Redfish Specification

Supersedes: 1.23.0
Document Class: Normative
Document Status: Published

Document Language: en-US

Document Identifier: DSP0266
Date: 2025-12-04

Version: 1.23.1

Redfish Specification DSP0266

Copyright Notice
Copyright © 2015-2025 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified DMTF that, in their opinion, such
patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/
policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

2 Published Version 1.23.1

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

DSP0266 Redfish Specification

CONTENTS

FOreWOrd. . . o e 12
ACKNOWIEAgMENtS 12
INtrOdUCHION L 15
1 S COPE . . o ot 16
2 Normative referenCesS. 17
3 Terms, definitions, symbols, and abbreviated terms 19
S Hardware terms 19
3.1.1 baseboard management controller (BMC) 19

B 2 P M. L 19

B B KVM-IP 20

B A NIC 20

B D P 20

BB PCIE .o 20
3.2Web development terms 20

3. 2.1 CORS . 20

3.2.2 CRUD 20

3.2 8 CORF .o 20

B 2 A HT TP . . oo 20

B 2 HT TP S o 20

3.2.6 hypermedia APl 21

B 2 T P . e 21

3.2 8 USON. . . 21

3. 2.0 MESSaA0Et 21
32,10 0Data . . 21

3.2.11 OData service document. 21

3.2 12 0peration 21

3.2 13 pareNt rESOUICEottt et e e e e e 21

B 0 o o o= o 21

3.2 15 reqUEST . . . 22
3.2 B FESPONSE .« . o o it e 22
32,17 SUDSCIIPHION . . o . 22

3 2 A8 TP . oo 22
3210 TS Lo 22
32,20 XSS . . o 22

3.3 Redfish terms 22
3.3.1 aCtioN. . .. 22

3.3.2 collection 22

3.3 3 BVeNt . . 22

3.3 4 eXCerPl . . 23

3.3 D mMEemMbEr. . . 23

3.3.6 Redfish client. 23

Version 1.23.1 Published 3

Redfish Specification DSP0266

3.3.7 Redfish Device Enablement (RDE). e 23
3.3.8 Redfish protocol e 23
3.3.9Redfish schema 23
3.3 10 Redfish SEIVICE o 23
3.3.11 regular @XPresSSiON.ot 23

3. 312 MBS0UICE . . oot 24
3.3.13 resource Collection e 24
3.3.14 1eS0UrCE treE 24
3.3, 15 rESOUICE tY P . . .ot 24
3.3 16 SEIVICE MO0t . . . o e 24
3.3.17 subordinate resSOUIrCE o i 24

3. 318 task . . . 24
3.3.10 task MONItOr. e 24

4 Typographical conventions 25
D OV VIBW . . o e 26
B G0alS . . . 26
B 2 Design tenets. 27
B 3 LiMitatioNs 27
5.4 Additional design background and rationale 28
541 REST-based interface. 28
5.4.2 Data-oriented 28
5.4.3 Separation of protocol fromdatamodel 28
5.4.4 Hypermedia AP| Service root 28
5.4.5 OpenAPI V3.0 SUPPOIt. . . oo 28
5.4.6 OData CONVENTIONSt e e e 29
5.5 Service elements. 29
5.5.1 Synchronous and asynchronous operation support i 29
5.5. 2 Eventing mechanism. 29

B .3 ACHONS . .. 30
5.5.4 Service diSCOVEIY . . .ot 30
5.5.5 Remote access SUPPOrt i 30
5.0 SECUIY . o oot 30
6 Protocol details e 31
6.1 Universal Resource Identifiers. 31
B.2HTTP mMethods e 33
B.3HTTP redireCt 34
6.4 Media typesS . . .t 34
B.0 ETags . ..ot 34
6.6 ProtoCol VersSION. 36
6.7 Redfish-defined URIs and relative referencerules 37
7 SerVICE TeQUESES oo 39
7.1 Request headers 39
7.2GET (read reqUESES) 42

4 Published Version 1.23.1

DSP0266 Redfish Specification

7.2.1 GET (read requests) OVEIVIEW i e e e 42
7.2.2 Resource collection requests e 43
7.2.3 Service root request 43
7.2.4 OData service and metadata documentrequests. 44
7.3 QUENY Parameterso 44
7.3.1 Query parameter OVEIVIEWottt e e e e 44
7.3.2 The $expand query parameter 47
7.3.3 The $select query parameter i 50
7.3.4 The $filter query parameter. 51

T A HEAD. . .o 52
7.5 Data modification requests 53
7.5.1 Data modification requests overview e 53
7.5.2 Modification SUCCESS FESPONSES ittt ittt e e e et e e e 53
7.5.3 Modification error reSpONSES.t e 54
7B PATCH (UPdate)o 54
7.7 PATCH ONn array propertieso oo e e e e e 55
T8 PUT (replace) . ..o e e 56
7. POST (Create) . . .ottt 56
7TAODELETE (delete)o 57
74T POST (ACHON) . . ottt 57
7.12 Operation apply time 59
713 Deep OperatioNs 62
8 SeIVICE TESPONSES . . . o ottt e e e e 68
8.1 Response headers 68
8.2 Link header 70
8.3 Status COOES 71
8.4 OData metadata reSPONSES. ot 73
8.4.1 OData metadata resSponSes OVEIVIEW i e 73
84.20Data$metadata 73
8.4.2.1 Referencing otherschemas 74
8.4.2.2 Referencing OEM eXtensionst e 75

8.4.3 OData service document. e 75
8.5 RESOUMCE FESPONSES vttt et ettt e e e e e e e e e e e e 76
8.6 ETOr IESPONS S . .« o vttt ettt et e 76
O Data model. 78
0.1 RESOUICES . . . vttt ettt e e e e 78
0.2 RESOUICE By DS . . o et ettt 78
9.3 Resource ColleCtionso 79
9.4 OEM FESOUICES . . . o o oot et et e e e e e e e e e e e e e e 79
9.5 Common datatypes e 80
9.5.1 Primitive types.o 80
9.5, 2 ENUMEratioNs e 80

9 5. 3Empty string values. 81

Version 1.23.1 Published 5

Redfish Specification DSP0266

9.54 GUID and UUID valUESottt e 81
9.5.5 Date-Time values 81
9.5.6 Duration values e 82
9.5.7 Reference properties. 83
9.5.8 Non-resource reference properties e 83
9.5.9 Array ProPerties. . . . oot e 83
9.5.10 Structured properties. e 84
9.5 11 Message ObjecCt. 84
9.5 11,1 OVEIVIEW. . . .ot 84
9.5.11.2Messageld format. e 85
0.6 Properties . . .o e 86
9.6.1 Properties OVeIVIEW.o 86
9.6.2 Resource identifier (@odata.id) property 87
9.6.3 Resource type (@odata.type) property.o 87
9.6.4 Resource ETag (@odata.etag) property. 88
9.6.5 Resource context (@odata.context) property 88
08,8 Id . . . 88
0.6.7 NAME. . . . 88
0.6.8 DesCription 89
9.6.9 Memberld 89
9.6.10 Count (Members@odata.count) property 89
0.6. 11 MemMbErS . . o o 89
9.6.12 Next link (Members@odata.nextLink) property. 89
0.6. 13 LiNKS . .. 90
9.6.13.1 Reference toarelatedresource. i 90
9.6.13.2 References to multiple related resources 90
9.6.14 ACHIONS PrOPEItY . . o ottt 91
9.6.14.1 Action representation 91
9.6.14.2 ACHION FESPONSES\ it e 92
0.8. 15 O BM ..o 92
0.6.16 Status 93
9.7 Naming CONVENLIONS oo e e e e e 93
0. 7. 1 NamMING rUIES . . o . 93
9.7.2URI Naming rules 94
9.8 Extending standard resoUrCes. e 95
9.8.1 Extending standard reSOUrCeS OVEIVIEWottt e 95
9.8.2 OEM property formatand content. e 95
9.8.3 OEM-specified object naming 96
9.8.4 OEM res0UrCe tYPeS vttt e e 97
9.8. 5 OEM registries e 97
9.8.6 OEM URISo e 97
9.8.7 OEM property eXampleso 98
9.8.8 OEM ACHiONSottt 99

6 Published Version 1.23.1

DSP0266 Redfish Specification

9.9 Payload annotations 100
9.9.1 Payload annotations overview 100
9.9.2 Allowable values for Strings. 101
9.9.3 Allowable patterns for string values 101
9.9.4 Allowable values for numbers and durations 101
9.9.5 Extended information 102

9.9.5.1 Extended objectinformation. 102

9.9.5.2 Extended property information 103

9.9.5.3 Extended information implementation notes. L. 104
9.9.6 Actioninfoannotation 104
9.9.7 Settings and settings apply time annotations L. 105
9.9.8 Operation apply time and operation apply time support annotations 105
9.9.9 Maintenance window annotation. 105
9.9.10 Collection capabilities annotation 106
9.9.11 Requested count and allow over-provisioning annotations. 108
9.9.12 Zone affinity annotation. 109
9.9.13 Supported certificates annotation 109
9.9.14 Deprecated annotation 109
9.9.15 Writable properties annotation 110

9.10 Settings reSOUICE. 111

9.11 Special resource Situations 113
0111 OVEIVIBW . . o oo 113
9.11.2 ADSENt rESOUICESot e 113
9.11.3 Transiently unavailable resources. 114

012 ReQISHNES. . . .o 114

9.13 Schema annotations e 115
9.13.1 Schema annotations OVEerview 115
9.13.2 Description annotation 115
9.13.3 Long description annotation 115
9.13.4 Resource capabilities annotation 116
9.13.5 Resource URI patterns annotation 116
9.13.6 Additional properties annotation 117
9.13.7 Permissions annotation. 117
9.13.8 Required annotation 117
9.13.9 Required on create annotation 118
9.13.10 Units of measure annotation 118
9.13.11 Expanded resource annotation 118
9.13.12 Owning entity annotation. 118
9.13.13 Deprecated annotation 118 .
9.13.14 URl segment annotation e 119
91315 URlannotation 119

.14 VerSiONINgG . . . o oot 119

915 Localization 120

Version 1.23.1 Published 7

Redfish Specification DSP0266

10 File naming and publication 121
10.1 Registry file naming 121
10.2 Profile file naming o 121
10.3 Dictionary file naming 121
10.4 Localized file naming 122
10.5 DMTF Redfish file repository 122

11 Schema definition languages. 124
11.1 OData Common Schema Definition Language i 124

11.1.1 OData Common Schema Definition Language overview 124
11.1.2 File naming conventions for CSDL e e 124
11.1.3 Core CSDLfiles e 124
11.1.4 CSDL formato 125
11.1.4.1 Referencing other CSDLfiles e i 125
11.1.4.2 CSDL data ServiCesot 126
11.1.5 Elements of CSDL NamesSpacesottt e e 126
11.1.5.1 Qualified Names 127
11.1.5.2 Entity type and complex type elements 127
11.1.5.3 Action element 128
11.1.5.4 Action element for OEM actions 129
11.1.5.5 Action with aresponse body. 129
11.1.5.6 Property element 130
11.1.5.7 Navigation property element. 131
1T1.1.5.8 Enumtype element. 131
11.1.5.9 Annotation element. 132
T1.2JSON SChema.o 135
11.2.1 JSON Schema OVervieWo e e 135
11.2.2 File naming conventions for JSON Schema i 135
11.2.3 Core JSON Schemafiles e 136
11.2.4 JSON Schema format 136
11.2.5 JSON Schema definitions body 137
11.2.5.1 Resource definitions in JSSON Schema. i 137
11.2.5.2 Enumerations in JSON Schema. 138
11.25.3 Actions in JSON Schema 139
11.2.5.4 OEM actions in JSON Schema. e 140
11.2.5.5 Action with aresponse body. 141
11.2.6 JSON Schema terms e e e e 141
11,3 OPENA P L 142
11.3.1 OpenAPI OVEIVIEW e e 142
11.3.2 File naming conventions for OpenAPlschema. 142
11.3.3 Core OpenAPl schemafiles e 143
11.3.4 openapi.yaml. 143
11.3.5 OpenAPIfile format. 145
11.3.6 OpenAPl components body 146

8 Published Version 1.23.1

DSP0266 Redfish Specification

11.3.6.1 Resource definitions in OpenAPI 146
11.3.6.2 Enumerations in OpenAPl 146
11.3.6.3 Actions in OpenAPL. 147
11.3.6.4 OEM actions in OpenAPl 148
11.3.7 OpenAPI terms used by Redfish. 149
11.4 Schema modification rules 150
12 Service details 151
121 EVeNting. . . o o 151
1211 EVeNnting OVEIVIEWot 151
12.1.2 POST to subscription collection i 151
12.1.3 Openan SSE connection e 152
12.1.4 EventType-based eventing 153
12.1.5 Subscribingto events 153
12.1.6 Eventformats 155
12.1.7 OEM eXtENSIONS . . . o 156
12.2 ASynNchronous Operationst 156
12.3 Resource tree stability 158
12,4 DiSCOVEIY . . o ottt e e e 159
12.4.1 DISCOVEIY OVEIVIEW o oottt e e et e e e e e e e e 159
12.4.2 UPnP compatibility e 159
12.4. 3 USN format o 159
12.4.4 M-SEARCH reSPONSEottt e 159
12.4.5 Notify, alive, and shutdown messages 160
12.5 Server-sent EVENTS 160
12.5.1 General 160
12.5.2 EVeNt SerViCe. . . . oo 161
12.5.2.1 Event message SSE stream. 164
12.5.2.2 Metricreport SSE stream 164

12.6 WebSocket inbound access 165
12.6.1 OVEIVIBW . . . o oo 165
12.6.2 ConnectingtoaWebSocket 166
12.6.3 Data transmission on an established WebSocket. 166
12,7 Update SEIVICE. . . . ottt 166
12,71 OVEIVIEW . . . o oo 166
12.7.2 Software update types 166
12.7.21 Simple updates 167
12.7.2.2 Multipart HTTP push updates. e 167

12.8 Import configuration data. 169
12.8.1 OVEIVIBW . . . o oo 169
12.8.2 Multipart HTTP push imports e 169
12.9 Outbound CONNECLIONS. 171
12.9.1 OVEIVIBW . . . oo 171
12.9.2 Establishing an outbound connection 171

Version 1.23.1 Published 9

Redfish Specification DSP0266

12.9.3 MTLS for an outbound connection 172
12.9.4 Handling Redfish requests over an outbound connection. 172
12.9.5 Closing an outbound connection. 173

13 Security details. 175
13.1 Transport Layer Security (TLS) protocol e 175
13.1.1 Transport Layer Security (TLS) protocol overview i .. 175
13.1.2 Cipher suites 175
13.1.3 Certificates 176
13.2 Sensitive data 176
13.3 Authentication 176
13.3.1 Authentication overview 176
13.3.2 Authentication requirements 177
13.3.2.1 Resource and operation authentication requirements 177
13.3.2.2 HTTP header authentication requirements. 177
13.3.2.3 Authentication failure requirements 177

13.3.3 HTTP Basic authentication e 178
13.3.4 Redfish session login authentication. 178
13.3.4.1 Redfish 10gin S€SSIONS 178
13.3.4.2 SeSSiON l0gin 179
13.3.4.3 Session lifetime. 180
13.3.4.4 Session termination orlogout 180
13.3.5 Client certificate authentication 181
13.4 Authorization 181
13.4.1 Authorization overview 181
13.4.2 Privilege model 182
13.4.2.1 ROIES. . . 182
13.4.2.2 Restricted roles and restricted privileges 183
13423 0EM privileges 184
13.4.3 Redfish service operation-to-privilege mapping 184
13.4.3.1 Why specify operation-to-privilege mapping?. 185
13.4.3.2 Representing operation-to-privilege mappings. 185
13.4.3.3 Operation map syntax. 185
13.4.3.4 Mapping overrides SYyNtax.t 186
13.4.3.5 Property override example 187
13.4.3.6 Subordinate override 188
13.4.3.7 Resource URI override e 189
13.4.3.8 Privilege AND and OR Syntax.t e e 190

13.4.4 Delegated authorization with OAuth 2.0 191
13.4.4.1 OAUth 2.0 OVEIVIEWo 191
13.4.4.2 OAuth 2.0 data model requirements. i 191
13.4.4.3 OAuth 2.0 accesstokens 191
13.4.4.4 Redfish OAUth2.0 SCOPEe USAgEeot tieeeeee 193

T35 ACCOUNE SEIVICE oot e e e e e 194

10 Published Version 1.23.1

DSP0266 Redfish Specification

13.5.1 ACCOUNt SEIVICE OVEIVIEW ot e e 194
13.5.2 Password management 194
13.5.3 Atomic password Changes i 194

13.5.4 Password change required handling. 194
13.5.5 Time-based One-Time Password secretkey handling 195

13.6 ASyNchronous tasks 196
13.7 Event subscCriptions 196

14 Redfish Host Interface 197
15 Redfish composability 198
15.1 Composition reqUEsES 199
15.1.1 Composition requests OVerview i 199
15.1.2 Specific composition 199

15.1.3 Constrained composition. 200
15.1.4 Expandable reSOUIrCES 201

15.2 Updating @ compoSEd FE€SOUICE. vttt ettt e e e e e e e e 201

16 AQOregation 202
16.1 Classes of aggregators 202
16.1.1 Implicit and complex aggregators 202
16.1.2 USE CaASES ottt 203

16.2 Aggregation SErVICEot 203
16.2.1 Aggregation SErviCe OVEIVIEWottt e e e 203

16.2.2 Aggregator requirements 203

16.2.3 AQOregales 204

16.2.4 Aggregation sources and connectionmethods. 204

17 ANNEX A (informative) Change 10g.o 206
18 Bibliography 228

Version 1.23.1 Published 11

Redfish Specification DSP0266

Foreword

DMTF's Redfish Forum develops the Redfish standard.

DMTF is a not-for-profit association of industry members that promotes enterprise and systems management and
interoperability. For information about DMTF, see DMTF.

This version supersedes version 1.23.0. For a list of the changes, see ANNEX A (informative) Change log.

Acknowledgments

DMTF acknowledges the following individuals for their contributions to the Redfish standard, including this document
and Redfish schemas, interoperability profiles, and message registries:

» Rafiqg Ahamed — Hewlett Packard Enterprise

* Richelle Ahlvers — Intel Corporation, Broadcom Inc.
» Jeff Autor — Vertiv, Hewlett Packard Enterprise
* Raviteja Bailapudi — IBM

» David Black — Dell Technologies

» Jeff Bobzin — Insyde Software Corp.

» Patrick Boyd — Dell Technologies

» David Brockhaus — Vertiv

* Richard Brunner — VMware Inc.

» Scott Bunker — Hewlett Packard Enterprise

» Sean Byland — Hewlett Packard Enterprise

* Lee Calcote — Seagate Technology

» Keith Campbell — Lenovo

» Derek Chan — Google LLC

» P Chandrasekhar — Dell Technologies

» Barbara Craig — Hewlett Packard Enterprise

» Chris Davenport — Hewlett Packard Enterprise
* Gamma Dean — Vertiv

* Michael Du — Huawei Technologies Co., Ltd.

» Daniel Dufresne — Dell Technologies

» Samer El-Haj-Mahmoud — Arm Limited, Lenovo, Hewlett Packard Enterprise
* George Ericson — Dell Technologies

» Wassim Fayed — Microsoft Corporation

» Kevin Ferguson — Vertiv

12 Published Version 1.23.1

https://www.dmtf.org/

DSP0266 Redfish Specification

» Mike Garrett — Hewlett Packard Enterprise

» Steve Geffin — Vertiv

» Martin Halstead — Hewlett Packard Enterprise
» Joe Handzik — Hewlett Packard Enterprise

» Jon Hass — Dell Technologies

» Jeff Hilland — Hewlett Packard Enterprise

» Blake Hilliard — Hewlett Packard Enterprise
» Chris Hoffman — Vertiv

* Zheng Huang — Alibaba (China) Co., Ltd

» Cactus Jiang — Vertiv

* Mick Jones — Vertiv

» Barry Kittner — Intel Corporation

» Steven Krig — Intel Corporation

* Maciej Lawniczak — Intel Corporation

+ Jennifer Lee — Intel Corporation

» John Leung — Intel Corporation

» Magnus Lundmark — Ericsson AB

» Steve Lyle — Hewlett Packard Enterprise

* Gunnar Mills — IBM

» Jagan Molleti — Dell Technologies

» Milena Natanov — Microsoft Corporation

» Balaji Natrajan — Microchip Technology Inc., Hewlett Packard Enterprise
» Scott Phuong — Cisco Systems, Inc.

* Michael Pizzo — Microsoft Corporation

» Chris Poblete — Dell Technologies

» Slawek Putyrski — Intel Corporation

» Michael Raineri — Dell Technologies

» Hari Ramachandran — Microsoft Corporation
» Joseph Reynolds — IBM

* Irina Salvan — Microsoft Corporation

» Joseph-Jonathan Salzano — HP, Inc

* Bill Scherer — Hewlett Packard Enterprise

» Geoff Schunicht — Hewlett Packard Enterprise
* Abhirup Seal — Dell Technologies

* Hemal Shah — Broadcom Inc.

+ Jim Shelton — Vertiv

* Tom Slaight — Intel Corporation

Version 1.23.1 Published 13

Redfish Specification DSP0266

+ Josiah Smith — Eaton

» Shesha Sreenivasamurthy — Marvell Asia Pte, Ltd.
» Donnie Sturgeon — Vertiv

» Pawel Szymanski — Intel Corporation

» Ed Tanous — NVIDIA Corporation, Google LLC

* Luke Terry — Vertiv

* Willy Tu — Google LLC

» Paul Vancil — Dell Technologies

* Ganesh Viswanathan — Dell Technologies

+ Claire Weinan — Google LLC

» Joseph White — Dell Technologies

» Linda Wu — NVIDIA Corporation, Super Micro Computer, Inc.

» Justin York — Hewlett Packard Enterprise

14 Published Version 1.23.1

DSP0266 Redfish Specification

Introduction

Redfish is a standard that uses RESTful interface semantics to access a schema-based data model to conduct
management operations. It is suitable for a wide range of devices, from stand-alone servers to composable
infrastructures and large-scale cloud environments.

The initial Redfish scope targeted servers. DMTF and its alliance partners expanded that scope to cover most data
center IT equipment and other solutions, and both in- and out-of-band access methods.

Additionally, DMTF and other organizations that use Redfish as part of their industry standard or solution have added
educational material.

This document defines the RESTful interface protocol and the various concepts and services necessary to implement
a Redfish interface. The definition of the schema based data model and standard messages for the Redfish interface
are covered separately in the following documents:

+ DMTF DSP8010, Redfish Schema Bundle, https://www.dmtf.org/dsp/DSP8010 contains the individual schema
definition files in multiple schema description languages.

« DMTF DSP0268, Redfish Data Model Specification, https://www.dmtf.org/dsp/DSP0268 contains the normative
descriptions and example payloads for all standard Redfish schema in a single reference guide.

« DMTF DSP8011, Redfish Standard Registries Bundle, https://www.dmtf.org/dsp/DSP8011 contains the
message registries used for error reporting and event messages.

Version 1.23.1 Published 15

https://www.dmtf.org/dsp/DSP8010
https://www.dmtf.org/dsp/DSP0268
https://www.dmtf.org/dsp/DSP8011

Redfish Specification DSP0266

1 Scope

This specification defines the required protocols, data model, behaviors, and other architectural components for an
interoperable, multivendor, remote, and out-of-band capable interface. This interface meets the cloud-based and
web-based IT professionals' expectations for scalable platform management. While large and hyperscale
environments are the primary focus, clients can use the specification for individual system management.

The specification defines the required elements for all Redfish implementations, and the optional elements that
system vendors and manufacturers can choose. This specification also defines at which points an implementation
can provide OEM-specific extensions.

The specification sets normative requirements for Redfish services and associated materials, such as Redfish
schema files. In general, the specification does not set requirements for Redfish clients but indicates how a client can
successfully and effectively access and use a Redfish service.

The specification does not require that implementations of the Redfish interfaces and functions require particular
hardware or firmware.

16 Published Version 1.23.1

DSP0266 Redfish Specification

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

+ DMTF DSP0218, Platform Level Data Model (PLDM) for Redfish Device Enablement, https://www.dmtf.org/dsp/
DSP0218

 DMTF DSP0270, Redfish Host Interface Specification, https://www.dmtf.org/dsp/DSP0270
» Redfish Schema: RedfishExtensions v1.0.0, https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml

+ ECMA-262, ECMAScript® 2025 language specification, https://ecma-international.org/publications-and-
standards/standards/ecma-262/

» Transport Layer Security (TLS) Parameters, https://lwww.iana.org/assignments/tls-parameters/tls-
parameters.xhtml

* JSON Schema: A Media Type for Describing JSON Documents draft-handrews-json-schema-01,
https://tools.ietf.org/html/draft-handrews-json-schema-01

» JSON Schema Validation: A Vocabulary for Structural Validation of JSON draft-handrews-json-schema-
validation-01, https://tools.ietf.org/html/draft-handrews-json-schema-validation-01

« |ETF RFC1738, T. Berners-Lee et al., Uniform Resource Locators (URL), https://tools.ietf.org/html/rfc1738

« |IETF RFC3986, T. Berners-Lee et al., Uniform Resource Identifier (URI): Generic Syntax, https://tools.ietf.org/
html/rfc3986

» |ETF RFC4122, P. Leach et al., A Universally Unique IDentifier (UUID) URN Namespace, htips://tools.ietf.org/
html/rfc4122

+ |ETF RFC5280, D. Cooper et al., Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,

+ |ETF RFC6455, |. Fette et al., The WebSocket Protocol, https://tools.ietf.org/html/rfc6585

+ |ETF RFC6585, M. Nottingham et al., Additional HTTP Status Codes, https://tools.ietf.org/html/rfc6585

» |ETF RFC6749, D. Hardt, Ed., The OAuth 2.0 Authorization Framework, https://tools.ietf.org/html/rfc6749

» |ETF RFC6901, P. Bryan, Ed. et al., JavaScript Object Notation (JSON) Pointer, https://tools.ietf.org/html/
rfc6901

« |ETF RFC7230, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing,
https://tools.ietf.org/html/rfc7230

+ |ETF RFC7231, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,
https://tools.ietf.org/html/rfc7231

» |ETF RFC7232, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests,
https://tools.ietf.org/html/rfc7232

» |IETF RFC7234, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Caching, https://tools.ietf.org/html/
rfc7234

Version 1.23.1 Published 17

https://www.dmtf.org/dsp/DSP0218
https://www.dmtf.org/dsp/DSP0218
https://www.dmtf.org/dsp/DSP0270
https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7234

Redfish Specification DSP0266

IETF RFC7540, M. Belshe et al., Hypertext Transfer Protocol Version 2 (HTTP/2), https://tools.ietf.org/html/
rfc7540

IETF RFC7519, M. Jones et al., JSSON Web Token (JWT), https://tools.ietf.org/html/rfc7519

IETF RFC7525, Y. Sheffer et al., Recommendations for Secure Use of Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS), https://tools.ietf.org/html/rfc7525

IETF RFC7578, L. Masinter et al., Returning Values from Forms: multipart/form-data, https://tools.ietf.org/html/
rfc7578

IETF RFC7617, J. Reschke et al., The ‘Basic' HTTP Authentication Scheme, https://tools.ietf.org/html/rfc7617

IETF RFC8259, T. Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange Format,
https://tools.ietf.org/html/rfc7617

IETF RFC8288, M. Nottingham, Web Linking, https://tools.ietf.org/html/rfc8288

ISO 639-1:2002, Codes for the representation of names of languages - Part 1: Alpha-2 code,
https://www.iso.org/standard/22109.html

24 February 2014, OData Version 4.0 Part 1: Protocol, https://docs.oasis-open.org/odata/odata/v4.0/os/
part1-protocol/odata-v4.0-o0s-part1-protocol.html

24 February 2014, OData Version 4.0 Part 3: Common Schema Definition Language (CSDL), https://docs.oasis-
open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

10 March 2016, OData Version 4.0 Plus Errata 03 OASIS Standard incorporating Draft 01 of Errata 03,
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/
Org.OData.Measures.V1.xml

17 April 2020, Open Connectivity Foundation, Inc., UPnP Device Architecture 2.0, https://openconnectivity.org/
upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417 .pdf

20 November 2014, SNIA TLS Specification for Storage Systems, https://www.snia.org/tech_activities/
standards/curr_standards/tls

The OpenAPI Specification, https://swagger.io/specification/
The Unified Code for Units of Measure, https://ucum.org/ucum.html
9 September 2021, Fetch Living Standard, https://fetch.spec.whatwg.org/

17 September 2021, 9.2 Server-sent events in the HTML Living Standard, https://html.spec.whatwg.org/
multipage/server-sent-events.html

18

Published Version 1.23.1

https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8288
https://www.iso.org/standard/22109.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://openconnectivity.org/upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf
https://openconnectivity.org/upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://swagger.io/specification/
https://ucum.org/ucum.html
https://fetch.spec.whatwg.org/
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html

DSP0266 Redfish Specification

3 Terms, definitions, symbols, and abbreviated terms

Some terms and phrases in this document have specific meanings beyond their typical English meanings. This
clause defines those terms and phrases.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",
"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional
cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7
specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal
English meaning.

The terms "clause", "subclause”, "paragraph”, and "annex" in this document are to be interpreted as described in
ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,
Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative
content. Notes and examples are always informative elements.

The term "deprecated" in this document is to be interpreted as material that is not recommended for use in new
development efforts. Existing and new implementations may use this material, but they should move to the favored
approach. Deprecated material may be implemented in order to achieve backwards compatibility. Deprecated
material should contain references to the last published version that included the deprecated material as normative
material and to a description of the favored approach. Deprecated material may be removed from the next major
version of the specification.

This document defines these additional terms:

3.1 Hardware terms

3.1.1 baseboard management controller (BMC)
embedded device or service

Note 1 to entry: Typically, an independent microprocessor or system-on-chip with associated firmware in a computer
system that completes out-of-band systems monitoring and management-related tasks.

3.1.2 1PMI

Intelligent Platform Management Interface

Version 1.23.1 Published 19

Redfish Specification

3.1.3 KVM-IP

keyboard, video, mouse redirection over IP

3.1.4 NIC

network interface controller

3.1.5 PCI

Peripheral Component Interconnect

3.1.6 PCle

Peripheral Component Interconnect Express

3.2 Web development terms

3.2.1 CORS

cross-origin resource sharing

3.2.2 CRUD

basic Create, Read, Update, and Delete operations that any interface can support

3.2.3 CSRF

cross-site request forgery

3.24 HTTP

Hypertext Transfer Protocol

3.2.5 HTTPS

Hypertext Transfer Protocol Secure

Note 1 to entry: TLS secures HTTP.

DSP0266

20

Version 1.23.1

DSP0266 Redfish Specification

3.2.6 hypermedia API

API that enables you to navigate through URIs that a service returns

3.2.71P

Internet Protocol

3.2.8 JSON

JavaScript Object Notation

3.2.9 message
complete HTTP-formatted or HTTPS-formatted request or response

Note 1 to entry: In the REST-based Redfish protocol, every request results in a response.

3.2.10 OData

Open Data Protocol (OData), as defined in OData Version 4.0 Part 1: Protocol

3.2.11 OData service document

resource that provides information about the service root for generic OData clients

3.2.12 operation

HTTP PoST, GET, PUT, PATCH, HEAD , and DELETE request methods that map to generic CRUD operations

3.2.13 parent resource

parent to another resource if the initial segment of the resource URI is the same as the URI of the other resource, but
is at least one level higher

Note 1 to entry: For example, /redfish/vi/Chassis/A88 is a parent resource of /redfish/v1/Chassis/A88/Assembly .

3.2.14 property

name-value pair in a Redfish-defined request or response

Version 1.23.1 Published 21

Redfish Specification

Note 1 to entry: A property can be any valid JSON data type.

3.2.15 request

message from a client to a service

3.2.16 response

message from a service to a client in response to a request message

3.2.17 subscription

registration of a destination to receive events

3.2.18 TCP

Transmission Control Protocol

3.219 TLS

Transport Layer Security

3.2.20 XSS

cross-site scripting

3.3 Redfish terms

3.3.1 action

a custom operation specific to one or more resources other than one of the standard CRUD operations

Note 1 to entry: For more information, see the Actions clause.

3.3.2 collection

see resource collection

3.3.3 event

data structure that corresponds to one or more alerts that have occurred

DSP0266

22 Published

Version 1.23.1

DSP0266 Redfish Specification

Note 1 to entry: For more information, see the Eventing clause.

3.3.4 excerpt
subset of data that is copied from one resource and presented in another resource

Note 1 to entry: An excerpt provides data in convenient locations without duplication of entire resources.

3.3.5 member

single resource instance in a resource collection

3.3.6 Redfish client

communicates with a Redfish service and accesses one or more of the service's resources or functions

3.3.7 Redfish Device Enablement (RDE)

an extension to Redfish that allows a management processor to proxy Redfish commands to an embedded device

Note 1 to entry: See DSP0218.

3.3.8 Redfish protocol

discovers, connects to, and inter-communicates with a Redfish service

3.3.9 Redfish schema

a set of human and machine-readable documents that define Redfish resources using one or more of the supported
schema definition languages

3.3.10 Redfish service

implementation of the protocols, resources, and functions that deliver the interface that this specification defines and
its associated behaviors for one or more managed systems

Note 1 to entry: Also known as the service.

3.3.11 regular expression

A sequence of characters that describes matching criteria for a string or set of strings

Version 1.23.1 Published 23

Redfish Specification DSP0266

Note 1 to entry: In Redfish, all regular expressions use the syntax defined in ECMA-262.

3.3.12 resource

URI-addressable Redfish data structure

3.3.13 resource collection

set of similar resources where the number of instances can shrink or grow

3.3.14 resource tree
tree structure of resources accessible through a well-known starting URI

Note 1 to entry: A client can discover the available resources on a Redfish service by following the resource
hyperlinks from the base of the tree.

3.3.15 resource type

set of definitions for properties and actions contained within a resource and documented in the Redfish schema files

3.3.16 service root

starting-point resource for locating and accessing the other resources and associated metadata that make up an
instance of a Redfish service

3.3.17 subordinate resource

is subordinate to another resource if the initial segment of the resource URI is the same as the URI of the other
resource, but is at least one level deeper

Note 1 to entry: For example, /redfish/v1/Chassis/A88/Assembly is a subordinate resource of the chassis resource
named A8S .

3.3.18 task

representation of a long-running operation

3.3.19 task monitor

opaque service-generated URI that the client that initiates the request can use to monitor an asynchronous operation

24 Published Version 1.23.1

DSP0266 Redfish Specification

4 Typographical conventions

The following typographical convention indicates deprecated material:

DEPRECATED
Deprecated material appears here.

END DEPRECATED

In places where this typographical convention cannot be used, such as tables or figures, the "DEPRECATED" label
is used alone.

Version 1.23.1 Published 25

Redfish Specification DSP0266

5 Overview

Redfish is a management standard that uses a data model representation with a RESTful interface.
Being RESTful, Redfish is easier to use and implement.

Being model-oriented, it can express the relationships between components and the semantics of the Redfish
services and components within them. The model is also easy to extend.

By requiring JSON representation, Redfish enables easy integration with programming environments. It is also easy
to interpret by humans.

An interoperable Redfish schema defines this model, which is freely available and published in OpenAPI YAML,
OData CSDL, and JSON Schema formats.

5.1 Goals

As an architecture, data model, and set of protocols that enable a client to access Redfish services, Redfish has
these goals.

Table 1 describes these goals:

Table 1 — Redfish goals

Goal Purpose

Scalable Can scale on stand-alone machines or racks of equipment.

Flexible Can implement through existing hardware or entirely as a software service.

Extensible Can easily add new and vendor-specific capabilities to the data model.

Backward-compatible Can add capabilities while preserving investments in earlier implementations.

Interoperable Provides consistent functionality across multiple vendor implementations.

Standards-based Built on ubiquitous and secure protocols. Leverages other standards where applicable.
Simple Easy-to-use without the need for highly specialized programming skills or systems knowledge.

Lightweight Designed to reduce complexity and implementation costs. Minimizes the required footprint for
ightwei
¢ < implementations.

26 Published Version 1.23.1

DSP0266 Redfish Specification

5.2 Design tenets

To deliver these goals, Redfish:

» Provides a RESTful interface by using a JSON payload and a data model.

» Separates the protocol from the data model, which enables the independent revision and use of each.

» Specifies versioning rules for protocols and schema.

» Leverages strength of ubiquitous standards where it meets architectural requirements, such as JSON, HTTP,
OData, OpenAPI, and the RFCs that this document references.

* Organizes the data model so that it provides clearly demarcated and value-add features in the same payload as
standardized items.

* Makes data in payloads as obvious in context as possible.

* Maintains implementation flexibility. Does not tie the interface to any particular underlying implementation or
architecture.

» Focuses on widely used capabilities. To avoid complexity, does not add functions that only a small percentage of
users value.

5.3 Limitations

Redfish minimizes the need for clients to complete upgrades by using strict versioning and forward-compatibility
rules, and separation of the protocols from the data model. However, Redfish does not guarantee that clients never
need to update their software. For example, clients might need to upgrade to manage new system or component
types, or update the data model.

Interoperable does not mean identical. Many elements of Redfish are optional. Clients should be prepared to
discover the optional elements by using the built-in discovery methods.

The resource tree reflects the topology of the system and its devices. Consequently, different hardware or device
types result in different resource trees, even for identical systems from the same manufacturer. References between
resources may result in a graph instead of a tree. Clients that traverse the resource tree should provide logic to avoid
infinite loops.

Additionally, not all Redfish resources use simple REST read-and-write semantics. Different use cases may follow
other types of client logic. For example, clients cannot simply read user credentials or certificates from one service
and write them to another service.

Finally, the hyperlink values between resources and other elements can vary across implementations. Clients should
not assume that they can reuse hyperlinks across different Redfish service instances.

Version 1.23.1 Published 27

Redfish Specification DSP0266

5.4 Additional design background and rationale

5.4.1 REST-based interface
Redfish exposes many service applications as RESTful interfaces. This document defines a RESTful interface.
Redfish defines a RESTful interface because it:

» Enables a lightweight implementation, using fewer layers than previous standards.
» Is a prevalent access method in the industry.

* Is easy to learn, document, and implement in modern programming languages.

» Has a number of development environments and a healthy tooling ecosystem.
 Fits with the design goal of simplicity.

» Equally applies to software application space as it does to embedded environments, which enables convergence
and sharing of code within the management ecosystem.

» Adapts well to any data modeling language.

» Has industry-provided security and discovery mechanisms.

5.4.2 Data-oriented

The Redfish data model is developed by focusing on the contents of the payload. By concentrating on the contents of
the payload first, Redfish payloads are easily mapped to schema definition languages and encoding types. The data
model is defined in various schema languages, including OpenAPI YAML, OData CSDL, and JSON Schema.

5.4.3 Separation of protocol from data model

Redfish separates the protocol operations from the data model and versions the protocol independently from the data
model. This enables clients to extend and change the data model as needed without requiring the protocol version to
change.

5.4.4 Hypermedia API service root

Redfish has a single service root URI and clients can discover all resources through referenced URIs. The
hypermedia APl enables the discovery of resources through hyperlinks.

5.4.5 OpenAPI v3.0 support

The OpenAPI v3.0 provides a rich ecosystem of tools for using RESTful interfaces that meet the design requirements
of that specification. Starting with Redfish Specification v1.6.0, the Redfish schemas support the OpenAPI YAML file
format and URI patterns that conform to the OpenAPI Specification were defined. Conforming Redfish services that

28 Published Version 1.23.1

DSP0266 Redfish Specification

support the Redfish protocol version v1.6.0 or later implement those URI patterns to enable use of the OpenAPI
ecosystem.

For details, see OpenAPI Specification v3.0.

5.4.6 OData conventions

With the popularity of RESTful APlIs, there are nearly as many RESTful interfaces as there are applications. While
following REST patterns helps promote good practices, due to design differences between the many RESTful APIs
there few common conventions between them.

To provide for interoperability between APls, OData defines a set of common RESTful conventions and annotations.
Redfish follows OData conventions for describing schema, URL conventions, and definitions for typical properties in
a JSON payload.

5.5 Service elements

5.5.1 Synchronous and asynchronous operation support

Some operations can take more time than a client typically wants to wait. For this reason, some operations can be
asynchronous at the discretion of the service. The request portion of an asynchronous operation is no different from
the request portion of a synchronous operation.

To determine whether an operation was completed synchronously or asynchronously, clients can review the HTTP
status codes. For more information, see the Asynchronous operations clause.

5.5.2 Eventing mechanism

Redfish enables clients to receive messages outside the normal request and response paradigm. The service uses
these messages, or events, to asynchronously notify the client of a state change or error condition, usually of a time
critical nature.

This specification defines two styles of eventing:
» Push-style eventing.

When the service detects the need to send an event, it calls HTTP posT to push the event message to the
client. Clients can enable reception of events by creating a subscription entry in the event service, or an
administrator can create subscriptions as part of the Redfish service configuration.

» Server-sent events (SSE)-style eventing.

Version 1.23.1 Published 29

Redfish Specification DSP0266

The client opens an SSE connection to the service through a GeT on the ServerSentEventuri -specified URI in
the event service.

For information, see the Eventing clause.

5.5.3 Actions

Actions are Redfish operations that do not easily map to RESTful interface semantics. These types of operations
may not directly affect properties in the Redfish resources. The Redfish schema defines certain standard actions for
common Redfish resources. For these standard actions, the Redfish schema contains the normative language on the
behavior of the action.

5.5.4 Service discovery

While the service itself is at a well-known URI, clients need to discover the network address of the service. Like
UPnP, Redfish uses SSDP for discovery. A wide variety of devices, such as printers and client operating systems,
support SSDP. It is simple, lightweight, IPv6 capable, and suitable for implementation in embedded environments.

For more information, see the Discovery clause.

5.5.5 Remote access support

Remote management functionality typically includes access mechanisms for redirecting operator interfaces such as
serial console, keyboard video and mouse (KVM-IP), command shell, or command-line interface, and virtual media.
While these mechanisms are critical functionality, they cannot be reasonably implemented as a RESTful interface.

Therefore, this standard does not define the protocols or access mechanisms for those services but encourages

implementations that leverage existing standards. However, the Redfish schema includes resources and properties
that enable client discovery of these capabilities and access mechanisms to enable interoperability.

5.6 Security

The challenge of remote interface security is to protect both the interface and exchanged data. To accomplish this,
Redfish provides authentication and encryption. As part of this security, Redfish defines and requires minimum levels
of encryption.

For more information, see the Security details clause.

30 Published Version 1.23.1

DSP0266 Redfish Specification

6 Protocol details

In this document, the Redfish protocol refers to the RESTful mapping to HTTP, TCP/IP, and other protocol, transport,
and messaging layer aspects. HTTP is the application protocol that transports the messages and TCP/IP is the
transport protocol. The RESTful interface is a mapping to the message protocol.

The Redfish protocol is designed around a web service-based interface model, which provides network and
interaction efficiency for both user interface (Ul) and automation usage. Specifically, the protocol can leverage
existing tool chains.

Table 2 describes the items that the Redfish protocol uses:

Table 2 — Redfish protocol

Item Description

HTTP methods Maps to common CRUD operations.

Actions Expands operations beyond CRUD-type operations.
Media types Negotiates the type of data sent in the message body.
HTTP status codes Indicates the success or failure of the server's request.
Error responses Returns more information than HTTP status codes.
TLS Secures messages. See Security details.
Asynchronous semantics Manages long-running operations.

A Redfish interface shall be exposed through a web service endpoint implemented by using HTTP version 1.1. See
RFC7230, RFC7231, and RFC7232.

A Redfish interface may additionally be exposed through a web service endpoint implemented by using HTTP
version 2.0. See RFC7540.

The subsequent clauses describe how the Redfish interface uses and adds constraints to HTTP to ensure
interoperability of Redfish implementations.

6.1 Universal Resource Identifiers

A Universal Resource Identifier (URI) identifies a resource, including the service root and all Redfish resources.

» A URI shall identify each unique instance of a resource.

Version 1.23.1 Published 31

Redfish Specification DSP0266

* URIs shall not include any RFC1738-defined unsafe characters.

o Forexample,the {, }, , |, ~, ~, [, 1, ,and \ characters are unsafe because gateways and

other transport agents can sometimes modify these characters.
> Do not use the # character for anything other than the start of a fragment.

» URIs shall not include any percent-encoding of characters. This restriction does not apply to the query
parameters portion of the URI.

A GeT operation on a URI returns a representation of the resource with properties and hyperlinks to associated
resources. The service root URI is well known and is based on the protocol version.

To discover the URIs to additional resources, extract the associated resource hyperlinks from earlier responses. The
hypermedia APl enables the discovery of resources through hyperlinks.

Redfish considers the RFC3986-defined scheme, authority, service root, and version, and unique resource path
component parts of the URI.

For example, this URI:

https://mgmt.vendor.com/redfish/v1/Systems/1

Contains these component parts:

* https: is the scheme.
* mgmt.vendor.com is the authority to which to delegate the URI.
* redfish/v1 is the service root and version.

* Systems/1 is the unique resource path.
Ina URL:

» The scheme and authority component parts are not part of the unique resource path because redirection
capabilities and local operations may cause the connection portion to vary.

» The service root and resource path component parts uniquely identify the resource in a Redfish service.

In an implementation:

» The resource path component part shall be unique.
» A relative reference in the body and HTTP headers payload can identify a resource in that same implementation.

* An absolute URI in the body and HTTP headers payload can identify a resource in a different implementation.

For the absolute URI definition, see RFC3986.

