
  

 1 

Document Identifier: DSP0274 2 

Date: 2019-05-30 3 

Version: 0.9.0 4 

Security Protocol and Data Model Specification 5 

Supersedes: None 6 

Document Class: Normative 7 

Document Status: Work in Progress 8 

Document Language: en-US 9 

 10 

Information for Work-in-Progress version: 

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the 
DMTF or its members. Because this document is a Work in Progress, this document may still 
change, perhaps profoundly and without notice. This document is available for public review and 
comment until superseded. 

Provide any comments through the DMTF Feedback Portal: 
http://www.dmtf.org/standards/feedback 

http://www.dmtf.org/standards/feedback


Security Protocol and Data Model Specification DSP0274 

2 Work in Progress Version 0.9.0 
 

Copyright Notice 11 

Copyright © 2019 DMTF. All rights reserved. 12 

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 13 
management and interoperability. Members and non-members may reproduce DMTF specifications and 14 
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 15 
time, the particular version and release date should always be noted. 16 

Implementation of certain elements of this standard or proposed standard may be subject to third party 17 
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 18 
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 19 
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 20 
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 21 
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 22 
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 23 
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 24 
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 25 
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 26 
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 27 
implementing the standard from any and all claims of infringement by a patent owner for such 28 
implementations. 29 

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 30 
such patent may relate to or impact implementations of DMTF standards, visit 31 
http://www.dmtf.org/about/policies/disclosures.php. 32 

This document’s normative language is English. Translation into other languages is permitted. 33 

http://www.dmtf.org/about/policies/disclosures.php


DSP0274  Security Protocol and Data Model Specification  

Version 0.9.0 Work in Progress 3 
 

CONTENTS 34 

Foreword ....................................................................................................................................................... 5 35 

Introduction.................................................................................................................................................... 6 36 
Document conventions .......................................................................................................................... 6 37 

1 Scope .................................................................................................................................................... 8 38 

2 Normative references ............................................................................................................................ 8 39 

3 Terms and definitions ............................................................................................................................ 9 40 

4 Symbols and abbreviated terms .......................................................................................................... 12 41 

5 Conventions ........................................................................................................................................ 12 42 
5.1 Reserved and unassigned values ............................................................................................. 13 43 
5.2 Byte ordering ............................................................................................................................. 13 44 
5.3 SPDM data types ...................................................................................................................... 13 45 
5.4 Version encoding ...................................................................................................................... 13 46 
5.5 Notations ................................................................................................................................... 14 47 

6 SPDM message exchanges ................................................................................................................ 14 48 
6.1 Security capability discovery and negotiation ........................................................................... 14 49 
6.2 Hardware identity authentication .............................................................................................. 15 50 
6.3 Firmware identity through measurement .................................................................................. 15 51 

7 SPDM messaging protocol .................................................................................................................. 15 52 
7.1 Generic SPDM message format ............................................................................................... 17 53 
7.2 SPDM Request Codes .............................................................................................................. 17 54 
7.3 SPDM response codes ............................................................................................................. 18 55 
7.4 Concurrent SPDM command processing ................................................................................. 19 56 

7.4.1 Requirements for responders ...................................................................................... 19 57 
7.4.2 Requirements for requestors ....................................................................................... 20 58 

8 SPDM messages ................................................................................................................................. 21 59 
8.1 Capability discovery and negotiation ........................................................................................ 21 60 

8.1.1 GET_CAPABILITIES request message and CAPABILITIES response message ...... 21 61 
8.1.2 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response 62 

message ...................................................................................................................... 23 63 
8.1.3 Algorithm negotiation rules .......................................................................................... 27 64 

8.2 Endpoint hardware identity authentication ................................................................................ 28 65 
8.2.1 GET_DIGESTS request message and DIGESTS response message ....................... 30 66 
8.2.2 GET_CERTIFICATE request message and CERTIFICATE response message ........ 31 67 
8.2.3 Leaf certificate format requirements ............................................................................ 32 68 
8.2.4 CHALLENGE request message and CHALLENGE_AUTH response message ......... 32 69 

8.3 Firmware measurement ............................................................................................................ 35 70 
8.3.1 GET_MEASUREMENTS request message and MEASUREMENTS response 71 

message ...................................................................................................................... 35 72 
8.3.2 Measurement block...................................................................................................... 36 73 

8.4 ERROR response message ..................................................................................................... 38 74 
8.5 RESPOND_IF_READY request message ................................................................... 40 75 

9 SPDM messaging control and discovery examples ............................................................................ 42 76 
9.1 Negotiating base hashing algorithms ........................................................................................ 42 77 
9.2 Negotiating base asymmetric signature algorithms .................................................................. 44 78 

 (informative)   Change log .......................................................................................................... 46 ANNEX A79 

 80 



Security Protocol and Data Model Specification DSP0274 

4 Work in Progress Version 0.9.0 
 

Figures 81 

Figure 1 – SPDM messaging protocol flow ................................................................................................. 16 82 

Figure 2 – Capability discovery and negotiation flow .................................................................................. 21 83 

Figure 3 – Discovering common major version ........................................................................................... 22 84 

Figure 4 – Endpoint authentication: example certificate retrieval flow. ....................................................... 29 85 

Figure 5 – Endpoint authentication: runtime challenge-response flow. ...................................................... 29 86 

Figure 6 – Firmware measurement retrieval flow........................................................................................ 35 87 

Figure 7 – RESPOND_IF_READY flow leading to completion ................................................................... 41 88 

Figure 9 – Hashing Algorithm Selection: Example 1 .................................................................................. 42 89 

Figure 10 – Hashing Algorithm Selection: Example 2 ................................................................................ 43 90 

Figure 11 – Hashing Algorithm Selection: Example 3 ................................................................................ 44 91 

Figure 12 – Asymmetric Signature Algorithm Selection ............................................................................. 45 92 

 93 

Tables 94 

Table 1 – SPDM data types ........................................................................................................................ 13 95 

Table 2 – Generic SPDM message format ................................................................................................. 17 96 

Table 3 – Generic SPDM message field definitions ................................................................................... 17 97 

Table 4 – SPDM request codes .................................................................................................................. 18 98 

Table 5 – SPDM response codes ............................................................................................................... 18 99 

Table 6 – Timing and retry specifications for SPDM messages ................................................................. 20 100 

Table 7 – GET_CAPABILITIES request message ...................................................................................... 22 101 

Table 8 – Successful CAPABILITIES response message .......................................................................... 22 102 

Table 9 – Flags Fields Definition ................................................................................................................. 23 103 

Table 10 – NEGOTIATE_ALGORITHMS request message ....................................................................... 24 104 

Table 11 –Successful ALGORITHMS response message ......................................................................... 25 105 

Table 12 – GET_DIGESTS request message ............................................................................................ 30 106 

Table 13 –Successful DIGESTS response message ................................................................................. 30 107 

Table 14 – GET_CERTIFICATE request message .................................................................................... 31 108 

Table 15 –Successful CERTIFICATE response message ......................................................................... 31 109 

Table 16 – CHALLENGE request message ................................................................................................ 32 110 

Table 17 – Successful CHALLENGE_AUTH response message .............................................................. 33 111 

Table 18 – GET_MEASUREMENTS request message ............................................................................. 36 112 

Table 19 – Successful MEASUREMENTS response message .................................................................. 36 113 

Table 20 – Measurement block definition ................................................................................................... 37 114 

Table 21 – ERROR response message ...................................................................................................... 38 115 

Table 22 – Error Code and Error Data ........................................................................................................ 39 116 

Table 23 –ResponseNotReady Extended Error Data ................................................................................. 40 117 

Table 24 – RESPOND_IF_READY request message ................................................................................ 41 118 

 119 



DSP0274  Security Protocol and Data Model Specification  

Version 0.9.0 Work in Progress 5 
 

Foreword 120 

The Security Protocol and Data Model Specification (DSP1000) was prepared by the <DMTF Editing 121 
Body> of the DMTF. 122 

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 123 
management and interoperability. For information about the DMTF, see http://www.dmtf.org. 124 

Acknowledgments 125 

The DMTF acknowledges the following individuals for their contributions to this document: 126 

Editor:  127 

 Yu-Yuan Chen – Intel Corporation 128 

 Mahesh Natu – Intel Corporation 129 

Contributors: 130 

 Richelle Ahlvers – Broadcom Inc. 131 

 Lee Ballard – Dell Technologies 132 

 Patrick Caporale – Lenovo 133 

 Nigel Edwards - Hewlett Packard Enterprise 134 

 Daniil Egranov – Arm Limited 135 

 Brett Henning – Broadcom Inc. 136 

 Jeff Hilland – Hewlett Packard Enterprise 137 

 Yuval Itkin – Mellanox Technologies 138 

 Theo Koulouris - Hewlett Packard Enterprise 139 

 Luis Luciani – Hewlett Packard Enterprise 140 

 Masoud Manoo – Lenovo 141 

 Donald Mathews - Advanced Micro Devices, Inc 142 

 Edward Newman – Hewlett Packard Enterprise 143 

 Scott Phuong – Cisco Systems Inc. 144 

 Jeffrey Plank – Microchip 145 

 Viswanath  Ponnuru – Dell Technologies 146 

 Hemal Shah – Broadcom Inc. 147 

 Srikanth Varadarajan – Intel Corporation 148 

 Xiaoyu Ruan - Intel Corporation 149 

http://www.dmtf.org/


Security Protocol and Data Model Specification DSP0274 

6 Work in Progress Version 0.9.0 
 

Introduction 150 

The Security Protocol and Data Model (SPDM) Specification defines messages, data objects and 151 
sequences for performing message exchanges between two devices within a platform over a variety of 152 
transport and physical media. The message exchanges defined in this specification includes 153 
authentication of hardware identities and measurement for firmware identities. It is designed to be a 154 
common and effective protocol and data model that enables efficient access to low-level security 155 
capabilities and operations. The protocol and the data model are generic enough and can be used in 156 
conjunction with other mechanisms including those that are not defined by PMCI or DMTF. 157 

Document conventions 158 

Typographical conventions 159 

The following typographical conventions are used in this document: 160 

 Document titles are marked in italics. 161 

 Important terms that are used for the first time are marked in italics.  162 

 ABNF rules are in monospaced font. 163 

ABNF usage conventions 164 

Format definitions in this document are specified using ABNF (see RFC5234), with the following 165 
deviations: 166 

 Literal strings are to be interpreted as case-sensitive Unicode characters, as opposed to the 167 
definition in RFC5234 that interprets literal strings as case-insensitive US-ASCII characters. 168 

Deprecated material 169 

Deprecated material is not recommended for use in new development efforts. Existing and new 170 
implementations may use this material, but they shall move to the favored approach as soon as possible. 171 
CIM service shall implement any deprecated elements as required by this document in order to achieve 172 
backwards compatibility. Although CIM clients may use deprecated elements, they are directed to use the 173 
favored elements instead.  174 

