
Document Identifier: DSP0266

Date: 2023-04-04

Version: 1.18.0

Redfish Specification

Supersedes: 1.17.1

Document Class: Normative

Document Status: Published

Document Language: en-US



DMTF is a not-for-profit association of industry members dedicated to promoting enterprise
and systems management and interoperability. Members and non-members may reproduce
DMTF specifications and documents, provided that correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release date
should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject
to third party patent rights, including provisional patent rights (herein "patent rights").
DMTF makes no representations to users of the standard as to the existence of such rights,
and is not responsible to recognize, disclose, or identify any or all such third party patent
right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure
of such rights, owners or claimants. DMTF shall have no liability to any party, in any
manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party's reliance on the
standard or incorporation thereof in its product, protocols or testing procedures. DMTF
shall have no liability to any party implementing such standard, whether such
implementation is foreseeable or not, nor to any patent owner or claimant, and shall have
no liability or responsibility for costs or losses incurred if a standard is withdrawn or
modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for
such implementations.

For information about patents held by third-parties which have notified DMTF that, in their
opinion, such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php.

This document's normative language is English. Translation into other languages is
permitted.

Copyright Notice
Copyright © 2015-2023 DMTF. All rights reserved.

Redfish Specification DSP0266

2 Published Version 1.18.0

http://www.dmtf.org/about/policies/disclosures.php


CONTENTS

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Terms, definitions, symbols, and abbreviated terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Hardware terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 baseboard management controller (BMC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 IPMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 KVM-IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4 NIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.5 PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.6 PCIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Web development terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 CORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 CRUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 CSRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 excerpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.6 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.7 HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.8 hypermedia API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.9 IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.10 JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.11 member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.12 message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.13 OData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.14 OData service document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.15 operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.16 parent resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.17 property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.18 request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.19 response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.20 subscription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.21 task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.22 task monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.23 TCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.24 TLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.25 XSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Redfish terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

DSP0266 Redfish Specification

Version 1.18.0 Published 3



3.3.2 Redfish client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Redfish protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Redfish schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.5 Redfish service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.6 resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.7 resource collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.8 resource tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.9 resource type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.10 service root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.11 subordinate resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Typographical conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Design tenets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Additional design background and rationale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.1 REST-based interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.2 Data-oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.3 Separation of protocol from data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.4 Hypermedia API service root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.5 OpenAPI v3.0 support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4.6 OData conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Service elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.1 Synchronous and asynchronous operation support . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.2 Eventing mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.3 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5.4 Service discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5.5 Remote access support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6 Protocol details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Universal Resource Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 HTTP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 HTTP redirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Media types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 ETags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.6 Protocol version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.7 Redfish-defined URIs and relative reference rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Service requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1 Request headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 GET (read requests). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2.1 GET (read requests) overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.2 Resource collection requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.3 Service root request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Redfish Specification DSP0266

4 Published Version 1.18.0



7.2.4 OData service and metadata document requests . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 Query parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.1 Query parameter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3.2 The $expand query parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.3 The $select query parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3.4 The $filter query parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4 HEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.5 Data modification requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.5.1 Data modification requests overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5.2 Modification success responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5.3 Modification error responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.6 PATCH (update) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.7 PATCH on array properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.8 PUT (replace). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.9 POST (create) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.10 DELETE (delete) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11 POST (action). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.12 Operation apply time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.13 Deep operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8 Service responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.1 Response headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Link header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Status codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.4 OData metadata responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.4.1 OData metadata responses overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.4.2 OData $metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.4.2.1 Referencing other schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.4.2.2 Referencing OEM extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4.3 OData service document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.5 Resource responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.6 Error responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2 Resource types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.3 Resource collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.4 OEM resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.5 Common data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.5.1 Primitive types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.5.2 Enumerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.5.3 Empty string values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.5.4 GUID and UUID values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.5.5 Date-Time values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.5.6 Duration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

DSP0266 Redfish Specification

Version 1.18.0 Published 5



9.5.7 Reference properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.5.8 Non-resource reference properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.5.9 Array properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.5.10 Structured properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.5.11 Message object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.5.11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.5.11.2 MessageId format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.6 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.6.1 Properties overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.6.2 Resource identifier (@odata.id) property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.6.3 Resource type (@odata.type) property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.6.4 Resource ETag (@odata.etag) property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.6.5 Resource context (@odata.context) property . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.6.6 Id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.6.7 Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.6.8 Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.6.9 MemberId. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.6.10 Count (Members@odata.count) property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.6.11 Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.6.12 Next link (Members@odata.nextLink) property . . . . . . . . . . . . . . . . . . . . . . . . 90
9.6.13 Links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.6.13.1 Reference to a related resource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.6.13.2 References to multiple related resources . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.6.14 Actions property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.6.14.1 Action representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.6.14.2 Action responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.6.15 Oem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.6.16 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.7 Naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.7.1 Naming rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.7.2 URI naming rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.8 Extending standard resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.8.1 Extending standard resources overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.8.2 OEM property format and content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.8.3 OEM-specified object naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.8.4 OEM resource types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.8.5 OEM registries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.8.6 OEM URIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.8.7 OEM property examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.8.8 OEM actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.9 Payload annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.9.1 Payload annotations overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.9.2 Allowable values for strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Redfish Specification DSP0266

6 Published Version 1.18.0



9.9.3 Allowable patterns for string values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.9.4 Allowable values for numbers and durations. . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.9.5 Extended information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.9.5.1 Extended object information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.9.5.2 Extended property information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.9.6 Action info annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.9.7 Settings and settings apply time annotations . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.9.8 Operation apply time and operation apply time support annotations . . . . . . . . 105
9.9.9 Maintenance window annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.9.10 Collection capabilities annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.9.11 Requested count and allow over-provisioning annotations . . . . . . . . . . . . . . . 108
9.9.12 Zone affinity annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.9.13 Supported certificates annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.9.14 Deprecated annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.9.15 Writable properties annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.10 Settings resource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.11 Special resource situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.11.2 Absent resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.12 Registries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.13 Schema annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.13.1 Schema annotations overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.13.2 Description annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.13.3 Long description annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.13.4 Resource capabilities annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.13.5 Resource URI patterns annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.13.6 Additional properties annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.13.7 Permissions annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.13.8 Required annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.13.9 Required on create annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.13.10 Units of measure annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.13.11 Expanded resource annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.13.12 Owning entity annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.13.13 Deprecated annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 . 
9.13.14 URI segment annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.14 Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.15 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10 File naming and publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.1 Registry file naming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.2 Profile file naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.3 Dictionary file naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.4 Localized file naming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.5 DMTF Redfish file repository. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

DSP0266 Redfish Specification

Version 1.18.0 Published 7



11 Schema definition languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.1 OData Common Schema Definition Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.1.1 OData Common Schema Definition Language overview . . . . . . . . . . . . . . . . . 123
11.1.2 File naming conventions for CSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.1.3 Core CSDL files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.1.4 CSDL format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.1.4.1 Referencing other CSDL files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.1.4.2 CSDL data services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.1.5 Elements of CSDL namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
11.1.5.1 Qualified names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
11.1.5.2 Entity type and complex type elements . . . . . . . . . . . . . . . . . . . . . . . . . . 126
11.1.5.3 Action element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.1.5.4 Action element for OEM actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11.1.5.5 Action with a response body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11.1.5.6 Property element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
11.1.5.7 Navigation property element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.1.5.8 Enum type element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.1.5.9 Annotation element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.2 JSON Schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2.1 JSON Schema overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2.2 File naming conventions for JSON Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2.3 Core JSON Schema files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2.4 JSON Schema format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.2.5 JSON Schema definitions body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

11.2.5.1 Resource definitions in JSON Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.2.5.2 Enumerations in JSON Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.2.5.3 Actions in JSON Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.2.5.4 OEM actions in JSON Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
11.2.5.5 Action with a response body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

11.2.6 JSON Schema terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.3 OpenAPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.3.1 OpenAPI overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.3.2 File naming conventions for OpenAPI schema . . . . . . . . . . . . . . . . . . . . . . . . 142
11.3.3 Core OpenAPI schema files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.3.4 openapi.yaml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.3.5 OpenAPI file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.3.6 OpenAPI components body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11.3.6.1 Resource definitions in OpenAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.3.6.2 Enumerations in OpenAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
11.3.6.3 Actions in OpenAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
11.3.6.4 OEM actions in OpenAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

11.3.7 OpenAPI terms used by Redfish. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
11.4 Schema modification rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Redfish Specification DSP0266

8 Published Version 1.18.0



12 Service details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.1 Eventing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

12.1.1 Eventing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.1.2 POST to subscription collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.1.3 Open an SSE connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
12.1.4 EventType-based eventing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
12.1.5 Subscribing to events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
12.1.6 Event formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
12.1.7 OEM extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

12.2 Asynchronous operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
12.3 Resource tree stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
12.4 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

12.4.1 Discovery overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.4.2 UPnP compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.4.3 USN format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.4.4 M-SEARCH response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.4.5 Notify, alive, and shutdown messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

12.5 Server-sent events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.5.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.5.2 Event service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.5.2.1 Event message SSE stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.5.2.2 Metric report SSE stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

12.6 Update service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
12.6.2 Software update types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.6.2.1 Simple updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.6.2.2 Multipart HTTP push updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

13 Security details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
13.1 Transport Layer Security (TLS) protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

13.1.1 Transport Layer Security (TLS) protocol overview . . . . . . . . . . . . . . . . . . . . . 169
13.1.2 Cipher suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
13.1.3 Certificates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

13.2 Sensitive data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
13.3 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

13.3.1 Authentication overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.3.2 Authentication requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

13.3.2.1 Resource and operation authentication requirements. . . . . . . . . . . . . . . 171
13.3.2.2 HTTP header authentication requirements . . . . . . . . . . . . . . . . . . . . . . . 171
13.3.2.3 Authentication failure requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.3.3 HTTP Basic authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.3.4 Redfish session login authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.3.4.1 Redfish login sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.3.4.2 Session login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

DSP0266 Redfish Specification

Version 1.18.0 Published 9



13.3.4.3 Session lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
13.3.4.4 Session termination or logout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13.3.5 Client certificate authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
13.4 Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13.4.1 Authorization overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
13.4.2 Privilege model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

13.4.2.1 Roles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
13.4.2.2 Restricted roles and restricted privileges . . . . . . . . . . . . . . . . . . . . . . . . 178
13.4.2.3 OEM privileges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

13.4.3 Redfish service operation-to-privilege mapping . . . . . . . . . . . . . . . . . . . . . . . 179
13.4.3.1 Why specify operation-to-privilege mapping? . . . . . . . . . . . . . . . . . . . . . 179
13.4.3.2 Representing operation-to-privilege mappings . . . . . . . . . . . . . . . . . . . . 179
13.4.3.3 Operation map syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
13.4.3.4 Mapping overrides syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.4.3.5 Property override example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.4.3.6 Subordinate override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.4.3.7 Resource URI override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.4.3.8 Privilege AND and OR syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

13.4.4 Delegated authorization with OAuth 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.4.4.1 OAuth 2.0 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.4.4.2 OAuth 2.0 data model requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.4.4.3 OAuth 2.0 access tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
13.4.4.4 Redfish OAuth2.0 scope usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

13.5 Account service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
13.5.1 Account service overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
13.5.2 Password management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
13.5.3 Password change required handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

13.6 Asynchronous tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
13.7 Event subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

14 Redfish Host Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
15 Redfish composability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

15.1 Composition requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.1.1 Composition requests overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.1.2 Specific composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.1.3 Constrained composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.1.4 Expandable resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

15.2 Updating a composed resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
16 Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

16.1 Classes of aggregators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.1.1 Implicit and complex aggregators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.1.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

16.2 Aggregation service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
16.2.1 Aggregation service overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Redfish Specification DSP0266

10 Published Version 1.18.0



16.2.2 Aggregator requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
16.2.3 Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
16.2.4 Aggregation sources and connection methods . . . . . . . . . . . . . . . . . . . . . . . . 198

17 ANNEX A (informative) Change log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
18 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

DSP0266 Redfish Specification

Version 1.18.0 Published 11



Foreword
DMTF's Redfish Forum develops the Redfish standard.

DMTF is a not-for-profit association of industry members that promotes enterprise and systems
management and interoperability. For information about DMTF, see DMTF.

This version supersedes version 1.17.1. For a list of the changes, see ANNEX A (informative) Change
log.

Acknowledgments

DMTF acknowledges the following individuals for their contributions to the Redfish standard, including
this document and Redfish schemas, interoperability profiles, and message registries:

• Rafiq Ahamed — Hewlett Packard Enterprise
• Richelle Ahlvers — Intel Corporation, Broadcom Inc.
• Jeff Autor — Hewlett Packard Enterprise
• David Black — Dell Technologies
• Jeff Bobzin — Insyde Software Corp.
• Patrick Boyd — Dell Technologies
• David Brockhaus — Vertiv
• Richard Brunner — VMware Inc.
• Sean Byland — Hewlett Packard Enterprise
• Lee Calcote — Seagate Technology
• Keith Campbell — Lenovo
• Derek Chan — Google LLC
• P Chandrasekhar — Dell Technologies
• Barbara Craig — Hewlett Packard Enterprise
• Chris Davenport — Hewlett Packard Enterprise
• Gamma Dean — Vertiv
• Michael Du — Huawei Technologies Co., Ltd.
• Daniel Dufresne — Dell Technologies
• Samer El-Haj-Mahmoud — Arm Limited, Lenovo, Hewlett Packard Enterprise
• George Ericson — Dell Technologies
• Wassim Fayed — Microsoft Corporation
• Kevin Ferguson — Vertiv
• Mike Garrett — Hewlett Packard Enterprise

Redfish Specification DSP0266

12 Published Version 1.18.0

https://www.dmtf.org/


• Steve Geffin — Vertiv
• Martin Halstead — Hewlett Packard Enterprise
• Joe Handzik — Hewlett Packard Enterprise
• Jon Hass — Dell Technologies
• Jeff Hilland — Hewlett Packard Enterprise
• Blake Hilliard — Hewlett Packard Enterprise
• Chris Hoffman — Vertiv
• Cactus Jiang — Vertiv
• Barry Kittner — Intel Corporation
• Steven Krig — Intel Corporation
• Jennifer Lee — Intel Corporation
• John Leung — Intel Corporation
• Magnus Lundmark — Ericsson AB
• Steve Lyle — Hewlett Packard Enterprise
• Gunnar Mills — IBM
• Jagan Molleti — Dell Technologies
• Milena Natanov — Microsoft Corporation
• Balaji Natrajan — Microchip Technology Inc., Hewlett Packard Enterprise
• Scott Phuong — Cisco Systems, Inc.
• Michael Pizzo — Microsoft Corporation
• Chris Poblete — Dell Technologies
• Slawek Putyrski — Intel Corporation
• Michael Raineri — Dell Technologies
• Joseph Reynolds — IBM
• Irina Salvan — Microsoft Corporation
• Bill Scherer — Hewlett Packard Enterprise
• Geoff Schunicht — Hewlett Packard Enterprise
• Abhirup Seal — Dell Technologies
• Hemal Shah — Broadcom Inc.
• Jim Shelton — Vertiv
• Tom Slaight — Intel Corporation
• Josiah Smith — Eaton
• Donnie Sturgeon — Vertiv
• Pawel Szymanski — Intel Corporation
• Ed Tanous — Google LLC
• Willy Tu — Google LLC
• Paul Vancil — Dell Technologies

DSP0266 Redfish Specification

Version 1.18.0 Published 13



• Ganesh Viswanathan — Dell Technologies
• Claire Weinan — Google LLC
• Joseph White — Dell Technologies
• Linda Wu — NVIDIA Corporation, Super Micro Computer, Inc.
• Justin York — Hewlett Packard Enterprise

Redfish Specification DSP0266

14 Published Version 1.18.0



Introduction
Redfish is a standard that uses RESTful interface semantics to access a schema based data model to
conduct management operations. It is suitable for a wide range of devices, from stand-alone servers,
to composable infrastructures, and to large-scale cloud environments.

The initial Redfish scope targeted servers. DMTF and its alliance partners expanded that scope to
cover most data center IT equipment and other solutions, and both in- and out-of-band access
methods.

Additionally, DMTF and other organizations that use Redfish as part of their industry standard or
solution have added educational material.

This document defines the RESTful interface protocol and the various concepts and services necessary
to implement a Redfish interface. The definition of the schema based data model and standard
messages for the Redfish interface are covered separately in the following documents:

• DMTF DSP8010, Redfish Schema Bundle, https://www.dmtf.org/dsp/DSP8010 contains the
individual schema definition files in multiple schema description languages.

• DMTF DSP0268, Redfish Data Model Specification, https://www.dmtf.org/dsp/DSP0268 contains the
normative descriptions and example payloads for all standard Redfish schema in a single reference
guide.

• DMTF DSP8011, Redfish Standard Registries Bundle, https://www.dmtf.org/dsp/DSP8011 contains
the message registries used for error reporting and event messages.

DSP0266 Redfish Specification

Version 1.18.0 Published 15

https://www.dmtf.org/dsp/DSP8010
https://www.dmtf.org/dsp/DSP0268
https://www.dmtf.org/dsp/DSP8011


1 Scope
This specification defines the required protocols, data model, behaviors, and other architectural
components for an interoperable, multivendor, remote, and out-of-band capable interface. This
interface meets the cloud-based and web-based IT professionals' expectations for scalable platform
management. While large and hyperscale environments are the primary focus, clients can use the
specification for individual system management.

The specification defines the required elements for all Redfish implementations, and the optional
elements that system vendors and manufacturers can choose. This specification also defines at which
points an implementation can provide OEM-specific extensions.

The specification sets normative requirements for Redfish services and associated materials, such as
Redfish schema files. In general, the specification does not set requirements for Redfish clients but
indicates how a client can successfully and effectively access and use a Redfish service.

The specification does not require that implementations of the Redfish interfaces and functions require
particular hardware or firmware.

Redfish Specification DSP0266

16 Published Version 1.18.0



2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.

• DMTF DSP0270, Redfish Host Interface Specification, https://www.dmtf.org/sites/default/files/
standards/documents/DSP0270_1.0.0.pdf

• Redfish Schema: RedfishExtensions v1.0.0, https://redfish.dmtf.org/schemas/v1/
RedfishExtensions_v1.xml

• Transport Layer Security (TLS) Parameters, https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml

• JSON Schema: A Media Type for Describing JSON Documents draft-handrews-json-schema-01,
https://tools.ietf.org/html/draft-handrews-json-schema-01

• JSON Schema Validation: A Vocabulary for Structural Validation of JSON draft-handrews-json-
schema-validation-01, https://tools.ietf.org/html/draft-handrews-json-schema-validation-01

• IETF RFC1738, T. Berners-Lee et al, Uniform Resource Locators (URL), https://tools.ietf.org/html/
rfc1738

• IETF RFC3986, T. Berners-Lee et al, Uniform Resource Identifier (URI): Generic Syntax,
https://tools.ietf.org/html/rfc3986

• IETF RFC4122, P. Leach et al, A Universally Unique IDentifier (UUID) URN Namespace,
https://tools.ietf.org/html/rfc4122

• IETF RFC5280, D. Cooper et al, Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,

• IETF RFC6585, M. Nottingham et al, Additional HTTP Status Codes, https://tools.ietf.org/html/
rfc6585

• IETF RFC6749, D. Hardt, Ed., The OAuth 2.0 Authorization Framework, https://tools.ietf.org/html/
rfc6749

• IETF RFC6901, P. Bryan, Ed. et al, JavaScript Object Notation (JSON) Pointer, https://tools.ietf.org/
html/rfc6901

• IETF RFC7230, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing, https://tools.ietf.org/html/rfc7230

• IETF RFC7231, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,
https://tools.ietf.org/html/rfc7231

• IETF RFC7232, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests,
https://tools.ietf.org/html/rfc7232

• IETF RFC7234, R. Fielding et al, Hypertext Transfer Protocol (HTTP/1.1): Caching,
https://tools.ietf.org/html/rfc7234

DSP0266 Redfish Specification

Version 1.18.0 Published 17

https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.0.pdf
https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
https://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7234


• IETF RFC7540, M. Belshe et al, Hypertext Transfer Protocol Version 2 (HTTP/2), https://tools.ietf.org/
html/rfc7540

• IETF RFC7519, M. Jones et al, JSON Web Token (JWT), https://tools.ietf.org/html/rfc7519
• IETF RFC7525, Y. Sheffer et al, Recommendations for Secure Use of Transport Layer Security (TLS)

and Datagram Transport Layer Security (DTLS), https://tools.ietf.org/html/rfc7525
• IETF RFC7578, L. Masinter et al, Returning Values from Forms: multipart/form-data,

https://tools.ietf.org/html/rfc7578
• IETF RFC7617, J. Reschke et al, The 'Basic' HTTP Authentication Scheme, https://tools.ietf.org/html/

rfc7617
• IETF RFC8259, T. Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange Format,

https://tools.ietf.org/html/rfc7617
• IETF RFC8288, M. Nottingham, Web Linking, https://tools.ietf.org/html/rfc8288
• ISO 639-1:2002, Codes for the representation of names of languages - Part 1: Alpha-2 code,

https://www.iso.org/standard/22109.html
• 24 February 2014, OData Version 4.0 Part 1: Protocol, https://docs.oasis-open.org/odata/odata/

v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
• 24 February 2014, OData Version 4.0 Part 3: Common Schema Definition Language (CSDL),

https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
• 10 March 2016, OData Version 4.0 Plus Errata 03 OASIS Standard incorporating Draft 01 of Errata

03, https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/
Org.OData.Measures.V1.xml

• 20 November 2014, SNIA TLS Specification for Storage Systems, https://www.snia.org/
tech_activities/standards/curr_standards/tls

• The OpenAPI Specification, https://swagger.io/specification/
• The Unified Code for Units of Measure, https://ucum.org/ucum.html
• 9 September 2021, Fetch Living Standard, https://fetch.spec.whatwg.org/
• 17 September 2021, 9.2 Server-sent events in the HTML Living Standard,

https://html.spec.whatwg.org/multipage/server-sent-events.html

Redfish Specification DSP0266

18 Published Version 1.18.0

https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc7578
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8288
https://www.iso.org/standard/22109.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measures.V1.xml
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://www.snia.org/tech_activities/standards/curr_standards/tls
https://swagger.io/specification/
https://ucum.org/ucum.html
https://fetch.spec.whatwg.org/
https://html.spec.whatwg.org/multipage/server-sent-events.html


3 Terms, definitions, symbols, and
abbreviated terms
Some terms and phrases in this document have specific meanings beyond their typical English
meanings. This clause defines those terms and phrases.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not
recommended"), "may", "need not" ("not required"), "can" and "cannot" in this document are to be
interpreted as described in ISO/IEC Directives, Part 2, Clause 7. The terms in parenthesis are
alternatives for the preceding term, for use in exceptional cases when the preceding term cannot be
used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies additional
alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English
meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as
described in ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/
IEC Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled
"(informative)" do not contain normative content. Notes and examples are always informative
elements.

The term "deprecated" in this document is to be interpreted as material that is not recommended for
use in new development efforts. Existing and new implementations may use this material, but they
should move to the favored approach. Deprecated material may be implemented in order to achieve
backwards compatibility. Deprecated material should contain references to the last published version
that included the deprecated material as normative material and to a description of the favored
approach. Deprecated material may be removed from the next major version of the specification.

This document defines these additional terms:

3.1 Hardware terms

3.1.1 baseboard management controller (BMC)

embedded device or service

Note 1 to entry: Typically an independent microprocessor or system-on-chip with associated firmware
in a computer system that completes out-of-band systems monitoring and management-related tasks.

DSP0266 Redfish Specification

Version 1.18.0 Published 19



3.1.2 IPMI

Intelligent Platform Management Interface

3.1.3 KVM-IP

keyboard, video, mouse redirection over IP

3.1.4 NIC

network interface controller

3.1.5 PCI

Peripheral Component Interconnect

3.1.6 PCIe

Peripheral Component Interconnect Express

3.2 Web development terms

3.2.1 CORS

cross-origin resource sharing

3.2.2 CRUD

basic Create, Read, Update, and Delete operations that any interface can support

3.2.3 CSRF

cross-site request forgery

3.2.4 event

data structure that corresponds to one or more alerts

Redfish Specification DSP0266

20 Published Version 1.18.0



3.2.5 excerpt

subset of data that is copied from one resource and presented in another resource

Note 1 to entry: An excerpt provides data in convenient locations without duplication of entire
resources.

3.2.6 HTTP

Hypertext Transfer Protocol

3.2.7 HTTPS

Hypertext Transfer Protocol Secure

Note 1 to entry: TLS secures HTTP.

3.2.8 hypermedia API

API that enables you to navigate through URIs that a service returns

3.2.9 IP

Internet Protocol

3.2.10 JSON

JavaScript Object Notation

3.2.11 member

single resource instance in a resource collection

3.2.12 message

complete HTTP-formatted or HTTPS-formatted request or response

Note 1 to entry: In the REST-based Redfish protocol, every request results in a response.

DSP0266 Redfish Specification

Version 1.18.0 Published 21



3.2.13 OData

Open Data Protocol (OData), as defined in OData Version 4.0 Part 1: Protocol

3.2.14 OData service document

resource that provides information about the service root for generic OData clients

3.2.15 operation

HTTP POST , GET , PUT , PATCH , HEAD , and DELETE request methods that map to generic CRUD
operations

3.2.16 parent resource

parent to another resource if the initial segment of the resource URI is the same as the URI of the
other resource, but is at least one level higher

Note 1 to entry: For example, /redfish/v1/Chassis/A88 is a parent resource of /redfish/v1/Chassis/

A88/Assembly .

3.2.17 property

name-value pair in a Redfish-defined request or response

Note 1 to entry: A property can be any valid JSON data type.

3.2.18 request

message from a client to a service

3.2.19 response

message from a service to a client in response to a request message

3.2.20 subscription

registration of a destination to receive events

Redfish Specification DSP0266

22 Published Version 1.18.0



3.2.21 task

representation of a long-running operation

3.2.22 task monitor

opaque service-generated URI that the client who initiates the request can use to monitor an
asynchronous operation

3.2.23 TCP

Transmission Control Protocol

3.2.24 TLS

Transport Layer Security

3.2.25 XSS

cross-site scripting

3.3 Redfish terms

3.3.1 collection

see resource collection

3.3.2 Redfish client

communicates with a Redfish service and accesses one or more of the service's resources or functions

3.3.3 Redfish protocol

discovers, connects to, and inter-communicates with a Redfish service

3.3.4 Redfish schema

a set of human and machine-readable documents that define Redfish resources using one or more of
the supported schema definition languages

DSP0266 Redfish Specification

Version 1.18.0 Published 23



3.3.5 Redfish service

implementation of the protocols, resources, and functions that deliver the interface that this
specification defines and its associated behaviors for one or more managed systems

Note 1 to entry: Also known as the service.

3.3.6 resource

URI-addressable Redfish data structure

3.3.7 resource collection

set of similar resources where the number of instances can shrink or grow

3.3.8 resource tree

tree structure of resources accessible through a well-known starting URI

Note 1 to entry: A client can discover the available resources on a Redfish service by following the
resource hyperlinks from the base of the tree.

3.3.9 resource type

set of definitions for properties and actions contained within a resource and documented in the Redfish
schema files

3.3.10 service root

starting-point resource for locating and accessing the other resources and associated metadata that
make up an instance of a Redfish service

3.3.11 subordinate resource

is subordinate to another resource if the initial segment of the resource URI is the same as the URI of
the other resource, but is at least one level deeper

Note 1 to entry: For example, /redfish/v1/Chassis/A88/Assembly is a subordinate resource of the
Chassis resource named A88 .

Redfish Specification DSP0266

24 Published Version 1.18.0



4 Typographical conventions
The following typographical convention indicates deprecated material:

DEPRECATED

Deprecated material appears here.

END DEPRECATED

In places where this typographical convention cannot be used, such as tables or figures, the
"DEPRECATED" label is used alone.