32 Published Version 1.23.1

DSP0266 Redfish Specification

For example, a PosT operation may return the /redfish/vi/Systems/2 URIin the Location header of the response,
which points to the posT -created resource.

Assuming that the client connects through the mgmt.vendor.com appliance, the client accesses the resource through
the https://mgmt.vendor.com/redfish/v1/Systems/2 absolute URI.

URIs that conform to RFC3986 may also contain the query, ?query , and frag, #frag , components. For information
about queries, see Query parameters. When a URI includes a fragment (frag) to submit an operation, the server
ignores the fragment.

If a property in a response references another property within a resource, use the RFC6901-defined URI fragment
identifier representation format. If the property is a reference property in the schema, the fragment shall reference a
valid resource identifier. For example, the following fragment identifies a property at index 0 of the Fans array in the
/redfish/vl/Chassis/MultiBladeEncl/Thermal resource:

"@odata.id": "/redfish/v1/Chassis/MultiBladeEncl/Thermal#/Fans/0"

For requirements on constructing Redfish URIs, see the resource URI patterns annotation clause.

6.2 HTTP methods

Table 3 describes the mapping of HTTP methods to the Redfish-supported operations. If the Required column
contains Yes, a Redfish interface shall support the HTTP method. If the Required column contains No, a Redfish
interface may support the HTTP method.

Table 3 — Mapping of HTTP methods to Redfish-supported operations

HTTP method Interface semantic Required

Create resource

POST Resource action Yes
Eventing

GET Retrieve resource Yes

PUT Replace resource No

PATCH Update resource Yes

DELETE Delete resource Yes

HEAD Retrieve resource header No

Version 1.23.1 Published 33

Redfish Specification DSP0266

HTTP method Interface semantic Required

Retrieve header
OPTIONS Cross-origin resource sharing (CORS) pre- No
flight

For HTTP methods that the Redfish service does not support or that Table 3 omits, the Redfish service shall return
the HTTP 405 Method Not Allowed status code or the HTTP 501 Not Implemented status code.

6.3 HTTP redirect

HTTP redirect enables a service to redirect a request to another URL. Among other things, HTTP redirect enables
Redfish resources to alias areas of the data model.

All Redfish clients shall correctly handle HTTP redirect.

The service for the redirected resource shall enforce the authentication and authorization requirements for the
redirected resource.

6.4 Media types

Some resources may be available in more than one type of representation. The media type indicates the
representation type.

In HTTP messages, the media type is specified in the content-Type header. To tell a service to return the response
through certain media types, the client sets the HTTP Accept header to a list of the media types.

» All resources shall be available through the JSON application/json media type.

» Redfish services shall make every resource available in a JSON-based representation as a JSON object, as
specified in RFC8259. Receivers shall not reject a JSON-encoded message, and shall offer at least one JSON-
based response representation. An implementation may offer additional non-JSON media type representations.

To request compression in the response body, clients specify an Accept-Encoding request header.

6.5 ETags

To reduce unnecessary RESTful accesses to resources, the Redfish service should support the association of a
separate entity tag (ETag) with each resource.

» Implementations should support the return of ETag properties for each resource.

» Implementations should support the return of ETag headers for each single-resource response.

34 Published Version 1.23.1

DSP0266 Redfish Specification

» Implementations shall support the return of ETag headers for GET requests of ManagerAccount resources.

Because the service knows whether the new version of the object is substantially different, the service generates and
provides the ETag as part of the resource payload.

The ETag mechanism supports both strong and weak validation. If a resource supports an ETag, it shall use the
RFC7232-defined ETag.

This specification does not mandate a particular algorithm for ETag creation, but ETags should be highly collision-
free.

An ETag can be:

* Ahash
* A generation ID
* Atime stamp

» Some other value that changes when the underlying object changes

If a client performs a puT operation or PATCH operation to update a resource, it should include an ETag from a
previous GET inthe HTTP If-Match or If-None-Match header. Both strong and weak ETags are allowed in these
headers. If a service supports the return of the ETag header on a resource, it may respond with the HTTP 428
Precondition Required status code if the If-Match or If-None-Match header is missing from the PuT or PATCH
request for the same resource, as specified in RFC6585. Services should perform weak ETag comparison when
verifying the ETag provided by the client in puT or PATCH operations. Clients should treat ETags received from
services as opaque values and not modify them when providing them in PUT or PATCH operations.

In addition to the return of the ETag property on each resource, a Redfish service should return the ETag header on:

* Aclient puT, POST,Or PATCH operation

* A GET operation for an individual resource

The format of the ETag header is:

ETag: <string>

For responses to $expand requests:

* The @odata.etag property of each resource in the response shall contain the ETag of the resource as if it were
not expanded.

» The ETag header should contain the ETag of the entire response body.

Services should omit properties named DateTime from ETag calculations. Properties named DateTime represent

Version 1.23.1 Published 35

Redfish Specification DSP0266

clock settings that increment monotonically over time. Services should implement methods to reduce the frequency
of ETag updates for other types of fast changing properties, such the Reading property in the Sensor resource, for
ETag calculations.

Special handling of ETag calculations is important for clients that use the 1f-match header to prevent collisions with
other clients. For example, if a client is attempting to modify a Manager resource and the DateTime property updates
the ETag every second, a client performing a PATCH operation on the Manager resource with the 1f-mMatch header
will likely contain an old ETag if DateTime is not omitted from ETag calculations, causing the service to respond with
the HTTP 412 precondition Failed status code. However, omitting a property from ETag calculations might be
problematic for clients using the 1f-Match-None header to reduce the amount of data transmitted over the network.
For example, if the Reading property is omitted from the ETag calculation in a Sensor resource, a client using the
If-Match-None header for GET operations could continually get the HTTP 304 Not Modified status code regardless
of how much the sensor reading changed. In this case, other methods to reduce the frequency of ETag changes are
preferred.

6.6 Protocol version

The protocol version is separate from the resources' version or the Redfish schema version that the resources
support.

Each Redfish protocol version is strongly typed by using the URI of the Redfish service in combination with the
resource obtained at that URI, called the ServiceRoot resource.

The root URI for this version of the Redfish protocol shall be /redfish/vi/ .
The URI defines the major version of the protocol.

The Redfishversion property of the ServiceRoot resource defines the protocol version, which includes the major
version, minor version, and errata version of the protocol, as defined in the Redfish schema for that resource.

The protocol version is a string in the format:
<MajorVersion>.<MinorVersion>.<ErrataVersion>
where

* <MajorVersion> is an integer that represents the major version. Indicates a backward-incompatible change.

* <MinorVersion> is an integer that represents the minor version. Indicates a minor update. Redfish introduces
functionality but does not remove any functionality. The minor version preserves compatibility with earlier minor
versions.

* <ErrataVersion> is an integer that represents the errata version. Indicates a fix to the earlier version.

36 Published Version 1.23.1

DSP0266 Redfish Specification

Any resource that a client discovers through hyperlinks that the service root or any service root-referenced service or
resource returns shall conform to the same protocol version that the service root supports.

A GET operation on the /redfish resource shall return this response body:

"vi": "/redfish/v1/"

6.7 Redfish-defined URIs and relative reference rules

Table 4 describes the Redfish-defined URIs. Redfish services shall support URIs in the table if the Required column
contains Yes. Redfish services should support URIs in the table if the Required column contains No.

Table 4 — Redfish-defined URIs

URI Returns Required

Version. A major update that does not

/redfish preserve compatibility with earlier minor Yes
versions.

/redfish/v1/ Redfish service root. Yes

/redfish/v1/odata Redfish OData service document. Yes

/redfish/vl/$metadata Redfish metadata document. Yes

/redfish/v1/openapi.yaml Redfish OpenAPI YAML document. No

Local copy of a Redfish schema file, where
/redfish/v1/Schemas/<SchemaFile> <SchemaFile> is the file name of the local No
schema file.

Local copy of a Redfish registry file, where
/redfish/vl/Registries/<RegistryFile> <RegistryFile> is the file name of the local No
registry file.

Redfish task monitor, where
/redfish/v1/TaskService/ . . .

<TaskMonitorId> is the identifier of the task No
TaskMonitors/<TaskMonitorId>)

monitor.

In addition, Table 5 describes the URIs that services shall process without a trailing slash in one of these ways:

» Redirect it to the associated Redfish-defined URI.
+ Treat it as the equivalent URI to the associated Redfish-defined URI.

Version 1.23.1 Published 37

Redfish Specification DSP0266

Table 5 — Redfish-defined URIs without trailing slashes

URI Associated Redfish-defined URI
/redfish/v1l /redfish/v1l/
/redfish/ /redfish

All other Redfish service-supported URIs shall match the resource URI patterns definitions, except the supplemental
resources that the @Redfish.Settings , @Redfish.ActionInfo , and @Redfish.CollectionCapabilities payload
annotations reference. The client shall treat the URIs for these supplemental resources as opaque.

All Redfish-defined URIs and URIs starting with /redfish are reserved for future standardization by DMTF and

DMTF alliance partners, except OEM extension URIs, which shall conform to the requirements of the OEM URIs
clause.

All relative references that the service uses shall start with either:

» A double forward slash (//) and include the authority (network-path), such as //mgmt.vendor.com/redfish/v1/
Systems .

» A single forward slash (/) and include the absolute-path, such as /redfish/v1i/Systems .

For details, see RFC3986.

38 Published Version 1.23.1

DSP0266 Redfish Specification

7 Service requests

This clause describes the requests that clients can send to Redfish services.

7.1 Request headers

Table 6 lists the HTTP request headers and their requirements for Redfish services and clients.

» Redfish services shall process the HTTP headers in Table 6 if the Service requirement column contains Yes or
Conditional.

» Redfish services should process the HTTP headers in Table 6 if the Service requirement column contains No.

» Redfish services shall process all HTTP header names in a case-insensitive manner.

» Redfish clients shall include in HTTP requests the HTTP headers in Table 6 if the Client requirement column
contains Yes or Conditional.

» Redfish clients should include in HTTP requests the HTTP headers in Table 6 if the Client requirement column
contains No.

Version 1.23.1 Published 39

Redfish Specification

DSP0266

Table 6 — Request headers

Service Client Supported
Header i)

requirement requirement values
Accept Yes No RFC7231
Accept-Encoding No No RFC7231
Accept-Language No No RFC7231
Authorizati Conditional Conditional RFC7617,
uthorization RFCG749

Description

Communicates to the server the media type or types
that this client is prepared to accept.

Services shall support resource requests with Accept
header values of application/json or application/

json;charset=utf-8 .

Services shall support XML metadata requests with
Accept header values of application/xml or

application/xml;charset=utf-8 .

Services shall support OpenAPI YAML schema
requests with Accept header values of application/
yaml Or application/yaml;charset=utf-8 or
application/vnd.oai.openapi Or application/

vnd.oai.openapij;charset=utf-8 .

Services shall support SSE requests with Accept
header values of text/event-stream Or text/event-

stream;charset=utf-8 .

Services shall support any request with Accept
header values of application/* ,
application/*;charset=utf-8 , */* 6 or
*/%;charset=utf-8 .

Indicates whether the client can handle gzip-encoded
responses. If a service cannot return an acceptable
response to a request with this header, it shall
respond with the HTTP 406 Not Acceptable status
code. If the request omits this header, the service
should not return gzip-encoded responses.

The languages that the client accepts in the response.
If the request omits this header, uses the service's
default language for the response.

Required for HTTP Basic authentication and OAuth
2.0.

A client can access unsecured resources without this
header on systems that support Basic authentication.

40 Published

Version 1.23.1

DSP0266 Redfish Specification

Service Client Supported o
Header i) Description
requirement requirement values
The size of the message body.
To indicate the size of the body, a client can use the
Transfer-Encoding: chunked header.
Content-Length No No RFC7231
If a service needs to use Content-Length and does
not support Transfer-Encoding , it responds with the
HTTP 466 Not Acceptable status code.
The request format. Required for operations with a
request body.
Services shall accept the content-Type header set to
Content-Type Conditional Conditional RFC7231 either application/json Or application/
json;charset=utf-8 .
It is recommended that clients use these values in
requests because other values can cause an error.
Enables support of multiple origin hosts at a single IP
Host Yes No RFC7230
address.
To ensure that clients update the resource from a
known state, PuT and PATCH requests for resources
for which a service returns ETags shall support 1f-
If-Match Conditional No RFC7232 Match .
While not required for clients, it is highly
recommended for PUT and PATCH operations.
A service only returns the resource if the current ETag
of that resource does not match the ETag sent in this
header.
If-None-Match No No RFC7232
If the ETag in this header matches the resource's
current ETag, the GeT operation returns the HTTP
304 Not Modified status code.
The event source's last id field from the SSE stream.
Requests history event data.
Last-Event-1ID No No HTML5 SSE . /
See Server-sent events.
Limits gateway and proxy hops.
Max-Forwards No No RFC7231

Prevents messages from remaining in the network
indefinitely.

Version 1.23.1 Published 41

Redfish Specification

Header

OData-MaxVersion

OData-Version

Origin

User-Agent

X-Auth-Token

Service
requirement

No

Yes

Yes

Yes

No

Yes

Client
requirement

No

No

No

No

No

Conditional

7.2 GET (read requests)

7.2.1 GET (read requests) overview

Supported
values

4.0

4.0

Fetch Living
Standard, 3.1.
origin header

RFC7231

RFC7230

Opaque encoded
octet strings

DSP0266

Description

The maximum OData version that an OData-aware
client understands.

The OData version.

Services shall reject requests that specify an
unsupported OData version.

If a service encounters an unsupported OData
version, it should reject the request with the HTTP 412
Precondition Failed status code.

Enables web applications to consume a Redfish
service while preventing CSRF attacks.

Traces product tokens and their versions.
The header can list multiple product tokens.

Defines the network hierarchy and recognizes
message loops.

Each pass inserts its own via header.

Authenticates user sessions.

The token value shall be indistinguishable from
random.

While services shall support this header, a client can
access unsecured resources without establishing a
session.

The GeT operation retrieves resources from a Redfish service. Clients make a GET request to the individual
resource URI. Clients may obtain the resource URI from published sources, such as the OpenAPI| document, or from
a resource identifier property in a previously retrieved resource response, such as the links property.

The service shall return the resource representation using one of the media types listed in the Accept header,
subject to the requirements of the media types. If the Accept header is absent, the service shall return the

resource's representation as application/json . Services may but are not required to support the convention of

42

Published

Version 1.23.1

https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header

DSP0266 Redfish Specification

retrieving individual properties within a resource by appending a segment containing the property name to the URI of
the resource.

« The HTTP GeT operation shall retrieve a resource without causing any side effects.
» The service shall ignore the content of the body on a GET .

* The GET operation shall be idempotent in the absence of outside changes to the resource.

If supported by the service, clients can perform a conditional GeT operation by specifying an 1f-None-Match request
header that contains the ETag of the resource.

7.2.2 Resource collection requests

Clients retrieve a resource collection by making a GeT request to the resource collection URI. The response includes
the resource collection's properties and an array of its members.

No requirements are placed on implementations to return a consistent set of members when a series of requests that
use paging query parameters are made over time to obtain the entire set of members. These calls can result in
missed or duplicate elements if multiple GET requests use paging to retrieve the Members array instances.

» Clients shall not make assumptions about the URIs for the members of a resource collection.

» Retrieved resource collections shall always include the count (Members@odata.count) property to specify the total
number of entries in its Members array.

» Regardless of the next link (Members@odata.nextLink) property or paging, the count (Members@odata.count)
property shall return the total number of resources that the Members array references.

A subset of the members can be retrieved using client paging query parameters.

A service might not be able to return all of the contents of a resource collection request in a single response body. In
this case, the response can be paged by the service. If a service pages a response to a resource collection request,
the following rules shall apply:

* Responses can contain a subset of the full resource collection's members.
* Individual members shall not be split across response bodies.

* Anextlink (Members@odata.nextLink) property annotation shall be supplied in the response body with the URI to
the next set of members in the collection.

* The next link (Members@odata.nextLink) property shall adhere to the rules in the Next link property clause.

* GET operations on the next link (Members@odata.nextLink) property shall return the subsequent section of the
resource collection response.

7.2.3 Service root request

The root URL for Redfish version 1.x services shall be /redfish/vi/ .

Version 1.23.1 Published 43

Redfish Specification DSP0266

The service returns the ServiceRoot resource, as defined by this specification, as a response for the root URL.

Services shall not require authentication to retrieve the service root and /redfish resources.

7.2.4 OData service and metadata document requests

Redfish services expose two OData-defined documents at specific URIs to enable generic OData clients to navigate
the Redfish service.

» Service shall expose an OData metadata document at the /redfish/vi/$metadata URI.
» Service shall expose an OData service document at the /redfish/vi/odata URI.

» Service shall not require authentication to retrieve the OData metadata document or the OData service
document.

7.3 Query parameters

7.3.1 Query parameter overview

To paginate, retrieve subsets of resources, or expand the results in a single response, clients can include the query
parameters. Some query parameters apply only to resource collections.

Services:

» Shall only support query parameters on GET operations.
» Should support the $top, $skip , only , and excerpt query parameters.
* May support the s$expand , $filter ,and $select query parameters.

» Shall include the ProtocolFeaturesSupported object in the service root, if the service supports query parameters.
o This object indicates which parameters and options have been implemented.

» Shall ignore unknown or unsupported query parameters that do not begin with ¢ .
» Shall use the & operator to separate multiple query parameters in a single request.

» Should ignore the = character if provided as the last character for the only , excerpt,
includeoriginofcondition query parameters.

« Should treat the names of query parameters as case-insensitive strings.
Services shall return:

* The HTTP s5e1 Not Implemented status code for any unsupported query parameters that start with ¢ .
» An extended error that indicates the unsupported query parameters for this resource.

* The HTTP 400 Bad Request status code for any query parameters that contain values that are invalid, or values
applied to query parameters without defined values, such as excerpt or only .

44 Published Version 1.23.1

DSP0266 Redfish Specification

Services should return:

The HTTP 400 Bad Request status code and an error response with the QueryNotSupportedOnResource message
from the Base Message Registry for any implemented query parameters that are not supported on a resource in
the request.

The HTTP 400 Bad Request status code and an error response with the QueryNotSupportedOnResource message
from the Base Message Registry for any supported query parameters that apply only to resource collections but
are used on singular resources. This includes query parameters such as $filter , $top, $skip ,and only .
The HTTP 400 Bad Request status code and an error response with the QueryNotSupportedOnOperation
message from the Base Message Registry for any supported query parameters on operations other than GeT .

Services shall process query parameters in this order:

$filter

$skip

$top

Apply server-side pagination
$expand

excerpt

$select

Table 7 describes the query parameters:

Table 7 — Query parameters

Query parameter Description and example

Returns a subset of the resource's properties that match the defined Excerpt schema annotation.

If no Excerpt schema annotation is defined for the resource, the entire resource is returned.

excerpt

Example:

https://resource?excerpt

Returns a hyperlink and its contents in-line with retrieved resources, as if a GeT call response was
included in-line with that hyperlink.

See The $expand query parameter.

$expand=<string>

Example:

https://resource?$expand=*($levels=3)

https://resourcecollection?$expand=. ($levels=1)

Version 1.23.1 Published 45

Redfish Specification

Query parameter

$filter=<string>

only

$select=<string>

$skip=<integer>

$top=<integer>

DSP0266

Description and example

Applies to resource collections. Returns a subset of collection members that match the $filter
expression.

See The $filter query parameter.

Example:

https://resourcecollection?$filter=SystemType eq 'Physical’

Applies to resource collections. If the target resource collection contains exactly one member, clients can
use this query parameter to return that member's resource.

If the collection contains either zero members or more than one member, the response returns the
resource collection, as expected.

Services should return the HTTP 400 Bad Request and an error response with the
QueryCombinationInvalid message from the Base Message Registry if only is being combined with other
query parameters.

Example:

https://resourcecollection?only

Returns a subset of the resource's properties that match the $select expression.

See The $select query parameter.

Example:

https://resource?$select=SystemType,Status
Applies to resource collections. Returns a subset of the members in a resource collection, or an empty set
of members if the $skip value is greater than or equal to the member count. This paging query parameter
defines the number of members in the resource collection to skip.

Example:

https://resourcecollection?$skip=5
Applies to resource collections. Defines the number of members to show in the response.

Minimum value is o , though a value of @ returns an empty set of members.

Example:

https://resourcecollection?$top=30

46

Published Version 1.23.1

DSP0266 Redfish Specification

Query parameter Description and example

Returns the resource referenced by any originofCondition properties in-line with the requested resource
if not inside a Links property. Can be considered a specialized type of $expand=. specifically for
originofCondition properties.

includeoriginofcondition

Example:

https://resource?includeoriginofcondition

Services may support OEM-defined query parameters. OEM-defined query parameter names shall not contain
characters that conflict with syntax for query parameter parsing, such as & . OEM-defined query parameters shall be
in the form:

OEM-<OemIdentifier>-<ParameterName>
where

* <OemIdentifier> is the unique identifier of the OEM, including possible subdivisioning, that follows the same
naming as defined in the OEM-specified object naming clause. Separator underscores (_) may be excluded for
improved readability.

* <ParameterName> is the parameter name.

For example, if Contoso defined a statusonly parameter, the query parameter would be O0EM-Contoso-StatusOnly .

7.3.2 The $expand query parameter

The $expand query parameter enables a client to request a response that includes not only the requested resource,
but also includes the contents of the subordinate or hyperlinked resources. The definition of this query parameter
follows the OData Protocol Specification.

The gexpand query parameter has a set of possible options that determine which hyperlinks in a resource are
included in the expanded response.

Table 9 describes the Redfish-supported options for the $expand query parameter. The service may implement
some of these options but not others. Any other supported syntax for $expand is outside the scope of this
specification.

Version 1.23.1 Published 47

Redfish Specification DSP0266

Option

asterisk (*)

Table 8 — The $expand query parameter options

Description Example

Shall expand all hyperlinks, including those in payload
annotations, such as @Redfish.Settings ,
@Redfish.ActionInfo , and
@Redfish.CollectionCapabilities .

https://resource?$expand=*

Number of levels the service should cascade the $expand
operation.

The default level shall be 1.

$levels https://resourcecollection?$expand=. ($levels=2)
For example, $levels=2 expands both the hyperlinks in the
current resource (level 1), and the hyperlinks in the resulting
expanded resources (level 2).
Shall expand all hyperlinks not in any links property
instances of the resource, including those in payload
period (.) annotations, such as @Redfish.Settings , https://resourcecollection?$expand=.
@Redfish.ActionInfo , and
@Redfish.CollectionCapabilities .
. Shall expand all hyperlinks found in all links propert:
tilde (~) & e BRI https://resourcecollection?$expand=~

instances of the resource.

Examples of $expand usage include:

» Get all members of the software inventory collection.

With $expand , the client can request multiple softwareInventory collection member resources in one request

rather than fetching them one at a time.

Example request: GET /redfish/v1/UpdateService/FirmwareInventory?$expand=.

» Get a computer system and subordinate resources.

With $levels , a single GeT request can include the subordinate resource collections, such as Processors and

Memory .
Example request: GET /redfish/v1/Systems/1?$expand=.($levels=3)

* Get all UUIDs of the members of the computer system collection.

To accomplish this result, include both $select and $expand on the URI. When combining $select and

$expand , the full property path from the expansion source is required in the $select query parameter.

48 Published

Version 1.23.1

DSP0266 Redfish Specification

Example request: GET /redfish/v1/Systems?$select=Members/UUID&$expand=. ($levels=1)
When services execute $expand , they should include all supported properties in the requested resources.

When clients use s$expand , they should be aware that the payload may increase beyond what can be sent in a single
response.

If a client does not have the privileges required to access referenced resources in an expansion request, the service
shall not expand the referenced resources. Services should not fail the request if the client has the privilges to
access the URI of the requested resource.

If a service cannot return the payload due to its size, it shall return the HTTP 507 Insufficient Storage status code.

If a service cannot return the payload corresponding to an individual member of a resource collection, but can return
other members, it should:

* Return the HTTP 200 ok status code.
* Return the @odata.id property for the member that it cannot expand in the Members array.

» Return extended information with the member indicating the reason that member was not returned, such as
when a provider internal to the service returns an error or times out.

Responses may automatically include expanded resources due to the expanded resource annotation on reference
properties, such as the Members property in the LogEntryCollection resource. $expand operates in parallel to the
usage of this schema annotation. For example, since Members is automatically expanded, the following three
requests produce identical responses:

* /redfish/v1/Systems/1/LogServices/FaultLog/Entries
* /redfish/v1l/Systems/1/LogServices/FaultLog/Entries?$expand=.

* /redfish/v1/Systems/1/LogServices/FaultLog/Entries?$expand=. ($levels=1)

The following example expands the RoleCollection resource with the level set to 1:

"@odata.id": "/redfish/v1/AccountService/Roles",

"@odata.type": "#RoleCollection.RoleCollection",

"Name": "Roles Collection"”,

"Members@odata.count": 3,

"Members": [

{

"@odata.id": "/redfish/v1/AccountService/Roles/Administrator”,
"@odata.type": "#Role.vl_1_0.Role",
"Id": "Administrator",
"Name": "User Role",

Version 1.23.1 Published 49

Redfish Specification DSP0266

"Description": "Admin User Role",

"IsPredefined": true,

"AssignedPrivileges": ["Login", "ConfigureManager", "ConfigureUsers",
"ConfigureSelf", "ConfigureComponents"]

¥
{
"@odata.id": "/redfish/v1l/AccountService/Roles/Operator",
"@odata.type": "#Role.vl_1_0.Role",
"Id": "Operator",
"Name": "User Role",
"Description": "Operator User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureSelf", "ConfigureComponents"]
¥
{
"@odata.id": "/redfish/v1l/AccountService/Roles/ReadOnly",
"@odata.type": "#Role.vl_1 @.Role",
"Id": "ReadOnly",
"Name": "User Role",
"Description": "ReadOnly User Role",
"IsPredefined": true,
"AssignedPrivileges": ["Login", "ConfigureSelf"]
}

7.3.3 The $select query parameter

The $select query parameter indicates that the implementation should return a subset of the resource's properties
that match the $select expression. If a request omits the $select query parameter, the response returns all
properties by default. The definition of this query parameter follows the OData Protocol Specification.

The $select expression shall not affect the resource itself.
The $select expression defines a comma-separated list of properties to return in the response body.

The syntax for properties in objects or properties in arrays of objects shall be the object and property names
concatenated with a slash (/). For arrays, the expression shall not contain the array index.

An example of $select usage is:

GET /redfish/v1/Systems/1?$select=Name,SystemType,Status/State

For successful responses, when services execute $select , they shall return all requested properties of the

50 Published Version 1.23.1

DSP0266 Redfish Specification

referenced resource that are supported. Services shall omit unsupported properties requested in the $select query
parameter from the response. If a requested property is an object, the service shall return the entire object. The
@odata.id and @odata.type properties shall be in the response payload and contain the same values as if $select
was omitted. If the @odata.context property is supported, it shall be in the response payload and should be in the
context property recommended format. If the @odata.etag property is supported, it shall be in the response payload
and contain the same values as if $select was omitted. Services may include object-level messages or messages
for requested properties in the response payload.

For unsuccessful responses, the response body shall contain an error response regardless of the properties
requested in the $select query parameter.

Any other supported syntax for $select is outside the scope of this specification.

7.3.4 The $filter query parameter

The ¢filter parameter enables a client to request a subset of the resource collection's members based on the
$filter expression. The definition of this query parameter follows the OData Protocol Specification.

The ¢$filter query parameter defines a set of properties and literals with an operator.
A literal value can be:

» A string enclosed in single quotes.
* A number.

* A boolean value.

If the literal value does not match the data type for the specified property, the service should reject $filter requests
with the HTTP 400 Bad Request status code.

The $filter section of the OData ABNF Components Specification contains the grammar for the allowable syntax
of the $filter query parameter, with the additional restriction that only built-in filter operations are supported.

Table 10 lists the Redfish-supported values for the $filter query parameter. Any other supported syntax for
$filter is outside the scope of this specification.

Table 9 — The $filter query parameter options

Value Description Example

Precedence grouping

QO (Status/State eq 'Enabled' and Status/Health eq 'OK') or SystemType eq 'Physical’
operator.

and Logical and operator. ProcessorSummary/Count eq 2 and MemorySummary/TotalSystemMemoryGiB gt 64

eq Equal comparison operator. ProcessorSummary/Count eq 2

Version 1.23.1 Published 51

Redfish Specification DSP0266

Value Description Example

Greater than or equal to
ge . ProcessorSummary/Count ge 2
comparison operator.

Great than comparison
gt ProcessorSummary/Count gt 2
operator.

Less than or equal to
le i MemorySummary/TotalSystemMemoryGiB le 64
comparison operator.

Less than comparison
1t MemorySummary/TotalSystemMemoryGiB 1t 64
operator.

Not equal comparison

ne SystemType ne 'Physical’
operator.
not Logical negation operator. not (ProcessorSummary/Count eq 2)
or Logical or operator. ProcessorSummary/Count eq 2 or ProcessorSummary/Count eq 4

When evaluating expressions, services shall use the following operator precedence:

» Grouping

» Logical negation

* Relational comparison. gt , ge, 1t,and le all have equal precedence.
» Equality comparison. eq and ne both have equal precedence.

* Logical and

* Logical or

If the service receives an unsupported $filter query parameter, it shall reject the request and return the HTTP se1
Not Implemented status code.

7.4 HEAD

The Heap method differs from the GeT method in that it shall not return message body information.

However, the HEAD method completes the same authorization checks and returns all the same meta information and
status codes in the HTTP headers as a GeT method.

Services may support the HEAD method to:

* Return meta information in the form of HTTP response headers.

» Verify hyperlink validity.

52 Published Version 1.23.1

DSP0266 Redfish Specification

Services may support the HEAD method to verify resource accessibility.
Services shall not support any other use of the HEaD method.
The HeaD method shall be idempotent in the absence of outside changes to the resource.

Services shall reject HEAD requests that contain query parameters. Services should return the HTTP 400 Bad
Request status code if provided with a query parameter in a HEAD request.

7.5 Data modification requests

7.5.1 Data modification requests overview
To create, modify, and delete resources, clients issue the following operations:

+ POST (create)

* PATCH (update)

* PUT (replace)

» DELETE (delete)

+ POST (action) on the resource

The following clauses describe the success and error response requirements common to all data modification
requests.

7.5.2 Modification success responses

For POST (create) operations, the response from the service, after the create request succeeds, should be one of
these responses:

« The HTTP 201 created status code. If a response body is provided, it contains the JSON representation of the
newly created resource after the request has been applied.
* The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when the
processing of the request requires additional time to be completed.
o After processing of the fask is complete, the created resource may be returned in response to a request to
the task monitor URI with the HTTP 201 created status code.

» The HTTP 204 No content status code with no response body.

For PATCH (update), PUT (replace), and DELETE (delete) operations, the response from the service, after
successful modification, should be one of the following responses:

« The HTTP 200 ok status code with a body that contains the JSON representation of the targeted resource after
the modification has been applied, or, for the delete operation, a representation of the deleted resource.

Version 1.23.1 Published 53

Redfish Specification DSP0266

* The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when the
processing of the modification requires additional time.
o After processing of the task is complete, the modified resource may be returned in response to a request to
the task monitor URI with the HTTP 200 ok status code.

* The HTTP 204 No content status code with no response body.

For details on successful responses to action requests, see POST (action).

7.5.3 Modification error responses

If the resource exists but does not support the requested operation, services shall return the HTTP 405 Method Not
Allowed status code.

Otherwise, if the service returns a client 4xx or service s5xx status code, the service encountered an error and the
resource shall not have been modified or created as a result of the operation.

7.6 PATCH (update)

To update a resource's properties, the service shall support the pATCH method.

The request body defines the changes to make to one or more properties in the resource that the request URI
references. The PATCH request does not change any properties that are not in the request body. Services may
accept a pATCcH method with an empty JSON object, which indicates that the service should make no changes to the
resource.

For resources that allow for properties to not be updated immediately, clients can perform PATCH requests to a
designated settings resource. For more information, see the Settings resource clause.

See the Modification success responses clause for behavior when the PATCH operation is successful.

If supported by the service, clients can perform a conditional PATCH operation by specifying an 1f-Match or If-
None-Match request header that contains the ETag of the resource.

Services may reject the update on certain properties based on their own policies and, in this case, not make the
requested update. Services should not require clients to provide properties other than those the client is attempting to
modify, including the oem property.

A partial success of a PATCH operation occurs when a modification request for multiple properties results in at least
one property updated successfully, but one or more properties could not be updated. In these cases, the service
shall return the HTTP 200 ok status code and a resource representation with extended information that lists the
properties that could not be updated. Examples include:

» A property is read-only, unknown, or unsupported.

54 Published Version 1.23.1

DSP0266 Redfish Specification

» A service-side error occurred, such as a write failure for an EEPROM.

If all properties in the update request are read-only, unknown, or unsupported, but the resource can be updated, the
service shall return the HTTP 400 Bad Request status code and an error response with messages that show the non-
updatable properties.

The service shall ignore OData annotations in the request body, such as the resource identifier, type, and ETag
properties, except for the conditions listed below. If the update request only contains OData annotations, the service
shall return the HTTP 460 Bad Request status code and an error response with the NoOperation message from the
Base Message Registry (preferred) or a modification success response, except for the conditions listed below.

» Writable reference properties.

» In deep operations when specifying subordinate resources.

In the absence of outside changes to the resource, the PATCH operation should be idempotent, although the original
ETag value may no longer match.

7.7 PATCH on array properties

The Array properties clause describes the three styles of array properties in a resource.

Within a PATCH request, the service shall accept null to remove an element, and accept an empty object {} to
leave an element unchanged. Array properties that use the fixed or variable length style remove those elements,
while array properties that use the rigid style replace removed elements with null elements. A service may indicate
the maximum size of an array by padding null elements at the end of the array sequence.

When processing a PATCH request, the order of operations shall be:

* Modifications
* Deletions
* Additions

A PATCH request with fewer elements than in the current array shall remove the remaining elements of the array.

For example, a fixed length-style Flavors array indicates that the service supports a maximum of six elements, by
padding the array with null elements, with four populated.

"Flavors": ["Chocolate", "vanilla", "Mango", "Strawberry", null, null]

Version 1.23.1 Published 55

Redfish Specification DSP0266

A client could issue the following PATCH request to remove vanilla , replace Strawberry with cherry , and add
Coffee and Banana to the array, while leaving the other elements unchanged.

"Flavors": [{}, null, {}, "Cherry", "Coffee", "Banana"]

After the PATCH operation, the resulting array is:

"Flavors": ["Chocolate", "Mango", "Cherry", "Coffee", "Banana", null]

7.8 PUT (replace)

To completely replace a resource, services may support the put method. The service may add properties to the
response resource that the client omits from the request body, the resource definition requires, or the service
normally supplies.

The puT operation should be idempotent in the absence of outside changes to the resource, with the possible
exception that the operation might change ETag values.

See the Modification success responses clause for behavior when the put operation is successful.

If supported by the service, clients can perform a conditional puT operation by specifying an 1f-Match or If-None-
Match request header that contains the ETag of the resource.

Services may reject requests that do not include properties that the resource definition (schema) requires.

7.9 POST (create)

To create a resource, services shall support the pPosT method on resource collections.

The posT request is submitted to the resource collection to which the new resource will belong. See the Modification
success responses clause for behavior when the posT operation is successful.

The body of the create request contains a representation of the object to create. The service may ignore any service-
controlled properties, such as 1d , which would force the service to overwrite those properties. Additionally, the

service shall set the Location header in the response to the URI of the new resource.

« Submitting a posT request to a resource collection is equivalent to submitting the same request to the Members

56 Published Version 1.23.1

DSP0266 Redfish Specification

property of that resource collection. Services that support the addition of Members to a resource collection shall
support both forms.
o For example, if a client adds a member to the resource collection at /redfish/v1/EventService/
Subscriptions , it can perform a POST request to either /redfish/v1/EventService/Subscriptions or

/redfish/v1/EventService/Subscriptions/Members .
* The posT operation shall not be idempotent.

» Services may allow the inclusion of the @Redfish.OperationApplyTime property in the request body. See
Operation apply time.

+ Services should return the HTTP 400 Bad Request status code for requests containing properties with the value
null , unless the null value for the property has a specific usage defined in schema.

» Services should not require clients to provide properties that are not annotated as required on create.

7.10 DELETE (delete)

To remove a resource, the service shall support the DELETE method. Resources subordinate to the resource
removed by a DELETE method are typically removed, as the contents of subordinate resources are dependent on the
parent resource. In some cases, related resources may also be relocated in the resource tree based on their
definition and usage. Other resources in the resource tree may also be removed or incur side effects of a resource
removal.

See the Modification success responses clause for behavior when the DELETE operation is successful.

+ If the resource was already deleted, the service may return the HTTP 404 Not Found status code or a success
code.

* The service may allow the inclusion of the @Redfish.OperationApplyTime property in the request body. See
Operation apply time.

7.11 POST (action)

Services shall support the PosT method as a way for clients to send actions to resources.

» The posT operation may not be idempotent.

» Services may allow the inclusion of the @Redfish.OperationApplyTime property in the request body. See
Operation apply time.

» Services should not require clients to provide parameters that are not annotated as required.

To request actions on a resource, send the HTTP posT method to the URI of the action. The target property in the
resource's Actions property shall contain the URI of the action. The URI of the action shall be in the format:

<ResourceUri>/Actions/<QualifiedActionName>

Version 1.23.1 Published 57

Redfish Specification DSP0266

where

* <ResourceUri> is the URI of the resource that supports the action.
* Actions is the name of the property that contains the actions for a resource, as defined by this specification.

* <QualifiedActionName> is the qualified name of the action. Includes the resource type.

To determine the available actions and the valid parameter values for those actions, clients can query a resource
directly.

Clients provide parameters for the action as a JSON object within the request body of the posT operation. For
information about the structure of the request and required parameters, see the Actions property clause. Some
parameter information may require that the client examine the Redfish schema that corresponds to the resource.

If the action request does not contain all required parameters, the service shall return the HTTP 400 Bad Request
status code. If the action request contains unsupported parameters, the service shall ignore the unsupported
parameters or return the HTTP 400 Bad Request status code. If an action does not have any required parameters,
the service shall accept an empty JSON object in the HTTP body for the action request.

Note: Previous versions of the specification allowed a service to reject action requests with an empty JSON
object in the HTTP body if the client is not providing parameters for the action request. Services implementing
version v1.20.0 or higher are required to accept an empty JSON object in an action request when the client is
not providing parameters for the action request.

Table 10 describes the HTTP status codes and additional information that the service shall return a response to a
successful posT (action) request:

Table 10 — POST (action) status codes

To indicate HTTP status code Additional information

An error response, with a message that indicates success or any

Success, and the action's schema additional relevant messages. If the action was successfully processed
definition does not contain an action 200 0K and completed without errors, warnings, or other notifications for the
response. client, the service should return the success message from the Base

Message Registry in the code property in the response body.

Success, and the action's schema T The response body conforms to the action response defined in the
definition contains an action response. schema.

A Location response header set to the URI of the created resource. An
error response, with a message that indicates success or any additional

A new resource was created, and the relevant messages. If the action was successfully processed and

action's schema definition does not 201 Created completed without errors, warnings, or other notifications for the client,

contain an action response. the service should return the Success message or Created message
from the Base Message Registry in the code property in the response
body.

58 Published Version 1.23.1

DSP0266

To indicate

A new resource was created, and the
action's schema definition contains an
action response.

Additional time is required to process.

Success, and the action's schema
definition does not contain an action
response.

HTTP status code

201 Created

202 Accepted

204 No Content

Redfish Specification

Additional information

A Location response header set to the URI of the created resource.
The response body conforms to the action response defined in the
schema.

A Location response header set to the URI of a task monitor.

No response body.

If an action requested by the client has no effect, such as a reset of a ComputerSystem where the ResetType

parameter is setto on and the computersystem is already on , the service should respond with the HTTP 200 ok

status code and return the Nooperation message from the Base Message Registry.

If an error was detected and the action request was not processed, the service shall return an HTTP 4xx or HTTP
sxx status code. The response body, if provided, shall contain an error response that describes the error or errors.

Example successful action response:

"error": {

"code": "Base.l1.8.Success",
"message”: "Successfully Completed Request”,
"@Message.ExtendedInfo": [{

"@odata.type": "#Message.vl_1_1.Message",

"MessageId": "Base.l.8.Success",
"Message": "Successfully Completed Request",

"Severity": "OK",

"MessageSeverity": "OK",

"Resolution": "None"

3]

7.12 Operation apply time

Services may accept the @Redfish.OperationApplyTime annotation in the following request bodies:

+ POST (create)
+ DELETE (delete)
+ POST (action)

* The JSON part for multipart HTTP POST operations, such as with the multipart HTTP push update in the update

Version 1.23.1

Published

59

Redfish Specification DSP0266

service.
This annotation enables the client to control when an operation is carried out.

For example, if the client wants to delete a particular volume resource, but can only safely do so when a reset
occurs, the client can use this annotation to instruct the service to delete the volume on the next reset.

If multiple operations are pending, the service shall process them in the order in which the service receives them.

Services that support the @Redfish.OperationApplyTime annotation for create operations on a resource collection and
delete operations on members of a resource collection shall include the @Redfish.OperationApplyTimeSupport
response annotation for the resource collection.

The following example is a response for a resource collection that supports the @Redfish.OperationApplyTime
annotation in requests to create new members and delete existing members:

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes",
"@odata.type": "#VolumeCollection.VolumeCollection",
"Name": "Storage Volume Collection",
"Description”: "Storage Volume Collection",
"Members@odata.count": 2,
"Members": [{
"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/1"

3 o
"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2"

I
"@Redfish.OperationApplyTimeSupport”: {

"@odata.type": "#Settings.vl_3_3.0OperationApplyTimeSupport”,
"SupportedvValues": ["Immediate", "OnReset"]

In the previous example, a client can annotate their create request body on the VvolumeCollection itself, or a delete
operation on the Volumes within the VolumeCollection .

The following sample request deletes a volume on the next reset:

DELETE /redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2 HTTP/1.1
Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

"@Redfish.OperationApplyTime": "OnReset"

60 Published Version 1.23.1

DSP0266 Redfish Specification

Services that support the @Redfish.OperationApplyTime annotation for an action shall include the
@Redfish.OperationApplyTimeSupport response annotation for the action.

The following example is a response for a ComputerSystem resource that supports the @Redfish.OperationApplyTime
annotation in the reset action request:

"@odata.id": "/redfish/v1/Systems/1",
"@odata.type": "#ComputerSystem.vl_5_0.ComputerSystem",
"Actions": {
"#ComputerSystem.Reset": {
"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",
"ResetType@Redfish.AllowableValues": ["On", "ForceOff", "ForceRestart",
"Nmi", "ForceOn", "PushPowerButton"],
"@Redfish.OperationApplyTimeSupport™: {
"@odata.type": "#Settings.vl_3_3.OperationApplyTimeSupport",
"SupportedvValues": ["Immediate", "AtMaintenanceWindowStart"],
"MaintenanceWindowStartTime": "2017-05-03T723:12:37-05:00",
"MaintenanceWindowDurationInSeconds": 600,
"MaintenanceWindowResource": {
"@odata.id": "/redfish/v1/Systems/1"

3

In the previous example, a client can annotate their reset action request body on the cComputersystem in the payload.

The following sample request completes a reset at the start of the next maintenance window:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1
Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

"ResetType": "ForceRestart",
"@Redfish.OperationApplyTime": "AtMaintenanceWindowStart"

Services that support the @Redfish.OperationApplyTime annotation for the JSON part of a multipart HTTP POST

Version 1.23.1 Published 61

Redfish Specification DSP0266

operation shall include the @Redfish.OperationApplyTimeSupport response annotation for the property that specifies
the URI of the multipart POST operation.

The following example is a response for an updateService resource that supports the @Redfish.OperationApplyTime
annotation in the JSON part of a multipart request:

{
"@odata.id": "/redfish/v1/UpdateService",
"@odata.type": "#UpdateService.vl_8 0.UpdateService",
"MultipartHttpPushUri": "/redfish/v1/UpdateService/update-multipart”,
"MultipartHttpPushUri@Redfish.OperationApplyTimeSupport™: {
"@odata.type": "#Settings.vl_3_3.0OperationApplyTimeSupport",
"Supportedvalues": ["Immediate", "AtMaintenanceWindowStart"],
"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",
"MaintenanceWindowDurationInSeconds": 600,
"MaintenanceWindowResource": {
"@odata.id": "/redfish/v1l/UpdateService"
}
s
}

Services that support the @Redfish.OperationApplyTime annotation for a resource collection, action, or multipart
HTTP POST operation shall create a task, and respond with the HTTP 202 Accepted status code with a Location
header set to the URI of a task monitor, if the client's request body contains @Redfish.OperationApplyTime in the
request.

The settings Redfish schema defines the structure of the @Redfish.OperationApplyTimeSupport object and the
@Redfish.OperationApplyTime annotation value.

7.13 Deep operations

Implementations may support operations that modify the current resource as well as subordinate resources. These
operations are known as deep operations. They give the client the ability to modify more than one resource with a
single operation.

Table 11 describes the types of deep operations that this specification defines:

Table 11 — Deep operations

Operation Description Example

. . Modify a ComputerSystem resource as well as
Modify a resource and one or more subordinate .
Deep PATCH (update) subordinate Storage and NetworkInterface
resources.
resources.

62 Published Version 1.23.1

DSP0266 Redfish Specification

Operation Description Example

Create one or more resources in a resource collection .
Deep posT (create)) . Create multiple ManagerAccount resources.
and optionally subordinate resources.