Deprecated material should contain references to the last published version that included the deprecated 175 
material as normative material and to a description of the favored approach.  176 

The following typographical convention indicates deprecated material: 177 

DEPRECATED  178 

Deprecated material appears here.  179 

DEPRECATED  180 

In places where this typographical convention cannot be used (for example, tables or figures), the 181 
"DEPRECATED" label is used alone. 182 

Experimental material 183 

Experimental material has yet to receive sufficient review to satisfy the adoption requirements set forth by 184 
the DMTF. Experimental material is included in this document as an aid to implementers who are 185 
interested in likely future developments. Experimental material may change as implementation 186 



DSP0274  Security Protocol and Data Model Specification  

Version 0.9.0 Work in Progress 7 
 

experience is gained. It is likely that experimental material will be included in an upcoming revision of the 187 
document. Until that time, experimental material is purely informational. 188 

The following typographical convention indicates experimental material:  189 

EXPERIMENTAL  190 

Experimental material appears here.  191 

EXPERIMENTAL  192 

In places where this typographical convention cannot be used (for example, tables or figures), the 193 
"EXPERIMENTAL" label is used alone. 194 



Security Protocol and Data Model Specification DSP0274 

 

8 Work in Progress Version 0.9.0 
 

 

Security Protocol and Data Model (SPDM) Specification  195 

1 Scope 196 

This specification defines the messages, data objects and sequences for performing message exchanges 197 
between two devices within a platform over a variety of transports and physical media. This specification 198 
contains the message exchanges, sequence diagrams, message formats, and other relevant semantics 199 
for such message exchanges, including authentication of hardware identities, and firmware measurement 200 
for firmware identities. Mapping of these messages to different transports and physical media will be 201 
defined by other specifications. 202 

This specification is not a system-level requirements document. The mandatory requirements stated in 203 
this specification apply when a particular message exchange capability is implemented through SPDM 204 
messaging in a manner that is conformant with this specification. This specification does not specify 205 
whether a given system or device is required to implement that message exchange capability. For 206 
example, this specification does not specify whether a given device must provide firmware 207 
measurements. However, if a device does implement firmware measurement or other capabilities 208 
described in this specification, the specification defines the requirements under SPDM. 209 

2 Normative references 210 

The following referenced documents are indispensable for the application of this document. For dated or 211 
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 212 
For references without a date or version, the latest published edition of the referenced document 213 
(including any corrigenda or DMTF update versions) applies. 214 

ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents, 215 
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 216 

IETF RFC5234, ABNF: Augmented BNF for Syntax Specifications, January 2008, 217 
http://tools.ietf.org/html/rfc5234 218 

USB Authentication Specification Rev 1.0 219 
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%220 
20ECN%20and%20Errata%20through%20January%207%2C%202019.zip 221 

TCG Algorithm Registry Family “2.0”, Revision 1.27 https://trustedcomputinggroup.org/resource/tcg-222 
algorithm-registry/    223 

ASN.1 - ISO-822-1-4;  224 

o ITU-T X.680 (available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-225 
201508-I!!PDF-E&type=items);  226 

o ITU-T X.681 (available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-227 
201508-I!!PDF-E&type=items); 228 

o  ITU-T X.682 (Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-229 
201508-I!!PDF-E&type=items);  230 

o ITU-T X.683 (Available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-231 
201508-I!!PDF-E&type=items.) 232 

http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://tools.ietf.org/html/rfc5234
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip
https://www.usb.org/sites/default/files/USB%20Authentication%20Specification%20Rev%201.0%20with%20ECN%20and%20Errata%20through%20January%207%2C%202019.zip
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.680-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.681-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.682-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.683-201508-I!!PDF-E&type=items


DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 9 
 

DER - ISO-8825-1; ITU-T X.690 (available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-233 
X.690-201508-I!!PDF-E&type=items.) 234 

X509v3 - ISO-9594-8; ITU-T X.509 (available at: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-235 
REC-X.509-201210-I!!PDF-E&type=items.) 236 

ECDSA: 237 

o NIST-FIPS-186-4, Section 6 (available at: 238 
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.) 239 

o NIST P256, secp256r1; NIST P384, secp384r1; NIST P521, secp521r1: NIST-FIPS-186-4, 240 
Appendix D (available at: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.) 241 

 242 

RSA: Available at: https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-243 
standard-wp.pdf 244 

SHA2-256, SHA2-384 and SHA2-512: 245 

 NIST-FIPS-180-4 (available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf) 246 

SHA3-256, SHA3-384 and SHA3-512: 247 

 NIST-FIPS-202 (available at: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf) 248 

 249 

3 Terms and definitions 250 

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 251 
are defined in this clause. 252 

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), 253 
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 254 
in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, 255 
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 256 
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 257 
alternatives shall be interpreted in their normal English meaning. 258 

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as 259 
described in ISO/IEC Directives, Part 2, Clause 6. 260 

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 261 
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 262 
not contain normative content. Notes and examples are always informative elements. 263 

The following terms are used in this document. 264 

  3.1265 

authentication 266 

the process of determining whether an entity is in fact who or what it claims to be. 267 

  3.2268 

authentication initiator 269 

the endpoint that initiates the authentication process by challenging another endpoint. 270 

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.690-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.690-201508-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf


Security Protocol and Data Model Specification DSP0274 

 

10 Work in Progress Version 0.9.0 
 

 

  3.3271 

byte 272 

an 8-bit quantity. Also referred to as an octet. 273 

NOTE SPDM specifications shall use the term byte, not octet. 274 

  3.4275 

certificate 276 

a digital form of identification that provides information about an entity and certifies ownership of a 277 
particular an asymmetric key-pair. 278 

  3.5279 

certificate authority 280 

a trusted third-party entity that issues certificates. 281 

  3.6282 

certificate chain 283 

a series of two or more certificates where each certificate is signed by the preceding certificate in the 284 
chain. 285 

  3.7286 

device 287 

a physical entity such as a network card or a fan. 288 

  3.8289 

endpoint 290 

a logical entity that communicates with other endpoints over one or more transport protocol. 291 

  3.9292 

intermediate certificate 293 
a certificate that is neither a Root certificate nor a leaf certificate. 294 

  3.10295 

leaf certificate 296 

the last certificate in a certificate chain. 297 

  3.11298 

message 299 

see SPDM message. 300 

  3.12301 

message body 302 

the portion of a SPDM message that carries data associated with the message.  303 

  3.13304 

message originator 305 

the original transmitter (source) of a SPDM message.  306 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 11 
 

  3.14307 

most significant byte 308 
MSB 309 

the highest order byte in a number consisting of multiple bytes. 310 

  3.15311 

nonce 312 

a number that is unpredictable to entities other than its generator.  The probability of the same number 313 
occurring more than once is negligible.  Nonce may be generated by combining a pseudo random 314 
number of at least 64 bits, optionally concatenated with a monotonic counter of size suitable for the 315 
application. 316 

  3.16317 

nibble 318 

the computer term for a four-bit aggregation, or half of a byte. 319 

  3.17320 

payload 321 

the information-bearing fields of a message.  322 
These fields are separate from the fields and elements (such as address fields, framing bits, checksums, 323 
and so on) that are used to transport the message from one point to another. In some instances, a given 324 
field may be both a payload field and a transport field. 325 

  3.18326 

physical transport binding 327 

refers to specifications that define how a base messaging protocol is implemented on a particular physical 328 
transport type and medium, such as SMBus/I

2
C, PCI Express™ Vendor Defined Messaging, and so on. 329 

  3.19330 

SPDM endpoint 331 

a SPDM endpoint is defined as the point of communication termination for SPDM messages and the 332 
SPDM functions associated with those messages. 333 

  3.20334 

SPDM message 335 

a unit of communication that is used for SPDM communications. 336 

  3.21337 

SPDM message payload 338 

a portion of the message body of a SPDM message  339 
This portion of the message is separate from those fields and elements that are used to identify the 340 
SPDM version, the SPDM request/response codes, and the two parameters. 341 

  3.22342 

SPDM request message 343 

a message that is sent to a SPDM endpoint to request a specific SPDM operation  344 
A SPDM request message is acknowledged with a corresponding SPDM response message. 345 



Security Protocol and Data Model Specification DSP0274 

 

12 Work in Progress Version 0.9.0 
 

 

  3.23346 

SPDM response message 347 

a message that is sent in response to a specific SPDM request message  348 
This message includes a "Response Code" field that indicates whether the requested operation 349 
completed normally. 350 

  3.24351 

Platform Management Component Intercommunications 352 
PMCI 353 

the name of a working group under the Distributed Management Task Force that is chartered to define 354 
standardized communication protocols, low-level data models, and transport definitions that support 355 
communications with and between management controllers and management devices that form a 356 
platform management subsystem within a managed computer system. 357 

  3.25358 

requestor 359 

the original transmitter (source) of an SPDM message.  360 

  3.26361 

responder 362 

the ultimate receiver (destination) of an SPDM message.  363 

  3.27364 

Root Certificate 365 

the first certificate in a certificate chain. This certificate is self-signed. 366 

 367 

4 Symbols and abbreviated terms 368 

The following abbreviations are used in this document. 369 

4.1  370 

MSB 371 

most significant byte 372 

4.2  373 

SPDM 374 

Security Protocol and Data Model 375 

4.3  376 

PMCI 377 

Platform Management Component Intercommunications 378 

5 Conventions 379 

The conventions described in the following clauses apply to all of the SPDM specifications. 380 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 13 
 

5.1 Reserved and unassigned values 381 

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other 382 
numeric ranges are reserved for future definition by the DMTF. 383 

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 384 
(zero) and ignored when read. 385 

5.2 Byte ordering 386 

Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-387 
byte bit fields is "Little Endian" (that is, the lowest byte offset holds the least significant byte, and higher 388 
offsets hold the more significant bytes). 389 

5.3 SPDM data types 390 

Table 1 lists the abbreviations and descriptions for common data types that are used in SPDM message 391 
fields and data structure definitions. These definition follow DSP0240 – PLDM Base Specification. 392 

Table 1 – SPDM data types 393 

Data Type  Interpretation  

ver8 An eight-bit encoding of the SPDM version number. The encoding of the version number is 
defined in Section 5.4. 

[7:4] = major version number 

[3:0] = minor version number 

bitfield8 A byte with 8 bit fields. Each of these bit fields can be separately defined. 

bitfield16 A 2-byte word with 16 bit fields. Each of these bit fields can be separately defined. 

