Document Identifier: DSP0272

Date: 2025-12-04

Version: 1.9.0

Redfish Interoperability Profiles

Supersedes: 1.8.2
Document Class: Normative
Document Status: Published

Document Language: en-US

Redfish Interoperability Profiles DSP0272

Copyright Notice
Copyright © 2017-2025 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified DMTF that, in their opinion, such
patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/
policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

2 Published Version 1.9.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

DSP0272 Redfish Interoperability Profiles

CONTENTS
FOreWOId. . . . 5
ACKNOWIEAgMENtSo 5
T ADSIraCt . . . o 6
2 OV W . oo 7
S Normative referenCes. 8
4 Terms and definitions. e 9
S DeSIgn teNetS 10
B Profile t00lS 11
7 Profile repoSitoryo 12
8 Profile document definition. e 13
8.1 File name conventions. e 13
8.2 BasiC fuNCHIONS e 13
8. 2.1 ProfileType . . o o 14
8.2.1.1 ProfileType values e e 14
8.22Required profiles 15
8.2 83 EXampleo 15
8.3 Protocol requirements 15
8.3 1 EXampleo 17
8.3.2 Requirement values 17
8.4 Resource (SChema) reqUIremMeNntsottt 17
8.4.1 Schema-level functions e 18
8.4.1.0. 1 URI patterns. 19
8.4 1.1 EXample . ..o 20
8.4.2 RESOUIMCE USE CASES . . . o vttt ittt et e et e e e e e e e e e e e e 20
8.4.2.1 Use case-level functions. 21
8.4.2.2 USe CasSe lyPeS 22
8.4.2.3 Use case example 22
8.4.3 Property-level funClioNs. e 24
8.4.3.1 EXample 25
8.4.3.2 COMPAriSONttt e 26
8.4.3.3Readrequirement. 27
8.4.3.4 Write requirement 28
8.4.3.5 Conditional requirements e 28
8.4.3.5.1 Parent and subordinate resources 29
8.4.3. 5 2 EXample 30
8.4.3.5.3 Compare Property 31
8.4.3.5.4 EXamples 31
8.4.3.6 Handling deprecated properties 33
8.4.3.6.1 EXamples 33
8.4.4 Action reqUIremMeENtS 34
8.4.4.1 Parameters 35

Version 1.9.0 Published 3

Redfish Interoperability Profiles DSP0272

8.4.4 2 EXample 35

8.5 Registry-level requirements. e 36
8.5.1 MESSAGES . . . o it 37

8.5 2 EXample . .. 37

8.5.3 Supported features 38

8.5.4 EXample 38

9 ANNEX A (informative) Change 10g.o 39

4 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

Foreword

The Redfish Interoperability Profile specification was prepared by DMTF's Redfish Forum.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about DMTF, see https://www.dmtf.org.

Acknowledgments

DMTF acknowledges the following individuals for their contributions to this document:

* Richelle Ahlvers — Broadcom Inc.

» Jeff Autor — Vertiv, Hewlett Packard Enterprise
» George Ericson — Dell Technologies

+ Tomas Gonzalez — Majec Systems, Inc.

* Jon Hass — Dell Technologies

» Jeff Hilland — Hewlett Packard Enterprise

* Frangois Homps — Atos

» John Leung — Intel Corporation

» Michael Raineri — Dell Technologies

» Paul Vancil — Dell Technologies

Version 1.9.0 Published 5

https://www.dmtf.org/

Redfish Interoperability Profiles DSP0272

1 Abstract

As schema definitions for the Redfish Specification ("Redfish") are designed to provide significant flexibility, and allow
conforming implementations on a wide variety of products, very few properties within the schemas are required by
the Redfish Specification. But consumers and software developers need a more rigidly defined set of required
properties (features) in order to accomplish management tasks. This set allows users to compare implementations,
specify needs to vendors, and allows software to rely on the availability of data. To provide that "common ground", a
Redfish interoperability profile allows the definition of a set of schemas and property requirements, which meet the
needs of a particular class of product or service.

A Redfish interoperability profile is a JSON document that contains schema-level, property-level, and registry-level
requirements. At the property level, these requirements can include a variety of conditions under which the
requirement applies.

6 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

2 Overview

The Redfish Specification separates the definition of the protocol from the data model (schema), and in addition,
allows each resource defined in the data model to be revised independently. While this creates significant flexibility
and extensibility, it can cause confusion when developers and end users attempt to answer the question "What
version of Redfish does your product support?" The answer is not a simple one, because fully describing a Redfish
implementation would require listing each property supported in each schema implemented, as well as the protocol
version and supported features. That level of detail and version reporting would be extremely cumbersome to create
or maintain, and difficult to use to compare implementations across products or vendors.

The Redfish interoperability profile concept was created to simplify that process, by providing a means to
communicate the functionality provided with a single statement - that an implementation meets the requirements set
forth in a Redfish interoperability profile.

A profile is constructed in a machine-readable (JSON) document that serves two purposes. First, it enables the
creation of a human-readable document that merges the profile requirements with the Redfish schema into a single
document for developers or users. Second, it allow a conformance test utility to test a Redfish service implementation
for conformance with the profile.

Version 1.9.0 Published 7

Redfish Interoperability Profiles DSP0272

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated or versioned
references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without
a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update
versions) applies.

» |IETF RFC 3986 T. Berners-Lee et al., Uniform Resource Identifier (URI): Generic Syntax, https://www.ietf.org/
rfc/rfc3986.txt

» ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents,
https://www.iso.org/sites/directives/current/part2/index.xhtml

« |ETF RFC 6901, P. Bryan, Ed. et al., JavaScript Object Notation (JSON) Pointer, https://www.ietf.org/rfc/
rfc6901.ixt

» JSON Schema: A Media Type for Describing JSON Documents, Draft 7 https://tools.ietf.org/html/draft-handrews-
json-schema-01

» JSON Schema Validation: A Vocabulary for Structural Validation of JSON, Draft 7 https://tools.ietf.org/html/draft-
handrews-json-schema-validation-01

» DMTF Redfish Specification, DSP0266 https://www.dmtf.org/dsp/DSP0266

» OpenAPI Specification https://github.com/OAl/OpenAPI-Specification

+ ECMA-262, ECMAScript® 2025 language specification, https://https://ecma-international.org/publications-and-
standards/standards/ecma-262/

8 Published Version 1.9.0

https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.ietf.org/rfc/rfc6901.txt
https://www.ietf.org/rfc/rfc6901.txt
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
https://www.dmtf.org/dsp/DSP0266
https://github.com/OAI/OpenAPI-Specification
https://https//ecma-international.org/publications-and-standards/standards/ecma-262/
https://https//ecma-international.org/publications-and-standards/standards/ecma-262/

DSP0272 Redfish Interoperability Profiles

4 Terms and definitions

Some terms and phrases in this document have specific meanings beyond their typical English meanings. This
clause defines those terms and phrases.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",
"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional
cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7
specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal
English meaning.