» Services that support deep PATCH for updating resources shall set the value of the DeepPATCH property in the
DeepOperations property in the ProtocolFeaturesSupported property within the service root to true .

» Services that support deep posT for creating resources shall set the value of the DeepP0OST property in the
DeepOperations property in the ProtocolFeaturesSupported property within the service root to true .

* The Members property in resource collections shall not be removed when using a deep PATCH .
» Action URIs shall not support deep PosT operations.

 If the service supports deep operations, the MaxLevels property in the DeepOperations property in the
ProtocolFeaturesSupported property in the service root shall indicate the maximum number of levels that the
service supports for deep operations.

» To request deep operations on a resource, send the HTTP method to the deep operation URI of the resource.
The URI for deep operations on any resource shall be in the format: <ResourceUri>.Deep .

» The schema used for validating the root level of the request body shall be the schema of the resource in the
resource URI.
o The subordinate resources included in the request body shall be validated against their corresponding
schema.

The body of deep operations contains the resource being modified as well as the subordinate resources being
modified. This resource can be a collection or a single instance. These resources could be subordinate resources,
subordinate resource collections, or subordinate members of resource collections. The client can omit properties
from the request such as those it does not want to modify or that the service controls. Requests that include
references to multiple instances, such as members of a collection, shall include the Members property as part of the
request body.

To determine which members of subordinate resource collections are to be modified by a deep PATCH , services shall
use the @odata.id property provided by the client to identify the member of the resource collection to be modified.

Clients may provide the @odata.etag property in subordinate resources being modified by a deep pPATcH . If the
request contains the If-Match or If-None-Match header, the service shall compare the ETag in the request header
with the ETag of the resource specified by the URI. If this check passes, the operation can proceed using the
@odata.etag values contained in the body of the subordinate resources. In this case, the operation on each
subordinate resource shall be completed independently, where some subordinate values that pass the condition
check proceed and the resources that fail do not proceed. In this case, annotated extended information shall be
included in the subordinate resource representation of the response.

Failure semantics for deep operations are similar to that of other operations of similar type. If any properties in a
deep PATCH operation succeeded, the resultis a 200 ok with the results returned in the response, and the service
should include extended information indicating warnings or errors. For a deep PosT operation, if any member of the

Version 1.23.1 Published 63

Redfish Specification DSP0266

collection was created then a 201 created shall be returned, and any members that were not created should have
extended information in their place holders with sufficient identifying information, such as returning all of the
properties provided in the PosT request body for that member, as well as extended information indicating why the
creation was not successful. When sending a deep PosST request, the value of the Location header shall be that of
one of the URIs created and should be that of one of the least subordinate URIs, such as that of a ComputerSystem
resource and not one of the devices subordinate to the ComputerSystem resource.

If the request body for a deep operation contains resources that are not modifiable, but no modifications are
requested for those resources, services shall not treat this as a modification request for those resources. For
example, if the service root is not modifiable, meaning PATCH is not accepted on the resource, a client is allowed to
provide the service root in the deep operation request body if there are no modifications to the service root.

Deep posT shall not be allowed on the sessionCollection resource.

The following deep PATCH example modifies two members of the RoleCollection resource:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>

OData-Version: 4.0

{
"Members": [
{
"@odata.id": "/redfish/v1l/AccountService/Roles/OperatorRestricted”,
"AssignedPrivileges": ["Login", "ConfigureComponents"]
}J
{
"@odata.id": "/redfish/vl1/AccountService/Roles/ReadOnlyRestricted”,
"AssignedPrivileges": ["Login"]
}
1
}

The following deep PoST example creates two members in the RoleCollection resource:

POST /redfish/vl/AccountService/Roles.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>

OData-Version: 4.0

"Members": [

{
"RoleId": "OperatorRestricted",

"AssignedPrivileges": ["Login", "ConfigureComponents"]

64 Published Version 1.23.1

DSP0266 Redfish Specification

"RoleId": "ReadOnlyRestricted",
"AssignedPrivileges": ["Login"]

The following deep PosT example creates one member in the EventDestinationCollection resource and creates a
Certificate resource subordinate to the new EventDestination resource:

POST /redfish/v1/EventService/Subscriptions.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>

OData-Version: 4.0

{
"Members": [
{
"Destination": "https://listenerl.contoso.com",
"Protocol": "Redfish",
"Certificates": {
"Members": [
{
"CertificateType": "PEM",
"CertificateString": "----- BEGIN CERTIFICATE"
¥
1
¥
}
]
}

The following deep PATCH example modifies the asset tag and BIOS settings of a ComputerSystem resource:

PATCH /redfish/v1/Systems/47832.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

"AssetTag": "Inventory Tag 12394783431",
"Bios": {
"@odata.id": "/redfish/v1/Systems/47832/Bios",
"@Redfish.Settings": {
"@odata.type": "#Settings.vl_3_3.Settings",

Version 1.23.1 Published

65

Redfish Specification DSP0266

"SettingsObject": {
"@odata.id": "/redfish/v1/Systems/47832/Bios/SD",
"Attributes": {
"AdminPhone": "(123) 456-789",
"BootMode": "Uefi"

The following example shows a deep PATcH with ETags in the request:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>

If-Match: <Collection ETag>

OData-Version: 4.0

{
"Members": [
{
"@odata.id": "/redfish/v1l/AccountService/Roles/OperatorRestricted”,
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login", "ConfigureComponents"]
¥
{
"@odata.id": "/redfish/v1l/AccountService/Roles/ReadOnlyRestricted"”,
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login"]
}
1
}

The following example response shows a partial failure of a deep pATCH where the ETag provided in the request for
the Role resource named ReadOnlyRestricted was incorrect:

HTTP/1.1 200 OK

Content-Type: application/json;charset=utf-8
Content-Length: <computed length>

ETag: <Resource collection ETag>
OData-Version: 4.0

"Members": [

{

66 Published Version 1.23.1

DSP0266 Redfish Specification

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted”,
"@odata.etag": "W/\"ABCDEFG\"",
"AssignedPrivileges": ["Login", "ConfigureComponents"]

¥
{
"@odata.id": "/redfish/v1l/AccountService/Roles/ReadOnlyRestricted”,
"@Message.ExtendedInfo": [
{
"@odata.type": "#Message.vl_1_1.Message",
"MessageId": "Base.1l.8.PreconditionFailed",
"RelatedProperties”: ["/AssignedPrivileges"]
¥
1
}

Version 1.23.1 Published 67

Redfish Specification DSP0266

8 Service responses

This clause describes the responses that Redfish services can return to clients.

8.1 Response headers

Table 12 lists the HTTP response headers and their requirements for Redfish services and clients.

» Redfish services shall include in HTTP responses the HTTP headers in Table 12 if the Required column
contains Yes.

» Redfish services should include in HTTP responses the HTTP headers in Table 12 if the Required column
contains No.

» Redfish clients shall be able to both understand and process all HTTP headers in Table 12.

» Redfish clients shall process all HTTP header names in a case-insensitive manner.

Table 12 — Response headers

Header Required Supported values Description

Fetch Living Standard, Prevents or allows requests based on originating domain.

Access-Control-Allow-Origin No
3.2.3. HTTP responses Prevents CSRF attacks.

Shall be returned with the HTTP 405 (Method Not Allowed)
status code to indicate the valid methods for the request URI.
POST , PUT, PATCH,) .
Allow Yes Shall be returned with the HTTP 200 (OK) status code with
DELETE , GET, HEAD . -
any GET or HEAD operation to indicate the other allowable
operations for this resource.

Shall be supported and indicates whether a response can or

Cache-Control Yes RFC7234
cannot be cached.
Content-Encoding No RFC7231 Encoding used to compress the message body.
Size of the message body. An optional means of indicating
size of the body uses Transfer-Encoding: chunked , that does
not use the content-Length header. If a service does not
Content-Length No RFC7231

support Transfer-Encoding and needs Content-Length
instead, the service shall respond with the HTTP 411 Length
Required status code.

68 Published Version 1.23.1

https://fetch.spec.whatwg.org/#http-responses

DSP0266

Header

Content-Type

ETag

Link

Location

Max-Forwards

OData-Version

Retry-After

Server

Required

Yes

Conditional

Yes

Conditional

No

Yes

No

No

No

Supported values

RFC7231

RFC7232

RFC8288

RFC7231

RFC7231

4.0

RFC7231, Section 7.1.3

RFC7231

RFC7230

Redfish Specification

Description
The message body's representation type.

Services shall specify a Content-Type of application/json
when returning resources as JSON.

Services shall specify a content-Type of application/xml
when returning metadata as XML.

Services shall specify a Content-Type of application/yaml
or application/vnd.oai.openapi when returning OpenAPI
schema as YAML.

Services shall specify a cContent-Type of text/event-stream
when returning an SSE stream.

;charset=utf-8 shall be appended to the content-Type if
specified in the chosen media-type in the Accept header for
the request.

An identifier for a specific version of a resource, often a
message digest. The ETag header shall be included on
responses to GET s of ManagerAccount resources.

Link headers shall be returned, as described in the Link
headers clause.

URI of a newly created resource. Shall be returned upon
creation of a resource. Location and X-Auth-Token shall be
included on responses that create user sessions.

Limits gateway and proxy hops. Prevents messages from
remaining in the network indefinitely.

OData version of the payload to which the response
conforms.

Informs a client how long to wait before requesting the task
information again.

A product token and its version. Multiple product tokens may
be listed.

Note: Previous versions of the Specification marked this
header as required. This has been changed because no use
cases for requiring it have been identified.

Defines the network hierarchy and recognizes message
loops. Each pass inserts its own via header.

Version 1.23.1

Published

69

Redfish Specification DSP0266

Header Required Supported values Description

Provides a challenge to clients, such as directing a client to
perform HTTP Basic authentication, when authentication
headers in the request are missing or invalid. Services shall
return this header if the HTTPBasicAuth property in the
AccountService resource contains Enabled oris not
implemented.

WWW-Authenticate Conditional RFC7617

Opaque encoded octet Contains the authentication token for user sessions. The
X-Auth-Token Yes . AT
strings token value shall be indistinguishable from random.

8.2 Link header

The Link header provides metadata information on the accessed resource in response to a HEAD or GET request.
The metadata information can include hyperlinks from the resource and JSON Schemas that describe the resource.

The following example shows the Link headers for a ManagerAccount with an Administrator role, in addition to a
Settings annotation:

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role
Link: <http://redfish.dmtf.org/schemas/Settings.json>
Link: </redfish/v1/JsonSchemas/ManagerAccount.vl_0_2.json>; rel=describedby

» Thefirst Link header is an example of a hyperlink that comes from the resource. It describes hyperlinks within
the resource. This type of header is outside the scope of this specification.

* The second Link headeris an example of an annotation Link header as it references the JSON Schema that
describes the annotation and does not have rel=describedby . This example references the public copy of the
annotation on DMTF's Redfish schema repository.

* The third Link header is an example for the JSON Schema that describes the actual resource.

> Note that the URL can reference an unversioned JSON Schema because the @odata.type in the resource
indicates the appropriate version, or reference the versioned JSON Schema, which according to previous
normative statements need to match the version in the @odata.type property of the resource.

A Link header containing rel=describedby shall be returned on GET and HEAD requests for Redfish resources. If
the referenced JSON Schema is a versioned schema, it shall match the version contained in the value of the
@odata.type property returned in this resource.

A Link header satisfying annotations should be returned on GeT and HEAD requests for Redfish resources.

70 Published Version 1.23.1

DSP0266 Redfish Specification

8.3 Status codes

HTTP defines status codes that appear in responses. The status codes themselves provide general information
about how the request was processed, such as whether the request was successful, if the client provided bad
information, or the service encountered an error when processing the request.

* When the service returns a status code in the 4xx or sxx range, services should return an extended error
response in the response body to provide the client more meaningful and deterministic error semantics.

» When the service returns a status code in the 2xx range and the response contains a representation of a
resource, services may use extended information to convey additional information about the resource.

» Extended error messages shall not provide privileged information when authentication failures occur.
Note: For security implications of extended errors, See Security details.

Table 13 lists HTTP status codes that have meaning or usage defined for a Redfish service, or are otherwise
referenced by this specification. Other codes may be returned by the service as appropriate, and their usage is
implementation-specific. For usage and additional requirements imposed by this specification, see the Description
column.

+ Clients shall understand and be able to process the HTTP-defined status codes in Table 13 and constrained by
additional requirements defined by this specification.

» Services shall respond with the HTTP-defined status codes in Table 13 and constrained by additional
requirements in the Description column.

» If no other status code in the 4xx range is appropriate for client-side errors, the default status code should be
the HTTP 400 Bad Request status code.

» If no other status code in the 5xx range is appropriate for service-side errors, the default status code should be
the HTTP 500 Internal Server Error status code.

Table 13 — HTTP status codes

HTTP status code Description
200 0K Request completed successfully and includes a representation in its body.

Request to create a resource completed successfully. The Location header shall be set to the
canonical URI for the newly created resource. For posT (create) requests, the response body
may include a representation of the newly created resource. For posT (action) requests, the
response body shall include the action response.

201 Created

Request has been accepted for processing but the processing has not been completed. The
Location header shall be set to the URI of a task monitor that can later be queried to determine

the status of the operation. If a response body is provided, it shall contain a representation of the
Task resource.

202 Accepted

Version 1.23.1 Published 71

Redfish Specification

HTTP status code

204

301

302

304

401

40

w

404

40

©

410

41

[

No Content

Moved Permanently

Found

Not Modified

Bad Request

Unauthorized

Forbidden

Not Found

Method Not Allowed

Not Acceptable

Conflict

Gone

Length Required

DSP0266

Description

Request succeeded, but no response body is provided.
Requested resource resides under a different URI.

Requested resource resides temporarily under a different URI.

Service has made a conditional GeT request where access is allowed but the resource content
has not changed. Certain request headers, such as 1f-None-Match , initiate conditional requests
to save network bandwidth if no change has occurred. See HTTP 1.1, sections 14.25 and 14.26.

Request could not be processed because it contains invalid information, such as an invalid input
field, or is missing a required value. The response body shall return an extended error as
defined in the Error responses clause.

Authentication credentials included with this request are missing or invalid. Services should
include the Accessunauthorized message from the Base Message Registry in responses with
this status code. Additional details are described in the Sensitive data clause.

Service recognized the credentials in the request but those credentials do not possess
authorization to complete this request. This code is also returned when the user credentials
provided need to be changed before access to the service can be granted. Services should
include the InsufficientPrivilege message from the Base Message Registry in responses with
this status code. For details, see the Security details clause.

Request specified a URI of a resource that does not exist. Additional details are described in the
Sensitive data clause.

HTTP verb in the request, such as DELETE , GET , HEAD , POST , PUT ,Or PATCH, is not
supported for this request URI. The response shall include an Allow header that provides a list
of methods that the resource identified by the URI in the client request supports. Additional
details are described in the Sensitive data clause.

Accept header was specified in the request and the resource identified by this request cannot
generate a representation that corresponds to one of the media types in the Accept header.

Creation or update request could not be completed because it would cause a conflict in the
current state of the resources that the platform supports. For example, a conflict occurred due to
an attempt to set multiple properties that work in a linked manner by using incompatible values.

Requested resource is no longer available at the service and no forwarding address is known.
This condition is expected to be considered permanent. Clients with hyperlink editing capabilities
should delete references to the URI in the client request after user approval. If the service does
not know or cannot determine whether the condition is permanent, client should use the HTTP
404 Not Found status code. This response is cacheable unless otherwise indicated.

Request did not use the content-Length header to specify the length of its content but perhaps
used the Transfer-Encoding: chunked header instead. The addressed resource requires the
Content-Length header

72

Published Version 1.23.1

DSP0266

HTTP status code

412 Precondition Failed

41

w

Payload Too Large

41

[

Unsupported Media Type

42

[

Precondition Required

43

ity

Request Header Field Too Large

500 Internal Server Error

50

g

Not Implemented

50

w

Service Unavailable

507 Insufficient Storage

Redfish Specification

Description

Precondition check, such as check of the obata-version , If-Match,or If-None-Match header,
failed.

Request payload, or a part in a multipart request, is larger than the maximum size the service
supports.

Request specifies a content-Type for the body that is not supported.

Request did not provide the required precondition, such as an If-Match or If-None-Match
header.

Service is unwilling to process the request because either an individual header field or the
collection of all header fields are too large.

Service encountered an unexpected condition that prevented it from fulfilling the request. The
response body shall return an extended error as defined in the Error responses clause.

Service does not currently support the functionality required to fulfill the request. This response
is appropriate when the service does not recognize the request method and cannot support the
method for any resource.

Service currently cannot handle the request due to temporary overloading or maintenance of the
service. A service may use this response to indicate that the request URI is valid but the service
is performing initialization or other maintenance on the resource. A service may also use this
response to indicate that the service itself is undergoing maintenance, such as finishing
initialization steps after reboot of the service.

Service cannot build the response for the client due to the size of the response.

8.4 OData metadata responses

8.4.1 OData metadata responses overview

OData metadata describes resources, resource collections, capabilities, and service-dependent behavior to generic
OData consumers with no specific understanding of this specification. Clients are not required to request metadata if

they already have sufficient understanding of the target service. For example, clients are not required to request
metadata to request and interpret a JSON representation of a resource that this specification defines.

A client can access the OData metadata at the /redfish/vi/$metadata URI.

A client can access the OData service document at the /redfish/vi/odata URI.

8.4.2 OData $metadata

The OData metadata describes top-level service resources and resource types according to OData Common

Version 1.23.1

Published 73

Redfish Specification DSP0266

Schema Definition Language. The OData metadata is represented as an XML document with an Edmx root element
in the http://docs.oasis-open.org/odata/ns/edmx namespace with an OData version attribute setto 4.e .

The service shall use the application/xml or application/xml;charset=utf-8 MIME types to return the OData
metadata document as an XML document.

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
<!-- edmx:Reference and edmx:Schema elements go here -->
</edmx: Edmx>

8.4.2.1 Referencing other schemas

The OData metadata should include the namespaces for each of the Redfish resource types, along with the
RedfishExtensions.vl_@_@ namespace. Dynamic clients that reference the OData metadata document leverage
schema definitions that are referenced to understand the definitions of the resources in the service. However, there
are cases where it might not be practical to maintain an accurate document, such as when resources are dynamically
discovered by the service through devices that support Redfish Device Enablement.

These references shall use either:

* An absolute URI for the Redfish schema definitions, such as on http://redfish.dmtf.org/schemas or

http://developers.contoso.org/schemas .

» Arelative URI to a local copy of the Redfish schema. See the Redfish-defined URIs and relative reference rules
clause for recommended URI patterns.

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ServiceRoot_v1.xml">
<edmx:Include Namespace="ServiceRoot"/>
<edmx:Include Namespace="ServiceRoot.vl_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1l/VirtualMedia_v1.xml">
<edmx:Include Namespace="VirtualMedia"/>
<edmx:Include Namespace="VirtualMedia.vl_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/vl/RedfishExtensions_v1.xml">
<edmx:Include Namespace="RedfishExtensions.vl_0_0" Alias="Redfish"/>

</edmx:Reference>

The service's OData metadata document shall include an EntityContainer that defines the top-level resources and
resource collections.

74 Published Version 1.23.1

DSP0266 Redfish Specification

8.4.2.2 Referencing OEM extensions

The OData metadata document may reference additional schema documents that describe OEM-specific extensions
that the service uses.

For example, the OData metadata document may reference custom types for additional resource collections.

<edmx:Reference Uri="http://contoso.org/Schema/CustomTypes">
<edmx:Include Namespace="CustomTypes"/>
</edmx:Reference>

8.4.3 OData service document

The OData service document serves as a top-level entry point for generic OData clients. More information about the
OData service document can be found in the OData JSON Format Specification.

{
"@odata.context": "/redfish/vl/$metadata",
"value": [{
"name": "Service",
"kind": "Singleton",
"url": "/redfish/v1i/"
3 A
"name": "Systems",
"kind": "Singleton",
"url": "/redfish/v1/Systems"
Bo oool]
}

The service shall use the application/json MIME type to return the OData service document as a JSSON object.
The JSON object shall contain the @odata.context context property setto /redfish/vi/$metadata .

The JSON object shall include a value property setto a JSON array that contains an entry for the service root and
each resource that is a direct child of the service root.

Table 14 describes the properties that each JSON object entry includes:

Version 1.23.1 Published 75

Redfish Specification DSP0266

Table 14 — JSON object properties

Property Description

name User-friendly resource name of the resource.

kind Type of resource. Value is singleton for all cases defined by Redfish.
url Relative URL for the top-level resource.

8.5 Resource responses

Services use the application/json MIME type to return resources and resource collections as JSON payloads. A
service shall not break responses for a single resource into multiple results.

The format of these payloads is defined by the Redfish schema. For rules about the Redfish schema and how it
maps to JSON payloads, see the Data model and Schema definition languages clauses.

8.6 Error responses

HTTP status codes often do not provide enough information to enable deterministic error semantics. For example, if
a client makes a pATCcH call and some properties do not match while others are not supported, the HTTP 400 Bad
Request status code does not tell the client which values are in error. Error responses provide the client more
meaningful and deterministic error semantics.

To provide the client with as much information about the error as possible, a Redfish service may provide multiple
error responses in the HTTP response. Additionally, the service may provide Redfish standardized errors, OEM-
defined errors, or both, depending on the implementation's ability to convey the most useful information about the
underlying error.

Table 15 describes the properties in the extended error response, which is a single JSON object:
Table 15 — Error properties

Property Description

‘ String. Defines a Messageld from the message registry. See the Messageld format clause for the format of
code
Messageld .

message Displays a human-readable error message that corresponds to the message in the message registry.

@Message.ExtendedInfo Displays an array of message objects. Describes one or more error messages.

See the Schema definition languages clause for references to the schema definitions of the error response payload.

76 Published Version 1.23.1

DSP0266 Redfish Specification

The @Vessage.ExtendedInfo property should be presentin all error responses. If the @vessage.ExtendedInfo property
is present, all information necessary to process the error should be provided in the @Vessage.ExtendedInfo property.
Clients should look for the @vessage.ExtendedInfo property for error processing first, and fallback on the code and
message properties if @Message.ExtendedInfo is not present.

The following sample error response contains two messages in the @Message.ExtendedInfo property that describe
two different errors. The message described by the code and message properties do not provide actionable
information for the client.

{
"error": {
"code": "Base.l1l.8.GeneralError",
"message"”: "A general error has occurred. See Resolution for information on how to resolve the
error.",
"@Message.ExtendedInfo": [{
"@odata.type": "#Message.vl_1_1.Message",
"MessageId": "Base.l.8.PropertyValueNotInList",
"RelatedProperties": [
"/IndicatorLED"
1,
"Message": "The value Red for the property IndicatorLED is not in the list of acceptable values.",
"MessageArgs": ["Red",
"IndicatorLED"
]J
"Severity": "Warning",
"MessageSeverity": "Warning",
"Resolution": "Choose a value from the enumeration list that the implementation can support and
resubmit the request if the operation failed."
oA
"@odata.type": "#Message.vl_1_1.Message",
"MessageId": "Base.l.8.PropertyNotWritable",
"RelatedProperties": [
"/SKU"1,
"Message": "The property SKU is a read only property and cannot be assigned a value.",
"MessageArgs": ["SKU"],
"Severity": "Warning",
"MessageSeverity": "Warning",
"Resolution": "Remove the property from the request body and resubmit the request if the operation
failed."
]
}
}

Version 1.23.1 Published 77

Redfish Specification DSP0266

9 Data model

One of the key tenets of Redfish is the separation of protocol from the data model. This separation makes the data
both transport and protocol agnostic. By concentrating on the data transported in the payload of the protocol (in
HTTP, it is the HTTP body), Redfish can also define the payload in any encoding and the data model is intended to
be schema-language agnostic. While Redfish uses the JSON data-interchange format, Redfish provides a common
encoding type that ensures property naming conventions that make development easier in JavaScript, Python, and
other languages. This encoding type helps the Redfish data model be more easily accessible in modern tools and
programming environments.

The data model allows an OEM to extend the model by adding an OEM resource or extending a resource.

This clause describes common data model, resource, and Redfish schema requirements.

9.1 Resources

A resource is a single entity accessed at a specific URI. Services use the application/json MIME type to return
resources as JSON payloads.

Each resource shall be strongly typed, defined by a resource type in a Redfish schema document, and identified in
the response payload by the value of the type identifier property.

Responses for a single resource shall contain the following properties:

* (@odata.id
o Registry resources are not required to provide @odata.id

* (@odata.type
e Id

M Name

Responses may also contain other properties defined within that resource type. Responses shall not include any
properties not defined by that resource type.

9.2 Resource types

A resource type defines the set of properties that may be returned in the response payload of a Redfish resource
request. Each resource type is documented in a Redfish schema document, and those documents are known
collectively as the Redfish schema. The resource type may also include definitions for actions available for that
resource.

78 Published Version 1.23.1

DSP0266 Redfish Specification

Resource types are named to match the contents and purpose of the resource that they define. For example, the
Circuit resource type defines the properties and actions related to a single electrical circuit. Resource types
provide global uniqueness for definitions across multiple schema files and allow for schema files to reference each
other. Resource types may be defined by OEMs to extend the Redfish schema, and should follow the naming rules
specified by the OEM resource types clause.

9.3 Resource collections

A resource collection is a set of resources that share the same schema definition. Services use the application/
json MIME type to return resource collections as JSON payloads.

Resource collection responses shall contain the following properties:

* (@odata.id

* (@odata.type
* Name

* Members

* Members@odata.count
Responses for resource collections may contain the following properties:

* (@odata.context

* (@odata.etag

* Description

* Members@odata.nextLink

* Oem

Responses for resource collections shall not contain any other properties with the exception of payload annotations.

9.4 OEM resources

OEMs and other third parties can extend the Redfish data model by creating additional resource types. Extending the
data model is accomplished by defining an OEM resource type, and schema file, for each resource type, and
creating hyperlinks to connect instances of new resources to the resource ftree.

Companies, OEMs, and other organizations may also use the oem property in resources, the links property, and the
actions property to define additional properties, hyperlinks, and actions for standard Redfish resource types.

While the information and semantics of these extensions are outside of the standard, the schema representing the
data, the resource itself, and the semantics around the protocol shall conform to the requirements in this

Version 1.23.1 Published 79

Redfish Specification DSP0266

specification. OEMs are encouraged to follow the design tenets and naming conventions in this specification when
defining OEM resources or properties.

9.5 Common data types

9.5.1 Primitive types
Table 16 describes the primitive data types for properties and action parameters in the data model:

Table 16 — Primitive data types
Type Description

Boolean A variable with a value of true or false .

A number with optional decimal point or exponent. Number properties may restrict the representation to an integer or a

Number number with decimal point.

String A sequence of characters enclosed with double quotes (").

Array A comma-separated set of the previous types enclosed with square braces ([and]). See the Array properties clause.
Object A set of properties enclosed with curly braces ({ and }). See the Structured properties clause.

Null null value, which the service uses when it is unable to determine the property's value due to an error or other temporary

condition, or if the schema has requirements for using null for other special conditions.

When receiving values from the client, services should support other valid representations of the data in the specified
JSON type. In particular, services should support valid integer and decimal values in exponential notation and integer
values that contain a decimal point with no non-zero trailing digits.

9.5.2 Enumerations

Enumerations are frequently used in Redfish to promote readability and interoperability, especially compared to the
use of string values when used for similar purposes. Enumerations aren't optimal in all cases. Properties with two
values that are likely to not have additional values should consider the boolean type if the true and false values
can be described by the property name. The following design tenets apply to enumerations:

» Enumeration values can be added to existing properties. Client software should be prepared to receive
enumeration values that are not known if the resource schema version is higher than the client's supported
version.

* Enumeration properties should avoid definition of "unknown", "other", or similar generic or placeholder values as
these reduce interoperability.

» Feedback is encouraged for adding enumeration values to existing properties to cover new technologies or use
cases.

80 Published Version 1.23.1

DSP0266 Redfish Specification

o Enumeration values are generally defined to support existing or newly developed products.

o Enumeration values that are obsolete or highly unlikely to appear in implementations are not included, but
they can be added.

o Enumerations may include vendor-specific values when they apply to multiple products or implementations.

o Sometimes the value oem is included as an enumeration value. When this is in the enumeration, client
software should be aware that there is likely an oem property with additional information. In some cases,
standard schema contains a standard value to further describe this enumeration value when additional OEM
data is unlikely.

9.5.3 Empty string values

String properties should return an empty string (
not been set to an initial value. This allows client software to identify the property as supported by the service and
avoids the use of null , which indicates an error condition. For example, the AssetTag property must be set by the
end user, and therefore would return an empty string (") until assigned a value by the user, while a failure to read the
stored AssetTag value due to a non-volatile memory error would return null . To improve interoperability,
implementations should avoid the use of filler strings, such as N/A or <Empty> , to represent a value not set by a

) for properties configured by a user or external service that have

user.

9.5.4 GUID and UUID values

Globally Unique Identifier (GUID) and Universally Unique Identifier (UUID) values are unique identifier strings and
shall use the RFC4122-defined format:

([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12})

9.5.5 Date-Time values
Date-Time values are strings according to the ISO 8601 extended format, including the time offset or UTC suffix.
Date-Time values shall use the format:
<YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>[.<SSS>](Z| ((+]|-)<HH>:<MM>))
where

e <yyyy> is the four-digit year.

* <MM> is the two-digit month (1 to 12).

» <DD> is the two-digit day (1 to 31).

* T is the time separator. Shall be a capital T .
* <hh> is the two-digit hour (0 to 23).

* <mm> is the two-digit minute (O to 59).

Version 1.23.1 Published 81

Redfish Specification DSP0266

* <ss> is the two-digit second (0 to 59).

* <Sss> is optional and is the decimal fraction of a second. Shall be one or more digits where the number of digits
implies the precision.

» z is the zero offset indicator. Shall be a capital z .

* <HH> is the two-digit hour offset (0 to 23).

* <MM> is the two-digit minute offset (0 to 59).
For example, 2015-03-13T04:14:33+06:00 represents March 13, 2015 at 4:14:33 with a +06:00 time offset.

When the time of day is unknown or serves no purpose, the service shall report ee:ee:0ez for the time of day value.

9.5.6 Duration values

Duration values are strings according to the ISO 8601 duration format, with the exception of not expressing a
representation for years, months, weeks, or negative values. Duration values shall use the format:

P[<d>D][T[<h>H][<m>M][<s>[.<F>]S]]
where

e <d> is the number of days.

¢ <h> is the number of hours.

e <m> is the number of minutes.
* <s> is the number of seconds.

+ <f> isthe fractional seconds.
Each field is optional and can contain more than one digit.
For example, Table 17 describes the following durations:

Table 17 — Durations

Value Duration

P9@D Ninety days.

P3D Three days.

PT6H Six hours.

PT10S Ten seconds.

PTO.001S 0.001 seconds.

PT1H30M One hour and 30 minutes.

82 Published Version 1.23.1

DSP0266 Redfish Specification

DEPRECATED: Duration values shall use the format: P[<y>Y][<m>M][<w>W][<d>D][T[<h>H][<m>M][<s>[.<F>]S]] .
This definition allows for specifying years, months, and weeks. ISO 8601 does not specify an exact value for the
duration of a year or of a month, which introduces interoperability challenges.

9.5.7 Reference properties

Reference properties provide a reference to another resource in the data model. Reference properties are JSON
objects that contain an @odata.id property. The @odata.id property value is the URI of the referenced resource.

9.5.8 Non-resource reference properties

Non-resource reference properties provide a URI to services or documents that are not Redfish-defined resources.
These properties shall include the uri or URI term in their property name and shall be of type string. For example,
AssemblyBinaryDataUri in the Assembly schema. The access protocol, request headers, response headers, and
data format of the referenced URI may be defined in schema for that property. Non-resource reference properties
that refer to local HTTP/S targets shall follow the Redfish protocol, including use of Redfish sessions and access
control, unless otherwise specified by the property definition in schema.

9.5.9 Array properties

Array properties contain a set of values or objects, and appear as JSON arrays within a response body. Array
elements shall all contain values of the same data type.

Table 18 describes the array types, regardless of the data type of the elements:

Table 18 — Array types

Array type Description
Fixed length Contains a static number of elements. The property definition sets or the implementation chooses the size of the array.

Contains a variable number of elements. The array size is not specified and the size varies among instances. The array

Variable length . X X
size may change. This array style is the most common style.

The array index is meaningful. When elements are added to or removed from the array, the elements do not change
their position, or index, in the array. An element that is removed from a rigid array shall be replaced by a null element

Riaid and all other elements shall remain at their current index.
igi

Empty elements in a rigid array property shall be represented by null elements. Any array property that uses this
style shall indicate the rigid style in the long description of its schema definition.

Services may pad an array property with null elements at the end of the sequence to indicate the array size to
clients. This practice is useful for small fixed-length arrays, and for variable or rigid arrays with a restrictive maximum
size. Services should not pad array properties if the maximum array size is not restrictive. For example, an array

Version 1.23.1 Published 83

Redfish Specification DSP0266

property typically populated with two elements, that a service limits to a maximum of 16 elements, should not pad the
array with 14 null elements.

9.5.10 Structured properties
Structured properties are JSON objects within a response body.

Some structured properties inherit from the Resource.vi_6_o.ReferenceableMember definition. Structured properties
that follow this definition shall contain the Memberid and resource identifier properties.

Because the definition of structured properties can evolve over time, clients need to be aware of the inheritance
model that the different structured property definitions use.

For example, the Location property definition in the Resource schema has gone through several iterations since the
Resource.vl_1_o type was introduced, and each iteration inherits from the earlier version so that existing references
in other schemas can leverage the additions.

Structured property references need to be resolved for both local and external references.

A local reference is a resource that has a structured property in its own schema, such as ProcessorSummary in the
ComputerSystem resource. In these cases, the type property for the resource is the starting point for resolving the
structured property definition.

To find the latest applicable version, clients can step the version of the resource backwards.

For example, if a service returns #ComputerSystem.v1l_4_0.ComputerSystem as the resource type, a client can step
backwards from ComputerSystem.vi_4 @ ,1t0 ComputerSystem.vi_3 0 ,t0 ComputerSystem.vi_ 2 @ , and so on, until it
finds the Processorsummary structured property definition.

An external reference is a resource that has a property that references a definition found in a different schema, such
as the Location property in the chassis resource.

In these cases, clients can use the latest version of the external schema file as a starting point to resolve the
structured property definition.

For example, if the latest version of the Resource schemais 1.6.0 , a client can go backward from
Resource.vl_6_0 , {0 Resource.vl_5_0 ,10 Resource.vl_4_0 , and so on, until it finds the Location structured
property definition.

9.5.11 Message object

9.5.11.1 Overview

A message object provides additional information about an object, property, or error response.

84 Published Version 1.23.1

DSP0266

Redfish Specification

Table 19 describes the properties of the message object, which is a JSON object:

Property

MessageId

Message

RelatedProperties

MessageArgs

MessageSeverity

Severity

Resolution

Table 19 — Message object properties

Type

String

String

An array of JSON pointers

An array of strings

String (enumeration)

String

String

Required

Yes

No

No

No

No

No

No

Defines

Error or message. Do not confuse this value with the HTTP status
code. Clients can use this code to access a detailed message
from a message registry.

Human-readable error message that indicates the semantics
associated with the error. This shall be the complete message,
and not rely on substitution variables.

Properties in a JSON payload that the message describes.

Substitution parameter values for the message. If the
parameterized message defines a Messageld , the service shall
include the MessageArgs in the response.

Severity of the error. Services can replace the value of the
MessageSeverity property defined in the message registry with a
value more applicable to the implementation.

Severity of the error. Services can replace the value of the
severity property defined in the message registry with a value
more applicable to the implementation.

DEPRECATED: This property has been deprecated in favor of

MessageSeverity

Recommended actions to take to resolve the error. Services can
replace the value of the Resolution property defined in the
message registry with a service-defined resolution.

Each instance of a message object shall contain at least a Messageld , together with any applicable MessageArgs , or
a Message property that defines the complete human-readable error message.

A MessageId identifies a specific message that a message registry defines.

9.5.11.2 Messageld format

The MessageId property value shall be in the format:

<MessageRegistryPrefix>.<MajorVersion>.<MinorVersion>.<MessageKey>

where

* <MessageRegistryPrefix> is the name of the message registry. The message registry name shall be Pascal-

Version 1.23.1

Published 85

Redfish Specification DSP0266

cased, except for any prepended unique OEM identifier which may include underscore (_) characters. The
message registry name shall be exposed in the RegistryPrefix property in the message registry.

* <MajorVersion> is a non-negative integer that represents the major version of the message registry.
* <MinorVersion> is a non-negative integer that represents the minor version of the message registry.

* <MessageKey> iS a human-readable key into the message registry. The message key shall be Pascal-cased and
shall not include spaces, periods, or special characters.

To search the message registry for a message, the client can use the Messageld .

The message registry approach has advantages for internationalization because the message registry can be
translated easily and is lightweight for implementations because large strings need not be included with the
implementation.

The use of GeneralError from the Base Message Registry as a MessageId in ExtendedInfo is discouraged. If no
better message exists or the ExtendedInfo array contains multiple messages, use Generaltrror from the Base
Message Registry only in the code property of the error object.

When an implementation uses Generalkrror from the Base Message Registry in ExtendedInfo , the implementation
should include a service-defined value for the Resolution property with this error to indicate how to resolve the
problem.

9.6 Properties

9.6.1 Properties overview

Every property included in a Redfish response payload shall be defined in the schema for that resource. The
following attributes apply to all property definitions:

» Property names in the request and response payload shall match the casing of the Name attribute value in the
defining schema.

* Required properties shall always be returned in a response.

» Properties not returned from a GET operation indicate that the property is not supported by the implementation,
or by that particular resource instance. Differences in underlying product support or configuration varies among
resource instances, and therefore the properties returned by each instance vary accordingly.

+ If an implementation supports a property, it shall always provide a value for that property. If a value is unknown
at the time of the operation due to an internal error, or inaccessibility of the data, the value of null is an
acceptable value if supported by the schema definition.

» Resource instances should omit properties if the underlying product, service, or current configuration does not
provide the function described by the property. For example, a chassis resource instance might not provide a
serial number, and therefore should omit the serialNumber property, while other chassis resource instances that
have a serial number provide this property. See the Special resource situations clause for handling special
resource situations.

86 Published Version 1.23.1

DSP0266 Redfish Specification

» A service may implement a writable property as read-only.

» All property definitions in schema shall specify a well-known data type, with exceptions in the following standard
schemas:
o AttributeRegistry and Bios : To support arbitrary BIOS settings of different data types.

This clause also contains a set of common properties across all Redfish resources. The property names in this
clause shall not be used for any other purpose.

9.6.2 Resource identifier (@odata.id) property

Registry resources in a response may include an @odata.id property. All other resources and resource collections in
a response shall include an @odata.id property. The value of the identifier property shall be the resource URI.

9.6.3 Resource type (@odata.type) property

All resources and resource collections in a response shall include an @odata.type type property. To support generic
OData clients, all structured properties in a response should include an @odata.type type property.

The value of the type property for resources and structured properties shall be in the format:
#<ResourceType>.<Version>.<TermName>
where

* <ResourceType> is the resource type in the Redfish schema that defines the resource.
* <Version> is the resource type version, in the format: v<MajorVersion>_<MinorVersion>_<ErrataVersion> .

* <TermName> is the specific type defined within the resource type definition. For most Redfish resources, the
specific type name is the same as the resource type name.

An example of a resource type value is #ComputerSystem.v1_0_0.ComputerSystem , where ComputerSystem.vl_0_0
denotes the version 1.0.0 of the computerSystem resource type, and the specific type is ComputerSystem .

The value of the type property for resource collections shall be in the format:
#<ResourceType>.<ResourceType>
where

* <ResourceType> is the resource type in the Redfish schema that defines the resource collection.

An example of a resource collection type value is #ComputerSystemCollection.ComputerSystemCollection for the
ComputerSystemCollection resource collection.

Version 1.23.1 Published 87

Redfish Specification DSP0266

9.6.4 Resource ETag (@odata.etag) property

ETags enable clients to conditionally retrieve or update a resource. Resources should include an @odata.etag
property. For a resource, the value shall be the ETag.

9.6.5 Resource context (@odata.context) property

Responses for resources and resource collections may contain an @odata.context property that describes the
source of the payload.

If the @odata.context property is present, it shall be the context URL that describes the resource, according to
OData Protocol.

The context URL for a resource should be in the format:
/redfish/v1l/$metadata#<ResourceType>.<ResourceType>
where
* <ResourceType> is the resource type of the resource or resource collection.

For example, the following context URL specifies that the results show a single ComputerSystem resource:

"@odata.context": "/redfish/v1/$metadata#tComputerSystem.ComputerSystem",

The context URL for a resource may be in one of the other formats that OData Protocol specifies.

9.6.6 Id

The 1d property of a resource uniquely identifies the resource within the resource collection that contains it. The
value of 1d shall be a string that is unique across a resource collection. Since URIs are constructed from the value
of the 1d property, the value shall not contain any RFC1738-defined unsafe characters.

9.6.7 Name

The Name property conveys a human-readable moniker for a resource. The data type of the Name property shall be
string. The value of name is NOT required to be unique across resource instances within a resource collection.

88 Published Version 1.23.1

DSP0266 Redfish Specification

9.6.8 Description

The Description property conveys a human-readable description of the resource. The data type of the Description
property shall be string.

9.6.9 Memberld

The memberId property uniquely identifies an element within an array, where a reference property can reference the
element. The value of MemberId shall be a string that is unique across the array.

9.6.10 Count (Members@odata.count) property

The count property defines the total number of resource, or members, that are available in a resource collection. The
count property shall be named Members@odata.count and its value shall be the total number of members available in
the resource collection. The $top or $skip query parameters shall not affect this count. If the number of members
available in the resource collection is reduced due to filtering, such as in response to the $filter query parameter,
the count should be the total number of members available in the resource collection after the filter is applied.

9.6.11 Members

The Members property of a resource collection identifies the members of the collection. The Members property is
required and shall be returned in the response for any resource collection. The Members property shall be an array of
JSON objects named Members . The Members property shall not be null . Empty collections shall be an empty JSON
array.

9.6.12 Next link (Members@odata.nextLink) property

The next link (Members@odata.nextLink) property value shall be an opaque URL to a resource, with the same
@odata.type , which contains the next set of partial members from the original operation. The next link property shall
only be present if the number of members in the resource collection is greater than the number of members returned,

and if the payload does not represent the end of the requested resource collection.

The next link property may contain the $skiptoken query parameter. The $skiptoken query parameter shall contain
an opaque value that allows a client to reference the next page of the collection. Clients shall not interpret or
construct $skiptoken values.

The next link property value should contain control information provided by the client in query parameters that affect
the size of the collection and properties returned in the response, such as the $filter and $expand query
parameters. For example, if a client performs a request to /redfish/v1/Chassis/1/Sensors?$filter=Status/Health eq
'0OK'&$expand=. , some appropriate values include:

Version 1.23.1 Published 89

mailto:Members@odata.count
mailto:Members@odata.nextLink

Redfish Specification DSP0266

* /redfish/v1l/Chassis/1/Sensors?$filter=Status/Health eq 'OK'&$expand=.8&$skip=50
* /redfish/v1l/Chassis/1/Sensors?$filter=Status/Health eq 'OK'&$expand=.&$skiptoken=1

* /redfish/vl/Chassis/1/Sensors?$skiptoken=ffb559f3-7ee9-42d6-ac8b-888c0ad24db3
> In this case, the skip token internally maintains the client's filter and expand request.

The Members@odata.count property value is the total number of resources available if the client enumerates all pages
of the resource collection.

9.6.13 Links

The Links property represents the hyperlinks associated with the resource, as defined by that resource's schema
definition. All associated reference properties defined for a resource shall be nested under the links property. All
directly (subordinate) referenced properties defined for a resource shall be in the root of the resource. There are
some exceptions to these rules, such as where ease of expansion or deep operations is beneficial to the user.

The links property shall be named Links and contain a property for each related resource.

To navigate vendor-specific hyperlinks, the Links property shall also include an oem property.

9.6.13.1 Reference to a related resource

A reference to a single resource is a JSON object that contains a single resource identifier property. The name of this
reference is the name of the relationship. The value of this reference is the URI of the referenced resource.

{
"Links": {
"ManagedBy": {
"@odata.id": "/redfish/v1/Chassis/Encl1"
}
}
}

9.6.13.2 References to multiple related resources

A reference to a set of zero or more related resources is an array of JSON objects. The name of this reference is the
name of the relationship. Each element of the array is a JSON object that contains a resource identifier property with
the value of the URI of the referenced resource.

"Links": {
"Contains": [{
"@odata.id": "/redfish/v1/Chassis/1"

90 Published Version 1.23.1

DSP0266 Redfish Specification

oA
"@odata.id": "/redfish/v1/Chassis/Encl1"

3

9.6.14 Actions property

The Actions property contains the actions supported by a resource.

9.6.14.1 Action representation

Each supported action is represented as a property nested under Actions . The unique name that identifies the
action is used to construct the property name.

This property name shall be in the format:
#<ResourceType>.<ActionName>
where

* <ResourceType> is the resource where the action is defined.

* <ActionName> is the name of the action.
The client may use this fragment to identify the action definition in the referenced Redfish schema document.
The property for the action is a JSSON object and contains the following properties:

* The target property shall be present and defines the relative or absolute URL to invoke the action.

* The title property may be present and defines the action's name.
The OData JSON Format Specification defines the target and title properties.

To specify the list of supported values for a parameter, the service may include the @Redfish.Allowablevalues
annotation.