5.4 Version encoding 394 

The version field represents the version of the specification and is comprised of two bytes referred to as 395 
the "major" and "minor" nibbles and one byte of detailed version. The major and minor nibbles shall be 396 
encoded as follows: 397 

 Major and Minor version fields in such a representation match corresponding major and minor 398 
version fields in the SPDMVersion field in the SPDM message header. 399 

 Minor version is incremented when the protocol is modified while maintaining backward 400 
compatibility.  401 

 Major version is incremented when the protocol is modified in a manner that breaks backward 402 
compatibility. 403 

EXAMPLE:  404 

Version 3.7  0x37 405 

Version 1.0  0x10 406 

Version 1.2  0x12 407 

 408 

An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0, 409 
but the available functionality is limited to what is defined in SPDM specification Version 1.0. 410 

An endpoint  that supports Version 1.2 and an endpoint  that supports Version 3.7 are not interoperable 411 
and shall not attempt to communicate beyond GET_CAPABILITIES. 412 



Security Protocol and Data Model Specification DSP0274 

 

14 Work in Progress Version 0.9.0 
 

 

The detailed version byte resides in the CAPABILITIES response message payload and is incremented to 413 
indicate specification bug fixes. 414 

5.5 Notations 415 

The following notations are used for SPDM specifications: 416 

 M:N In field descriptions, this will typically be used to represent a range of byte offsets 417 
starting from byte M and continuing to and including byte N (M ≤ N). The lowest offset 418 
is on the left, and the highest is on the right. 419 

 rsvd Abbreviation for Reserved. Case insensitive. 420 

 [4] Square brackets around a number are typically used to indicate a bit offset. Bit offsets 421 
are given as zero-based values (that is, the least significant bit [LSb] offset = 0). 422 

 [7:5] A range of bit offsets. The most-significant is on the left, and the least-significant is on 423 
the right. 424 

 1b A lowercase "b" after a number consisting of 0s and 1s indicates that the number is in 425 

binary format. 426 

 0x12A A leading "0x" indicates that the number is in hexadecimal format. 427 

6 SPDM message exchanges 428 

The message exchanges defined in this specification include: 429 

1) an endpoint discovering and negotiating the security capabilities of another endpoint.  430 

2) an endpoint authenticating the hardware identity of another endpoint. 431 

3) an endpoint retrieving the firmware measurement for another endpoint’s firmware identity.  432 

These message exchange capabilities are built on top of well-known and established security practices 433 
across the computing industry. Brief overview for each of the message exchange capabilities are 434 
described in the following sections. Some of the message exchange capabilities are based on the 435 
security model defined in USB Authentication Specification Rev 1.0. 436 

All message exchanges between two endpoints are performed and exchanged through sending and 437 
receiving of the SPDM messages defined in Section 8. The SPDM message exchanges are defined in a 438 
generic fashion that allows the messages to be communicated across different physical mediums and 439 
over different transport protocols. 440 

6.1 Security capability discovery and negotiation 441 

This specification defines a mechanism for an endpoint to discover the security capabilities of another 442 
endpoint. For example, an endpoint could support multiple cryptographic hash functions that are defined 443 
in this specification. Furthermore, the specification defines a mechanism for both endpoints to arrive at a 444 
common set of cryptographic algorithms to be used for all following message exchanges before another 445 
negotiation is initiated by any endpoint, if there exists an overlapping set of cryptographic algorithms 446 
supported by both endpoints. 447 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 15 
 

6.2 Hardware identity authentication 448 

In this specification, the authenticity of an endpoint is determined by digital signatures using well-449 
established techniques based on public key cryptography. An endpoint proves its hardware identity by 450 
generating digital signatures using a private key that is known only to that particular endpoint, and the 451 
signature can be verified by another endpoint using the public key associated with that private key. The 452 
authentication initiator can cryptographically verify the uniqueness of the endpoint, given that the private 453 
key is known only to that particular endpoint, 454 

At a high-level, the authentication of an endpoint’s hardware identity involves two processes—identity 455 
provisioning and runtime authentication. Identity provisioning is a process followed by device vendors 456 
during or after hardware manufacturing. A trusted root certificate authority (CA) generates a root 457 
certificate (RootCert) that is provisioned to the authentication initiator to allow the authentication initiator 458 
to verify the validity of the digital signatures generated by the endpoint during runtime authentication. The 459 
root CA also indirectly (through the certificate chain) endorses a per-part public/private key pair, where 460 
the private key is provisioned to or generated by the endpoint hardware. A device carries a certificate 461 
chain, with the root being the RootCert and the leaf being the device certificate (DeviceCert) which 462 
contains the public key corresponding to the device private key. 463 

Runtime authentication is the process by which an authentication initiator interacts with an endpoint in a 464 
running system. The authentication initiator can retrieve the certificate(s) from the endpoint and send a 465 
unique challenge to the endpoint. The endpoint then signs the challenge with the private key. The 466 
authentication initiator verifies the signature using the public keys of the endpoint and the root CA, as well 467 
as any intermediate public keys within the certificate chain. 468 

 469 

6.3 Firmware identity through measurement 470 

In this specification, measurement is a term that describes the process of calculating the cryptographic 471 
hash value of a piece of firmware/software and tying the cryptographic hash value with the hardware 472 
identity through the use of digital signatures. Therefore, not only the identity of a piece of 473 
firmware/software can be established, the generation of the identity can be guaranteed to originate from a 474 
particular hardware endpoint. 475 

7 SPDM messaging protocol 476 

The SPDM messaging protocol defines a request-response messaging model between two endpoints to 477 
perform the message exchanges outlined in Section 6. Each SPDM request message shall be responded 478 
to with a SPDM response message as defined in this specification.  479 

Figure 1 depicts the high-level request-response flow diagram for SPDM. As shown in Figure 1, an 480 
endpoint acting as the requestor sends a SPDM request message to another endpoint acting as the 481 
responder, and the responder sends back a SPDM response message to the requestor. The requestor 482 
repeats the process by issuing different request messages to  483 

1. Discover and negotiate the security capabilities of the responder 484 

2. Authenticate the responder’s hardware identity 485 

3. Retrieve the responder’s firmware measurements. 486 

 487 



Security Protocol and Data Model Specification DSP0274 

 

16 Work in Progress Version 0.9.0 
 

 

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequestor

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

If supported

GET_MEASUREMENTS

MEASUREMENTS

CHALLENGE

CHALLENGE_AUTH

If supported

 488 

Figure 1 – SPDM messaging protocol flow 489 

All SPDM request-response messages share a common data format, consisting of a 4-byte message 490 
header and zero or more bytes message payload that is message-dependent. The following sections 491 
describe the common message format and Section 8 details each of the request and response 492 
messages. 493 

The requestor shall issue GET_CAPABILTIES followed by NEGOTIATE_ALGORITHMS request 494 
messages prior to issuing any other request messages. 495 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 17 
 

7.1 Generic SPDM message format 496 

Table 2 defines the fields that constitute a generic SPDM message, including the message header and 497 
payload. The fields within the SPDM messages are transferred from the lowest offset first. 498 

Table 2 – Generic SPDM message format 499 

Byte 1 

 

Byte 2 

 

Byte 3 

 

Byte 4 

 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

SPDM major 
version 

SPDM minor 
version 

Request Response Code Param1 Param2 

SPDM message payload (zero or more bytes) 

 

 

 

Table 3 defines the fields that are part of a generic SPDM message. 500 

Table 3 – Generic SPDM message field definitions 501 

Field Name Field Size Description 

SPDM major 
version 

4 bits 
This field identifies which major version of the SPDM Specification is 
being used. An endpoint shall not communicate using an 
incompatible SPDM Version value. See section 5.4. 

SPDM minor 
version 

4 bits 
This field identifies which minor version of the SPDM Specification is 
being used. A specification with a given minor version extends a 
specification with a lower minor version as long as they share the 
major version. See section 5.4. 

Request 
Response Code 

8 bits Describes the request message code or response code.  

Enumerated in Table 4 and Table 5. 0x00 – 0x7F are used for 
response codes and 0x80 – 0xFF are used for request codes. 

Param1 8 bits This field is used to pass a first 1-byte parameter. The contents of the 
parameter is specific to the Request Response Code. 

Param2 8 bits This field is used to pass a second 1-byte parameter. The contents of 
the parameter is specific to the Request Response Code. 

SPDM message 
payload 

Variable The SPDM message payload is zero or more bytes that are specific 
to the Request Response Code. 

7.2 SPDM Request Codes 502 

Table 4 defines the SPDM request codes for SPDM. All SPDM-compatible implementations shall use the 503 
following request codes.  504 

 505 

 506 

 507 



Security Protocol and Data Model Specification DSP0274 

 

18 Work in Progress Version 0.9.0 
 

 

Table 4 – SPDM request codes 508 

Request Code Value Requirement Message Format 

GET_DIGESTS 
0x81 Optional See Table 12 

GET_CERTIFICATE 
0x82 Optional See Table 14. 

CHALLENGE 
0x83 Optional See Table 16. 

GET_MEASUREMENTS 0xE0 Optional See Table 18. 

GET_CAPABILITIES 0xE1 Mandatory See Table 7. 

SET_CERTIFICATE 
0xE2 Optional To be defined in a 

future version. 

NEGOTIATE_ALGORITHMS 0xE3 Mandatory See Table 10. 

RESPOND_IF_READY 

0xFF 
Mandatory for all requestors. 
Mandatory for all responders 
that return ERROR code of 
ResponseNotReady 

See Table 24 

Reserved 

0x80,          

0x84 – 0xDF,  

0xE4 – 0xFE   

SPDM implementations 
compatible with this version 
shall not use the reserved 
request codes. 

 

7.3 SPDM response codes  509 

The Request Response Code field in the SPDM response message shall be used to specify the 510 
appropriate response code for a given request. All SPDM-compatible implementations shall use the 511 
following response codes. On a successful completion of an SPDM operation, the specified response 512 
message shall be returned. Upon an unsuccessful completion of an SPDM operation, ERROR response 513 
message shall be returned. 514 

Table 5 defines the response codes for SPDM.  515 

Table 5 – SPDM response codes 516 

Response Value Description Message 
Format 

DIGESTS 0x01 

Successful response to GET_DIGESTS 
request message. Mandatory for endpoints 
that support GET_DIGESTS request 
message. 

See Table 13. 

CERTIFICATE 0x02 

Successful response to GET_CERTIFICATE 
request message. Mandatory for endpoints 
that support GET_CERTIFICATE request 
message. 

See Table 15. 

CHALLENGE_AUTH 0x03 
Successful response to CHALLENGE. 
Mandatory for endpoints that support 
CHALLENGE request message. 

See Table 17. 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 19 
 

Response Value Description Message 
Format 

MEASUREMENTS 0x60 

Successful response to 
GET_MEASUREMENTS request message. 
Mandatory for endpoints that support 
GET_MEASUREMENTS request message. 

See Table 19. 

CAPABILITIES 0x61 
Successful response to GET_CAPABILITIES 
request message. Mandatory for all SPDM 
endpoints. 

See Table 7. 

SET_CERT_RESPONSE 0x62 

Successful response to SET_CERTIFICATE 
request message. Mandatory for endpoints 
that support SET_CERTIFICATE request 
message. 

To be defined 
in a future 
version. 