DSP0266 Redfish Specification

Version 1.18.0 Published 25



5 Overview
Redfish is a management standard that uses a data model representation with a RESTful interface.

Being RESTful, Redfish is easier to use and implement.

Being model-oriented, it can express the relationships between components and the semantics of the
Redfish services and components within them. The model is also easy to extend.

By requiring JSON representation, Redfish enables easy integration with programming environments. It
is also easy to interpret by humans.

An interoperable Redfish schema defines this model, which is freely available and published in
OpenAPI YAML, OData CSDL, and JSON Schema formats.

5.1 Goals

As an architecture, data model, and set of protocols that enable a client to access Redfish services,
Redfish has these goals.

Table 1 describes these goals:

Table 1 — Redfish goals
Goal Purpose

Scalable Can scale on stand-alone machines or racks of equipment.

Flexible Can implement through existing hardware or entirely as a software service.

Extensible Can easily add new and vendor-specific capabilities to the data model.

Backward-compatible Can add capabilities while preserving investments in earlier implementations.

Interoperable Provides consistent functionality across multiple vendor implementations.

Standards-based Built on ubiquitous and secure protocols. Leverages other standards where applicable.

Simple Easy-to-use without the need for highly specialized programming skills or systems knowledge.

Lightweight Designed to reduce complexity and implementation costs. Minimizes the required footprint for
implementations.

Redfish Specification DSP0266

26 Published Version 1.18.0



5.2 Design tenets

To deliver these goals, Redfish:

• Provides a RESTful interface by using a JSON payload and a data model.
• Separates the protocol from the data model, which enables the independent revision and use of

each.
• Specifies versioning rules for protocols and schema.
• Leverages strength of ubiquitous standards where it meets architectural requirements, such as

JSON, HTTP, OData, OpenAPI, and the RFCs that this document references.
• Organizes the data model so that it provides clearly demarcated and value-add features in the

same payload as standardized items.
• Makes data in payloads as obvious in context as possible.
• Maintains implementation flexibility. Does not tie the interface to any particular underlying

implementation or architecture.
• Focuses on widely used capabilities. To avoid complexity, does not add functions that only a small

percentage of users value.

5.3 Limitations

Redfish minimizes the need for clients to complete upgrades by using strict versioning and forward-
compatibility rules, and separation of the protocols from the data model. However, Redfish does not
guarantee that clients never need to update their software. For example, clients might need to
upgrade to manage new system or component types, or update the data model.

Interoperable does not mean identical. Many elements of Redfish are optional. Clients should be
prepared to discover the optional elements by using the built-in discovery methods.

The resource tree reflects the topology of the system and its devices. Consequently, different
hardware or device types result in different resource trees, even for identical systems from the same
manufacturer. References between resources may result in a graph instead of a tree. Clients that
traverse the resource tree should provide logic to avoid infinite loops.

Additionally, not all Redfish resources use simple REST read-and-write semantics. Different use cases
may follow other types of client logic. For example, clients cannot simply read user credentials or
certificates from one service and write them to another service.

Finally, the hyperlink values between resources and other elements can vary across implementations.
Clients should not assume that they can reuse hyperlinks across different Redfish service instances.

DSP0266 Redfish Specification

Version 1.18.0 Published 27



5.4 Additional design background and rationale

5.4.1 REST-based interface

Redfish exposes many service applications as RESTful interfaces. This document defines a RESTful
interface.

Redfish defines a RESTful interface because it:

• Enables a lightweight implementation, using fewer layers than previous standards.
• Is a prevalent access method in the industry.
• Is easy to learn, document, and implement in modern programming languages.
• Has a number of development environments and a healthy tooling ecosystem.
• Fits with the design goal of simplicity.
• Equally applies to software application space as it does to embedded environments, which enables

convergence and sharing of code within the management ecosystem.
• Adapts well to any data modeling language.
• Has industry-provided security and discovery mechanisms.

5.4.2 Data-oriented

The Redfish data model is developed by focusing on the contents of the payload. By concentrating on
the contents of the payload first, Redfish payloads are easily mapped to schema definition languages
and encoding types. The data model is defined in various schema languages, including OpenAPI YAML,
OData CSDL, and JSON Schema.

5.4.3 Separation of protocol from data model

Redfish separates the protocol operations from the data model and versions the protocol
independently from the data model. This enables clients to extend and change the data model as
needed without requiring the protocol version to change.

5.4.4 Hypermedia API service root

Redfish has a single service root URI and clients can discover all resources through referenced URIs.
The hypermedia API enables the discovery of resources through hyperlinks.

5.4.5 OpenAPI v3.0 support

The OpenAPI v3.0 provides a rich ecosystem of tools for using RESTful interfaces that meet the design

Redfish Specification DSP0266

28 Published Version 1.18.0



requirements of that specification. Starting with Redfish Specification v1.6.0, the Redfish schemas
support the OpenAPI YAML file format and URI patterns that conform to the OpenAPI Specification were
defined. Conforming Redfish services that support the Redfish protocol version v1.6.0 or later
implement those URI patterns to enable use of the OpenAPI ecosystem.

For details, see OpenAPI Specification v3.0.

5.4.6 OData conventions

With the popularity of RESTful APIs, there are nearly as many RESTful interfaces as there are
applications. While following REST patterns helps promote good practices, due to design differences
between the many RESTful APIs there few common conventions between them.

To provide for interoperability between APIs, OData defines a set of common RESTful conventions and
annotations. Redfish follows OData conventions for describing schema, URL conventions, and
definitions for typical properties in a JSON payload.

5.5 Service elements

5.5.1 Synchronous and asynchronous operation support

Some operations can take more time than a client typically wants to wait. For this reason, some
operations can be asynchronous at the discretion of the service. The request portion of an
asynchronous operation is no different from the request portion of a synchronous operation.

To determine whether an operation was completed synchronously or asynchronously, clients can
review the HTTP status codes. For more information, see the Asynchronous operations clause.

5.5.2 Eventing mechanism

Redfish enables clients to receive messages outside the normal request and response paradigm. The
service uses these messages, or events, to asynchronously notify the client of a state change or error
condition, usually of a time critical nature.

This specification defines two styles of eventing:

• Push-style eventing.

When the service detects the need to send an event, it calls HTTP POST to push the event
message to the client. Clients can enable reception of events by creating a subscription entry in
the event service, or an administrator can create subscriptions as part of the Redfish service
configuration.

DSP0266 Redfish Specification

Version 1.18.0 Published 29



• Server-sent events (SSE)-style eventing.

The client opens an SSE connection to the service through a GET on the
ServerSentEventUri -specified URI in the event service.

For information, see the Eventing clause.

5.5.3 Actions

Actions are Redfish operations that do not easily map to RESTful interface semantics. These types of
operations may not directly affect properties in the Redfish resources. The Redfish schema defines
certain standard actions for common Redfish resources. For these standard actions, the Redfish
schema contains the normative language on the behavior of the action.

5.5.4 Service discovery

While the service itself is at a well-known URI, clients need to discover the network address of the
service. Like UPnP, Redfish uses SSDP for discovery. A wide variety of devices, such as printers and
client operating systems, support SSDP. It is simple, lightweight, IPv6 capable, and suitable for
implementation in embedded environments.

For more information, see the Discovery clause.

5.5.5 Remote access support

Remote management functionality typically includes access mechanisms for redirecting operator
interfaces such as serial console, keyboard video and mouse (KVM-IP), command shell, or command-
line interface, and virtual media. While these mechanisms are critical functionality, they cannot be
reasonably implemented as a RESTful interface.

Therefore, this standard does not define the protocols or access mechanisms for those services but
encourages implementations that leverage existing standards. However, the Redfish schema includes
resources and properties that enable client discovery of these capabilities and access mechanisms to
enable interoperability.

5.6 Security

The challenge of remote interface security is to protect both the interface and exchanged data. To
accomplish this, Redfish provides authentication and encryption. As part of this security, Redfish
defines and requires minimum levels of encryption.

For more information, see the Security details clause.

Redfish Specification DSP0266

30 Published Version 1.18.0



6 Protocol details
In this document, the Redfish protocol refers to the RESTful mapping to HTTP, TCP/IP, and other
protocol, transport, and messaging layer aspects. HTTP is the application protocol that transports the
messages and TCP/IP is the transport protocol. The RESTful interface is a mapping to the message
protocol.

The Redfish protocol is designed around a web service-based interface model, which provides network
and interaction efficiency for both user interface (UI) and automation usage. Specifically, the protocol
can leverage existing tool chains.

Table 2 describes the items that the Redfish protocol uses:

Table 2 — Redfish protocol
Item Description

HTTP methods Maps to common CRUD operations.

Actions Expands operations beyond CRUD-type operations.

Media types Negotiates the type of data sent in the message body.

HTTP status codes Indicates the success or failure of the server's request.

Error responses Returns more information than HTTP status codes.

TLS Secures messages. See Security details.

Asynchronous semantics Manages long-running operations.

A Redfish interface shall be exposed through a web service endpoint implemented by using HTTP
version 1.1. See RFC7230, RFC7231, and RFC7232.

A Redfish interface may additionally be exposed through a web service endpoint implemented by
using HTTP version 2.0. See RFC7540.

The subsequent clauses describe how the Redfish interface uses and adds constraints to HTTP to
ensure interoperability of Redfish implementations.

6.1 Universal Resource Identifiers

A Universal Resource Identifier (URI) identifies a resource, including the service root and all Redfish
resources.

DSP0266 Redfish Specification

Version 1.18.0 Published 31



• A URI shall identify each unique instance of a resource.
• URIs shall not include any RFC1738-defined unsafe characters.

◦ For example, the { , } , , | , ^ , ~ , [ , ] , ` , and \ characters are unsafe because
gateways and other transport agents can sometimes modify these characters.

◦ Do not use the # character for anything other than the start of a fragment.
• URIs shall not include any percent-encoding of characters. This restriction does not apply to the

query parameters portion of the URI.

A GET operation on a URI returns a representation of the resource with properties and hyperlinks to
associated resources. The service root URI is well known and is based on the protocol version.

To discover the URIs to additional resources, extract the associated resource hyperlinks from earlier
responses. The hypermedia API enables the discovery of resources through hyperlinks.

Redfish considers the RFC3986-defined scheme, authority, service root, and version, and unique
resource path component parts of the URI.

For example, this URI:

https://mgmt.vendor.com/redfish/v1/Systems/1

Contains these component parts:

• https: is the scheme.
• mgmt.vendor.com is the authority to which to delegate the URI.
• redfish/v1 is the service root and version.
• Systems/1 is the unique resource path.

In a URI:

• The scheme and authority component parts are not part of the unique resource path because
redirection capabilities and local operations may cause the connection portion to vary.

• The service root and resource path component parts uniquely identify the resource in a Redfish
service.

In an implementation:

• The resource path component part shall be unique.
• A relative reference in the body and HTTP headers payload can identify a resource in that same

implementation.
• An absolute URI in the body and HTTP headers payload can identify a resource in a different

implementation.

Redfish Specification DSP0266

32 Published Version 1.18.0



For the absolute URI definition, see RFC3986.

For example, a POST operation may return the /redfish/v1/Systems/2 URI in the Location header of
the response, which points to the POST -created resource.

Assuming that the client connects through the mgmt.vendor.com appliance, the client accesses the
resource through the https://mgmt.vendor.com/redfish/v1/Systems/2 absolute URI.

URIs that conform to RFC3986 may also contain the query, ?query , and frag, #frag , components. For
information about queries, see Query parameters. When a URI includes a fragment ( frag ) to submit
an operation, the server ignores the fragment.

If a property in a response references another property within a resource, use the RFC6901-defined
URI fragment identifier representation format. If the property is a reference property in the schema,
the fragment shall reference a valid resource identifier. For example, the following fragment identifies
a property at index 0 of the Fans array in the /redfish/v1/Chassis/MultiBladeEncl/Thermal resource:

{

"@odata.id": "/redfish/v1/Chassis/MultiBladeEncl/Thermal#/Fans/0"

}

For requirements on constructing Redfish URIs, see the resource URI patterns annotation clause.

6.2 HTTP methods

Table 3 describes the mapping of HTTP methods to the Redfish-supported operations. If the Required
column contains Yes, a Redfish interface shall support the HTTP method. If the Required column
contains No, a Redfish interface may support the HTTP method.

Table 3 — Mapping of HTTP methods to Redfish-supported operations
HTTP method Interface semantic Required

POST

Create resource
Resource action
Eventing

Yes

GET Retrieve resource Yes

PUT Replace resource No

PATCH Update resource Yes

DELETE Delete resource Yes

DSP0266 Redfish Specification

Version 1.18.0 Published 33



HTTP method Interface semantic Required

HEAD Retrieve resource header No

OPTIONS
Retrieve header
Cross-origin resource sharing (CORS) pre-flight No

For HTTP methods that the Redfish service does not support or that Table 3 omits, the Redfish service
shall return the HTTP 405 Method Not Allowed status code or the HTTP 501 Not Implemented status
code.

6.3 HTTP redirect

HTTP redirect enables a service to redirect a request to another URL. Among other things, HTTP
redirect enables Redfish resources to alias areas of the data model.

All Redfish clients shall correctly handle HTTP redirect.

The service for the redirected resource shall enforce the authentication and authorization
requirements for the redirected resource.

6.4 Media types

Some resources may be available in more than one type of representation. The media type indicates
the representation type.

In HTTP messages, the media type is specified in the Content-Type header. To tell a service to return
the response through certain media types, the client sets the HTTP Accept header to a list of the
media types.

• All resources shall be available through the JSON application/json media type.
• Redfish services shall make every resource available in a JSON-based representation as a JSON

object, as specified in RFC8259. Receivers shall not reject a JSON-encoded message, and shall
offer at least one JSON-based response representation. An implementation may offer additional
non-JSON media type representations.

To request compression in the response body, clients specify an Accept-Encoding request header.

Redfish Specification DSP0266

34 Published Version 1.18.0



6.5 ETags

To reduce unnecessary RESTful accesses to resources, the Redfish service should support the
association of a separate entity tag (ETag) with each resource.

• Implementations should support the return of ETag properties for each resource.
• Implementations should support the return of ETag headers for each single-resource response.
• Implementations shall support the return of ETag headers for GET requests of ManagerAccount

resources.

Because the service knows whether the new version of the object is substantially different, the service
generates and provides the ETag as part of the resource payload.

The ETag mechanism supports both strong and weak validation. If a resource supports an ETag, it
shall use the RFC7232-defined ETag.

This specification does not mandate a particular algorithm for ETag creation, but ETags should be
highly collision-free.

An ETag can be:

• A hash
• A generation ID
• A time stamp
• Some other value that changes when the underlying object changes

If a client performs a PUT operation or PATCH operation to update a resource, it should include an
ETag from a previous GET in the HTTP If-Match or If-None-Match header. Both strong and weak
ETags are allowed in these headers. If a service supports the return of the ETag header on a resource,
it may respond with the HTTP 428 Precondition Required status code if the If-Match or If-None-Match

header is missing from the PUT or PATCH request for the same resource, as specified in RFC6585.

In addition to the return of the ETag property on each resource, a Redfish service should return the
ETag header on:

• A client PUT , POST , or PATCH operation
• A GET operation for an individual resource

The format of the ETag header is:

ETag: <string>

DSP0266 Redfish Specification

Version 1.18.0 Published 35



For responses to $expand requests:

• The @odata.etag property of each resource in the response shall contain the ETag of the resource
as if it were not expanded.

• The ETag header should contain the ETag of the entire response body.

For resources that update frequently, such as resources with a date-time configuration or a sensor
reading, implementations might consider methods to reduce frequent ETag updates, such as rounding
a property value when calculating an ETag for the resource. This might be important if clients want to
use the If-Match header to prevent collisions with other clients. For example, if a client is attempting
to modify a Manager resource and the DateTime property updates the ETag every second, a client
performing a PATCH operation on the Manager resource with the If-Match header will likely contain an
old ETag if DateTime is not handled specifically to reduce frequent ETag updates, causing the service to
respond with the HTTP 412 Precondition Failed status code.

6.6 Protocol version

The protocol version is separate from the resources' version or the Redfish schema version that the
resources support.

Each Redfish protocol version is strongly typed by using the URI of the Redfish service in combination
with the resource obtained at that URI, called the ServiceRoot resource.

The root URI for this version of the Redfish protocol shall be /redfish/v1/ .

The URI defines the major version of the protocol.

The RedfishVersion property of the ServiceRoot resource defines the protocol version, which includes
the major version, minor version, and errata version of the protocol, as defined in the Redfish schema
for that resource.

The protocol version is a string in the format:

<MajorVersion>.<MinorVersion>.<ErrataVersion>

where

• <MajorVersion> is an integer that represents the major version. Indicates a backward-incompatible
change.

• <MinorVersion> is an integer that represents the minor version. Indicates a minor update. Redfish
introduces functionality but does not remove any functionality. The minor version preserves
compatibility with earlier minor versions.

• <ErrataVersion> is an integer that represents the errata version. Indicates a fix to the earlier
version.

Redfish Specification DSP0266

36 Published Version 1.18.0



Any resource that a client discovers through hyperlinks that the service root or any service root-
referenced service or resource returns shall conform to the same protocol version that the service root
supports.

A GET operation on the /redfish resource shall return this response body:

{

"v1": "/redfish/v1/"

}

6.7 Redfish-defined URIs and relative reference rules

Table 4 describes the Redfish-defined URIs that a Redfish service shall support:

Table 4 — Redfish-defined URIs
URI Returns Note

/redfish

Version. A major update that does not
preserve compatibility with earlier
minor versions.

Services shall support this URI.

/redfish/v1/ Redfish service root. Services shall support this URI.

/redfish/v1/odata Redfish OData service document. Services shall support this URI.

/redfish/v1/$metadata Redfish metadata document. Services shall support this URI.

/redfish/v1/openapi.yaml Redfish OpenAPI YAML document. Services should support this URI.

/redfish/v1/Schemas/<SchemaFile>

Local copy of a Redfish schema file,
where <SchemaFile> is the file name of
the local schema file.

Services should support this URI.

In addition, Table 5 describes the URIs that services shall process without a trailing slash in one of
these ways:

• Redirect it to the associated Redfish-defined URI.
• Treat it as the equivalent URI to the associated Redfish-defined URI.

Table 5 — Redfish-defined URIs without trailing slashes
URI Associated Redfish-defined URI

/redfish/v1 /redfish/v1/

DSP0266 Redfish Specification

Version 1.18.0 Published 37



URI Associated Redfish-defined URI

/redfish/ /redfish

All other Redfish service-supported URIs shall match the resource URI patterns definitions, except the
supplemental resources that the @Redfish.Settings , @Redfish.ActionInfo , and
@Redfish.CollectionCapabilities payload annotations reference. The client shall treat the URIs for

these supplemental resources as opaque.

All Redfish-defined URIs and URIs starting with /redfish are reserved for future standardization by
DMTF and DMTF alliance partners, except OEM extension URIs, which shall conform to the
requirements of the OEM URIs clause.

All relative references that the service uses shall start with either:

• A double forward slash ( // ) and include the authority (network-path), such as //mgmt.vendor.com/

redfish/v1/Systems .
• A single forward slash ( / ) and include the absolute-path, such as /redfish/v1/Systems .

For details, see RFC3986.

Redfish Specification DSP0266

38 Published Version 1.18.0



7 Service requests
This clause describes the requests that clients can send to Redfish services.

7.1 Request headers

Table 6 lists the HTTP-defined request headers and their requirements for Redfish services and clients.

For Redfish services:

• Redfish services shall process the HTTP-defined headers in Table 6 if the Service requirement
column contains Yes or Conditional.

• Redfish services should process the HTTP-defined headers in Table 6 and Table 7 if the Service
requirement column contains No.

For Redfish clients (sending the HTTP requests):

• Redfish clients shall include the HTTP-defined headers in Table 6 if the Client requirement
column contains Yes or Conditional.

• Redfish clients should transmit the HTTP-defined headers in Table 6 and Table 7 if the Client
requirement column contains No.

DSP0266 Redfish Specification

Version 1.18.0 Published 39



Table 6 — Request headers

Header Service
requirement

Client
requirement

Supported
values Description

Accept Yes No RFC7231

Communicates to the server the media type or
types that this client is prepared to accept.

Services shall support resource requests with
Accept header values of application/json or
application/json;charset=utf-8 .

Services shall support XML metadata requests
with Accept header values of application/xml

or application/xml;charset=utf-8 .

Services shall support OpenAPI YAML schema
requests with Accept header values of
application/yaml or application/

yaml;charset=utf-8 or application/

vnd.oai.openapi or application/

vnd.oai.openapi;charset=utf-8 .

Services shall support SSE requests with
Accept header values of text/event-stream or
text/event-stream;charset=utf-8 .

Services shall support any request with Accept

header values of application/* ,
application/*;charset=utf-8 , */* , or
*/*;charset=utf-8 .

Accept-Encoding No No RFC7231

Indicates whether the client can handle gzip-
encoded responses. If a service cannot return
an acceptable response to a request with this
header, it shall respond with the HTTP 406 Not

Acceptable status code. If the request omits this
header, the service should not return gzip-
encoded responses.

Accept-Language No No RFC7231
The languages that the client accepts in the
response. If the request omits this header, uses
the service's default language for the response.

Authorization Conditional Conditional RFC7617,
RFC6749

Required for HTTP Basic authentication and
OAuth 2.0.

A client can access unsecured resources
without this header on systems that support
Basic authentication.

Redfish Specification DSP0266

40 Published Version 1.18.0



Header Service
requirement

Client
requirement

Supported
values Description

Content-Length No No RFC7231

The size of the message body.

To indicate the size of the body, a client can use
the Transfer-Encoding: chunked header.

If a service needs to use Content-Length and
does not support Transfer-Encoding , it
responds with the HTTP 406 Not Acceptable

status code.

Content-Type Conditional Conditional RFC7231

The request format. Required for operations
with a request body.

Services shall accept the Content-Type header
set to either application/json or application/

json;charset=utf-8 .

It is recommended that clients use these values
in requests because other values can cause an
error.

Host Yes No RFC7230 Enables support of multiple origin hosts at a
single IP address.

If-Match Conditional No RFC7232

To ensure that clients update the resource from
a known state, PUT and PATCH requests for
resources for which a service returns ETags
shall support If-Match .

While not required for clients, it is highly
recommended for PUT and PATCH operations.

If-None-Match No No RFC7232

A service only returns the resource if the
current ETag of that resource does not match
the ETag sent in this header.

If the ETag in this header matches the
resource's current ETag, the GET operation
returns the HTTP 304 Not Modified status code.

Last-Event-ID No No HTML5 SSE

The event source's last id field from the SSE
stream. Requests history event data.

See Server-sent events.

Max-Forwards No No RFC7231

Limits gateway and proxy hops.

Prevents messages from remaining in the
network indefinitely.

DSP0266 Redfish Specification

Version 1.18.0 Published 41



Header Service
requirement

Client
requirement

Supported
values Description

OData-MaxVersion No No 4.0 The maximum OData version that an OData-
aware client understands.

OData-Version Yes No 4.0

The OData version.

Services shall reject requests that specify an
unsupported OData version.

If a service encounters an unsupported OData
version, it should reject the request with the
HTTP 412 Precondition Failed status code.

Origin Yes No
Fetch Living
Standard, 3.1.
Origin header

Enables web applications to consume a Redfish
service while preventing CSRF attacks.

User-Agent Yes No RFC7231
Traces product tokens and their versions.

The header can list multiple product tokens.

Via No No RFC7230

Defines the network hierarchy and recognizes
message loops.

Each pass inserts its own Via header.

Redfish services shall understand and be able to process the headers in Table 7 as defined by this
specification if the Service requirement column contains Yes.

Table 7 — Request headers part 2

Header Service
requirement

Client
requirement

Supported
values Description

X-Auth-Token Yes Conditional
Opaque
encoded octet
strings

Authenticates user sessions.
The token value shall be indistinguishable from
random.
While services shall support this header, a
client can access unsecured resources without
establishing a session.

Redfish Specification DSP0266

42 Published Version 1.18.0

https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header
https://fetch.spec.whatwg.org/#origin-header


7.2 GET (read requests)

7.2.1 GET (read requests) overview

The GET operation retrieves resources from a Redfish service. Clients make a GET request to the
individual resource URI. Clients may obtain the resource URI from published sources, such as the
OpenAPI document, or from a resource identifier property in a previously retrieved resource response,
such as the links property.

The service shall return the resource representation using one of the media types listed in the Accept

header, subject to the requirements of the media types. If the Accept header is absent, the service
shall return the resource's representation as application/json . Services may but are not required to
support the convention of retrieving individual properties within a resource by appending a segment
containing the property name to the URI of the resource.

• The HTTP GET operation shall retrieve a resource without causing any side effects.
• The service shall ignore the content of the body on a GET .
• The GET operation shall be idempotent in the absence of outside changes to the resource.

If supported by the service, clients can perform a conditional GET operation by specifying an If-None-

Match request header that contains the ETag of the resource.

7.2.2 Resource collection requests

Clients retrieve a resource collection by making a GET request to the resource collection URI. The
response includes the resource collection's properties and an array of its members.

No requirements are placed on implementations to return a consistent set of members when a series
of requests that use paging query parameters are made over time to obtain the entire set of
members. These calls can result in missed or duplicate elements if multiple GET requests use paging
to retrieve the Members array instances.

• Clients shall not make assumptions about the URIs for the members of a resource collection.
• Retrieved resource collections shall always include the count ( Members@odata.count ) property to

specify the total number of entries in its Members array.
• Regardless of the next link ( Members@odata.nextLink ) property or paging, the count

( Members@odata.count ) property shall return the total number of resources that the Members array
references.

A subset of the members can be retrieved using client paging query parameters.

DSP0266 Redfish Specification

Version 1.18.0 Published 43



A service might not be able to return all of the contents of a resource collection request in a single
response body. In this case, the response can be paged by the service. If a service pages a response to
a resource collection request, the following rules shall apply:

• Responses can contain a subset of the full resource collection's members.
• Individual members shall not be split across response bodies.
• A next link ( Members@odata.nextLink ) property annotation shall be supplied in the response body

with the URI to the next set of members in the collection.
• The next link ( Members@odata.nextLink ) property shall adhere to the rules in the Next link property

clause.
• GET operations on the next link ( Members@odata.nextLink ) property shall return the subsequent

section of the resource collection response.

7.2.3 Service root request

The root URL for Redfish version 1.x services shall be /redfish/v1/ .

The service returns the ServiceRoot resource, as defined by this specification, as a response for the
root URL.

Services shall not require authentication to retrieve the service root and /redfish resources.

7.2.4 OData service and metadata document requests

Redfish services expose two OData-defined documents at specific URIs to enable generic OData clients
to navigate the Redfish service.

• Service shall expose an OData metadata document at the /redfish/v1/$metadata URI.
• Service shall expose an OData service document at the /redfish/v1/odata URI.
• Service shall not require authentication to retrieve the OData metadata document or the OData

service document.

7.3 Query parameters

7.3.1 Query parameter overview

To paginate, retrieve subsets of resources, or expand the results in a single response, clients can
include the query parameters. Some query parameters apply only to resource collections.

Services:

• Shall only support query parameters on GET operations.

Redfish Specification DSP0266

44 Published Version 1.18.0



• Should support the $top , $skip , only , and excerpt query parameters.
• May support the $expand , $filter , and $select query parameters.
• Shall include the ProtocolFeaturesSupported object in the service root, if the service supports

query parameters.
◦ This object indicates which parameters and options have been implemented.

• Shall ignore unknown or unsupported query parameters that do not begin with $ .
• Shall use the & operator to separate multiple query parameters in a single request.
• Should ignore the = character if provided as the last character for the only or excerpt query

parameters.

Services shall return:

• The HTTP 501 Not Implemented status code for any unsupported query parameters that start with
$ .

• An extended error that indicates the unsupported query parameters for this resource.
• The HTTP 400 Bad Request status code for any query parameters that contain values that are

invalid, or values applied to query parameters without defined values, such as excerpt or only .

Services should return:

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnResource message from the
Base Message Registry for any implemented query parameters that are not supported on a
resource in the request.