The terms "clause", "subclause”, "paragraph”, and "annex" in this document are to be interpreted as described in
ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,
Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative
content. Notes and examples are always informative elements.

The term "deprecated" in this document is to be interpreted as material that is not recommended for use in new
development efforts. Existing and new implementations may use this material, but they should move to the favored
approach. Deprecated material may be implemented in order to achieve backwards compatibility. Deprecated
material should contain references to the last published version that included the deprecated material as normative
material and to a description of the favored approach. Deprecated material may be removed from the next major
version of the specification.

Version 1.9.0 Published 9

Redfish Interoperability Profiles DSP0272

5 Design tenets

All profile entries, at the profile, resource, or property level, are "additive". That is, each requirement can only apply
more rigid requirements that override less rigid requirements.

Profile requirements do not allow for exclusions of data. Implementations are able to provide more data in their
resources than required by a profile, as an implementation likely addresses multiple use cases or profiles. This
includes both standard properties and OEM extensions.

10 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

6 Profile tools

A free, open source utility has been created by the Redfish Forum to verify that a Redfish service implementation
conforms to the requirements included in a Redfish interoperability profile. The Redfish Interop Validator is available
for download from DMTF's organization on GitHub at: https://github.com/DMTF/Redfish-Interop-Validator

A documentation generator has also been created by the Redfish Forum that will create a "guide" using the Redfish
schema and the profile document. The output is intended for use by both developers and end users to understand
the implementation requirements of a profile. The Redfish Documentation Generator is available for download from
DMTF's organization on GitHub at: https://github.com/DMTF/Redfish-Tools

Version 1.9.0 Published 11

https://github.com/DMTF/Redfish-Interop-Validator
https://github.com/DMTF/Redfish-Tools

Redfish Interoperability Profiles DSP0272

7 Profile repository

Redfish interoperability profiles published or re-distributed by DMTF are available for download from the Redfish
profile repository located at: http://redfish.dmtf.org/profiles

12 Published Version 1.9.0

http://redfish.dmtf.org/profiles

DSP0272 Redfish Interoperability Profiles

8 Profile document definition

A Redfish interoperability profile is specified in a JSON document. The JSON objects and properties contained in the
document are described in this specification, and are also available in a JSON-schema form
(RedfishinteroperabilityProfile.v1_x_x.json) from DMTF's Redfish schema repository at http://redfish.dmtf.org/profiles
for download. The json-schema can be used to validate a profile document to ensure compatibility with automated
conformance tools or utilities.

The JSON document structure is intended to align easily with JSON payloads retrieved from Redfish service
implementations, to allow for easy comparisons and conformance testing. Many of the properties defined within this

structure have assumed default values that correspond with the most common use case, so that those properties can
be omitted from the document for brevity.

8.1 File name conventions

The document that describes a profile follows the Redfish schema file naming conventions from the Redfish
Specification. The file name format for profiles shall be:

<ProfileName>.v<MajorVersion>_<MinorVersion>_<Errata>.json

For example, the file name of the BasicServer profile v1.2.0 is BasicServer.vi_2_0.json . The file name shall include
the profile name and version, which matches those property values within the document.

8.2 Basic functions

At the top level of the JSON document are the basic properties, which describe the profile, including authorship and
contact information, versioning, and other profiles to include in order to build upon previous work.

Property Type Description
. The JSON schema that defines this Redfish interoperability profile document and can
SchemaDefinition string i i
be used to validate its contents.
ProfileName string The name of this Redfish profile.
. The version of this Redfish profile. The version shall be represented using a
ProfileVersion string
<major>.<minor>.<errata> format.
ProfileType string The type of Redfish profile. If not present, the default value shall be Interop .

Version 1.9.0 Published 13

http://redfish.dmtf.org/profiles

Redfish Interoperability Profiles DSP0272

Property Type Description
. A description of the purpose of this Redfish profile, such as its intended target
Purpose string .
audience, product segments, etc.
ContactInfo string An email address that can be used to provide feedback about this Redfish profile.
OwningEntity string The name of the owning entity that defined this Redfish interoperability profile.
) The name of the original author or entity that contributed the content of this profile to
ContributedBy string K .
the owning entity.
License string The license statement for this profile.
. A set of Redfish profiles that serve as a basis for this profile. The requirements set forth
RequiredProfiles object)
in these profiles are included in this profile.
. Requirements related to the Redfish protocol outside of the JSON resources. See the
Protocol object .
Protocol requirements clause.
Resources object The JSON resource requirements. See the Resource (schema) requirements clause.
Registries object The registry requirements. See the Registry-level requirements clause.

8.2.1 ProfileType’

The PprofileType property enables or disables various features of the profile definition to align with the intended
usage of the profile document. As the scope and usage of the profile concept has expanded, the use of a top-level
type selector provides a simple means to accommodate additional functionality that would either not apply or directly
conflict with the intended purpose of the profile definition.

8.2.1.1 ProfileType values

Value Description

An interoperability profile used to define common minimum requirements across multiple vendors or

Int
nterop implementations. If not specified, this is the default type.
A profile used to specify requirements for a specific Redfish implementation or configuration. This profile
type enables tools to produce an implementation or provisioning guide, and to test conformance to those
Product requirements. It allows for more restrictive and specific requirements than are defined by the Redfish

Specification or Schema, such as resource naming requirements, vendor-specific string values, or other
implementation-specific details.

14 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

8.2.2 Required profiles

The RequiredProfiles object contains object properties that are named to match the name of the profile to be
included. Each of these sub-objects contains the properties listed below.

Property Type Description

A URI providing the location of the repository that contains the JSON files to be
included. The filenames of the JSON files contained in the repository are expected to

Repository string L o —) ’
follow the Redfish interoperability profile filename conventions. If absent, the repository
location shall be the Redfish profile repository (http://redfish.dmtf.org/profiles).

The minimum version required by this Redfish profile. The version shall be represented

MinVersion string using @ <major>.<minor>.<errata> format, including an optional errata version. If this

property is absent, the minimum value shall be 1.0.0 .

8.2.3 Example

The following is an example of the top-level properties in a profile, with two required profiles included.

{
"SchemaDefinition": "RedfishInteroperabilityProfile.vl_ 9 0",
"ProfileName": "Anchovy",
"ProfileVersion": "1.0.2",
"OwningEntity": "Pizza Box Consortium",
"ContributedBy": "Contoso Anchovy Committee",
"License": "BSD 3-clause.",
"Purpose": "This is a sample Redfish Interoperability profile.",
"ContactInfo": "pizza@contoso.com",
"RequiredProfiles": {
"DMTFBasic": {
"MinVersion": "1.0.0"
})
"ContosoPizza": {
"Repository": "http://contoso.com/profiles",
"MinVersion": "1.0.0"
}
}
}

8.3 Protocol requirements

An object named Protocol contains properties which describe Redfish protocol functionality that is not related to the

Version 1.9.0 Published 15

http://redfish.dmtf.org/profiles

Redfish Interoperability Profiles

DSP0272

supported schemas or properties. Therefore, these functions cannot be validated by comparing retrieved JSON

payloads.