ALGORITHMS 

0x63 
Successful response to 
NEGOTIATE_ALGORITHMS request 
message. Mandatory for all SPDM endpoints. 

See Table 11. 

ERROR 0x7F Response to any unsuccessful request 
message. Mandatory for all SPDM endpoints. 

See Table 21 
and Table 22.  

Reserved 0x00, 

0x04– 
0x5F, 

0x64 – 
0x7E 

SPDM implementations compatible with this 
version shall not use the reserved response 
codes. 

 

7.4 Concurrent SPDM command processing 517 

This section describes the specifications and requirements for handling concurrent overlapping SPDM 518 
request messages. 519 

7.4.1 Requirements for responders 520 

A responder shall process SPDM message requests from a given requestor in order.  521 

A responder that is not ready to accept a new request message shall either respond with an ERROR 522 
response message with ErrorCode=Busy or silently discard the request message. 523 

An SPDM endpoint is not required to process more than one request message at a time. A responder that 524 
is not ready to accept a new request message shall either respond with an ERROR response message 525 
with ErrorCode=Busy or silently discard the request message. 526 

If an SPDM endpoint is working on a request message from a requestor, then the SPDM endpoint shall 527 
be able to process (or queue up processing) and send the response message independently from 528 
sending its own request message. 529 

If an SPDM endpoint is working on a request message from a requestor, then the SPDM endpoint shall 530 
be allowed to respond with ErrorCode=ResponseNotReady.  531 



Security Protocol and Data Model Specification DSP0274 

 

20 Work in Progress Version 0.9.0 
 

 

If a responder allows simultaneous communications with multiple requestors, the responder shall use the 532 
following fields to track a SPDM request message:  533 

 the transport address (which is transport-binding specific) of the requestor 534 

 SPDM request code 535 

 Param1 536 

 Param2.  537 

7.4.2 Requirements for requestors 538 

. 539 

An SPDM endpoint requestor shall not issue another request message to the same endpoint with the 540 
exception of GET_CAPABILITIES request message until it either gets the response message to a 541 
particular request message, times out waiting for the response message, or receives an indication that 542 
transmission of the particular request message failed, before issuing a new SPDM request message. An 543 
SPDM requestor may issue GET_CAPABILITIES request message at any time. 544 

An SPDM endpoint is permitted to send multiple simultaneous request messages outstanding to different 545 
SPDM endpoints. 546 

The timing specifications shown in Table 6 are specific to SPDM request messages. The SPDM response 547 
messages are not retried. A “try” or “retry” of a request message is defined as a complete transmission of 548 
the SPDM request message. All timeout reports in Table 6 are worst case values. 549 

Table 6 – Timing and retry specifications for SPDM messages 550 

Timing 
Specification 

Symbol Min Max Description 

Number of request 
retries 

SN1 2 See "Description"  If the requestor does not receive a response  
within the request-to-response time, the 
requestor shall try a request message at least 
three times - the original attempt try plus two 
retries, prior to treating it as an error condition. 
The maximum number of retries for a given 
request message may be further limited by the 
underlying transport specification. 

Request-to-response 
time for 
GET_CAPABILITIES 
request message 

ST1 – 100 ms If the underlying media or other layers have 
more stringent timeout requirements, SPDM 
responder should obey those. 
 

Request-to-response 
time for all request 
messages except 
GET_CAPABILITIES 
request 

ST2 - CT CT is reported via CAPABILITIES response 
message. 
 
The duration CT may exceed the timeout values 
associated with the underlying transport or 
media layers. The responder should avoid such 
timeouts by responding with ERROR with 
ErrorCode=ResponseNotReady response 
message if necessary. Requestor may respond 
by sending RESPOND_IF_READY request 
message until request to response message 
timeout is reached. 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 21 
 

8 SPDM messages 551 

SPDM messages can be divided into three categories, supporting different aspects of security exchanges 552 
between two endpoints 553 

1. Capability discovery and negotiation. 554 
2. Hardware identity authentication. 555 
3. Firmware measurement. 556 

8.1 Capability discovery and negotiation 557 

All SPDM endpoints shall support GET_CAPABILITIES and NEGOTIATE_ALGORITHMS both as a 558 
requestor and as a responder. The high-level request-response flow and sequence for the capability 559 
discovery and negotiation are shown in Figure 2. 560 

Selected 
cryptographic 
algorithm set

Supported 
cryptographic 
algorithm set

ResponderRequestor

1. The requestor  sends a 
GET_CAPABILITIES request 
message.

2. Determine device capability 
and feature support.

 
3. The requestor sends a 

NEGOTIATE_ALGORITHMS 
request message to advertise 
the supported algorithms.

4. The requestor uses the selected 
cryptographic algorithm set for 
all following exchanges, until 
the next 
NEGOTIATE_ALGORITHMS 
request or the next reset.

1. The responder  sends a 
CAPABILITIES 
response message.

2. The responder  selects 
the algorithm set and 
sends a ALGORITHMS 
response message.

GET_CAPABILITIES

Measurement 
support, 

authentication 
support, 

timeout, etc.

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

561 
 562 

Figure 2 – Capability discovery and negotiation flow 563 

8.1.1 GET_CAPABILITIES request message and CAPABILITIES response message 564 

This request message shall be used to retrieve an endpoint’s security capabilities. The request message 565 
format is shown in Table 7 and the response message format is shown in Table 8.  GET_CAPABILITIES 566 
request message and CAPABILITIES response message in all future SPDM major versions will be 567 
backward compatible with all previous major versions. 568 

If the requestor supports multiple SPDM major versions, the requestor shall begin the discovery process 569 
by sending a GET_CAPABILITIES request message that advertises the highest supported major version. 570 
If the responder does not support this major version, it shall return ERROR response with ErrorCode of 571 
MajorVersionMismatch along with a bitmap of supported major versions. The requestor shall consult the 572 
bitmap to select the highest common major version supported and issue GET_CAPABILITIES request 573 
message. A requestor is not permitted to issue NEGOTIATE_ALGORITHMS request until it has received 574 
a successful CAPABILITIES response and identified a common major version supported by both sides. 575 



Security Protocol and Data Model Specification DSP0274 

 

22 Work in Progress Version 0.9.0 
 

 

A responder is not permitted to respond to GET_CAPABILITIES request message with 576 
ErrorCode=ResponseNotReady. 577 

An SPDM requestor may issue GET_CAPABILITIES request message at any time.  578 

 579 

Endpoint BEndpoint A

GET_CAPABILITIES (major version=8)

ERROR(MajorVersionMismatch, 0x451)

Offer major Version 8.

Supports major versions 
10, 6, 4, 1

GET_CAPABILITIES (Major Version=6)

CAPABILITIES

Supports major versions 8, 6, 3.

Does not support 
major version 8. 

Settle on major Version 6.

NEGOTIATE_ALGORITHMS )

ALGORITHMS ()

580 
 581 

Figure 3 – Discovering common major version 582 

 583 

Table 7 – GET_CAPABILITIES request message 584 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0xE1 = GET_CAPABILITIES 

2 Param1 1 Reserved 

3 Param2 1 Reserved 

Table 8 – Successful CAPABILITIES response message 585 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x61 = CAPABILITIES 

2 Param1 1 Reserved 

3 Param2 1 Reserved 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 23 
 

Offset Field Size in 
bytes 

Value 

4 DetailedVersion 1 Detailed version. See Section 5.4. 

5 CryptographicTimeout (CT) 1 

The requestor shall add this value is base timeout value 
when deriving request-to-response timeout for request 
messages other than GET_CAPABILITIES. See Table 
6. 
 

For example, CT=10 implies the worst case duration of 
2

10
 =1024 uS.  

 
Calculation of CT shall account of the possibility that the 
responder may receive such requests from multiple 
endpoints. 

6 Reserved 2 Reserved 

8 Flags 4 See Table 9. 

12 SPDMMajorVersions 2 

Bitmap representing the SPDM major version supported 
by the responder. For example, return value of 0x24 
implies responder supports SPDM major versions 5 and 
2.  

14 Reserved 2 Reserved 

Table 9 – Flags Fields Definition  586 

Byte 
Bit 
Position 

Field Value 

0 0 Reserved Reserved 

0 1 AUTH_CAP 
1 - Supports GET_DIGESTS, GET_CERTIFICATE 
and CHALLENGE request messages 
0 - otherwise 

0 2 Reserved 
Reserved 
 

0 3 MEAS_CAP 
1 - Supports GET_MEASUREMENTS request 
message 
0 - otherwise 

0 4 MEAS_FRESH_CAP 

0: As part of MEASUREMENTS response message, 
the responder may return measurements that were 
computed during the last responder’s reset  
 
1: The responder is capable of recomputing all 
measurements in a manner that is transparent to the 
rest of the system and shall always return fresh 
measurements as part of MEASUREMENTS response 
message. 

0 7:5 Reserved Reserved 

1 7:0 Reserved Reserved 

2 7:0 Reserved Reserved 

3 7:0 Reserved Reserved 

 587 

8.1.2 NEGOTIATE_ALGORITHMS request message and ALGORITHMS response 588 

message 589 

This request message shall be used to negotiate cryptographic algorithms. A requestor is not permitted to 590 
issue NEGOTIATE_ALGORITHMS request message until it has received a successful CAPABILITIES 591 
response. A requestor is not permitted to issue any other SPDM requests with the exception of 592 



Security Protocol and Data Model Specification DSP0274 

 

24 Work in Progress Version 0.9.0 
 

 

GET_CAPABILITIES until it has received a successful ALGORITHMS response with exactly one 593 
asymmetric and exactly one hashing algorithm.  594 

The request message format is shown in Table 10 and the response message format is shown in Table 595 
11. 596 

Table 10 – NEGOTIATE_ALGORITHMS request message 597 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0xE3 = NEGOTIATE_ALGORITHMS 

2 Param1 1 Reserved 

3 Param2 1 Reserved 

4 Length 2 
Length of the entire request message packet in 
bytes 

6 MeasurementSpecification 1 

Bit Mask – Bit position based on “Measurement  
Specification as defined in section 8.3.2. 

Bit 7 Reserved for extension indication. 

7 Reserved 1 Reserved 

8 BaseAsymAlgo 4 

Bit mask listing SPDM enumerated asymmetric 
algorithms supported by requestor for the 
purposes of signature verification. 
Bit 0 – TPM_ALG_RSASSA_2048  
Bit 1 – TPM_ALG_RSASSA_3072 
Bit 2 – TPM_ALG_ECDSA_ECC_NIST_P256 
Bit 3 – TPM_ALG_RSASSA_4096 
Bit 4 – TPM_ALG_ECDSA_ECC_NIST_P384 
Bit 5 – TPM_ALG_ECDSA_ECC_NIST_P521 
 
All RSA based algorithms shall use PSS padding 
and exponent of 65537. 