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnResource message from the
Base Message Registry for any supported query parameters that apply only to resource collections
but are used on singular resources. This includes query parameters such as $filter , $top ,
$skip , and only .

• The HTTP 400 Bad Request status code with the QueryNotSupportedOnOperation message from the
Base Message Registry for any supported query parameters on operations other than GET .

Services shall process query parameters in this order:

• $filter

• $skip

• $top

• Apply server-side pagination
• $expand

• excerpt

• $select

Table 8 describes the query parameters:

DSP0266 Redfish Specification

Version 1.18.0 Published 45



Table 8 — Query parameters
Query parameter Description and example

excerpt

Returns a subset of the resource's properties that match the defined Excerpt schema
annotation.

If no Excerpt schema annotation is defined for the resource, the entire resource is returned.

Example:

https://resource?excerpt

$expand=<string>

Returns a hyperlink and its contents in-line with retrieved resources, as if a GET call response
was included in-line with that hyperlink.

See The $expand query parameter.

Example:

https://resource?$expand=*($levels=3)

https://resourcecollection?$expand=.($levels=1)

$filter=<string>

Applies to resource collections. Returns a subset of collection members that match the
$filter expression.

See The $filter query parameter.

Example:

https://resourcecollection?$filter=SystemType eq 'Physical'

only

Applies to resource collections. If the target resource collection contains exactly one member,
clients can use this query parameter to return that member's resource.

If the collection contains either zero members or more than one member, the response
returns the resource collection, as expected.

Services should return the HTTP 400 Bad Request with the QueryCombinationInvalid message
from the Base Message Registry if only is being combined with other query parameters.

Example:

https://resourcecollection?only

Redfish Specification DSP0266

46 Published Version 1.18.0



Query parameter Description and example

$select=<string>

Returns a subset of the resource's properties that match the $select expression.

See The $select query parameter.

Example:

https://resource?$select=SystemType,Status

$skip=<integer>

Applies to resource collections. Returns a subset of the members in a resource collection, or
an empty set of members if the $skip value is greater than or equal to the member count.
This paging query parameter defines the number of members in the resource collection to
skip.

Example:

https://resourcecollection?$skip=5

$top=<integer>

Applies to resource collections. Defines the number of members to show in the response.

Minimum value is 0 , though a value of 0 returns an empty set of members.

Example:

https://resourcecollection?$top=30

Services may support OEM-defined query parameters. OEM-defined query parameter names shall not
contain characters that conflict with syntax for query parameter parsing, such as & . OEM-defined
query parameters shall be in the form:

OEM-<OemIdentifier>-<ParameterName>

where

• <OemIdentifier> is the unique identifier of the OEM, including possible subdivisioning, that follows
the same naming as defined in the OEM-specified object naming clause. Separator underscores
( _ ) may be excluded for improved readability.

• <ParameterName> is the parameter name.

For example, if Contoso defined a StatusOnly parameter, the query parameter would be OEM-Contoso-

StatusOnly .

7.3.2 The $expand query parameter

The $expand query parameter enables a client to request a response that includes not only the

DSP0266 Redfish Specification

Version 1.18.0 Published 47



requested resource, but also includes the contents of the subordinate or hyperlinked resources. The
definition of this query parameter follows the OData Protocol Specification.

The $expand query parameter has a set of possible options that determine which hyperlinks in a
resource are included in the expanded response. Some resources may already be expanded due to the
resource's schema annotation AutoExpand , such as the Temperature object in the Thermal resource.

Table 9 describes the Redfish-supported options for the $expand query parameter. The service may
implement some of these options but not others. Any other supported syntax for $expand is outside
the scope of this specification.

Table 9 — The $expand query parameter options
Option Description Example

asterisk ( * )

Shall expand all hyperlinks, including those in
payload annotations, such as @Redfish.Settings ,
@Redfish.ActionInfo , and
@Redfish.CollectionCapabilities .

https://resource?$expand=*

$levels

Number of levels the service should cascade the
$expand operation.

The default level shall be 1.

For example, $levels=2 expands both the hyperlinks
in the current resource (level 1), and the hyperlinks
in the resulting expanded resources (level 2).

https://resourcecollection?$expand=.($levels=2)

period ( . )

Shall expand all hyperlinks not in any links property
instances of the resource, including those in payload
annotations, such as @Redfish.Settings ,
@Redfish.ActionInfo , and
@Redfish.CollectionCapabilities .

https://resourcecollection?$expand=.

tilde ( ~ ) Shall expand all hyperlinks found in all links property
instances of the resource. https://resourcecollection?$expand=~

Examples of $expand usage include:

• GET of a SoftwareInventoryCollection .

With $expand , the client can request multiple SoftwareInventory collection member resources in
one request rather than fetching them one at a time.

• GET of a ComputerSystem .

Redfish Specification DSP0266

48 Published Version 1.18.0



With $levels , a single GET request can include the subordinate resource collections, such as
Processors and Memory .

• GET all UUIDs in members of the ComputerSystem collection.

To accomplish this result, include both $select and $expand on the URI.

The syntax is GET /redfish/v1/Systems?$select=UUID&$expand=.($levels=1)

When services execute $expand , they may omit some of the referenced resource's properties.

When clients use $expand , they should be aware that the payload may increase beyond what can be
sent in a single response.

If a service cannot return the payload due to its size, it shall return the HTTP 507 Insufficient Storage

status code.

If a service cannot return the payload corresponding to an individual member of a resource collection,
it should return the @odata.id property for that member and should return extended information
indicating the reason that member was not returned, such as when a provider internal to the service
returns an error or times out.

The following example expands the RoleCollection resource with the level set to 1:

{

"@odata.id": "/redfish/v1/AccountService/Roles",

"@odata.type": "#RoleCollection.RoleCollection",

"Name": "Roles Collection",

"Members@odata.count": 3,

"Members": [{

"@odata.id": "/redfish/v1/AccountService/Roles/Administrator",

"@odata.type": "#Role.v1_1_0.Role",

"Id": "Administrator",

"Name": "User Role",

"Description": "Admin User Role",

"IsPredefined": true,

"AssignedPrivileges": ["Login", "ConfigureManager",

"ConfigureUsers", "ConfigureSelf", "ConfigureComponents"]

}, {

"@odata.id": "/redfish/v1/AccountService/Roles/Operator",

"@odata.type": "#Role.v1_1_0.Role",

"Id": "Operator",

"Name": "User Role",

"Description": "Operator User Role",

"IsPredefined": true,

"AssignedPrivileges": ["Login", "ConfigureSelf",

DSP0266 Redfish Specification

Version 1.18.0 Published 49



"ConfigureComponents"]

}, {

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnly",

"@odata.type": "#Role.v1_1_0.Role",

"Id": "ReadOnly",

"Name": "User Role",

"Description": "ReadOnly User Role",

"IsPredefined": true,

"AssignedPrivileges": ["Login", "ConfigureSelf"]

}]

}

7.3.3 The $select query parameter

The $select query parameter indicates that the implementation should return a subset of the
resource's properties that match the $select expression. If a request omits the $select query
parameter, the response returns all properties by default. The definition of this query parameter
follows the OData Protocol Specification.

The $select expression shall not affect the resource itself.

The $select expression defines a comma-separated list of properties to return in the response body.

The syntax for properties in objects or properties in arrays of objects shall be the object and property
names concatenated with a slash ( / ). For arrays, the expression shall not contain the array index.

An example of $select usage is:

GET /redfish/v1/Systems/1?$select=Name,SystemType,Status/State

For successful responses, when services execute $select , they shall return all requested properties of
the referenced resource that are supported. Services shall omit unsupported properties requested in
the $select query parameter from the response. If a requested property is an object, the service shall
return the entire object. The @odata.id and @odata.type properties shall be in the response payload
and contain the same values as if $select was omitted. If the @odata.context property is supported, it
shall be in the response payload and should be in the context property recommended format. If the
@odata.etag property is supported, it shall be in the response payload and contain the same values as

if $select was omitted. Services may include object-level messages or messages for requested
properties in the response payload.

For unsuccessful responses, the response body shall contain an error response regardless of the
properties requested in the $select query parameter.

Redfish Specification DSP0266

50 Published Version 1.18.0



Any other supported syntax for $select is outside the scope of this specification.

7.3.4 The $filter query parameter

The $filter parameter enables a client to request a subset of the resource collection's members
based on the $filter expression. The definition of this query parameter follows the OData Protocol
Specification.

The $filter query parameter defines a set of properties and literals with an operator.

A literal value can be:

• A string enclosed in single quotes.
• A number.
• A boolean value.

If the literal value does not match the data type for the specified property, the service should reject
$filter requests with the HTTP 400 Bad Request status code.

The $filter section of the OData ABNF Components Specification contains the grammar for the
allowable syntax of the $filter query parameter, with the additional restriction that only built-in filter
operations are supported.

Table 10 lists the Redfish-supported values for the $filter query parameter. Any other supported
syntax for $filter is outside the scope of this specification.

Table 10 — The $filter query parameter options
Value Description Example

()
Precedence grouping
operator. (Status/State eq 'Enabled' and Status/Health eq 'OK') or SystemType eq 'Physical'

and Logical and operator. ProcessorSummary/Count eq 2 and MemorySummary/TotalSystemMemoryGiB gt 64

eq
Equal comparison
operator. ProcessorSummary/Count eq 2

ge
Greater than or equal to
comparison operator. ProcessorSummary/Count ge 2

gt
Great than comparison
operator. ProcessorSummary/Count gt 2

le
Less than or equal to
comparison operator. MemorySummary/TotalSystemMemoryGiB le 64

DSP0266 Redfish Specification

Version 1.18.0 Published 51



Value Description Example

lt
Less than comparison
operator. MemorySummary/TotalSystemMemoryGiB lt 64

ne
Not equal comparison
operator. SystemType ne 'Physical'

not
Logical negation
operator. not (ProcessorSummary/Count eq 2)

or Logical or operator. ProcessorSummary/Count eq 2 or ProcessorSummary/Count eq 4

When evaluating expressions, services shall use the following operator precedence:

• Grouping
• Logical negation
• Relational comparison. gt , ge , lt , and le all have equal precedence.
• Equality comparison. eq and ne both have equal precedence.
• Logical and

• Logical or

If the service receives an unsupported $filter query parameter, it shall reject the request and return
the HTTP 501 Not Implemented status code.

7.4 HEAD

The HEAD method differs from the GET method in that it shall not return message body information.

However, the HEAD method completes the same authorization checks and returns all the same meta
information and status codes in the HTTP headers as a GET method.

Services may support the HEAD method to:

• Return meta information in the form of HTTP response headers.
• Verify hyperlink validity.

Services may support the HEAD method to verify resource accessibility.

Services shall not support any other use of the HEAD method.

The HEAD method shall be idempotent in the absence of outside changes to the resource.

Redfish Specification DSP0266

52 Published Version 1.18.0



Services shall reject HEAD requests that contain query parameters. Services should return the HTTP
400 Bad Request status code if provided with a query parameter in a HEAD request.

7.5 Data modification requests

7.5.1 Data modification requests overview

To create, modify, and delete resources, clients issue the following operations:

• POST (create)
• PATCH (update)
• PUT (replace)
• DELETE (delete)
• POST (action) on the resource

The following clauses describe the success and error response requirements common to all data
modification requests.

7.5.2 Modification success responses

For POST (create) operations, the response from the service, after the create request succeeds, should
be one of these responses:

• The HTTP 201 Created status code. If a response body is provided, it contains the JSON
representation of the newly created resource after the request has been applied.

• The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when
the processing of the request requires additional time to be completed.
◦ After processing of the task is complete, the created resource may be returned in response to

a request to the task monitor URI with the HTTP 201 Created status code.
• The HTTP 204 No Content status code with no response body.

For PATCH (update), PUT (replace), and DELETE (delete) operations, the response from the service,
after successful modification, should be one of the following responses:

• The HTTP 200 OK status code with a body that contains the JSON representation of the targeted
resource after the modification has been applied, or, for the delete operation, a representation of
the deleted resource.

• The HTTP 202 Accepted status code with a Location header set to the URI of a task monitor when
the processing of the modification requires additional time.
◦ After processing of the task is complete, the modified resource may be returned in response to

a request to the task monitor URI with the HTTP 200 OK status code.

DSP0266 Redfish Specification

Version 1.18.0 Published 53



• The HTTP 204 No Content status code with no response body.

For details on successful responses to action requests, see POST (action).

7.5.3 Modification error responses

If the resource exists but does not support the requested operation, services shall return the HTTP 405

Method Not Allowed status code.

Otherwise, if the service returns a client 4XX or service 5XX status code, the service encountered an
error and the resource shall not have been modified or created as a result of the operation.

7.6 PATCH (update)

To update a resource's properties, the service shall support the PATCH method.

The request body defines the changes to make to one or more properties in the resource that the
request URI references. The PATCH request does not change any properties that are not in the request
body. Services may accept a PATCH method with an empty JSON object, which indicates that the
service should make no changes to the resource.

For resources that allow for properties to not be updated immediately, clients can perform PATCH

requests to a designated settings resource. For more information, see the Settings resource clause.

See the Modification success responses clause for behavior when the PATCH operation is successful.

If supported by the service, clients can perform a conditional PATCH operation by specifying an If-

Match or If-None-Match request header that contains the ETag of the resource.

The implementation may reject the update on certain properties based on its own policies and, in this
case, not make the requested update.

A partial success of a PATCH operation occurs when a modification request for multiple properties
results in at least one property updated successfully, but one or more properties could not be updated.
In these cases, the service shall return the HTTP 200 OK status code and a resource representation
with extended information that lists the properties that could not be updated. Examples include:

• A property is read-only, unknown, or unsupported.
• A service-side error occurred, such as a write failure for an EEPROM.

If all properties in the update request are read-only, unknown, or unsupported, but the resource can be
updated, the service shall return the HTTP 400 Bad Request status code and an error response with
messages that show the non-updatable properties.

Redfish Specification DSP0266

54 Published Version 1.18.0



The service shall ignore OData annotations in the request body, such as the resource identifier, type,
and ETag properties, except for the conditions listed below. If the update request only contains OData
annotations, the service should return the HTTP 400 Bad Request status code with the NoOperation

message from the Base Message Registry, except for the conditions listed below.

• Writable reference properties.
• In deep operations when specifying subordinate resources.

In the absence of outside changes to the resource, the PATCH operation should be idempotent,
although the original ETag value may no longer match.

7.7 PATCH on array properties

The Array properties clause describes the three styles of array properties in a resource.

Within a PATCH request, the service shall accept null to remove an element, and accept an empty
object {} to leave an element unchanged. Array properties that use the fixed or variable length style
remove those elements, while array properties that use the rigid style replace removed elements with
null elements. A service may indicate the maximum size of an array by padding null elements at

the end of the array sequence.

When processing a PATCH request, the order of operations shall be:

• Modifications
• Deletions
• Additions

A PATCH request with fewer elements than in the current array shall remove the remaining elements
of the array.

For example, a fixed length-style Flavors array indicates that the service supports a maximum of six
elements, by padding the array with null elements, with four populated.

{

"Flavors": ["Chocolate", "Vanilla", "Mango", "Strawberry", null, null]

}

A client could issue the following PATCH request to remove Vanilla , replace Strawberry with Cherry ,
and add Coffee and Banana to the array, while leaving the other elements unchanged.

{

DSP0266 Redfish Specification

Version 1.18.0 Published 55



"Flavors": [{}, null, {}, "Cherry", "Coffee", "Banana"]

}

After the PATCH operation, the resulting array is:

{

"Flavors": ["Chocolate", "Mango", "Cherry", "Coffee", "Banana", null]

}

7.8 PUT (replace)

To completely replace a resource, services may support the PUT method. The service may add
properties to the response resource that the client omits from the request body, the resource definition
requires, or the service normally supplies.

The PUT operation should be idempotent in the absence of outside changes to the resource, with the
possible exception that the operation might change ETag values.

See the Modification success responses clause for behavior when the PUT operation is successful.

If supported by the service, clients can perform a conditional PUT operation by specifying an If-Match

or If-None-Match request header that contains the ETag of the resource.

Services may reject requests that do not include properties that the resource definition (schema)
requires.

7.9 POST (create)

To create a resource, services shall support the POST method on resource collections.

The POST request is submitted to the resource collection to which the new resource will belong. See
the Modification success responses clause for behavior when the POST operation is successful.

The body of the create request contains a representation of the object to create. The service may
ignore any service-controlled properties, such as Id , which would force the service to overwrite those
properties. Additionally, the service shall set the Location header in the response to the URI of the
new resource.

• Submitting a POST request to a resource collection is equivalent to submitting the same request to
the Members property of that resource collection. Services that support the addition of Members to

Redfish Specification DSP0266

56 Published Version 1.18.0



a resource collection shall support both forms.
◦ For example, if a client adds a member to the resource collection at /redfish/v1/EventService/

Subscriptions , it can perform a POST request to either /redfish/v1/EventService/Subscriptions

or /redfish/v1/EventService/Subscriptions/Members .
• The POST operation shall not be idempotent.
• Services may allow the inclusion of the @Redfish.OperationApplyTime property in the request body.

See Operation apply time.
• Services should return the HTTP 400 Bad Request status code for requests containing properties

with the value null .

7.10 DELETE (delete)

To remove a resource, the service shall support the DELETE method. Resources subordinate to the
resource removed by a DELETE method are typically removed, as the contents of subordinate
resources are dependent on the parent resource. In some cases, related resources may also be
relocated in the resource tree based on their definition and usage. Other resources in the resource tree
may also be removed or incur side effects of a resource removal.

See the Modification success responses clause for behavior when the DELETE operation is successful.

• If the resource was already deleted, the service may return the HTTP 404 Not Found status code or
a success code.

• The service may allow the inclusion of the @Redfish.OperationApplyTime property in the request
body. See Operation apply time.

7.11 POST (action)

Services shall support the POST method as a way for clients to send actions to resources.

• The POST operation may not be idempotent.
• Services may allow the inclusion of the @Redfish.OperationApplyTime property in the request body.

See Operation apply time.

To request actions on a resource, send the HTTP POST method to the URI of the action. The target

property in the resource's Actions property shall contain the URI of the action. The URI of the action
shall be in the format:

<ResourceUri>/Actions/<QualifiedActionName>

where

• <ResourceUri> is the URI of the resource that supports the action.

DSP0266 Redfish Specification

Version 1.18.0 Published 57



• Actions is the name of the property that contains the actions for a resource, as defined by this
specification.

• <QualifiedActionName> is the qualified name of the action. Includes the resource type.

To determine the available actions and the valid parameter values for those actions, clients can query
a resource directly.

Clients provide parameters for the action as a JSON object within the request body of the POST

operation. For information about the structure of the request and required parameters, see the Actions
property clause. Some parameter information may require that the client examine the Redfish schema
that corresponds to the resource.

If the action request does not contain all required parameters, the service shall return the HTTP 400

Bad Request status code. If the action request contains unsupported parameters, the service shall
ignore the unsupported parameters or return the HTTP 400 Bad Request status code. If an action does
not have any required parameters, the service should accept an empty JSON object in the HTTP body
for the action request.

Table 11 describes the HTTP status codes and additional information that the service shall return a
response to a successful POST (action) request:

Table 11 — POST (action) status codes
To indicate HTTP status code Additional information

Success, and the action's schema
definition does not contain an
action response.

200 OK

An error response, with a message that indicates success or
any additional relevant messages. If the action was
successfully processed and completed without errors, warnings,
or other notifications for the client, the service should return
the Success message from the Base Message Registry in the
code property in the response body.

Success, and the action's schema
definition contains an action
response.

200 OK
The response body conforms to the action response defined in
the schema.

A new resource was created, and
the action's schema definition does
not contain an action response.

201 Created

A Location response header set to the URI of the created
resource. An error response, with a message that indicates
success or any additional relevant messages. If the action was
successfully processed and completed without errors, warnings,
or other notifications for the client, the service should return
the Success message or Created message from the Base
Message Registry in the code property in the response body.

A new resource was created, and
the action's schema definition
contains an action response.

201 Created

A Location response header set to the URI of the created
resource. The response body conforms to the action response
defined in the schema.

Redfish Specification DSP0266

58 Published Version 1.18.0



To indicate HTTP status code Additional information

Additional time is required to
process. 202 Accepted A Location response header set to the URI of a task monitor.

Success, and the action's schema
definition does not contain an
action response.

204 No Content No response body.

If an action requested by the client has no effect, such as a reset of a ComputerSystem where the
ResetType parameter is set to On and the ComputerSystem is already On , the service should respond

with the HTTP 200 OK status code and return the NoOperation message from the Base Message
Registry.

If an error was detected and the action request was not processed, the service shall return an HTTP
4XX or HTTP 5XX status code. The response body, if provided, shall contain an error response that

describes the error or errors.

Example successful action response:

{

"error": {

"code": "Base.1.8.Success",

"message": "Successfully Completed Request",

"@Message.ExtendedInfo": [{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.8.Success",

"Message": "Successfully Completed Request",

"Severity": "OK",

"MessageSeverity": "OK",

"Resolution": "None"

}]

}

}

7.12 Operation apply time

Services may accept the @Redfish.OperationApplyTime annotation in the following request bodies:

• POST (create)
• DELETE (delete)
• POST (action)
• The JSON part for multipart HTTP POST operations, such as with the multipart HTTP push update in

the update service.

DSP0266 Redfish Specification

Version 1.18.0 Published 59



This annotation enables the client to control when an operation is carried out.

For example, if the client wants to delete a particular Volume resource, but can only safely do so when
a reset occurs, the client can use this annotation to instruct the service to delete the Volume on the
next reset.

If multiple operations are pending, the service shall process them in the order in which the service
receives them.

Services that support the @Redfish.OperationApplyTime annotation for create operations on a resource
collection and delete operations on members of a resource collection shall include the
@Redfish.OperationApplyTimeSupport response annotation for the resource collection.

The following example is a response for a resource collection that supports the
@Redfish.OperationApplyTime annotation in requests to create new members and delete existing

members:

{

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes",

"@odata.type": "#VolumeCollection.VolumeCollection",

"Name": "Storage Volume Collection",

"Description": "Storage Volume Collection",

"Members@odata.count": 2,

"Members": [{

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/1"

}, {

"@odata.id": "/redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2"

}],

"@Redfish.OperationApplyTimeSupport": {

"@odata.type": "#Settings.v1_3_3.OperationApplyTimeSupport",

"SupportedValues": ["Immediate", "OnReset"]

}

}

In the previous example, a client can annotate their create request body on the VolumeCollection

itself, or a delete operation on the Volumes within the VolumeCollection .

The following sample request deletes a Volume on the next reset:

DELETE /redfish/v1/Systems/1/Storage/SATAEmbedded/Volumes/2 HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

Redfish Specification DSP0266

60 Published Version 1.18.0



"@Redfish.OperationApplyTime": "OnReset"

}

Services that support the @Redfish.OperationApplyTime annotation for an action shall include the
@Redfish.OperationApplyTimeSupport response annotation for the action.

The following example is a response for a ComputerSystem resource that supports the
@Redfish.OperationApplyTime annotation in the reset action request:

{

"@odata.id": "/redfish/v1/Systems/1",

"@odata.type": "#ComputerSystem.v1_5_0.ComputerSystem",

"Actions": {

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"ResetType@Redfish.AllowableValues": ["On", "ForceOff", "ForceRestart",

"Nmi", "ForceOn", "PushPowerButton"],

"@Redfish.OperationApplyTimeSupport": {

"@odata.type": "#Settings.v1_3_3.OperationApplyTimeSupport",

"SupportedValues": ["Immediate", "AtMaintenanceWindowStart"],

"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",

"MaintenanceWindowDurationInSeconds": 600,

"MaintenanceWindowResource": {

"@odata.id": "/redfish/v1/Systems/1"

}

}

}

},

...

}

In the previous example, a client can annotate their reset action request body on the ComputerSystem

in the payload.

The following sample request completes a reset at the start of the next maintenance window:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"ResetType": "ForceRestart",

"@Redfish.OperationApplyTime": "AtMaintenanceWindowStart"

}

DSP0266 Redfish Specification

Version 1.18.0 Published 61



Services that support the @Redfish.OperationApplyTime annotation for the JSON part of a multipart
HTTP POST operation shall include the @Redfish.OperationApplyTimeSupport response annotation for the
property that specifies the URI of the multipart POST operation.

The following example is a response for an UpdateService resource that supports the
@Redfish.OperationApplyTime annotation in the JSON part of a multipart request:

{

"@odata.id": "/redfish/v1/UpdateService",

"@odata.type": "#UpdateService.v1_8_0.UpdateService",

"MultipartHttpPushUri": "/redfish/v1/UpdateService/update-multipart",

"MultipartHttpPushUri@Redfish.OperationApplyTimeSupport": {

"@odata.type": "#Settings.v1_3_3.OperationApplyTimeSupport",

"SupportedValues": ["Immediate", "AtMaintenanceWindowStart"],

"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",

"MaintenanceWindowDurationInSeconds": 600,

"MaintenanceWindowResource": {

"@odata.id": "/redfish/v1/UpdateService"

}

},

...

}

Services that support the @Redfish.OperationApplyTime annotation for a resource collection, action, or
multipart HTTP POST operation shall create a task, and respond with the HTTP 202 Accepted status
code with a Location header set to the URI of a task monitor, if the client's request body contains
@Redfish.OperationApplyTime in the request.

The Settings Redfish schema defines the structure of the @Redfish.OperationApplyTimeSupport object
and the @Redfish.OperationApplyTime annotation value.

7.13 Deep operations

Implementations may support operations that modify the current resource as well as subordinate
resources. These operations are known as deep operations. They give the client the ability to modify
more than one resource with a single operation.

Table 12 describes the types of deep operations that this specification defines:

Redfish Specification DSP0266

62 Published Version 1.18.0



Table 12 — Deep operations
Operation Description Example

Deep PATCH (update) Modify a resource and one or more subordinate
resources.

Modify a ComputerSystem resource as well
as subordinate Storage and
NetworkInterface resources.

Deep POST (create) Create multiple resources in a resource collection. Create ManagerAccount resources.

• Services that support deep PATCH for updating resources shall set the value of the DeepPATCH

property in the DeepOperations property in the ProtocolFeaturesSupported property within the
service root to true .

• Services that support deep POST for creating resources shall set the value of the DeepPOST

property in the DeepOperations property in the ProtocolFeaturesSupported property within the
service root to true .

• The Members property in resource collections shall not be removed when using a deep PATCH .
• Action URIs shall not support deep POST operations.
• If the service supports deep operations, the MaxLevels property in the DeepOperations property in

the ProtocolFeaturesSupported property in the service root shall indicate the maximum number of
levels that the service supports for deep operations.

• To request deep operations on a resource, send the HTTP method to the deep operation URI of the
resource. The URI for deep operations on any resource shall be in the format: <ResourceUri>.Deep .

• The schema used for validating the root level of the request body shall be the schema of the
resource in the resource URI.
◦ The subordinate resources included in the request body shall be validated against their

corresponding schema.

The body of deep operations contains the resource being modified as well as the subordinate
resources being modified. This resource can be a collection or a single instance. These resources could
be subordinate resources, subordinate resource collections, or subordinate members of resource
collections. The client can omit properties from the request such as those it does not want to modify or
that the service controls. Requests that include references to multiple instances, such as members of a
collection, shall include the Members property as part of the request body.

To determine which members of subordinate resource collections are to be modified by a deep PATCH ,
services shall use the @odata.id property provided by the client to identify the member of the
resource collection to be modified.

Clients may provide the @odata.etag property in subordinate resources being modified by a deep
PATCH . If the request contains the If-Match or If-None-Match header, the service shall compare the

ETag in the request header with the ETag of the resource specified by the URI. If this check passes, the
operation can proceed using the @odata.etag values contained in the body of the subordinate
resources. In this case, the operation on each subordinate resource shall be completed independently,

DSP0266 Redfish Specification

Version 1.18.0 Published 63



where some subordinate values that pass the condition check proceed and the resources that fail do
not proceed. In this case, annotated extended information shall be included in the subordinate
resource representation of the response.

