DIGESTS request message and DIGESTS response message
	4.9.2.3 GET_CERTIFICATE request message and CERTIFICATE response message
	4.9.2.4 Leaf certificate
	4.9.2.4.1 Required fields
	4.9.2.4.2 Optional fields
	4.9.2.4.3 Definition of othername using the DMTF OID

	4.9.2.5 CHALLENGE request message and CHALLENGE_AUTH response message
	4.9.2.6 CHALLENGE_AUTH Signature generation
	4.9.2.7 CHALLENGE_AUTH Signature verification

	4.10 Request ordering and message transcript computation rules for M1 and M2
	4.10.1 Firmware and other measurements
	4.10.1.1 GET_MEASUREMENTS request message and MEASUREMENTS response message
	4.10.1.2 Measurement block
	4.10.1.3 DMTF Specification for the Measurement field of a Measurement block
	4.10.1.4 MEASUREMENTS Signature generation
	4.10.1.5 MEASUREMENTS Signature verification

	4.10.2 ERROR response message
	4.10.3 RESPOND_IF_READY request message
	4.10.4 VENDOR_DEFINED_REQUEST request message
	4.10.5 VENDOR_DEFINED_RESPONSE response message

	4.11 SPDM messaging control and discovery examples
	4.12 ANNEX A (informative)
	4.13 ANNEX B - Leaf certificate example
	4.14 Change log
	4.15 Bibliography