12 BaseHashAlgo 4 

Bit mask listing SPDM enumerated cryptographic 
hashing algorithms supported by requestor. 
Bit 0 – SHA2-256 
Bit 1 – SHA3-256 
Bit 2 – SHA2-384 
Bit 3 – SHA3-384 
Bit 4 – SHA2-512 
Bit 5 – SHA3-512 

16 Reserved 8 Reserved 

24 ExtAsymCount 1 
Number of extended asymmetric algorithms 
supported by requestor (=A) 

25 ExtHashCount 1 
Number of extended hashing algorithms supported 
by requestor (=H) 

26 Reserved 2 Reserved for future use 

28 ExtAsym 4*A 

List of the extended asymmetric algorithms 
supported by requestor. 

First byte in each entry is enumeration for the 
encoding for ExtAsym 

0 – DMTF; 1 – TCG 

The second byte is reserved and the other two 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 25 
 

Offset Field Size in 
bytes 

Value 

bytes represent the algorithm encoding. At this 
time, the DMTF namespace has no algorithms 
defined. TCG algorithms are enumerated in TCG 
Algorithm Registry. 

28+4*A 
ExtHash 
  

4*H 

List of the extended hashing algorithms supported 
by requestor.  

First byte in each entry is enumeration for the 
encoding for ExtHash 

0 – DMTF; 1 – TCG 

The second byte is reserved and the other two 
bytes represent the algorithm encoding. At this 
time, the DMTF namespace has no algorithms 
defined. TCG algorithms are enumerated in TCG 
Algorithm Registry. 

28+4*A+ 
4*H 

Reserved 
 Length – 
28 – 4* A 
– 4*H 

Reserved for future expansion. Consult the Length 
field (offset 4) to determine the number of bytes in 
the request message. 

Table 11 –Successful ALGORITHMS response message 598 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x63 = ALGORITHMS 

2 Param1 1 Reserved 

3 Param2 1 Reserved 

4 Length 2 Length of the response message packet in bytes 

6 MeasurementSpecification 1 
The specification that governs the format of Measurement Block. 
0 – DMTF. 
All other encodings are reserved 

7 MeasurementHashAlgo 1 

Bit mask listing SPDM enumerated hashing algorithm for 
measurements. M represents the length of the measurement 

hash field in Measurement Block structure (Table 20). The 

responder shall ensure the length of measurement hash field 
during all subsequent MEASUREMENT response messages to 
the requestor until the next ALGORITHMS response message is 
M.  
Bit 0 – SHA2-256, M=32 
Bit 1 – SHA3-256, M=32 
Bit 2 – SHA2-384, M=48 
Bit 3 –SHA3-384, M=48 
Bit 4 – SHA2-512, M=64 
Bit 5 – SHA3-512, M=64 

If the responder supports GET_MEASUREMENT, exactly 1 bit in 
this bit field shall be set. Otherwise, the responder shall set this 
field to 0.  

8 BaseAsymSel 4 

Bit mask listing SPDM enumerated asymmetric algorithm 
selected. Responder must be able to sign a response message 
using this algorithm and requestor must have listed this algorithm 
in the Request indicating it can verify a response message using 
this algorithm. The responder shall use this asymmetric 
signature algorithm during all subsequent applicable response 



Security Protocol and Data Model Specification DSP0274 

 

26 Work in Progress Version 0.9.0 
 

 

Offset Field Size in 
bytes 

Value 

messages to the requestor until the next ALGORITHMS 
response message. 
 
A requestor that returns AUTH_CAP=0 and MEAS_CAP=0 shall 
set this field 0. Other requestors shall set no more than 1 bit. 

12 BaseHashSel 4 

Bit mask listing SPDM enumerated hashing algorithm selected. 
The responder shall use this hashing algorithm during all 
subsequent response messages to the requestor until the next 
ALGORITHMS response message. The requestor shall use this 
hashing algorithm during all subsequent applicable request 
messages to the responder until the next ALGORITHMS 
response message. The length of the nonce and salt fields 
exchanged during subsequent request messages and response 
messages, and any other fields specified in the request message 
and response message format, shall match the length of the 
selected hash, until the next ALGORITHM response message.  
 
 A requestor that returns AUTH_CAP=0 and MEAS_CAP=0 shall 
set this field 0. Other requestors shall set no more than 1 bit. 

16 Reserved 8 Reserved. 

24 ExtAsymSelCount 1 

The number of extended asymmetric algorithms selected. Shall 
be either 0 or 1. (=A) 
A requestor that returns AUTH_CAP=0 and MEAS_CAP=0 shall 
set this field 0.  

25 ExtHashSelCount 1 

The number of extended hashing algorithms selected. Shall be 
either 0 or 1. (=H) 
A requestor that returns AUTH_CAP=0 and MEAS_CAP=0 shall 
set this field 0. 

26 Reserved 2 Reserved 

28 ExtAsymSel 4*A 

The extended asymmetric algorithm selected. Responder must 
be able to sign a response message using this algorithm and 
requestor must have listed this algorithm in the request message 
indicating it can verify a response message using this algorithm. 
The responder shall use this asymmetric signature algorithm 
during all subsequent applicable response messages to the 
requestor until the next ALGORITHMS response message. 

First byte is enumeration for the encoding for ExtAsymSel 

0 – DMTF; 1 – TCG 

The second byte is reserved and the other two bytes represent 
the algorithm encoding. At this time, the DMTF namespace has 
no algorithms defined. TCG algorithms are enumerated in TCG 
Algorithm Registry. 
 

28+4*A ExtHashSel 4*H 

The extended Hashing algorithm selected. The responder shall 
use this hashing algorithm during all subsequent response 
messages to the requestor until the next ALGORITHMS 
response message. The requestor shall use this hashing 
algorithm during all subsequent applicable request messages to 
the responder until the next ALGORITHMS response message. 
The length of the nonce and salt fields exchanged during 
subsequent applicable request messages and response 
messages shall match the length of the selected hash, until the 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 27 
 

Offset Field Size in 
bytes 

Value 

next ALGORITHM response message.  

First byte is enumeration for the encoding for ExtHashSel 

0 – DMTF; 1 – TCG 

The second byte is reserved and the other two bytes represent 
the algorithm encoding. At this time, the DMTF namespace has 
no algorithms defined. TCG algorithms are enumerated in TCG 
Algorithm Registry. 

28+4*A 
+4*H 

Reserved 
 Length – 
28 – 4*A – 
4*H 

Reserved for future expansion. Consult the length field (offset 4) 
to determine the total number of bytes in the response message. 

8.1.3 Algorithm negotiation rules  599 

Under certain usage models, it may be possible to guarantee that a single SPDM endpoint in any given 600 
pair will be the one issuing NEGOTIATE_ALGORITHMS request message. However, this assumption 601 
may not hold under all usage models. Therefore, SPDM architecture accounts for the possibility that both 602 
endpoints may issue NEGOTIATE_ALGORITHMS request message independent of each other. SPDM 603 
specification defines specific rules to ensure both endpoints select consistent algorithms regardless of 604 
which or how many endpoints in a given pair initiate the negotiation. These rules ensure that 605 

1. The two SPDM endpoints shall agree on a single hashing algorithm.  606 
2. The two SPDM endpoints shall agree on a single asymmetric algorithm in each direction. It is 607 

permitted for the asymmetric signature algorithm employed when endpoint A is acting as the 608 
challenger to be different from the asymmetric signature algorithm employed when its peer is 609 
acting as the challenger. 610 

SPDM endpoints shall follow the below rules during construction of ALGORITHMS response message. 611 

1. The following priority is established within asymmetric signature algorithms. ALGORITHMS response 612 
message shall select the highest priority algorithm if the responder is able to sign using multiple 613 
algorithms out of those specified in NEGOTIATE_ALGORITHMS request message. The priority order 614 
for the currently defined asymmetric algorithms shall be (from highest to lowest priority). 615 

1. TPM_ALG_ECDSA_ECC_NIST_P521 616 

2. TPM_ALG_ECDSA_ECC_NIST_P384 617 

3. TPM_ALG_RSASSA_4096 618 

4. TPM_ALG_ECDSA_ECC_NIST_P256 619 

5. TPM_ALG_RSASSA_3072 620 

6. TPM_ALG_RSASSA_2048 621 

2. The following priority is established within hashing algorithms. ALGORITHMS response message 622 
shall select the highest priority algorithm if the responder is capable of hashing using multiple 623 
algorithms out of those specified in NEGOTIATE_ALGORITHMS request message. The priority 624 
order for the currently defined hashing algorithms shall be (from highest to lowest priority). 625 

1. SHA3-512 626 

2. SHA2-512 627 



Security Protocol and Data Model Specification DSP0274 

 

28 Work in Progress Version 0.9.0 
 

 

3. SHA3-384 628 

4. SHA2-384 629 

5. SHA3-256 630 

6. SHA2-256 631 

2. If common base hashing algorithm(s) are available, ALGORITHMS response message shall never 632 
select an extended hashing algorithm. If common base asymmetric signature algorithm(s) are 633 
available, ALGORITHMS response message shall never select an extended asymmetric signature 634 
algorithm. 635 

3. If extended algorithms within more than one namespace are supported by the two negotiating 636 
endpoints, ALGORITHMS response message shall select an algorithm in TCG namespace. The 637 
namespace encoding is defined by the first byte of ExtAsymSel and ExtHashSel. 638 

4. If more than one extended algorithms within a given namespace are supported by the negotiating 639 
endpoints, ALGORITHMS response message shall select the one with numerically higher encoding.  640 

8.2 Endpoint hardware identity authentication 641 

This section describes request messages and response messages associated with endpoint hardware 642 
identity authentication operations. All request messages in this section shall be supported by an endpoint 643 
that returns AUTH_CAP=1 in the CAPABILITIES response message. The high-level request-response 644 
message flow and sequence for endpoint hardware identity authentication are shown in Figure 4 for 645 
certificate retrieval and Figure 5 for runtime challenge-response. 646 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 29 
 

RootCert

�

VendorCert

�

ModelCert

DeviceCert

Offset (52)
Length (1076)

Length (1076)
RootHash

SHA384Slot0

�

SHA384Slot3

�

SHA384Slotn-2

SHA384Slotn-1

Offset (0)
Length (52)

ResponderRequestor

1. The requestor sends a GET_DIGESTS request 
message. 1. The responder sends a DIGESTS 

message.

2. For each received GET_CERTIFICATE 
request, the responder verifies that 
offset and the length are within the 
certificate chain, then sends the 
CERTIFICATE response message.

2. Compare digests in DIGESTS response 
message to cached digests. Continue if no 
match is found.

3. The requestor sends a GET_CERTIFICATE 
request to read the first 52 bytes of the 
certificate chain to get the length (ex: 1076 
bytes) and RootHash.