Failure semantics for deep operations are similar to that of other operations of similar type. If any
properties in a deep PATCH operation succeeded, the result is a 200 OK with the results returned in
the response, and the service should include extended information indicating warnings or errors. For a
deep POST operation, if any member of the collection was created then a 201 Created shall be
returned, and any members that were not created should have extended information in their place
holders with sufficient identifying information, such as returning all of the properties provided in the
POST request body for that member, as well as extended information indicating why the creation was

not successful. When sending a deep POST request, the value of the Location header shall be that of
one of the URIs created and should be that of one of the least subordinate URIs, such as that of a
ComputerSystem resource and not one of the devices subordinate to the ComputerSystem resource.

If the request body for a deep operation contains resources that are not modifiable, but no
modifications are requested for those resources, services shall not treat this as a modification request
for those resources. For example, if the service root is not modifiable, meaning PATCH is not accepted
on the resource, a client is allowed to provide the service root in the deep operation request body if
there are no modifications to the service root.

Deep POST shall not be allowed on the SessionCollection resource.

The following deep PATCH example modifies two members of the RoleCollection resource:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"Members": [{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",

"AssignedPrivileges": ["Login", "ConfigureComponents"]

}, {

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",

"AssignedPrivileges": ["Login"]

}]

}

The following deep POST example creates two members in the RoleCollection resource:

POST /redfish/v1/AccountService/Roles.Deep HTTP/1.1

Content-Type: application/json;charset=utf-8

Redfish Specification DSP0266

64 Published Version 1.18.0



Content-Length: <computed length>

OData-Version: 4.0

{

"Members": [{

"RoleId": "OperatorRestricted",

"AssignedPrivileges": ["Login", "ConfigureComponents"]

}, {

"RoleId": "ReadOnlyRestricted",

"AssignedPrivileges": ["Login"]

}]

}

The following deep PATCH example modifies the asset tag and BIOS settings of a ComputerSystem

resource:

PATCH /redfish/v1/Systems/47832.Deep HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"AssetTag": "Inventory Tag 12394783431",

"Bios": {

"@odata.id": "/redfish/v1/Systems/47832/Bios",

"@Redfish.Settings": {

"@odata.type": "#Settings.v1_3_3.Settings",

"SettingsObject": {

"@odata.id": "/redfish/v1/Systems/47832/Bios/SD",

"Attributes": {

"AdminPhone": "(123) 456-789",

"BootMode": "Uefi"

}

}

}

}

}

The following example shows a deep PATCH with ETags in the request:

PATCH /redfish/v1/AccountService/Roles.Deep HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

If-Match: <Collection ETag>

OData-Version: 4.0

DSP0266 Redfish Specification

Version 1.18.0 Published 65



{

"Members": [{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",

"@odata.etag": "W/\"ABCDEFG\"",

"AssignedPrivileges": ["Login", "ConfigureComponents"]

}, {

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",

"@odata.etag": "W/\"ABCDEFG\"",

"AssignedPrivileges": ["Login"]

}]

}

The following example response shows a partial failure of a deep PATCH where the ETag provided in
the request for the Role resource named ReadOnlyRestricted was incorrect:

HTTP/1.1 200 OK

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

ETag: <Resource collection ETag>

OData-Version: 4.0

{

"Members": [{

"@odata.id": "/redfish/v1/AccountService/Roles/OperatorRestricted",

"@odata.etag": "W/\"ABCDEFG\"",

"AssignedPrivileges": ["Login", "ConfigureComponents"]

}, {

"@odata.id": "/redfish/v1/AccountService/Roles/ReadOnlyRestricted",

"@Message.ExtendedInfo": [{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.8.PreconditionFailed",

"RelatedProperties": ["/AssignedPrivileges"]

}]

}]

}

Redfish Specification DSP0266

66 Published Version 1.18.0



8 Service responses
This clause describes the responses that Redfish services can return to clients.

8.1 Response headers

HTTP defines headers for use in response messages. Table 13 defines those headers and their
requirements for Redfish services:

• Redfish services shall return the HTTP-defined headers if the Required column contains Yes.
• Redfish services should return the HTTP-defined headers if the Required column contains No.
• Redfish clients shall be able to both understand and process all the HTTP-defined headers.

Table 13 — Response headers
Header Required Supported values Description

Access-Control-Allow-Origin No
Fetch Living
Standard, 3.2.3.
HTTP responses

Prevents or allows requests based on originating
domain. Prevents CSRF attacks.

Allow Yes POST , PUT , PATCH ,
DELETE , GET , HEAD

Shall be returned with the HTTP 405 (Method Not
Allowed) status code to indicate the valid methods for
the request URI. Shall be returned with any GET or
HEAD operation to indicate the other allowable

operations for this resource.

Cache-Control Yes RFC7234 Shall be supported and indicates whether a response
can or cannot be cached.

Content-Encoding No RFC7231 Encoding used to compress the message body.

Content-Length No RFC7231

Size of the message body. An optional means of
indicating size of the body uses Transfer-Encoding:

chunked , that does not use the Content-Length

header. If a service does not support Transfer-

Encoding and needs Content-Length instead, the
service shall respond with the HTTP 411 Length

Required status code.

DSP0266 Redfish Specification

Version 1.18.0 Published 67

https://fetch.spec.whatwg.org/#http-responses
https://fetch.spec.whatwg.org/#http-responses


Header Required Supported values Description

Content-Type Yes RFC7231

The message body's representation type.

Services shall specify a Content-Type of application/

json when returning resources as JSON.

Services shall specify a Content-Type of application/

xml when returning metadata as XML.

Services shall specify a Content-Type of application/

yaml or application/vnd.oai.openapi when returning
OpenAPI schema as YAML.

Services shall specify a Content-Type of text/event-

stream when returning an SSE stream.

;charset=utf-8 shall be appended to the Content-

Type if specified in the chosen media-type in the
Accept header for the request.

ETag Conditional RFC7232
An identifier for a specific version of a resource, often
a message digest. The ETag header shall be included
on responses to GET s of ManagerAccount resources.

Link Yes RFC8288 Link headers shall be returned, as described in the
Link headers clause.

Location Conditional RFC7231

URI of a newly created resource. Shall be returned
upon creation of a resource. Location and X-Auth-

Token shall be included on responses that create user
sessions.

Max-Forwards No RFC7231 Limits gateway and proxy hops. Prevents messages
from remaining in the network indefinitely.

OData-Version Yes 4.0 OData version of the payload to which the response
conforms.

Retry-After No RFC7231, Section
7.1.3

Informs a client how long to wait before requesting
the task information again.

Server No RFC7231

A product token and its version. Multiple product
tokens may be listed.

Note: Previous versions of the Specification marked
this header as required. This has been changed
because no use cases for requiring it have been
identified.

Via No RFC7230 Defines the network hierarchy and recognizes
message loops. Each pass inserts its own Via header.

Redfish Specification DSP0266

68 Published Version 1.18.0



Header Required Supported values Description

WWW-Authenticate Yes RFC7617

Provides a challenge to clients, such as directing a
client to perform HTTP Basic authentication, when
authentication headers in the request are missing or
invalid.

X-Auth-Token Yes Opaque encoded
octet strings

Contains the authentication token for user sessions.
The token value shall be indistinguishable from
random.

8.2 Link header

The Link header provides metadata information on the accessed resource in response to a HEAD or
GET request. The metadata information can include hyperlinks from the resource and JSON Schemas

that describe the resource.

The following example shows the Link headers for a ManagerAccount with an Administrator role, in
addition to a Settings annotation:

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role

Link: <http://redfish.dmtf.org/schemas/Settings.json>

Link: </redfish/v1/JsonSchemas/ManagerAccount.v1_0_2.json>; rel=describedby

• The first Link header is an example of a hyperlink that comes from the resource. It describes
hyperlinks within the resource. This type of header is outside the scope of this specification.

• The second Link header is an example of an annotation Link header as it references the JSON
Schema that describes the annotation and does not have rel=describedby . This example
references the public copy of the annotation on DMTF's Redfish schema repository.

• The third Link header is an example for the JSON Schema that describes the actual resource.
◦ Note that the URL can reference an unversioned JSON Schema because the @odata.type in the

resource indicates the appropriate version, or reference the versioned JSON Schema, which
according to previous normative statements need to match the version in the @odata.type

property of the resource.

A Link header containing rel=describedby shall be returned on GET and HEAD requests for Redfish
resources. If the referenced JSON Schema is a versioned schema, it shall match the version contained
in the value of the @odata.type property returned in this resource.

A Link header satisfying annotations should be returned on GET and HEAD requests for Redfish
resources.

DSP0266 Redfish Specification

Version 1.18.0 Published 69



8.3 Status codes

HTTP defines status codes that appear in responses. The status codes themselves provide general
information about how the request was processed, such as whether the request was successful, if the
client provided bad information, or the service encountered an error when processing the request.

• When the service returns a status code in the 4XX or 5XX range, services should return an
extended error response in the response body to provide the client more meaningful and
deterministic error semantics.

• When the service returns a status code in the 2XX range and the response contains a
representation of a resource, services may use extended information to convey additional
information about the resource.

• Extended error messages shall not provide privileged information when authentication failures
occur.

Note: For security implications of extended errors, See Security details.

Table 14 lists HTTP status codes that have meaning or usage defined for a Redfish service, or are
otherwise referenced by this specification. Other codes may be returned by the service as appropriate,
and their usage is implementation-specific. For usage and additional requirements imposed by this
specification, see the Description column.

• Clients shall understand and be able to process the HTTP-defined status codes in Table 14 and
constrained by additional requirements defined by this specification.

• Services shall respond with the HTTP-defined status codes in Table 14 and constrained by
additional requirements in the Description column.

• Redfish services should not return the HTTP 100 status code. Using the HTTP protocol for a
multipass data transfer should be avoided, except for the upload of extremely large data.

• If no other status code in the 4XX range is appropriate for client-side errors, the default status
code should be the HTTP 400 Bad Request status code.

• If no other status code in the 5XX range is appropriate for service-side errors, the default status
code should be the HTTP 500 Internal Server Error status code.

Table 14 — HTTP status codes
HTTP status code Description

200 OK Request completed successfully and includes a representation in its body.

Redfish Specification DSP0266

70 Published Version 1.18.0



HTTP status code Description

201 Created

Request to create a resource completed successfully. The Location header shall be
set to the canonical URI for the newly created resource. For POST (create) requests,
the response body may include a representation of the newly created resource. For
POST (action) requests, the response body shall include the action response.

202 Accepted

Request has been accepted for processing but the processing has not been
completed. The Location header shall be set to the URI of a task monitor that can
later be queried to determine the status of the operation. The response body may
include a representation of the Task resource.

204 No Content Request succeeded, but no response body is provided.

301 Moved Permanently Requested resource resides under a different URI.

302 Found Requested resource resides temporarily under a different URI.

304 Not Modified

Service has made a conditional GET request where access is allowed but the
resource content has not changed. Certain request headers, such as If-None-Match ,
initiate conditional requests to save network bandwidth if no change has occurred.
See HTTP 1.1, sections 14.25 and 14.26.

400 Bad Request

Request could not be processed because it contains invalid information, such as an
invalid input field, or is missing a required value. The response body shall return an
extended error as defined in the Error responses clause.

401 Unauthorized
Authentication credentials included with this request are missing or invalid.
Additional details are described in the Sensitive data clause.

403 Forbidden

Service recognized the credentials in the request but those credentials do not
possess authorization to complete this request. This code is also returned when the
user credentials provided need to be changed before access to the service can be
granted. For details, see the Security details clause.

404 Not Found
Request specified a URI of a resource that does not exist. Additional details are
described in the Sensitive data clause.

405 Method Not Allowed

HTTP verb in the request, such as DELETE , GET , HEAD , POST , PUT , or PATCH , is not
supported for this request URI. The response shall include an Allow header that
provides a list of methods that the resource identified by the URI in the client
request supports. Additional details are described in the Sensitive data clause.

406 Not Acceptable

Accept header was specified in the request and the resource identified by this
request cannot generate a representation that corresponds to one of the media
types in the Accept header.

409 Conflict

Creation or update request could not be completed because it would cause a conflict
in the current state of the resources that the platform supports. For example, a
conflict occurred due to an attempt to set multiple properties that work in a linked
manner by using incompatible values.

DSP0266 Redfish Specification

Version 1.18.0 Published 71



HTTP status code Description

410 Gone

Requested resource is no longer available at the service and no forwarding address
is known. This condition is expected to be considered permanent. Clients with
hyperlink editing capabilities should delete references to the URI in the client
request after user approval. If the service does not know or cannot determine
whether the condition is permanent, client should use the HTTP 404 Not Found

status code. This response is cacheable unless otherwise indicated.

411 Length Required

Request did not use the Content-Length header to specify the length of its content
but perhaps used the Transfer-Encoding: chunked header instead. The addressed
resource requires the Content-Length header.

412 Precondition Failed
Precondition check, such as check of the OData-Version , If-Match , or If-None-Match

header, failed.

413 Payload Too Large
Request payload, or a part in a multipart request, is larger than the maximum size
the service supports.

415 Unsupported Media Type Request specifies a Content-Type for the body that is not supported.

428 Precondition Required
Request did not provide the required precondition, such as an If-Match or If-None-

Match header.

431 Request Header Field Too Large
Service is unwilling to process the request because either an individual header field
or the collection of all header fields are too large.

500 Internal Server Error

Service encountered an unexpected condition that prevented it from fulfilling the
request. The response body shall return an extended error as defined in the Error
responses clause.

501 Not Implemented

Service does not currently support the functionality required to fulfill the request.
This response is appropriate when the service does not recognize the request
method and cannot support the method for any resource.

503 Service Unavailable

Service currently cannot handle the request due to temporary overloading or
maintenance of the service. A service may use this response to indicate that the
request URI is valid but the service is performing initialization or other maintenance
on the resource. A service may also use this response to indicate that the service
itself is undergoing maintenance, such as finishing initialization steps after reboot of
the service.

507 Insufficient Storage Service cannot build the response for the client due to the size of the response.

8.4 OData metadata responses

8.4.1 OData metadata responses overview

OData metadata describes resources, resource collections, capabilities, and service-dependent

Redfish Specification DSP0266

72 Published Version 1.18.0



behavior to generic OData consumers with no specific understanding of this specification. Clients are
not required to request metadata if they already have sufficient understanding of the target service.
For example, clients are not required to request metadata to request and interpret a JSON
representation of a resource that this specification defines.

A client can access the OData metadata at the /redfish/v1/$metadata URI.

A client can access the OData service document at the /redfish/v1/odata URI.

8.4.2 OData $metadata

The OData metadata describes top-level service resources and resource types according to OData
Common Schema Definition Language. The OData metadata is represented as an XML document with
an Edmx root element in the http://docs.oasis-open.org/odata/ns/edmx namespace with an OData
version attribute set to 4.0 .

The service shall use the application/xml or application/xml;charset=utf-8 MIME types to return the
OData metadata document as an XML document.

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<!-- edmx:Reference and edmx:Schema elements go here -->

</edmx:Edmx>

8.4.2.1 Referencing other schemas

The OData metadata should include the namespaces for each of the Redfish resource types, along
with the RedfishExtensions.v1_0_0 namespace. Dynamic clients that reference the OData metadata
document leverage schema definitions that are referenced to understand the definitions of the
resources in the service. However, there are cases where it might not be practical to maintain an
accurate document, such as when resources are dynamically discovered by the service through
devices that support Redfish Device Enablement.

These references shall use either:

• An absolute URI for the Redfish schema definitions, such as on http://redfish.dmtf.org/schemas or
http://developers.contoso.org/schemas .

• A relative URI to a local copy of the Redfish schema. See the Redfish-defined URIs and relative
reference rules clause for recommended URI patterns.

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ServiceRoot_v1.xml">

<edmx:Include Namespace="ServiceRoot"/>

<edmx:Include Namespace="ServiceRoot.v1_0_0"/>

DSP0266 Redfish Specification

Version 1.18.0 Published 73



</edmx:Reference>

...

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/VirtualMedia_v1.xml">

<edmx:Include Namespace="VirtualMedia"/>

<edmx:Include Namespace="VirtualMedia.v1_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

</edmx:Reference>

The service's OData metadata document shall include an EntityContainer that defines the top-level
resources and resource collections.

8.4.2.2 Referencing OEM extensions

The OData metadata document may reference additional schema documents that describe OEM-
specific extensions that the service uses.

For example, the OData metadata document may reference custom types for additional resource
collections.

<edmx:Reference Uri="http://contoso.org/Schema/CustomTypes">

<edmx:Include Namespace="CustomTypes"/>

</edmx:Reference>

8.4.3 OData service document

The OData service document serves as a top-level entry point for generic OData clients. More
information about the OData service document can be found in the OData JSON Format Specification.

{

"@odata.context": "/redfish/v1/$metadata",

"value": [{

"name": "Service",

"kind": "Singleton",

"url": "/redfish/v1/"

}, {

"name": "Systems",

"kind": "Singleton",

"url": "/redfish/v1/Systems"

Redfish Specification DSP0266

74 Published Version 1.18.0



}, ...]

}

The service shall use the application/json MIME type to return the OData service document as a JSON
object.

The JSON object shall contain the @odata.context context property set to /redfish/v1/$metadata .

The JSON object shall include a value property set to a JSON array that contains an entry for the
service root and each resource that is a direct child of the service root.

Table 15 describes the properties that each JSON object entry includes:

Table 15 — JSON object properties
Property Description

name User-friendly resource name of the resource.

kind Type of resource. Value is Singleton for all cases defined by Redfish.

url Relative URL for the top-level resource.

8.5 Resource responses

Services use the application/json MIME type to return resources and resource collections as JSON
payloads. A service shall not break responses for a single resource into multiple results.

The format of these payloads is defined by the Redfish schema. For rules about the Redfish schema
and how it maps to JSON payloads, see the Data model and Schema definition languages clauses.

8.6 Error responses

HTTP status codes often do not provide enough information to enable deterministic error semantics.
For example, if a client makes a PATCH call and some properties do not match while others are not
supported, the HTTP 400 Bad Request status code does not tell the client which values are in error.
Error responses provide the client more meaningful and deterministic error semantics.

To provide the client with as much information about the error as possible, a Redfish service may
provide multiple error responses in the HTTP response. Additionally, the service may provide Redfish
standardized errors, OEM-defined errors, or both, depending on the implementation's ability to convey
the most useful information about the underlying error.

DSP0266 Redfish Specification

Version 1.18.0 Published 75



Table 16 describes the properties in the extended error response, which is a single JSON object:

Table 16 — Error properties
Property Description

code
String. Defines a MessageId from the message registry. See the MessageId format clause for the
format of MessageId .

message
Displays a human-readable error message that corresponds to the message in the message
registry.

@Message.ExtendedInfo Displays an array of message objects. Describes one or more error messages.

See the Schema definition languages clause for references to the schema definitions of the error
response payload.

The @Message.ExtendedInfo property should be present in all error responses. If the
@Message.ExtendedInfo property is present, all information necessary to process the error should be

provided in the @Message.ExtendedInfo property. Clients should look for the @Message.ExtendedInfo

property for error processing first, and fallback on the code and message properties if
@Message.ExtendedInfo is not present.

The following sample error response contains two messages in the @Message.ExtendedInfo property
that describe two different errors. The message described by the code and message properties do not
provide actionable information for the client.

{

"error": {

"code": "Base.1.8.GeneralError",

"message": "A general error has occurred. See Resolution for information on how to resolve the error.",

"@Message.ExtendedInfo": [{

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.8.PropertyValueNotInList",

"RelatedProperties": [

"/IndicatorLED"

],

"Message": "The value Red for the property IndicatorLED is not in the list of acceptable values.",

"MessageArgs": ["Red",

"IndicatorLED"

],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Choose a value from the enumeration list that the implementation can support and resubmit the request if the operation failed."

}, {

"@odata.type": "#Message.v1_1_1.Message",

"MessageId": "Base.1.8.PropertyNotWritable",

Redfish Specification DSP0266

76 Published Version 1.18.0



"RelatedProperties": [

"/SKU"],

"Message": "The property SKU is a read only property and cannot be assigned a value.",

"MessageArgs": ["SKU"],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Remove the property from the request body and resubmit the request if the operation failed."

}]

}

}

DSP0266 Redfish Specification

Version 1.18.0 Published 77



9 Data model
One of the key tenets of Redfish is the separation of protocol from the data model. This separation
makes the data both transport and protocol agnostic. By concentrating on the data transported in the
payload of the protocol (in HTTP, it is the HTTP body), Redfish can also define the payload in any
encoding and the data model is intended to be schema-language agnostic. While Redfish uses the
JSON data-interchange format, Redfish provides a common encoding type that ensures property
naming conventions that make development easier in JavaScript, Python, and other languages. This
encoding type helps the Redfish data model be more easily accessible in modern tools and
programming environments.

The data model allows an OEM to extend the model by adding an OEM resource or extending a
resource.

This clause describes common data model, resource, and Redfish schema requirements.

9.1 Resources

A resource is a single entity accessed at a specific URI. Services use the application/json MIME type
to return resources as JSON payloads.

Each resource shall be strongly typed, defined by a resource type in a Redfish schema document, and
identified in the response payload by the value of the type identifier property.

Responses for a single resource shall contain the following properties:

• @odata.id

◦ Registry resources are not required to provide @odata.id

• @odata.type

• Id

• Name

Responses may also contain other properties defined within that resource type. Responses shall not
include any properties not defined by that resource type.

9.2 Resource types

A resource type defines the set of properties that may be returned in the response payload of a
Redfish resource request. Each resource type is documented in a Redfish schema document, and those

Redfish Specification DSP0266

78 Published Version 1.18.0



documents are known collectively as the Redfish schema. The resource type may also include
definitions for actions available for that resource.

Resource types are named to match the contents and purpose of the resource that they define. For
example the Circuit resource type defines the properties and actions related to a single electrical
circuit. Resource types provide global uniqueness for definitions across multiple schema files and allow
for schema files to reference each other. Resource types may be defined by OEMs to extend the
Redfish schema, and should follow the naming rules specified by the OEM resource types clause.

9.3 Resource collections

A resource collection is a set of resources that share the same schema definition. Services use the
application/json MIME type to return resource collections as JSON payloads.

Resource collection responses shall contain the following properties:

• @odata.id

• @odata.type

• Name

• Members

• Members@odata.count

Responses for resource collections may contain the following properties:

• @odata.context

• @odata.etag

• Description

• Members@odata.nextLink

• Oem

Responses for resource collections shall not contain any other properties with the exception of payload
annotations.

9.4 OEM resources

OEMs and other third parties can extend the Redfish data model by creating additional resource types.
Extending the data model is accomplished by defining an OEM resource type, and schema file, for
each resource type, and creating hyperlinks to connect instances of new resources to the resource
tree.

Companies, OEMs, and other organizations may also use the Oem property in resources, the links

DSP0266 Redfish Specification

Version 1.18.0 Published 79



property, and the actions property to define additional properties, hyperlinks, and actions for standard
Redfish resource types.

While the information and semantics of these extensions are outside of the standard, the schema
representing the data, the resource itself, and the semantics around the protocol shall conform to the
requirements in this specification. OEMs are encouraged to follow the design tenets and naming
conventions in this specification when defining OEM resources or properties.

9.5 Common data types

9.5.1 Primitive types

Table 17 describes the primitive data types for properties and action parameters in the data model:

Table 17 — Primitive data types
Type Description

Boolean A variable with a value of true or false .

Number A number with optional decimal point or exponent. Number properties may restrict the representation to
an integer or a number with decimal point.

String A sequence of characters enclosed with double quotes ( " ).

Array A comma-separated set of the previous types enclosed with square braces ( [ and ] ). See the Array
properties clause.

Object A set of properties enclosed with curly braces ( { and } ). See the Structured properties clause.

Null null value, which the service uses when it is unable to determine the property's value due to an error or
other temporary condition, or if the schema has requirements for using null for other special conditions.

When receiving values from the client, services should support other valid representations of the data
in the specified JSON type. In particular, services should support valid integer and decimal values in
exponential notation and integer values that contain a decimal point with no non-zero trailing digits.

9.5.2 Enumerations

Enumerations are frequently used in Redfish to promote readability and interoperability, especially
compared to the use of string values when used for similar purposes. Enumerations aren't optimal in
all cases. Properties with two values that are likely to not have additional values should consider the
boolean type if the true and false values can be described by the property name. The following
design tenets apply to enumerations:

Redfish Specification DSP0266

80 Published Version 1.18.0



• Enumeration values can be added to existing properties. Client software should be prepared to
receive enumeration values that are not known if the resource schema version is higher than the
client's supported version.

• Enumeration properties should avoid definition of "unknown", "other", or similar generic or
placeholder values as these reduce interoperability.

• Feedback is encouraged for adding enumeration values to existing properties to cover new
technologies or use cases.
◦ Enumeration values are generally defined to support existing or newly developed products.
◦ Enumeration values that are obsolete or highly unlikely to appear in implementations are not

included, but they can be added.
◦ Enumerations may include vendor-specific values when they apply to multiple products or

implementations.
◦ Sometimes the value OEM is included as an enumeration value. When this is in the

enumeration, client software should be aware that there is likely an Oem property with
additional information. In some cases, standard schema contains a standard value to further
describe this enumeration value when additional OEM data is unlikely.

9.5.3 Empty string values

String properties should return an empty string ("") for properties configured by a user or external
service that have not been set to an initial value. This allows client software to identify the property as
supported by the service, and avoids the use of null , which indicates an error condition. For example,
the AssetTag property must be set by the end user, and therefore would return an empty string ("")
until assigned a value by the user, while a failure to read the stored AssetTag value due to a non-
volatile memory error would return null . To improve interoperability, implementations should avoid
the use of filler strings, such as N/A or <Empty> , to represent a value not set by a user.

9.5.4 GUID and UUID values

Globally Unique Identifier (GUID) and Universally Unique Identifier (UUID) values are unique identifier
strings and shall use the RFC4122-defined format:

([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12})

9.5.5 Date-Time values

Date-Time values are strings according to the ISO 8601 extended format, including the time offset or
UTC suffix.

Date-Time values shall use the format:

<YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>[.<SSS>](Z|((+|-)<HH>:<MM>))

DSP0266 Redfish Specification

Version 1.18.0 Published 81



where

• <YYYY> is the four-digit year.
• <MM> is the two-digit month (1 to 12).
• <DD> is the two-digit day (1 to 31).
• T is the time separator. Shall be a capital T .
• <hh> is the two-digit hour (0 to 23).
• <mm> is the two-digit minute (0 to 59).
• <ss> is the two-digit second (0 to 59).
• <SSS> is optional and is the decimal fraction of a second. Shall be one or more digits where the

number of digits implies the precision.
• Z is the zero offset indicator. Shall be a capital Z .
• <HH> is the two-digit hour offset (0 to 23).
• <MM> is the two-digit minute offset (0 to 59).

For example, 2015-03-13T04:14:33+06:00 represents March 13, 2015 at 4:14:33 with a +06:00 time
offset.

When the time of day is unknown or serves no purpose, the service shall report 00:00:00Z for the time
of day value.

9.5.6 Duration values

Duration values are strings according to the ISO 8601 duration format, with the exception of not
expressing a representation for years, months, weeks, or negative values. Duration values shall use
the format:

P[<d>D][T[<h>H][<m>M][<s>[.<f>]S]]

where

• <d> is the number of days.
• <h> is the number of hours.
• <m> is the number of minutes.
• <s> is the number of seconds.
• <f> is the fractional seconds.

Each field is optional and can contain more than one digit.

For example, Table 18 describes the following durations:

Redfish Specification DSP0266

82 Published Version 1.18.0



Table 18 — Durations
Value Duration

P90D Ninety days.

P3D Three days.

PT6H Six hours.

PT10S Ten seconds.

PT0.001S 0.001 seconds.

PT1H30M One hour and 30 minutes.

DEPRECATED: Duration values shall use the format:
P[<y>Y][<m>M][<w>W][<d>D][T[<h>H][<m>M][<s>[.<f>]S]] . This definition allows for specifying years,

months, and weeks. ISO 8601 does not specify an exact value for the duration of a year or of a
month, which introduces interoperability challenges.

9.5.7 Reference properties

Reference properties provide a reference to another resource in the data model. Reference properties
are JSON objects that contain an @odata.id property. The @odata.id property value is the URI of the
referenced resource.