For example, the following property defines the Reset action fora ComputerSystem :

"#ComputerSystem.Reset": {
"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset"”,
"title": "Computer System Reset"”,

Version 1.23.1 Published 91

Redfish Specification DSP0266

"ResetType@Redfish.AllowableValues": ["On", "ForceOff", "GracefulRestart",
"GracefulShutdown", "ForceRestart", "Nmi", "ForceOn",
"PushPowerButton"]

3

Given this, the client could invoke a posT requestto /redfish/vi/Systems/1/Actions/ComputerSystem.Reset with the
following body:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1
Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

"ResetType": "On"

The resource may provide a separate @Redfish.ActionInfo resource to describe the parameters and values that a
particular instance or implementation supports. Use the @Redfish.ActionInfo annotation to specify the ActionInfo
resource, which contains a URI to the @Redfish.ActionInfo resource for the action. For details, see the Action info
annotation clause.

9.6.14.2 Action responses

Response payloads for actions may contain a JSON body that is described by the schema definition for the action.
See the Schema definition languages clause for the representation of these definitions. Actions that do not define a
response body may provide an error response in the response payload.

Clients can discover the schema definition of the action response based on the property name of the action found in
GET responses for resources containing the action. For example, if an action is named
#ContosoComputerSystem.Reset , a client can find the action response definition, if there is one available, by locating
the Reset action definition found in the ContosoComputersystem schema.

9.6.15 Oem

The oem property is used for extending standard resources with OEM extensions.

92 Published Version 1.23.1

DSP0266 Redfish Specification

9.6.16 Status

The status property represents the status of a resource. The status property shall follow the definition for status
in the Resource schema.

By having a common representation of status, clients can depend on consistent semantics. The status property is
capable of indicating the current state, health of the resource, and the health of subordinate resources.

9.7 Naming conventions

The Redfish interface is intended to be easily readable and intuitive. Thus, consistency helps the consumer
understand the use of a newly discovered property. While consistency is no substitute for the normative information
in the Redfish Specification and Redfish schema, the following naming rules help with readability and client usage. In
general, names in Redfish are designed and intended to be human-readable and convey the meaning of the name,
in context, without the need to consult schema definitions or other documentation.

9.7.1 Naming rules

Standard Redfish schema and registries defined and published by DMTF as well as those created by others and
republished by DMTF shall follow a set of naming conventions. These conventions are intended to ensure consistent
naming and eliminate naming collisions. For schema files, the resource type is used to construct the type property
and the schema file name.

Standard Redfish properties follow similar naming conventions, and should use a common definition when defined in
multiple schemas across the Redfish data model. This consistency enables code re-use across resources and
increases interoperability. New resource definitions should leverage existing property definitions whenever possible.

The general Redfish naming rules for resource types, registries, properties, and action parameters are as follows:

» Names shall be Pascal-cased. The first letter of each word in a name shall be uppercase and spaces between
words shall be removed. For example, ComputerSystem , PowerState , and SerialNumber .

» Names shall differ from other defined names by more than case sensitivity. For example, snmpvi cannot be
used as a name if sNMPv1 is also defined.

* Names of array properties or reference properties for resource collections should use a plural form of the name.
All other names should use the singular form of the name.

» Reference properties for resource collections should omit the term "collection" in the name.

» Names shall start with an alphabetic character (a to z and A to z) and consist only of alphanumeric
characters (a to z, A to z,and e to 9).

» Both characters should be capitalized for two-character acronyms. For example, IPAddress Or RemoteIP .

* Names constructed from a single acronym or mixed-case name, such as LDAP , PCIe,or SNMP , should use the
typical capitalization for that name.

Version 1.23.1 Published 93

Redfish Specification DSP0266

Names incorporating acronyms with three or more characters should follow the capitalization used in related
names for consistency. For example, EnablesNMPvi and Enablesnmpv2 follow the pattern used for snmp .

Pascal-casing may be used for acronyms longer than two characters to improve readability, especially when two
or more acronyms appear together in a name, which should be avoided.

The names settings and sb are reserved for use for settings resources and shall not be used for schema
names.

Names that represent a string-typed HTTP URI, and is not a reference property, should end in URI . For
example, TargetComponentURI .

The name ReturnType is reserved for RDE usage and shall not be used for action parameter names.

Exceptions are allowed for the following cases:

Well-known technology abbreviations, acronyms, or product names should follow their defined capitalization.
Examples include iscs1, iscSITarget ,and ilo .

OEM appears as oem in schema and property names either alone or as a portion of a name, but should be 0em
when used alone as an enumeration value.

Underscore characters are allowed in the construction of OEM-specified object property names when required,
and in OEM-defined resource types or OEM-defined registry names.

Enumeration values follow the above rules and exceptions. Additionally, enumeration values:

Should start with a letter and be followed by letters or numbers to conform to schema description language
requirements. Underscore characters may be used to replace other special characters, or to significantly
improve readability, but this usage is discouraged.

Should prioritize readability as they may appear unmodified on user interfaces, whereas property or schema
names should follow conventions and strive for consistency.

For properties that have units or other special meaning, append a unit identifier to the name. Examples include:

Bandwidth (Mbps). For example, PortSpeedMbps .

CPU speed (MHz). For example, ProcessorSpeedMHz .

Memory size (MB). For example, MemoryMB .

Counts of items (Count). For example, ProcessorCount Or FanCount .
The state of a resource (State). For example, Powerstate .

State values where work is in process. For example, Applying or Clearinglogic .

9.7.2 URI naming rules

The following rules apply to Redfish schema-defined URIs:

URI segments should generally follow the naming rules, and for each segment, follow the name of the property
that provides the hyperlink.

94

Published Version 1.23.1

DSP0266 Redfish Specification

» URI segments for resource collections should use the plural form of the resource collection schema name, with
the cCollection term omitted. For example, Processors fora ProcessorCollection .

» URI segments for resource collections shall not be named Members , as this value will conflict with POST
operations on the required Members property. See the POST (create) clause for more information.

» If a hyperlink to a subordinate resource is not found at the root of the resource, the URI segments should contain
the property path. For example, for the certificates hyperlink found in ManagerNetworkProtocol within the
HTTPS object, HTTPS should be one of the URI segments resulting in the URI pattern /redfish/v1/
Managers/{ManagerId}/NetworkProtocol/HTTPS/Certificates .

Starting with Redfish Specification v1.18.0, in cases where the URI segment does not follow one or more of the
previous rules, the schema definition for the reference property for the URI shall specify the URI segment annotation
to define the URI segment to append.

9.8 Extending standard resources

9.8.1 Extending standard resources overview

In the context of this clause, the OEM term refers to any company, manufacturer, or organization that provides or
defines an extension to DMTF-published schema and functionality for Redfish. All Redfish-specified resources
include an empty structured oem property. The value of this predefined placeholder can encapsulate one or more
OEM-specified object properties, which can contain OEM-specific property definitions.

9.8.2 OEM property format and content

Each property contained within the oem property shall be an OEM-specified JSON object. The name of each object
property shall uniquely identify the OEM or organization that defines the properties contained by that object. The
OEM-specified object naming clause describes this naming convention.

The OEM-specified object shall include a type property if the object:

» Is not contained in an array of objects.
 Is contained in the first object within an array of objects.

» Is contained in subsequent objects within an array of objects, whose type is different from the first array member.

To avoid naming collisions with other OEM definitions, the type property should start with the defining organization's
unique OEM identifier, including possible subdivisioning. Separator underscores (_) may be excluded from the type
property and schema file name for improved readability. The Schema definition languages clause contains file name
construction rules, such as handling version information. See OEM property examples for examples.

The oem property can simultaneously hold multiple OEM-specified objects, including objects for more than one
company or organization.

Version 1.23.1 Published 95

Redfish Specification DSP0266

The definition of any other properties that are contained within the OEM-specified object, along with the functional
specifications, validation, or other requirements for that content is OEM-specific and outside the scope of this
specification. While there are no Redfish-specified limits on the size or complexity of the elements within an OEM-
specified object, it is intended it is typically used for only a small number of simple properties that augment the
Redfish resource. If a large number of objects or a large quantity of data compared to the size of the Redfish
resource is to be supported, the OEM should consider creating a subordinate resource for their extensions.

9.8.3 OEM-specified object naming

The OEM-specified object properties within the oem property are named by using a unique OEM identifier. There are
two specified forms for the identifier. The identifier shall be either an ICANN-recognized domain name (including the
top-level domain suffix), with all dot (.) separators replaced with underscores (_), or an IANA-assigned Enterprise
Number prefixed with "EID_."

DEPRECATED: The identifier shall be either an ICANN-recognized domain name including the top-level
domain suffix, or an IANA-assigned Enterprise Number prefixed with EID: .

Organizations that use .com domain names may omit the .com suffix. For example, Contoso.com would use
Contoso instead of Contoso_com , but Contoso.org would use contoso_org . The domain name portion of an OEM
identifier shall be considered to be case-insensitive. That is, the text Contoso_biz , contoso BIZ , conTOso biz , and
so on all identify the same OEM.

The OEM identifier portion of the object name may be followed by an underscore (_) and any additional string to
enable further subdivisions of OEM-specified objects as desired. For example, Contoso_xxxx Or EID_412_xxxx . The
form and meaning of any text that follows the trailing underscore is completely OEM-specific. OEM-specified
extension suffixes may be case-sensitive, depending on the OEM. Generic client software should treat such
extensions, if present, as opaque and not try to parse nor interpret the content.

There are organizations with which DMTF has a working relationship and have registered their OEM namespace
directly in the specification to allow extensions of the ICANN domain name requirements above. The following
organization OEM namespaces shall be considered reserved:

+ OpenBMC
* OpenCompute

This suffix could be used in many ways, depending on OEM need. For example, the Contoso company may have a
Research sub-organization, in which case the OEM-specified property name might be extended to
Contoso_Research. Alternatively, it can identify a unique resource type for a functional area, geography, subsidiary,
and so on.

The OEM identifier portion of the name typically identifies the company or organization that created and maintains
the schema for the property. However, this practice is not a requirement. The identifier is only required to uniquely
identify the party that is the top-level manager of a resource type to prevent collisions between OEM property

definitions from different vendors or organizations. Consequently, the organization for the top of the resource type

96 Published Version 1.23.1

DSP0266 Redfish Specification

may be different from the organization that provides the definition of the OEM-specified property. For example,
Contoso may allow one of their customers, such as cCustomera , to extend a Contoso product with certain CustomerA
proprietary properties. In this case, although Contoso allocated the name cContoso_customera , it could be CustomerA
that defines the content and functionality within that resource type. In all cases, OEM identifiers should not be used
except with permission or as specified by the identified company or organization.

9.8.4 OEM resource types

Companies, OEMs, and other organizations can define additional resources and link to them from an oem property
in a standard Redfish resource, preferably from the oem property within the Links property. To avoid naming
collisions with current or future standard Redfish resource types or schema files, the defining organization's unique
OEM identifier, including possible subdivisioning, should be prepended to the OEM resource type name with an
optional underscore (_) as separator. This unique OEM identifier should follow the same naming as defined in the
OEM-specified object naming clause. The name of the OEM resource type, including the unique OEM identifier,
should also be prepended to the file name of OEM schema file that specifies the OEM resource type. Separator
underscores (_) may be excluded from the OEM resource type name and schema file name for improved
readability. The Schema definition languages clause contains other file name construction rules, such as handling
version information.

For example, OEM resource type ContosoDrive Or Contoso_CustomerA Drive would not conflict with the standard
Redfish brive resource type, or conflict with another OEM's drive-related definition.

9.8.5 OEM registries

Companies, OEMs, and other organizations can define additional registries and utilize them in message objects,
privileges or for BIOS attributes. To avoid naming collisions with current or future standard Redfish message
registries, the defining organization's unique OEM identifier, including possible subdivisioning, should be prepended
to the registry name with an optional underscore (_) as separator. This unique OEM identifier should follow the
same naming as defined in the OEM-specified object naming clause. Separator underscores (_) may be excluded
from the OEM registry name for improved readability. The OEM registry name, including the unique OEM identifier,
should also be used to construct the registry file name as defined in the Registry file naming clause.

For example, OEM registry name ContosoDriveEvent Or Contoso_CustomerB_DriveEvent would not conflict with a
possible future standard Redfish DriveEvent message registry name, or conflict with another OEM's drive-related
registry name.

9.8.6 OEM URIs

To avoid URI collisions with other OEM resources and future Redfish standard resources, the URIs for OEM
resources within the Redfish resource tree shall be in the form:

<BaseUri>/Oem/<OemIdentifier>/<ResourcePath>

Version 1.23.1 Published 97

Redfish Specification DSP0266

where

» <BaseUri> is the URI segment of the standard Redfish resource starting with /redfish/ where the 0em
property is used. For example, /redfish/v1/Systems/3AZ38944T523 .

* <OemIdentifier> is the unique identifier of the OEM, including possible subdivisioning, that follows the same
naming as defined in the OEM-specified object naming clause. Separator underscores (_) may be excluded for
improved readability.

* <ResourcePath> is the path to the OEM-defined resource. This path might contain multiple segments for cases
where OEM-defined resources are subordinate to an OEM-defined resource. Each segment in the path contains
the name of an OEM-defined resource.

For example, if Contoso defined a new ContosoAccountServiceMetrics OEM resource type to be linked through the
oem property at the /redfish/vi/AccountService URI, the OEM resource has the /redfish/vi/AccountService/Oem/
Contoso/AccountServiceMetrics URI. If Contoso uses a subdivision of their OEM identifier such as
Contoso_CustomerA the OEM resource has the URI /redfish/vi/AccountService/Oem/Contoso_CustomerA/

AccountServiceMetrics Or /redfish/v1l/AccountService/Oem/ContosoCustomerA/AccountServiceMetrics .

9.8.7 OEM property examples

The following fragment shows examples of naming and the oem property as it might appear when accessing a
resource. The example shows that the OEM identifiers can be of different forms, that OEM-specified content can be
simple or complex, and that the format and usage of extensions of the OEM identifier is OEM-specific.

"Oem": {

"Contoso": {
"@odata.type": "#ContosoAnvil.vl_2_1.AnvilTypesl",
"Slogan": "Contoso anvils never fail”,
"Disclaimer": "* Most of the time"

})

"Contoso_biz": {
"@odata.type": "#ContosoBizEngine.vl_ 1 @.RelatedSpeed”,
"Speed": "Plaid"

})
"EID_412": {
"@odata.type": "#AdatumPowerExtensions.vl @ 1.PowerInfoExt",
"ReadingInfo": {
"Accuracy": "5",
"IntervalSeconds": "20"
¥
s

"Contoso_CustomerA™: {
"@odata.type": "#ContosoCustomerASling.vl_0_0.SlingPower",
"AvailableTargets": ["Rabbit", "Duck", "Runner"],
"LaunchPowerOptions": ["Low", "Medium", "Eliminate"],
"LaunchPower": "Eliminate",

98 Published Version 1.23.1

DSP0266 Redfish Specification

"Target": "Rabbit"

}J

9.8.8 OEM actions

OEM-specific actions appear in the JSON payload as properties of the o0em object, nested under an Actions
property.

The name of the property that represents the action, which shall follow the form:
#<OEMSchemaName>.<Action>

where

* <OEMSchemaName> is the name of the schema containing the OEM extension. To avoid naming collisions with
other OEM definitions, the schema name should start with the defining organization's unique OEM identifier,

including possible subdivisioning. Separator underscores (_) may be excluded for improved readability.

* <Action> is the action name.

"Actions": {
"Oem": {

"#Contoso_ABC_ComputerSystem.Ping": {
"target": "/redfish/v1/Systems/1/Actions/Oem/Contoso_ABC_ComputerSystem.Ping",
"@Redfish.ActionInfo": "/redfish/v1l/Systems/1/0em/Contoso_ABC/PingActionInfo"

})

"#ContosoCustomerAComputerSystem.CustomPing": {
"target": "/redfish/v1/Systems/1/Actions/Oem/ContosoCustomerAComputerSystem.CustomPing"”,
"@Redfish.ActionInfo": "/redfish/v1/Systems/1/0em/ContosoCustomerA/CustomPingActionInfo”

The URI of the OEM action in the target property shall be in the form:
<ResourceUri>/Actions/Oem/<OEMSchemaName>.<Action>

where

Version 1.23.1 Published

99

Redfish Specification DSP0266

* <ResourceUri> is the URI of the resource that supports invoking the action. For example, /redfish/v1/Systems/
1/ .

* Actions is the name of the property containing the actions for a resource.

* oem is the name of the OEM property within the Actions property.

* <OEMSchemaName>.<Action> is the name of the schema containing the OEM extension followed by the action
name. For example, Contoso_ABC_ComputerSystem.Ping .

The URI to the ActionInfo resource should be in the form:
<ResourceUri>/0Oem/<OemIdentifier>/<Action>ActionInfo
where

* <ResourceUri> is the URI of the resource that supports invoking the action. For example, /redfish/v1/Systems/
1/ .

* <OemIdentifier> is the unique identifier of the OEM, including possible subdivisioning, that follows the same
naming as defined in the OEM-specified object naming clause. Separator underscores (_) may be excluded for
improved readability.

* <Action> is the action name.

9.9 Payload annotations

9.9.1 Payload annotations overview

Resources, objects within a resource, and properties may include additional annotations as properties with the name,
in the format:

[<PropertyName>]@<Namespace>.<TermName>
where

* <PropertyName> is the name of the property to annotate. If absent, the annotation applies to the entire JSON
object, which may be an entire resource.

* <Namespace> is the namespace that defines the annotation term.

* <TermName> is the annotation term to apply to the resource or property of the resource.

Services shall limit the annotation usage to the odata , Redfish , and Message namespaces. The OData JSON
Format Specification defines the odata namespace. The Redfish namespace is an alias for the
RedfishExtensions.vl_©_© namespace.

The client can get the definition of the annotation from the OData metadata document, the HTTP Link header, or

100 Published Version 1.23.1

DSP0266 Redfish Specification

may ignore the annotation entirely, but should not fail reading the resource due to unrecognized annotations,
including new annotations that the Redfish namespace defines.

9.9.2 Allowable values for strings

Services may use the @Redfish.AllowableValues annotation to specify the list of allowable values for a string
property in modification requests or action parameter. The values of the annotation should only include those values
that are both supported by the service and currently available as valid values for the particular instance of the
property or action parameter. The annotation shall contain a JSON array of strings that define the allowable values
for the property or action parameter.

The following example shows that the FavoriteFruit property supports four values.

"FavoriteFruit": "Kiwi",
"FavoriteFruit@Redfish.AllowableValues": ["Orange", "Pineapple", "Kiwi", "Starfruit"]

9.9.3 Allowable patterns for string values

Services may use the @Redfish.AllowablePattern annotation to specify a pattern that describes the valid values for a
string property in modification requests or action parameter. The annotation shall contain a regular expression that
describes the supported pattern for the property or action parameter. If a pattern is specified in the schema definition
for this property, this annotation may further restrict the allowable values, but shall not allow values which would
violate the schema-defined pattern. Services shall not use the @Redfish.AllowablePattern for enumerations.

The following example shows the AssetTag property allows alphanumeric characters, colons, and dashes, and
allows a string length up to 31 characters.

"AssetTag": "22HOU-34566",
"AssetTag@Redfish.AllowablePattern": "~[\\w:-]{0,31}$"

9.9.4 Allowable values for numbers and durations

Services may use the @Redfish.AllowableNumbers annotation to specify one or more ranges of allowable values and
an optional incremental step value between valid values for a numeric property in modification requests or action
parameter or duration property or action parameter. The annotation shall contain an array of strings, each specifying
a range of values and an optional step value. Each element in the array shall contain a number or a duration in the
format:

Version 1.23.1 Published 101

Redfish Specification DSP0266

<min>:<max>:<step>
where

* <min> is the supported value or the lowest value in an inclusive range.
* <max> is the highest value in an inclusive range.

* <step> is the incremental step value added to the <min> value in series within the inclusive range.
If the value does not contain : characters, the value specifies a single supported value.

If the value specifies a range and <min> is omitted, the minimum supported value shall be assumed to be a value of
zero.

If the value specifies a range and :<step> is omitted, no step is defined for the supported range.

The following example shows the usage of the @Redfish.AllowableNumbers annotation for different properties.
PacketSizeBytes supports a range of 1024 to 65536 in increments of 256. TemperatureThresholdCelsius supports a
range of 0 to 50 with no step restrictions. clockSpeedMHz supports 800, 1150, or 1600 to 5000 in increments of 100.
TimeoutDuration supports a duration between 5 minutes and 24 hours, in 5 minute increments.

{
"PacketSizeBytes": 2048,
"PacketSizeBytes@Redfish.AllowableNumbers": ["1024:65536:256"],
"TemperatureThresholdCelsius": 37,
"TemperatureThresholdCelsius@Redfish.AllowableNumbers": [":50"],
"ClockSpeedMHz": 2200,
"ClockSpeedMHz@Redfish.AllowableNumbers": ["800", "1150", "1600:5000:100"],
"TimeoutDuration": "PT2H",
"TimeoutDuration@Redfish.AllowableNumbers": ["PT5M:PT24H:PT5M"]

}

9.9.5 Extended information
The following clauses describe the methods of providing extended information:

+ Extended object information

» Extended property information

9.9.5.1 Extended object information

To specify object-level status information, services may annotate a JSON object with the @vessage.ExtendedInfo
annotation.

102 Published Version 1.23.1

DSP0266 Redfish Specification

"@odata.id": "/redfish/v1l/Managers/1/Seriallnterfaces/1",
"@odata.type": "#Seriallnterface.vl_0_0.SerialInterface"”,
"Name": "Managed Serial Interface 1",
"Description": "Management for Serial Interface",
"Status": {
"State": "Enabled",
"Health": "OK"
}J
"InterfaceEnabled": true,
"SignalType": "Rs232",
"BitRate": "115200",
"Parity": "None",
"DataBits": "8",
"StopBits": "1",
"FlowControl"”: "None",
"ConnectorType": "R3J45",
"PinOut": "Cyclades",
"@Message.ExtendedInfo": [{
"MessageIld": "Base.l.8.PropertyDuplicate”,
"Message": "Indicates that a duplicate property was included in the request body.",
"RelatedProperties": [
"/InterfaceEnabled"
])
"Severity": "Warning",
"MessageSeverity": "Warning",

"Resolution": "Remove the duplicate property from the request body and resubmit the request if the
operation failed."

3

The property contains an array of message objects.

9.9.5.2 Extended property information

Services may use @Message.ExtendedInfo , prepended with the name of the property to annotate an individual
property in a JSON object with extended information:

"@odata.id": "/redfish/vl1/Managers/1/SerialInterfaces/1",
"@odata.type": "#Seriallnterface.vl_0_0.SeriallInterface",
"Name": "Managed Serial Interface 1",
"Description”: "Management for Serial Interface",
"Status": {

"State": "Enabled",

"Health": "OK"

})

Version 1.23.1 Published 103

Redfish Specification DSP0266

"InterfaceEnabled": true,
"SignalType": "Rs232",
"BitRate": 115200,
"Parity": "None",
"DataBits": 8,
"StopBits": 1,
"FlowControl": "None",
"ConnectorType™": "RJ45",
"PinOut": "Cyclades",
"PinOut@Message.ExtendedInfo": [{
"MessageId": "Base.l.8.PropertyValueNotInList",
"Message": "The value Contoso for the property PinOut is not in the list of acceptable values.",
"Severity": "Warning",
"MessageSeverity": "Warning",
"Resolution"”: "Choose an enumeration list value that the implementation supports. Resubmit the
request if the operation failed."

9.9.5.3 Extended information implementation notes

Services should provide the extended object or property payload annotations in responses to PATCH or PUT
requests for the following conditions:

+ If a client attempts to modify a property that is read-only, include the PropertyNotWritable message from the
Base Message Registry.

» If an internal error prevents an update to a property, include the PropertyNotUpdated message from the Base
Message Registry.

 If properties are not updated and the service does not have sufficient space to report all messages, include the
MaximumErrorsExceeded message from the Base Message Registry.

Services should provide the extended object or property payload annotations in responses to PATCH or PpuT
requests for other non-successful conditions not listed previously.

9.9.6 Action info annotation

The @Redfish.ActionInfo term within the action representation conveys the parameter requirements and allowable
values on parameters for actions. This term contains a URI to the ActionInfo resource.

The URI to the ActionInfo resource should be in the form:
<ResourceUri>/<Action>ActionInfo

where

104 Published Version 1.23.1

DSP0266 Redfish Specification

* <ResourceUri> is the URI of the resource that supports invoking the action. For example, /redfish/v1/Systems/
1/ .

* <Action> is the action name.

Example #ComputerSystem.Reset action with the @Redfish.ActionInfo annotation and resource:

{
"Actions": {
"#ComputerSystem.Reset": {
"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset"”,
"@Redfish.ActionInfo": "/redfish/v1/Systems/1/ResetActionInfo"
}
¥
}

The ResetActionInfo resource contains a more detailed description of the parameters and the supported values.
This resource follows the ActionInfo schema definition.

"@odata.id": "/redfish/v1/Systems/1/ResetActionInfo”,
"@odata.type": "#ActionInfo.vl_©_0.ActionInfo",
"Id": "ResetActionInfo",
"Name": "Reset Action Info",
"Parameters": [{
"Name": "ResetType",
"Required": true,
"DataType": "String",
"AllowableValues": ["On", "ForceOff", "ForceRestart", "Nmi",
"ForceOn", "PushPowerButton"]

9.9.7 Settings and settings apply time annotations

See the Settings resource clause.

9.9.8 Operation apply time and operation apply time support annotations

See the Operation apply time clause.

9.9.9 Maintenance window annotation

The settings apply time and operation apply time annotations enable an operation to be performed during a

Version 1.23.1 Published 105

Redfish Specification DSP0266

maintenance window. The @Redfish.Maintenancewindow term at the root of a resource configures the start time and
duration of a maintenance window for a resource.

The following example body for the /redfish/vi/Systems/1 resource configures the maintenance window to start at
2017-05-03723:12:37-05:00 and last for 600 seconds.

"@odata.id": "/redfish/v1/Systems/1",

"@odata.type": "#ComputerSystem.vl_5_0.ComputerSystem",

"@Redfish.MaintenanceWindow": {
"@odata.type": "#Settings.vl_3_3.MaintenanceWindow",
"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",
"MaintenanceWindowDurationInSeconds": 600

3

9.9.10 Collection capabilities annotation

Resource collections may contain a collection capabilities annotation. The @Redfish.CollectionCapabilities term at
the root of a resource collection shows what properties a client is allowed to use in a POST request for creating a
resource.

The following ComputersystemCollection example body contains the collection capabilities annotation. The Usecase
property contains the ComputerSystemComposition value, and the capabilitiesObject property contains the
/redfish/v1/Systems/Capabilities value. The resource at /redfish/v1/Systems/Capabilities describes the posT
request format for creating a computersSystem resource for compositions.

"@odata.id": "/redfish/v1/Systems",
"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",
"Name": "Computer System Collection",
"Members@odata.count": 9,
"Members": [],
"@Redfish.CollectionCapabilities": {
"@odata.type": "#CollectionCapabilities.vl_1_0.CollectionCapabilities”,
"Capabilities": [{
"CapabilitiesObject": {
"@odata.id": "/redfish/v1/Systems/Capabilities"
})
"UseCase": "ComputerSystemComposition",
"Links": {
"TargetCollection": {
"@odata.id": "/redfish/v1/Systems"

106 Published Version 1.23.1

DSP0266 Redfish Specification

3]

The capabilitiesObject resource follows the same schema for the resource that the resource collection contains. It
contains annotations to show which properties the client can use in the posT request body. Services may omit
properties marked as required for the resource referenced by the capabilitiesObject property, but may provide
annotations for the property to express PosT request body requirements. Table 20 describes the
CapabilitiesObject resource annotations. These annotations describe which properties are required, optional, or if
other rules are associated with the properties.

Table 20 — CapabilitiesObject resource annotations

Annotation Description
<PropertyName>@Redfish.RequiredOnCreate Required in the posT request body.
<PropertyName>@Redfish.OptionalOnCreate Not required in the PosT request body.
<PropertyName>@Redfish.SetOnlyOnCreate Cannot be modified after the resource is created.
<PropertyName>@Redfish.UpdatableAfterCreate Can be modified after the resource is created.
<PropertyName>@Redfish.AllowableValues Can be set to any of the listed values.

Required in the posT request body for the corresponding object to indicate the
number of requested object instances.
@Redfish.RequestedCountRequired

Used for composition requests.

Indicates restrictions regarding quantities of ResourceBlock resources of a given
type in the posT request body.
@Redfish.ResourceBlockLimits

Used for composition requests.

Example capabilitiesObject resource:

"@odata.id": "/redfish/v1/Systems/Capabilities"”,
"@odata.type": "#ComputerSystem.vl_8_0.ComputerSystem",
"Id": "Capabilities”,

"Name": "Capabilities for the system collection",
"Name@Redfish.RequiredOnCreate": true,
"Name@Redfish.SetOnlyOnCreate": true,
"Description@Redfish.OptionalOnCreate”: true,

Version 1.23.1 Published 107

Redfish Specification

"Description@Redfish.SetOnlyOnCreate": true,
"HostName@Redfish.OptionalOnCreate": true,
"HostName@Redfish.UpdatableAfterCreate"”: true,
"Links@Redfish.RequiredOnCreate": true,

"Links": {
"ResourceBlocks@Redfish.RequiredOnCreate": true,
"ResourceBlocks@Redfish.UpdatableAfterCreate”: true

b

"@Redfish.ResourceBlockLimits": {

"MinCompute": 1,
"MaxCompute": 1,
"MaxStorage": 8

9.9.11 Requested count and allow over-provisioning annotations

Table 21 describes the @Redfish.RequestedCount and @Redfish.AllowOverprovisioning annotations.

DSP0266

Clients use these annotations in composition requests to define the number of resource to allocate and to indicate

whether the Redfish service can provision more resources than the client requests:

Table 21 — RequestCount and AllowOverprovisioning annotations

Annotation Description

@Redfish.RequestedCount Number of requested resources.

Boolean. If true , the service may provision more resources than the

@Redfish.AllowOverprovisioning

Example client request for at least four and possibly more Processor resources:

{
"Processors": {
"Members": [{
"@Redfish.RequestedCount™: 4,
"@Redfish.AllowOverprovisioning”: true
]
s
}

@Redfish.RequestedCount annotation requests. Defaultis false .

108 Published

Version 1.23.1

DSP0266 Redfish Specification

9.9.12 Zone affinity annotation

The zone affinity annotation is used by clients in composition requests to indicate the components for the
composition come from the specified resource zone. The @Redfish.zoneAffinity term in the request body contains
the value of the 1d property of the requested resource zone.

Example client request for components to be allocated from the resource zone with the 1d property containing 1 :

"@Redfish.ZoneAffinity": "1",

9.9.13 Supported certificates annotation

Resource collections of type certificateCollection should contain a supported certificates annotation. The
@Redfish.SupportedCertificates term at the root of a resource collection shows the different certificate formats
allowed in the resource collection.

Example certificateCollection that only supports PEM style certificates:

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates”,
"@odata.type": "#CertificateCollection.CertificateCollection”,
"Name": "Certificate collection",
"Members@odata.count": 1,
"Members": [{
"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates/1"

I
"@Redfish.SupportedCertificates": ["PEM"]

9.9.14 Deprecated annotation

Services may annotate properties with @Redfish.Deprecated if the schema definition has the property marked as
deprecated.

Example deprecated property:

Version 1.23.1 Published 109

Redfish Specification DSP0266

"VendorID": "OxABCD",
"VendorID@Redfish.Deprecated": "This property has been deprecated in favor of ModuleManufacturerID.",

9.9.15 Writable properties annotation

Services may annotate resources or objects with @Redfish.WriteableProperties to list the properties in the resource
or object whose value may be changed by a modification request. This annotation shall only list those properties that
are defined as read-write in schema, are implemented as read-write by the service, and can be modified given the
current configuration of the resource. When present at the root of a resource, the properties listed shall include only
writable properties at the root level. Writable properties within objects shall be shown in additional annotation
instances within the object. For arrays of objects, if the annotation appears in only the first element of the array, the
values shall apply to all elements of the array.

Note: While "writable" is the preferred spelling of the word, the name of the annotation in payloads contains
"writeable".

Example writable properties annotations that show writable properties at the root level and an array of objects within
each element:

{
"UserName": "John Smith",
"Alias": "Major Goofball",
"FavoriteFruit": "Pineapple",
"@Redfish.WriteableProperties": ["Alias", "FavoriteFruit"],
"Pets": [
{
"PetName": "Waffles",
"PetType": "Donkey",
"Friendly": true,
"@Redfish.WriteableProperties": ["Friendly"]
s
{
"PetName": "Fluffy",
"PetType": "Snake",
"Friendly": false
}
]
}

110 Published Version 1.23.1

DSP0266

9.10 Settings resource

Redfish Specification

A settings resource represents the future intended state of a resource. Some resources have properties that can be
updated and the updates take place immediately. However, some properties need to be updated at a future point in
time, such as after a system reset. While the active resource represents the current state, the settings resource

represents the future intended state.

For resources that support a future intended state, the response shall contain a property with the @Redfish.Settings
payload annotation. When a settings annotation is used, the following conditions shall apply:

» The settings resource shall be of the same schema definition as the active resource.

* The settings resource should contain a subset of updatable properties from the active resource. Additionally, it
shall contain required properties, which are always mandatory.

» The settings resource shall not contain the @Redfish.Settings annotation.

» The settings resource may contain the @Redfish.SettingsApplyTime annotation.

» The URI for the settings resource shall reflect that it is subordinate to the active resource. The URI should be in
the form <BaseUri>/Settings or <BaseUri>/SD where <BaseUri> is the URI of the active resource.

The settings resource shall contain the properties that are updated at a future point in time. For resources that
support a future intended state, Table 22 describes the behavior of supported properties in the resource and settings

resource that a service should support.

Table 22 — Active resource and settings resource property behavior

Property

Read-only, required.

Read-only, not required.

Writable, updates immediately, but not at a
future point in time.

Writable, updates immediately or at a future
point in time.

Active resource behavior

Returned in the resource response to a GET
request.

Returned in the resource response to a GeT
request.

Active value returned in the resource
response to a GET request.
Modification requests change the active
value immediately.

Active value returned in the resource
response to a GET request.
Modification requests change the active
value immediately.

Settings resource behavior

Returned in the settings resource response
toa GET request.

Not returned in the settings resource
response to a GET request.

Not returned in the settings resource
response to a GET request.
Modification requests are rejected.

Future value returned in the settings resource
response to a GET request if a future value is
pending, otherwise not returned.

Modification requests change the future
value.

Version 1.23.1

Published

111

Redfish Specification DSP0266

Property Active resource behavior Settings resource behavior

. . Future value returned in the settings resource
Active value returned in the resource

Writable, updates at a future point in time, but response to a GET request.
. . response to a GET request.
not immediately.

o . Modification requests change the future
Modification requests are rejected.

value.

The @Redfish.Settings annotation includes several properties that help clients monitor when the service has
consumed the active resource and determine the success or failure of applying the values.

* The Messages property is a collection of messages that represent the results of the last time the values of the
settings resource were applied.

» The ETag property contains the ETag of the settings resource that was last applied. Immediate updates made
directly to the active resource are not reflected in it.

+ The Time property indicates the time when the settings resource was last applied. Immediate updates made
directly to the active resource are not reflected in it.

The following active resource example body supports a settings resource. A client can use the Settingsobject
property to locate the URI of the settings resource.

{
"@Redfish.Settings": {
"@odata.type": "#Settings.vl_3_3.Settings",
"SettingsObject": {
"@odata.id": "/redfish/v1/Systems/1/Bios/SD"
¥
"Time": "2017-05-03T23:12:37-05:00",
"ETag": "\"A89B031B62\"",
"Messages": [{
"MessageId": "Base.1l.8.PropertyNotWritable",
"RelatedProperties": ["/Attributes/ProcTurboMode"]
]
s
}

If a service enables a client to indicate when to apply settings:

» The settings resource shall contain a property with the @Redfish.SettingsApplyTime annotation.
o Only settings resources shall contain the @Redfish.SettingsApplyTime annotation.

* The @Redfish.Settings annotation in the active resource shall contain the SupportedApplyTimes property for
showing the allowable values for ApplyTime within @Redfish.SettingsApplyTime .

+ Clients can modify the @Redfish.SettingsApplyTime annotation to indicate when to apply the settings.

112 Published Version 1.23.1

DSP0266 Redfish Specification

In the following example request, the client indicates that the settings resource values are applied on reset during the
specified maintenance window:

{
"@Redfish.SettingsApplyTime": {
"@odata.type": "#Settings.vl_3_3.PreferredApplyTime",
"ApplyTime": "InMaintenanceWindowOnReset",
"MaintenanceWindowStartTime": "2017-05-03T723:12:37-05:00",
"MaintenanceWindowDurationInSeconds": 600
s
}

9.11 Special resource situations

9.11.1 Overview

Resources need to exhibit common semantic behavior whenever possible. This can be difficult in some situations
discussed in this clause.

9.11.2 Absent resources

Resources may be absent or their state unknown at the time a client requests information about that resource. For
resources that represent removable or optional components, absence provides useful information to clients because
it indicates a capability, such as an empty PCle slot, DIMM socket, or drive bay, that would not be apparent if the
resource simply did not exist.

This also applies to resources that represent a limited number of items or unconfigured capabilities within an
implementation, but this usage should be applied sparingly and should not apply to resources limited in quantity due
to arbitrary limits. For example, an implementation that limits SoftwareInventory to a maximum of 20 items should
not populate 18 absent resources when only two items are present.

For resources that provide useful data in an absent state and where the URI is expected to remain constant, such as
when a DIMM is removed from a memory socket, the resource should exist and should return the Absent value for
the state property in the status object.

In this circumstance, any required properties that have no known value shall contain null . Properties whose
support is based on the configuration choice or the type of component installed, and therefore unknown while in the
absent state, should not be returned. Likewise, subordinate resources for an absent resource should not be
populated until their support can be determined. For example, the Power and Thermal resources under a Chassis
resource should not exist for an absent Chassis.

Client software should be aware that when absent resources are later populated, the updated resource may

Version 1.23.1 Published 113

Redfish Specification DSP0266

represent a different configuration or physical item, and previous data, including read-only properties, obtained from
that resource may be invalid. For example, the Memory resource shows details about a single DIMM socket and the
installed DIMM. When that DIMM is removed, the Memory resource remains as an absent resource to indicate the
empty DIMM socket. Later, a new DIMM is installed in that socket, and the Memory resource represents data about
this new DIMM, which could have completely different characteristics.

9.11.3 Transiently unavailable resources

Resources may be transiently unavailable due to the underlying configuration of a device. For example, a network
adapter might not support management protocols while in a low power state.

For resources that provide useful data in a transiently unavailable state and where the URI is expected to remain
constant, such as when a network adapter is powered off and is unable to respond to management requests, the
resource should exist and should return the standbyoffline value for the state property in the Status object.

In this circumstance, any required properties that have no known value shall contain null . Properties whose
support is based on the configuration choice or the type of component installed, and therefore unknown while in the
transiently unavailable state, should not be returned. Likewise, subordinate resources for a transiently unavailable
resource should not be populated until their support can be determined.

9.12 Registries

Registry resources assist the client in interpreting Redfish resources beyond the Redfish schema definitions. To get
more information about a resource, event, message, or other item, use an identifier to search registries. This
information can include other properties, property restrictions, and the like. Registries are themselves resources.

Table 23 describes the types of registries that Redfish supports:

Table 23 — Registries

Registry Description See

Determines the semantics of each property within the Attributes object in a BIOS or BIOS settings

resource. Because BIOS information can vary from platform to platform, Redfish cannot define a fixed

schema for these values. Attribute registries should be assigned unique identifiers to allow users to match
Attribute a given registry with compatible products.

This registry contains both property descriptions and other information, such as data type, allowable
values, and user menu information.

Constructs a message from a MessageId and other message information to present to an end user. The + Error

M messages in these registries appear in both eventing and error responses to operations. responses

essage .
* Eventing

This registry is the most common type of registry.

114 Published Version 1.23.1

DSP0266 Redfish Specification

Registry Description See

Maps the resources in a Redfish service to the privileges that can complete specified operations against
those resources.

Privilege A client can use this information to: Privilege

+ Determine which roles should have specific privileges. model

* Map accounts to those roles so that the accounts can complete operations on Redfish resources.

9.13 Schema annotations

9.13.1 Schema annotations overview

The schema definitions of the data model use schema annotations to provide additional documentation for
developers. This clause describes the different types of schema annotations that the Redfish data model uses. For
information about how each of the annotations are implemented in their respective schema languages, see the
Schema definition languages clause.

9.13.2 Description annotation

The description annotation can be applied to any type, property, action, or parameter to provide a description of
Redfish schema elements suitable for end users or user interface help text.

All schemas that are published or republished by DMTF's Redfish Forum shall include a description annotation on
the following schema definitions:

» Redfish types

* Properties

» Reference properties

» Enumeration values

* Resources and resource collections

» Structured types

9.13.3 Long description annotation

The long description annotation can be applied to any type, property, action, or parameter to provide a formal,
normative specification of the schema element.

When the long descriptions in the Redfish schema contain normative language, the service shall be required to
conform with the statement.

Version 1.23.1 Published 115

Redfish Specification DSP0266

All schemas that are published or republished by DMTF's Redfish Forum shall include a long description annotation
on the following schema definitions:

» Redfish types

* Properties

» Reference properties

» Resources and resource collections

» Structured types

9.13.4 Resource capabilities annotation

The resource capabilities annotation can be applied to resources and resource collections to express the different
type of HTTP operations a client can invoke on the given resource or resource collection.

 Insert capabilities indicate whether a client can perform a PosT request on the resource to create a resource.
» Update capabilities indicate whether a client can perform a PATCH or PUT request on the resource.
» Delete capabilities indicate whether a client can perform a DELETE request on the resource.

» A service may implement a subset of the capabilities that are allowed on the resource or resource collection.

All schemas that are published or republished by DMTF's Redfish Forum for resources and resource collections shall
include resource capabilities annotations.

9.13.5 Resource URI patterns annotation
The resource URI patterns annotation expresses the valid URI patterns for a resource or resource collection.

The strings for the URI patterns may use { and } characters to express parameters within a given URI pattern,
where the value between the { and } characters contains the schema name followed by 1d . Items between the
{ and } characters are treated as identifiers within the URI for given instances of a Redfish resource. Clients
interpret this as a string to be replaced to access a given resource. A URI pattern may contain multiple identifier
terms to support multiple levels of nested resource collections. The identifier term in the URI pattern shall match the
1d string property for the corresponding resource, or the Memberid string property for the corresponding object
within a resource. The process for forming the strings that are concatenated to form the URI pattern are in the URI
naming rules clause.

The following string is an example URI pattern that describes a ManagerAccount resource: /redfish/vi/

AccountService/Accounts/{ManagerAccountId}

Using the previous example, {ManagerAccountId} is replaced by the 1d property of the corresponding
ManagerAccount resource. If the Id property for a ManagerAccount resource is John , the full URI for that resource
is /redfish/v1/AccountService/Accounts/John .

The URI patterns are constructed based on the formation of the resource tree. When constructing the URI pattern for

116 Published Version 1.23.1

DSP0266 Redfish Specification

a subordinate resource, the URI pattern for the current resource is used and appended. For example, the
RoleCollection resource is subordinate to AccountService . Because the URI pattern for AccountService is
/redfish/v1/AccountService , the URI pattern for the RoleCollection resource is /redfish/v1/AccountService/

Roles .

In some cases, the subordinate resource is found inside of a structured property of a resource. In these cases, the
name of the structured property appears in the URI pattern for the subordinate resource. For example, the
CertificateCollection resource is subordinate to the ManagerNetworkProtocol resource from the HTTPS property.
Because the URI pattern for ManagerNetworkProtocol is /redfish/vl/Managers/{ManagerId}/NetworkProtocol , the
URI pattern for the CertificateCollection resource is /redfish/vl/Managers/{ManagerId}/NetworkProtocol/HTTPS/

Certificates .

All schemas that are published or republished by DMTF's Redfish Forum for resources and resource collections shall
be annotated with the resource URI patterns annotation.

All Redfish resources and Redfish resource collections implemented by a service shall match the URI pattern
described by the resource URI patterns annotation for their given definition.

9.13.6 Additional properties annotation

The additional properties annotation specifies whether a type can contain additional properties outside of those
defined in the schema. Types that do not support additional properties shall not contain properties beyond those
described in the schema.

9.13.7 Permissions annotation

The permissions annotation specifies whether a client can modify the value of a property, or if the property is read-
only.

A service can implement a modifiable property as read-only.
The value of a write-only property, such as Password , cannot be read, and shall be null in responses.

All schemas that are published or republished by DMTF's Redfish Forum shall include a permissions annotation for
all properties that are not structured properties.

9.13.8 Required annotation

The required annotation specifies whether a service needs to support a property. Required properties shall be
annotated with the required annotation. All other properties are optional.

Version 1.23.1 Published 117

Redfish Specification DSP0266

9.13.9 Required on create annotation

The required on create annotation specifies that a property is required to be provided by the client on creation of the
resource. Properties not annotated with the required on create annotation are not required to be provided by the
client on a create operation.

9.13.10 Units of measure annotation

In addition to following the naming rules, properties representing units of measure shall be annotated with the units of
measure annotation to specify the units of measurement for the property.