Property

MinVersion

Discovery

HostInterface

ExpandQuery

FilterQuery

SelectQuery

OnlyQuery

ExcerptQuery

DeepPATCH

DeepPOST

Type

string

string

string

string

string

string

string

string

string

string

Description

Indicates the minimum version of the Redfish Specification protocol support required by
this profile. This version shall be reported by the Redfish service in the serviceRoot
resource property RedfishVersion . The version shall be represented using a
<major>.<minor>.<errata> format, including an optional errata version. If this property
is absent, the minimum value shall be 1.0.0 .

Indicates support requirements for the Redfish SSDP discovery protocol. If this property
is absent, there is no requirement for SSDP. See the Requirement values clause.

Indicates support requirements for the Redfish host interface. If this property is absent,
there is no requirement for a host interface. See the Requirement values clause.

Indicates support requirements for the $expand query parameter. Additional $expand
support requirements may be specified in the resource entry for the
ProtocolFeaturesSupported oObject within ServiceRoot . If this property is absent, there
is no requirement for support of the $expand query parameter. See the Requirement
values clause.

Indicates support requirements for the $filter query parameter. If this property is
absent, there is no requirement for support of the $filter query parameter. See the
Requirement values clause.

Indicates support requirements for the $select query parameter. If this property is
absent, there is no requirement for support of the $select query parameter. See the
Requirement values clause.

Indicates support requirements for the only query parameter. If this property is absent,
there is no requirement for support of the only query parameter. See the Requirement
values clause.

Indicates support requirements for the excerpt query parameter. If this property is
absent, there is no requirement for support of the excerpt query parameter. See the
Requirement values clause.

Indicates support requirements for deep PATCH operations. If this property is absent
there is no requirement for support of deep PATCH operations. See the Requirement
values clause.

Indicates support requirements for deep POST operations. If this property is absent
there is no requirement for support of deep POST operations. See the Requirement
values clause.

16

Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

8.3.1 Example

{
"Protocol": {
"MinVersion": "1.24",
"Discovery": "Mandatory",
"HostInterface": "Recommended",
"ExpandQuery": "Mandatory",
"SelectQuery": "None",
"FilterQuery": "Recommended",
"OnlyQuery": "Mandatory",
"ExcerptQuery": "Recommended",
"DeepPOST": "Recommended",
"DeepPATCH": "Recommended"
}
}

8.3.2 Requirement values

Value Description

Mandatory This protocol feature is required for this profile.

Recommended It is recommended, but not required, that this protocol feature be supported.
None This feature is not required by this profile. It is listed here for clarity.

8.4 Resource (schema) requirements

The primary content in a Redfish profile is the set of supported property requirements. As Redfish is organized and
defined by schema-backed JSON resources, these requirements are also organized by schema.

For each schema, an object is created in the JSON document, named to match the schema name. Within this object,
properties describe the location of the schema file, and schema-level requirements. Within each schema-level object
is a PropertyRequirements object that describes the property-level requirements for that schema. The definition of
both the schema/resource-level and property-level requirements are accomplished using the same mechanisms,
which are described in the next clause.

The structure of the resource and property requirements is:

Version 1.9.0 Published 17

Redfish Interoperability Profiles DSP0272

"<schema-name>": {

"MinVersion": "<version>",
"CreateResource": "<boolean>",
"DeleteResource": "<boolean>",
"UpdateResource": "<boolean>",
"URIs": [

"<uri-pattern>",
"<uri-pattern>"
])
"PropertyRequirements": {
"<property-name>": {

"<property-requirements>": "<property-requirements-value>"
1
"<property-name>": {

"<property-requirements>": "<property-requirements-value>"
¥

}J
"ActionRequirements": {
"<action-name>": {

"<action-requirements>": "<action-requirements-value>"
}J
"ConditionalRequirements™: [
"<conditional-requirement>": "<conditional-requirements-value>"
3
"<conditional-requirement>": "<conditional-requirements-value>"

})

"<additional-schemas>": {}

8.4.1 Schema-level functions

The following options are available at the schema level:

Property Type Description

A URI providing the location of the repository that contains the JSON files to be
included. The filenames of the JSON files contained in the repository are expected to
follow the Redfish schema filename conventions. If absent, the repository location shall
be the Redfish schema repository (http://redfish.dmtf.org/schemas).

Repository string

18 Published Version 1.9.0

http://redfish.dmtf.org/schemas

DSP0272

Property

MinVersion

ReadRequirement

Purpose

ConditionalRequirements

CreateResource

DeleteResource

UpdateResource

URIs

RequiredResourceProfile

8.4.1.0.1 URI patterns

Type

string

string

string

object

boolean

boolean

boolean

array

object

Redfish Interoperability Profiles

Description

The minimum version required by this Redfish profile. The version shall be represented
using a <major>.<minor>.<errata> format, including an optional errata version. If this
property is absent, the minimum value shall be 1.0.0 .

Resource-level requirement for this schema. See the Read requirement clause.

A description of the purpose of this requirement. This text can provide justification or
reasoning behind the requirement for use in the profile documentation.

Resource-level conditional requirements that apply to instances of this schema. See
the Conditional requirements clause.

Specifies a requirement that a user may create a member of this resource. This
normally applies to Redfish resource collections. If this property is absent, there is no
requirement to support creation of members of this resource.

Specifies a requirement that a user may delete a member of this resource. This
normally applies to Redfish resource collections. If this property is absent, there is no
requirement to support deletion of members of this resource.

Specifies a requirement that a user may update a member of this resource. This
normally applies to Redfish resource collections. If this property is absent, there is no
requirement to support updating of members of this resource, but individual property-
level read-write requirements apply.

An array of URI references to which the ReadRequirement and WriteRequirement are
applied. The values shall follow the resource URI pattern definition specified in the
Redfish Specification. For product profile types, the values may also be written as
regular expression patterns to further specify naming requirements in the URI path
segments. Values in the form of regular expression patterns must follow ECMA-262,
start with ~ , and end with ¢ .

Specifies a Redfish interoperability profile file that contains requirements for this
resource or resource use case. The ResourceRequirements for this resource type,
contained within the specified profile, are applied. All other requirements included in the
specified profile, which do not apply to this resource type, are ignored.

The URIs property provides a means to easily create requirements or conditional requirements for resource types
that occur at multiple locations in the resource tree. Profiles that specify one or more URI patterns with no
PropertyRequirements for the schema indicates a requirement for the presence of at least one resource that matches

each URI pattern.

While 1nterop profiles may only specify URI patterns defined in Redfish schema, a product type profile may also

define URI patterns using regular expressions that place more restrictive naming requirements based on the pattern

of value for resources' 1d properties.