9.5.8 Non-resource reference properties

Non-resource reference properties provide a URI to services or documents that are not Redfish-defined
resources. These properties shall include the Uri or URI term in their property name and shall be of
type string. For example, AssemblyBinaryDataUri in the Assembly schema. The access protocol,
request headers, response headers, and data format of the referenced URI may be defined in schema
for that property. Non-resource reference properties that refer to local HTTP/S targets shall follow the
Redfish protocol, including use of Redfish sessions and access control, unless otherwise specified by
the property definition in schema.

9.5.9 Array properties

Array properties contain a set of values or objects, and appear as JSON arrays within a response body.
Array elements shall all contain values of the same data type.

Table 19 describes the array types, regardless of the data type of the elements:

DSP0266 Redfish Specification

Version 1.18.0 Published 83



Table 19 — Array types
Array type Description

Fixed length Contains a static number of elements. The property definition sets or the implementation chooses the
size of the array.

Variable length Contains a variable number of elements. The array size is not specified and the size varies among
instances. The array size may change. This array style is the most common style.

Rigid

The array index is meaningful. When elements are added to or removed from the array, the elements do
not change their position, or index, in the array. An element that is removed from a rigid array shall be
replaced by a null element and all other elements shall remain at their current index.

Empty elements in a rigid array property shall be represented by null elements. Any array property
that uses this style shall indicate the rigid style in the long description of its schema definition.

Services may pad an array property with null elements at the end of the sequence to indicate the
array size to clients. This practice is useful for small fixed length arrays, and for variable or rigid arrays
with a restrictive maximum size. Services should not pad array properties if the maximum array size is
not restrictive. For example, an array property typically populated with two elements, that a service
limits to a maximum of 16 elements, should not pad the array with 14 null elements.

9.5.10 Structured properties

Structured properties are JSON objects within a response body.

Some structured properties inherit from the Resource.v1_0_0.ReferenceableMember definition. Structured
properties that follow this definition shall contain the MemberId and resource identifier properties.

Because the definition of structured properties can evolve over time, clients need to be aware of the
inheritance model that the different structured property definitions use.

For example, the Location property definition in the Resource schema has gone through several
iterations since the Resource.v1_1_0 type was introduced, and each iteration inherits from the earlier
version so that existing references in other schemas can leverage the additions.

Structured property references need to be resolved for both local and external references.

A local reference is a resource that has a structured property in its own schema, such as
ProcessorSummary in the ComputerSystem resource. In these cases, the type property for the resource is

the starting point for resolving the structured property definition.

To find the latest applicable version, clients can step the version of the resource backwards.

For example, if a service returns #ComputerSystem.v1_4_0.ComputerSystem as the resource type, a client

Redfish Specification DSP0266

84 Published Version 1.18.0



can step backwards from ComputerSystem.v1_4_0 , to ComputerSystem.v1_3_0 , to ComputerSystem.v1_2_0 ,
and so on, until it finds the ProcessorSummary structured property definition.

An external reference is a resource that has a property that references a definition found in a different
schema, such as the Location property in the Chassis resource.

In these cases, clients can use the latest version of the external schema file as a starting point to
resolve the structured property definition.

For example, if the latest version of the Resource schema is 1.6.0 , a client can go backward from
Resource.v1_6_0 , to Resource.v1_5_0 , to Resource.v1_4_0 , and so on, until it finds the Location

structured property definition.

9.5.11 Message object

9.5.11.1 Overview

A message object provides additional information about an object, property, or error response.

Table 20 describes the properties of the message object, which is a JSON object:

Table 20 — Message object properties
Property Type Required Defines

MessageId String Yes
Error or message. Do not confuse this value with the HTTP
status code. Clients can use this code to access a detailed
message from a message registry.

Message String No
Human-readable error message that indicates the
semantics associated with the error. This shall be the
complete message, and not rely on substitution variables.

RelatedProperties An array of JSON pointers No Properties in a JSON payload that the message describes.

MessageArgs An array of strings No
Substitution parameter values for the message. If the
parameterized message defines a MessageId , the service
shall include the MessageArgs in the response.

MessageSeverity String (enumeration) No
Severity of the error. Services can replace the value of the
MessageSeverity property defined in the message registry

with a value more applicable to the implementation.

DSP0266 Redfish Specification

Version 1.18.0 Published 85



Property Type Required Defines

Severity String No

Severity of the error. Services can replace the value of the
Severity property defined in the message registry with a

value more applicable to the implementation.

DEPRECATED: This property has been deprecated in
favor of MessageSeverity .

Resolution String No

Recommended actions to take to resolve the error.
Services can replace the value of the Resolution

property defined in the message registry with a service-
defined resolution.

Each instance of a message object shall contain at least a MessageId , together with any applicable
MessageArgs , or a Message property that defines the complete human-readable error message.

A MessageId identifies a specific message that a message registry defines.

9.5.11.2 MessageId format

The MessageId property value shall be in the format:

<MessageRegistryPrefix>.<MajorVersion>.<MinorVersion>.<MessageKey>

where

• <MessageRegistryPrefix> is the name of the message registry. The message registry name shall be
Pascal-cased, except for any prepended unique OEM identifier which may include underscore ( _ )
characters. The message registry name shall be exposed in the RegistryPrefix property in the
message registry.

• <MajorVersion> is a non-negative integer that represents the major version of the message
registry.

• <MinorVersion> is a non-negative integer that represents the minor version of the message
registry.

• <MessageKey> is a human-readable key into the message registry. The message key shall be
Pascal-cased and shall not include spaces, periods, or special characters.

To search the message registry for a message, the client can use the MessageId .

The message registry approach has advantages for internationalization because the message registry
can be translated easily, and is lightweight for implementations because large strings need not be
included with the implementation.

The use of GeneralError from the Base Message Registry as a MessageId in ExtendedInfo is

Redfish Specification DSP0266

86 Published Version 1.18.0



discouraged. If no better message exists or the ExtendedInfo array contains multiple messages, use
GeneralError from the Base Message Registry only in the code property of the error object.

When an implementation uses GeneralError from the Base Message Registry in ExtendedInfo , the
implementation should include a service-defined value for the Resolution property with this error to
indicate how to resolve the problem.

9.6 Properties

9.6.1 Properties overview

Every property included in a Redfish response payload shall be defined in the schema for that
resource. The following attributes apply to all property definitions:

• Property names in the request and response payload shall match the casing of the Name attribute
value in the defining schema.

• Required properties shall always be returned in a response.
• Properties not returned from a GET operation indicate that the property is not supported by the

implementation, or by that particular resource instance. Differences in underlying product support
or configuration varies among resource instances, and therefore the properties returned by each
instance vary accordingly.

• If an implementation supports a property, it shall always provide a value for that property. If a
value is unknown at the time of the operation due to an internal error, or inaccessibility of the
data, the value of null is an acceptable value if supported by the schema definition.

• Resource instances should omit properties if the underlying product, service, or current
configuration does not provide the function described by the property. For example, a chassis
resource instance might not provide a serial number, and therefore should omit the SerialNumber

property, while other chassis resource instances that have a serial number provide this property.
See the Special resource situations clause for handling special resource situations.

• A service may implement a writable property as read-only.
• All property definitions in schema shall specify a well-known data type, with exceptions in the

following standard schemas:
◦ AttributeRegistry and Bios : To support arbitrary BIOS settings of different data types.

This clause also contains a set of common properties across all Redfish resources. The property names
in this clause shall not be used for any other purpose.

9.6.2 Resource identifier (@odata.id) property

Registry resources in a response may include an @odata.id property. All other resources and resource
collections in a response shall include an @odata.id property. The value of the identifier property shall
be the resource URI.

DSP0266 Redfish Specification

Version 1.18.0 Published 87



9.6.3 Resource type (@odata.type) property

All resources and resource collections in a response shall include an @odata.type type property. To
support generic OData clients, all structured properties in a response should include an @odata.type

type property.

The value of the type property for resources and structured properties shall be in the format:

#<ResourceType>.<Version>.<TermName>

where

• <ResourceType> is the resource type in the Redfish schema that defines the resource.
• <Version> is the resource type version, in the format:

v<MajorVersion>_<MinorVersion>_<ErrataVersion> .
• <TermName> is the specific type defined within the resource type definition. For most Redfish

resources, the specific type name is the same as the resource type name.

An example of a resource type value is #ComputerSystem.v1_0_0.ComputerSystem , where
ComputerSystem.v1_0_0 denotes the version 1.0.0 of the ComputerSystem resource type, and the specific

type is ComputerSystem .

The value of the type property for resource collections shall be in the format:

#<ResourceType>.<ResourceType>

where

• <ResourceType> is the resource type in the Redfish schema that defines the resource collection.

An example of a resource collection type value is #ComputerSystemCollection.ComputerSystemCollection

for the ComputerSystemCollection resource collection.

9.6.4 Resource ETag (@odata.etag) property

ETags enable clients to conditionally retrieve or update a resource. Resources should include an
@odata.etag property. For a resource, the value shall be the ETag.

9.6.5 Resource context (@odata.context) property

Responses for resources and resource collections may contain an @odata.context property that
describes the source of the payload.

Redfish Specification DSP0266

88 Published Version 1.18.0



If the @odata.context property is present, it shall be the context URL that describes the resource,
according to OData Protocol.

The context URL for a resource should be in the format:

/redfish/v1/$metadata#<ResourceType>.<ResourceType>

where

• <ResourceType> is the resource type of the resource or resource collection.

For example, the following context URL specifies that the results show a single ComputerSystem

resource:

{

"@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",

...

}

The context URL for a resource may be in one of the other formats that OData Protocol specifies.

9.6.6 Id

The Id property of a resource uniquely identifies the resource within the resource collection that
contains it. The value of Id shall be a string that is unique across a resource collection. Since URIs are
constructed from the value of the Id property, the value shall not contain any RFC1738-defined
unsafe characters.

9.6.7 Name

The Name property conveys a human-readable moniker for a resource. The data type of the Name

property shall be string. The value of Name is NOT required to be unique across resource instances
within a resource collection.

9.6.8 Description

The Description property conveys a human-readable description of the resource. The data type of the
Description property shall be string.

DSP0266 Redfish Specification

Version 1.18.0 Published 89



9.6.9 MemberId

The MemberId property uniquely identifies an element within an array, where a reference property can
reference the element. The value of MemberId shall be a string that is unique across the array.

9.6.10 Count (Members@odata.count) property

The count property defines the total number of resource, or members, that are available in a resource
collection. The count property shall be named Members@odata.count and its value shall be the total
number of members available in the resource collection. The $top or $skip query parameters shall
not affect this count. If the number of members available in the resource collection is reduced due to
filtering, such as in response to the $filter query parameter, the count should be the total number of
members available in the resource collection after the filter is applied.

9.6.11 Members

The Members property of a resource collection identifies the members of the collection. The Members

property is required and shall be returned in the response for any resource collection. The Members

property shall be an array of JSON objects named Members . The Members property shall not be null .
Empty collections shall be an empty JSON array.

9.6.12 Next link (Members@odata.nextLink) property

The next link ( Members@odata.nextLink ) property value shall be an opaque URL to a resource, with the
same @odata.type , which contains the next set of partial members from the original operation. The
next link property shall only be present if the number of members in the resource collection is greater
than the number of members returned, and if the payload does not represent the end of the requested
resource collection.

The Members@odata.count property value is the total number of resources available if the client
enumerates all pages of the resource collection.

9.6.13 Links

The Links property represents the hyperlinks associated with the resource, as defined by that
resource's schema definition. All associated reference properties defined for a resource shall be nested
under the links property. All directly (subordinate) referenced properties defined for a resource shall be
in the root of the resource. There are some exceptions to these rules, such as where ease of expansion
or deep operations is beneficial to the user.

The links property shall be named Links and contain a property for each related resource.

Redfish Specification DSP0266

90 Published Version 1.18.0

mailto:Members@odata.count
mailto:Members@odata.nextLink


To navigate vendor-specific hyperlinks, the Links property shall also include an Oem property.

9.6.13.1 Reference to a related resource

A reference to a single resource is a JSON object that contains a single resource identifier property. The
name of this reference is the name of the relationship. The value of this reference is the URI of the
referenced resource.

{

"Links": {

"ManagedBy": {

"@odata.id": "/redfish/v1/Chassis/Encl1"

}

}

}

9.6.13.2 References to multiple related resources

A reference to a set of zero or more related resources is an array of JSON objects. The name of this
reference is the name of the relationship. Each element of the array is a JSON object that contains a
resource identifier property with the value of the URI of the referenced resource.

{

"Links": {

"Contains": [{

"@odata.id": "/redfish/v1/Chassis/1"

}, {

"@odata.id": "/redfish/v1/Chassis/Encl1"

}]

}

}

9.6.14 Actions property

The Actions property contains the actions supported by a resource.

9.6.14.1 Action representation

Each supported action is represented as a property nested under Actions . The unique name that
identifies the action is used to construct the property name.

This property name shall be in the format:

DSP0266 Redfish Specification

Version 1.18.0 Published 91



#<ResourceType>.<ActionName>

where

• <ResourceType> is the resource where the action is defined.
• <ActionName> is the name of the action.

The client may use this fragment to identify the action definition in the referenced Redfish schema
document.

The property for the action is a JSON object and contains the following properties:

• The target property shall be present, and defines the relative or absolute URL to invoke the
action.

• The title property may be present,and defines the action's name.

The OData JSON Format Specification defines the target and title properties.

To specify the list of supported values for a parameter, the service may include the
@Redfish.AllowableValues annotation.

For example, the following property defines the Reset action for a ComputerSystem :

{

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"title": "Computer System Reset",

"ResetType@Redfish.AllowableValues": ["On", "ForceOff", "GracefulRestart",

"GracefulShutdown", "ForceRestart", "Nmi", "ForceOn",

"PushPowerButton"]

},

...

}

Given this, the client could invoke a POST request to /redfish/v1/Systems/1/Actions/

ComputerSystem.Reset with the following body:

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"ResetType": "On"

Redfish Specification DSP0266

92 Published Version 1.18.0



}

The resource may provide a separate @Redfish.ActionInfo resource to describe the parameters and
values that a particular instance or implementation supports. Use the @Redfish.ActionInfo annotation
to specify the ActionInfo resource, which contains a URI to the @Redfish.ActionInfo resource for the
action. For details, see the Action info annotation clause.

9.6.14.2 Action responses

Response payloads for actions may contain a JSON body that is described by the schema definition for
the action. See the Schema definition languages clause for the representation of these definitions.
Actions that do not define a response body may provide an error response in the response payload.

Clients can discover the schema definition of the action response based on the property name of the
action found in GET responses for resources containing the action. For example, if an action is named
#ContosoComputerSystem.Reset , a client can find the action response definition, if there is one available,

by locating the Reset action definition found in the ContosoComputerSystem schema.

9.6.15 Oem

The Oem property is used for extending standard resources with OEM extensions.

9.6.16 Status

The Status property represents the status of a resource. The Status property shall follow the
definition for Status in the Resource schema.

By having a common representation of status, clients can depend on consistent semantics. The
Status property is capable of indicating the current state, health of the resource, and the health of

subordinate resources.

9.7 Naming conventions

The Redfish interface is intended to be easily readable and intuitive. Thus, consistency helps the
consumer understand the use of a newly discovered property. While consistency is no substitute for
the normative information in the Redfish Specification and Redfish schema, the following naming rules
help with readability and client usage. In general, names in Redfish are designed and intended to be
human-readable and convey the meaning of the name, in context, without the need to consult schema
definitions or other documentation.

DSP0266 Redfish Specification

Version 1.18.0 Published 93



9.7.1 Naming rules

Standard Redfish schema and registries defined and published by DMTF, and those created by others
and republished by DMTF, shall follow a set of naming conventions. These conventions are intended to
ensure consistent naming and eliminate naming collisions. For schema files, the resource type is used
to construct the type property and the schema file name.

Standard Redfish properties follow similar naming conventions, and should use a common definition
when defined in multiple schemas across the Redfish data model. This consistency enables code re-
use across resources and increases interoperability. New resource definitions should leverage existing
property definitions whenever possible.

The general Redfish naming rules for resource types, registries, properties, action parameters, and
enumerations are as follows:

• Names shall be Pascal-cased. The first letter of each word in a name shall be uppercase and
spaces between words shall be removed. For example, ComputerSystem , PowerState , and
SerialNumber .

• Names of array properties or reference properties for resource collections should use a plural form
of the name. All other names should use the singular form of the name.

• Reference properties for resource collections should omit the term "collection" in the name.
• Names shall not contain spaces or underscore characters. Names should not contain any special

characters that violate naming rules for supported schema description languages or programming
languages.

• Both characters should be capitalized for two-character acronyms. For example, IPAddress or
RemoteIP .

• Names constructed from a single acronym or mixed-case name, such as LDAP , PCIe , or SNMP ,
should use the typical capitalization for that name.

• Names incorporating acronyms with three or more characters should follow the capitalization used
in related names for consistency. For example, EnableSNMPv1 and EnableSNMPv2 follow the pattern
used for SNMP .

• Pascal-casing may be used for acronyms longer than two characters to improve readability,
especially when two or more acronyms appear together in a name, which should be avoided.

• Enumeration names should start with a letter and be followed by letters or numbers to conform to
schema description language requirements. Underscore characters may be used to replace other
special characters, or to significantly improve readability, but this usage is discouraged.

• Enumeration names should prioritize readability as they may appear unmodified on user
interfaces, whereas property or schema names should follow conventions and strive for
consistency.

• The names Settings and SD are reserved for use for settings resources and shall not be used for
schema names.

Redfish Specification DSP0266

94 Published Version 1.18.0



Exceptions are allowed for the following cases:

• Well-known technology abbreviations, acronyms, or product names should follow their defined
capitalization. Examples include iSCSI , iSCSITarget , and iLO .

• OEM appears as Oem in schema and property names either alone or as a portion of a name, but
should be OEM when used alone as an enumeration value.

• Underscore characters are allowed in the construction of OEM-specified object property names
when required, and in OEM-defined resource types or OEM-defined registry names.

For properties that have units or other special meaning, append a unit identifier to the name.
Examples include:

• Bandwidth (Mbps). For example, PortSpeedMbps .
• CPU speed (Mhz). For example, ProcessorSpeedMhz .
• Memory size (MB). For example, MemoryMB .
• Counts of items (Count). For example, ProcessorCount or FanCount .
• The state of a resource (State). For example, PowerState .
• State values where work is in process. For example, Applying or ClearingLogic .

9.7.2 URI naming rules

The following rules apply to Redfish schema-defined URIs:

• URI segments should generally follow the naming rules, and for each segment, follow the name of
the property that provides the hyperlink.

• URI segments for resource collections should use the plural form of the resource collection schema
name, with the Collection term omitted. For example, Processors for a ProcessorCollection .

• URI segments for resource collections shall not be named Members , as this value will conflict with
POST operations on the required Members property. See the POST (create) clause for more
information.

• If a hyperlink to a subordinate resource is not found at the root of the resource, the URI segments
should contain the property path. For example, for the Certificates hyperlink found in
ManagerNetworkProtocol within the HTTPS object, HTTPS should be one of the URI segments

resulting in the URI pattern /redfish/v1/Managers/{ManagerId}/NetworkProtocol/HTTPS/Certificates .

Starting with Redfish Specification v1.18.0, in cases where the URI segment does not follow one or
more of the previous rules, the schema definition for the reference property for the URI shall specify
the URI segment annotation to define the URI segment to append.

DSP0266 Redfish Specification

Version 1.18.0 Published 95



9.8 Extending standard resources

9.8.1 Extending standard resources overview

In the context of this clause, the OEM term refers to any company, manufacturer, or organization that
provides or defines an extension to DMTF-published schema and functionality for Redfish. All Redfish-
specified resources include an empty structured Oem property. The value of this predefined
placeholder can encapsulate one or more OEM-specified object properties, which can contain OEM-
specific property definitions.

9.8.2 OEM property format and content

Each property contained within the Oem property shall be an OEM-specified JSON object. The name of
each object property shall uniquely identify the OEM or organization that defines the properties
contained by that object. The OEM-specified object naming clause describes this naming convention.

The OEM-specified object shall include a type property if the object:

• Is not contained in an array of objects.
• Is contained in the first object within an array of objects.
• In subsequent array members containing an OEM-specified object, whose type is different than the

first array member.

The Oem property can simultaneously hold multiple OEM-specified objects, including objects for more
than one company or organization.

The definition of any other properties that are contained within the OEM-specified object, along with
the functional specifications, validation, or other requirements for that content is OEM-specific and
outside the scope of this specification. While there are no Redfish-specified limits on the size or
complexity of the elements within an OEM-specified object, it is intended it is typically used for only a
small number of simple properties that augment the Redfish resource. If a large number of objects or a
large quantity of data compared to the size of the Redfish resource is to be supported, the OEM should
consider creating a subordinate resource for their extensions.

9.8.3 OEM-specified object naming

The OEM-specified object properties within the Oem property are named by using a unique OEM
identifier. There are two specified forms for the identifier. The identifier shall be either an ICANN-
recognized domain name (including the top-level domain suffix), with all dot ( . ) separators replaced
with underscores ( _ ), or an IANA-assigned Enterprise Number prefixed with "EID_."

Redfish Specification DSP0266

96 Published Version 1.18.0



DEPRECATED: The identifier shall be either an ICANN-recognized domain name including the top-
level domain suffix, or an IANA-assigned Enterprise Number prefixed with EID: .

Organizations that use .com domain names may omit the .com suffix. For example, Contoso.com
would use Contoso instead of Contoso_com , but Contoso.org would use Contoso_org . The domain
name portion of an OEM identifier shall be considered to be case independent. That is, the text
Contoso_biz , contoso_BIZ , conTOso_biZ , and so on all identify the same OEM.

The OEM identifier portion of the object name may be followed by an underscore ( _ ) and any
additional string to enable further subdivisions of OEM-specified objects as desired. For example,
Contoso_xxxx or EID_412_xxxx . The form and meaning of any text that follows the trailing underscore

is completely OEM-specific. OEM-specified extension suffixes may be case sensitive, depending on the
OEM. Generic client software should treat such extensions, if present, as opaque and not try to parse
nor interpret the content.

There are organizations for which DMTF has a working relationship, and have registered their OEM
namespace directly in the specification to allow extensions of the ICANN domain name requirements
above. The following organization OEM namespaces shall be considered reserved:

• OpenBMC

This suffix could be used in many ways, depending on OEM need. For example, the Contoso company
may have a Research sub-organization, in which case the OEM-specified property name might be
extended to Contoso_Research. Alternatively, it can identify a unique resource type for a functional
area, geography, subsidiary, and so on.

The OEM identifier portion of the name typically identifies the company or organization that created
and maintains the schema for the property. However, this practice is not a requirement. The identifier
is only required to uniquely identify the party that is the top-level manager of a resource type to
prevent collisions between OEM property definitions from different vendors or organizations.
Consequently, the organization for the top of the resource type may be different than the organization
that provides the definition of the OEM-specified property. For example, Contoso may allow one of their
customers, such as CustomerA , to extend a Contoso product with certain CustomerA proprietary
properties. In this case, although Contoso allocated the name Contoso_CustomerA , it could be
CustomerA that defines the content and functionality within that resource type. In all cases, OEM
identifiers should not be used except with permission or as specified by the identified company or
organization.

9.8.4 OEM resource types

Companies, OEMs, and other organizations can define additional resources and link to them from an
Oem property in a standard Redfish resource, preferably from the Oem property within the Links

property. To avoid naming collisions with current or future standard Redfish resource types or schema
files, the defining organization's unique OEM identifier, including possible subdivisioning, should be

DSP0266 Redfish Specification

Version 1.18.0 Published 97



prepended to the OEM resource type name with an optional underscore ( _ ) as separator. This unique
OEM identifier should follow the same naming as defined in the OEM-specified object naming clause.
The name of the OEM resource type, including the unique OEM identifier, should also be prepended to
the file name of OEM schema file that specify the OEM resource type. Separator underscores ( _ ) may
be excluded from the OEM resource type name or schema file name for improved readability.

For example, OEM resource type ContosoDrive or Contoso_CustomerA_Drive would not conflict with the
standard Redfish Drive resource type, or conflict with another OEM's drive-related definition.

9.8.5 OEM registries

Companies, OEMs, and other organizations can define additional registries and utilize them in
message objects, privileges or for BIOS attributes. To avoid naming collisions with current or future
standard Redfish message registries, the defining organization's unique OEM identifier, including
possible subdivisioning, should be prepended to the registry name with an optional underscore ( _ ) as
separator. This unique OEM identifier should follow the same naming as defined in the OEM-specified
object naming clause. Separator underscores ( _ ) may be excluded from the OEM registry name for
improved readability. The OEM registry name, including the unique OEM identifier, should also be used
to construct the registry file name as defined in the Registry file naming clause.

For example, OEM registry name ContosoDriveEvent or Contoso_CustomerB_DriveEvent would not
conflict with a possible future standard Redfish DriveEvent message registry name, or conflict with
another OEM's drive-related registry name.

9.8.6 OEM URIs

To avoid URI collisions with other OEM resources and future Redfish standard resources, the URIs for
OEM resources within the Redfish resource tree shall be in the form:

<BaseUri>/Oem/<OemIdentifier>/<ResourcePath>

where

• <BaseUri> is the URI segment of the standard Redfish resource starting with /redfish/ where the
Oem property is used. For example, /redfish/v1/Systems/3AZ38944T523 .

• <OemIdentifier> is the unique identifier of the OEM, including possible subdivisioning, that follows
the same naming as defined in the OEM-specified object naming clause. Separator underscores
( _ ) may be excluded for improved readability.

• <ResourcePath> is the path to the OEM-defined resource. This path might contain multiple
segments for cases where OEM-defined resources are subordinate to an OEM-defined resource.
Each segment in the path contains the name of an OEM-defined resource.

For example, if Contoso defined a new ContosoAccountServiceMetrics OEM resource type to be linked
through the Oem property at the /redfish/v1/AccountService URI, the OEM resource has the /redfish/

Redfish Specification DSP0266

98 Published Version 1.18.0



v1/AccountService/Oem/Contoso/AccountServiceMetrics URI. If Contoso uses a subdivision of their OEM
identifier such as Contoso_CustomerA the OEM resource has the URI /redfish/v1/AccountService/Oem/

Contoso_CustomerA/AccountServiceMetrics or /redfish/v1/AccountService/Oem/ContosoCustomerA/

AccountServiceMetrics .

9.8.7 OEM property examples

The following fragment shows examples of naming and the Oem property as it might appear when
accessing a resource. The example shows that the OEM identifiers can be of different forms, that OEM-
specified content can be simple or complex, and that the format and usage of extensions of the OEM
identifier is OEM-specific.

{

"Oem": {

"Contoso": {

"@odata.type": "#ContosoAnvil.v1_2_1.AnvilTypes1",

"Slogan": "Contoso anvils never fail",

"Disclaimer": "* Most of the time"

},

"Contoso_biz": {

"@odata.type": "#ContosoBizEngine.v1_1_0.RelatedSpeed",

"Speed": "Ludicrous"

},

"EID_412": {

"@odata.type": "#AdatumPowerExtensions.v1_0_1.PowerInfoExt",

"ReadingInfo": {

"Accuracy": "5",

"IntervalSeconds": "20"

}

},

"Contoso_CustomerA": {

"@odata.type": "#ContosoCustomerASling.v1_0_0.SlingPower",

"AvailableTargets": ["Rabbit", "Duck", "Runner"],

"LaunchPowerOptions": ["Low", "Medium", "Eliminate"],

"LaunchPower": "Eliminate",

"Target": "Rabbit"

}

},

...

}

9.8.8 OEM actions

OEM-specific actions appear in the JSON payload as properties of the Oem object, nested under an
Actions property.

The name of the property that represents the action, which shall follow the form:

DSP0266 Redfish Specification

Version 1.18.0 Published 99



#<ResourceType>.<Action>

where

• <ResourceType> is the OEM resource type.
• <Action> is the action name.

{

"Actions": {

"Oem": {

"#Contoso_ABC_ComputerSystem.Ping": {

"target": "/redfish/v1/Systems/1/Actions/Oem/Contoso_ABC_ComputerSystem.Ping"

},

"#ContosoCustomerAComputerSystem.CustomPing": {

"target": "/redfish/v1/Systems/1/Actions/Oem/ContosoCustomerAComputerSystem.CustomPing"

}

}

},

...