The value of the annotation shall be a string that contains the case-sensitive "(c/s)" symbol of the unit of measure as
listed in the Unified Code for Units of Measure (UCUM), unless the symbolic representation does not reflect common
usage. If the unit in common usage is not available in UCUM, curly braces should wrap the value, such as {value} ,
to follow UCUM parsing rules. For example, rRPM is commonly used to report fan speeds in revolutions-per-minute,
and the preferred representation in UCUM is {rev}/min , but the value {RPM} is acceptable. For units with prefixes,
the case-sensitive (c/s) symbol for the prefix as listed in UCUM should be prepended to the unit symbol. For
example, the mebibyte (102472 bytes), which has the UCUM mi prefix and By symbol, would use MiBy as the
value for the annotation. For values that also include rate information, such as megabits per second, the rate unit's
symbol should be appended and use a slash (/) character as a separator. For example, Mbit/s .

DEPRECATED: Previous versions of this specification recommended RPM as a commonly used unit of
measure for certain properties. New recommendations are provided that follow UCUM parsing rules.

9.13.11 Expanded resource annotation

The expanded resource annotation can be applied to a reference property to specify that the default behavior for the
service is to include the contents of the related resource or resource collection in responses. This behavior follows
the same semantics of the expand query parameter with a level of 1.

Reference properties annotated with this term shall be expanded by the service, even if not requested by the client. A
service may page resource collections.

9.13.12 Owning entity annotation

The owning entity annotation can be applied to a schema to specify the name of the entity responsible for
development, publication, and maintenance of a given schema.

9.13.13 Deprecated annotation

The deprecated annotation specifies if a property, enumeration, or other schema element has been deprecated.

118 Published Version 1.23.1

DSP0266 Redfish Specification

Schema elements marked as deprecated contain a schema version that shows when the element was deprecated,
as well as text that specifies the favored approach.

The deprecated annotation also specifies if resource URI patterns have been deprecated. Deprecated resource URI
patterns shall also be included in the resource URI patterns annotation.

Existing and new implementations may use deprecated schema elements or URIs, but they should move to the
favored approach. Deprecated schema elements may be implemented to achieve backwards compatibility.
Deprecated schema elements may be removed from the next major version of the schema.

9.13.14 URI segment annotation

The URI segment annotation can be applied to a reference property to specify the segment appended to the URI of
the resource when constructing the URI of a subordinate resource if the segment differs from the property name. For
more information, see the URI naming rules clause.

9.13.15 URI annotation

The URI annotation can be applied to a string property to indicate the property value contains a URI. This is used for
cases where a service provides a hyperlink to a URI outside of the Redfish model or where a reference property is
not used to avoid undesireable expansion.

9.14 Versioning

As stated previously, a resource can be an individual entity or a resource collection, which acts as a container for a
set of resources.

A resource collection does not contain any version information because it defines a single Members property, and the
overall collection definition never grows over time.

A resource has both unversioned and versioned definitions.

References from other resources use the unversioned definition of a resource to ensure no version dependencies
exist between the definitions. The unversioned definition of a resource contains no property information about the
resource.

The versioned definition of a resource contains a set of properties, actions, and other definitions associated with the
resource. The version of a resource follows the format:

V<X> . <Y> . <Z>

where

Version 1.23.1 Published 119

Redfish Specification DSP0266

* <X> is an integer that represents the major version. Indicates a backward-incompatible change.

* <Y> is an integer that represents the minor version. Indicates a minor update. Redfish introduces new
functionality but does not remove any functionality. The minor version preserves compatibility with earlier minor
versions. For example, a new property introduces a new minor version of the resource.

* <Z> is an integer that represents the errata version. Indicates a fix in an earlier version. For example, a fix to a
schema annotation on a property introduces an errata version of the resource.

9.15 Localization

The creation of separate localized copies of Redfish schemas and registries is allowed and encouraged. Localized
schema and registry files may be submitted to DMTF for republication in the Redfish schema repository.

Property names, parameter names, and enumeration values in the JSON response payload are never localized but
translated copies of those names may be provided as additional annotations in the localized schema for use by client
applications. A separate file for each localized schema or registry shall be provided for each supported language.
The English-language versions of Redfish schemas and registries shall be the normative versions, and alterations of
meaning due to translation in localized versions of schemas and registries shall be forbidden.

Schemas and registries in non-English languages shall use the appropriate schema annotations to identify their
language. Descriptive property, parameter, and enumeration text not translated into the specified language shall be
removed from localized versions. This removal enables software and tools to combine normative and localized
copies, especially for minor schema version differences.

120 Published Version 1.23.1

DSP0266 Redfish Specification

10 File naming and publication

For consistency in publication and to enable programmatic access, all Redfish-related files shall follow a set of rules
to construct the name of each file. The Schema definition languages clause describes the file name construction
rules, while the following clauses describe the construction rules for other file types.

10.1 Registry file naming

Redfish message registry files, privilege registry files, and BIOS attribute registry files shall use the registry name to
construct the file name, in this format:

<RegistryName>.<MajorVersion>.<MinorVersion>.<Errata>.json
For example, the file name of the Base Message Registry v1.0.2 is Base.1.0.2.json .

The registry name should be unique to avoid conflict with other registry files. The clause OEM registries describes
registry name to use for OEM registry files.

10.2 Profile file naming

The document that describes a profile follows the Redfish schema file naming conventions. The file name format for
profiles shall be:

<ProfileName>.v<MajorVersion>_<MinorVersion>_<Errata>.json

For example, the file name of the BasicServer profile v1.2.0 is BasicServer.vi_2_0.json . The file name shall include
the profile name and version, which matches those property values within the document.

10.3 Dictionary file naming

The binary file describing a Redfish Device Enablement dictionary follows the Redfish schema file naming
conventions for the schema definition language that the dictionary is converted from. Because a single dictionary file
contains all minor revisions of the schema, only the major version appears in the file name. The file names for
Dictionaries shall be formatted as:

<DictionaryName>_v<MajorVersion>.dict

For example, the file name of the Chassis dictionary v1.2.0 is Chassis_v1.dict .

Version 1.23.1 Published 121

Redfish Specification DSP0266

10.4 Localized file naming

Localized schemas and registries shall follow the same file naming conventions as the English language versions.
When multiple localized copies are present in a repository and which have the same file name, files in languages
other than English shall be organized into sub-folders named to match the ISO 639-1 language code for those files.
English language files may be duplicated in an en sub-folder for consistency.

10.5 DMTF Redfish file repository

All Redfish schemas, registries, dictionaries, and profiles published or republished by DMTF's Redfish Forum are
available from the DMTF website for download. Programs may use the following durable URLs to access the
repository. Programs incorporating remote repository access should implement a local cache to reduce latency,
program requirements for Internet access and undue traffic burden on DMTF's website.

Organizations creating Redfish-related files such as OEM schemas, Redfish interoperability profiles, or message
registries are encouraged to use the form at https://redfish.dmtf.org/redfish/portal to submit those files to DMTF for
republication in DMTF's Redfish file repository.

Table 24 describes how files are organized on the site:

Table 24 — Redfish file repository

URL Folder contents

Current (most recent minor or errata) release of each schema file in CSDL, JSON

redfish.dmtf.org/schemas
Schema, and/or OpenAPI formats.

Durable URL for programmatic access to all v1.xx schema files. Every v1.xx minor

redfish.dmtf.org/schemas/v1l .
or errata release of each schema file in CSDL, JSON Schema, OpenAPI formats.

Durable URL for programmatic access to localized v1.xx schema files. Localized
redfish.dmtf.org/schemas/v1/{code} schemas are organized in sub-folders using the two-character ISO 639-1 language
code as the {code} segment.

redfish.dmtf.org/schemas/archive Sub-folders contain schema files specific to a particular version release.
redfish.dmtf.org/registries Current (most recent minor or errata) release of each registry file.

Durable URL for programmatic access to all v1.xx registry files. Every v1.xx minor
redfish.dmtf.org/registries/v1 i i
or errata release of each registry file.

Durable URL for programmatic access to localized v1.xx registry files. Localized
redfish.dmtf.org/registries/v1/{code} schemas are organized in sub-folders using the two-character ISO 639-1 language
code as the {code} segment.

redfish.dmtf.org/registries/archive Sub-folders contain registry files specific to a particular version release.

122 Published Version 1.23.1

https://redfish.dmtf.org/
https://redfish.dmtf.org/redfish/portal

DSP0266

URL

redfish

redfish

redfish

redfish

redfish

redfish

.dmtf.

Ldmtf.

.dmtf.

.dmtf.

.dmtf.

.dmtf.

org/profiles

org/profiles/vl

org/profiles/archive

org/dictionaries

org/dictionaries/vil

org/dictionaries/archive

Redfish Specification

Folder contents

Current release of each Redfish interoperability profile (.json) file and associated
documentation.

Durable URL for programmatic access to all v1.xx Redfish interoperability profile
(.json) files.

Sub-folders contain profile files specific to a particular profile version or release.

Durable URL for programmatic access to all v1.xx Redfish Device Enablement
dictionary files.

Durable URL for programmatic access to all v1.xx Redfish Device Enablement
dictionary files.

Sub-folders contain dictionary files specific to a particular version release.

Version 1.23.1

Published 123

Redfish Specification DSP0266

11 Schema definition languages

Individual resources and their dependent types and actions are defined within a Redfish schema document. This
clause describes how these documents are constructed in the following formats:

» OData Common Schema Definition Language
» JSON Schema
* OpenAPI

11.1 OData Common Schema Definition Language

11.1.1 OData Common Schema Definition Language overview

OData Common Schema Definition Language (CSDL) is an XML schema format defined by the OData CSDL
Specification. The following clause describes how Redfish uses CSDL to describe resources and resource
collections.

11.1.2 File naming conventions for CSDL

Redfish CSDL schema files shall be named using the resource type name for the schema, followed by _v and the
major version of the schema. Because a single CSDL schema file contains all minor revisions of the schema, only
the major version appears in the file name. The file name shall be formatted as:

<ResourceType>_v<MajorVersion>.xml

For example, version 1.3.0 of the Chassis schema is Chassis_vi.xml .

11.1.3 Core CSDL files
Table 25 describes the core CSDL files:

Table 25 — Core CSDL files

File Description
RedfishError_v1.xml Payload definition of the Redfish error response.
RedfishExtensions_v1.xml All definitions for Redfish types and annotations.

All base definitions for resources, resource collections, and common properties, such as

Resource_v1.xml
Status .

124 Published Version 1.23.1

DSP0266 Redfish Specification

11.1.4 CSDL format

The outer element of the OData schema representation document shall be the edmx element, and shall have a
Version attribute with a value of 4.0 .

"

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">
<!-- edmx:Reference and edmx:DataServices elements go here -->

</edmx: Edmx>

The Referencing other CSDL files and CSDL data services clauses describe the items that are found within the
Edmx element.

11.1.4.1 Referencing other CSDL files
CSDL files may use Reference tags to reference types defined in other CSDL documents.

The Reference element uses the uri attribute to specify a CSDL file. The Reference element also contains one or
more Include tags that specify the Namespace attribute containing the types to be referenced, along with an optional
Alias attribute for that namespace.

Type definitions generally reference the OData and Redfish namespaces for common type annotation terms. Redfish
CSDL files shall contain the Alias attribute on the following namespaces:

* Org.OData.Core.Vl is aliased as oObData .
* Org.OData.Measures.Vl is aliased as Measures .
* RedfishExtensions.vl @ 0 is aliased as Redfish .

* Validation.vl 0 o is aliased as validation .

<edmx:Reference
Uri="http://docs.oasis-open.org/odata/odata/v4.0/cs@l/vocabularies/Org.0OData.Core.V1.xml">
<edmx:Include Namespace="Org.OData.Core.V1" Alias="OData"/>

</edmx:Reference>

<edmx:Reference
Uri="http://docs.oasis-open.org/odata/odata/v4.0/0s/vocabularies/Org.0OData.Measures.V1l.xml">
<edmx:Include Namespace="Org.OData.Measures.V1" Alias="Measures"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/vl/RedfishExtensions_v1.xml">
<edmx:Include Namespace="RedfishExtensions.vl_0_0" Alias="Redfish"/>
<edmx:Include Namespace="Validation.vl_0_0" Alias="Validation"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1l/Resource_v1l.xml">
<edmx:Include Namespace="Resource"/>

Version 1.23.1 Published 125

Redfish Specification DSP0266

<edmx:Include Namespace="Resource.vl_0_0"/>
</edmx:Reference>

11.1.4.2 CSDL data services

Define structures, enumerations, and other definitions in CSDL within a namespace. Use a schema tag to define the
schema and use the Namespace attribute to declare the name of the namespace.

Redfish uses namespaces to differentiate different versions of the schema. CSDL enables structures to inherit from
other structures, which enables newer namespaces to define only the changes. The Elements of CSDL namespaces
clause describes this behavior.

Namespaces containing unversioned resource and resource collection definitions shall use the resource type to
name the namespace, in this format:

<ResourceType>
For example, the unversioned namespace of the Chassis resource is Chassis .

Namespaces containing versioned resource definitions shall use the resource type to name the namespace, in this
format:

<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>
For example, the version 1.3.0 namespace of the Chassis resource is Chassis.v1_3_0 .

The schema element is a child of the Dataservices element, which is a child of the Edmx element:

<edmx:DataServices>
<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.vl 0 0">
<!-- Type definitions for version 1.0.0 of MyTypes go here -->

</Schema>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.vl_1_0">
<!-- Type definitions for version 1.1.0 of MyTypes go here -->

</Schema>

</edmx:DataServices>

11.1.5 Elements of CSDL namespaces
The following clauses describe the definitions within each namespace:

* Qualified names

126 Published Version 1.23.1

DSP0266 Redfish Specification

+ Entity type and complex type elements

11.1.5.1 Qualified names

Many definitions in CSDL use references to qualified names. CSDL defines this as a string in the form:
<Namespace>.<TypeName>

where

* <Namespace> is the namespace name.

* <TypeName> is the name of the element in the namespace.

For example, if a reference is made to MyType.vi_o_o.MyDefinition , the definition can be found in the
MyType.vl_@_@ namespace with an element named MyDefinition .

11.1.5.2 Entity type and complex type elements

Use the EntityType and complexType tags to define the entity type and complex type elements, respectively. These
elements define a JSON structure and their set of properties by defining property elements and navigation property
elements within the EntityType oOr ComplexType tags.

All entity types and complex types shall contain a Name attribute, which specifies the name of the definition.

Entity types and complex types may contain a BaseType attribute, which specifies a qualified name. When the
BaseType attribute is present, all definitions of the referenced BaseType are available to the entity type or complex
type being defined.

All resources and resource collections shall be defined with the entity type element. Resources inherit from
Resource.vl_@_0.Resource , and resource collections inherit from Resource.vi_0_0.ResourceCollection .

All structured properties shall be defined with the complex type element or entity type element. Most structured
properties are defined with the complex type element. Some use the entity type element that inherits from
Resource.vl_0_0.ReferenceableMember . The entity type element enables references to be made by using the
Navigation Property element, whereas the complex type element does not allow for this usage.

Example entity type and complex type element:

<EntityType Name="TypeA" BaseType="Resource.vl_0_0.Resource">
<Annotation Term="OData.Description" String="Entity description."/>
<Annotation Term="OData.LongDescription" String="Entity normative description."/>
<!-- Property and navigation property definitions go here -->

</EntityType>

Version 1.23.1 Published 127

Redfish Specification DSP0266

<ComplexType Name="PropertyTypeA">
<Annotation Term="OData.Description" String="Structured property description."/>
<Annotation Term="OData.LongDescription" String=Structured property normative description."/>
<!-- Property and navigation property definitions go here -->

</ComplexType>

11.1.5.3 Action element

Use the Action tag to define the action element. This element defines an action that can be performed on a
resource.

All Redfish actions shall be defined with the action element. All action elements shall contain a name attribute, which
specifies the name of the action. The action shall be represented in payloads as the qualified name of the action,
preceded by # .

In Redfish, all action elements shall contain the IsBound attribute that is always set to true , which indicates that the
action appears as a member of a structured type.

The action element shall contain one or more Pparameter tags that specify the nName and Type of each parameter.

Because all action elements in Redfish use the IsBound="true" term, the first parameter is called the binding
parameter and specifies the structured type to which the action belongs. All Redfish actions shall contain a binding
parameter. The binding parameter shall be one of the following complex type elements:

» For standard actions, the Actions complex type for the resource.

» For OEM actions, the oemActions complex type for the resource.

The remaining parameter elements shall describe additional parameters to be passed to the action. The term
Nullable="false" in a parameter shall indicate the parameter is required in the action request body.

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyType">
<Action Name="MyAction" IsBound="true">
<Parameter Name="Thing" Type="MyType.Actions"/>
<Parameter Name="Parameterl" Type="Edm.Boolean"/>
<Parameter Name="Parameter2" Type="Edm.String" Nullable="false"/>
</Action>

<ComplexType Name="Actions">

</ComplexType>

128 Published Version 1.23.1

DSP0266 Redfish Specification

</Schema>

Some action parameters may specify a type that is defined by an entity type element. In these cases, the parameter
in the request is a reference object to a resource within the service.

11.1.5.4 Action element for OEM actions

OEM-specific actions shall be defined by using the action element with the binding parameter set to the oemActions
complex type for the resource. For example, the following definition defines the OEM #cContoso.Ping action for a
ComputerSystem .

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm” Namespace="Contoso">
<Action Name="Ping" IsBound="true">
<Parameter Name="ComputerSystem" Type="ComputerSystem.vl_0_0.0emActions"/>
</Action>
</Schema>

11.1.5.5 Action with a response body

A response body for an action shall be defined using the ReturnType tag within an action element. For example, the
following definition defines the GenerateTicket action with a response that contains the definition specified by

GenerateTicketResponse .

<Action Name="GenerateTicket" IsBound="true">
<Parameter Name="ExampleResource" Type="ExampleResource.vl_©_0.Actions"/>

<ReturnType Type="ExampleResource.vl_0_0.GenerateTicketResponse" Nullable="false"/>
</Action>

<ComplexType Name="GenerateTicketResponse">
<Annotation Term="OData.AdditionalProperties" Bool="false"/>
<Annotation Term="OData.Description" String="The response body for GenerateTicket."/>
<Property Name="TicketId" Type="Edm.String" Nullable="false">
<Annotation Term="OData.Permissions” EnumMember="OData.Permission/Read"/>
<Annotation Term="OData.Description" String="The ticket identifier."/>
<Annotation Term="Redfish.Required"/>
</Property>
</ComplexType>

Using the above example, the following payload is an example response for the GenerateTicket action.

Version 1.23.1 Published 129

Redfish Specification DSP0266

"TicketId": "40478281bdefé6b9e7131db6c4f673438"

11.1.5.6 Property element

Properties of resources, resource collections, and structured properties are defined using the property element. The
Property tag defines a property element inside entity type and complex type elements.

All property elements shall contain a Name attribute, which specifies the name of the property.

All property elements shall contain a Type attribute specifies the data type. The Type attribute shall be one of the
following names or types:

» A qualified name that references an enum type element.
* A qualified name that references a complex type element.
* A primitive data type.

» An array of the previous names or types by using the Collection term.
Table 26 describes the primitive data types:

Table 26 — Primitive data types

Type Meaning
Edm.Boolean True or False.
Edm.DateTimeOffset Date-time string.
Edm.Decimal Number, optionally containing a decimal point.
Edm.Double Number, optionally containing a decimal point and optionally containing an exponent.
Edm.Duration Duration string.
Edm.Guid GUID/UUID string.
Edm.Int64 Signed 64-bit integer.
Edm.String UTF-8 string.

Property elements may specify a Nullable attribute. If the attribute is false , the property shall not contain null . If
the attribute is true or absent, the property may contain null .

Example property element:

130 Published Version 1.23.1

DSP0266 Redfish Specification

<Property Name="Propertyl" Type="Edm.String" Nullable="false">
<Annotation Term="OData.Description" String="Propertyl description."/>
<Annotation Term="OData.LongDescription" String="Propertyl normative description."/>
<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>
<Annotation Term="Redfish.Required"/>
<Annotation Term="Measures.Unit" String="Watts"/>

</Property>

11.1.5.7 Navigation property element

Reference properties of resources, resource collections, and structured properties are defined using the navigation
property element. The NavigationProperty tag defines a navigation property element inside entity type and complex
type elements.

All navigation property elements shall contain a nName attribute, which specifies the name of the property.

All navigation property elements shall contain a Type attribute specifies the data type. The Type attribute shall be a
qualified name that references an entity type element. The collection term with the qualified name shall indicate
the property is an array.

Navigation property elements may specify a Nullable attribute. If the attribute is false , the property shall not
contain null . If the attribute is true or absent, the property may contain null .

Unless the reference property is to be expanded, all navigation properties in Redfish shall contain the
OData.AutoExpandReferences annotation element to show that the reference is always available.

Example navigation property element:

<NavigationProperty Name="RelatedType" Type="MyTypes.TypeB">
<Annotation Term="OData.Description" String="RelatedType description."/>
<Annotation Term="OData.LongDescription" String="RelatedType normative description."/>
<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

11.1.5.8 Enum type element

Use the EnumType tag to define the enum type element. This element defines a set of enumeration values, which
may be applied to one or more properties.

All enum type elements shall contain a Name attribute, which specifies the name of the set of enumeration values.

Version 1.23.1 Published 131

Redfish Specification DSP0266

Enum type elements shall contain Member tags that define the members of the enumeration. The Member tags shall
contain a Name attribute that specifies the string value of the member name.

<EnumType Name="EnumTypeA">
<Annotation Term="OData.Description" String="EnumTypeA type description."/>
<Annotation Term="OData.LongDescription" String="EnumTypeA type normative description."/>
<Member Name="MemberA">
<Annotation Term="OData.Description" String="The description of MemberA"/>
</Member>
<Member Name="MemberB">
<Annotation Term="OData.Description" String="The description of MemberB"/>
</Member>
</EnumType>

11.1.5.9 Annotation element

Annotations in CSDL are expressed using the Annotation tag. Any schema element in CSDL may contain
annotations.

The following examples show how each Redfish schema annotation is expressed in CSDL.

» The OData Core Schema defines terms with the opata prefix.
» The OData Measures Schema defines terms with the Measures prefix.

* The RedfishExtensions Schema defines terms with the Redfish prefix.

Example description annotation:

<Annotation Term="OData.Description" String="The console color."/>

Example long description annotation:

<Annotation Term="OData.LongDescription"
String="This property shall contain the console color."/>

Example additional properties annotation:

<Annotation Term="OData.AdditionalProperties"/>

Example permissions annotation (read-only):

132 Published Version 1.23.1

DSP0266 Redfish Specification

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

Example permissions annotation (read/write):

<Annotation Term="OData.Permissions” EnumMember="OData.Permission/ReadWrite"/>

Example permissions annotation (write-only, null in responses):

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Write"/>

Example required annotation:

<Annotation Term="Redfish.Required"/>

Example required on create annotation:

<Annotation Term="Redfish.RequiredOnCreate"/>

Example units of measure annotation:

<Annotation Term="Measures.Unit" String="MiBy"/>

Example expanded resource annotation:

<Annotation Term="OData.AutoExpand"/>

Example insert capabilities annotation (showing pPosT is not allowed):

<Annotation Term="Capabilities.InsertRestrictions">
<Record>
<PropertyValue Property="Insertable" Bool="false"/>
</Record>
</Annotation>

Version 1.23.1 Published 133

Redfish Specification

Example update capabilities annotation (showing PATCH and puT are allowed):

<Annotation Term="Capabilities.UpdateRestrictions">
<Record>
<PropertyValue Property="Updatable" Bool="true"/>

<Annotation Term="OData.Description" String="The desired speed can be changed."/>

</Record>
</Annotation>

Example delete capabilities annotation (showing DELETE is allowed):

<Annotation Term="Capabilities.DeleteRestrictions">
<Record>
<PropertyValue Property="Deletable" Bool="true"/>
<Annotation Term="OData.Description" String="The resource can be deleted."/>
</Record>
</Annotation>

Example resource URI patterns annotation:

<Annotation Term="Redfish.Uris">
<Collection>
<String>/redfish/v1/AccountService/Accounts/{ManagerAccountId}</String>
</Collection>
</Annotation>

Example URI segment annotation:

<NavigationProperty Name="Tasks" Type="TaskService.TaskService" Nullable="false">
<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>
<Annotation Term="OData.Description” String="The link to the task service."/>
<Annotation Term="OData.AutoExpandReferences"/>
<Annotation Term="Redfish.URISegment" String="TaskService"/>
</NavigationProperty>

Example owning entity annotation:

<Annotation Term="Redfish.OwningEntity" String="DMTF"/>

Example deprecated annotation:

DSP0266

134 Published

Version 1.23.1

DSP0266 Redfish Specification

<Annotation Term="Redfish.Revisions">
<Collection>
<Record>
<PropertyValue Property="Kind" EnumMember="Redfish.RevisionKind/Deprecated"/>
<PropertyValue Property="Version" String="v1_3_0"/>
<PropertyValue Property="Description”
String="This property has been deprecated in favor of ModuleManufacturerID."/>
</Record>
</Collection>
</Annotation>

Example deprecated annotation applied to resource URI patterns:

<Annotation Term="Redfish.DeprecatedUris">
<Collection>
<String>/redfish/v1/Chassis/{ChassisId}/Thermal</String>
</Collection>
</Annotation>

Example URI annotation:

<Annotation Term="OData.ISURL"/>

11.2 JSON Schema

11.2.1 JSON Schema overview

The JSON Schema Specification defines a JSON format for describing JSON payloads. The following clause
describes how Redfish uses JSON Schema to describe resources and resource collections.

11.2.2 File naming conventions for JSON Schema

Each Redfish JSON Schema file represents a single resource type.

Versioned Redfish JSON Schema files shall use the resource type to name the file, in this format:
<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>.json

For example, version 1.3.0 of the Chassis schemais Chassis.vi_3_0.json .

Version 1.23.1 Published 135

Redfish Specification DSP0266

Unversioned Redfish JSON Schema files shall use the resource type to name the file, in this format:

<ResourceType>.json

For example, the unversioned definition of the Chassis schema is chassis.json .

11.2.3 Core JSON Schema files

Table 27 describes the core JSON Schema files:

File

odata-v4.json

Table 27 — Core JSON Schema files

Description

Definitions for common OData properties.

redfish-error.vl_0_6.json and its subsequent versions Payload definition of the Redfish error response.

Extensions to the JSON Schema that define Redfish JSON Schema

redfish-schema-v1.json

Resource.json and its subsequent versions

files.

All base definitions for resources, resource collections, and common
properties, such as Status .

11.2.4 JSON Schema format

Each JSON Schema file shall contain a JSON object to describe resources, resource collections, and other
definitions for the data model.

Table 28 describes the JSON object, which contains the following terms:

Term

$id

$ref

$schema

copyright

definitions

Table 28 — JSON Schema format

Description
Reference to the URI where the schema file is published.

For a schema file that describes a resource or resource collection, the reference to the structural definition of the
resource or resource collection.

URI to the Redfish schema extensions for JSON Schema. The value should be http://redfish.dmtf.org/schemas/v1/

redfish-schema-v1.json
Copyright statement for the organization producing the JSON Schema.

Structures, enumerations, and other definitions defined by the schema.

136

Published Version 1.23.1

DSP0266 Redfish Specification

Term Description

N For a schema file that describes a resource or resource collection, the matching type identifier for the resource or
title .
resource collection.

11.2.5 JSON Schema definitions body

This clause describes the types of definitions found in the definitions term of a Redfish JSON Schema file.

11.2.5.1 Resource definitions in JSON Schema

To satisfy versioning requirements, the JSON Schema representation of each resource shall have one unversioned
schema file and a set of versioned schema files.

The unversioned definition of a resource shall contain an anyof statement. This statement shall consist of an array
of $ref terms, which point to the following definitions:

» The JSON Schema definition for a reference property.

* The versioned definitions of the resource.

The unversioned definition of a resource shall contain the uris term to express the allowable URIs for the resource,
and the deletable , insertable , and updatable terms to express the capabilities of the resource.

The following example shows an unversioned resource definition in JSON Schema:

{
"ComputerSystem": {
"anyof": [{
"$ref": "http://redfish.dmtf.org/schemas/vl/odata.v4_0_3.json#/definitions/idRef"
b A
"$ref": "http://redfish.dmtf.org/schemas/v1l/ComputerSystem.vl_0 0.json#/definitions/ComputerSystem"
oA
"$ref": "http://redfish.dmtf.org/schemas/v1/ComputerSystem.vl_0_1.7json#/definitions/ComputerSystem"
b A
"$ref": "http://redfish.dmtf.org/schemas/v1l/ComputerSystem.vl_6_0.7json#/definitions/ComputerSystem"
s
"deletable": true,
"description": "The ComputerSystem schema represents a general purpose machine or system.",

"insertable": false,
"longDescription”: "This resource shall represent resources that represent a computing system.",
"updatable"”: true,
"uris": [
"/redfish/v1/Systems/{ComputerSystemId}"

}J

Version 1.23.1 Published 137

Redfish Specification DSP0266

The versioned definition of a resource shall contain the property definitions for the given version of the resource.

11.2.5.2 Enumerations in JSON Schema
Table 29 describes the terms that constitute definitions for enumerations:

Table 29 — JSON Schema enumerations

Term Description
enum String array that contains the possible enumeration values.
enumDescriptions Object that contains the descriptions for each of the enumerations as name-value pairs.
enumLongDescriptions Object that contains the long descriptions for each of the enumerations as name-value pairs.

Object that contains the deprecation guidance for each of the enumerations as name-value

enumDeprecated)
pairs.

Object that contains the deprecation version information for each of the enumerations as name-

enumVersionDeprecated .
value pairs.

type Because all enumerations in Redfish are strings, the type term always has the string value.

The following example shows an enumeration definition in JSON Schema:

{
"Flavors": {
"enum": ["Lit", "Blinking", "Off"],
"enumDescriptions": {
"Blinking": "The Indicator LED is blinking.",
"Lit": "The Indicator LED is lit.",
"Off": "The Indicator LED is off."
¥
"enumLongDescriptions": {
"Blinking": "This value shall represent the Indicator LED is in a blinking state where the LED is
being turned on and off in repetition.",
"Lit": "This value shall represent the Indicator LED is in a solid on state.",
"Off": "This value shall represent the Indicator LED is in a solid off state."
9
"type": "string"
})

138 Published Version 1.23.1

DSP0266 Redfish Specification

11.2.5.3 Actions in JSON Schema

Versioned definitions of resources shall contain a definition called Actions . This definition is a container with a set of
terms that point to the different actions supported by the resource. The names of standard actions shall be in the

form:
#<ResourceType>.<ActionName>

Example Actions definition:

"Actions": {
"additionalProperties": false,
"description": "The available actions for this resource.",
"longDescription”: "This type shall contain the available actions for this resource.”,
"properties": {
"#ComputerSystem.Reset": {
"$ref": "#/definitions/Reset"

}J
"type": "object"

3

Another definition within the same schema file shall describe the action itself. This definition shall contain a term
called parameters to describe the client request body. It also shall contain property definitions for the target and
title properties shown in response payloads for the resource.

The following example shows a definition of an action:

"Reset": {
"additionalProperties": false,
"description”: "This action resets the system.",
"longDescription”: "This action shall perform a reset of the ComputerSystem.",
"parameters": {
"ResetType": {
"$ref": "http://redfish.dmtf.org/schemas/v1l/Resource.json#/definitions/ResetType",
"description": "The type of reset to be performed.”,
"longDescription”: "This parameter shall define the type of reset to be performed."

Version 1.23.1 Published 139

Redfish Specification DSP0266

}
s
"properties": {
"target": {
"description": "Link to invoke action",
"format": "uri",
"type": "string"
}s
"title": {
"description": "Friendly action name",
"type": "string"
}
3

"type": "object"
s

Action parameters may specify a type that is a resource definition. In these cases, the parameter in the request shall
contain a reference object to a resource within the service.

11.2.5.4 OEM actions in JSON Schema

OEM-specific actions shall be defined by using an action definition in an appropriately named JSON Schema file. For
example, the following definition defines the OEM #ContosoNetworkDevice.Ping action, assuming it's found in the
versioned ContosoNetworkDevice JSON Schema file, such as ContosoNetworkDevice.vl_0_0.json .

"Ping": {
"additionalProperties"”: false,
"parameters": {},
"properties": {
"target": {
"description": "Link to invoke action",
"format": "uri",
"type": "string"
})
"title": {
"description": "Friendly action name",
"type": "string"

s
"type": "object"
s

140 Published Version 1.23.1

DSP0266 Redfish Specification

11.2.5.5 Action with a response body

A response body for an action shall be defined using the actionResponse term within the action definition. For
example, the following definition defines the GenerateTicket action with a response that contains the definition
specified by #/definitions/GenerateTicketResponse .

"GenerateTicket": {
"actionResponse": {
"$ref": "#/definitions/GenerateTicketResponse"
¥
"parameters": {}
b
"GenerateTicketResponse": {
"additionalProperties": false,
"description”: "The response body for GenerateTicket.",
"properties": {
"TicketId": {
"description": "The ticket identifier.",
"readonly": true,
"type": "string"

¥
"required": ["TicketId"],
"type": "object"

In the previous example, the following payload is an example response for the GenerateTicket action.

"TicketId": "40478281bdof6b9e7131db6c4f673438"

11.2.6 JSON Schema terms

Table 30 describes the JSON Schema terms that Redfish uses to provide schema annotations for Redfish JSON
Schema:

Version 1.23.1 Published 141

Redfish Specification

JSON Schema term

description

enumDescriptions

longDescription

enumLongDescriptions
additionalProperties

readonly

writeOnly
required
requiredOnCreate
units

autoExpand

deletable
insertable

updatable
uris
uriSegment
owningEntity

deprecated
versionDeprecated

urisDeprecated

11.3 OpenAPI

11.3.1 OpenAPI overview

Table 30 — JSON Schema terms

Related Redfish schema annotation

Description

Long description

Additional properties

Permissions

Required

Required on create

Units of measure

Expanded resource

Resource capabilities

Resource URI patterns

URI segment

Owning entity

Deprecated

DSP0266

The OpenAPI Specification defines a format for describing JSON payloads and the set of URIs a client can access
on a service. The following clause describes how Redfish uses OpenAPI to describe resources and resource

collections.

11.3.2 File naming conventions for OpenAPIl schema

Each Redfish OpenAPI file represents a single resource type.

142

Published

Version 1.23.1

DSP0266 Redfish Specification

Versioned Redfish OpenAPI files shall be named using the resource type name for the schema, following the format:
<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>.yaml

For example, version 1.3.0 of the Chassis schemais Chassis.vi_3_@.yaml .

Unversioned Redfish OpenAPI files shall use the resource type name to name the file, in this format:
<ResourceType>.yaml

For example, the unversioned definition of the Chassis schema is chassis.yaml .

11.3.3 Core OpenAPI schema files
Table 31 describes the core OpenAPI schema files:

Table 31 — Core OpenAPI schema files

File Description
odata-v4.yaml Definitions for common OData properties.
openapi.yaml URI paths and their respective payload structures.

. . All base definitions for resources, resource collections, and common
Resource.yaml and its subsequent versions .
properties, such as Status .

11.3.4 openapi.yaml
The openapi.yaml file is the starting point for clients to understand the construct of the service.
Table 32 describes the terms that the openapi.yaml file contains:

Table 32 — openapi.yaml terms
Term Description

components Global definitions. For Redfish, contains the format of the Redfish error response.

Structure consisting of information about what the openapi.yaml is describing, such as the author of the file and any

info . q
contact information.
openapi Version of OpenAPI the document follows.
paths URIs supported by the document, with possible methods, response bodies, and request bodies.

Version 1.23.1 Published 143

Redfish Specification DSP0266

The service shall return the openapi.yaml file, if present in the Redfish service, as a YAML document by using either
the application/yaml oOr application/vnd.oai.openapi MIME types. The service may append ;charset=utf-8 to
the MIME type. Note that while the application/yaml type is in common use today, the application/
vnd.oai.openapi type was recently defined and approved specifically to support OpenAPI. Implementations should
use caution when selecting the MIME type as this specification may change in the future to reflect adoption of the
OpenAPI-defined MIME type.

The paths term shall contain an array of the possible URIs. Each URI shall contain methods supported by the URI.
Each method shall contain the possible response bodies and request bodies.

Example paths entry for a resource:

/redfish/v1/Systems/{ComputerSystemId}:
get:
parameters:
- description: The value of the Id property of the ComputerSystem resource
in: path
name: ComputerSystemId
required: true
schema:
type: string
responses:
'200":
content:
application/json:
schema:
$ref: http://redfish.dmtf.org/schemas/v1l/ComputerSystem.vl_6_0.yaml#/components/schemas/
ComputerSystem
description: The response contains a representation of the ComputerSystem
resource
default:
content:
application/json:
schema:
$ref: '#/components/schemas/RedfishError’
description: Error condition

Example paths entry for an action:

/redfish/v1/Systems/{ComputerSystemId}/Actions/ComputerSystem.Reset:
post:
parameters:
- description: The value of the Id property of the ComputerSystem resource
in: path
name: ComputerSystemId
required: true

144 Published Version 1.23.1

DSP0266 Redfish Specification

type: string
requestBody:
content:
application/json:
schema:
$ref: http://redfish.dmtf.org/schemas/v1l/ComputerSystem.vl_6_0.yaml#/components/schemas/
ResetRequestBody
required: true
responses:
'200":
content:
application/json:
schema:
$ref: '#/components/schemas/RedfishError’
description: The response contains the results of the Reset action
'202":
content:
application/json:
schema:
$ref: http://redfish.dmtf.org/schemas/v1/Task.v1l_4_0.yaml#/components/schemas/Task
description: Accepted; a task has been generated

‘204" :
description: Success, but no response data
default:
content:
application/json:

schema:
$ref: '#/components/schemas/RedfishError’
description: Error condition

11.3.5 OpenAPI file format

With the exception of openapi.yaml , each OpenAPI file shall contain a YAML object to describe resources, resource
collections, or other definitions for the data model. Table 33 describes the terms that the YAML object contains:

Table 33 — YAML object terms

Term Description
components Structures, enumerations, and other definitions defined by the schema.
x-copyright Copyright statement for the organization producing the OpenAPI file.

i1 For a schema file that describes a resource or resource collection, the matching type identifier for the resource or
Aiedl3 .
resource collection.

Version 1.23.1 Published 145

Redfish Specification DSP0266

11.3.6 OpenAPI components body

This clause describes the types of definitions that can be found in the components term of a Redfish OpenAPI file.

11.3.6.1 Resource definitions in OpenAPI

To satisfy versioning requirements, the OpenAPI representation of each resource shall have one unversioned
schema file and a set of versioned schema files.

The unversioned definition of a resource shall contain an anyof statement. This statement shall consist of an array
of $ref terms, which point to the following definitions:

» The OpenAPI definition for a reference property.

* The versioned definitions of the resource.

Example unversioned resource definition in OpenAPI:

ComputerSystem:
anyOf:
- $ref: http://redfish.dmtf.org/schemas/vl/odata.v4_0_3.yaml#/components/schemas/idRef
- $ref: http://redfish.dmtf.org/schemas/v1l/ComputerSystem.vl_©_©.yaml#/components/schemas/
ComputerSystem
- $ref: http://redfish.dmtf.org/schemas/v1l/ComputerSystem.vl_0_1.yaml#/components/schemas/
ComputerSystem
- $ref: http://redfish.dmtf.org/schemas/v1l/ComputerSystem.vl_6_0.yaml#/components/schemas/
ComputerSystem
description: The ComputerSystem schema represents a general purpose machine
or system.
x-longDescription: This resource shall be used to represent resources that represent
a computing system.

The versioned definition of a resource shall contain the property definitions for the given version of the resource.

11.3.6.2 Enumerations in OpenAPI

Table 34 describes the terms in OpenAPI| enumerations:

Table 34 — OpenAPI enumerations

Term Description
enum String array that contains the possible enumeration values.
type Because all enumerations in Redfish are strings, the type term always has the value string .

146 Published Version 1.23.1

DSP0266 Redfish Specification

Term Description

x-enumDescriptions Object that contains the descriptions for each of the enumerations as name-value pairs.
x-enumLongDescriptions Object that contains the long descriptions for each enumeration as a name-value pair.

x-enumDeprecated Object that contains the deprecation guidance for each of the enumerations as name-value pairs.
x-enumVersionDeprecated Object that contains the deprecation version information for each of the enumerations as name-value pairs.

Example enumeration definition in OpenAPI:

IndicatorLED:

enum:

- Lit

- Blinking

- 'Off"'

type: string

x-enumDescriptions:
Blinking: The Indicator LED is blinking.
Lit: The Indicator LED is 1lit.
'Off': The Indicator LED is off.

x-enumLongDescriptions:
Blinking: This value shall represent the Indicator LED is in a blinking state

where the LED is being turned on and off in repetition.

Lit: This value shall represent the Indicator LED is in a solid on state.
'Off': This value shall represent the Indicator LED is in a solid off state.

11.3.6.3 Actions in OpenAPI

Versioned definitions of resources shall contain a definition called Actions . This definition is a container with a set of
terms that point to the different actions supported by the resource. The names of standard actions shall be in the
form:

#<ResourceType>.<ActionName>

Example Actions definition:

Actions:
additionalProperties: false
description: The available actions for this resource.
properties:
'#ComputerSystem.Reset":
$ref: '#/components/schemas/Reset’
type: object

Version 1.23.1 Published 147

Redfish Specification DSP0266

x-longDescription: This type shall contain the available actions for this resource.

Another definition within the same schema file shall describe the action itself. This definition shall contain property
definitions for the target and title properties shown in response payloads for the resource.

The following example shows a definition of an action:

Reset:
additionalProperties: false
description: This action resets the system.
properties:
target:
description: Link to invoke action
format: uri
type: string
title:
description: Friendly action name
type: string
type: object
x-longDescription: This action shall reset the ComputerSystem.

The parameters for the action shall be defined in another definition with RequestBody appended to the name of the
action. This gets mapped from the openapi.yaml file for expressing the posT method for the URI of the action.

The following example shows a definition of parameters of an action:

ResetRequestBody:
additionalProperties: false
description: This action resets the system.
properties:
ResetType:
$ref: http://redfish.dmtf.org/schemas/vl/Resource.yaml#/components/schemas/ResetType
description: The reset type.
x-longDescription: This parameter shall define the type of reset to perform.
type: object
x-longDescription: This action shall reset the ComputerSystem.

11.3.6.4 OEM actions in OpenAPI

OEM-specific actions shall be defined by using an action definition in an appropriately named OpenAPI file. For
example, the following definition defines the OEM #ContosoNetworkDevice.Ping action, assuming it's found in the
versioned ContosoNetworkDevice OpenAPI file with a name, such as ContosoNetworkDevice.vi_0_0.yaml .

148 Published Version 1.23.1

DSP0266

Ping:

additionalProperties: false

properties:
target:

description: Link to invoke action

format: uri
type: string

title:

description: Friendly action name

type: string

type: object
PingRequestBody:

additionalProperties: false

properties: {}
type: object

11.3.7 OpenAPI terms used by Redfish

Redfish Specification

Table 35 describes the OpenAPI terms that Redfish uses to provide schema annotations for Redfish OpenAPI files:

OpenAPI term

description

Xx-enumDescriptions

x-longDescription

Xx-enumLongDescriptions

additionalProperties

readOnly
writeOnly

required

x-requiredOnCreate

X-units

Xx-autoExpand

x-uriSegment

X-owningEntity

deprecated
x-deprecatedReason

X-versionDeprecated

Table 35 — OpenAPI terms used by Redfish

Related Redfish schema annotation

Description

Long description

Additional properties

Permissions

Required

Required on create
Units of measure
Expanded resource
URI segment

Owning entity

Deprecated

Version 1.23.1

Published

149

Redfish Specification DSP0266

11.4 Schema modification rules

Schema referenced from the implementation may vary from the canonical definitions of those schema defined by the
Redfish schema or other entities, provided they adhere to the following rules. Clients should take this into
consideration when attempting operations on the resources defined by schema.

* Modified schema may constrain a read/write property to be read only.

» Modified schema may constrain a property by adding length annotations to properties that do not have those
annotations.

» Modified schema may constrain a property by adding a pattern annotation to properties that do not have that
annotation.

* Modified schema may constrain the capabilities of a resource or resource collection to remove support for HTTP
operations.
> Modified schema may change the update capabilities to indicate a client can perform a PATCH or puT
request on the resource to support writable OEM properties.

» Modified schema may remove properties that are not required.

* Modified schema may remove actions.

» Modified schema may remove action parameters that are not required.
» Modified schema may change description annotations.

* Modified schema may change any external references to point to Redfish schema that adheres to the
modification rules.

» Modified schema may change the owning entity annotation to specify who made the modifications.
» Modified schema may remove URIs from the resource URI patterns annotation.

* Modified schema may add URIs to the resource URI patterns annotation to define OEM URIs for standard
resources and shall follow the OEM URI rules specified by the OEM URIs clause.

* Modified schema may alter non-semantic text, such as spaces, tabs, and line breaks.

» Other modifications to the schema shall not be allowed.

Services that collect and surface schema files from managed devices, such as when aggregating other services,
shall handle cases where different devices contain different modifications to the same schema file. This specification
does not require a specific method to resolve these conflicts, but some options include:

* Merging the schema files from the managed devices.

» Replacing the schema files from the managed devices with unmodified schema files.

150 Published Version 1.23.1

DSP0266 Redfish Specification

12 Service details

12.1 Eventing

12.1.1 Eventing overview

This clause describes how to use the REST-based mechanism to subscribe to and receive event messages.
Note: For security implications of eventing, see the Security details clause.

The Redfish service requires a client or administrator to create subscriptions to receive events.

To create a subscription, use one of these methods:

* Directly HTTP PposT to the subscription collection.

 Indirectly open a server-sent events (SSE) connection for the event service.

12.1.2 POST to subscription collection

To locate the event service, the client traverses the Redfish service interface. The event service is located in the
service root, as described in the serviceRoot schema.