Version 1.9.0

Published 19

Redfish Interoperability Profiles DSP0272

Note that early versions of the Redfish Specification prior to version 1.6 (released in 2018) did not require specific
URI patterns. Profiles containing URI pattern requirements shall require a Redfish Specification version 1.6 or higher
in the profile's Protocol object Minversion property.

8.4.1.1 Example

This example shows a simple required schema:

"ComputerSystem": {

"MinVersion": "1.22.0",
"Purpose": "Every instance must have a logical-view ComputerSystem resource.",
"PropertyRequirements": {

"SerialNumber": {},

"Manufacturer": {},

"Model": {

"ReadRequirement": "Recommended"

¥

8.4.2 Resource use cases

Some Redfish schemas are re-used for many types of equipment, and also in different parts of the resource tree.
The requirements specified in a profile can differ significantly based on a particular resource's usage in the hierarchy.
While slight variations in requirements can be handled using conditional requirements, larger variations can instead
be expressed with use cases.

The use case resource requirement structure is employed when a particular resource (schema) has two or more
significantly different sets of requirements that are dependent on a "type" of that resource, which can be specified
using a single property-level comparison, by the URI pattern for those resources, or both.

For example, the Memory schema supports both DRAM (DIMM) and non-volatile (NV-DIMM) memory devices. The
management requirements for a NV-DIMM device are considerably different than those for DRAM. By setting up two
use cases for the Memory schema, one for "DIMM" and the other for "NV-DIMM" memory, the resulting profile is both
easier to construct and easier to comprehend.

The structure for a set of resource use cases follows the resource-level structure, with a single UseCases property in
place of the resource-level requirements. Those requirements are specified within each use case:

"<schema-name>": {

20 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

"UseCases": [

{
"UseCaseTitle": "<title>",
"UseCaseKeyProperty": "<property name>",
"UseCaseKeyValues": [
"<values of key property for comparison>"
1,
"UseCaseComparison”: "<type of comparison>",
"URIs": [
"<uri-pattern>",
"<uri-pattern>"
1,
"PropertyRequirements": {
"<Property Requirements>": "<property requirements values>"
¥
"ActionRequirements": {
"<Action Requirements>": "<action requirements values>"
}
¥
{
"<Second Use Case>": {}
3
{
"<Additional Use Cases>": {}
¥

8.4.2.1 Use case-level functions

Each use case may include any of the options available as a schema-level function. A use case that includes the
URIs property, with or without PropertyRequirements Or ActionRequirements , creates a requirement for resources of
this type to exist at the URI patterns specified. In addition, the following options are also available at the use case

level:
Property Type Description
UseCaseTitle string A title or short name used to identify the resource use case.
) Specifies if the use case applies to special resource situations. See the Use case types
UseCaseType string
clause.
. The name of the property within the resource used by the usecaseComparison to define
UseCaseKeyProperty stnng
the use case.
UseCaseKeyValues string The values of UseCaseKeyProperty used to evaluate the useCaseComparison .

Version 1.9.0 Published 21

Redfish Interoperability Profiles DSP0272

Property Type Description

Specifies the type of comparison to perform using the usecCasekeyProperty and the
UseCaseComparison string values contained in UseCaseKeyvalues . If the comparison is successful, this resource
instance is covered by this resource use case. See the Comparison clause.

8.4.2.2 Use case types

Value Description
Normal A normal resource use case. The default value if not specified.

The use case applies to resources where the state property in the status object contains a value of

AbsentResource
Absent .
The use case applies to resources subordinate to a chassis resource where the chassisType property of
ChassisType that resource is used as the UseCasekeyProperty to evaluate the useCaseComparison and
UseCaseKeyValues .
1 The use case applies to resources subordinate to a brive resource where the protocol property of that
DriveProtoco
resource is used as the UseCaseKeyProperty to evaluate the UseCaseComparison and UseCasekeyValues .
The use case applies to resources subordinate to a Memory resource where the MemoryType property of
MemoryType that resource is used as the UseCasekeyProperty to evaluate the useCaseComparison and
UseCaseKeyValues .
y The use case applies to resources subordinate to a port resource where the protocol property of that
PortProtoco .
resource is used as the UseCaseKeyProperty to evaluate the UseCaseComparison and UseCasekeyValues .
The use case applies to resources subordinate to a Processor resource where the ProcessorType
ProcessorType property of that resource is used as the UseCasekeyProperty to evaluate the UseCaseComparison and

UseCaseKeyValues .

8.4.2.3 Use case example

This example shows a use case selecting requirements by MemoryType for DRAM-based Memory resources under
the systems collection, and non-volatile (NV-DIMM) Memory resources anywhere in the resource tree. It then shows
the selection of the MemoryMetrics resources using UseCaseType to limit the requirements to those resources
subordinate to non-volatile (NV-DIMM) Memory resources.

"Memory": {
"UseCases": [

{
"UseCaseTitle": "DIMM",

22 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

"UseCaseKeyProperty": "MemoryType",

"UseCaseComparison": "Equal",

"UseCaseKeyValues": [
"DRAM"

1,

"URIs": [
"/redfish/v1/Systems/{ComputerSystemsId}/Memory/{MemoryId}"

1,

"MinVersion": "1.13.0",

"PropertyRequirements": {
"CapacityMiB": {},
"Location": {},
"Manufacturer": {},
"ModuleProductID": {},
"OperatingSpeedMhz": {},
"PartNumber": {}

"UseCaseTitle": "NV-DIMM",

"UseCaseKeyProperty": "MemoryType",

"UseCaseComparison”: "NotEqual",

"UseCaseKeyValues": [
"DRAM"

1,

"MinVersion": "1.13.0",

"PropertyRequirements”: {
"CapacityMiB": {},
"ConfigurationLocked": {},
"EnvironmentMetrics": {},
"Location": {},
"Manufacturer": {},
"MemoryDeviceType": {},
"MemoryMediaType": {},
"Metrics": {},
"ModuleProductID": {},
"NonVolatileSizeMiB": {},
"OperatingSpeedMhz": {},
"PartNumber": {},
"SerialNumber": {},
"Status": {},
"VolatileSizeMiB": {}

¥
"MemoryMetrics": {
"UseCases": [

{
"UseCaseTitle": "NV-DIMM Metrics",

Version 1.9.0 Published 23

Redfish Interoperability Profiles DSP0272

"UseCaseType": "MemoryType",
"UseCaseComparison”: "NotEqual",
"UseCaseKeyValues": [
"DRAM"
1,
"URIs": [
"/redfish/v1/Systems/{ComputerSystemsId}/Memory/{MemoryId}/MemoryMetrics"
1,
"MinVersion": "1.7.0",
"PropertyRequirements": {
"BandwidthPercent": {},
"CapacityUtilizationPercent": {},
"CurrentPeriod": {
"PropertyRequirements”: {
"BlocksRead": {},
"BlocksWritten": {}

¥
"LifeTime": {
"PropertyRequirements": {
"BlocksRead": {},
"BlocksWritten": {}

8.4.3 Property-level functions

Within the PropertyRequirements object are additional objects that are named to match the property name in the
parent object's schema definition. This object then contains the property-level requirements, which account for the
bulk of a profile's definition. One additional level of JSON objects may be embedded, essentially nesting a
PropertyRequirements object.