}

The URI of the OEM action in the target property shall be in the form:

<ResourceUri>/Actions/Oem/<ResourceType>.<Action>

where

• <ResourceUri> is the URI of the resource that supports invoking the action. For example, /redfish/

v1/Systems/1/ .
• Actions is the name of the property containing the actions for a resource.
• Oem is the name of the OEM property within the Actions property.
• <ResourceType>.<Action> is the OEM resource type followed by the action name. For example,

Contoso_ABC_ComputerSystem.Ping .

9.9 Payload annotations

9.9.1 Payload annotations overview

Resources, objects within a resource, and properties may include additional annotations as properties
with the name, in the format:

[<PropertyName>]@<Namespace>.<TermName>

Redfish Specification DSP0266

100 Published Version 1.18.0



where

• <PropertyName> is the name of the property to annotate. If absent, the annotation applies to the
entire JSON object, which may be an entire resource.

• <Namespace> is the namespace that defines the annotation term.
• <TermName> is the annotation term to apply to the resource or property of the resource.

Services shall limit the annotation usage to the odata , Redfish , and Message namespaces. The OData
JSON Format Specification defines the odata namespace. The Redfish namespace is an alias for the
RedfishExtensions.v1_0_0 namespace.

The client can get the definition of the annotation from the OData metadata document, the HTTP Link

header, or may ignore the annotation entirely, but should not fail reading the resource due to
unrecognized annotations, including new annotations that the Redfish namespace defines.

9.9.2 Allowable values for strings

Services may use the @Redfish.AllowableValues annotation to specify the list of allowable values for a
string property or action parameter. The values of the annotation should only include those values that
are both supported by the service and currently available as valid values for the particular instance of
the property or action parameter. The annotation shall contain a JSON array of strings that define the
allowable values for the property or action parameter.

The following example shows the FavoriteFruit property supports four values.

{

"FavoriteFruit": "Kiwi",

"FavoriteFruit@Redfish.AllowableValues": [ "Orange", "Pineapple", "Kiwi", "Starfruit" ]

}

9.9.3 Allowable patterns for string values

Services may use the @Redfish.AllowablePattern annotation to specify a pattern that describes the
valid values for a string property or action parameter. The annotation shall contain a regular
expression that describes the supported pattern for the property or action parameter. If a pattern is
specified in the schema definition for this property, this annotation may further restrict the allowable
values, but shall not allow values which would violate the schema-defined pattern. Services shall not
use the @Redfish.AllowablePattern for enumerations.

The following example shows the AssetTag property allows alphanumeric characters, colons, and
dashes, and allows a string length up to 31 characters.

DSP0266 Redfish Specification

Version 1.18.0 Published 101



{

"AssetTag": "22HOU-34566",

"AssetTag@Redfish.AllowablePattern": "^[\\w:-]{0,31}$"

}

9.9.4 Allowable values for numbers and durations

Services may use the @Redfish.AllowableNumbers annotation to specify one or more ranges of
allowable values and an optional incremental step value between valid values for a numeric property
or action parameter or duration property or action parameter. The annotation shall contain an array of
strings, each specifying a range of values and an optional step value. Each element in the array shall
contain a number or a duration in the format:

<min>:<max>:<step>

where

• <min> is the supported value or the lowest value in an inclusive range.
• <max> is the highest value in an inclusive range.
• <step> is the incremental step value added to the <min> value in series within the inclusive

range.

If the value does not contain : characters, the value specifies a single supported value.

If the value specifies a range and <min> is omitted, the minimum supported value shall be assumed to
be a value of zero.

If the value specifies a range and :<step> is omitted, no step is defined for the supported range.

The following example shows the usage of the @Redfish.AllowableNumbers annotation for different
properties. PacketSizeBytes supports a range of 1024 to 65536 in increments of 256.
TemperatureThresholdCelsius supports a range of 0 to 50 with no step restrictions. ClockSpeedMHz

supports 800, 1150, or 1600 to 5000 in increments of 100. TimeoutDuration supports a duration
between 5 minutes and 24 hours, in 5 minute increments.

{

"PacketSizeBytes": 2048,

"PacketSizeBytes@Redfish.AllowableNumbers": [ "1024:65536:256" ],

"TemperatureThresholdCelsius": 37,

"TemperatureThresholdCelsius@Redfish.AllowableNumbers": [ ":50" ],

"ClockSpeedMHz": 2200,

"ClockSpeedMHz@Redfish.AllowableNumbers": [ "800", "1150", "1600:5000:100" ],

Redfish Specification DSP0266

102 Published Version 1.18.0



"TimeoutDuration": "PT2H",

"TimeoutDuration@Redfish.AllowableNumbers": [ "PT5M:PT24H:PT5M" ]

}

9.9.5 Extended information

The following clauses describe the methods of providing extended information:

• Extended object information
• Extended property information

9.9.5.1 Extended object information

To specify object-level status information, services may annotate a JSON object with the
@Message.ExtendedInfo annotation.

{

"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",

"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",

"Name": "Managed Serial Interface 1",

"Description": "Management for Serial Interface",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"InterfaceEnabled": true,

"SignalType": "Rs232",

"BitRate": "115200",

"Parity": "None",

"DataBits": "8",

"StopBits": "1",

"FlowControl": "None",

"ConnectorType": "RJ45",

"PinOut": "Cyclades",

"@Message.ExtendedInfo": [{

"MessageId": "Base.1.8.PropertyDuplicate",

"Message": "Indicates that a duplicate property was included in the request body.",

"RelatedProperties": [

"/InterfaceEnabled"

],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Remove the duplicate property from the request body and resubmit the request if the operation failed."

}]

}

DSP0266 Redfish Specification

Version 1.18.0 Published 103



The property contains an array of message objects.

9.9.5.2 Extended property information

Services may use @Message.ExtendedInfo , prepended with the name of the property to annotate an
individual property in a JSON object with extended information:

{

"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",

"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",

"Name": "Managed Serial Interface 1",

"Description": "Management for Serial Interface",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"InterfaceEnabled": true,

"SignalType": "Rs232",

"BitRate": 115200,

"Parity": "None",

"DataBits": 8,

"StopBits": 1,

"FlowControl": "None",

"ConnectorType": "RJ45",

"PinOut": "Cyclades",

"PinOut@Message.ExtendedInfo": [{

"MessageId": "Base.1.8.PropertyValueNotInList",

"Message": "The value Contoso for the property PinOut is not in the list of acceptable values.",

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Choose an enumeration list value that the implementation supports. Resubmit the request if the operation failed."

}]

}

9.9.6 Action info annotation

The @Redfish.ActionInfo term within the action representation conveys the parameter requirements
and allowable values on parameters for actions. This term contains a URI to the ActionInfo resource.

Example #ComputerSystem.Reset action with the @Redfish.ActionInfo annotation and resource:

{

"Actions": {

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"@Redfish.ActionInfo": "/redfish/v1/Systems/1/ResetActionInfo"

Redfish Specification DSP0266

104 Published Version 1.18.0



}

},

...

}

The ResetActionInfo resource contains a more detailed description of the parameters and the
supported values. This resource follows the ActionInfo schema definition.

{

"@odata.id": "/redfish/v1/Systems/1/ResetActionInfo",

"@odata.type": "#ActionInfo.v1_0_0.ActionInfo",

"Id": "ResetActionInfo",

"Name": "Reset Action Info",

"Parameters": [{

"Name": "ResetType",

"Required": true,

"DataType": "String",

"AllowableValues": ["On", "ForceOff", "ForceRestart", "Nmi",

"ForceOn", "PushPowerButton"]

}]

}

9.9.7 Settings and settings apply time annotations

See the Settings resource clause.

9.9.8 Operation apply time and operation apply time support
annotations

See the Operation apply time clause.

9.9.9 Maintenance window annotation

The settings apply time and operation apply time annotations enable an operation to be performed
during a maintenance window. The @Redfish.MaintenanceWindow term at the root of a resource
configures the start time and duration of a maintenance window for a resource.

The following example body for the /redfish/v1/Systems/1 resource configures the maintenance
window to start at 2017-05-03T23:12:37-05:00 and last for 600 seconds.

{

DSP0266 Redfish Specification

Version 1.18.0 Published 105



"@odata.id": "/redfish/v1/Systems/1",

"@odata.type": "#ComputerSystem.v1_5_0.ComputerSystem",

"@Redfish.MaintenanceWindow": {

"@odata.type": "#Settings.v1_3_3.MaintenanceWindow",

"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",

"MaintenanceWindowDurationInSeconds": 600

},

...

}

9.9.10 Collection capabilities annotation

Resource collections may contain a collection capabilities annotation. The
@Redfish.CollectionCapabilities term at the root of a resource collection shows what properties a

client is allowed to use in a POST request for creating a resource.

The following ComputerSystemCollection example body contains the collection capabilities annotation.
The UseCase property contains the ComputerSystemComposition value, and the CapabilitiesObject

property contains the /redfish/v1/Systems/Capabilities value. The resource at /redfish/v1/Systems/

Capabilities describes the POST request format for creating a ComputerSystem resource for
compositions.

{

"@odata.id": "/redfish/v1/Systems",

"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",

"Name": "Computer System Collection",

"Members@odata.count": 0,

"Members": [],

"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_1_0.CollectionCapabilities",

"Capabilities": [{

"CapabilitiesObject": {

"@odata.id": "/redfish/v1/Systems/Capabilities"

},

"UseCase": "ComputerSystemComposition",

"Links": {

"TargetCollection": {

"@odata.id": "/redfish/v1/Systems"

}

}

}]

}

}

The CapabilitiesObject resource follows the same schema for the resource that the resource

Redfish Specification DSP0266

106 Published Version 1.18.0



collection contains. It contains annotations to show which properties the client can use in the POST

request body. Services may omit properties marked as required for the resource referenced by the
CapabilitiesObject property, but may provide annotations for the property to express POST request

body requirements. Table 21 describes the CapabilitiesObject resource annotations. These
annotations describe which properties are required, optional, or if other rules are associated with the
properties.

Table 21 — CapabilitiesObject resource annotations
Annotation Description

<PropertyName>@Redfish.RequiredOnCreate Required in the POST request body.

<PropertyName>@Redfish.OptionalOnCreate Not required in the POST request body.

<PropertyName>@Redfish.SetOnlyOnCreate Cannot be modified after the resource is created.

<PropertyName>@Redfish.UpdatableAfterCreate Can be modified after the resource is created.

<PropertyName>@Redfish.AllowableValues Can be set to any of the listed values.

@Redfish.RequestedCountRequired

Required in the POST request body for the corresponding object to
indicate the number of requested object instances.

Used for composition requests.

@Redfish.ResourceBlockLimits

Indicates restrictions regarding quantities of ResourceBlock resources of
a given type in the POST request body.

Used for composition requests.

Example CapabilitiesObject resource:

{

"@odata.id": "/redfish/v1/Systems/Capabilities",

"@odata.type": "#ComputerSystem.v1_8_0.ComputerSystem",

"Id": "Capabilities",

"Name": "Capabilities for the system collection",

"Name@Redfish.RequiredOnCreate": true,

"Name@Redfish.SetOnlyOnCreate": true,

"Description@Redfish.OptionalOnCreate": true,

"Description@Redfish.SetOnlyOnCreate": true,

"HostName@Redfish.OptionalOnCreate": true,

"HostName@Redfish.UpdatableAfterCreate": true,

"Links@Redfish.RequiredOnCreate": true,

"Links": {

"ResourceBlocks@Redfish.RequiredOnCreate": true,

"ResourceBlocks@Redfish.UpdatableAfterCreate": true

},

DSP0266 Redfish Specification

Version 1.18.0 Published 107



"@Redfish.ResourceBlockLimits": {

"MinCompute": 1,

"MaxCompute": 1,

"MaxStorage": 8

}

}

9.9.11 Requested count and allow over-provisioning annotations

Table 22 describes the @Redfish.RequestedCount and @Redfish.AllowOverprovisioning annotations.

Clients use these annotations in composition requests to define the number of resource to allocate and
to indicate whether the Redfish service can provision more resources than the client requests:

Table 22 — RequestCount and AllowOverprovisioning annotations
Annotation Description

@Redfish.RequestedCount Number of requested resources.

@Redfish.AllowOverprovisioning
Boolean. If true , the service may provision more resources than the
@Redfish.RequestedCount annotation requests. Default is false .

Example client request for at least four and possibly more Processor resources:

{

"Processors": {

"Members": [{

"@Redfish.RequestedCount": 4,

"@Redfish.AllowOverprovisioning": true

}]

},

...

}

9.9.12 Zone affinity annotation

The zone affinity annotation is used by clients in composition requests to indicate the components for
the composition come from the specified resource zone. The @Redfish.ZoneAffinity term in the
request body contains the value of the Id property of the requested resource zone.

Example client request for components to be allocated from the resource zone with the Id property
containing 1 :

Redfish Specification DSP0266

108 Published Version 1.18.0



{

"@Redfish.ZoneAffinity": "1",

...

}

9.9.13 Supported certificates annotation

Resource collections of type CertificateCollection should contain a supported certificates annotation.
The @Redfish.SupportedCertificates term at the root of a resource collection shows the different
certificate formats allowed in the resource collection.

Example CertificateCollection that only supports PEM style certificates:

{

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates",

"@odata.type": "#CertificateCollection.CertificateCollection",

"Name": "Certificate collection",

"Members@odata.count": 1,

"Members": [{

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol/HTTPS/Certificates/1"

}],

"@Redfish.SupportedCertificates": ["PEM"]

}

9.9.14 Deprecated annotation

Services may annotate properties with @Redfish.Deprecated if the schema definition has the property
marked as deprecated.

Example deprecated property:

{

"VendorID": "0xABCD",

"VendorID@Redfish.Deprecated": "This property has been deprecated in favor of ModuleManufacturerID.",

...

}

9.9.15 Writable properties annotation

Services may annotate resources or objects with @Redfish.WriteableProperties to list the properties in
the resource or object whose value may be changed by a modification request. This annotation shall

DSP0266 Redfish Specification

Version 1.18.0 Published 109



only list those properties that are defined as read-write in schema, are implemented as read-write by
the service, and can be modified given the current configuration of the resource. When present at the
root of a resource, the properties listed shall include only writable properties at the root level. Writable
properties within objects shall be shown in additional annotation instances within the object. For arrays
of objects, if the annotation appears in only the first element of the array, the values shall apply to all
elements of the array.

Note: While "writable" is the preferred spelling of the word, the name of the annotation in
payloads contains "writeable".

Example writable properties annotations that shows writable properties at the root level, and within
each element of an array of objects:

{

"UserName": "John Smith",

"Alias": "Major Goofball",

"FavoriteFruit": "Pineapple",

"@Redfish.WriteableProperties": [ "Alias", "FavoriteFruit" ],

"Pets": [

{

"PetName": "Waffles",

"PetType": "Donkey",

"Friendly": true,

"@Redfish.WriteableProperties": [ "Friendly" ]

},

{

"PetName": "Fluffy",

"PetType": "Snake",

"Friendly": false

}

]

}

9.10 Settings resource

A settings resource represents the future intended state of a resource. Some resources have
properties that can be updated and the updates take place immediately. However, some properties
need to be updated at a future point in time, such as after a system reset. While the active resource
represents the current state, the settings resource represents the future intended state.

For resources that support a future intended state, the response shall contain a property with the
@Redfish.Settings payload annotation. When a settings annotation is used, the following conditions

shall apply:

• The settings resource shall be of the same schema definition as the active resource.

Redfish Specification DSP0266

110 Published Version 1.18.0



• The settings resource should contain a subset of updatable properties from the active resource.
Additionally, it shall contain required properties, which are always mandatory.

• The settings resource shall not contain the @Redfish.Settings annotation.
• The settings resource may contain the @Redfish.SettingsApplyTime annotation.
• The URI for the settings resource shall reflect that it is subordinate to the active resource. The URI

should be in the form <BaseUri>/Settings or <BaseUri>/SD where <BaseUri> is the URI of the
active resource.

The settings resource shall contain the properties that are updated at a future point in time. For
resources that support a future intended state, Table 23 describes the behavior of supported
properties in the resource and settings resource that a service should support.

Table 23 — Active resource and settings resource property behavior
Property Active resource behavior Settings resource behavior

Read-only, required. Returned in the resource response to a
GET request.

Returned in the settings resource
response to a GET request.

Read-only, not required. Returned in the resource response to a
GET request.

Not returned in the settings resource
response to a GET request.

Writable, updates immediately, but not
at a future point in time.

Active value returned in the resource
response to a GET request.
Modification requests change the active
value immediately.

Not returned in the settings resource
response to a GET request.
Modification requests are rejected.

Writable, updates immediately or at a
future point in time.

Active value returned in the resource
response to a GET request.
Modification requests change the active
value immediately.

Future value returned in the settings
resource response to a GET request if a
future value is pending, otherwise not
returned.
Modification requests change the future
value.

Writable, updates at a future point in
time, but not immediately.

Active value returned in the resource
response to a GET request.
Modification requests are rejected.

Future value returned in the settings
resource response to a GET request.
Modification requests change the future
value.

The @Redfish.Settings annotation includes several properties that help clients monitor when the
service has consumed the active resource and determine the success or failure of applying the values.

• The Messages property is a collection of messages that represent the results of the last time the
values of the settings resource were applied.

• The ETag property contains the ETag of the settings resource that was last applied. Immediate
updates made directly to the active resource are not reflected in it.

• The Time property indicates the time when the settings resource was last applied. Immediate

DSP0266 Redfish Specification

Version 1.18.0 Published 111



updates made directly to the active resource are not reflected in it.

The following active resource example body supports a settings resource. A client can use the
SettingsObject property to locate the URI of the settings resource.

{

"@Redfish.Settings": {

"@odata.type": "#Settings.v1_3_3.Settings",

"SettingsObject": {

"@odata.id": "/redfish/v1/Systems/1/Bios/SD"

},

"Time": "2017-05-03T23:12:37-05:00",

"ETag": "\"A89B031B62\"",

"Messages": [{

"MessageId": "Base.1.8.PropertyNotWritable",

"RelatedProperties": ["/Attributes/ProcTurboMode"]

}]

},

...

}

If a service enables a client to indicate when to apply settings:

• The settings resource shall contain a property with the @Redfish.SettingsApplyTime annotation.
◦ Only settings resources shall contain the @Redfish.SettingsApplyTime annotation.

• The @Redfish.Settings annotation in the active resource shall contain the SupportedApplyTimes

property for showing the allowable values for ApplyTime within @Redfish.SettingsApplyTime .
• Clients can modify the @Redfish.SettingsApplyTime annotation to indicate when to apply the

settings.

In the following example request, the client indicates that the settings resource values are applied on
reset during the specified maintenance window:

{

"@Redfish.SettingsApplyTime": {

"@odata.type": "#Settings.v1_3_3.PreferredApplyTime",

"ApplyTime": "InMaintenanceWindowOnReset",

"MaintenanceWindowStartTime": "2017-05-03T23:12:37-05:00",

"MaintenanceWindowDurationInSeconds": 600

},

...

}

Redfish Specification DSP0266

112 Published Version 1.18.0



9.11 Special resource situations

9.11.1 Overview

Resources need to exhibit common semantic behavior whenever possible. This can be difficult in some
situations discussed in this clause.

9.11.2 Absent resources

Resources may be absent or their state unknown at the time a client requests information about that
resource. For resources that represent removable or optional components, absence provides useful
information to clients because it indicates a capability, such as an empty PCIe slot, DIMM socket, or
drive bay, that would not be apparent if the resource simply did not exist.

This also applies to resources that represent a limited number of items or unconfigured capabilities
within an implementation, but this usage should be applied sparingly and should not apply to
resources limited in quantity due to arbitrary limits. For example, an implementation that limits
SoftwareInventory to a maximum of 20 items should not populate 18 absent resources when only two

items are present.

For resources that provide useful data in an absent state and where the URI is expected to remain
constant, such as when a DIMM is removed from a memory socket, the resource should exist and
should return the Absent value for the State property in the Status object.

In this circumstance, any required properties that have no known value shall be represented as null .
Properties whose support is based on the configuration choice or the type of component installed, and
therefore unknown while in the absent state, should not be returned. Likewise, subordinate resources
for an absent resource should not be populated until their support can be determined. For example,
the Power and Thermal resources under a Chassis resource should not exist for an absent Chassis.

Client software should be aware that when absent resources are later populated, the updated resource
may represent a different configuration or physical item, and previous data, including read-only
properties, obtained from that resource may be invalid. For example, the Memory resource shows
details about an single DIMM socket and the installed DIMM. When that DIMM is removed, the Memory

resource remains as an absent resource to indicate the empty DIMM socket. Later, a new DIMM is
installed in that socket, and the Memory resource represents data about this new DIMM, which could
have completely different characteristics.

9.12 Registries

Registry resources assist the client in interpreting Redfish resources beyond the Redfish schema

DSP0266 Redfish Specification

Version 1.18.0 Published 113



definitions. To get more information about a resource, event, message, or other item, use an identifier
to search registries. This information can include other properties, property restrictions, and the like.
Registries are themselves resources.

Table 24 describes the types of registries that Redfish supports:

Table 24 — Registries
Registry Description See

BIOS

Determines the semantics of each property in a BIOS or BIOS settings resource. Because
BIOS information can vary from platform to platform, Redfish cannot define a fixed schema
for these values. BIOS registries should be assigned unique identifiers to allow users to
match a given registry with compatible products.

This registry contains both property descriptions and other information, such as data type,
allowable values, and user menu information.

Message

Constructs a message from a MessageId and other message information to present to an
end user. The messages in these registries appear in both eventing and error responses to
operations.

This registry is the most common type of registry.

• Error
responses

• Eventing

Privilege

Maps the resources in a Redfish service to the privileges that can complete specified
operations against those resources.

A client can use this information to:
• Determine which roles should have specific privileges.
• Map accounts to those roles so that the accounts can complete operations on Redfish

resources.

Privilege
model

9.13 Schema annotations

9.13.1 Schema annotations overview

The schema definitions of the data model use schema annotations to provide additional
documentation for developers. This clause describes the different types of schema annotations that
the Redfish data model uses. For information about how each of the annotations are implemented in
their respective schema languages, see the Schema definition languages clause.

9.13.2 Description annotation

The description annotation can be applied to any type, property, action, or parameter to provide a
description of Redfish schema elements suitable for end users or user interface help text.

Redfish Specification DSP0266

114 Published Version 1.18.0



All schemas that are published or republished by DMTF's Redfish Forum shall include a description
annotation on the following schema definitions:

• Redfish types
• Properties
• Reference properties
• Enumeration values
• Resources and resource collections
• Structured types

9.13.3 Long description annotation

The long description annotation can be applied to any type, property, action, or parameter to provide
a formal, normative specification of the schema element.

When the long descriptions in the Redfish schema contain normative language, the service shall be
required to conform with the statement.

All schemas that are published or republished by DMTF's Redfish Forum shall include a long description
annotation on the following schema definitions:

• Redfish types
• Properties
• Reference properties
• Resources and resource collections
• Structured types

9.13.4 Resource capabilities annotation

The resource capabilities annotation can be applied to resources and resource collections to express
the different type of HTTP operations a client can invoke on the given resource or resource collection.

• Insert capabilities indicate whether a client can perform a POST request on the resource to create
a resource.

• Update capabilities indicate whether a client can perform a PATCH or PUT request on the resource.
• Delete capabilities indicate whether a client can perform a DELETE request on the resource.
• A service may implement a subset of the capabilities that are allowed on the resource or resource

collection.

All schemas that are published or republished by DMTF's Redfish Forum for resources and resource
collections shall include resource capabilities annotations.

DSP0266 Redfish Specification

Version 1.18.0 Published 115



9.13.5 Resource URI patterns annotation

The resource URI patterns annotation expresses the valid URI patterns for a resource or resource
collection.

The strings for the URI patterns may use { and } characters to express parameters within a given
URI pattern. Items between the { and } characters are treated as identifiers within the URI for given
instances of a Redfish resource. Clients interpret this as a string to be replaced to access a given
resource. A URI pattern may contain multiple identifier terms to support multiple levels of nested
resource collections. The identifier term in the URI pattern shall match the Id string property for the
corresponding resource, or the MemberId string property for the corresponding object within a
resource. The process for forming the strings that are concatenated to form the URI pattern are in the
URI naming rules clause.

The following string is an example URI pattern that describes a ManagerAccount resource: /redfish/v1/

AccountService/Accounts/{ManagerAccountId}

Using the previous example, {ManagerAccountId} is replaced by the Id property of the corresponding
ManagerAccount resource. If the Id property for a ManagerAccount resource is John , the full URI for

that resource is /redfish/v1/AccountService/Accounts/John .

The URI patterns are constructed based on the formation of the resource tree. When constructing the
URI pattern for a subordinate resource, the URI pattern for the current resource is used and appended.
For example, the RoleCollection resource is subordinate to AccountService . Because the URI pattern
for AccountService is /redfish/v1/AccountService , the URI pattern for the RoleCollection resource is
/redfish/v1/AccountService/Roles .

In some cases, the subordinate resource is found inside of a structured property of a resource. In these
cases, the name of the structured property appears in the URI pattern for the subordinate resource.
For example, the CertificateCollection resource is subordinate to the ManagerNetworkProtocol

resource from the HTTPS property. Because the URI pattern for ManagerNetworkProtocol is /redfish/v1/

Managers/{ManagerId}/NetworkProtocol , the URI pattern for the CertificateCollection resource is
/redfish/v1/Managers/{ManagerId}/NetworkProtocol/HTTPS/Certificates .

All schemas that are published or republished by DMTF's Redfish Forum for resources and resource
collections shall be annotated with the resource URI patterns annotation.

All Redfish resources and Redfish resource collections implemented by a service shall match the URI
pattern described by the resource URI patterns annotation for their given definition.

9.13.6 Additional properties annotation

The additional properties annotation specifies whether a type can contain additional properties outside

Redfish Specification DSP0266

116 Published Version 1.18.0



of those defined in the schema. Types that do not support additional properties shall not contain
properties beyond those described in the schema.

9.13.7 Permissions annotation

The permissions annotation specifies whether a client can modify the value of a property, or if the
property is read-only.

A service can implement a modifiable property as read-only.

The value of a write-only property, such as Password , cannot be read, and shall be null in responses.

All schemas that are published or republished by DMTF's Redfish Forum shall include a permissions
annotation for all properties that are not structured properties.

9.13.8 Required annotation

The required annotation specifies whether a service needs to support a property. Required properties
shall be annotated with the required annotation. All other properties are optional.

9.13.9 Required on create annotation

The required on create annotation specifies that a property is required to be provided by the client on
creation of the resource. Properties not annotated with the required on create annotation are not
required to be provided by the client on a create operation.

9.13.10 Units of measure annotation

In addition to following the naming rules, properties representing units of measure shall be annotated
with the units of measure annotation to specify the units of measurement for the property.

The value of the annotation shall be a string that contains the case-sensitive "(c/s)" symbol of the unit
of measure as listed in the Unified Code for Units of Measure (UCUM), unless the symbolic
representation does not reflect common usage. If the unit in common usage is not available in UCUM,
curly braces should wrap the value, such as {value} , to follow UCUM parsing rules. For example, RPM

is commonly used to report fan speeds in revolutions-per-minute, and the preferred representation in
UCUM is {rev}/min , but the value {RPM} is acceptable. For units with prefixes, the case-sensitive
( c/s ) symbol for the prefix as listed in UCUM should be prepended to the unit symbol. For example,
Mebibyte (1024^2 bytes), which has the UCUM Mi prefix and By symbol, would use MiBy as the
value for the annotation. For values that also include rate information, such as megabits per second,
the rate unit's symbol should be appended and use a slash ( / ) character as a separator. For example,
Mbit/s .

DSP0266 Redfish Specification

Version 1.18.0 Published 117



DEPRECATED: Previous versions of this specification recommended RPM as a commonly used
unit of measure for certain properties. New recommendations are provided that follow UCUM
parsing rules.