After the client discovers the service, they perform an HTTP posT on the resource collection URI for Subscriptions
in the event service to subscribe to events. For the subscription body syntax, see the Redfish EventDestination
schema. This request includes:

» The URI where an event-receiver client expects events to be sent. When an event is triggered within the Redfish
service, the service sends an event to that URI.

* The type of events to send.
If the subscription request succeeds, the service shall return:

e AnHTTP 201 created status code.

* The Location header that contains a URI of the newly created subscription resource.
If the subscription request succeeds, the service should return:

» A response body containing a representation of the subscription resource that conforms to the
EventDestination schema.

Version 1.23.1 Published 151

Redfish Specification DSP0266

After a subscription is registered with the service, clients begin receiving events. Clients do not receive events
retroactively. The service does not retain historical events.

Services shall:

» Support push style eventing for all resources that can send events.

» Respond to a request to create a subscription with an error if the body of the request is conflicting. For instance,
if parameters in the request are not supported, the service shall return the HTTP 400 Bad Request status code.

* Retain subscriptions as persistent across service restarts.
Services shall not:

» Push events by using HTTP PosT unless an event subscription has been created. To terminate the event
stream at any time, either the client or the service can delete the subscription.

» Send a push event payload larger than 1 Mebibyte (MiB). If more than 1 MiB of data is to be sent, the service
shall divide the payload on the nearest Event entry such that the total payload transmitted to the client is less
than 1 MiB. This restriction shall not apply to metric reports.

Services may:

+ Terminate a subscription by sending a SubscriptionTerminated message from the Base Message Registry as
the last event.

» Terminate a subscription if the number of delivery errors exceeds pre-configured thresholds.

To unsubscribe from the events associated with this subscription, the client or administrator shall perform an HTTP
DELETE request to the subscription's resource URI.

Subsequent requests to subscription resources that have been terminated respond with the HTTP 404 Not Found
status code.

Some configurable properties define the behavior for all event subscriptions. For details, see the Redfish
EventService schema.

DEPRECATED: Previous versions of the specification required services to reject subscription requests if
RegistryPrefixes and MessageIds were in the same request.

12.1.3 Open an SSE connection

A service may support the ServerSentEventUri property in the EventService resource. If a client performs a GeT
request on the URI that the serversentEventUri contains, an SSE connection opens for the client. For details about
this method, see the server-sent events Event service clause.

152 Published Version 1.23.1

DSP0266

12.1.4 EventType-based eventing

Redfish Specification

DEPRECATED: EventType -based eventing is deprecated in the Redfish schema in favor of using

RegistryPrefix and ResourceType .

DEPRECATED

Table 36 describes the types of events that Redfish generates:

Table 36 — EventType-based eventing

Event Occurs when

Resources are created, modified, or

destroyed.
Life cycle
Usually indicates that the resource and,
optionally, its properties have changed.
An event of some significance happens.
Alert

Depending on the resource, may be
generated directly or indirectly.

. The telemetry service generates or
Metric report .
updates a metric report.

END DEPRECATED

12.1.5 Subscribing to events

Description

Not every modification of a resource results in an event. This behavior is
similar to when ETags are changed and implementations might not send
an event for every resource change.

For example, if an event is sent for every Ethernet packet that is received
or each time that a sensor changes one degree, more events than fitin a
scalable interface are generated.

Usually adopts a message registry approach similar to extended error
handling in that a Messageld is included.

An example of an alert event is, a chassis is opened, a button is pushed, a
cable is unplugged, or a threshold exceeded.

These events usually do not correspond well to life cycle-type events.
Therefore, alerts have their own category.

Generated as specified by the MetricReportDefinition resources found
subordinate to the telemetry service. Can occur periodically, on demand, or
when changes are detected in the metric properties.

For details, see the Redfish MetricReportDefinition schema.

Table 37 describes the properties that a subscriber provides to subscribe to events and filter received messages:

Version 1.23.1

Published 153

Redfish Specification DSP0266

Table 37 — Subscription properties

Property Description

An array of allowable values for MessageId in an event.

An event is sent to the subscriber if the Messageld of the event is contained in this array or is found in a
message registry referenced by RegistryPrefixes .

MessageIds
To not perform inclusive filtering based upon MessageId , provide an empty array.
The contents of the array should not include the major or minor version of the message registry. For
example, instead of Resource.1.2.ResourceCreated , US€ Resource.ResourceCreated .
An array of standard or OEM message registries containing the allowable values for MessageId in an
event.
An event is sent to the subscriber if the MessageId is found in a message registry in this array or is
contained in MessageIds .
RegistryPrefixes
To not perform inclusive filtering based upon the message registry of the Messageld , provide an empty
array.
The contents of the array does not include the registry version. For example, instead of Base.1.5.0 , use
Base .
An array of standard or OEM resource types.
An event is sent to the subscriber if the originofcondition resource type matches one of the
ResourceTypes values.
ResourceTypes
To not perform filtering based upon the resource type of the originofcCondition , provide an empty array.
The contents of the array does not include the schema version. For example, instead of
Task.vl_2_0.Task , use Task .
An array of URIs to resources.
An event is sent to the subscriber if the originofcondition property matches one of the URIs listed in
OriginResources originResources . To include subordinate resources regardless of depth, set the SubordinateResources
property to true .
To not perform filtering based upon the URI of the originofcondition , provide an empty array.
An array of disallowed values for MessageId in an event.
An event is not sent to the subscriber if the MessageId of the event is contained in this array.
ExcludeMessageIds

To not perform exclusive filtering based upon MessageId , provide an empty array.

The contents of the array should not include the major or minor version of the message registry. For
example, instead of Resource.1.2.ResourceCreated , US€ Resource.ResourceCreated .

154 Published Version 1.23.1

DSP0266

Property

ExcludeRegistryPrefixes

EventFormatType

Redfish Specification

Description

An array of standard or OEM message registries containing the disallowed values for MessageId in an
event.

An event is not sent to the subscriber if the MessageId is found in a message registry in this array.

To not perform exclusive filtering based upon the message registry of the MessageId , provide an empty
array.

The contents of the array does not include the registry version. For example, instead of Base.1.5.0 , use

Base .
The format that can be sent by using the EventFormatTypes property in the event service.
Represents the format of the payload sent to the event destination.

If the subscriber omits this value, the payload corresponds to the Event schema.

Clients can read the EventService resource of a service in order to determine what control properties in the previous

table are supported.

12.1.6 Event formats

Table 38 describes the event formats:

Event format

Metric report message objects

Table 38 — Event formats

Description

Used when the telemetry service generates a new or updates an existing metric report. Metric
report message objects sent to the specified client endpoint shall contain the properties, as
described in the Redfish MetricReport schema.

Version 1.23.1

Published 155

Redfish Specification DSP0266

Event format Description

Used for all other types of events. Event message objects posT ed to the specified client endpoint
shall contain the properties as described in the Redfish Event schema. Supports a message
registry. In a message registry approach, a message registry lists the MessageIds in a well-known
format. These MessageIds are terse in nature and thus they are much smaller than actual
messages, making them suitable for embedded environments.

The registry also contains a message. The message itself can have arguments and default values

. for severity and recommended actions. The MessageId property follows the format defined in the
Event message objects
MessageId format clause

Event messages may also have an EventGroupId property, which lets clients know that different
messages may be from the same event. For instance, if a LAN cable is disconnected, they may get
a specific message from one registry about the LAN cable being disconnected, another message
from a general registry about the resource changing, perhaps a message about resource state
change, and maybe more. For the client to determine whether these have the same root cause,
these messages have the same value for the EventGroupId property.

12.1.7 OEM extensions

OEMs can extend both messages and message registries. Any individual message, per the MessageRegistry
schema definition, define OEM sections. Thus, if OEMs wish to provide additional information or properties, use the
OEM section.

OEMs shall not supply additional message arguments beyond those in a standard message registry. OEMs may
substitute their own message registry for the standard registry to provide the OEM section within the registry but shall
not change the standard values, such as messages, in such registries.

12.2 Asynchronous operations

Services that support asynchronous operations implement the TaskService and Task resources.

The Taskservice resource describes the service that handles task operations. It contains a resource collection of
zero or more Task resources. Each Task resource describes a long-running operation that is spawned when a
request takes longer than a few seconds, such as when a service is instantiated.

The Task schema defines task structure, including the start time, end time, task state, task status, and zero or more
task-associated messages.

Each task has a number of possible states, which are defined in the Task schema as the values for the TaskState
property.

When a client issues a request that results in a long-running operation, the service returns the HTTP 202 Accepted

156 Published Version 1.23.1

DSP0266 Redfish Specification

status code and a Location header that contains a fask monitor URI and, optionally, the Retry-After header that
defines the amount of time that the client should wait before querying the status of the operation. The 202 Accepted
response should include a response body. If a response body is provided, it shall contain a representation of the
Task resource that represents the state of the operation.

The task monitor is an opaque, service-generated URI provided to the client that initiated the request. To query the
status of an operation and determine when the operation has been completed and whether it succeeded, the client
performs a GET request on the task monitor URI from the Location header of the response from the initial HTTP
operation. The client should not include the application/http MIME type in the Accept header.

The task monitor URI should be in the format:
/redfish/v1l/TaskService/TaskMonitors/<TaskMonitorId>
where

* <TaskMonitorId> is an opaque identifier for the task monitor.

As long as the operation is in process, the service shall return the HTTP 202 Accepted status code when the client
performs a GET request on the task monitor URI.

If a service supports cancellation of a task, the Allow header shall contain DELETE for the task monitor. To cancel
the operation, the client may perform a DELETE request on the task monitor URI. The service determines when to
delete the associated Task resource. The client may also perform a DELETE request on the Task resource to
cancel the operation. Deleting the Task resource may invalidate the associated task monitor. A subsequent GeT
request on the task monitor URI returns either the HTTP 410 Gone or 404 Not Found status code.

In the unlikely event that a DELETE of the task monitor or Task resource returns the HTTP 202 Accepted status
code, an additional task shall not be started and instead the client may monitor the existing Task resource for the
status of the cancellation request. When the task finally completes cancellation, operations on the task monitor URI
and Task resources shall return the HTTP 404 Not Found status code.

After the operation has been completed, the service shall update the Taskstate inthe Task resource with the
appropriate value. In addition, the task monitor shall return:

* The appropriate HTTP status code, such as but not limited to 2ee ok for most operations or 201 created for
POST to create a resource.

» The headers and response body of the initial operation, as if it had completed synchronously.
If the initial operation fails, the response body shall contain an error response.

If the operation has been completed and the service has already deleted the task, the service may return the HTTP
410 Gone Or 404 Not Found status code. This situation can occur if the client waits too long to read the task monitor.

Version 1.23.1 Published 157

Redfish Specification DSP0266

To continue to get status information, the client can use the resource identifier from the 202 Accepted response to
directly query the Task resource.

» Services that support asynchronous operations shall implement the Task resource.

* The response to an asynchronous operation shall return the HTTP 202 Accepted status code and set the
Location response header to the URI of a task monitor associated with the task. The response may also
include the Retry-After header that defines the amount of time that the client should wait before polling for
status. If a response body is provided, it shall contain a representation of the Task resource.

* GET requests to either the task monitor or Task resource shall return the current status of the operation without
blocking.
« HTTP GeT, puT,and PATCH operations should always be synchronous.
+ Clients shall be prepared to handle both synchronous and asynchronous responses for HTTP GET, PUT,
PATCH , POST ,and DELETE requests.
» Services shall persist pending tasks produced by client requests containing @Redfish.0OperationApplyTime
across service restarts, until the task begins execution.
» Tasks that are pending execution should include the @Redfish.OperationApplyTime property to indicate when the
task will start. If the @Redfish.OperationApplyTime value is AtMaintenanceWindowStart Or
InMaintenanceWindowOnReset , the task should also include the @Redfish.MaintenanceWindow property.
> Services shall reject modification requests to the @Redfish.MaintenanceWindow property in the Task

resource.

> Changing the maintenance window for a resource may not affect existing tasks.

12.3 Resource tree stability

The resource tree, which is defined as the set of URIs and array elements within the implementation, should be
consistent on a single service across device resets or power cycles, and should withstand a reasonable amount of
configuration change, such as adding an adapter to a server.

The resource tree on one service might not be consistent across instances of devices. The client should traverse the
data model and discover resources to interact with them.

Some resources might remain very stable from system to system, such as manager network settings. However, the
architecture does not guarantee this stability.

* A resource tree should remain stable across service restarts and minor device configuration changes. Thus, the
set of URIs and array element indexes should remain constant.

» A client shall not expect the resource tree to be consistent between instances of services.

158 Published Version 1.23.1

DSP0266 Redfish Specification

12.4 Discovery

12.4.1 Discovery overview

To support automatic discovery of managed devices that implement Redfish, services may implement the Simple
Service Discovery Protocol (SSDP) defined by the UPnP Device Architecture 2.0 Specification. This protocol enables
network-efficient discovery without resorting to ping-sweeps, router table searches, or restrictive DNS naming
schemes. Use of SSDP is optional and, if implemented, shall enable the user to disable the protocol through the
ManagerNetworkProtocol resource.

The objective of discovery is for client software to locate managed devices that conform to the Redfish Specification.
Therefore, the primary SSDP functionality is incorporated in the M-SEARCH query. Redfish also follows the SSDP
extensions and naming that UPnP uses, where applicable, so that systems that conform to the Redfish Specification
can also implement UPnP without conflict.

12.4.2 UPnP compatibility

For compatibility with general-purpose SSDP client software, primarily UPnP, the service should use UDP port 1900
for all SSDP traffic. In addition, the Time-to-Live (TTL) hop count setting for SSDP multicast messages should default
to 2.

12.4.3 USN format

The UUID in the USN field of the service shall equal the UUID property in the service root. If multiple or redundant
managers exist, the UUID of the service shall remain static regardless of redundancy failover. The unique ID shall be
in the canonical UUID format, followed by ::dmtf-org .

12.4.4 M-SEARCH response

The Redfish service Search Target (ST) is defined as:

urn:dmtf-org:service:redfish-rest:1

The managed device shall respond to M-SEARCH queries for Search Target (ST) of the Redfish service, as well as
ssdp:all . For UPnP compatibility, the managed device should respond to M-SEARCH queries for Search Target
(ST) of upnp:rootdevice .

The URN provided in the sT header in the reply shall use the redfish-rest: service name followed by the major
version of the Redfish Specification. If the minor version of the Redfish Specification to which the service conforms is
a non-zero value, the service may append the minor version with a preceding colon (:).

Version 1.23.1 Published 159

Redfish Specification DSP0266

Note: Previous versions of the specification required the minor version in responses, such as redfish-rest:1:4
if the service conforms to Redfish Specification v1.4. However, this conficts with UPnP, which requires the
version in the response to match the version from the request. This is to allow for backwards compatible devices
to present themselves as the requested version.

The managed device shall provide clients with the AL header that points to the Redfish service root URL.

For UPnP compatibility, the managed device should provide clients with the Location header that points to the
UPnP XML descriptor.

The response to an M-SEARCH multicast or unicast query shall use the following format:

HTTP/1.1 200 OK

CACHE-CONTROL :max-age=<MaxAgeSeconds>
ST:urn:dmtf-org:service:redfish-rest:1
USN:uuid:<ServiceUUID>: :urn:dmtf-org:service:redfish-rest:1
AL:<ServiceRootURI>

EXT:

where

* <MaxAgeSeconds> is the number of seconds caches can store the response and is at least 1800 .
e <ServiceUUID> is the UUID of the Redfish service, such as 92384634-2938-2342-8820-489239905423 .

* <ServiceRootURI> is the absolute URI of the Redfish service root, such as https://192.168.1.50/redfish/v1/ .

A service may provide additional headers for UPnP compatibility.

12.4.5 Notify, alive, and shutdown messages

Redfish devices may implement the additional UPnP-defined SSDP messages to announce their availability to

software. If implemented, services shall allow the end user to disable the traffic separately from the M-SEARCH
response functionality. This capability enables users to use the discovery functionality with minimal amounts of
generated network traffic.

12.5 Server-sent events

12.5.1 General

Server-sent events (SSE), defined by the Web Hypertext Application Technology Working Group (WHATWG),
enables a client to open a connection with a web service. The web service can continuously push data to the client,
as needed.

160 Published Version 1.23.1

DSP0266 Redfish Specification

Successful resource responses for SSE shall:

* Returnthe HTTP 200 ok status code.

* Have a content-Type header setas text/event-stream Or text/event-stream;charset=utf-8 .
Unsuccessful resource responses for SSE shall:

* Returnan HTTP 4ee or greater status code.
* Have a content-Type header setas application/json Or application/json;charset=utf-8 .

» Contain a JSON object in the response body, as described in Error responses, which details the error or errors.

A service may occasionally send a comment within a stream to keep the connection alive. Services shall separate
events with blank lines. Blank lines should be sent as part of the end of an event, otherwise dispatch may be delayed
in conforming consumers.

The following clauses describe how Redfish uses SSE in different Redfish data model contexts. For details about
SSE, see the HTMLS5 Specification.

12.5.2 Event service

A service's implementation of the EventService resource may contain the serversentEventuri property. If a client
performs a GET request on the URI specified by the serverSentEventuri property, the service shall keep the
connection open and conform to the HTML5 Specification until the client closes the socket. Service-generated events
shall be sent to the client by using the open connection.

When a client opens an SSE stream for the event service, the service shall create an EventDestination resource in
the subscriptions collection for the event service to represent the connection. The context property in the
EventDestination resource shall be a service-generated opaque string.

The service shall delete the corresponding EventDestination resource when the connection is closed. The service
shall close the connection if the corresponding EventDestination resource is deleted.

The service shall use the id field in the SSE stream to uniquely identify a payload in the SSE stream. The value of
the id field is determined by the service. A service should accept the Last-Event-ID header from the client to allow
a client to restart the event stream in case the connection is interrupted.

The service shall use the data field in the SSE stream based on the payload format. The SSE streams have these
formats:

» Metric report SSE stream. Services shall use this format when the telemetry service generates or updates a
metric report.

» Event message SSE stream. Services shall use this format for all other types of events.

Version 1.23.1 Published 161

Redfish Specification DSP0266

To reduce the amount of data returned to the client, the service should support the $filter query parameter in the
URI for the SSE stream.

Note: The $filter syntax shall follow the format in the $filter query parameter clause.
The service should support these properties as filter criteria:
* EventFormatType
The service sends events of the matching EventFormatType .

Example:

https://sseuri?$filter=EventFormatType eq 'Event'

Valid values are the EventFormatType enumerated string values that the Redfish EventsService schema defines.
* EventType
The service sends events of the matching EventType .

Example:

https://sseuri?$filter=EventType eq 'StatusChange'’

Valid values are the EventType enumerated string values that the Redfish Event schema defines.
* Messageld
The service sends events with the matching Messageld .

Example:

https://sseuri?$filter=Messageld eq 'Contoso.l.0.TempAssert’

* MetricReportDefinition
The service sends metric reports generated from the MetricReportDefinition .

Example:

162 Published Version 1.23.1

DSP0266 Redfish Specification

https://sseuri?$filter=MetricReportDefinition eq '/redfish/vl/TelemetryService/
MetricReportDefinitions/PowerMetrics'

* OriginResource

The service sends events for the resource.

Example:

https://sseuri?$filter=0OriginResource eq '/redfish/vl/Chassis/1/Thermal’

* RegistryPrefix

The service sends events with messages that are part of the RegistryPrefix .

Example:

https://sseuri?$filter=(RegistryPrefix eq 'Resource') or (RegistryPrefix eq 'Task')

* ResourceType

The service sends events for resources that match the ResourceType .

Example:

https://sseuri?$filter=(ResourceType eq 'Power') or (ResourceType eq 'Thermal')

* SubordinateResources

When subordinateResources is true and oOriginResource is specified, the service sends events for the
resource and its subordinate resources.

Example:

https://sseuri?$filter=(OriginResource eq '/redfish/v1/Systems/1') and (SubordinateResources eq
true)

Version 1.23.1 Published

163

Redfish Specification DSP0266

To allow a client to expand the resource referenced by the originofCondition property in the event payload, the
service should support the includeoriginofcondition query parameter in the URI for the SSE stream. For example:

https://sseuri?includeoriginofcondition

12.5.2.1 Event message SSE stream

The service shall use the data field in the SSE stream to include the JSON representation of the Event object.

The following example payload shows a stream that contains a single event with the id field setto 1,and a data
field that contains a single Event object.

id: 1

data:{

data: "@odata.type": "#Event.vl_6_0.Event”,

data: "Id": "1",

data: "Name": "Event Array",

data: "Context": "ABCDEFGH",

data: "Events": [

data: {

data: "MemberId": "1",

data: "EventType": "Alert",

data: "EventId": "1",

data: "Severity": "Warning",

data: "MessageSeverity": "Warning",

data: "EventTimestamp": "2017-11-23T17:17:42-0600",
data: "Message": "The LAN has been disconnected"”,
data: "MessageId": "Alert.1.0.LanDisconnect”,
data: "MessageArgs": [

data: "EthernetInterface 1",

data: "/redfish/v1/Systems/1"

data: To

data: "OriginOfCondition": {

data: "@odata.id": "/redfish/v1/Systems/1/EthernetInterfaces/1"
data: To

data: "Context": "ABCDEFGH"

data: }

data: 1

data:}

12.5.2.2 Metric report SSE stream

The service shall use the data field in the SSE stream to include the JSON representation of the MetricReport
object.

164 Published Version 1.23.1

DSP0266 Redfish Specification

The following example payload shows a stream that contains a metric report with the id field setto 127 , and the
data field containing the metric report object.

id: 127

data:{

data: "@odata.id": "/redfish/vl/TelemetryService/MetricReports/AvgPlatformPowerUsage”,
data: "@odata.type": "#MetricReport.vl_3_0.MetricReport",

data: "Id": "AvgPlatformPowerUsage",

data: "Name": "Average Platform Power Usage metric report",

data: "MetricReportDefinition": {

data: "@odata.id": "/redfish/vl/TelemetryService/MetricReportDefinitions/AvgPlatformPowerUsage"
data: Do

data: "MetricValues": [

data: {

data: "MetricId": "AverageConsumedWatts",

data: "MetricvValue": "100",

data: "Timestamp": "2016-11-08T12:25:00-05:00",

data: "MetricProperty": "/redfish/v1l/Chassis/Tray_1/Power#/0/PowerConsumediWatts"”
data: },

data: {

data: "MetricId": "AverageConsumedWatts",

data: "Metricvalue": "94",

data: "Timestamp": "2016-11-08T13:25:00-05:00",

data: "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/PowerConsumedWatts"”
data: Do

data: {

data: "MetricId": "AverageConsumedWatts",

data: "MetricValue": "100",

data: "Timestamp": "2016-11-08T14:25:00-05:00",

data: "MetricProperty": "/redfish/v1l/Chassis/Tray_1/Power#/0/PowerConsumediWatts"”
data: }

data: 1

data:}

12.6 WebSocket inbound access

12.6.1 Overview

RFC6455-defined WebSockets allows a client to open a bidirectional connection with a web service. The web service
can continuously communicate bidirectionally with the client. Services may implement properties that contain a
WebSocket URI, such as the webSocket property in the ComputerSystem resource. The description and long
description annotations for these properties contain additional behaviors associated with the WebSocket.

Version 1.23.1 Published 165

Redfish Specification DSP0266

12.6.2 Connecting to a WebSocket

To establish a WebSocket connection, a client performs a GeT operation on the WebSocket URI described in the
data model. Successful responses shall:

* Returnthe HTTP 101 Switching Protocols status code.
* Include the connection response header with the value upgrade as described in RFC6455.

* Include the upgrade response header with the value websocket as described in RFC6455.
Unsuccessful GET operation responses on the WebSocket URI shall:

* Returnan HTTP 4ee or greater status code.

* Include the content-Type response header with the value application/json or application/
json;charset=utf-8 .

» Include an extended error to describe the error in the response body as defined in the Error responses clause.

12.6.3 Data transmission on an established WebSocket

Services shall respond to ping (ex9) opcodes with a pong (exA) opcode. Services should occasionally send the
ping (ex9) opcode to the client to keep the connection alive.

Services and clients shall fragment and send bytes on implementation-defined boundaries as a series of binary data
frames as described by section 5.6 of RFC6455.

12.7 Update service

12.7.1 Overview

This clause covers the mechanism for software updates by using the update service.

12.7.2 Software update types
Clients can use these methods to update software through the update service:

» Simple updates: The service pulls the update from a client-indicated network location.

» Multipart HTTP push updates: The client uses HTTP or HTTPS with a multipart-formatted request body to push
a software image to the service.

166 Published Version 1.23.1

DSP0266 Redfish Specification

12.7.2.1 Simple updates

A service can support the simpleUpdate action within the updateservice resource. A client can perform a pPosT
request on the action target URI to initiate a pull-based update, as defined by the updateService schema. After a
successful PosT , the service should return the HTTP 202 Accepted status code with the Location header set to the
URI of a task monitor. Clients can use this task to monitor the progress and results of the update, which includes the
progress of image transfer to the service, as described in the Asynchronous operations clause.

12.7.2.2 Multipart HTTP push updates

A service may support the MultipartHttpPushuri property within the UpdateService resource. A client can perform
an HTTP or HTTPS PposT request on the URI specified by this property to initiate a push-based update.

» Access to this URI shall require the same privilege as access to the update service.

* Aclient posT to this URI shall contain the content-Type HTTP header with the value multipart/form-data ,
with the body formatted as defined by this specification. For more information about multipart/form-data HTTP
requests, see RFC7578.

* The client posT request shall contain the binary image as one of the parts in @ multipart/form-data request
body, as defined by Table 39. In addition, the request shall include action parameters for the update in a JSON
formatted part in the same multipart/form-data request body, as defined by Table 39. If the request has no
action parameters, an empty JSON object shall be used.

» A service may require the content-Length HTTP header for posT requests to this URI. In this case, if a client

does not include the required content-Length header in the PosT request, the service shall return the HTTP
411 Length Required status code.

» A service should return the HTTP 413 payload Too Large status code if the size of the binary image is larger

than the maximum image size that the service supports, as advertised in MaxImageSizeBytes property in the
UpdateService resource.

» A service should return the HTTP 400 Bad Request status code and an error response with the
ActionParameterNotSupported message from the Base Message Registry if the updateParameters form contains
a parameter that it does not support.

» After a successful posT to this URI, the service shall return the HTTP 202 Accepted status code with a

Location header set to the URI of a task monitor. Clients can use this task to monitor the progress and results
of the update, as described in the Asynchronous operations clause.

» Upon completion of the requested update, the service shall return the HTTP 200 ok status code and an error
response, with a message that indicates success or any additional relevant messages, or the HTTP 204 No
Content status code.

o The service should return the HTTP 200 ok status code. If the update was successfully processed and
completed without errors, warnings, or other notifications for the client, the service should return the
UpdateSuccessful message from the Update Message Registry in the code property in the response body.

Table 39 describes the requirements of a multipart/form-data request body for an HTTP push software update. If

Version 1.23.1 Published 167

Redfish Specification DSP0266

the Required column contains Yes, the service shall require the client to provide the request body part. Services
shall not require clients to provide request body parts that are not marked as required. If the Required column
contains No, the service may allow the client to provide the request body part. Services shall process all HTTP
header names in a case-insensitive manner.

Table 39 — Multipart HTTP push updates

Request bod Header value and
2 & HTTP headers Required Description
part parameters
JSON-formatted part for passing the action
parameters. The value of the name field
shall be "updateParameters" . The format of
Acti the JSON shall follow the definition of the
ction
form-data; UpdateParameters object in the
parameters Content-Disposition Yes
name="UpdateParameters" UpdateService schema.
JSON part . . .
Services may allow the inclusion of the
@Redfish.OperationApplyTime property in
the request body. See Operation apply
time.
application/ . .
Media type format and character set of this
Content-Type json;charset=utf-8 or Yes
request part.
application/json
Binary file to use for this software update.
) form-data; The value of the name field shall be
Update file
bi t Content-Disposition name="UpdateFile"; Yes "UpdateFile" . The value of the filename
inary pa
yp filename=string field should reflect the name of the file as
loaded by the client.
Content-Type application/octet-stream Yes Media type format of the binary update file.
Optional OEM part. The value of the name
OEM specific field shall start with "Oem . Content-Type is
Content-Disposition form-data; name="0OemXXXX" No i
parts optional and depends on the OEM part

type.

This example shows a multipart/form-data request to push an update image:

POST /redfish/v1l/UpdateService/upload HTTP/1.1

Host: <host-path>

Content-Type: multipart/form-data; boundary=------------cc-cocmoouoomo- d74496d66958873e
Content-Length: <computed-length>

Connection: keep-alive

X-Auth-Token: <session-auth-token>

----------------------------- d74496d66958873e
Content-Disposition: form-data; name="UpdateParameters"

168 Published Version 1.23.1

DSP0266 Redfish Specification

Content-Type: application/json

{
"Targets": ["/redfish/v1/Managers/1"],
"@Redfish.OperationApplyTime": "OnReset",
"Oem": {}

}

----------------------------- d74496d66958873e
Content-Disposition: form-data; name="UpdateFile"; filename="flash.bin"
Content-Type: application/octet-stream

<software image binary>

12.8 Import configuration data

12.8.1 Overview

This clause covers the mechanism for importing configuration data for a system or equipment.

12.8.2 Multipart HTTP push imports

A service may support a property in a resource, such as the MultipartImportConfigurationPushURI property in
ComputerSystem , to allow a client to push a vendor-specific configuration file. A client can perform an HTTP or
HTTPS posT request on these URIs to initiate a push-based configuration import.

* Access to this URI shall require the same privilege as access to performing modification operations of the
resource that contains the property.

* Aclient posT to this URI shall contain the content-Type HTTP header with the value multipart/form-data ,
with the body formatted as defined by this specification. For more information about multipart/form-data HTTP
requests, see RFC7578.

* The client posT request shall contain the configuration file as one of the parts in @ multipart/form-data request
body, as defined by Table 40. In addition, the request shall include action parameters for the import in a JSON
formatted part in the same multipart/form-data request body, as defined by Table 40. If the request has no
action parameters, an empty JSON object shall be used.

» A service may require the content-Length HTTP header for posT requests to this URI. In this case, if a client
does not include the required content-Length header in the PosT request, the service shall return the HTTP

411 Length Required status code.

» A service shall return the HTTP 413 payload Too Large status code if the size of the configuration file is larger
than the maximum file size that the service supports.

* A service shall return the HTTP 400 Bad Request status code and an error response with the
ActionParameterNotSupported message from the Base Message Registry if the ImportParameters form contains

Version 1.23.1 Published 169

Redfish Specification

a parameter that it does not support.

DSP0266

» After a successful posT to this URI, the service shall return the HTTP 202 Accepted status code with a

Location header set to the URI of a task monitor. Clients can use this task to monitor the progress and results

of the import, as described in the Asynchronous operations clause.

» Upon completion of the requested import, the service shall return the HTTP 200 ok status code and an error

response, with a message that indicates success or any additional relevant messages, or the HTTP 204 No

Content status code.

Table 40 describes the requirements of a multipart/form-data request body for an HTTP push configuration import.

If the Required column contains Yes, the service shall require the client to provide the request body part. Services

shall not require clients to provide request body parts that are not marked as required. If the Required column
contains No, the service may allow the client to provide the request body part. Services shall process all HTTP
header names in a case-insensitive manner.

Request body
part

Action
parameters
JSON part

Configuration
file contents

OEM specific
parts

Table 40 — Multipart HTTP push configuration import

HTTP headers

Content-Disposition

Content-Type

Content-Disposition

Content-Type

Content-Disposition

Header value and

Required

parameters

form-data;
Yes
name="ImportParameters"

application/
json;charset=utf-8 or Yes

application/json

form-data;
name="ImportFile"; Yes

filename=string

application/octet-stream Yes

form-data; name="OemxXXX" No

Description

JSON-formatted part for passing the action
parameters. The value of the name field
shall be "ImportParameters" . The format of
the JSON shall follow the definition of the
ImportParameters objectin the Resource
schema.
Services may allow the inclusion of the
@Redfish.OperationApplyTime property in
the request body. See Operation apply
time.

Media type format and character set of this
request part.

Configuration file to use for this import. The
value of the name field shall be

"ImportFile" . The value of the filename
field should reflect the name of the file as
loaded by the client.

Media type format of the configuration file.

Optional OEM part. The value of the name
field shall start with "0em . Content-Type is
optional and depends on the OEM part
type.

This example shows a multipart/form-data request to push a configuration file:

170

Published

Version 1.23.1

DSP0266 Redfish Specification

POST /redfish/v1/Systems/1/ImportConfiguration HTTP/1.1

Host: <host-path>

Content-Type: multipart/form-data; boundary=---------------------~------ d74496d66958873e
Content-Length: <computed-length>

Connection: keep-alive

X-Auth-Token: <session-auth-token>

————————————————————————————— d74496d66958873e
Content-Disposition: form-data; name="ImportParameters”
Content-Type: application/json

"@Redfish.OperationApplyTime": "OnReset"

----------------------------- d74496d66958873e
Content-Disposition: form-data; name="ImportFile"; filename="config-184785632.xml"
Content-Type: application/octet-stream

<configuration file>

12.9 Outbound connections

12.9.1 Overview

There are cases where it may not be possible for a client to directly connect to a Redfish service. One common
example is that the Redfish service is behind a firewall. Services may implement WebSocket-based outbound
connections to establish a tunnel between the service and a remote client. If supported, services shall implement the
OutboundConnectionCollection resource subordinate to the AccountService resource.

Clients may create new oOutboundConnection resources to create WebSocket connections to remote clients. Remote
clients initiate Redfish requests to the service by encoding Redfish HTTP requests in the WebSocket payload over
this connection.

12.9.2 Establishing an outbound connection

The service shall establish a persistent RFC6455-defined WebSocket connection for each outboundConnection
resource where ConnectionEnabled contains true with the configured authentication mechanism to the address
specified by the EndpointURI property. The service may apply proxy settings to the connection based on the
configuration of the ManagerNetworkProtocol resource.

The service shall include the HTTP headers specified in the PreUpgradeHTTPHeaders property in the initial HTTPS
request to establish the WebSocket, prior to the upgrade to a WebSocket. The service shall include the Sec-

Version 1.23.1 Published 171

Redfish Specification DSP0266

WebSocket-Protocol request header and it shall contain the value Redfish . The following example shows an initial
HTTPS request from a service prior to the upgrade to a WebSocket:

GET /redfish HTTP/1.1

Host: clientapp.contoso.com:443

Upgrade: websocket

Connect: Upgrade

Sec-WebSocket-Protocol: Redfish
Sec-WebSocket-Key: abcdefhijklmnop==
Sec-WebSocket-Version: 13
PreUpgradeHeaderl: PreUpgradeHeaderlValue

When a connection is established with the remote client, the service shall create a session resource with the role
defined in the outboundConnection resource.

If the connection terminates for any reason, any pending Redfish responses are dropped. Services shall re-establish
outbound connections:

» Based on the RetryPolicy configuration of the oOutboundConnection resource.

» Ifthe ConnectionEnabled property in the oOutboundConnection resource is setto true .

12.9.3 MTLS for an outbound connection

MTLS is the preferred authentication mechanism to establish a secure connection. This is specified when the
Authentication property in the outboundConnection resource contains MTLS . There are two sets of certificates in
the outboundConnection resource: Certificates and ClientCertificates .

The certificates found in the collection referenced by the certificates property are the certificates for the remote
client's WebSocket service endpoint, typically an HTTPS server with WebSockets enabled. Services shall verify the
identity of the WebSocket service during TLS handshaking with the contents of this collection. Services may perform
additional verification based on other factors, such as the configuration of the SecurityPolicy resource.

The certificates found in the collection referenced by the clientCertificate property are the certificates the service
provides to the remote client's WebSocket service during TLS handshaking. In some cases, the service may provide
its IDEV-ID or LDEV-ID certificate. To verify the identity Redfish service during TLS handshaking, the remote client
hosting the WebSocket will need copies of these certificates.

12.9.4 Handling Redfish requests over an outbound connection
Section 5.2 of RFC6455 contains the WebSocket packet definition.

To send a Redfish request, the remote client shall provide the entire HTTP request, including the method, path,
version, and headers, in the "Payload data" portion of the WebSocket packet over the established connection. The

172 Published Version 1.23.1

DSP0266 Redfish Specification

remote client shall specify either the text (ex1) opcode or binary (ex2) opcode in the request. The request should
specify the binary (ex2) opcode if the payload data is binary, such as a firmware image.

To send a Redfish response, the service shall provide the entire HTTP response, including the version, status code,
status message, and headers, in the "Payload data" portion of the WebSocket packet over the established
connection. The service shall provide the same opcode received in the request from the external client.

Services shall respond to ping (ex9) opcodes with a pong (exA) opcode. Services shall send the ping (ex9)
opcode to the remote client at the interval specified by the WebSocketPingIntervalMinutes property.

The following example shows the contents of "Payload data" for a remote client performing an HTTP GET request on
the ServiceRoot resource:

GET /redfish/vl/ HTTP/1.1

Host: clientapp.contoso.com:443
Accept: application/json
Content-Type: application/json

The following example shows the contents of "Payload data" for a remote client performing an HTTP PosT request
on the Reset action for a ComputerSystem resource:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1
Host: clientapp.contoso.com:443

Accept: application/json

Content-Type: application/json

Content-Length: 27

{
"ResetType": "On"

}

12.9.5 Closing an outbound connection
The service shall close the WebSocket connection to the remote client if:

* The session resource representing the open connection to the remote client is deleted. The service shall also
set the ConnectionEnabled property in the OutboundConnection resource to false .

* The outboundConnection resource representing the outbound connection to the remote client is deleted. The
service shall also delete the respective Session resource.

* The ConnectionEnabled property in the outboundConnection resource is setto false . The service shall also
delete the respective session resource.

» The close (ex8) is received over the connection. The service shall also set the ConnectionEnabled property in

Version 1.23.1 Published 173

Redfish Specification DSP0266

the outboundConnection resource to false and delete the respective Session resource.

174 Published Version 1.23.1

DSP0266 Redfish Specification

13 Security details

13.1 Transport Layer Security (TLS) protocol

13.1.1 Transport Layer Security (TLS) protocol overview

Implementations shall support the Transport Layer Security (TLS) protocol v1.2 with RFC7525 recommendations or
later. Implementations may remove support for older versions for TLS in favor of newer versions.

DEPRECATED: Previous versions of this specification allowed for TLS v1.1.
Implementations should support:

» The Storage Networking Industry Association (SNIA) TLS Specification for Storage Systems.

* The latest version of the TLS v1.x specification.

13.1.2 Cipher suites

Implementations shall only support cipher suites listed as "Recommended" in the TLS Cipher Suites table defined
by the IANA TLS Parameters registry.

Cipher suites that are listed as mandatory in various RFCs, but are not "Recommended" in the TLS Cipher Suites
table defined by the IANA TLS Parameters registry, shall not be supported.

Implementations should consider the support of pre-shared key ciphers suites listed as "Recommended" in the TLS
Cipher Suites table defined by the IANA TLS Parameters registry, which enable authentication and identification
without trusted certificates.

DEPRECATED
Implementations should support AES-256-based ciphers from the TLS suites.

Redfish implementations should consider the support of ciphers, such as the following ciphers, which enable
authentication and identification without trusted certificates:

TLS_PSK_WITH_AES_256_GCM_SHA384
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384
TLS_RSA_PSK_WITH_AES_256_GCM_SHA384

Version 1.23.1 Published 175

Redfish Specification DSP0266

The advantage of these recommended ciphers is:

AES-GCM is not only efficient and secure, but hardware implementations can achieve high speeds with low cost
and low latency because the mode can be pipelined.

Additionally, Redfish implementations should support the following cipher:

TLS_RSA_WITH_AES_128 CBC_SHA

For more information, see RFC5487 and RFC5288.

END DEPRECATED

13.1.3 Certificates
Redfish implementations shall support replacement of the default certificate if one is provided.

Redfish implementations shall use certificates that conform to X.509-v3, as defined in RFC5280.

13.2 Sensitive data

Operations that contain sensitive data should use HTTPS only. For example, a SimpleUpdate action with a
username and password should use HTTPS to protect the sensitive data.

Properties in service responses that represent sensitive data, such as passwords, shall be null .

Responses from URIs where the URI itself contains sensitive data in a URI segment may return the HTTP 404 Not
Found status code instead of the HTTP 401 unauthorized status code, the HTTP 403 Forbidden status code, or the
HTTP 4e5 Method Not Allowed status code to prevent attackers from obtaining the sensitive data in the URI.

13.3 Authentication

13.3.1 Authentication overview
Services:

+ Shall support both HTTP Basic authentication and Redfish session login authentication.

» Shall use only connections that conform to TLS to transport the data between any third-party authentication
service and clients.

176 Published Version 1.23.1

DSP0266 Redfish Specification

» Shall not require a client that uses HTTP Basic authentication to create a session.

* May implement other authentication mechanisms.

13.3.2 Authentication requirements

13.3.2.1 Resource and operation authentication requirements
Services shall authenticate all write requests to Redfish resources. For example:

* POST , except to the Sessions resource collection for authentication

e PUT
* PATCH
* DELETE

Redfish resources shall not be available as unauthenticated, except for:

» The service root to identify the device and service locations.

» The Redfish metadata document to get resource types.

* The OData service document for compatibility with OData clients.

* The Redfish OpenAPI YAML document for compatibility with OpenAPI clients.
* The version objectat /redfish .

Services may reject requests to the previous resources if invalid credentials are provided by the client.

Note: This specification does not cover external services that are linked through external references. These
services may have other security requirements.

13.3.2.2 HTTP header authentication requirements
An authentication header shall accompany every request that establishes a secure channel.
Services:

» Shall process HTTP headers for authentication before other headers that may affect the response. For example,
ETag , If-Match , and so on.

+ Shall not use HTTP cookies to authenticate any activity, such as GET, POST, PUT, PATCH, and DELETE .

13.3.2.3 Authentication failure requirements

When authentication fails, extended error messages shall not provide privileged information.

Version 1.23.1 Published 177

Redfish Specification DSP0266

13.3.3 HTTP Basic authentication

Services shall support HTTP Basic authentication, as defined by RFC7617, and shall use only connections that
conform to TLS to transport the data between any third-party authentication service and clients.

All requests that use HTTP Basic authentication shall require HTTPS.

When multi-factor authentication is enabled, services shall reject HTTP Basic authentication for accounts that are not
configured to bypass multi-factor authentication. Session-based authentication is required in this case.

Note: The IETF has highlighted security concerns with HTTP Basic authentication. While HTTPS is required for
the usage of HTTP Basic authentication, there are other concerns implementers need to be aware of that
RFC7617 documents. This functionality can be restricted or disabled with the HTTPBasicAuth property in the
AccountService resource.

13.3.4 Redfish session login authentication
Service shall provide login sessions that conform with this specification.

Session management is determined by the implementation of the Redfish service, which includes orphaned session
timeout and the management of the number of simultaneous open sessions.

13.3.4.1 Redfish login sessions

For improved performance and security, a client should use the session management interface to create a Redfish
login session. The session service specifies the URI for session management.

To establish a session, find the URI in either:

* The session service's Sessions property.

» The service root's links property under the Sessions property.

Both URIs shall be the same.

"SessionService": {
"@odata.id": "/redfish/v1l/SessionService"
3
"Links": {
"Sessions": {
"@odata.id": "/redfish/vl1/SessionService/Sessions"
}
s

178 Published Version 1.23.1

DSP0266 Redfish Specification

13.3.4.2 Session login

To create a Redfish session without an authentication header, perform an HTTP posT request on the session
service's Sessions resource collection. The PosT to create a session shall only be supported with HTTPS. If both
HTTP and HTTPS are enabled, a posT request to create a session through the HTTP port should redirect to the
HTTPS port. Include the following PosT body:

POST /redfish/vl/SessionService/Sessions HTTP/1.1
Host: <host-path>

Content-Type: application/json;charset=utf-8
Content-Length: <computed-length>

Accept: application/jsonj;charset=utf-8
OData-Version: 4.0

"UserName": "<username>",
"Password": "<password>"

Fields in brackets are placeholders for client-specific values.

When a multi-factor authentication type that requires tokens is enabled, services shall require the Token property in
the posT request to the SessionCollection resource for accounts that are not configured to bypass multi-factor
authentication unless Time-based One-Time Password multi-factor authentication is enabled and the user account
does not have a secret key configured. Additional semantics for this condition are described in the Time-based One-
Time Password secret key handling clause. The service shall verify the provided token in addition to verifying the
username and password. If the Token property is required and not provided by the client, but the client provided a
valid userName and Password combination, the service shall return the HTTP 401 unauthorized status code and an
error response with the AuthenticationTokenRequired message from the Base Message Registry. In addition, if the
multi-factor authentication type uses a service-generated one-time passcode, the service shall also return the
OneTimePasscodeSent message from the Base Message Registry, and send a one-time passcode to the configured
delivery address for that account.

To verify that the request has been initiated from an authorized client domain, services should save the origin
header in reference to this session creation and compare it to subsequent requests using this session.

The response to the posT request to create a session shall include:

* X-Auth-Token header. Contains a session authentication token that the client can use in subsequent requests.

Version 1.23.1 Published 179

Redfish Specification DSP0266

* Location header. Contains a hyperlink to the new session resource.

» JSON response body. Contains the full representation of the new session resource.

The following sample response shows a newly created session:

HTTP/1.1 201 Created
Location: /redfish/vl/SessionService/Sessions/1
X-Auth-Token: <session-auth-token>

{
"@odata.id": "/redfish/v1/SessionService/Sessions/1",
"@odata.type": "#Session.vl_©_0.Session",
"Id": "1,
"Name": "User Session",
"Description”: "User Session",
"UserName": "<username>",
"Password": null
}

The client that sends the session login request should save the session authentication token from the X-Auth-Token
header and the contents of the Location header from the response of the login PoST request.