The following options are available at the property level:

Property Type Description
ReadRequirement string Property-level requirement for this property. See the Read requirement clause.

) Property-level write (HTTP PATCH or PuT) requirement for this property. See the Write
WriteRequirement string . clause
requiremen .

24 Published Version 1.9.0

DSP0272

Property

ConditionalRequirements

MinCount

MinSupportValues

Comparison

Purpose

Values

ReplacedByProperty

ReplacesProperty

PropertyRequirements

8.4.3.1 Example

Type

object

integer

array

string

string

array

string

string

object

Redfish Interoperability Profiles

Description

Property-level conditional requirements that apply to instances of this property. See the
Conditional Requirements clause.

For array type properties, the minimum number of non-NULL instances within the array.
The minimum set of enumerations that must be supported for this writable property.

The condition used to compare the value of the property to values . See the
Comparison clause.

A description of the purpose of this requirement. This text can provide justification or
reasoning behind the requirement for use in the profile documentation.

The values used to perform a comparison . Multiple values are only allowed for Anyof
or Allof comparisons. If no comparison property is present, the comparison is
assumed to be an Anyof comparison.

A property that fulfills the requirements of the current property, if present in the
resource. The value is the name of the property, evaluated at the same object level, or
an RFC6901-defined JSON Pointer to the property within the resource. If the specified
property is present in the resource, all requirements for the current property are
ignored.

A deprecated or obsolete property that this property replaces. The value is the name of
the property, evaluated at the same object level, or an RFC6901-defined JSON Pointer
to the property within the resource. If the current property is not present, its
requirements can be met by the presence of the named property it replaces. If the
current property is present, it must meet the requirements regardless of the presence of
the property it replaces.

For Redfish object properties, this object contains requirements for the properties
contained within the specified object. This specification allows for only one level of
nested objects and requirements.

This example shows property-level requirements. For each sensor resource, the ReadingType , Reading , Status ,

and Implementation properties are all mandatory. PhysicalContext is specified as a recommended property.

ReadingType specifies further requirements with the Al1lof comparison, which indicates the service is required to
provide at least one Sensor resource with Temperature as ReadingType and atleast one Sensor resource with

Voltage as ReadingType .

Implementation also specifies further requirements with the Equal comparison, which

indicates the required value for the property is PhysicalSensor .

{
"Sensor": {
"PropertyRequirements": {
Version 1.9.0 Published 25

Redfish Interoperability Profiles

"ReadingType": {

"ReadRequirement”: "Mandatory",
"Comparison": "AllOf",
"Values": [

"Temperature",

"Voltage"
]

s

"Reading": {},

"Status": {},

"Implementation": {
"ReadRequirement”: "Mandatory",
"Comparison": "Equal",
"Values": [

"PhysicalSensor"
]
3

"PhysicalContext": {
"ReadRequirement"”: "Recommended"

8.4.3.2 Comparison

DSP0272

The comparison function uses the following enumerations to represent the various comparisons available:

Value Description
Absent The property is not present in this resource.
AnyOf At least one instance of the property in applicable resources must be equal to one of the values listed.
Allof At least one instance of the property in applicable resources must be equal to each of the values listed.
Equal The value of the property must be equal to one of the values listed in the profile.
NotEqual The value of the property must not be equal to any of the values listed in the profile.
GreaterTh The value of the property must be greater than the values listed in the profile. This comparison is only valid
reaterihan
for numeric properties.
The value of the property must be greater than or equal to the values listed in the profile. This comparison
GreaterThanOrEqual . N . .
is only valid for numeric properties.
LessTh The value of the property must be less than the values listed in the profile. This comparison is only valid
essthan for numeric properties.
26 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

Value Description

The value of the property must be less than or equal to the values listed in the profile. This comparison is

LessThanOrEqual . . .
only valid for numeric properties.
Present The property is present in this resource.
LinkTon The object contains a link to a resource with a type equal to one of the schema names listed in the values
1nKloResource . . .
of the profile. The type is the unversioned schema name, such as Processor Or Memory .
The value of the property must be within the range of inclusive values specified. The values array shall
contain the minimum and maximum values as the first two elements, and may contain a nominal or
Range recommended value as a third element. Additional elements in the array shall be ignored. A null value
shall indicate that no minimum or maximum value is specified. This comparison is only valid for numeric
properties and for Product profile types.
patt The value of the property must match one or more of the regular expressions contained in the values
a ern

array. This comparison is only valid for product profile types.

Many of these comparison types are simple arithmetic, boolean, or string value comparisons. In addition, Absent
and present allow for comparisons concerning the existence or absence of a property. The LinkToResource
comparison specifies that the object property contains an @odata.id property to a resource whose schema name
(type) is listed in the values array.

The Anyof and Allof comparison types can be met using any resource instance within the scope of the schema-
level requirement. Comparisons of these types within resource use cases or conditional requirements can only be
met by resources that meet the resource use case or conditional requirements.

8.4.3.3 Read requirement

The Readrequirement function specifies the level of basic read (HTTP GeT) requirement applied to the resource or
property. The default value, or if no ReadRequirement is present, is Mandatory . For object properties, requirements of
the embedded properties will apply only if the object is present.

Value Description

This property is required in all instances of this resource. For array properties, the property is required in
Mandatory all non-null array items. If values is defined, at least one instance of each enumeration value is required
among instances of this property.

This property is required to be supported by the service, but may not appear in all instances of this

S ted
upporte resource. The requirement is met if the property appears in at least one instance of this resource.
Recommended It is recommended, but not required, that this property be supported.
This property is required if the underlying functionality is implemented. For object properties, requirements
IfImplemented

on embedded properties within the object will only apply if the object is present.

Version 1.9.0 Published 27

Redfish Interoperability Profiles DSP0272

Value Description

For property-level requirements, this property is required if the state property within the status object
for the object or resource does not contain Absent . This value is useful for properties within absent

IfPopulated resources where empty slots, sockets, or bays are rendered with minimal properties until they are
populated by a device. For resource-level requirements, this value indicates that the resource is required,
but may not be present (populated) in the service at all times.

Conditional This property is only required if ConditionalRequirements items apply to this instance of the resource.
Excluded This property or resource cannot be present. This value is only valid for product profile types.
None This property is not required by this profile. It is listed here for clarity.

8.4.3.4 Write requirement

The writeRequirement function specifies the level of write support (HTTP PATCH or puT) applied to a property. The
default value, or if N0 writeRequirement is present, is None . The WriteRequirement applies to a property once the
ReadRequirement is met.

Value Description

Mandatory This property is required to be writable in all instances of this resource.

This property is required to be writable in some instances of this resource. A service meets the

Supported " A

requirement if the property is writable in at least one resource instance.
Recommended It is recommended, but not required, that this property be writable.