9.13.11 Expanded resource annotation

The expanded resource annotation can be applied to a reference property to specify that the default
behavior for the service is to include the contents of the related resource or resource collection in
responses. This behavior follows the same semantics of the expand query parameter with a level of 1.

Reference properties annotated with this term shall be expanded by the service, even if not requested
by the client. A service may page resource collections.

9.13.12 Owning entity annotation

The owning entity annotation can be applied to a schema to specify the name of the entity responsible
for development, publication, and maintenance of a given schema.

9.13.13 Deprecated annotation

The deprecated annotation specifies if a property, enumeration, or other schema element has been
deprecated. Schema elements marked as deprecated contain a schema version that shows when the
element was deprecated, as well as text that specifies the favored approach.

The deprecated annotation also specifies if resource URI patterns have been deprecated. Deprecated
resource URI patterns shall also be included in the resource URI patterns annotation.

Existing and new implementations may use deprecated schema elements or URIs, but they should
move to the favored approach. Deprecated schema elements may be implemented to achieve
backwards compatibility. Deprecated schema elements may be removed from the next major version
of the schema.

9.13.14 URI segment annotation

The URI segment annotation can be applied to a reference property to specify the segment appended
to the URI of the resource when constructing the URI of a subordinate resource if the segment differs
from the property name. For more information, see the URI naming rules clause.

9.14 Versioning

As stated previously, a resource can be an individual entity or a resource collection, which acts as a
container for a set of resources.

Redfish Specification DSP0266

118 Published Version 1.18.0



A resource collection does not contain any version information because it defines a single Members

property, and the overall collection definition never grows over time.

A resource has both unversioned and versioned definitions.

References from other resources use the unversioned definition of a resource to ensure no version
dependencies exist between the definitions. The unversioned definition of a resource contains no
property information about the resource.

The versioned definition of a resource contains a set of properties, actions, and other definitions
associated with the resource. The version of a resource follows the format:

v<X>.<Y>.<Z>

where

• <X> is an integer that represents the major version. Indicates a backward-incompatible change.
• <Y> is an integer that represents the minor version. Indicates a minor update. Redfish introduces

new functionality but does not remove any functionality. The minor version preserves compatibility
with earlier minor versions. For example, a new property introduces a new minor version of the
resource.

• <Z> is an integer that represents the errata version. Indicates a fix in an earlier version. For
example, a fix to a schema annotation on a property introduces an errata version of the resource.

9.15 Localization

The creation of separate localized copies of Redfish schemas and registries is allowed and encouraged.
Localized schema and registry files may be submitted to DMTF for republication in the Redfish schema
repository.

Property names, parameter names, and enumeration values in the JSON response payload are never
localized but translated copies of those names may be provided as additional annotations in the
localized schema for use by client applications. A separate file for each localized schema or registry
shall be provided for each supported language. The English-language versions of Redfish schemas and
registries shall be the normative versions, and alterations of meaning due to translation in localized
versions of schemas and registries shall be forbidden.

Schemas and registries in non-English languages shall use the appropriate schema annotations to
identify their language. Descriptive property, parameter, and enumeration text not translated into the
specified language shall be removed from localized versions. This removal enables software and tools
to combine normative and localized copies, especially for minor schema version differences.

DSP0266 Redfish Specification

Version 1.18.0 Published 119



10 File naming and publication
For consistency in publication and to enable programmatic access, all Redfish-related files shall follow
a set of rules to construct the name of each file. The Schema definition languages clause describes the
file name construction rules, while the following clauses describe the construction rules for other file
types.

10.1 Registry file naming

Redfish message registry files, privilege registry files, and BIOS attribute registry files shall use the
registry name to construct the file name, in this format:

<RegistryName>.<MajorVersion>.<MinorVersion>.<Errata>.json

For example, the file name of the Base Message Registry v1.0.2 is Base.1.0.2.json .

The registry name should be unique to avoid conflict with other registry files. The clause OEM
registries describes registry name to use for OEM registry files.

10.2 Profile file naming

The document that describes a profile follows the Redfish schema file naming conventions. The file
name format for profiles shall be:

<ProfileName>.v<MajorVersion>_<MinorVersion>_<Errata>.json

For example, the file name of the BasicServer profile v1.2.0 is BasicServer.v1_2_0.json . The file name
shall include the profile name and version, which matches those property values within the document.

10.3 Dictionary file naming

The binary file describing a Redfish Device Enablement dictionary follows the Redfish schema file
naming conventions for the schema definition language that the dictionary is converted from. Because
a single dictionary file contains all minor revisions of the schema, only the major version appears in
the file name. The file names for Dictionaries shall be formatted as:

<DictionaryName>_v<MajorVersion>.dict

For example, the file name of the Chassis dictionary v1.2.0 is Chassis_v1.dict .

Redfish Specification DSP0266

120 Published Version 1.18.0



10.4 Localized file naming

Localized schemas and registries shall follow the same file naming conventions as the English
language versions. When multiple localized copies are present in a repository and which have the
same file name, files in languages other than English shall be organized into sub-folders named to
match the ISO 639-1 language code for those files. English language files may be duplicated in an en

sub-folder for consistency.

10.5 DMTF Redfish file repository

All Redfish schemas, registries, dictionaries, and profiles published or republished by DMTF's Redfish
Forum are available from the DMTF website for download. Programs may use the following durable
URLs to access the repository. Programs incorporating remote repository access should implement a
local cache to reduce latency, program requirements for Internet access and undue traffic burden on
DMTF's website.

Organizations creating Redfish-related files such as OEM schemas, Redfish interoperability profiles, or
message registries are encouraged to use the form at https://redfish.dmtf.org/redfish/portal to submit
those files to DMTF for republication in DMTF's Redfish file repository.

Table 25 describes how files are organized on the site:

Table 25 — Redfish file repository
URL Folder contents

redfish.dmtf.org/schemas
Current (most recent minor or errata) release of each schema file in
CSDL, JSON Schema, and/or OpenAPI formats.

redfish.dmtf.org/schemas/v1

Durable URL for programmatic access to all v1.xx schema files. Every
v1.xx minor or errata release of each schema file in CSDL, JSON Schema,
OpenAPI formats.

redfish.dmtf.org/schemas/v1/{code}

Durable URL for programmatic access to localized v1.xx schema files.
Localized schemas are organized in sub-folders using the two-character
ISO 639-1 language code as the {code} segment.

redfish.dmtf.org/schemas/archive Sub-folders contain schema files specific to a particular version release.

redfish.dmtf.org/registries Current (most recent minor or errata) release of each registry file.

redfish.dmtf.org/registries/v1
Durable URL for programmatic access to all v1.xx registry files. Every
v1.xx minor or errata release of each registry file.

DSP0266 Redfish Specification

Version 1.18.0 Published 121

http://redfish.dmtf.org/
https://redfish.dmtf.org/redfish/portal


URL Folder contents

redfish.dmtf.org/registries/v1/{code}

Durable URL for programmatic access to localized v1.xx registry files.
Localized schemas are organized in sub-folders using the two-character
ISO 639-1 language code as the {code} segment.

redfish.dmtf.org/registries/archive Sub-folders contain registry files specific to a particular version release.

redfish.dmtf.org/profiles
Current release of each Redfish interoperability profile (.json) file and
associated documentation.

redfish.dmtf.org/profiles/v1
Durable URL for programmatic access to all v1.xx Redfish
interoperability profile (.json) files.

redfish.dmtf.org/profiles/archive
Sub-folders contain profile files specific to a particular profile version or
release.

redfish.dmtf.org/dictionaries
Durable URL for programmatic access to all v1.xx Redfish Device
Enablement dictionary files.

redfish.dmtf.org/dictionaries/v1
Durable URL for programmatic access to all v1.xx Redfish Device
Enablement dictionary files.

redfish.dmtf.org/dictionaries/archive
Sub-folders contain dictionary files specific to a particular version
release.

Redfish Specification DSP0266

122 Published Version 1.18.0



11 Schema definition languages
Individual resources and their dependent types and actions are defined within a Redfish schema
document. This clause describes how these documents are constructed in the following formats:

• OData Common Schema Definition Language
• JSON Schema
• OpenAPI

11.1 OData Common Schema Definition Language

11.1.1 OData Common Schema Definition Language overview

OData Common Schema Definition Language (CSDL) is an XML schema format defined by the OData
CSDL Specification. The following clause describes how Redfish uses CSDL to describe resources and
resource collections.

11.1.2 File naming conventions for CSDL

Redfish CSDL schema files shall be named using the resource type name for the schema, followed by
_v and the major version of the schema. Because a single CSDL schema file contains all minor

revisions of the schema, only the major version appears in the file name. The file name shall be
formatted as:

<ResourceType>_v<MajorVersion>.xml

For example, version 1.3.0 of the Chassis schema is Chassis_v1.xml .

11.1.3 Core CSDL files

Table 26 describes the core CSDL files:

Table 26 — Core CSDL files
File Description

RedfishError_v1.xml Payload definition of the Redfish error response.

RedfishExtensions_v1.xml All definitions for Redfish types and annotations.

DSP0266 Redfish Specification

Version 1.18.0 Published 123



File Description

Resource_v1.xml
All base definitions for resources, resource collections, and common
properties, such as Status .

11.1.4 CSDL format

The outer element of the OData schema representation document shall be the Edmx element, and
shall have a Version attribute with a value of 4.0 .

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<!-- edmx:Reference and edmx:DataService elements go here -->

</edmx:Edmx>

The Referencing other CSDL files and CSDL data services clauses describe the items that are found
within the Edmx element.

11.1.4.1 Referencing other CSDL files

CSDL files may use Reference tags to reference types defined in other CSDL documents.

The Reference element uses the Uri attribute to specify a CSDL file. The Reference element also
contains one or more Include tags that specify the Namespace attribute containing the types to be
referenced, along with an optional Alias attribute for that namespace.

Type definitions generally reference the OData and Redfish namespaces for common type annotation
terms. Redfish CSDL files shall contain the Alias attribute on the following namespaces:

• Org.OData.Core.V1 is aliased as OData .
• Org.OData.Measures.V1 is aliased as Measures .
• RedfishExtensions.v1_0_0 is aliased as Redfish .
• Validation.v1_0_0 is aliased as Validation .

<edmx:Reference

Uri="http://docs.oasis-open.org/odata/odata/v4.0/cs01/vocabularies/Org.OData.Core.V1.xml">

<edmx:Include Namespace="Org.OData.Core.V1" Alias="OData"/>

</edmx:Reference>

<edmx:Reference

Uri="http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml">

<edmx:Include Namespace="Org.OData.Measures.V1" Alias="Measures"/>

</edmx:Reference>

Redfish Specification DSP0266

124 Published Version 1.18.0



<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

<edmx:Include Namespace="Validation.v1_0_0" Alias="Validation"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Resource_v1.xml">

<edmx:Include Namespace="Resource"/>

<edmx:Include Namespace="Resource.v1_0_0"/>

</edmx:Reference>

11.1.4.2 CSDL data services

Define structures, enumerations, and other definitions in CSDL within a namespace. Use a Schema tag
to define the schema and use the Namespace attribute to declare the name of the namespace.

Redfish uses namespaces to differentiate different versions of the schema. CSDL enables structures to
inherit from other structures, which enables newer namespaces to define only the changes. The
Elements of CSDL namespaces clause describes this behavior.

Namespaces containing unversioned resource and resource collection definitions shall use the
resource type to name the namespace, in this format:

<ResourceType>

For example, the unversioned namespace of the Chassis resource is Chassis .

Namespaces containing versioned resource definitions shall use the resource type to name the
namespace, in this format:

<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>

For example, the version 1.3.0 namespace of the Chassis resource is Chassis.v1_3_0 .

The Schema element is a child of the DataServices element, which is a child of the Edmx element:

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.v1_0_0">

<!-- Type definitions for version 1.0.0 of MyTypes go here -->

</Schema>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.v1_1_0">

<!-- Type definitions for version 1.1.0 of MyTypes go here -->

</Schema>

</edmx:DataServices>

DSP0266 Redfish Specification

Version 1.18.0 Published 125



11.1.5 Elements of CSDL namespaces

The following clauses describe the definitions within each namespace:

• Qualified names
• Entity type and complex type elements

11.1.5.1 Qualified names

Many definitions in CSDL use references to qualified names. CSDL defines this as a string in the form:

<Namespace>.<TypeName>

where

• <Namespace> is the namespace name.
• <TypeName> is the name of the element in the namespace.

For example, if a reference is made to MyType.v1_0_0.MyDefinition , the definition can be found in the
MyType.v1_0_0 namespace with an element named MyDefinition .

11.1.5.2 Entity type and complex type elements

Use the EntityType and ComplexType tags to define the entity type and complex type elements,
respectively. These elements define a JSON structure and their set of properties by defining property
elements and navigation property elements within the EntityType or ComplexType tags.

All entity types and complex types shall contain a Name attribute, which specifies the name of the
definition.

Entity types and complex types may contain a BaseType attribute, which specifies a qualified name.
When the BaseType attribute is present, all definitions of the referenced BaseType are available to the
entity type or complex type being defined.

All resources and resource collections shall be defined with the entity type element. Resources inherit
from Resource.v1_0_0.Resource , and resource collections inherit from
Resource.v1_0_0.ResourceCollection .

All structured properties shall be defined with the complex type element or entity type element. Most
structured properties are defined with the complex type element. Some use the entity type element
that inherits from Resource.v1_0_0.ReferenceableMember . The entity type element enables references to
be made by using the Navigation Property element, whereas the complex type element does not allow
for this usage.

Redfish Specification DSP0266

126 Published Version 1.18.0



Example entity type and complex type element:

<EntityType Name="TypeA" BaseType="Resource.v1_0_0.Resource">

<Annotation Term="OData.Description" String="Entity description."/>

<Annotation Term="OData.LongDescription" String="Entity normative description."/>

<!-- Property and navigation property definitions go here -->

</EntityType>

<ComplexType Name="PropertyTypeA">

<Annotation Term="OData.Description" String="Structured property description."/>

<Annotation Term="OData.LongDescription" String=Structured property normative description."/>

<!-- Property and navigation property definitions go here -->

</ComplexType>

11.1.5.3 Action element

Use the Action tag to define the action element. This element defines an action that can be
performed on a resource.

All Redfish actions shall be defined with the action element. All action elements shall contain a Name

attribute, which specifies the name of the action. The action shall be represented in payloads as the
qualified name of the action, preceded by # .

In Redfish, all action elements shall contain the IsBound attribute that is always set to true , which
indicates that the action appears as a member of a structured type.

The action element shall contain one or more Parameter tags that specify the Name and Type of each
parameter.

Because all action elements in Redfish use the IsBound="true" term, the first parameter is called the
binding parameter and specifies the structured type to which the action belongs. All Redfish actions
shall contain a binding parameter. The binding parameter shall be one of the following complex type
elements:

• For standard actions, the Actions complex type for the resource.
• For OEM actions, the OemActions complex type for the resource.

The remaining Parameter elements shall describe additional parameters to be passed to the action.
The term Nullable="false" in a parameter shall indicate the parameter is required in the action
request body.

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyType">

<Action Name="MyAction" IsBound="true">

DSP0266 Redfish Specification

Version 1.18.0 Published 127



<Parameter Name="Thing" Type="MyType.Actions"/>

<Parameter Name="Parameter1" Type="Edm.Boolean"/>

<Parameter Name="Parameter2" Type="Edm.String" Nullable="false"/>

</Action>

<ComplexType Name="Actions">

...

</ComplexType>

...

</Schema>

Some action parameters may specify a type that is defined by an entity type element. In these cases,
the parameter in the request is a reference object to a resource within the service.

11.1.5.4 Action element for OEM actions

OEM-specific actions shall be defined by using the action element with the binding parameter set to
the OemActions complex type for the resource. For example, the following definition defines the OEM
#Contoso.Ping action for a ComputerSystem .

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Contoso">

<Action Name="Ping" IsBound="true">

<Parameter Name="ComputerSystem" Type="ComputerSystem.v1_0_0.OemActions"/>

</Action>

</Schema>

11.1.5.5 Action with a response body

A response body for an action shall be defined using the ReturnType tag within an action element. For
example, the following definition defines the GenerateTicket action with a response that contains the
definition specified by GenerateTicketResponse .

<Action Name="GenerateTicket" IsBound="true">

<Parameter Name="ExampleResource" Type="ExampleResource.v1_0_0.Actions"/>

...

<ReturnType Type="ExampleResource.v1_0_0.GenerateTicketResponse" Nullable="false"/>

</Action>

<ComplexType Name="GenerateTicketResponse">

<Annotation Term="OData.AdditionalProperties" Bool="false"/>

<Annotation Term="OData.Description" String="The response body for GenerateTicket."/>

Redfish Specification DSP0266

128 Published Version 1.18.0



<Property Name="TicketId" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="OData.Description" String="The ticket identifier."/>

<Annotation Term="Redfish.Required"/>

</Property>

</ComplexType>

Using the above example, the following payload is an example response for the GenerateTicket action.

{

"TicketId": "40478281bd0f6b9e7131db6c4f673438"

}

11.1.5.6 Property element

Properties of resources, resource collections, and structured properties are defined using the property
element. The Property tag defines a property element inside entity type and complex type elements.

All property elements shall contain a Name attribute, which specifies the name of the property.

All property elements shall contain a Type attribute specifies the data type. The Type attribute shall
be one of the following names or types:

• A qualified name that references an enum type element.
• A qualified name that references a complex type element.
• A primitive data type.
• An array of the previous names or types by using the Collection term.

Table 27 describes the primitive data types:

Table 27 — Primitive data types
Type Meaning

Edm.Boolean True or False.

Edm.DateTimeOffset Date-time string.

Edm.Decimal Numeric values with fixed precision and scale.

Edm.Double IEEE 754 binary64 floating-point number (15-17 decimal digits).

Edm.Duration Duration string.

DSP0266 Redfish Specification

Version 1.18.0 Published 129



Type Meaning

Edm.Guid GUID/UUID string.

Edm.Int64 Signed 64-bit integer.

Edm.String UTF-8 string.

Property elements may specify a Nullable attribute. If the attribute is false , the property shall not
contain null . If the attribute is true or absent, the property may contain null .

Example property element:

<Property Name="Property1" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Description" String="Property1 description."/>

<Annotation Term="OData.LongDescription" String="Property1 normative description."/>

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="Redfish.Required"/>

<Annotation Term="Measures.Unit" String="Watts"/>

</Property>

11.1.5.7 Navigation property element

Reference properties of resources, resource collections, and structured properties are defined using
the navigation property element. The NavigationProperty tag defines a navigation property element
inside entity type and complex type elements.

All navigation property elements shall contain a Name attribute, which specifies the name of the
property.

All navigation property elements shall contain a Type attribute specifies the data type. The Type

attribute shall be a qualified name that references an entity type element. The Collection term with
the qualified name shall indicate the property is an array..

Navigation property elements may specify a Nullable attribute. If the attribute is false , the property
shall not contain null . If the attribute is true or absent, the property may contain null .

Unless the reference property is to be expanded, all navigation properties in Redfish shall contain the
OData.AutoExpandReferences annotation element to show that the reference is always available.

Example navigation property element:

Redfish Specification DSP0266

130 Published Version 1.18.0



<NavigationProperty Name="RelatedType" Type="MyTypes.TypeB">

<Annotation Term="OData.Description" String="RelatedType description."/>

<Annotation Term="OData.LongDescription" String="RelatedType normative description."/>

<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

11.1.5.8 Enum type element

Use the EnumType tag to define the enum type element. This element defines a set of enumeration
values, which may be applied to one or more properties.

All enum type elements shall contain a Name attribute, which specifies the name of the set of
enumeration values.

Enum type elements shall contain Member tags that define the members of the enumeration. The
Member tags shall contain a Name attribute that specifies the string value of the member name.

<EnumType Name="EnumTypeA">

<Annotation Term="OData.Description" String="EnumTypeA type description."/>

<Annotation Term="OData.LongDescription" String="EnumTypeA type normative description."/>

<Member Name="MemberA">

<Annotation Term="OData.Description" String="The description of MemberA"/>

</Member>

<Member Name="MemberB">

<Annotation Term="OData.Description" String="The description of MemberB"/>

</Member>

</EnumType>

11.1.5.9 Annotation element

Annotations in CSDL are expressed using the Annotation tag. Any schema element in CSDL may
contain annotations.

The following examples show how each Redfish schema annotation is expressed in CSDL.

• The OData Core Schema defines terms with the OData prefix.
• The OData Measures Schema defines terms with the Measures prefix.
• The RedfishExtensions Schema defines terms with the Redfish prefix.

Example description annotation:

DSP0266 Redfish Specification

Version 1.18.0 Published 131



<Annotation Term="OData.Description" String="The console color."/>

Example long description annotation:

<Annotation Term="OData.LongDescription"

String="This property shall contain the console color."/>

Example additional properties annotation:

<Annotation Term="OData.AdditionalProperties"/>

Example permissions annotation (read-only):

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

Example permissions annotation (read/write):

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/ReadWrite"/>

Example permissions annotation (write-only, null in responses):

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Write"/>

Example required annotation:

<Annotation Term="Redfish.Required"/>

Example required on create annotation:

<Annotation Term="Redfish.RequiredOnCreate"/>

Example units of measure annotation:

Redfish Specification DSP0266

132 Published Version 1.18.0



<Annotation Term="Measures.Unit" String="MiBy"/>

Example expanded resource annotation:

<Annotation Term="OData.AutoExpand"/>

Example insert capabilities annotation (showing POST is not allowed):

<Annotation Term="Capabilities.InsertRestrictions">

<Record>

<PropertyValue Property="Insertable" Bool="false"/>

</Record>

</Annotation>

Example update capabilities annotation (showing PATCH and PUT are allowed):

<Annotation Term="Capabilities.UpdateRestrictions">

<Record>

<PropertyValue Property="Updatable" Bool="true"/>

<Annotation Term="OData.Description" String="The desired speed can be changed."/>

</Record>

</Annotation>

Example delete capabilities annotation (showing DELETE is allowed):

<Annotation Term="Capabilities.DeleteRestrictions">

<Record>

<PropertyValue Property="Deletable" Bool="true"/>

<Annotation Term="OData.Description" String="The resource can be deleted."/>

</Record>

</Annotation>

Example resource URI patterns annotation:

<Annotation Term="Redfish.Uris">

<Collection>

<String>/redfish/v1/AccountService/Accounts/{ManagerAccountId}</String>

</Collection>

DSP0266 Redfish Specification

Version 1.18.0 Published 133



</Annotation>

Example URI segment annotation:

<NavigationProperty Name="Tasks" Type="TaskService.TaskService" Nullable="false">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="OData.Description" String="The link to the task service."/>

<Annotation Term="OData.AutoExpandReferences"/>

<Annotation Term="Redfish.URISegment" String="TaskService"/>

</NavigationProperty>

Example owning entity annotation:

<Annotation Term="Redfish.OwningEntity" String="DMTF"/>

Example deprecated annotation:

<Annotation Term="Redfish.Revisions">

<Collection>

<Record>

<PropertyValue Property="Kind" EnumMember="Redfish.RevisionKind/Deprecated"/>

<PropertyValue Property="Version" String="v1_3_0"/>

<PropertyValue Property="Description"

String="This property has been deprecated in favor of ModuleManufacturerID."/>

</Record>

</Collection>

</Annotation>

Example deprecated annotation applied to resource URI patterns:

<Annotation Term="Redfish.DeprecatedUris">

<Collection>

<String>/redfish/v1/Chassis/{ChassisId}/Thermal</String>

</Collection>

</Annotation>

Redfish Specification DSP0266

134 Published Version 1.18.0



11.2 JSON Schema

11.2.1 JSON Schema overview

The JSON Schema Specification defines a JSON format for describing JSON payloads. The following
clause describes how Redfish uses JSON Schema to describe resources and resource collections.

11.2.2 File naming conventions for JSON Schema

Each Redfish JSON Schema file represents a single resource type.

Versioned Redfish JSON Schema files shall use the resource type to name the file, in this format:

<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>.json

For example, version 1.3.0 of the Chassis schema is Chassis.v1_3_0.json .

Unversioned Redfish JSON Schema files shall use the resource type to name the file, in this format:

<ResourceType>.json

For example, the unversioned definition of the Chassis schema is Chassis.json .

11.2.3 Core JSON Schema files

Table 28 describes the core JSON Schema files:

Table 28 — Core JSON Schema files
File Description

odata-v4.json Definitions for common OData properties.

redfish-error.v1_0_0.json and its subsequent versions Payload definition of the Redfish error response.

redfish-schema-v1.json
Extensions to the JSON Schema that define Redfish JSON
Schema files.

Resource.json and its subsequent versions All base definitions for resources, resource collections, and
common properties, such as Status .

DSP0266 Redfish Specification

Version 1.18.0 Published 135



11.2.4 JSON Schema format

Each JSON Schema file shall contain a JSON object to describe resources, resource collections, and
other definitions for the data model.

Table 29 describes the JSON object, which contains the following terms:

Table 29 — JSON Schema format
Term Description

$id Reference to the URI where the schema file is published.

$ref
For a schema file that describes a resource or resource collection, the reference to the structural
definition of the resource or resource collection.

$schema
URI to the Redfish schema extensions for JSON Schema. The value should be http://redfish.dmtf.org/

schemas/v1/redfish-schema-v1.json .

copyright Copyright statement for the organization producing the JSON Schema.

definitions Structures, enumerations, and other definitions defined by the schema.

title
For a schema file that describes a resource or resource collection, the matching type identifier for the
resource or resource collection.

11.2.5 JSON Schema definitions body

This clause describes the types of definitions found in the definitions term of a Redfish JSON Schema
file.

11.2.5.1 Resource definitions in JSON Schema

To satisfy versioning requirements, the JSON Schema representation of each resource shall have one
unversioned schema file and a set of versioned schema files.

The unversioned definition of a resource shall contain an anyOf statement. This statement shall
consist of an array of $ref terms, which point to the following definitions:

• The JSON Schema definition for a reference property.
• The versioned definitions of the resource.

The unversioned definition of a resource shall contain the uris term to express the allowable URIs for
the resource, and the deletable , insertable , and updatable terms to express the capabilities of the
resource.

Redfish Specification DSP0266

136 Published Version 1.18.0



The following example shows an unversioned resource definition in JSON Schema:

{

"ComputerSystem": {

"anyOf": [{

"$ref": "http://redfish.dmtf.org/schemas/v1/odata.v4_0_3.json#/definitions/idRef"

}, {

"$ref": "http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_0.json#/definitions/ComputerSystem"

}, {

"$ref": "http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_1.json#/definitions/ComputerSystem"

}, {

"$ref": "http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.json#/definitions/ComputerSystem"

}],

"deletable": true,

"description": "The ComputerSystem schema represents a general purpose machine or system.",

"insertable": false,

"longDescription": "This resource shall represent resources that represent a computing system.",

"updatable": true,

"uris": [

"/redfish/v1/Systems/{ComputerSystemId}"

]

},

...

}

The versioned definition of a resource shall contain the property definitions for the given version of the
resource.

11.2.5.2 Enumerations in JSON Schema

Table 30 describes the terms that constitute definitions for enumerations:

Table 30 — JSON Schema enumerations
Term Description

enum String array that contains the possible enumeration values.

enumDescriptions
Object that contains the descriptions for each of the enumerations as name-value
pairs.

enumLongDescriptions
Object that contains the long descriptions for each of the enumerations as name-
value pairs.

enumDeprecated
Object that contains the deprecation guidance for each of the enumerations as
name-value pairs.

enumVersionDeprecated
Object that contains the deprecation version information for each of the
enumerations as name-value pairs.

DSP0266 Redfish Specification

Version 1.18.0 Published 137



Term Description

type
Because all enumerations in Redfish are strings, the type term always has the
string value.

The following example shows an enumeration definition in JSON Schema:

{

"Flavors": {

"enum": ["Lit", "Blinking", "Off"],

"enumDescriptions": {

"Blinking": "The Indicator LED is blinking.",

"Lit": "The Indicator LED is lit.",

"Off": "The Indicator LED is off."

},

"enumLongDescriptions": {

"Blinking": "This value shall represent the Indicator LED is in a blinking state where the LED is being turned on and off in repetition."

"Lit": "This value shall represent the Indicator LED is in a solid on state.",

"Off": "This value shall represent the Indicator LED is in a solid off state."