To authenticate subsequent requests, the client sets the x-Auth-Token header to the session authentication token
that the posT login request returns.

Note: The session ID differs from the session authentication token, as follows:

» Session ID: The session ID uniquely identifies the Session resource. The response data with the last
segment of the Location header URI returns is the session ID. To view active sessions and terminate any
session, an administrator with sufficient privileges can use the session ID.

+ Session authentication token: Only the client that executes the login has the session authentication
token.

13.3.4.3 Session lifetime

Unlike some token-based methods that use token expiration times, Redfish sessions time out. As long as a client
continues to send requests more frequently than the session timeout period, the session remains open and the
session authentication token remains valid. If the session times out, it is automatically terminated.

13.3.4.4 Session termination or logout

When the client logs out, the Redfish session terminates. The session terminates through a DELETE request to the
session resource defined in either the Location header URI or the session ID in the response data.

180 Published Version 1.23.1

DSP0266 Redfish Specification

This ability to DELETE a session through the session resource enables an administrator with sufficient privileges to
terminate other users' sessions from a different session.

When a session is terminated, the service shall not affect independent connections established originally by this
session for other purposes, such as connections for server-sent events or transferring an image for the update
service.

13.3.5 Client certificate authentication

If client certificate authentication is enabled, the service shall send a client certificate request during the Transport
Layer Security (TLS) handshake. When the service obtains a client certificate during the TLS handshake, the service
shall verify the certificate with the certificates in certificateCollection resource referenced by the
ClientCertificate property within the MrA property of the AccountService resource. The service shall check for
certificate revocation before processing the request with any configured Online Certificate Status Protocol (OCSP)
servers.

The RespondToUnauthenticatedClients property within the clientCertificate property within the MFA property of
the AccountService resource controls the response behavior when an invalid certificate is provided by the client.

 If the property contains true or is not supported by the service, the service shall not fail the TLS handshake.
This is to allow the service to send error messages or unauthenticated resources to the client.

 If the property contains false , the service shall fail the TLS handshake.

13.4 Authorization

13.4.1 Authorization overview

The Redfish authorization subsystem controls which users have access to resources and the type of access that
users have. It consists of two parts: the privilege model and the operation-to-privilege mapping.

The privilege model maps users to roles and maps roles to privileges. A privilege is a permission to complete an
operation, such as read or write, within a defined management domain. For example, the configureusers privilege
allows adding a user. A user is authorized to access a resource if they have the privileges required for that resource.
The operation-to-privilege mapping defines which privileges are required to access any given operation.

Redfish allows vendors to extend the standard privilege model with OEM privileges and custom OEM roles. OEM
privileges and custom roles participate in the privilege model the same as Redfish standard privileges and roles.
Services may also allow clients to create custom roles. Restricted roles and restricted privileges allow vendors to
further refine their authority model.

Services shall enforce the same privilege model for ETag-related activity as is enforced for the data being
represented by the ETag. For example, the privilege required to read an ETag shall be the same as the privilege to
read the data item that the ETag represents.

Version 1.23.1 Published 181

Redfish Specification DSP0266

13.4.2 Privilege model

Each user shall be assigned exactly one role with the Roleid property in the ManagerAccount resource. The value of
the Roleld property identifies a Role resource in the RoleCollection resource, where a role defines a set of
privileges. A role shall be assigned to a user when a manager account is created. The client shall provide the

RoleId property when creating a manager account to select one of the standard or custom roles.

Services shall provide information about all roles through the RoleCollection resource. The AssignedPrivileges

and oemPrivileges arrays inthe Role resource define a set of assigned privileges for the associated role. Two roles
with the same privileges shall behave equivalently.

13.4.2.1 Roles

Redfish defines a set of standard roles, allows a service to define custom OEM roles, and allows client-defined
custom roles.

A service shall support all of the standard roles in Table 41. The value of the 1d and AssignedPrivileges properties
in the Role resource for the standard roles shall contain the Role name and Assigned privileges column values,

respectively. The Assignedprivileges property for standard roles shall not be modifiable. The IsPredefined
property for standard roles shall contain the value true .

Table 41 describes the standard roles:

Table 41 — Required standard roles

Role name Assigned privileges

Administrator Login , ConfigureManager , ConfigureUsers , ConfigureComponents , ConfigureSelf

Operator Login , ConfigureComponents , ConfigureSelf

ReadOnly Login , ConfigureSelf

A service may support one or more of the standard roles in Table 42. The value of the 1d and AssignedPrivileges
properties in the Role resource for the standard roles shall contain the Role name and Assigned privileges

column values, respectively. The AssignedPrivileges property for standard roles shall not be modifiable. The
IsPredefined property for standard roles shall contain the value true .

Table 42 describes the optional standard roles:

182 Published Version 1.23.1

DSP0266 Redfish Specification

Table 42 — Optional standard roles

Role name Assigned privileges Description

Login , ConfigureSelf , Administrator for systems found in the systems collection. Able to manage
SystemAdministrator X i .

AdministrateSystems boot configuration, keys, and certificates for systems.

Login , ConfigureSelf , Operator for systems found in the systems collection. Able to perform
SystemOperator . .

OperateSystems resets and configure interfaces.

Login , ConfigureSelf , Administrator for storage subsystems and storage systems found in the

StorageAdministrator)) .
AdministrateStorage storage collection and storage system collection respectively.

Operator for storage backup functionality for storage subsystems and
Login , ConfigureSelf , X i
StorageBackupOperator storage systems found in the storage collection and storage system
OperateStorageBackup i 5
collection respectively.

A service may define custom OEM roles. The IsPredefined property for OEM roles shall contain the value true . A
service shall not allow users to modify predefined OEM roles. OEM role names should begin with a lowercase
character or "Oem" followed by a vendor name to avoid conflict with future Redfish predefined role names.

A service may allow custom client-defined roles to be created, modified, and deleted. If allowed, a user can perform a
POST request on the RoleCollection resource to create a role, indicating privileges in the AssignedpPrivileges and
oemPrivileges properties in the Role resource. A service may restrict which privileges are allowed. The
IsPredefined property for client-defined roles shall contain the value false . A service shall not allow a client-
defined role to be deleted while it is in use, for example, when it is assigned to a local user or an LDAP
RemoteRoleMapping property.

The value of the Roleld property shall be unique across all roles within the RoleCollection resource.

Non-Redfish services, such as those enabled by the AccountTypes property within the ManagerAccount resource,
should map the Redfish Roleld to their permission system. For example, an SSH user with Administrator as the
value of the RoleId property could map to "root" for the SSH service. However, the privileges specified by the
AssignedPrivileges and OemPrivileges do not necessarily map to non-Redfish services.

13.4.2.2 Restricted roles and restricted privileges

Restricted roles and restricted privileges are intended to prevent privilege escalation. Restricted roles and restricted
privileges are not less functional, but their usage is restricted to particular users. For example, to have a security
administrator have privileges that the administrator does not have, you need to ensure the administrator cannot
escalate to the security administrator role. An implementation can help achieve this by restricting the Administrator
role and providing an alternate administrator role that lacks the security privilege.

A service may restrict any role. The Restricted property for restricted roles shall contain the value true . When a
standard role is restricted, services shall provide the AlternateRoleld property to reference a non-restricted custom

Version 1.23.1 Published 183

Redfish Specification DSP0266

role intended for clients to use as an alternate. Services may pre-define or create accounts that are configured with a
restricted role.

Services shall not allow:

* A Roleld value for a restricted role to be specified when creating or modifying a ManagerAccount resource. This
ensures administrators cannot create an account for themselves that has a restricted role.

* Modification of ManagerAccount resources with a Roleld property containing a value for a restricted role, with
the exception of the Enabled property. This ensures administrators cannot gain access to another account.

» Deletion of ManagerAccount resources with a RoleId property containing a value for a restricted role.

» A restricted role to be specified in the LocalRole property within the RemoteRoleMapping property within the
AccountService and ExternalAccountProvider resources.

A service may restrict any privilege, including standard and OEM privileges. The RestrictedPrivileges and
RestrictedOemPrivileges properties in the AccountService resource shall specify the restricted privileges. Services
shall not allow custom roles to specify restricted privileges. Services may contain predefined roles that are configured

with restricted privileges.

13.4.2.3 OEM privileges

OEM privileges allow a service to extend the privilege model by adding additional privileges to have additional control
of what operations are allowed. It can be used when a standard privilege is overly broad.

A service may define OEM privileges and may include OEM privileges in any predefined role, including standard and
custom OEM roles. The oemPrivileges property within the Role resource shall contain the OEM privileges that are
assigned to the role. The oemPrivileges property in the Role resource for the predefined roles shall not be
modifiable.

A service may allow OEM privileges to be assigned to client-defined roles.

13.4.3 Redfish service operation-to-privilege mapping

For every request that a client makes to a service, the service shall determine that the authenticated identity of the
requester has the authorization to complete the requested operation on the resource in the request.

Using the role and privileges authorization model where an authenticated identity context is assigned a role and a
role is a set of privileges, the service typically checks an HTTP request against a mapping of the authenticated
requesting identity role and privileges to determine whether the identity privileges are sufficient to complete the
operation in the request.

A service may perform additional checks based on the identity of the user and remove data from responses. For
example, a service might restrict access for non-administrative users to only access their own ManagerAccount ,
Session , and EventDestination resources.

184 Published Version 1.23.1

DSP0266 Redfish Specification

13.4.3.1 Why specify operation-to-privilege mapping?

Initial versions of the Redfish Specifications defined several role-to-privilege mappings for standardized roles and
normatively identified several privilege labels but did not normatively detail what these privileges or how privilege-to-
operations mappings could be specified or represented in a normative fashion.

The lack of a methodology to define which privileges are required to complete a requested operation against the URI
in the request puts at risk the interoperability between service implementations that clients may encounter due to
variances in privilege requirements between implementations.

Also, a lack of methodology for specifying and representing the operation-to-privilege mapping prevents the Redfish
Forum or other governing organizations from normatively defining privilege requirements for a service.

13.4.3.2 Representing operation-to-privilege mappings

A service should provide a Privilege Registry in the registry collection. This registry represents the privileges required
to complete HTTP operations against resources supported by the service.

The Privilege Registry is a JSON document that contains a Mappings array of where an individual entry exists for
every resource type that the service supports.

The operation-to-privilege mapping is defined for every resource type and applies to every resource the service
implements for the applicable resource type.

In several situations, specific resources or properties may have differing operation-to-privilege mappings than the
resource type-level mappings. In these cases, the resource type-level mappings need to be overridden. The
PrivilegeRegistry schema defines the methodology for resource type-level operation-to-privilege mappings and
related overrides.

If a service provides a Privilege Registry, the service shall use the Redfish Forum's Privilege Registry definition as a
base operation-to-privilege mapping definition for operations that the service supports to promote interoperability for
Redfish clients.

13.4.3.3 Operation map syntax
An operation map defines the set of privileges required to complete an operation on a resource-type.

The mapped operations are GET, PUT, PATCH, POST , DELETE , and HEAD . A privilege mapping is defined for each
operation, irrespective of whether the service or data model supports the operation on the resource-type.

The privilege labels may be the Redfish standardized labels that the privilegeType enumeration inthe Privileges
schema defines and they may be OEM-defined privilege labels. The required privileges for an operation are specified
using logical AND and OR behavior. For more information, see the Privilege AND and OR syntax clause.

Version 1.23.1 Published 185

Redfish Specification DSP0266

The following example defines the privileges required for various operations on the Manager resource. Unless the
implementation defines mapping overrides to the operationMap array, the specified operation-to-privilege mapping
represents behavior for all Manager resources in a service implementation.

{
"Entity": "Manager",
"OperationMap": {
"GET": [{
"Privilege": ["Login"]
e
"HEAD": [{
"Privilege": ["Login"]
Ja
"PATCH": [{
"Privilege": ["ConfigureManager"]
jal
"POST": [{
"Privilege": ["ConfigureManager"]
I
"PUT": [{
"Privilege": ["ConfigureManager"]
Ja
"DELETE": [{
"Privilege": ["ConfigureManager"]
gl
¥
}

13.4.3.4 Mapping overrides syntax
Table 43 describes the operation-to-privilege mapping, which varies from the resource type-level mapping:

Table 43 — Mapping overrides syntax

Situation Description

Property has different privilege requirements than the resource in which it resides. For example, the
Password property in the ManagerAccount resource requires the cConfigureSelf or ConfigureUsers

Property override privilege to change, in contrast to the configureusers privilege required for the other properties in
ManagerAccount resources. If multiple properties with the same name are present in a resource, the
property override applies to all property instances.

Resource is used in context of another resource and the contextual privileges need to govern. For

Subordinat id example, the privileges for PATCH operations on EthernetInterface resources depend on whether

ubordinate override
the resource is subordinate to the Manager resource, where ConfigureManager is required, or the

ComputerSystem resource, where ConfigureComponents is required.

186 Published Version 1.23.1

DSP0266 Redfish Specification

Situation Description

Resource instance has different privilege requirements for an operation than those defined for the
resource type.

Resource URI override

The overrides are defined in the context of the operation-to-privilege mapping for a resource type.

If multiple overrides are specified for a single resource type, the following precedence should be used for determining
the appropriate override to apply:

» Property override
* Resource URI override

» Subordinate override

13.4.3.5 Property override example

In the following example, the Password property on the ManagerAccount resource requires the ConfigureSelf or
ConfigureUsers privilege to change, in contrast to the configureusers privilege required for the other properties in
ManagerAccount resources:

{
"Entity": "ManagerAccount",
"OperationMap": {

"GET": [{

"Privilege": ["ConfigureManager"]
b A

"Privilege": ["ConfigureUsers"]
oA

"Privilege": ["ConfigureSelf"]
jaB
"HEAD": [{

"Privilege": ["Login"]
I3
"PATCH": [{

"Privilege": ["ConfigureUsers"]
s
"POST": [{

"Privilege": ["ConfigureUsers"]
jaB
"PUT": [{

"Privilege": ["ConfigureUsers"]
I
"DELETE": [{

"Privilege": ["ConfigureUsers"]
]

3

Version 1.23.1 Published 187

Redfish Specification DSP0266

"PropertyOverrides": [{
"Targets": ["Password"],
"OperationMap": {
"PATCH": [{
"Privilege": ["ConfigureUsers"]

3 A
"Privilege": ["ConfigureSelf"]

1]

13.4.3.6 Subordinate override

The Targets property in SubordinateOverrides lists a hierarchical representation for when to apply the override. In
the following example, the override for an EthernetInterface resource is applied when it is subordinate to an
EthernetInterfaceCollection resource, which in turn is subordinate to a Manager resource. If a client were to
PATCH an EthernetInterface resource that matches this override condition, it requires the configureManager
privilege. Otherwise, the client requires the configureComponents privilege.

"Entity": "EthernetInterface",
"OperationMap": {
"GET": [{
"Privilege": ["Login"]

1P
"HEAD": [{

"Privilege": ["Login"]
jaB
"PATCH": [{

"Privilege": ["ConfigureComponents"]
Jap
"POST": [{

"Privilege": ["ConfigureComponents"]
1P
"PUT": [{

"Privilege": ["ConfigureComponents"]
JaB
"DELETE": [{

"Privilege": ["ConfigureComponents"]
3]

s
"SubordinateOverrides™: [{
"Targets": ["Manager", "EthernetInterfaceCollection"],
"OperationMap": {
"PATCH": [{

188 Published Version 1.23.1

DSP0266

"Privilege":

3
"POST": [{

"Privilege":

31
"PUT": [{

"Privilege":

H,
"DELETE": [{

"Privilege":

["ConfigureManager"]

["ConfigureManager"]

["ConfigureManager"]

["ConfigureManager"]

]

13.4.3.7 Resource URI override

Redfish Specification

The following example demonstrates the resource URI override syntax to define operation privilege variations for
resource URIs.

The example defines both configureComponents and OEMAdminPriv privileges as required to make a PATCH

operation on the two resource URIs listed as targets.

"Entity": "ComputerSystem",
"OperationMap": {

1

"GET": [{
"Privilege"

s

"HEAD": [{

"Privilege":

P
"PATCH": [{

"Privilege":

3L
"POST": [{

"Privilege":

3
"PUT": [{

"Privilege":

M,
"DELETE": [{

"Privilege"

3]

: ["Login"]

["Login"]

["ConfigureComponents"]

["ConfigureComponents"]

["ConfigureComponents"]

: ["ConfigureComponents"]

"ResourceURIOverrides": [{

Version 1.23.1

Published

189

Redfish Specification DSP0266

"Targets": ["/redfish/v1/Systems/VM6", "/redfish/v1/Systems/Sysi"],
"OperationMap": {
"GET": [{
"Privilege": ["Login"]
I P
"PATCH": [{
"Privilege": ["ConfigureComponents", "OEMSysAdminPriv"]

1]

13.4.3.8 Privilege AND and OR syntax

The array placement of the privilege labels in the operationMap GET, HEAD , PATCH, POST , PUT ,and DELETE
operation element arrays define the logical combinations of privileges that are required to call an operation on a
resource or property.

For OR logical combinations, the privilege label appears in the operation element array as individual elements.

The following example defines either Login or OEMPrivilegel privileges that are required to perform a GET request.

{
"GET": [{
"Privilege": ["Login"]
b A
"Privilege": ["OEMPrivilegel"]
]
}

For logical AND combinations, the privilege label appears in the privilege property array in the operation element.

The following example defines both configureComponents and OEMSysAdminPriv that are required to perform a
PATCH request.

"PATCH": [{
"Privilege": ["ConfigureComponents", "OEMSysAdminPriv"]

3]

190 Published Version 1.23.1

DSP0266 Redfish Specification

13.4.4 Delegated authorization with OAuth 2.0

Services may support the RFC6749-defined OAuth 2.0 authorization framework.

13.4.4.1 OAuth 2.0 overview

The OAuth 2.0 authorization framework allows a client to obtain access to a resource server from a resource owner
and an authorization server.

Clients request access from a resource owner and is given an authorization grant. The authorization grant is then
provided to the authorization server and an access token is provided to the client. The client provides the access
token to the resource server in order to access a protected resource.

A Redfish service is considered to be a resource server in the OAuth 2.0 authorization framework.

13.4.4.2 OAuth 2.0 data model requirements
Services that support OAuth 2.0:

» Shall support the oAuth2 property in the AccountService resource.

* May support additional OAuth 2.0 servers with ExternalAccountProvider resources.

13.4.4.3 OAuth 2.0 access tokens

Access tokens are the credentials the client provides to a service to access a protected resource. Clients provide the
access token to the service in the Authorization request header as a bearer token.

Services that support OAuth 2.0 shall support receiving an RFC7519-defined JSON Web Token (JWT) in the
Authorization request header.

JWTs are a compressed JSON structure that contain a JOSE Header, a set of claims that describe the type of
access that is granted to a client, and a signature. Each component of a JWT is Base64URL-encoded and
concatenated with a . to form the token string for the Authorization header.

Table 44 describes the JWT JOSE Header parameters and their requirements for services and clients. Any other
parameters are outside the scope of this specification.

Services shall process the parameters in Table 44 if the Service requirement column contains Yes. Services should
process other parameters.

The JWT provided by the client shall contain the parameters in Table 44 if the JWT requirement column contains
Yes. The JWT provided by the client may omit other parameters.

Version 1.23.1 Published 191

Redfish Specification DSP0266

Table 44 — OAuth 2.0 JWT JOSE Header parameters

Service
Parameter . JWT requirement Description
requirement

Type of token. The string is case-insensitive. If not present, services

typ Yes No .
shall assume the value is JwT .

Algorithm for the signature of the token. Services shall not accept the
alg Yes Yes
value none .

Table 45 describes the claims and their requirements for services and clients. Any other claims are outside the scope
of this specification.

Services shall process the claims in Table 45 if the Service requirement column contains Yes. Services should
process other claims.

The JWT provided by the client shall contain the claims in Table 45 if the JWT requirement column contains Yes.
The JWT provided by the client may omit other claims.

Table 45 — OAuth 2.0 JWT claims

i Service . L
Claim i JWT requirement Description
requirement

Issuer of the token. Identifies the authorization server that signed the
iss Yes Yes

token.
sub Yes Yes Subject of the token. Identifies the client issued the token.
Audience of the token. Identifies the resource server intended to accept
aud Yes Yes
the token.
exp Yes No Expiration time of the token.
nbf Yes No "Not before" time of the token.
iat Yes No Issued time of the token.
jti Yes No Unique identifier of the token.
Type of access the token grants. See the Redfish OAuth2.0 scope
scope Yes Yes

usage clause.

Example JOSE Header:

"typ": "INT,

192 Published Version 1.23.1

DSP0266 Redfish Specification

"alg": "RS256"

Example JWT claims:

{
"iss": "https://contoso.org/services/oauth2",
"sub": "Joe Smith",
"aud": "92384634-2938-2342-8820-489239905423",
"exp": 1735707600,
"scope": "Redfish.Role.Operator",
"jti": "97d52311-5f55-4482-b947-8a70c326fdfd"
}

Example token encoded in the Authorization request header:

Authorization: Bearer mF_9.B5f-4.1JgM

Note: The previous example does not reflect a real JWT and is provided to show encoding in the
Authorization request header.

13.4.4.4 Redfish OAuth2.0 scope usage

The value of the scope claim is expressed as a list of space-delimited, case-sensitive strings. Each value in the list
describes a type of access that was granted to the client.

This specification defines two formats for values in the scope claim: Redfish roles and Redfish privileges. Other
formats are outside the scope of this specification.

Redfish roles within the scope claim shall be in the form Redfish.Role.<RoleId> where <RoleId> is the identifier of
the Redfish role granted to the client.

Redfish privileges within the scope claim shall be in the form Redfish.Privilege.<PrivilegeId> where
<PrivilegeId> is the standard privilege or OEM privilege granted to the client.

Services shall ignore unsupported values in the scope claim. If the token provided by the client is valid, the service
shall apply roles and privileges in the scope claim to the operation.

Version 1.23.1 Published 193

Redfish Specification DSP0266

13.5 Account service

13.5.1 Account service overview

» Implementations should store user passwords with one-way encryption techniques.

» Implementations may support exporting user accounts with passwords, but shall do so using encryption methods
to protect them.

» User accounts shall support ETags and atomic operations. Implementations may reject requests that do not
include an ETag.

» When authentication fails, extended error messages shall not provide privileged information.

13.5.2 Password management

A Redfish service provides local user accounts through a collection of ManagerAccount resources located under the
account service. The ManagerAccount resources enable users to manage their own account information, and for
administrators to create, delete, and manage other user accounts.

When account properties are changed, the service may close open sessions for this account and require re-
authentication.

13.5.3 Atomic password changes

If the RequireChangePasswordAction property in the AccountService resource contains true , services shall reject
modifications to the Password property in ManagerAccount resources in PATCH or PUT operations. Clients are
required to invoke the ChangePassword action in the ManagerAccount resource to update the password for a user
account.

This functionality can be used to protect the service from session hijacking. The SessionAccountPassword parameter
in the changePassword action allows the service to verify the client's credentials before changing the password of the
account. If a user is changing their own password, the SessionAccountPassword parameter shall contain the current
password of the account. If an administrator is performing the password change for a different user, the
SessionAccountPassword parameter shall contain the administrator's password.

If the client is performing requests with HTTP Basic authentication, the SessionAccountPassword contains the same
password encoded in the Authorization request header.

13.5.4 Password change required handling

The service may require that passwords assigned by the manufacturer be changed by the end user prior to

194 Published Version 1.23.1

DSP0266 Redfish Specification

accessing the service. In addition, administrators may require users to change their account's password upon first
access.

The ManagerAccount resource contains a PasswordChangeRequired boolean property to enable this functionality.
Resources that have the property set to true shall require the user to change the write-only Password property in
that resource before access is granted. Manufacturers including user credentials for the service may use this method
to force a change to those credentials before access is granted.

When a client accesses the service by using credentials from a ManagerAccount resource that has a
PasswordChangeRequired value of true , the service shall allow:

* A session login and include the @vessage.ExtendedInfo annotation in the response containing the
PasswordChangeRequired message from the Base Message Registry. This indicates to the client that their
session is restricted to performing only the password change operation before access is granted.
* A GET operation on the ManagerAccount resource associated with the account.

* A PATCH operation on the ManagerAccount resource associated with the account to update the password
property if the RequireChangePasswordAction inthe AccountService resource contains false oris not present.
If the value of password is changed, the service shall also set the PasswordChangeRequired property to false .

* A PoST operation on the cChangePassword action on the ManagerAccount resource associated with the account
to update the pPassword property. If the value of Password is changed, the service shall also set the
PasswordChangeRequired property to false .

* A DELETE operation on Session resources representing open sessions associated with the account.

When a client accesses the service by using credentials from a ManagerAccount resource that has a
PasswordChangeRequired value of true , the service may allow GET operations on unauthenticated resources, such
as the serviceRoot resource.

For all other operations, the service shall respond with the HTTP 403 Forbidden status code and an error response
with the PasswordChangeRequired message from the Base Message Registry.

13.5.5 Time-based One-Time Password secret key handling

When RFC6238-defined Time-based One-Time Password (TOTP) multi-factor authentication is enabled, the user
account is not configured to bypass Time-based One-Time Password multi-factor authentication, and the user
account does not contain a secret key for Time-based One-Time Password multi-factor authentication, the service:

» Shall allow a session login without the Token property and include the @vessage.ExtendedInfo annotation in the
response containing the GenerateSecretKeyRequired message from the Base Message Registry. This indicates
to the client that their session is restricted to performing only the GenerateSecretkey action on their
ManagerAccount resource before access is granted.

+ Shall allow a PosT operation on the GenerateSecretkey action onthe ManagerAccount resource associated with

the account to generate a Time-based One-Time Password secret key.
o Clients shall retain the value of the secret key in the response to generate tokens for future session creation

Version 1.23.1 Published 195

Redfish Specification DSP0266

requests.

» Shall allow a PosT operation on the VerifyTimeBasedOneTimePassword action on the ManagerAccount resource
associated with the account, if the action is supported by the service. This allows a client to verify they are able
to produce valid tokens with their secret key prior to closing the session.

» Shall allow a DELETE operation on Session resources representing open sessions associated with the account.

* May allow GET operations on unauthenticated resources, such as the ServiceRoot resource.

For all other operations, the service shall respond with the HTTP 403 Forbidden status code and an error response
with the GenerateSecretkeyRequired message from the Base Message Registry.

When the secret key is generated for the user with the GenerateSecretkey action on the ManagerAccount resource
associated with the account, the service shall require the client to create a new session with the Token property to
perform other operations.

13.6 Asynchronous tasks

Irrespective of which user or privileged context starts a fask, services shall enforce the privileges described in the
privilege registry required to perform operations on the Task resource.

13.7 Event subscriptions

Before pushing event data object to the destination, the service may verify the destination for identity purposes.

Services shall not send events to clients that do not have sufficient privilege to access the resource originating the
event. For push-style eventing, this is determined by the client that performed an HTTP PposT to the subscription
collection. For server-sent events, this is determined by the client that opened the SSE connection.

196 Published Version 1.23.1

DSP0266 Redfish Specification

14 Redfish Host Interface

The Redfish Host Interface Specification defines how software that runs on a host computer system can interface
with a Redfish service that manages the host. For details, see DSP0270.

Version 1.23.1 Published 197

Redfish Specification DSP0266

15 Redfish composability

A service may implement the CompositionService resource off of ServiceRoot to bind resources. One example is
disaggregated hardware, which allows for independent components, such as processors, memory, I/O controllers,
and drives, to be bound to create logical constructs that operate together. This enables a client to dynamically assign
resources for an application.

A service that supports composability shall implement resource blocks, defined by the ResourceBlock schema, and
resource zones, defined in the zone schema, for the composition service. Resource blocks provide an inventory of
components available to the client for building compositions. Resource zones describe the binding restrictions of the
resource blocks that the service manages.

The resource zones within the composition service shall include the collection capabilities annotation in responses.
The collection capabilities annotation allows a client to discover which resource collections in the service support
compositions, the different composition request types allowed, how the PosT request for the resource collection is
formatted, and which properties are required.

A service that supports composability and client multi-tenancy shall:

* Implement the FreePool and ActivePool properties inthe CompositionService resource.
* Implement the CompositionReservations property in the CompositionService resource.

» Filter GET requests for the ResourceBlocks , FreePool , ActivePool , ResourceZones , and
CompositionReservations resource collections where the value of the client property in the ResourceBlock
resource or CompositionReservation resource matches the client identity.

» Ensure the resources in composition requests are assigned to the client specified by the client property in the
ResourceBlock resource or CompositionReservation resource.

* Not filter any HTTP operations within the composition service for clients that contain the privilege
ConfigureCompositionInfrastructure unless specified by query parameters.

» Move resource blocks between the FreePool and ActivePool resource collections based on the outcome of
composition requests.
o Aresource block is moved to the FreePool resource collection when it is not contributing to any composed
resources.

o Aresource block is moved to the ActivePool resource collection when it is contributing to one or more
composed resources.

198 Published Version 1.23.1

DSP0266 Redfish Specification

15.1 Composition requests

15.1.1 Composition requests overview

A service that implements the composition service, as defined by the compositionService schema, shall support one
or more of the following types of composition requests:

» Specific composition
» Constrained composition

* Expandable resources

A service that supports the removal of a composed resource shall support the DELETE method on the composed
resource.

A service may implement the Compose action in the CompositionService resource for the above composition
requests.

15.1.2 Specific composition
A specific composition is when a client identifies an exact set of resources in which to build a logical entity.

A service that supports specific compositions shall support a posT request that contains an array of hyperlinks to
resource blocks. The schema for the resource being composed defines where the resource blocks are specified in
the request.

The following example shows a computerSystem being composed with a specific composition request:

POST /redfish/v1/Systems HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

{
"Name": "Sample Composed System",
"Links": {
"ResourceBlocks": [{
"@odata.id": "/redfish/v1l/CompositionService/ResourceBlocks/ComputeBlocke"
}) {
"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock2"
oA
"@odata.id": "/redfish/vl/CompositionService/ResourceBlocks/NetBlock4"
]
}

Version 1.23.1 Published 199

Redfish Specification

15.1.3 Constrained composition

DSP0266

A constrained composition is when a client has identified a set of criteria, or constraints, in which to build a logical
entity. This includes criteria such as quantities of components, or characteristics of components. A service that
supports constrained compositions shall support a PosT request that contains the set of characteristics to apply to
the composed resource. The specific format of the request is defined by the schema for the resource being
composed. This type of request may include expanded elements of resources subordinate to the composed

resource.

The following constrained composition request composes a ComputerSystem :

POST /redfish/v1/Systems HTTP/1.1
Content-Type: application/json;charset=utf-8
Content-Length: <computed length>
OData-Version: 4.0

"Name": "Sample Composed System",
"PowerState": "On",

"BiosVersion": "P79 v1.00 (09/20/2013)",
"Processors": {

"Members": [{
"@Redfish.RequestedCount”: 4,
"@Redfish.AllowOverprovisioning": true,
"ProcessorType": "CPU",
"ProcessorArchitecture": "x86",
"InstructionSet": "x86-64",
"MaxSpeedMHz": 3700,

"TotalCores": 8,
"TotalThreads": 16

]
¥
"Memory": {

"Members": [{
"@Redfish.RequestedCount": 4,
"CapacityMiB": 8192,
"MemoryType": "DRAM",
"MemoryDeviceType": "DDR4"

]

¥

"SimpleStorage": {
"Members": [{
"@Redfish.RequestedCount": 6,
"Devices": [{

200 Published

Version 1.23.1

DSP0266 Redfish Specification

"CapacityBytes": 322122547200

]
]
¥
"EthernetInterfaces": {

"Members": [{
"@Redfish.RequestedCount": 1,
"SpeedMbps": 1000,

"FullDuplex": true,
"NameServers": ["names.redfishspecification.org"],
"IPv4Addresses": [{
"SubnetMask": "255.255.252.0",
"AddressOrigin": "Dynamic",
"Gateway": "192.168.0.1"
1]
]
¥

15.1.4 Expandable resources

An expandable resource is when a service has a baseline composition that cannot be removed. Instead of a client
making requests to create a composed resource, a client can only add or remove resources from the composed
resource. A service that supports expandable resources shall support one or more of the update methods that the
Updating a composed resource clause describes.

15.2 Updating a composed resource

A service that supports updating a composed resource shall provide one or more of the following methods to update
composed resources:

» The puT or PATCH methods on the composed resource with a modified list of resource blocks.
» Actions on the composed resource for adding and removing resource blocks.
> If the actions for adding and removing resource blocks are present in the resource, clients should use this
method before attempting pPuT or PATCH .

Version 1.23.1 Published 201

Redfish Specification DSP0266

16 Aggregation

Aggregation has been a Redfish concept since its inception. Redfish uses collection for services that can represent
more than one system. As the scale of Redfish implementations increase, clients want to operate on Redfish
resources in bulk.

Aggregation is the representation of Redfish resources from a variety of sources so that they can be managed, in
whole or in part, by a Redfish client. Membership can be heterogeneous and arbitrary, but it is expected that most
aggregate members are the same resource type, such as an aggregate of ComputerSystem resource, which is
represented by an Aggregate resource where members of its Elements array are exclusively of type
computersystem . The Redfish service proxies on behalf of the aggregated components to provide common
operations. The Redfish service is representing resources on behalf of the components and incoming operations
must be tracked by the Redfish service before being accomplished by communicating with the individual resources.
Thus, aggregation also allows a Redfish client to act on resources as a group using aggregates.

16.1 Classes of aggregators

16.1.1 Implicit and complex aggregators
There are at least two classes of Redfish aggregators:

» Implicit aggregators. An example of an implicit aggregator is an enclosure manager, such as a manager of
blades in an enclosure. This implementation has computerSystem resources representing blades in the
ComputerSystemCollection resource, and one or more Manager resources in the ManagerCollection resource. It
also would likely have a chassis resource for each blade and a chassis resource for the enclosure, which
would use the contains property in Links to express the containment relationship to the individual blades. This
class of aggregator has tight coupling with system design and proxies requests to and from the blades to
perform management functions.

» Complex aggregators. An example of a complex aggregator is a rack-level manager, fabric manager, or a
manager of similar scale, especially if it represents resources that it gathers through the proxy of information
from other managers, like BMCs. The sources that this manager aggregates are more complex in nature and
potentially varying. This manager probably has an interface to the resources and proxies the Redfish service on
behalf of each set of resources. At this scale, a Redfish client would prefer to provide common functions, such
as resetting a set of systems, to the Redfish service as a whole rather than invoking actions individually to
achieve scalability requirements. This class of service also may need assistance in adding members to the
service, such as providing address and account information for the aggregator to contact the components and
initiate the proxy of Redfish operations.

202 Published Version 1.23.1

DSP0266 Redfish Specification

16.1.2 Use cases

Several use cases make explicit aggregator representation necessary. What they have in common is the need for
common functions for scalability. There are several classes of these common functions.

One use case is service-type functions. An example is a firmware update on a large number of systems. Rather than
invoke actions on individual resources, it is more efficient for a client to specify to which resources to apply the
image. In this case, a service already exists in the model so an aggregation service is not needed. Instead, the
existing service must be augmented to enable the application of an image to a list of resources.

Another use case is common actions. Examples are the Reset or SetDefaultBootOrder actions. These actions are
defined in the computersystem schema, but the Redfish URI structure requires that the action occur on each
ComputerSystem resource. Thus, an individual operation applies to each resource. It is more efficient for a client to
send one action with the list of the resources to which to apply the action. For example, to reset one thousand
systems, sending one thousand individual reset operations requires significant overhead as compared to sending a
single operation with a list of one thousand systems to reset.

A final use case is changing an attribute on multiple members of a collection. An example is changing the boot order
on a large number of systems. This use case requires one operation per system. However, assuming the resources
are in the same collection, the deep PATCH operation meets the requirements of this use case.

16.2 Aggregation service

16.2.1 Aggregation service overview

The AggregationService resource represents the Redfish aggregation service, which provides aggregation
functions.

The aggregation service contains the group actions that can apply to groups of resources. The AggregationService
schema defines the common actions that a client can take on groups of resources. These actions take an array of
resource URIs as one of the parameters to which the action applies. If all members of the resource array do not
support the method, a 4xx status code shall be returned and the body shall contain an error response. If at least
one member of the resource array successfully completed the action but others did not, the status code should be
200 OK Wwith @VMessage.ExtendedInfo objects for the failed members.

The aggregation service also contains Aggregate , AggregationSource , and ConnectionMethod resources.

16.2.2 Aggregator requirements

By implementing the AggregationService resource and including an AggregationSourceCollection resource, a
complex aggregator shall meet the following requirements:

Version 1.23.1 Published 203

Redfish Specification DSP0266

» Proxy to the aggregated resources on behalf of the service.

» Provide error and state propagation, such as health roll-up, when needed to provide such data to the parent
resource.

+ Combine resource collections from the aggregated resources.

o For example, computerSystem resources that were gathered through proxy shall be in one
ComputerSystemCollection resource.

o Services shall complete a URI fix-up for all aggregated resources because every system cannot be at

/redfish/v1/Systems/1 .

o |tis advisable for Redfish implementations to use unique values for the 1d properties. For example, base
the 1d property of a ComputerSystem resource on something unique like a UUID or serial number, or the
manufacturer MAC address for network adapters, or WWN for Fibre Channel controllers.

» Unify other services.

> The aggregation implementation hosts only one event service. The implementation shall combine all events
into one stream. The implementation also hosts only one sessions service, telemetry service, update
service, and other services. Thus the aggregator represents unification of Redfish services with which it
communicates and proxies on the client's behalf to the providers of those services and information.

16.2.3 Aggregates

The Aggregate resource is the grouping mechanism that clients use to indicate to the service that this group of
resources can be treated the same for certain functions, such as the actions. Each aggregate contains the list of
individual resources that are to be treated as a single unit for operations. For example, if a client wishes to express
that a subset of the computerSystemCollection resource be treated as a single unit for certain operations like reset,
reset boot order, or firmware update, it can express the aggregate as the target URI for the operation.

The Aggregate schema defines the common actions that a client can make on an aggregate. The Aggregate

resource contains an Elements array that specifies the members of the aggregate. Actions that are supported on an

aggregate but not supported on all Elements , such as a Reset action that is not supported on an individual member

of the Elements array, are not silently skipped. If all members of the Elements array do not support the method, a
4xx status code shall be returned and the body shall contain an error response. If at least one member of the
Elements array successfully completed the action, but others did not, the status code should be 200 ok with
@Message.ExtendedInfo objects for the failed members.

16.2.4 Aggregation sources and connection methods

The aggregation service model also includes a definition for the information used to access the resources being
represented by the aggregator. Two collections of resources are used to represent this. These are the
AggregationSource and ConnectionMethod resources.

The AggregationSource resource represents the source of information for the resources being reflected by the
aggregator. It typically represents a lower layer service provided by another manager. It contains information needed

204 Published Version 1.23.1

DSP0266 Redfish Specification

to access that source, such as the address and account information. It also has a reference to the ConnectionMethod
resource used to access it.

The ConnectionMethod resource represents the protocol and other semantics required to communicate with the
resources being aggregated. Examples of connection methods are Redfish, IPMI, and proprietary access methods.
For methods such as IPMI, it's also possible to specify the variations and nuances from multiple vendors.

Version 1.23.1 Published 205

Redfish Specification DSP0266

17 ANNEX A (informative) Change log

Version Date Description
1.231 2025-12-04 Added term and reference for regular expressions based on ECMA-262.

Clarified the POST (create) clause that serivces may accept a null property value during create
operations if that property has a specific null usage defined in schema.

Added the Import configuration data clause to describe using HTTP multipart operations to

1.23.0 2025-09-05)) I
import a configuration file.
Added the WebSocket inbound access clause to define how a client can connect to a
WebSocket provided by a service.

1222 2025-09-04 Updated .t|t1e I?iscovery overview clause to provide a reference to the UPnP Device Architecture
2.0 Specification.
Added references and links for RDE throughout the specification.
Clarified the Multipart HTTP push updates clause to reference the ActionParameterNotSupported
message from the Base Message Registry if given a parameter it does not support.
Clarified the Response headers clause to specify the usage of the Allow header for GeT and
HEAD responses is specific to returning HTTP 2ee oK .
Updated the Status codes clause to recommend standard messages when returning HTTP 4e1
Unauthorized or HTTP 403 Forbidden .
Updated the Request headers, Response headers, and Multipart HTTP push updates clauses
to state HTTP header names are case-insensitive.

1221 2025-05-01 Updated the ETags clause to provide stronger guidance to prevent unnecessarily frequent ETag
updates.
Updated the M-SEARCH response clause to align the st response header version usage with
UPnP requirements.
Added the Extended information implementation notes clause to provide guidance for when to
use extended information annotations.
Corrected the example action info URI in the OEM actions clause.
Clarified the construction of URI patterns in the Resource URI patterns annotation to show how
the schema name is used in the identifiers for the annotation.

1.22.0 2025-02-05 Added includeoriginofcondition query parameter to the Query parameter overview clause.

Added includeoriginofcondition query parameter to the Server-sent events clause.

206 Published Version 1.23.1

DSP0266

Version

1.21.1

1.21.0

1.20.2

1.20.1

Date

2024-11-27

2024-08-01

2024-08-01

2024-04-03

Redfish Specification

Description

Corrected the g$expand with $select example in The $expand query parameter to show the full
property path to the selected property is required.

Updated example text in The $expand query parameter for clarity.
Updated OEM-specified object naming to add opencompute to the organization exception list.

Added the Time-based One-Time Password secret key handling clause to describe service
behaviors when a user is required to provide an RFC6238-defined Time-based One-Time
Password as the Token property during session creation, but a secret key is not configured.

Updated the Registries clause to correct terminology for attribute registry files.

Added the /redfish/vi/Registries URI to the Redfish-defined URIs and relative reference
rules clause.

Updated the Schema modification rules clause to give guidance for resolving multiple versions of
the same modified schema.

Corrected terminology in the OEM actions clause to better describe how the action property name
is constructed in payloads.

Updated the Naming rules clause to restrict the usage of ReturnType for action parameter names.

Updated the Password change required handling clause to clarify that the HTTP 403 Forbidden
response body follows the error response format.

Updated the Event subscriptions clause to clarify that privilege enforcement is required when
sending events.

Updated the Query parameter overview clause to optionally allow for case-insensitive verification
of query parameter names.

Updated the Naming rules clause to prevent naming collisions where the only difference is the
casing of letters.

Updated the OEM property format and content clause to give guidance for constructing the value
of @odata.type to avoid naming collisions.

Updated the Schema modification rules clause to allow for non-semantic text changes.

Added the Transiently unavailable resources clause to describe best practices for showing the
status of a device that is in an unavailable state.

Clarified The $expand query parameter to show that HTTP 2ee ok is the proper response code
when a resource collection is partially expanded.

Updated the Status codes clause to remove the recommendation to avoid the HTTP 100
Continue status code since this is mandatory to support for chunked client requests from the HTTP
1.1 specifications.

Version 1.23.1

Published 207

Redfish Specification

Version

1.20.0

1.19.1

Date

2023-11-30

2023-11-30

DSP0266

Description

Added requirement to the Establishing an outbound connection clause to require including the
Sec-WebSocket-Protocol HTTP header with the value Redfish .

Updated the POST (action) clause to require services to accept empty JSON objects for actions
that do not have required parameters. This change might require modification to an
implementation to support this version of the specification.

Made several changes for style consistency, grammar, and general clarity. Except for the following
additions, no normative changes were made. Any clarifications that inadvertently altered the
normative behavior are considered errata and will be corrected in future revisions to the
specification.

Clarified the Password change required handling clause to show that users can delete their own
sessions.

Clarified the Password change required handling clause to show that performing Get
operations on unauthenticated resources might be allowed by the service.

Updated the Action info annotation and OEM actions clauses to give guidance for constructing
the URI for the ActionInfo resource.

Clarified the Property element clause to better describe the usage of Edm.Decimal and
Edm.Double .

Updated the PATCH (update), POST (create), and POST (action) clauses to give guidance to not
require clients to specify extraneous data in request bodies.

Clarified the Multipart HTTP push updates to show that clients are not required to provide an
OEM form.

Updated the Next link (Members@odata.nextLink) property clause to give guidance for handling a
client's original query parameters that affect the number of members returned in the collection.

Updated the Next link (Members@odata.nextLink) property clause to give guidance for using the
$skiptoken query parameter.

Corrected the PATCH (update) clause to require responding with the HTTP 400 Bad Request with
the Nooperation message or a modification success response when the client only gives OData
annotations in the request body.

Clarified the Allowable values for strings, Allowable patterns for string values, Allowable
values for numbers and durations clauses to show that these terms are used to express client
modification restrictions on properties.

Updated The $expand query parameter to describe behavior when used with resources
containing reference objects with the expanded resource annotation.

Updated the Response headers clause to show that the www-Authenticate is only required if
HTTP Basic authentication is configured to advertise its capability.

208

Published Version 1.23.1

DSP0266

Version

1.19.0

1.18.1

1.18.0

1171

Date

2023-08-03

2023-08-03

2023-04-04

2023-04-04

Redfish Specification

Description

Updated the HTTP Basic authentication clause to explain that the HTTPBasicAuth property in the
AccountService resource can disable or restrict this functionality.

Clarified The $expand query parameter to describe the behavior when a client performs an
expansion request, but does not have sufficient privilege to access referenced resources.

Clarified the Naming rules clause to describe naming pattern for string properties containing URlIs.

Added the URI annotation clause to document how to indicate a string property is expected to
contain a URI.