4. Verify validity of the signatures of each 
certificate (X.509 containing the public key) 
in the certificate chain against the root 
certificate, then proceed to the challenge-
response.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

GET_CERTIFICATE

CERTIFICATE

Cryptographic
hash for a 
certificate

chain

RootCert

647 
 648 

Figure 4 – Endpoint authentication: example certificate retrieval flow. 649 

Cert chain hash, 
salt, context 

hash, signature

32-byte nonce

ResponderRequestor

1. The requestor sends a CHALLENGE 
request message.

2. Collect the relevant information needed 
for signature verification, e.g., cert chain 
hash, and use the verified device public 
key to verify the signature field.

1. The responder  signs the GET_CAPABILITIES 
request, CAPABILITIES response, 
NEGOTIATE_ALGORITHMS request, 
ALGORITHMS response, CHALLENGE request 
message + the CHALLENGE_AUTH response 
message (minus the signature field) using the 
device private key and send a 
CHALLENGE_AUTH response message.

CHALLENGE

CHALLENGE_AUTH

 650 

Figure 5 – Endpoint authentication: runtime challenge-response flow. 651 

Each SPDM endpoint that supports this capability shall carry at least one certificate chain or a single 652 
certificate. The minimum number of certificates within a chain should be two and may include the device-653 
specific certificate and the root certificate that is self-signed by the certificate authority. Each certificate 654 
shall be ASN.1 DER-encoded X509v3 format. The device shall contain only a single pair of public-private 655 
key pair for its hardware identity, regardless of how many certificate chains are stored on the device. 656 



Security Protocol and Data Model Specification DSP0274 

 

30 Work in Progress Version 0.9.0 
 

 

The GET_DIGESTS request message and DIGESTS response message may be used to optimize the 657 
amount of data required to be transferred from the responder to the requestor, due to the potentially large 658 
size of a certificate chain. The cryptographic hash values of all of the certificate chains stored on an 659 
endpoint is returned with the DIGESTS response message, such that the requestor can cache the 660 
previously retrieved certificate chain hash values to detect any change to the certificate chains stored on 661 
the device before issuing the GET_CERTIFICATE request message. 662 

For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response 663 
message payload shall be signed using the device private key over the GET_CAPABILITIES request, 664 
CAPABILITIES response, NEGOTIATE_ALGORITHMS request, ALGORITHMS response, CHALLENGE 665 
request message and the CHALLENGE_AUTH response message except for the signature field, to 666 
ensure cryptographic binding between a specific request message from a specific requestor and a 667 
specific response message from a specific responder. Inclusion of GET_CAPABILITIES request, 668 
CAPABILITIES response, NEGOTIATE_ALGORITHMS request and ALGORITHMS response allows the 669 
responder to detect the presence of an active adversary attempting to downgrade cryptographic 670 
algorithms or SPDM major versions. Furthermore, a nonce generated by the requestor protects the 671 
challenge-response from replay attacks, whereas a salt generated by the responder prevents the 672 
responder from signing over arbitrary data dictated by the requestor. 673 

8.2.1 GET_DIGESTS request message and DIGESTS response message  674 

This request message shall be used to retrieve the certificate chain digests. The request message format 675 
is shown in Table 12 and the response message format is shown in Table 13. 676 

Table 12 – GET_DIGESTS request message 677 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x81 = GET_DIGESTS 

2 Param1 1 Reserved 

3 Param2 1 Reserved 

Table 13 –Successful DIGESTS response message  678 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x01 = DIGESTS 

2 Param1 1 Reserved 

3 

Param2 

1 Slot mask. The bit in position K of this byte 
shall be set to 1b if and only if slot number K 
contains a certificate chain for the protocol 
version in the SPDMVersion field. (Bit 0 is 
the least significant bit of the byte.) 
The number of digests returned shall be 
equal to the number of bits set in this byte. 
The digests shall be returned in order of 
increasing slot number. 

4 Digest[0] H H-byte digest of the first certificate chain. H 
is the size of the hashing algorithm output 
mutually agreed upon via 
NEGOTIATE_ALGORITHMS request 
message. This field is big endian. 

… ... … … 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 31 
 

Offset Field Size in 
bytes 

Value 

4 +  
(H * 
(n -1))  

Digest[n-1] H H-byte digest of the last (n
th

) certificate 
chain. H is the size of the hashing algorithm 
output mutually agreed upon via 
NEGOTIATE_ALGORITHMS request 
message. This field is big endian. 

8.2.2 GET_CERTIFICATE request message and CERTIFICATE response message 679 

This request message shall be used to retrieve the certificate chains, one chunk at a time. The request 680 
message format is shown in Table 14 and the response message format is shown in Table 15. The 681 
responder should, at a minimum save the public key of the leaf certificate and associate with each of the 682 
digests returned by DIGESTS message response. 683 

Table 14 – GET_CERTIFICATE request message 684 

Offset Field Size in bytes Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x82 = GET_CERTIFICATE 

2 
Param1 

1 Slot number of the target certificate chain 
to read from. The value in this field shall 
be between 0 and 7 inclusive. 

3 Param2 1 Reserved 

4 Offset 2 Offset in bytes from the start of the 
certificate chain to where the read 
request message begins. 

6 Length  2 Length in bytes of the read request 
message. 

Length is an unsigned 16-bit integer. 

If offset=0 & length=0xFFFF, the entire 
chain will be returned from the device. 

If a device cannot return the entire chain, 
it shall return the ERROR response 
message with the RequestedInfoTooLong 
error code. 

Table 15 –Successful CERTIFICATE response message  685 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x02 = CERTIFICATE 

2 Param1 1 Slot number of the certificate chain returned 

3 Param2 1 Reserved  

4 CertChain Length Data 

Requested contents of target certificate 
chain, formatted in DER. This field is big 
endian. 



Security Protocol and Data Model Specification DSP0274 

 

32 Work in Progress Version 0.9.0 
 

 

 686 

8.2.3 Leaf certificate format requirements 687 

 688 

1. Version -Version of encoded certificate shall be present and shall be 3 (value 2). 689 

2. Serial Number - CA assigned serial number shall be present with a positive integer value. 690 

3. Signature Algorithm - Signature algorithm used by CA shall be present.  691 

4. Issuer -CA distinguished name shall be specified. 692 

5. Subject Name – Subject name shall be present and shall represent the distinguished name 693 

associated with the leaf certificate. 694 

6. Validity - The certificate may include this attribute. If validity attribute is present, the value for 695 

notBefore field should be assigned the generalized time value “19700101000000Z” and notAfter 696 

field should be assigned the generalized time value of “99991231235959Z”. 697 

7. Subject Alternative Name- The directory name in the Subject Alternative Name should be 698 

present and populated with the following fields. If present, the following rules apply. 699 

a. Organization Unit –This field shall be DMTF. 700 

b. Common Name - The common name shall be manufacturer=”manufacturer 701 

name”:product=”product name” pattern where ”manufacturer name” is the vendor 702 

name and ”product name” is the textual description of the device. 703 

c. Serial Number –This field shall be the textual value for device serial number.  704 

8. Subject Public Key Info - The device public key and the algorithm shall be present. 705 

9. Basic Constraints - Basic Constraints field shall be present with the CA value set to false. 706 

10. Extended Key Usage - Extended Key Usage field shall be present and key usage bit for digital 707 

signature shall be set.                     708 

 709 

8.2.4 CHALLENGE request message and CHALLENGE_AUTH response message 710 

This request message shall be used to authenticate an endpoint via challenge-response protocol. The 711 
request message format is shown in Table 16 and the response message format is shown in Table 17. 712 

Table 16 – CHALLENGE request message 713 

Offset Field Size in bytes Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x83 = CHALLENGE 

2 
Param1 

1 Slot number of the responder’s certificate 
chain that shall be used for authentication 

3 Param2 1 Reserved 

4 Nonce H Random H-byte nonce, a random value 
chosen by the authentication initiator. H 
is the size of the hashing algorithm output  
mutually agreed upon via ALGORITHMS 
response message BaseHashSel or 
ExtHashSel field. 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 33 
 

Table 17 – Successful CHALLENGE_AUTH response message  714 

Offset Field Size in bytes Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x03 = CHALLENGE_AUTH 

2 
Param1 

1 Shall contain the Slot number in the Param1 
field of the corresponding CHALLENGE 
Request 

3 

Param2 

1 Slot mask. The bit in position K of this byte 
shall be set to 1b if and only if slot number K 
contains a certificate chain for the protocol 
version in the SPDMVersion field. (Bit 0 is 
the least significant bit of the byte.)  

4 MinSPDMVersion 1 Minimum SPDM version supported by this 
endpoint 

5 MaxSPDMVersion 1 Maximum SPDM version supported by this 
endpoint 

6 Capabilities 1 Set to 01h for this specification. All other 
values reserved 

7 Reserved 1 Reserved 

8 CertChainHash H Hash of the certificate chain used for 
authentication. H is the size of the hashing 
algorithm output mutually agreed via 
NEGOTIATE_ALGORITHMS request 
message.  
This field is big endian. 

8+H Salt H Value chosen by the authentication 
Responder. H is the size of the hashing 
algorithm output mutually agreed via 
NEGOTIATE_ALGORITHMS request 
message.  
Note: the Salt shall be unique per response 
message for the duration of a device reset 
cycle. 

8+2H ContextHash H Reserved 

8+3H Signature S S is the size of the asymmetric signing algorithm 
output the responder selected via the last 
ALGORITHMS response message to the 
requestor. Signature generation and verification 
processes are defined in sections 8.2.5 and 8.2.6 
respectively. 