This property is not required to be writable by this profile. It is listed here for clarity, and is the default value
None

used if writeRequirement is not present.

8.4.3.5 Conditional requirements

The most flexible aspect of the Redfish profile definition is the ability to make resource or property-level requirements
that are dependent on one or more conditional requirements within the resource and the parent resources in the
resource tree.

The conditionalRequirements array function specifies these conditional requirements, which add to any
requirements also defined for the resource or property. Note that a condition cannot override or weaken a
requirement already specified. For example, if a property requirement is marked as Mandatory , no conditional
requirement could mark the property as None . Instead, the property would be specified with a None requirement,
and with one or more ConditionalRequirements that would specify when the property requirement becomes
Mandatory .

28 Published Version 1.9.0

DSP0272

Redfish Interoperability Profiles

The following options are available for each conditional requirement:

Property

ReadRequirement

WriteRequirement

Purpose

URIs

SubordinateToResource

Comparison

Values

CompareProperty

CompareValues

CompareType

8.4.3.5.1 Parent and subordinate resources

Type

string

string

string

array

array

string

array

string

array

string

Description
The requirement to apply to the resource or property if the condition is met.

Property-level write (HTTP PATCH or puT) requirement for this property. See the Write
requirement clause.

Text describing the purpose of this conditional requirement.

An array of URI references to which the ReadRequirement and WriteRequirement is
applied. The values shall follow the resource URI pattern definition specified in the
Redfish Specification.

An ordered list, from top of hierarchy to bottom, of resources where this resource is
linked as a subordinate resource. The conditional requirements listed for the resource
apply only to instances which are subordinate to the listed parent resource list. See the
Parent and subordinate resources clause.

The condition used to compare the value of the property to values . See the
Comparison clause.

The values used to perform a comparison. Multiple values are only allowed for Anyof
or Allof comparisons. If no cComparison property is present, the comparison is
assumed to be an Anyof comparison.

The name or path to the property in this resource whose value is used to test this
condition. If the value begins with a / character, the value shall represent an
RFC6901-defined JSON Pointer, specifying an explicit path from the root level of the
resource to a property within the resource. Otherwise, the property name will be
evaluated at the current object level within the resource, and if it is not found, upper
levels will be searched until the root level is reached. See the Compare property
clause.

Values of the compareProperty used to test this condition. See the Compare property
clause.

The condition used to compare the value of the property named by compareProperty to
the values of comparevalues . This property follows the same definition as the
comparison property. If the comparison is true, this conditional requirement applies.
See the Compare property clause.

Because there can be several instances of a particular Redfish schema in the resource tree, the requirements placed
on those resources may vary depending on their usage. Since the profile is schema-centric, the
SubordinateToResource function allows a profile to specify requirements based a resource instance's placement in

the resource tree.

Version 1.9.0

Published 29

Redfish Interoperability Profiles DSP0272

SubordinateToResource allows specifying the schema (resource) path from parent resources to the resource to which
the requirements apply. This property contains an array of schema names, in the top-down order that they appear in
the path to the required resource.

Note that this functionality may also be accomplished using the urIs function for the resource, which is the
preferred method.

8.4.3.5.2 Example

For the property HostName inthe EthernetInterface schema, the example shows it as Recommended property. But if
an instance of EthernetInterface is linked from a ComputerSystem resource, through the
EthernetInterfaceCollection resource, the Condition is met, which changes the HostName property requirement to
Mandatory .

In the second part of the example, the IPveAddresses array property is required to have at least one item (MinCount)
in the array. But if, as in the previous example, the instance is subordinate to a computerSystem (and
EthernetInterfaceCollection) resource, at least two items are required in the array.

"EthernetInterface": {
"PropertyRequirements": {
"HostName": {

"ReadRequirement"”: "Recommended",
"WriteRequirement": "Recommended",
"ConditionalRequirements": [

{

"SubordinateToResource": [
"ComputerSystem",
"EthernetInterfaceCollection”

1,

"ReadRequirement": "Mandatory",

"Purpose”: "Used to match this instance to other data sources."

¥
1
3
"IPv6Addresses": {
"ReadRequirement": "Mandatory",
"MinCount": 1,
"ConditionalRequirements": [
{

"SubordinateToResource": [
"ComputerSystem",
"EthernetInterfaceCollection”

1,

"MinCount": 2

¥
1
¥

30 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

8.4.3.5.3 Compare property

A typical need for a conditional requirement is a dependency on the value of another property within the resource.
This type of dependency can be used when several different product variations share a common schema definition.
In that case, Redfish schemas normally define a type-specifying property with enumerations, for a variety of product
categories, that can be used to differentiate profile requirements by product category.

To accomplish this, there are three Profile properties related to this function:

Property Type Description

The name or path to the property in this resource whose value is used to test this
condition. If the value begins with a / character, the value shall represent an
. RFC6901-defined JSON Pointer, specifying an explicit path from the root level of the
CompareProperty string o . .
resource to a property within the resource. Otherwise, the property name will be
evaluated at the current object level within the resource, and if it is not found, upper

levels will be searched until the root level is reached.

The condition used to compare the value of the property named by compareProperty to
c i the values of Comparevalues . This property follows the same definition as the
i strin
onparetype 9 comparison property. If the comparison is true, this conditional requirement applies.

This property is required and shall be present for all uses of cCompareProperty .

Values of the compareProperty used to test this condition. This property shall be
CompareValues array
present for any value of CompareType except Present and Absent .

8.4.3.5.4 Examples

Simple dependencies can be expressed using the conditional requirement and a comparison. This example shows a
CompareProperty condition applied to the pepperoni property. If the PizzaType property is not equal to cheese ,
then the Pepperoni property becomes both mandatory and must have a value of true .

"Pepperoni": {
"ReadRequirement"”: "Recommended",
"ConditionalRequirements™: [
{
"Purpose": "Pepperoni is required on all pizza types except Cheese.",
"CompareProperty": "PizzaType",

Version 1.9.0 Published 31

Redfish Interoperability Profiles DSP0272

"CompareType": "NotEqual",
"CompareValues": [

"Cheese"
1,
"ReadRequirement": "Mandatory",
"Comparison": "Equal",
"Values": [

true

This example shows a compareProperty condition applied to the IndicatorLED property, which has a base
Recommended requirement, but becomes Mandatory if the SystemType property has a value of Physical or

Composed .
{
"IndicatorLED": {
"ReadRequirement": "Recommended"”,
"ConditionalRequirements™: [
{
"Purpose”: "Physical and composed systems must have a writable LED",

"CompareProperty": "SystemType",
"CompareType": "AnyOf",
"CompareValues": [

"Physical",

"Composed"
1,
"ReadRequirement”: "Mandatory",
"WriteRequirement": "Mandatory"

This example shows a compareProperty condition applied to the serialNumber property, which has a Conditional
requirement, becoming Mandatory only in cases where the /Location/PartLocation/LocationType property
(specified as a JSON Pointer per RFC6901) has a value that is not Embedded .