Added the Atomic password changes clause to define behavior for services that require
password changes with the changePassword action.

Updated the Password change required handling clause to allow for a client to invoke the
ChangePassword action when a password change is required.

Added the Outbound connections clause to define how a service creates a WebSocket with a
remote client through which Redfish requests are tunneled.

Updated the Session login clause to define specific messages in responses when a token is
required in the request to create a session.

Clarified the Asynchronous operations clause to state that HTTP 202 Accepted response bodies
contain a Task resource or are absent.

Updated the ETags clause to recommend weak ETag comparisons in PUT or PATCH operations.
Updated the Naming rules clause to clarify all names are alphanumeric and start with letters.
Updated the Naming rules clause to clarify the naming style for enumeration values.

Updated the Deep operations clause to show that a deep PosT can include different types of
resources in the request.

Updated the Redfish-defined URIs and relative reference rules and Asynchronous operations
clauses to give guidance on the recommended URI pattern for task monitors.

Updated The $expand query parameter to recommend that all properties in requested resources
are included in responses.

Added URI segment annotation clause to allow schema to describe when URIs do not meet
expected naming rules.

Updated example in M-SEARCH response to better explain the different values a service provides
in an M-SEARCH response.

Updated Writable properties annotation to include an example.

Updated Modification success responses to provide links to appropriate sections for each
operation. Clarified that response bodies for create operations are optional.

Version 1.23.1

Published 209

Redfish Specification

Version

1.17.0

1.16.1

1.16.0

Date

2022-12-08

2022-12-08

2022-08-04

DSP0266

Description
Updated the response table in POST (action) to use consistent terminology for action responses.

Updated Resource and operation authentication requirements to state that services can
optionally reject requests to unauthenticated resources if the provided credentials are invalid.

Updated Action responses to provide guidance for finding the schema definition of the action
response based on the action's name in response payloads.

Updated The $select query parameter to clarify that unsupported properties are omitted from
responses.

Updated Response headers to make Access-Control-Allow-Origin an optional response header.
Clarified Duration values to state that negative durations are not allowed.

Updated Deprecated annotation to allow for deprecating URlIs.

Updated Protocol details to allow for optional HTTP 2.0 support.

Updated Permissions annotation to allow for write-only to be specified to enforce services
respond with null for their value.

Updated HTTP Basic authentication and Redfish session login authentication to describe
behavior when multi-factor authentication is enabled.

Added Client certificate authentication clause to allow for client certificates to be authenticated
during TLS handshaking.

Updated GUID and UUID values to correct the format for GUID and UUID properties.
Updated The $select query parameter to clarify the syntax of ¢select for arrays.
Updated Status codes to remove references to nonexistent HTTP headers.

Updated Sensitive data to clarify that the phrase "URIs containing sensitive data" is meant to
reflect the URI itself rather than the response body.

Corrected the example RelatedProperties property in message objects throughout the
specification to remove the leading # to meet syntax specified by RFC6901.

Updated Messageld format to better formalize the string tokens used to distinguish the different
parts of MessageId values.

Added optional standard roles to the Roles clause.

Added new Allowable patterns for string values, Allowable values for numbers and
durations, and Writable properties annotation payload annotations.

Renamed allowable values payload annotation to Allowable values for strings.

210

Published Version 1.23.1

DSP0266 Redfish Specification

Version Date Description

Updated URI naming rules to give an example URI when a hyperlink to a subordinate resource is

1.15.2 2022-08-04
not found at the root of the resource.
Updated Modification success responses to not imply a service deficiency if HTTP 204 No
Content is returned.
Clarified the usage of the www-Authenticate header in the Response headers clause.
Updated Redfish service operation-to-privilege mapping to explain that the service can filter
response data based on the user's identity beyond what is assigned as a privilege.
Updated Links to state that some design exceptions have been made for putting a hyperlink inside
of Links or at the root of a resource.
Updated ETags to give guidance to implementers when managing resources that update
frequently.
Updated Properties overview to state that all properties are required to have well-known types,
with some exceptions.
Updated OEM-specified object naming to allow for exceptions to domain suffix rules for listed
organizations.
Updated Asynchronous operations to better distinguish Task resources from task monitors to
the reader.
Updated The $select query parameter to allow for object-level messages and messages for
requested properties even if not specified by the client.
Clarified The $select query parameter that error responses act as if $select was not specified.
Updated Query parameter overview to recommend the = character is ignored if specified with
1.15.1 2022-04-07

the only and excerpt query parameters.

Updated Multipart HTTP push updates to use consistent terminology for action parameters, and
to correct the use of HTTP status code 413 instead of 412 to indicate a payload is too large to be
processed by the service.

Updated Schema definition languages to use normative terminology throughout.

Clarified Asynchronous tasks to explain the allowable operations on a Task resource are
controlled by the privilege registry.

Clarified ETags to describe the behavior of ETags during expansion.

Deprecated statement in POST to subscription collection with regards to keeping MessageIds
and RegistryPrefixes as mutually exclusive.

Updated Subscribing to events to match the schema updates made to EventDestination .

Version 1.23.1 Published 211

Redfish Specification

Version

1.15.0

1.14.2

1.14.1

1.14.0

1.13.1

Date

2021-12-02

2021-12-02

2021-10-06

2021-09-15

2021-08-04

DSP0266

Description

Updated the Operation apply time and Multipart HTTP push updates to expand the usage of
the @Redfish.OperationApplyTimeSupport annotation to properties referencing URIs for multipart
HTTP POST operations.

Clarified that the created message from the Base Message Registry is an acceptable response in
the POST (action) clause when a new resource is created.

Clarified the Permissions annotation clause to describe requirements for schemas published by
DMTF.

Updated the Units of measure annotation clause to describe encoding rules for units not covered
by UCUM. Provided alternative recommendations for RPM units.

Clarified Collection capabilities annotation clause that properties marked as required are not
required for the resource referenced by the capabilitiesObject property.

Clarified that @Redfish.MaintenancewWindow property behaviorin Task resources in the
Asynchronous operations clause.

Corrected various examples for @Redfish.OperationApplyTimeSupport , @Redfish.Settings ,
@Redfish.MaintenanceWindow , and @Redfish.SettingsApplyTime to include @odata.type .

Clarified the Link header clause to state the Link response header requirement only applies to
resources.

Extended Query parameter overview clause to define how OEM query parameters are
constructed.

Added Delegated authorization with OAuth 2.0 clause to define how clients provide OAuth 2.0
tokens to a service as a method of authorization.

Various clarifications to the Extending standard resources clause to better describe naming rules
for OEM resources.

Added recommended URI for local schema files to the Redfish-defined URIs and relative
reference rules clause.

Clarified the OData $metadata clause that any absolute or relative URI is allowed for referencing
schema files.

Adding missing statement to the URI naming rules clause that Members cannot be used as the
value of a URI segment for resource collections.

Added missing exceptions to the PATCH (update) clause for when @odata.id is to not be ignored
by the service.

Clarified the ETags clause that both strong and weak ETags are allowed in If-Match and If-
None-Match request headers.

Clarified the Deep operations clause to specify that services ignore resources in the payload if no
modifications are requested.

212

Published Version 1.23.1

DSP0266 Redfish Specification

Version Date Description
Added the Enumerations clause to clarify the design patterns for creating enumerations.

Clarified the Id clause that HTTP unsafe characters are not permitted in the value of the 1d
property due to its usage in URI construction.

Clarified the Non-resource reference properties that these properties are strings containing

URIs.
113.0 2021-04-08 Added client multi-tenancy behavior to the Redfish composability clause. This adds free pool,
o active pool, and composition reservation constructs to Redfish composability.
Added compose action as a method of performing composition requests to the Redfish
composability clause.
1.12.1 2021-04-08 International Organization for Standardization (ISO) updates:

Added paragraph numbering.

Added Foreword to the table of contents as an unnumbered heading, and placed
Acknowledgments inside Foreword.

Made Scope a level-1 clause.

Normative references: Removed unused normative references and moved some references into
Bibliography. The Bibliography lists, for information, those documents which are cited
informatively in the document, as well as other information resources.

Changed Abstract to Introduction.

Corrected level-1 clauses to remove hanging paragraphs and to correct the occurrence of the
single Use cases and Aggregator requirements sub-clauses.

Terms, definitions, symbols, and abbreviated terms:
» Combined Symbols and abbreviated terms clause with Terms and definitions clause into
Terms, definitions, symbols, and abbreviated terms clause.

» Formatted the clause correctly.

* Added the Hardware terms, Web development terms, and Redfish terms sub-clauses to
this clause.

* Removed may, shall, and should from definitions.
* Removed these terms: managed system, Redfish event receiver, and Redfish provider.

» Corrected definitions so none begin with an article.

Changed may to can or might where appropriate.
Changed one must to shall.

Added numbered captions to tables and changed occurrences of the following table to use precise
references to the table numbers.

Version 1.23.1 Published 213

Redfish Specification

Version

1.12.0

Date

2020-12-01

DSP0266

Description
Fixed broken cross-references.
Corrected URIs in the deep PATCH example.

Fixed several query parameter examples where string values were not properly wrapped with
single quotes.

Corrected Accept-Encoding usage to allow for encoded responses if the client does not provide
the header to align with RFC7231.

Clarified usage of DELETE forthe @Redfish.OperationApplyTimeSupport term.

Removed duplicative clauses for HTTP 405 Method Not Allowed usage in PATCH (update) in
favor of more general clauses.

Replaced exception table in PATCH (update) in favor of text.

Moved error cases from response table in POST (action) to be with other text that describes error
cases.

Added linkage in the description for HTTP 201 created to reference response bodies for actions.

Added informative text regarding the usage of If-Match and If-Match-None headersin GET,
PATCH , and PUT clauses.

Clarified the behavior of $select when an object property is selected.

Added introductory text to guide readers to other Redfish documents.

Clarified the ordering of processing query parameters.

Clarified that update restrictions for a resource can be modified to support writable OEM properties.

Clarified the Settings resource clause to show behavior of properties in the active resource and
settings resource based on the service's capabilities.

Corrected behavior for usage of null based on the configuration of a resource and other special
situations.

Clarified OEM naming rules for all OEM definitions to ensure names don't collide.

Removed the term "namespace" from all non-CSDL related clauses and replaced them with
references to a new resource type term.

Added introductory text to the Authorization clause.

Clarified usage of Roleld and how there are standard roles, custom OEM roles, and client-defined
custom roles.

Added Restricted roles and restricted privileges to describe behavior for when roles and
privileges are marked as restricted.

214

Published Version 1.23.1

DSP0266

Version

1.11.2

1.11.1

Date

2020-12-01

2020-08-04

Redfish Specifica

Description
Clarified that the Accept-Encoding header is used to request compression of response bodies.

Corrected the PATCH (update), PUT (replace), and DELETE (delete) clauses to leverage all
normative statements for successful operations found in the Modification success responses
clause.

Replaced RFC5988 reference with RFC8288.

Updated IETF links to use the "IETF Tools" site.

Clarified that insert capabilities is just for resource creation.
Fixed ETag examples to be RFC7234-conformant.

Clarified that OEM resources can have subordinate resources.

Replaced RFC4627 reference with RFC8259.

tion

Replaced conflicting statements found in "HTTP redirect authentication requirements" with general

clause for enforcing authentication and authorization at the target resource.
Clarified behavior of @odata.count when a collection is filtered.
Created standalone "Messageld format" clause.

Removed duplicative text found in the event format table and referenced the message object
clauses as needed.

Corrected the response body specified for a PATCH operation containing read-only properties.

Added informative text in the intro to the Data model clause describing the methods for OEM
extensions.

Clarified that sensitive data in URIs can be hidden from unauthorized users by returning HTTP
Not Found .

Added embedded links to the Location header entry in the response header table.
Corrected $select example in the The $select query parameter clause.
Corrected several embedded links to direct to the correct clause.

Added missing clause requiring sensitive data to be returned as null .

404

Clarified that Resolution, Severity ,and MessageSeverity in responses can be service-defined

and not come from a message registry.

Relaxed schema rules to require description, long description, URI, and capabilities annotations

only for schemas published or republished by DMTF.

Version 1.23.1

Published

215

Redfish Specification

Version

1.11.0

1.10.0

1.91

Date

2020-04-30

2020-03-27

2020-03-27

DSP0266

Description

Added clauses to Schema modification rules to allow for properties, actions, parameters, and
URIs to be removed, descriptions to be modified, and pattern and length annotations to be added if
not specified.

Relaxed rule for the OData metadata document to not require, but only recommend that all
referenced namespaces are included in the document.

Added clause to clarify the usage of empty strings.

Clarified behavior of $skip when the value is greater than or equal to the number of members in a
resource collection.

Corrected the minimum value for $top to align with OData.

Clarified behavior of pATcH for partial success scenarios.

Various clarifications and style fixes to the Aggregation clause.

Clarified that HEAD requests shall be rejected when a query parameter is provided.
Removed erroneous requirement for ETags to be strong.

Added Aggregation clause.

Clarified that services are allowed use HTTP 501 Not Implemented for unsupported HTTP
methods.

Clarified the normative semantics around the term "deprecated".
Clarified clauses describing the usage of null for properties versus not reporting a property.

Restructured the Security details clause for ease of reading. Other than the changes listed below,
no other changes were intended. Any clarifications that inadvertently altered the normative
behavior are considered errata, and will be corrected in future revisions to the specification.

Deprecated TLS v1.1, and set the minimum TLS requirement to be TLS v1.2 with RFC7525
recommendations.

Deprecated existing cipher suites clause in favor of new clause to leverage IANA
recommendations.

Added requirement for supporting the /redfish URI.
Added support for deep operations.

Deprecated full ISO8601 duration format in favor of a simplified version that does not contain
years, months, and weeks.

Added missing normative language for how actions with response bodies are defined in schema.

Added HTTP 201 created as valid responses for actions.

216

Published Version 1.23.1

DSP0266 Redfish Specification

Version Date Description

Clarified the ~ operator for the $expand query parameter to expand hyperlinks found in all Links
properties.

Clarified the * and . operators for the $expand query parameter to expand hyperlinks found in
payload annotations, such as @Redfish.Settings .

Clarified usage of action parameters that point to resources; the expectation is a reference object
pointing to the resource in question is passed by the client.

Clarified that DELETE on a resource likely deletes subordinate resources.
Clarified best practices for naming rules, in particular with regards to acronyms.

Clarified behavior for when individual members of a resource collection cannot be returned as part
of a $expand request.

Clarified usage of @Message.ExtendedInfo in error responses and provided guidance for clients for
handling error responses.

1.9.0 2019-12-06 Made change to no longer require the server response header.

Added clause to Schema modification rules to allow for the addition of OEM URIs to standard
resources.

Loosened requirements on @odata.type within oem to not require it in arrays where the type is
used repeatedly.

Made many changes for style consistency, grammar, and general clarity. Except for the following
additions, no normative changes were made. Any clarifications that inadvertently altered the
normative behavior are considered errata, and will be corrected in future revisions to the
Specification.

1.8.1 2019-12-06

Clarified SSE with regards to requiring a blank line after each event.

Clarified order of precedence for resolving multiple operation overrides within the Privilege
Registry.

Clarified cases for property overrides in the Privilege Registry where multiple objects in the same
resource contain the same property name.

Updated references for HTTP Basic authentication to use RFC7617 instead of RFC7235.

Added text/event-stream , application/yaml ,and application/vnd.oai.openapi usage to the
Accept and Content-Type header table entries.

Added clause that provides guidance on service behavior when null is a property value in PosT
(create) operations.

Loosened requirements on SSE id based on client usage.

Version 1.23.1 Published 217

Redfish Specification

Version

1.8.0

1.71

Date

2019-08-08

2019-08-08

DSP0266

Description

Added documentation for settings, settings apply time, operation apply time, operation apply time
support, maintenance window, collection capabilities, requested count, allow over-provisioning,
zone affinity, supported certificates, and deprecated terms to the Payload annotations clause.

Added clauses that document responses for actions with a response body defined in schema.

Clarified the allowable values payload annotation to show it can be used for both properties and
action parameters.

Added clause for using /redfish/v1/openapi.yaml as the well-known URI for the OpenAPI
document.

Added clause that specifies non-resource reference properties with uri in the name are accessed
using Redfish protocol semantics.

Added subordinateResources $filter parameter for SSE.

Added Update service clause that describes requirements for the simpleupdate action and the
MultipartHttpPushUri property.

Added statements about the owning entity annotation term and its usage in schema modifications.
Clarified SSE id from 1Id in an event payload and EventId within an event record.
Fixed recommended sequencing of the SSE id to be related to Eventid within an event record.

Clarified that services are allowed to close sessions for an account when its password has
changed.

Corrected the Password management clause to describe how a user can GeT their respective
account resources when a password change is required.

Clarified that registries are not required to return @odata.id .
Clarified that services should use HTTP 400 Bad Request for invalid query requests.

Clarified that services should use HTTP 400 Bad Request when the only query is being combined
with other query parameters.

Clarified that services should use HTTP 4ee Bad Request when query parameters are used on
non-GET operations.

Added clause about how to construct enumeration values.

Clarified references to specific messages to also reference their message registry.
Added language about the construction of action names in payloads.

Added informative text for how OEM actions can be defined.

Added guidance for using HTTPS whenever sensitive data is being transmitted.

218

Published Version 1.23.1

DSP0266 Redfish Specification

Version Date Description
Added clause restricting the maximum size of an event payload to be 1MiB.
Clarified that auto expanded resource collections can use paging.
Clarified error response format for SSE.
Clarified that charset=utf-8 is not required within the content-Type header for SSE.
Added clause about how URI patterns are constructed.
Added Excerpt term.
Made many changes for style consistency, grammar, and general clarity. Except for the following

additions, no normative changes were made. Any clarifications that inadvertently altered the
normative behavior are considered errata, and will be corrected in future revisions to the

1.7.0 2019-05-16

Specification.

Added normative statements about how to handle array properties and PATCH operations on
arrays.

Separated data model and schema language clauses.
Added clauses that describe how JSON Schema and OpenAPI files are formatted.
Added clause that describes the schema versioning methodology.

Added clause about how URI patterns are constructed based on the resource tree and property
hierarchy.

Added dictionary file naming rules and repository locations.

Enhanced localization definitions and defined repository locations.

Added statement about SSE to the Eventing mechanism clause.

Added Constrained composition and Expandable resources clauses to Redfish Composability.
Added clause about requiring event subscriptions to be persistent across service restarts.

Added clause about persistence of tasks generated as a result of using
@Redfish.OperationApplyTime across service restarts.

Added clause about using @Redfish.OperationApplyTime and @Redfish.MaintenanceWindow within
task responses.

Removed @odata.context property from example payloads.

Added Password management clause to describe functional behavior for restricting access when
an account requires a password change.

Version 1.23.1 Published 219

Redfish Specification DSP0266

Version Date Description

Added clause around the usage of the HTTP 403 Forbidden status code when an account
requires a password change.

1.6.1 2018-12-13 Added clause about percent encoding being allowed for query parameters.
Changed $expand example to use SoftwareInventory instead of LogEntry .
Added clause about the use of a separator for multiple query parameters.
Fixed $filter examplestouse / instead of . for property paths.
Clarified the usage of messages in a successful action response; provided an example.

Added clarification about services supporting a subset of HTTP operations on resources specified
in schema.

Added clarification about services implementing writable properties as read only.

Added clarification about session termination not affecting connections opened by the session.
Added Redfish Provider term definition.

Updated JSON Schema references to point to Draft 7 of the JSSON Schema Specification.

Added clarifications about scenarios for when a request to add an event subscription contains
conflicting information and how services respond.

Removed language about ignoring the Links property in PATCH requests.

Clarified usage of ETags to show that a client is not supposed to PATCH @odata.etag when
attempting to use ETag protection for a resource.

Clarified usage of the only query parameter to show it's not to be combined with $expand and not
to be used with singular resources.

Clarified the usage of the HTTP status codes with task monitors.
Made various spelling and grammar fixes.
1.6.0 2018-08-23 Added methods of using $filter onthe SSE URI for the event service.
Added support for the OpenAPI Specification v3.0. This allows OpenAPI-conforming software to
access Redfish service implementations. This change might require modification to an

implementation to support this version of the specification.

Added strict definitions for the URI patterns used for Redfish resources to support OpenAPI. Each
URI is now constructed using a combination of fixed, defined path segments and the values of 1d
properties for resource collections. Also added restrictions on usage of unsafe characters in URlIs.
Implementations reporting support for Redfish v1.6.0 conform to these URI patterns.

Added support for creating and naming Redfish schema files in the OpenAPI YAML-based format.

220 Published Version 1.23.1

DSP0266 Redfish Specification

Version Date Description
Added URI construction rules for OEM extensions.
Changed ETag usage to require strong ETag format.
Added requirement for HTTP Allow header as a response header for GET and HEAD operations.

Added metric reports as a type of event that can be produced by a Redfish service. Added support
for SSE streaming of metric reports in support of new telemetry service.

Added registry, resource, origin, or EventFormatType -based event subscription methods as
detailed in the Specification and schema. Added an EventFormatType to enable additional payload
types for subscription-based or streaming events. Deprecated EventType -based event subscription
mechanism.

Added event message grouping capability.
Provided guidance for defining and using OEM extensions for messages and Message Registries.
Added excerpt and only query parameters.

Clarified requirements for resource collection responses, which includes required properties that
were expected, but not listed explicitly in the Specification.

Changed the requirement for the @odata.context annotation to be optional.
Removed requirement for clients to include the obata-version HTTP header in all requests.

Added clarifications to required properties in structured properties derived from
1.5.1 2018-08-10

ReferenceableMembers .

Reorganized Eventing clause to break out the different subscription methods to differentiate pub-
sub from SSE.

Removed statements referencing OData conformance levels.

Clarified terminology to explain usage of absolute versus relative reference throughout.
Clarified client-side HTTP Accept header requirements.

Added evaluation order for supported query parameters and clarified examples.

Clarified handling of annotations in response payloads when used with $select queries.
Clarified service handling of annotations in PATCH requests.

Clarified handling of various PATCH request error conditions.

Clarified ability to create resource collection members by PosT operations to the resource
collection or the Members array within the resource.

Corrected several examples to show required properties in payload.

Version 1.23.1 Published 221

Redfish Specification DSP0266

Version Date Description
Clarified usage of the Link header and values of rel=describedBy .

Clarified that the HTTP status code table only describes Redfish-specific behavior and that unless
specified, all other usage follows the definitions within the appropriate RFCs.

Added entry for the HTTP 431 Request Header Fields Too Large status code.

Added statement that the HTTP 503 Service Unavailable status code can be used during reboot
or reset of a service to indicate that the service is temporarily unavailable.

Clarified usage of the @odata.type annotation within embedded objects.

Added statements about the required Name , Id , and MemberId properties, and the common
Description property, which have always been shown as required in schema files, but which the
Specification did not mention.

Added guidance for the value of time-date properties when time is unknown.
Added the title property description in actions.
Clarified usage of the @odata.nextLink annotation at the end of resource collections.

Added additional guidance for naming properties and enumeration values that contain "OEM" or
that include acronyms.

Corrected requirements for description and long description annotations.
Corrected name of configureComponents in the Operation-to-privilege mapping clause.
Various typographical errors and grammatical improvements.

1.5.0 2018-04-05 Added support for server-sent eventing for streaming events to web-based GUIs or other clients.

Added @Redfish.OperationApplyTime annotation to provide a mechanism for specifying
deterministic behavior for the application of Create, Delete or Action (POST) operations.

1.41 2018-04-05 Updated name of the forum from SPMF to Redfish Forum.
Consistently used the term, hyperlink.

Added example to clarify usage of $select query parameter with $expand , and clarified expected
results when using AutoExpand . Corrected order of precedence for $filter parameter options.

Corrected terminology for OEM-defined actions removing "custom” in favor of OEM, and clarified
that the action target property is always required for an action, along with its usage.

Corrected location header values for responses to data modification requests that create a task
(Task resource vs. task monitor). Clarified error handling of DELETE operations on Task
resources.

Removed references to obsolete and unused pPrivilege annotation namespace.

222 Published Version 1.23.1

DSP0266

Version

1.4.0

1.3.0

Date

2017-11-17

2017-08-11

Redfish Specification

Description
Clarified usage of the Base.1.0.GeneralError message in the Base Message Registry.

Added durable URIs for registries and profiles, and clarified intended usage for each folder in the
repository. Added file naming conventions for registries and profiles, and clarified file naming for
schemas.

Added statement to clarify that additional headers may be added to M-SEARCH responses for
SSDP to enable UPnP compatibility.

Clarified assignment requirements for predefined or custom roles when new manager account
instances are created, using the RoleIld property.

Added support for optional query parameters ($expand , $filter ,and $select) on requests to
enable more efficient retrieval of resources or properties from a Redfish service.

Clarified HTTP status and payload responses after successful processing of data modification
requests. This includes PosT operations to complete actions, and other PosT , PATCH, or PUT
requests.

Added entries for the HTTP 428 Precondition Required and 507 Insufficient Storage status
codes to clarify the proper response to certain error conditions. Added reference links to the HTTP
status code table throughout.

Updated the Abstract to reflect the current state of the specification.

Added reference to RFC6585 and clarified expected behavior when ETag support is used in
conjunction with puT or PATCH operations.

Added definition for Property term and updated text to use term consistently.
Added Client requirement column and information for HTTP headers on requests.
Clarified the usage and expected format of the @odata.context property value.

Added clause to describe how to revise structured properties and resolve their definitions in
schema.

Added more descriptive definition for the settings resource. Added an example for the
settingsobject . Added description and example for using the @Redfish.SettingsApplyTime
annotation.

Added Action example using the ActionInfo resource in addition to the simple
@Redfish.Allowablevalues example. Updated example to show a proper subset of the available
enumerations to reflect a real-world example.

Added statement explaining the updates required to TaskState upon task completion.

Added support for a service to optionally reject a PATCH or PUT operation if the If-Match or If-
Match-None HTTP header is required by returning the HTTP 428 Precondition Required status
code.

Version 1.23.1

Published 223

Redfish Specification

Version

1.2.1

1.2.0

1.0.5

Date

2017-08-10

2017-04-14

2016-12-09

2016-12-09

Description

DSP0266

Added support for a service to describe when the values in the settings object for a resource are

applied via the @Redfish.SettingsApplyTime annotation.
Clarified wording of the oem object definition.
Clarified wording of the Partial resource results clause.

Clarified behavior of a service when receiving a PATCH with an empty JSON object.

Added statement about other uses of the HTTP 503 Service Unavailable status code.

Clarified format of URI fragments to conform to RFC6901.

Clarified use of absolute and relative URlIs.

Clarified definition of the target property as originating from OData.

Clarified distinction between hyperlinks and the links property.

Corrected the JSON example of the privilege map.

Clarified format of the @odata.context property.

Added clauses about the schema file naming conventions.

Clarified behavior of a service when receiving a put with missing properties.
Clarified valid values in the Accept header to include wildcards per RFC7231.
Corrected configureuser privilege to be spelled cConfigureusers .

Corrected the Session login clause to include normative language.

Added support for the Redfish composability service.

Clarified service handling of the Accept-Encoding header in a request.
Improved consistency and formatting of example requests and responses throughout.
Corrected usage of the @odata.type property in response examples.

Clarified usage of the required annotation.

Clarified usage of subordinateOverrides in the Privilege Registry.

Added Redfish service operation-to-privilege mapping clause. This functionality enables a

service to present a resource or even property-level mapping of HTTP operations to roles and

privileges.
Added references to the Redfish Host Interface Specification (DSP0270).

Errata release. Various typographical errors.

224

Published Version 1.23.1

DSP0266 Redfish Specification

Version Date Description
Corrected the use of collection, resource collection, and members throughout.
Added glossary entries for resource collection and members.

Corrected certificate requirements to reference definitions and requirements in RFC5280 and
added a normative reference to RFC5280.

Clarified usage of the HTTP PosT and PATCH operations.
Clarified usage of the HTTP status codes and error responses.
1.04 2016-08-28 Errata release. Various typographical errors.
Added example of an HTTP Link Header and clarified usage and content.
Added the Schema modification clause, which describes the allowed usage of the schema files.

Added recommendation to use TLS 1.2 or later, and to follow the SNIA TLS Specification. Added
reference to the SNIA TLS Specification. Added additional recommended
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite.

Clarified that the 1d property of a Role resource matches the role name.

Errata release. Fixed the missing numbering in the table of contents and clauses. Corrected URL
1.0.3 2016-06-17 references to external specifications. Added missing normative references. Corrected
typographical error in ETag example.

Clarified examples for @Message.ExtendedInfo to show arrays of messages.

Clarified that a PosT to session service to create a new session does not require authorization
headers.

1.0.2 2016-03-31 Errata release. Various typographical errors.
Corrected normative language for M-SEARCH queries and responses.
Corrected cache-Control and usN formatin M-SEARCH responses.

Corrected schema namespace rules to conform to OData namespace requirements and updated
examples throughout the document to conform to this format. Specifically,

<namespace>.<n>.<n>.<n> becomes <namespace>.v<n>_<n>_<n> . File naming rules for JSON
Schema and CSDL (XML) schemas were also corrected to match this format and to enable future
major (v2) versions to coexist.

Added clause that details the location of the schema repository and lists the durable URLs for the
repository.

Added definition for the value of the Units annotation, using the definitions from the UCUM
Specification. Updated examples throughout to use this standardized form.

Version 1.23.1 Published 225

Redfish Specification DSP0266

Version Date Description

Modified the naming requirements for oem property naming to avoid future use of colon : and
period . in property names, which can produce invalid or problematic variable names when used
in some programming languages or environments. Both separators have been replaced with
underscore (_), with colon (:) and period (.) usage now deprecated (but valid).

Removed duplicative or out-of-scope subclauses from the Security clause, which made
unintended requirements on Redfish service implementations.

Added the requirement that property names in resource responses match the casing
(capitalization) as specified in schema.

Updated normative references to current HTTP RFCs and added clause references throughout the
document where applicable.

Clarified ETag header requirements.

Clarified that no authentication is required for accessing the service root.

Clarified description of retrieving resource collections.

Clarified usage of charset=utf-8 inthe HTTP Accept and Content-Type headers.

Clarified usage of the Allow HTTP response header and added a table entry for the Retry-After
header usage.

Clarified normative usage of the type property and context property, explaining the ability to use
two URL forms, and corrected the @odata.context URL examples throughout.

Corrected inconsistent terminology throughout the resource collection response clause.
Corrected name of normative resource Members property (Members , not value).
Clarified that error responses may include information about multiple error conditions.
Corrected name of Measures.Unit annotation term as used in examples.

Corrected outdated reference to Core OData Specification in annotation term examples.
Added the Members property to the Common Redfish resource properties clause.

Clarified terminology and usage of the task monitor and related operations in the Asynchronous
operations clause.

Clarified that implementation of the SSDP protocol is optional.
Corrected typographical error in the SSDP usn field's string definition (now ::dmtf-org).
Added the opTIONS method to the allowed HTTP methods list.

Fixed nullablity in example.

226 Published Version 1.23.1

DSP0266

Version

1.0.1

1.0.0

Date

2015-09-17

2015-08-04

Redfish Specification

Description

Errata release. Various grammatical corrections.

Clarified normative use of long description in schema files.

Clarified usage of the rel-describedby Link header.

Corrected text in example of "Select List" in OData context property.

Clarified Accept-Encoding request header handling.

Deleted duplicative and conflicting statement on returning extended error resources.

Clarified relative URI resolution rules.

Clarified USN format.

Initial release.

Version 1.23.1

Published

227

Redfish Specification DSP0266

18 Bibliography

R. Fielding, 2000, Architectural Styles and the Design of Network-based Software Architectures,
https://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm

IETF RFC5288, J. Salowey et al., AES Galois Counter Mode (GCM) Cipher Suites for TLS, https://tools.ietf.org/
html/rfc5288

IETF RFC5487, M. Badra et al., Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois
Counter Mode, https://tools.ietf.org/html/rfc5487

IETF RFC5789, L. Dusseault et al., PATCH Method for HTTP, https://tools.ietf.org/html/rfc5789

IETF RFC6906, E. Wilde, The 'profile’ Link Relation Type, https://tools.ietf.org/html/rfc6906

28 October 1999, Simple Service Discovery Protocol/1.0 Operating without an Arbiter, https://tools.ietf.org/html/
draft-cai-ssdp-v1-03

10 March 2016, OData Version 4.0 Plus Errata 03: Core Vocabulary, https://docs.oasis-open.org/odata/odata/
v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml

24 February 2014, OData JSON Format Version 4.0, https://docs.oasis-open.org/odata/odata-json-format/v4.0/
os/odata-json-format-v4.0-os.html

24 February 2014, OData Version 4.0 Part 2: URL Conventions, https://docs.oasis-open.org/odata/odata/v4.0/
os/part2-url-conventions/odata-v4.0-o0s-part2-url-conventions.html

228

Published Version 1.23.1

https://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5487
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6906
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
https://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
https://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html

	Redfish Specification
	Foreword
	Acknowledgments
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, symbols, and abbreviated terms
	3.1 Hardware terms
	3.1.1 baseboard management controller (BMC)
	3.1.2 IPMI
	3.1.3 KVM-IP
	3.1.4 NIC
	3.1.5 PCI
	3.1.6 PCIe

	3.2 Web development terms
	3.2.1 CORS
	3.2.2 CRUD
	3.2.3 CSRF
	3.2.4 HTTP
	3.2.5 HTTPS
	3.2.6 hypermedia API
	3.2.7 IP
	3.2.8 JSON
	3.2.9 message
	3.2.10 OData
	3.2.11 OData service document
	3.2.12 operation
	3.2.13 parent resource
	3.2.14 property
	3.2.15 request
	3.2.16 response
	3.2.17 subscription
	3.2.18 TCP
	3.2.19 TLS
	3.2.20 XSS

	3.3 Redfish terms
	3.3.1 action
	3.3.2 collection
	3.3.3 event
	3.3.4 excerpt
	3.3.5 member
	3.3.6 Redfish client
	3.3.7 Redfish Device Enablement (RDE)
	3.3.8 Redfish protocol
	3.3.9 Redfish schema
	3.3.10 Redfish service
	3.3.11 regular expression
	3.3.12 resource
	3.3.13 resource collection
	3.3.14 resource tree
	3.3.15 resource type
	3.3.16 service root
	3.3.17 subordinate resource
	3.3.18 task
	3.3.19 task monitor

	4 Typographical conventions
	5 Overview
	5.1 Goals
	5.2 Design tenets
	5.3 Limitations
	5.4 Additional design background and rationale
	5.4.1 REST-based interface
	5.4.2 Data-oriented
	5.4.3 Separation of protocol from data model
	5.4.4 Hypermedia API service root
	5.4.5 OpenAPI v3.0 support
	5.4.6 OData conventions

	5.5 Service elements
	5.5.1 Synchronous and asynchronous operation support
	5.5.2 Eventing mechanism
	5.5.3 Actions
	5.5.4 Service discovery
	5.5.5 Remote access support

	5.6 Security
	6 Protocol details
	6.1 Universal Resource Identifiers
	6.2 HTTP methods
	6.3 HTTP redirect
	6.4 Media types
	6.5 ETags
	6.6 Protocol version
	6.7 Redfish-defined URIs and relative reference rules
	7 Service requests
	7.1 Request headers
	7.2 GET (read requests)
	7.2.1 GET (read requests) overview
	7.2.2 Resource collection requests
	7.2.3 Service root request
	7.2.4 OData service and metadata document requests

	7.3 Query parameters
	7.3.1 Query parameter overview
	7.3.2 The $expand query parameter
	7.3.3 The $select query parameter
	7.3.4 The $filter query parameter

	7.4 HEAD
	7.5 Data modification requests
	7.5.1 Data modification requests overview
	7.5.2 Modification success responses
	7.5.3 Modification error responses

	7.6 PATCH (update)
	7.7 PATCH on array properties
	7.8 PUT (replace)
	7.9 POST (create)
	7.10 DELETE (delete)
	7.11 POST (action)
	7.12 Operation apply time
	7.13 Deep operations
	8 Service responses
	8.1 Response headers
	8.2 Link header
	8.3 Status codes
	8.4 OData metadata responses
	8.4.1 OData metadata responses overview
	8.4.2 OData $metadata
	8.4.2.1 Referencing other schemas
	8.4.2.2 Referencing OEM extensions

	8.4.3 OData service document

	8.5 Resource responses
	8.6 Error responses
	9 Data model
	9.1 Resources
	9.2 Resource types
	9.3 Resource collections
	9.4 OEM resources
	9.5 Common data types
	9.5.1 Primitive types
	9.5.2 Enumerations
	9.5.3 Empty string values
	9.5.4 GUID and UUID values
	9.5.5 Date-Time values
	9.5.6 Duration values
	9.5.7 Reference properties
	9.5.8 Non-resource reference properties
	9.5.9 Array properties
	9.5.10 Structured properties
	9.5.11 Message object
	9.5.11.1 Overview
	9.5.11.2 MessageId format

	9.6 Properties
	9.6.1 Properties overview
	9.6.2 Resource identifier (@odata.id) property
	9.6.3 Resource type (@odata.type) property
	9.6.4 Resource ETag (@odata.etag) property
	9.6.5 Resource context (@odata.context) property
	9.6.6 Id
	9.6.7 Name
	9.6.8 Description
	9.6.9 MemberId
	9.6.10 Count (Members@odata.count) property
	9.6.11 Members
	9.6.12 Next link (Members@odata.nextLink) property
	9.6.13 Links
	9.6.13.1 Reference to a related resource
	9.6.13.2 References to multiple related resources

	9.6.14 Actions property
	9.6.14.1 Action representation
	9.6.14.2 Action responses

	9.6.15 Oem
	9.6.16 Status

	9.7 Naming conventions
	9.7.1 Naming rules
	9.7.2 URI naming rules

	9.8 Extending standard resources
	9.8.1 Extending standard resources overview
	9.8.2 OEM property format and content
	9.8.3 OEM-specified object naming
	9.8.4 OEM resource types
	9.8.5 OEM registries
	9.8.6 OEM URIs
	9.8.7 OEM property examples
	9.8.8 OEM actions

	9.9 Payload annotations
	9.9.1 Payload annotations overview
	9.9.2 Allowable values for strings
	9.9.3 Allowable patterns for string values
	9.9.4 Allowable values for numbers and durations
	9.9.5 Extended information
	9.9.5.1 Extended object information
	9.9.5.2 Extended property information
	9.9.5.3 Extended information implementation notes

	9.9.6 Action info annotation
	9.9.7 Settings and settings apply time annotations
	9.9.8 Operation apply time and operation apply time support annotations
	9.9.9 Maintenance window annotation
	9.9.10 Collection capabilities annotation
	9.9.11 Requested count and allow over-provisioning annotations
	9.9.12 Zone affinity annotation
	9.9.13 Supported certificates annotation
	9.9.14 Deprecated annotation
	9.9.15 Writable properties annotation

	9.10 Settings resource
	9.11 Special resource situations
	9.11.1 Overview
	9.11.2 Absent resources
	9.11.3 Transiently unavailable resources

	9.12 Registries
	9.13 Schema annotations
	9.13.1 Schema annotations overview
	9.13.2 Description annotation
	9.13.3 Long description annotation
	9.13.4 Resource capabilities annotation
	9.13.5 Resource URI patterns annotation
	9.13.6 Additional properties annotation
	9.13.7 Permissions annotation
	9.13.8 Required annotation
	9.13.9 Required on create annotation
	9.13.10 Units of measure annotation
	9.13.11 Expanded resource annotation
	9.13.12 Owning entity annotation
	9.13.13 Deprecated annotation
	9.13.14 URI segment annotation
	9.13.15 URI annotation

	9.14 Versioning
	9.15 Localization
	10 File naming and publication
	10.1 Registry file naming
	10.2 Profile file naming
	10.3 Dictionary file naming
	10.4 Localized file naming
	10.5 DMTF Redfish file repository
	11 Schema definition languages
	11.1 OData Common Schema Definition Language
	11.1.1 OData Common Schema Definition Language overview
	11.1.2 File naming conventions for CSDL
	11.1.3 Core CSDL files
	11.1.4 CSDL format
	11.1.4.1 Referencing other CSDL files
	11.1.4.2 CSDL data services

	11.1.5 Elements of CSDL namespaces
	11.1.5.1 Qualified names
	11.1.5.2 Entity type and complex type elements
	11.1.5.3 Action element
	11.1.5.4 Action element for OEM actions
	11.1.5.5 Action with a response body
	11.1.5.6 Property element
	11.1.5.7 Navigation property element
	11.1.5.8 Enum type element
	11.1.5.9 Annotation element

	11.2 JSON Schema
	11.2.1 JSON Schema overview
	11.2.2 File naming conventions for JSON Schema
	11.2.3 Core JSON Schema files
	11.2.4 JSON Schema format
	11.2.5 JSON Schema definitions body
	11.2.5.1 Resource definitions in JSON Schema
	11.2.5.2 Enumerations in JSON Schema
	11.2.5.3 Actions in JSON Schema
	11.2.5.4 OEM actions in JSON Schema
	11.2.5.5 Action with a response body

	11.2.6 JSON Schema terms

	11.3 OpenAPI
	11.3.1 OpenAPI overview
	11.3.2 File naming conventions for OpenAPI schema
	11.3.3 Core OpenAPI schema files
	11.3.4 openapi.yaml
	11.3.5 OpenAPI file format
	11.3.6 OpenAPI components body
	11.3.6.1 Resource definitions in OpenAPI
	11.3.6.2 Enumerations in OpenAPI
	11.3.6.3 Actions in OpenAPI
	11.3.6.4 OEM actions in OpenAPI

	11.3.7 OpenAPI terms used by Redfish

	11.4 Schema modification rules
	12 Service details
	12.1 Eventing
	12.1.1 Eventing overview
	12.1.2 POST to subscription collection
	12.1.3 Open an SSE connection
	12.1.4 EventType-based eventing
	12.1.5 Subscribing to events
	12.1.6 Event formats
	12.1.7 OEM extensions

	12.2 Asynchronous operations
	12.3 Resource tree stability
	12.4 Discovery
	12.4.1 Discovery overview
	12.4.2 UPnP compatibility
	12.4.3 USN format
	12.4.4 M-SEARCH response
	12.4.5 Notify, alive, and shutdown messages

	12.5 Server-sent events
	12.5.1 General
	12.5.2 Event service
	12.5.2.1 Event message SSE stream
	12.5.2.2 Metric report SSE stream

	12.6 WebSocket inbound access
	12.6.1 Overview
	12.6.2 Connecting to a WebSocket
	12.6.3 Data transmission on an established WebSocket

	12.7 Update service
	12.7.1 Overview
	12.7.2 Software update types
	12.7.2.1 Simple updates
	12.7.2.2 Multipart HTTP push updates

	12.8 Import configuration data
	12.8.1 Overview
	12.8.2 Multipart HTTP push imports

	12.9 Outbound connections
	12.9.1 Overview
	12.9.2 Establishing an outbound connection
	12.9.3 MTLS for an outbound connection
	12.9.4 Handling Redfish requests over an outbound connection
	12.9.5 Closing an outbound connection

	13 Security details
	13.1 Transport Layer Security (TLS) protocol
	13.1.1 Transport Layer Security (TLS) protocol overview
	13.1.2 Cipher suites
	13.1.3 Certificates

	13.2 Sensitive data
	13.3 Authentication
	13.3.1 Authentication overview
	13.3.2 Authentication requirements
	13.3.2.1 Resource and operation authentication requirements
	13.3.2.2 HTTP header authentication requirements
	13.3.2.3 Authentication failure requirements

	13.3.3 HTTP Basic authentication
	13.3.4 Redfish session login authentication
	13.3.4.1 Redfish login sessions
	13.3.4.2 Session login
	13.3.4.3 Session lifetime
	13.3.4.4 Session termination or logout

	13.3.5 Client certificate authentication

	13.4 Authorization
	13.4.1 Authorization overview
	13.4.2 Privilege model
	13.4.2.1 Roles
	13.4.2.2 Restricted roles and restricted privileges
	13.4.2.3 OEM privileges

	13.4.3 Redfish service operation-to-privilege mapping
	13.4.3.1 Why specify operation-to-privilege mapping?
	13.4.3.2 Representing operation-to-privilege mappings
	13.4.3.3 Operation map syntax
	13.4.3.4 Mapping overrides syntax
	13.4.3.5 Property override example
	13.4.3.6 Subordinate override
	13.4.3.7 Resource URI override
	13.4.3.8 Privilege AND and OR syntax

	13.4.4 Delegated authorization with OAuth 2.0
	13.4.4.1 OAuth 2.0 overview
	13.4.4.2 OAuth 2.0 data model requirements
	13.4.4.3 OAuth 2.0 access tokens
	13.4.4.4 Redfish OAuth2.0 scope usage

	13.5 Account service
	13.5.1 Account service overview
	13.5.2 Password management
	13.5.3 Atomic password changes
	13.5.4 Password change required handling
	13.5.5 Time-based One-Time Password secret key handling

	13.6 Asynchronous tasks
	13.7 Event subscriptions
	14 Redfish Host Interface
	15 Redfish composability
	15.1 Composition requests
	15.1.1 Composition requests overview
	15.1.2 Specific composition
	15.1.3 Constrained composition
	15.1.4 Expandable resources

	15.2 Updating a composed resource
	16 Aggregation
	16.1 Classes of aggregators
	16.1.1 Implicit and complex aggregators
	16.1.2 Use cases

	16.2 Aggregation service
	16.2.1 Aggregation service overview
	16.2.2 Aggregator requirements
	16.2.3 Aggregates
	16.2.4 Aggregation sources and connection methods

	17 ANNEX A (informative) Change log
	18 Bibliography