8.2.5 Signature Generation 715 

Symbols ending with the number 1 represent the messages as observed by the responder. 716 

Step 1: The responder shall construct M1 717 

 718 

M1 = Concatenate(GET_CAPABILITIES_REQUEST1, CAPABILITIES_RESPONSE1, 719 
NEGOTIATE_ALGORITHMS_REQUEST1, ALGORITHMS_RESPONSE1, CHALLENGE_REQUEST1, 720 
CHALLENGE_AUTH_RESPONSE_WITHOUT_SIGNATURE1) 721 

Where Concatenate ( ) is the standard concatenation function 722 

 723 

 GET_CAPABILITIES_REQUEST1 is the entire contents of the last successful 724 
GET_CAPABILITIES request message processed by the responder. 725 



Security Protocol and Data Model Specification DSP0274 

 

34 Work in Progress Version 0.9.0 
 

 

CAPABILITIES_RESPONSE1 is the entire contents of the associated response message sent by 726 
the responder. Constructing M1 may require that the responder preserve the contents of these 727 
prior messages. 728 

 NEGOTIATE_ALGORITHMS _REQUEST1 is the entire contents of the last successful 729 
NEGOTIATE_ALGORITHMS request message processed by the responder. 730 
ALGORITHMS_RESPONSE1 is the entire contents of the associated response message sent by 731 
the responder. Constructing M1 may require that the responder preserve the contents of these 732 
prior messages. 733 

 CHALLENGE_REQUEST1 is the entire contents of the CHALLENGE request message under 734 
consideration, as seen by the responder. 735 
CHALLENGE_AUTH_RESPONSE_WITHOUT_SIGNATURE1 is the entire CHALLENGE_AUTH 736 
response message without the signature bytes, as sent by the responder. 737 

 738 

Step 2: The responder shall generate  739 

Signature = Sign(SK, Hash1(M1)) 740 

Where  741 

Sign is the asymmetric signing algorithm the responder selected via the last ALGORITHMS response 742 
message sent by the responder. Refer to BaseAsymSel or ExtAsymSel fields in Table 11. 743 

Hash1 is the hashing algorithm the responder selected via the last ALGORITHMS response message 744 
sent by the responder. Refer to BaseHashSel or ExtHashSel fields in Table 11. 745 

SK = the private Key associated with the responder’s leaf certificate in slot=Param1 of CHALLENGE 746 
request message. 747 

 748 

8.2.6 Signature Verification 749 

 750 

Symbols ending with the number 2 represent the messages as observed by the requestor. 751 

Step1: The requestor shall create M2 as 752 

M2 = Concatenate (GET_CAPABILITIES_REQUEST2, CAPABILITIES_RESPONSE2, 753 
NEGOTIATE_ALGORITHMS_REQUEST2, ALGORITHMS_RESPONSE2, CHALLENGE_REQUEST2, 754 
CHALLENGE_AUTH_RESPONSE_WITHOUT_SIGNATURE2) 755 

Where Concatenate( ) is the standard concatenation function 756 

 GET_CAPABILITIES_REQUEST2 is the entire contents of the last successful 757 
GET_CAPABILITIES request message sent by the requestor. CAPABILITIES_RESPONSE2 is 758 
the entire contents of the associated response message received by the requestor. Constructing 759 
M2 may require that the requestor preserve the contents of these prior messages. 760 

 NEGOTIATE_ALGORITHMS _REQUEST2 is the entire contents of the last successful 761 
NEGOTIATE_ALGORITHMS request message sent by the requestor. 762 
ALGORITHMS_RESPONSE2 is the entire contents of the associated response message 763 
received by the requestor. Constructing M2 may require that the requestor preserve the contents 764 
of these prior messages. 765 

 CHALLENGE_REQUEST is the entire contents of the CHALLENGE request message under 766 
consideration as sent by the requestor. 767 
CHALLENGE_AUTH_RESPONSE_WITHOUT_SIGNATURE is the entire CHALLENGE_AUTH 768 
response message without the signature field, as received by the requestor. 769 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 35 
 

Modifications to above request messages or the corresponding response messages by an active man-in-770 
the-middle adversary or media error will result in M2!=M1 and lead to verification failure. 771 

 772 

Step 2: The requestor shall perform  773 

Verify(PK, Hash2(M2), Signature) 774 

Where PK is the Public key associated with the leaf certificate of the responder with slot=Param1 of 775 
CHALLENGE request message.  776 

Verify is the asymmetric verification algorithm the responder selected via the last ALGORITHMS 777 
response message as received by the requestor. Refer to BaseAsymSel or ExtAsymSel fields in Table 778 
11. 779 

Hash2 is the hashing algorithm the responder selected via the last ALGORITHMS response message 780 
sent as received by the requestor. Refer to BaseHashSel or ExtHashSel fields in Table 11. 781 

 782 

8.3 Firmware measurement 783 

This section describes request messages and response messages associated with endpoint firmware 784 
measurement. All request messages in this section shall be supported by an endpoint that returns 785 
MEAS_CAP=1 in CAPABILITIES Response. The high-level request-response flow and sequence for 786 
endpoint firmware measurement is shown in Figure 6. 787 

If MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0, and the requestor requires 788 
fresh measurements, the responder must be reset prior to GET_MEASUREMENTS. The mechanisms 789 
employed for resetting the responder are outside the scope of this specification.  790 

Nonce

ResponderRequestor

1. The requestor sends a GET_MEASUREMENTS 
request message.

2. Verify signature and verify measurements match 
expected values.

1. The responder sends a MEASUREMENTS 
response message.

GET_MEASUREMENTS

Number of 
measurements, 

length, salt, 
measurement 

blocks, 
signature.

MEASUREMENTS

791 
 792 

Figure 6 – Firmware measurement retrieval flow 793 

8.3.1 GET_MEASUREMENTS request message and MEASUREMENTS response 794 

message 795 

This request message shall be used to retrieve firmware measurements. The request message format is 796 
shown in Table 18 and the response message format is shown in Table 19. 797 



Security Protocol and Data Model Specification DSP0274 

 

36 Work in Progress Version 0.9.0 
 

 

Table 18 – GET_MEASUREMENTS request message 798 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0xE0 = GET_MEASUREMENTS 

2 Param1 1 
Measurement Request type 
0: Single or All Measurements 
All other bits are reserved. 

3 Param2 1 

Measurement index 

Value of 0xFF return all Measurements. 

4 Nonce H Random H-byte nonce chosen by the 
authentication initiator. H is the size of the 
hashing algorithm that the responder 
selected via ALGORITHMS response 
message.  

Table 19 – Successful MEASUREMENTS response message 799 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x60 = MEASUREMENTS 

2 

Param1 

1 When the requested Measurement index is 0, 
this parameter returns the total number of 
Measurement indices on the device; otherwise 
reserved. 

3 Param2 1 Reserved 

4 NumberOfBlocks 1 N 

8 MeasurementRecord L=N*(H+4) Concatenation of all Measurement Blocks that 
correspond to Measurement Request type and 
Measurement Index input values. Measurement 
Block structure is defined in section 8.3.2. 

8+L Salt H H bytes of arbitrary salt chosen by the 
Responder. H is the size of the hashing 
algorithm output the responder selected via 
ALGORITHMS response message. 

8+L+H Signature S Signature of the GET_MEASUREMENTS 
Request and MEASUREMENTS Response 
messages, excluding the Signature field and 
signed using the device private key (slot 0 leaf 
certificate private key). The responder shall use 
the asymmetric signing algorithm it selected 
during the last ALGORITHMS response 
message to the requestor and S is the size of 
that asymmetric signing algorithm output. 

 800 

8.3.2 Measurement block 801 

Each Measurement block defined in the MEASUREMENTS response message shall contain a 4-byte 802 
descriptor (offsets 0-3), followed by the Measurement Data corresponding to a particular Measurement 803 
Index and Measurement Type. The blocks will be ordered by Index. 804 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 37 
 

The format for a measurement block is shown in Table 20. 805 

Table 20 – Measurement block definition 806 

Offset Field Size in bytes Value 

0 Index 1 For MeasurementType=0-3, Index 
represents the Firmware stage and 
incrementing of Index represents 
bootstrapping of firmware stages. For 
example, index 0 firmware measures 
index 1 firmware, and so on. 

1 MeasurementType 1 0: immutable ROM 
1: mutable firmware 
2: hardware configuration, e.g., straps, 
debug modes 
3: firmware configuration, e.g., 
configurable firmware policy 
All other values reserved 

2 MeasurementSpecification 1 0: DMTF 
All other bits reserved 

3 Reserved 1 Reserved. 

8 Measurement M This field contains M bytes of 
cryptographic hash measurement value. 
The length M is derived from the 
measurement hash algorithm returned 
in ALGORITHMS response message. 

 807 

8.3.3 Signature Generation 808 

Symbols ending with the number 1 represent the messages as observed by the responder. 809 

 810 

Step 1: The responder shall construct L1 811 

L1 = Concatenate(GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE_WITHOUT_SIGNATURE1) 812 

Where Concatenate ( ) is the standard concatenation function 813 

 GET_ MEASUREMENTS _REQUEST1 is the entire MEASUREMENTS request message under 814 
consideration, as seen by the responder.  815 

 MEASUREMENTS _RESPONSE_WITHOUT_SIGNATURE1 is the entire MEASUREMENTS 816 
response message without the signature bytes, as sent by the responder. 817 

 818 

Step 2: The responder shall generate  819 

Signature = Sign(SK, Hash1(L1)) 820 

Where  821 

Sign is the asymmetric signing algorithm the responder selected via the last ALGORITHMS response 822 
message sent by the responder. Refer to BaseAsymSel or ExtAsymSel fields in Table 11. 823 



Security Protocol and Data Model Specification DSP0274 

 

38 Work in Progress Version 0.9.0 
 

 

Hash1 is the hashing algorithm the responder selected via the last ALGORITHMS response message 824 
sent by the responder. Refer to BaseHashSel or ExtHashSel fields in Table 11. 825 

SK = the private Key associated with the responder’s Slot 0 leaf certificate. 826 

 827 

8.3.4 Signature Verification 828 

Symbols ending with the number 2 represent the messages as observed by the requestor. 829 

Step1: The requestor shall create L2 as 830 

L2= Concatenate(GET_MEASUREMENTS_REQUEST2, MEASUREMENTS_RESPONSE_WITHOUT_SIGNATURE2) 831 

Where Concatenate ( ) is the standard concatenation function 832 

 GET_ MEASUREMENTS _REQUEST2 is the entire contents of the MEASUREMENTS request 833 
message under consideration, as sent by the requestor.  834 

 MEASUREMENTS _RESPONSE_WITHOUT_SIGNATURE2 is the entire contents of the 835 
MEASUREMENTS response message without the signature bytes, as received by the requestor. 836 

 837 

Step 2: The requestor shall perform  838 

Verify(PK, Hash2(L2), Signature) 839 

Where PK is the Public key associated with the slot 0 certificate of the responder. PK is extracted from 840 
the CERTIFIATES response.  841 

Verify is the asymmetric verification algorithm the responder selected via the last ALGORITHMS 842 
response message as received by the requestor. Refer to BaseAsymSel or ExtAsymSel fields in Table 843 
11. 844 

Hash2 is the hashing algorithm the responder selected via the last ALGORITHMS response message 845 
sent as received by the requestor. Refer to BaseHashSel or ExtHashSel fields in Table 11. 846 

 847 

8.4 ERROR response message 848 

For a SPDM operation resulting in an error, the endpoint responding to the request message shall use the 849 
ERROR response message. The ERROR Response format is shown in Table 21 and the detailed error 850 
code, error data and extended error data are shown in Table 22. 851 

Table 21 – ERROR response message 852 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponseCode 1 0x7F = ERROR 

2 Param1 1 Error Code. See Table 22 

3 Param2 1 Error Data. See Table 22 

4 ExtendedErrorData 0-32 Optional Extended Data. See Table 22 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 39 
 

Table 22 – Error Code and Error Data 853 

Error Code Value Description Error Data Extended Error 
Data 

Reserved 0x00 Reserved Reserved Reserved 

InvalidRequest 0x01 One or more Request fields 
are invalid 

0x00 No extended error 
data is provided. 

Reserved 0x02  Reserved. Reserved Reserved 

Busy 0x03 The endpoint cannot 
respond now, but may be 
able to respond in the future 

0x00 No extended error 
data is provided. 