"SerialNumber": {
"ReadRequirement”: "Conditional",

32 Published Version 1.9.0

DSP0272 Redfish Interoperability Profiles

"ConditionalRequirements™: [

{
"Purpose"”: "SerialNumber is required on Memory resources whose LocationType is not
Embedded. ",
"CompareProperty": "/Location/PartLocation/LocationType",
"CompareType": "NotEqual",
"CompareValues": [
"Embedded"
1,
"ReadRequirement™: "Mandatory"
¥

8.4.3.6 Handling deprecated properties

As the Redfish data model evolves, there are many cases of properties being deprecated in favor of an improved
property that replaces it. While it would be preferred for a profile to specify the new property, existing service
implementations could not meet these requirements. Furthermore, it may take substantial time for broad adoption of
the replacement property.

Rather than creating property-level requirements for both the original and the replacement property, the
ReplacesProperty and ReplacedByProperty functions allow a profile to specify requirements where either the original
or replacement property can fulfill those requirement, without requiring "legacy" support of deprecated properties.

For example, the widely-implemented IndicatorLED property, which suffered from interoperability issues due to the
different LED states implemented by vendors, was replaced by the LocationIndicatorActive property throughout the
Redfish data model. To encourage vendors to implement the replacement property, an entry for
LocationIndicatorActive is added to the profile. But as existing implementations will only support the deprecated
IndicatorLED , it is referenced using the ReplacesProperty function. That allows an implementation to meet the
requirements by supporting either property, but not placing any requirement that it supports both the deprecated
property and its replacement.

8.4.3.6.1 Examples

This example shows the LocationIndicatorActive property requirements, which can be met if the service
implements the deprecated IndicatorLED property. But if the service implements the replacement property, it has no
profile requirement to carry the deprecated, "legacy" property.

"PropertyRequirements": {
"LocationIndicatorActive": {

Version 1.9.0 Published 33

Redfish Interoperability Profiles DSP0272

"ReadRequirement": "Mandatory",
"WriteRequirement": "Mandatory",
"ReplacesProperty": "IndicatorLED"

This example follows the previous one but retains specific requirements on the deprecated IndicatorLED property. If
the service implements only the deprecated 1IndicatorLED property, it will meet both of these property requirements,
as long as it supports setting the IndicatorLED property to the off, Lit,and Blinking values. If the service
implements the LocationIndicatorActive property, the requirements on IndicatorLED are ignored.

{
"PropertyRequirements": {
"LocationIndicatorActive": {
"ReadRequirement": "Mandatory",
"WriteRequirement"”: "Mandatory",
"ReplacesProperty"”: "IndicatorLED"
})
"IndicatorLED": {
"ReadRequirement”: "Mandatory",
"WriteRequirement": "Mandatory",
"ReplacedByProperty": "LocationIndicatorActive",
"MinSupportValues": [
"off",
"Lit",
"Blinking"
]
}
}
}

8.4.4 Action requirements

Because several critical functions of a Redfish service are implemented as Actions , the profile may place
requirements for support of these Actions. The requirements can specify which parameters must be supported, and
may specify allowable values for those parameters.

The following functions are available to specify requirements for an action within a resource requirement:

Property Type Description

ReadRequirement string The requirement to apply to this action.

34 Published Version 1.9.0

DSP0272

Property

Parameters

Purpose

ActionInfo

Type

object

string

string

Redfish Interoperability Profiles

Description
The requirements for any parameter available for this action.

A description of the purpose of this requirement. This text can provide justification or
reasoning behind the requirement for use in the profile documentation.

The requirement for the service to provide an ActionInfo resource associated with this
action, along with the @Redfish.ActionInfo payload annotation. If not present, the
default value is None to indicate there is no requirement.

The following values are allowed for the ActionInfo requirement:

Value

Mandatory

Recommended

None

8.4.4.1 Parameters

Description

An associated ActionInfo resource is required to be populated for this action. The Parameters array will
include elements for each supported parameter.

An associated ActoinInfo resource is recommended to be populated for this action.

There is no requirement for an associated ActionInfo resource for this action.

The following functions are available to specify requirements for a parameter on a particular action:

Property

ReadRequirement

ParameterValues

RecommendedValues

8.4.4.2 Example

Type

string

array

array

Description
The requirement to apply to this parameter.

The minimum set of enumerations that must be supported for this parameter to meet
the Requirement.

For mandatory parameters, the set of enumerations, in addition to those listed in
ParameterValues , that are recommended for this parameter.

This example shows the Reset action as required for this resource, along with the required parameter ResetType ,

which must support the values of Forceoff and PowerCycle .

"ActionRequirements": {

Version 1.9.0

Published 35

Redfish Interoperability Profiles

"Reset": {

"ReadRequirement”: "Mandatory",

"Purpose”: "Ability to reset the unit is a core requirement of most users.”,

"Parameters": {

"ResetType": {
"ParameterValues": [

"ForceOff",
"PowerCycle",
"on"

DSP0272

"RecommendedValues": [

"GracefulShutdown",
"GracefulRestart",

"ForceRestart",

"PushPowerButton"

"ReadRequirement": "Mandatory"

8.5 Registry-level requirements

While not normally part of the JSON resources, the Redfish-defined message registries are important for
interoperability, as they indicate what functionality has been implemented for events, and are also a useful method
for setting expectations on the use of extended info error messages when interacting with a Redfish service.

The following functions are available to specify registry-level requirements:

Property

Repository

MinVersion

ReadRequirement

Purpose

Type

string

string

string

string

Description

A URI providing the location of the repository which contains the JSON files to be
included. The filenames of the JSON files contained in the repository are expected to
follow the Redfish message registry filename conventions. If absent, the repository
location shall be the Redfish registry repository (http://redfish.dmtf.org/registries).

The minimum version required by this Redfish profile. The version shall be represented
using a <major>.<minor>.<errata> format, including an optional errata version. If this
property is absent, the minimum value shall be 1.0.0 .

Resource-level requirement for this registry. See the Read requirement clause.

A description of the purpose of this requirement. This text can provide justification or
reasoning behind the requirement for use in the profile documentation.

36

Published Version 1.9.0

http://redfish.dmtf.org/registries

DSP0272 Redfish Interoperability Profiles

Property Type Description

The messages in this registry that have support requirements for this Redfish profile. If
Messages object this property is absent, all messages in this registry follow the registry-level

ReadRequirement .

The features in this registry that have support requirements for this Redfish profile. If
SupportedFeatures object this property is absent, all supported features in this registry follow the registry-level

ReadRequirement .

8.5.1 Messages

Within the registry object are additional objects that are named to match the message name in the registry definition.
This object then contains the message-level requirements.

The following options are available at the message-level:

Property Type Description

ReadRequirement string Message-level requirement for this message. See the Read requirement clause.

8.5.2 Example

This example shows requirements for two message registries, including one OEM-defined registry. The Base
registry is a DMTF standard registry. By default since no owningentity is listed, and therefore can be retrieved by
default from DMTF's repository. The Base registry lists only four messages that are required.

In the case of the OEM-defined registry ContosoPizzaMessages , the Mandatory requirement set at the registry level
specifies that all messages defined in that registry are required.

"Registries": {
"Base": {

"MinVersion": "1.18.0",

"Messages": {
"Success": {},
"GeneralError": {},
"Created": {},
"PropertyDuplicate”: {}

1
"ContosoPizzaMessages": {
"OwningEntity": "Other",

Version 1.9.0 Published 37

Redfish Interoperability Profiles DSP0272

"OwningEntityName": "Contoso",
"Repository": "http://contoso.com/registries”,
"ReadRequirement"”: "Mandatory"

8.5.3 Supported features

Within the registry object are additional objects that are named to match the Supportedreatures name in the registry
definition. This object then contains the features-level requirements.

The following options are available at the feature-level:

Property Type Description

ReadRequirement string Feature-level requirement for this supported feature. See the Read requirement clause.

8.5.4 Example

This example shows requirements for a feature registry. The swordfishFeatures registry is a DMTF-partner defined
standard registry, specified as such where the owningEntity is SNIA . SNIA re-publishes their registries through
DMTF and therefore this registry can be retrieved from DMTF's repository. In this example, the swordfishFeatures
registry lists two features that are supported by the service.

{
"Registries": {
"SwordfishFeatures": {
"MinVersion": "1.0.2",
"SupportedFeatures": {
"SNIA.Swordfish.Discovery": {},
"SNIA.Swordfish.EventNotification": {}
¥
}
}
}

38 Published Version 1.9.0

DSP0272

Redfish Interoperability Profiles

9 ANNEX A (informative) Change log

Version

1.9.0

1.8.2

1.8.1

1.8.0

1.7.0

1.6.0

1.5.0

Date

2025-12-04

2025-09-05

2025-05-01

2024-04-03

2023-11-30

2022-12-07

2021-12-02

Description

Added ProfileType to provide new profile-based functionality to produce product specifications,
test implementations for conformance, or validate a deployment configuration.

Added Range and Pattern to CompareType . Added Excluded to ReadRequirement . Added regular
expression support to URIs for Product profile types.

Updated the example in the Property-level functions clause to show a more realistic example
using the sensor resource.

Corrected the semantics of Equal and NotEqual in the Comparison section to allow for multiple
values to be specified.

Added chassisType , DriveProtocol , MemoryType , PortProtocol , and ProcessorType as
additional usecaseType values to support resource use cases for selecting resources based on a
subset of parent resources in the tree.

Clarified that for conditional requirements using a CompareProperty , a valid CompareType is
required as part of the definition.

Made many changes for style consistency, grammar, and general clarity. Except for the following
additions, no normative changes were made. Any clarifications that inadvertently altered the

normative behavior are considered errata and will be corrected in future revisions to the
specification.

Clarified the usage of URIs in resource use cases.
Added UsecaseType to support resource use cases for absent resources.

Added ActionInfo to Action requirements to specify requirements for an ActionInfo resource
associated with an action.

Added DeepPATCH to Protocol requirements to specify requirements for supporting deep PATCH
operations.

Added DeepPosT to Protocol requirements to specify requirements for supporting deep POST
operations.

Added support for resource use cases.

Added RequiredResourceProfile tothe Schema-level functions section to allow inclusion of
individual schema-level requirements from other profiles.

Added ReplacesProperty and ReplacedByProperty to the Property-level functions section to
provide better handling of requirements on deprecated or obsolete properties.

Added guidance for handle deprecating properties.

Added support for JSON Pointer usage in CompareProperty .

Version 1.9.0

Published 39

Redfish Interoperability Profiles DSP0272

Version

1.4.1

1.4.0

1.3.0

1.2.0

1.0.1

1.0.0

Date

2021-10-06

2021-09-15

2019-12-06

2019-07-03

2019-02-26

2018-05-15

2018-01-02

Description

Corrected descriptions for createResource , DeleteResource , and UpdateResource to match
terminology and usage in the sample profiles.

Made many changes for style consistency, grammar, and general clarity. Except for the following
additions, no normative changes were made. Any clarifications that inadvertently altered the
normative behavior are considered errata, and will be corrected in future revisions to the
specification.

Added License and ContributedBy .
Added missing table entries for Protocol , Resources , and Registries .

Added supportedFeatures to registry-level information, and added an overview and example of
SupportedFeatures.

Added 1fpopulated enumeration value to ReadRequirement to indicate to conformance test tools
that a required property is not required if the underlying hardware isn't populated, or that a required
resource may not be populated under test conditions.

Added supported enumeration value to ReadRequirement and WriteRequirement to allow for
required properties that are supported by some, but perhaps not all, instances of a resource.

Added missing pattern term for version properties.

Added support for new protocol features from Redfish Specification v1.6. Added ability to make
requirements based on URI patterns as specified in Redfish schema files. Updated normative
references to current versions. Clarified that Repository value may indicate a profile or schema
file location, as appropriate. Formatting improvements.

Errata release. Corrected definition of comparison for conditional requirements to match the
schema usage (and consistent with other usage). Added missing values property for conditional
requirements and added new compareType property to replace the inconsistent usage of
Comparison . Added example for a conditional requirement that uses the values array.

Initial release.

40

Published Version 1.9.0

	Redfish Interoperability Profiles
	Foreword
	Acknowledgments
	1 Abstract
	2 Overview
	3 Normative references
	4 Terms and definitions
	5 Design tenets
	6 Profile tools
	7 Profile repository
	8 Profile document definition
	8.1 File name conventions
	8.2 Basic functions
	8.2.1 ProfileType`
	8.2.1.1 ProfileType values

	8.2.2 Required profiles
	8.2.3 Example

	8.3 Protocol requirements
	8.3.1 Example
	8.3.2 Requirement values

	8.4 Resource (schema) requirements
	8.4.1 Schema-level functions
	8.4.1.0.1 URI patterns
	8.4.1.1 Example

	8.4.2 Resource use cases
	8.4.2.1 Use case-level functions
	8.4.2.2 Use case types
	8.4.2.3 Use case example

	8.4.3 Property-level functions
	8.4.3.1 Example
	8.4.3.2 Comparison
	8.4.3.3 Read requirement
	8.4.3.4 Write requirement
	8.4.3.5 Conditional requirements
	8.4.3.5.1 Parent and subordinate resources
	8.4.3.5.2 Example
	8.4.3.5.3 Compare property
	8.4.3.5.4 Examples

	8.4.3.6 Handling deprecated properties
	8.4.3.6.1 Examples

	8.4.4 Action requirements
	8.4.4.1 Parameters
	8.4.4.2 Example

	8.5 Registry-level requirements
	8.5.1 Messages
	8.5.2 Example
	8.5.3 Supported features
	8.5.4 Example

	9 ANNEX A (informative) Change log