UnexpectedRequest 0x04 The endpoint received an 
unexpected request 
message. For example, 
CHALLENGE prior to 
NEGOTIATE_ALGORITHMS. 

0x00 No extended error 
data is provided. 

Unspecified 04h Unspecified error occurred. 00h No extended error 
data is provided. 

Uninitialized 05h Command received without 
session initialization. 

00h No extended error 
data is provided. 

Reserved 05-
0x3F 

Reserved Reserved No extended error 
data is provided. 

RequestedInfoTooLong 40h The requested data cannot be 
sent in one response message 

Returns length of 
the extended data 
field=4. 

Maximum size 
supported (4 bytes) 

MajorVersionMismatch 41h Requested SPDM major 
Version is not supported. 

Returns length of 
the extended data 
field=2. 

16 bit bitmap 
representing all 
the SPDM major 
versions 
supported by the 
responder. 

ResponseNotReady 42h The response message is not 
ready. Requestor may ask for 
the response by sending 
RESPOND_IF_READY request 
message until the timeout CT is 
reached.  

Returns length of 
the extended data 
field=4. 

See Table 23 

Reserved 43h- 
CFh 

Reserved Reserved. Reserved 

Reserved for other 
standards 

D0h-
EFh 

Reserved for other standards Reserved for other 
standard. 

Reserved for other 
standards 

Vendor Defined F0h- 
FFh 

Vendor defined Vendor defined Vendor defined 



Security Protocol and Data Model Specification DSP0274 

 

40 Work in Progress Version 0.9.0 
 

 

Table 23 –ResponseNotReady Extended Error Data  854 

Offset Field Size in 
bytes 

Value 

0 RecommendedDelay 1 

Time duration in uS for which the responder 
should wait before issuing 
RESPOND_IF_READY. It is expressed in 

logarithmic (base 2) scale. E.g. the raw value 8 
indicates requestor should wait for 2

8
=512 uS. 

1 
Request Code 

1 The request code that triggered this 
response. 

2 
Token 

1 The opaque handle that the requestor shall pass 
in with the RESPOND_IF_READY request 
message. 

3 Reserved 1 Reserved 

 855 

8.5 RESPOND_IF_READY request message  856 

This request message shall be used to ask for the response to the original request upon receipt of 857 
ResponseNotReady Error code. If the response to the original request is ready, the responder shall return 858 
that response message. If the response to the original request is not ready, the responder shall return 859 
with ERROR response, set ErrorCode=ResponseNotReady and return the same Token as the previous 860 
ResponseNotReady response. 861 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 41 
 

 862 

CHALLENGE_AUTH( )

Endpoint BEndpoint A

CHALLENGE( )

ERROR (ResponseNotReady, 1 ms, 0x7)

RESPOND_IF_READY(0x83, 0x7)

Best case  CHALLEGE 
processing duration= 1 ms

Worst case CHALLENGE 
processing time = 10 ms
Media timeout = 2 ms

Sends response after 1.5 ms to 
avoid media timeout.

ResponseNotReady with 
Token=0x7.Wait for 1 ms

Response not ready after 1.5 ms 
of receiving RESPOND_IF_READY.

Send ResponseNotReady with 
Token=0x7.

ERROR (ResponseNotReady, 1 ms, 0x7

Wait for 1 ms
RESPOND_IF_READY(0x83, 0x7)

Processing is complete

 1.5 ms

 1.5 ms

863 
 864 

Figure 7 – RESPOND_IF_READY flow leading to completion 865 

 866 

 867 

 The request message format is shown in Table 18.  868 

Table 24 – RESPOND_IF_READY request message 869 

Offset Field Size in 
bytes 

Value 

0 SPDMVersion 1 V1.0 = 0x10 

1 RequestResponse Code 1 0xFF = RESPOND_IF_READY 

2 Param1 1 

The original request code that triggered the 
ResponseNotReady error code response. Shall 
match the Request Code returned as part of the 
ResponseNotReady extended error data. 

3 Param2 1 
The token that was returned as part of the 
ResponseNotReady extended error data. 



Security Protocol and Data Model Specification DSP0274 

 

42 Work in Progress Version 0.9.0 
 

 

 870 

9 SPDM messaging control and discovery examples 871 

9.1 Negotiating base hashing algorithms 872 

This section illustrates how two endpoints negotiate base hashing algorithm under different scenarios. 873 

In Example 1, endpoint A issues NEGOTIATE_ALGORITHMS request message and endpoint B selects 874 
an algorithm that both endpoints are capable of. 875 

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

Endpoint BEndpoint A

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA2-384, SHA3-384)

ALGORITHMS (SHA2-384)

If supported

Supports SHA2-384 

and SHA3-384
Supports SHA2-256 

and SHA2-384

Select SHA2-384
Agree on SHA2-384

returns SHA2-384 digest

 876 

Figure 8 – Hashing Algorithm Selection: Example 1 877 

 878 

In example 2, both endpoints issue NEGOTIATE_ALGORITHMS request message at about the same 879 
time. NEGOTIATE_ALGORITHMS request message from endpoint A is processed by endpoint B after 880 
endpoint B has sent out NEGOTIATE_ALGORITHMS request message.  Both endpoints independently 881 
process the NEGOTIATE_ALGORITHMS request message and generate ALGORITHMS response 882 
message. Both endpoints are capable of SHA2-256 and SHA3-384, but both independently select SHA3-883 
384. 884 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 43 
 

Endpoint BEndpoint A

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (

SHA2-256,SHA3-256, SHA3-384)

ALGORITHMS (SHA3-384)

Supports SHA2-256, 

SHA3-256 and SHA3-384
Supports SHA2-256 

and SHA3-384

Select SHA3-384 over 

SHA2-256 based on 

priority rule

NEGOTIATE_ALGORITHMS (

SHA2-256, SHA3-384)

ALGORITHMS (SHA3-384)

Agree on SHA3-384

Agree on SHA3-384

Subsequent SPDM requests and 

responses use SHA3-384 algorithm

Select SHA3-384 over 

SHA2-256 based on 

priority rule

 885 

Figure 9 – Hashing Algorithm Selection: Example 2 886 

In example 3, endpoint B does not support SPDM base algorithms and therefore is free to select 887 
extended algorithms. Both endpoints issue NEGOTIATE_ALGORITHMS request message at about the 888 
same time. NEGOTIATE_ALGORITHMS request message from endpoint A is processed by endpoint B 889 
after endpoint B has sent out NEGOTIATE_ALGORITHMS request message.  Both endpoints 890 
independently process the NEGOTIATE_ALGORITHMS request message and generate ALGORITHMS 891 
response message. Both endpoints are capable of algorithms X and Y, but both independently select X 892 
based on the negotiation rules. 893 

 894 



Security Protocol and Data Model Specification DSP0274 

 

44 Work in Progress Version 0.9.0 
 

 

Endpoint BEndpoint A

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (

X,Y)

ALGORITHMS (X)

Supports TCG algorithms 

X, Y
Supports TCG 

algorithms X,Y,Z

Select X over Y 

because X > Y

NEGOTIATE_ALGORITHMS (

X,Y,Z)

ALGORITHMS (X)

Agree on TCG X

Agree on TCG X

Subsequent SPDM requests and 

responses use TCG hashing algorithm X

Select X over Y 

because X > Y

 895 

Figure 10 – Hashing Algorithm Selection: Example 3 896 

 897 

9.2 Negotiating base asymmetric signature algorithms 898 

This section illustrates how two endpoints negotiate asymmetric signature algorithms. 899 

Endpoint A supports three algorithms, which means it can verify a message that is signed with either of 900 
the three algorithms. However, it holds private key and certificates corresponding to only one of these 901 
algorithms. That restricts endpoint A’s signing capability to that single algorithm. 902 

Unlike the hashing algorithm negotiation, the asymmetric signature algorithm selected in ALGORITHMS 903 
response message of endpoint A does not have to match the one selected by endpoint B. Endpoint A 904 
offers algorithms based on its verification capabilities and endpoint B selects an algorithm from that offer 905 
based on its signing capabilities. Similarly, endpoint B proposes algorithms based on its verification 906 
capabilities and endpoint A selects an algorithm from that proposal based on B’s signing capabilities. The 907 
results of the negotiation are predictable even under scenarios where both endpoints issue 908 
NEGOTIATE_ALGORITHMS request message at about the same time.  909 

 910 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 45 
 

Endpoint BEndpoint A

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (

RSA-2048, RSA-3072,ECDSA-256 )

ALGORITHMS (RSA-2048)

Supports RSA-2048, RSA-3072 
and ECDSA-256 algorithms.

ECDSA-256  private key and cert 

have been provisioned.

NEGOTIATE_ALGORITHMS (

RSA-2048, ECDSA-256)

ALGORITHMS (ECDSA-256)

Endpoint B signs subsequent 

CHALLENGE_AUTH 

responses using 

ECDSA-256, but uses RSA-

2048 to verify responses from 

Endpoint B.

Select ECDSA-256

Supports RSA-2048 and 
ECDSA-256 algorithms.

RSA-2048 private key and cert 

has been provisioned.

Select RSA-2048 because 

it can sign using RSA-2048 

only.

Endpoint B verifies  

subsequent 

CHALLENGE_AUTH 

responses using 

ECDSA-256, but uses RSA-

2048 to sign responses going 

to Endpoint A.

 911 

Figure 11 – Asymmetric Signature Algorithm Selection 912 

 913 



Security Protocol and Data Model Specification DSP0274 

 

46 Work in Progress Version 0.9.0 
 

 

 ANNEX A914 

(informative) 915 

 916 

 917 

Change log 918 

Version Date Description 

0.9.0 2019-05-30 First draft version 



DSP0274  Security Protocol and Data Model Specification 

 

Version 0.9.0 Work in Progress 47 
 

Bibliography 919 

DMTF DSP4014, DMTF Process for Working Bodies 2.6,  920 
https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.pdf 921 

 922 

 923 

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Ref_ISO_p2
	Ref_IETF_RFC5234
	Ref_TCG_Algo
	ASN1
	DER
	X509
	Ref_ECDSA
	ECDSA
	Ref_NIST_P256
	Ref_RSA
	Ref_NIST_SHA2
	Ref_NIST_P384
	Ref_NIST_SHA3
	Term_authetication_initiator
	Term_certificate
	Term_certificate_authority
	Term_certificate_chain
	Term_device
	Term_intermediate_certificate
	Term_leaf_certificate
	Term_nonce
	PhysicalTransportBinding
	Term_SPDM_endpoint
	PLDMMessage
	Term_SPDM_message
	PLDMMessagePayload
	Term_SPDM_message_payload
	Term_SPDM_request_message
	Term_SPDM_response_message
	Term_requestor
	Term_responder
	Term_Root_Certificate
	Ref_DMTF_DSP4014