},

"type": "string"

},

...

}

11.2.5.3 Actions in JSON Schema

Versioned definitions of resources shall contain a definition called Actions . This definition is a
container with a set of terms that point to the different actions supported by the resource. The names
of standard actions shall be in the form:

#<ResourceType>.<ActionName>

Example Actions definition:

{

"Actions": {

"additionalProperties": false,

"description": "The available actions for this resource.",

"longDescription": "This type shall contain the available actions for this resource.",

"properties": {

"#ComputerSystem.Reset": {

"$ref": "#/definitions/Reset"

}

},

Redfish Specification DSP0266

138 Published Version 1.18.0



"type": "object"

},

...

}

Another definition within the same schema file shall describe the action itself. This definition shall
contain a term called parameters to describe the client request body. It also shall contain property
definitions for the target and title properties shown in response payloads for the resource.

The following example shows a definition of an action:

{

"Reset": {

"additionalProperties": false,

"description": "This action resets the system.",

"longDescription": "This action shall perform a reset of the ComputerSystem.",

"parameters": {

"ResetType": {

"$ref": "http://redfish.dmtf.org/schemas/v1/Resource.json#/definitions/ResetType",

"description": "The type of reset to be performed.",

"longDescription": "This parameter shall define the type of reset to be performed."

}

},

"properties": {

"target": {

"description": "Link to invoke action",

"format": "uri",

"type": "string"

},

"title": {

"description": "Friendly action name",

"type": "string"

}

},

"type": "object"

},

...

}

Action parameters may specify a type that is a resource definition. In these cases, the parameter in
the request shall contain a reference object to a resource within the service.

11.2.5.4 OEM actions in JSON Schema

OEM-specific actions shall be defined by using an action definition in an appropriately named JSON

DSP0266 Redfish Specification

Version 1.18.0 Published 139



Schema file. For example, the following definition defines the OEM #ContosoNetworkDevice.Ping action,
assuming it's found in the versioned ContosoNetworkDevice JSON Schema file, such as
ContosoNetworkDevice.v1_0_0.json .

{

"Ping": {

"additionalProperties": false,

"parameters": {},

"properties": {

"target": {

"description": "Link to invoke action",

"format": "uri",

"type": "string"

},

"title": {

"description": "Friendly action name",

"type": "string"

}

},

"type": "object"

},

...

}

11.2.5.5 Action with a response body

A response body for an action shall be defined using the actionResponse term within the action
definition. For example, the following definition defines the GenerateTicket action with a response that
contains the definition specified by #/definitions/GenerateTicketResponse .

{

"GenerateTicket": {

"actionResponse": {

"$ref": "#/definitions/GenerateTicketResponse"

},

"parameters": {}

},

"GenerateTicketResponse": {

"additionalProperties": false,

"description": "The response body for GenerateTicket.",

"properties": {

"TicketId": {

"description": "The ticket identifier.",

"readonly": true,

"type": "string"

}

},

Redfish Specification DSP0266

140 Published Version 1.18.0



"required": ["TicketId"],

"type": "object"

}

}

In the previous example, the following payload is an example response for the GenerateTicket action.

{

"TicketId": "40478281bd0f6b9e7131db6c4f673438"

}

11.2.6 JSON Schema terms

Table 31 describes the JSON Schema terms that Redfish uses to provide schema annotations for
Redfish JSON Schema:

Table 31 — JSON Schema terms
JSON Schema term Related Redfish schema annotation

description

enumDescriptions
Description

longDescription

enumLongDescriptions
Long description

additionalProperties Additional properties

readonly

writeOnly
Permissions

required Required

requiredOnCreate Required on create

units Units of measure

autoExpand Expanded resource

deletable

insertable

updatable

Resource capabilities

uris Resource URI patterns

uriSegment URI segment

DSP0266 Redfish Specification

Version 1.18.0 Published 141



JSON Schema term Related Redfish schema annotation

owningEntity Owning entity

deprecated

versionDeprecated

urisDeprecated

Deprecated

11.3 OpenAPI

11.3.1 OpenAPI overview

The OpenAPI Specification defines a format for describing JSON payloads and the set of URIs a client
can access on a service. The following clause describes how Redfish uses OpenAPI to describe
resources and resource collections.

11.3.2 File naming conventions for OpenAPI schema

Each Redfish OpenAPI file represents a single resource type.

Versioned Redfish OpenAPI files shall be named using the resource type name for the schema,
following the format:

<ResourceType>.v<MajorVersion>_<MinorVersion>_<Errata>.yaml

For example, version 1.3.0 of the Chassis schema is Chassis.v1_3_0.yaml .

Unversioned Redfish OpenAPI files shall use the resource type name to name the file, in this format:

<ResourceType>.yaml

For example, the unversioned definition of the Chassis schema is Chassis.yaml .

11.3.3 Core OpenAPI schema files

Table 32 describes the core OpenAPI schema files:

Table 32 — Core OpenAPI schema files
File Description

odata-v4.yaml Definitions for common OData properties.

Redfish Specification DSP0266

142 Published Version 1.18.0



File Description

openapi.yaml URI paths and their respective payload structures.

Resource.yaml and its subsequent versions All base definitions for resources, resource collections, and
common properties, such as Status .

11.3.4 openapi.yaml

The openapi.yaml file is the starting point for clients to understand the construct of the service.

Table 33 describes the terms that the openapi.yaml file contains:

Table 33 — openapi.yaml terms
Term Description

components Global definitions. For Redfish, contains the format of the Redfish error response.

info
Structure consisting of information about what the openapi.yaml is describing, such as the author of
the file and any contact information.

openapi Version of OpenAPI the document follows.

paths URIs supported by the document, with possible methods, response bodies, and request bodies.

The service shall return the openapi.yaml file, if present in the Redfish service, as a YAML document by
using either the application/yaml or application/vnd.oai.openapi MIME types. The service may
append ;charset=utf-8 to the MIME type. Note that while the application/yaml type is in common use
today, the application/vnd.oai.openapi type was recently defined and approved specifically to support
OpenAPI. Implementations should use caution when selecting the MIME type as this specification may
change in the future to reflect adoption of the OpenAPI-defined MIME type.

The paths term shall contain an array of the possible URIs. Each URI shall contain methods supported
by the URI. Each method shall contain the possible response bodies and request bodies.

Example paths entry for a resource:

/redfish/v1/Systems/{ComputerSystemId}:

get:

parameters:

- description: The value of the Id property of the ComputerSystem resource

in: path

name: ComputerSystemId

required: true

DSP0266 Redfish Specification

Version 1.18.0 Published 143



schema:

type: string

responses:

'200':

content:

application/json:

schema:

$ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.yaml#/components/schemas/ComputerSystem

description: The response contains a representation of the ComputerSystem

resource

default:

content:

application/json:

schema:

$ref: '#/components/schemas/RedfishError'

description: Error condition

Example paths entry for an action:

/redfish/v1/Systems/{ComputerSystemId}/Actions/ComputerSystem.Reset:

post:

parameters:

- description: The value of the Id property of the ComputerSystem resource

in: path

name: ComputerSystemId

required: true

type: string

requestBody:

content:

application/json:

schema:

$ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.yaml#/components/schemas/ResetRequestBody

required: true

responses:

'200':

content:

application/json:

schema:

$ref: '#/components/schemas/RedfishError'

description: The response contains the results of the Reset action

'202':

content:

application/json:

schema:

$ref: http://redfish.dmtf.org/schemas/v1/Task.v1_4_0.yaml#/components/schemas/Task

description: Accepted; a task has been generated

'204':

description: Success, but no response data

default:

Redfish Specification DSP0266

144 Published Version 1.18.0



content:

application/json:

schema:

$ref: '#/components/schemas/RedfishError'

description: Error condition

11.3.5 OpenAPI file format

With the exception of openapi.yaml , each OpenAPI file shall contain a YAML object to describe
resources, resource collections, or other definitions for the data model. Table 34 describes the terms
that the YAML object contains:

Table 34 — YAML object terms
Term Description

components Structures, enumerations, and other definitions defined by the schema.

x-copyright Copyright statement for the organization producing the OpenAPI file.

title
For a schema file that describes a resource or resource collection, the matching type identifier for the
resource or resource collection.

11.3.6 OpenAPI components body

This clause describes the types of definitions that can be found in the components term of a Redfish
OpenAPI file.

11.3.6.1 Resource definitions in OpenAPI

To satisfy versioning requirements, the OpenAPI representation of each resource shall have one
unversioned schema file and a set of versioned schema files.

The unversioned definition of a resource shall contain an anyOf statement. This statement shall
consist of an array of $ref terms, which point to the following definitions:

• The OpenAPI definition for a reference property.
• The versioned definitions of the resource.

Example unversioned resource definition in OpenAPI:

ComputerSystem:

DSP0266 Redfish Specification

Version 1.18.0 Published 145



anyOf:

- $ref: http://redfish.dmtf.org/schemas/v1/odata.v4_0_3.yaml#/components/schemas/idRef

- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_0.yaml#/components/schemas/ComputerSystem

- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_0_1.yaml#/components/schemas/ComputerSystem

- $ref: http://redfish.dmtf.org/schemas/v1/ComputerSystem.v1_6_0.yaml#/components/schemas/ComputerSystem

description: The ComputerSystem schema represents a general purpose machine

or system.

x-longDescription: This resource shall be used to represent resources that represent

a computing system.

The versioned definition of a resource shall contain the property definitions for the given version of the
resource.

11.3.6.2 Enumerations in OpenAPI

Table 35 describes the terms in OpenAPI enumerations:

Table 35 — OpenAPI enumerations
Term Description

enum String array that contains the possible enumeration values.

type Because all enumerations in Redfish are strings, the type term always has the value string .

x-enumDescriptions Object that contains the descriptions for each of the enumerations as name-value pairs.

x-enumLongDescriptions Object that contains the long descriptions for each enumeration as a name-value pair.

x-enumDeprecated
Object that contains the deprecation guidance for each of the enumerations as name-value
pairs.

x-enumVersionDeprecated
Object that contains the deprecation version information for each of the enumerations as name-
value pairs.

Example enumeration definition in OpenAPI:

IndicatorLED:

enum:

- Lit

- Blinking

- 'Off'

type: string

x-enumDescriptions:

Blinking: The Indicator LED is blinking.

Lit: The Indicator LED is lit.

Redfish Specification DSP0266

146 Published Version 1.18.0



'Off': The Indicator LED is off.

x-enumLongDescriptions:

Blinking: This value shall represent the Indicator LED is in a blinking state

where the LED is being turned on and off in repetition.

Lit: This value shall represent the Indicator LED is in a solid on state.

'Off': This value shall represent the Indicator LED is in a solid off state.

11.3.6.3 Actions in OpenAPI

Versioned definitions of resources shall contain a definition called Actions . This definition is a
container with a set of terms that point to the different actions supported by the resource. The names
of standard actions shall be in the form:

#<ResourceType>.<ActionName>

Example Actions definition:

Actions:

additionalProperties: false

description: The available actions for this resource.

properties:

'#ComputerSystem.Reset':

$ref: '#/components/schemas/Reset'

type: object

x-longDescription: This type shall contain the available actions for this resource.

Another definition within the same schema file shall describe the action itself. This definition shall
contain property definitions for the target and title properties shown in response payloads for the
resource.

The following example shows a definition of an action:

Reset:

additionalProperties: false

description: This action resets the system.

properties:

target:

description: Link to invoke action

format: uri

type: string

title:

description: Friendly action name

type: string

type: object

DSP0266 Redfish Specification

Version 1.18.0 Published 147



x-longDescription: This action shall reset the ComputerSystem.

The parameters for the action shall be defined in another definition with RequestBody appended to the
name of the action. This gets mapped from the openapi.yaml file for expressing the POST method for
the URI of the action.

The following example shows a definition of parameters of an action:

ResetRequestBody:

additionalProperties: false

description: This action resets the system.

properties:

ResetType:

$ref: http://redfish.dmtf.org/schemas/v1/Resource.yaml#/components/schemas/ResetType

description: The reset type.

x-longDescription: This parameter shall define the type of reset to perform.

type: object

x-longDescription: This action shall reset the ComputerSystem.

11.3.6.4 OEM actions in OpenAPI

OEM-specific actions shall be defined by using an action definition in an appropriately named OpenAPI
file. For example, the following definition defines the OEM #ContosoNetworkDevice.Ping action,
assuming it's found in the versioned ContosoNetworkDevice OpenAPI file with a name, such as
ContosoNetworkDevice.v1_0_0.yaml .

Ping:

additionalProperties: false

properties:

target:

description: Link to invoke action

format: uri

type: string

title:

description: Friendly action name

type: string

type: object

PingRequestBody:

additionalProperties: false

properties: {}

type: object

Redfish Specification DSP0266

148 Published Version 1.18.0



11.3.7 OpenAPI terms used by Redfish

Table 36 describes the OpenAPI terms that Redfish uses to provide schema annotations for Redfish
OpenAPI files:

Table 36 — OpenAPI terms used by Redfish
OpenAPI term Related Redfish schema annotation

description

x-enumDescriptions
Description

x-longDescription

x-enumLongDescriptions
Long description

additionalProperties Additional properties

readOnly

writeOnly
Permissions

required Required

x-requiredOnCreate Required on create

x-units Units of measure

x-autoExpand Expanded resource

x-uriSegment URI segment

x-owningEntity Owning entity

deprecated

x-deprecatedReason

x-versionDeprecated

Deprecated

11.4 Schema modification rules

Schema referenced from the implementation may vary from the canonical definitions of those schema
defined by the Redfish schema or other entities, provided they adhere to the following rules. Clients
should take this into consideration when attempting operations on the resources defined by schema.

• Modified schema may constrain a read/write property to be read only.
• Modified schema may constrain a property by adding length annotations to properties that do not

have those annotations.
• Modified schema may constrain a property by adding a pattern annotation to properties that do

not have that annotation.

DSP0266 Redfish Specification

Version 1.18.0 Published 149



• Modified schema may constrain the capabilities of a resource or resource collection to remove
support for HTTP operations.
◦ Modified schema may change the update capabilities to indicate a client can perform a PATCH

or PUT request on the resource to support writable OEM properties.
• Modified schema may remove properties that are not required.
• Modified schema may remove actions.
• Modified schema may remove action parameters that are not required.
• Modified schema may change description annotations.
• Modified schema may change any external references to point to Redfish schema that adheres to

the modification rules.
• Modified schema may change the owning entity annotation to specify who made the

modifications.
• Modified schema may remove URIs from the resource URI patterns annotation.
• Modified schema may add URIs to the resource URI patterns annotation to define OEM URIs for

standard resources and shall follow the OEM URI rules specified by the OEM URIs clause.
• Other modifications to the schema shall not be allowed.

Redfish Specification DSP0266

150 Published Version 1.18.0



12 Service details

12.1 Eventing

12.1.1 Eventing overview

This clause describes how to use the REST-based mechanism to subscribe to and receive event
messages.

Note: For security implications of eventing, see the Security details clause.

The Redfish service requires a client or administrator to create subscriptions to receive events.

To create a subscription, use one of these methods:

• Directly HTTP POST to the subscription collection.
• Indirectly open a server-sent events (SSE) connection for the event service.

12.1.2 POST to subscription collection

To locate the event service, the client traverses the Redfish service interface. The event service is
located in the service root, as described in the ServiceRoot schema.

After the client discovers the service, they perform an HTTP POST on the resource collection URI for
Subscriptions in the event service to subscribe to events. For the subscription body syntax, see the

Redfish EventDestination schema. This request includes:

• The URI where an event-receiver client expects events to be sent. When an event is triggered
within the Redfish service, the service sends an event to that URI.

• The type of events to send.

If the subscription request succeeds, the service shall return:

• An HTTP 201 Created status code.
• The Location header that contains a URI of the newly created subscription resource.

If the subscription request succeeds, the service should return:

• A response body containing a representation of the subscription resource that conforms to the
EventDestination schema.

DSP0266 Redfish Specification

Version 1.18.0 Published 151



After a subscription is registered with the service, clients begin receiving events. Clients do not receive
events retroactively. The service does not retain historical events.

Services shall:

• Support push style eventing for all resources that can send events.
• Respond to a request to create a subscription with an error if the body of the request is conflicting.

For instance, if parameters in the request are not supported, the service shall return the HTTP 400

Bad Request status code.
• Retain subscriptions as persistent across service restarts.

Services shall not:

• Push events by using HTTP POST unless an event subscription has been created. To terminate the
event stream at any time, either the client or the service can delete the subscription.

• Send a push event payload larger than 1 Mebibyte (MiB). If more than 1 MiB of data is to be sent,
the service shall divide the payload on the nearest Event entry such that the total payload
transmitted to the client is less than 1 MiB. This restriction shall not apply to metric reports.

Services may:

• Terminate a subscription by sending a SubscriptionTerminated message from the Base Message
Registry as the last event.

• Terminate a subscription if the number of delivery errors exceeds pre-configured thresholds.

To unsubscribe from the events associated with this subscription, the client or administrator shall
perform an HTTP DELETE request to the subscription's resource URI.

Subsequent requests to subscription resources that have been terminated respond with the HTTP 404

Not Found status code.

Some configurable properties define the behavior for all event subscriptions. For details, see the
Redfish EventService schema.

DEPRECATED: Previous versions of the specification required services to reject subscription
requests if RegistryPrefixes and MessageIds were in the same request.

12.1.3 Open an SSE connection

A service may support the ServerSentEventUri property in the EventService resource. If a client
performs a GET request on the URI that the ServerSentEventUri contains, an SSE connection opens for
the client. For details about this method, see the server-sent events Event service clause.

Redfish Specification DSP0266

152 Published Version 1.18.0



12.1.4 EventType-based eventing

DEPRECATED: EventType -based eventing is deprecated in the Redfish schema in favor of using
RegistryPrefix and ResourceType .

DEPRECATED

Table 37 describes the types of events that Redfish generates:

Table 37 — EventType-based eventing
Event Occurs when Description

Life cycle

Resources are created, modified,
or destroyed.

Usually indicates that the resource
and, optionally, its properties have
changed.

Not every modification of a resource results in an event. This
behavior is similar to when ETags are changed and
implementations might not send an event for every resource
change.

For example, if an event is sent for every Ethernet packet that is
received or each time that a sensor changes one degree, more
events than fit in a scalable interface are generated.

Alert

An event of some significance
happens.

Depending on the resource, may
be generated directly or indirectly.

Usually adopts a message registry approach similar to extended
error handling in that a MessageId is included.

An example of an alert event is, a chassis is opened, a button is
pushed, a cable is unplugged, or a threshold exceeded.

These events usually do not correspond well to life cycle-type
events. Therefore, alerts have their own category.

Metric report The telemetry service generates or
updates a metric report.

Generated as specified by the MetricReportDefinition resources
found subordinate to the telemetry service. Can occur
periodically, on demand, or when changes are detected in the
metric properties.

For details, see the Redfish MetricReportDefinition schema.

END DEPRECATED

DSP0266 Redfish Specification

Version 1.18.0 Published 153



12.1.5 Subscribing to events

Table 38 describes the properties that a subscriber provides to subscribe to events and filter received
messages:

Table 38 — Subscription properties
Property Description

MessageIds

An array of allowable values for MessageId in an event.

An event is sent to the subscriber if the MessageId of the event is contained in this array or is
found in a message registry referenced by RegistryPrefixes .

To not perform inclusive filtering based upon MessageId , provide an empty array.

The contents of the array should not include the major or minor version of the message
registry. For example, instead of Resource.1.2.ResourceCreated , use
Resource.ResourceCreated .

RegistryPrefixes

An array of standard or OEM message registries containing the allowable values for
MessageId in an event.

An event is sent to the subscriber if the MessageId is found in a message registry in this array
or is contained in MessageIds .

To not perform inclusive filtering based upon the message registry of the MessageId , provide
an empty array.

The contents of the array does not include the registry version. For example, instead of
Base.1.5.0 , use Base .

ResourceTypes

An array of standard or OEM resource types.

An event is sent to the subscriber if the OriginOfCondition resource type matches one of the
ResourceTypes values.

To not perform filtering based upon the resource type of the OriginOfCondition , provide an
empty array.

The contents of the array does not include the schema version. For example, instead of
Task.v1_2_0.Task , use Task .

Redfish Specification DSP0266

154 Published Version 1.18.0



Property Description

OriginResources

An array of URIs to resources.

An event is sent to the subscriber if the OriginOfCondition property matches one of the URIs
listed in OriginResources . To include subordinate resources regardless of depth, set the
SubordinateResources property to true .

To not perform filtering based upon the URI of the OriginOfCondition , provide an empty
array.

ExcludeMessageIds

An array of disallowed values for MessageId in an event.

An event is not sent to the subscriber if the MessageId of the event is contained in this array.

To not perform exclusive filtering based upon MessageId , provide an empty array.

The contents of the array should not include the major or minor version of the message
registry. For example, instead of Resource.1.2.ResourceCreated , use
Resource.ResourceCreated .

ExcludeRegistryPrefixes

An array of standard or OEM message registries containing the disallowed values for
MessageId in an event.

An event is not sent to the subscriber if the MessageId is found in a message registry in this
array.

To not perform exclusive filtering based upon the message registry of the MessageId , provide
an empty array.

The contents of the array does not include the registry version. For example, instead of
Base.1.5.0 , use Base .

EventFormatType

The format that can be sent by using the EventFormatTypes property in the event service.

Represents the format of the payload sent to the event destination.

If the subscriber omits this value, the payload corresponds to the Event schema.

Clients can read the EventService resource of a service in order to determine what control properties
in the previous table are supported.

12.1.6 Event formats

Table 39 describes the event formats:

DSP0266 Redfish Specification

Version 1.18.0 Published 155



Table 39 — Event formats
Event format Description

Metric report message objects
Used when the telemetry service generates a new or updates an existing metric report.
Metric report message objects sent to the specified client endpoint shall contain the
properties, as described in the Redfish MetricReport schema.

Event message objects

Used for all other types of events. Event message objects POST ed to the specified
client endpoint shall contain the properties as described in the Redfish Event schema.
Supports a message registry. In a message registry approach, a message registry lists
the MessageIds in a well-known format. These MessageIds are terse in nature and thus
they are much smaller than actual messages, making them suitable for embedded
environments.

The registry also contains a message. The message itself can have arguments and
default values for severity and recommended actions. The MessageId property follows
the format defined in the MessageId format clause

Event messages may also have an EventGroupId property, which lets clients know that
different messages may be from the same event. For instance, if a LAN cable is
disconnected, they may get a specific message from one registry about the LAN cable
being disconnected, another message from a general registry about the resource
changing, perhaps a message about resource state change, and maybe more. For the
client to determine whether these have the same root cause, these messages have the
same value for the EventGroupId property.

12.1.7 OEM extensions

OEMs can extend both messages and message registries. Any individual message, per the
MessageRegistry schema definition, define OEM sections. Thus, if OEMs wish to provide additional

information or properties, use the OEM section.

OEMs shall not supply additional message arguments beyond those in a standard message registry.
OEMs may substitute their own message registry for the standard registry to provide the OEM section
within the registry but shall not change the standard values, such as messages, in such registries.

12.2 Asynchronous operations

Services that support asynchronous operations implement the TaskService and Task resources.

The TaskService resource describes the service that handles task operations. It contains a resource
collection of zero or more Task resources. Each Task resource describes a long-running operation
that is spawned when a request takes longer than a few seconds, such as when a service is
instantiated.

Redfish Specification DSP0266

156 Published Version 1.18.0



The Task schema defines task structure, including the start time, end time, task state, task status,
and zero or more task-associated messages.

Each task has a number of possible states, which are defined in the Task schema as the values for the
TaskState property.

When a client issues a request that results in a long-running operation, the service returns the HTTP
202 Accepted status code and a Location header that contains a task monitor URI and, optionally, the
Retry-After header that defines the amount of time that the client should wait before querying the

status of the operation. The 202 Accepted response body should contain an instance of the Task

resource that represents the state of the operation.

The task monitor is an opaque, service-generated URI provided to the client who initiated the request.
To query the status of an operation and determine when the operation has been completed and
whether it succeeded, the client performs a GET request on the task monitor URI. The client should
not include the application/http MIME type in the Accept header.

As long as the operation is in process, the service shall return the HTTP 202 Accepted status code
when the client performs a GET request on the task monitor URI.

If a service supports cancellation of a task, the Allow header shall contain DELETE for the task
monitor. To cancel the operation, the client may perform a DELETE request on the task monitor URI.
The service determines when to delete the associated Task resource. The client may also perform a
DELETE request on the Task resource to cancel the operation. Deleting the Task resource may

invalidate the associated task monitor. A subsequent GET request on the task monitor URI returns
either the HTTP 410 Gone or 404 Not Found status code.

In the unlikely event that a DELETE of the task monitor or Task resource returns the HTTP 202

Accepted status code, an additional task shall not be started and instead the client may monitor the
existing Task resource for the status of the cancellation request. When the task finally completes
cancellation, operations on the task monitor URI and Task resources shall return the HTTP 404 Not

Found status code.

After the operation has been completed, the service shall update the TaskState in the Task resource
with the appropriate value. In addition, the task monitor shall return:

• The appropriate HTTP status code, such as but not limited to 200 OK for most operations or 201

Created for POST to create a resource.
• The headers and response body of the initial operation, as if it had completed synchronously.

If the initial operation fails, the response body shall contain an error response.

If the operation has been completed and the service has already deleted the task, the service may
return the HTTP 410 Gone or 404 Not Found status code. This situation can occur if the client waits too
long to read the task monitor.

DSP0266 Redfish Specification

Version 1.18.0 Published 157



To continue to get status information, the client can use the resource identifier from the 202 Accepted

response to directly query the Task resource.

• Services that support asynchronous operations shall implement the Task resource.
• The response to an asynchronous operation shall return the HTTP 202 Accepted status code and

set the Location response header to the URI of a task monitor associated with the task. The
response may also include the Retry-After header that defines the amount of time that the client
should wait before polling for status. The response body should contain a representation of the
Task resource.

• GET requests to either the task monitor or Task resource shall return the current status of the
operation without blocking.

• HTTP GET , PUT , and PATCH operations should always be synchronous.
• Clients shall be prepared to handle both synchronous and asynchronous responses for HTTP GET ,

PUT , PATCH , POST , and DELETE requests.
• Services shall persist pending tasks produced by client requests containing

@Redfish.OperationApplyTime across service restarts, until the task begins execution.
• Tasks that are pending execution should include the @Redfish.OperationApplyTime property to

indicate when the task will start. If the @Redfish.OperationApplyTime value is
AtMaintenanceWindowStart or InMaintenanceWindowOnReset , the task should also include the
@Redfish.MaintenanceWindow property.
◦ Services shall reject modification requests to the @Redfish.MaintenanceWindow property in the

Task resource.
◦ Changing the maintenance window for a resource may not affect existing tasks.

12.3 Resource tree stability

The resource tree, which is defined as the set of URIs and array elements within the implementation,
should be consistent on a single service across device resets or power cycles, and should withstand a
reasonable amount of configuration change, such as adding an adapter to a server.

The resource tree on one service might not be consistent across instances of devices. The client
should traverse the data model and discover resources to interact with them.

Some resources might remain very stable from system to system, such as manager network settings.
However, the architecture does not guarantee this stability.

• A resource tree should remain stable across service restarts and minor device configuration
changes. Thus, the set of URIs and array element indexes should remain constant.

• A client shall not expect the resource tree to be consistent between instances of services.

Redfish Specification DSP0266

158 Published Version 1.18.0



12.4 Discovery

12.4.1 Discovery overview

Automatic discovery of managed devices supporting Redfish may be accomplished by using the
Simple Service Discovery Protocol (SSDP). This protocol enables network-efficient discovery without
resorting to ping-sweeps, router table searches, or restrictive DNS naming schemes. Use of SSDP is
optional, and if implemented, shall enable the user to disable the protocol through the
ManagerNetworkProtocol resource.

The objective of discovery is for client software to locate managed devices that conform to the Redfish
Specification. Therefore, the primary SSDP functionality is incorporated in the M-SEARCH query.
Redfish also follows the SSDP extensions and naming that UPnP uses, where applicable, so that
systems that conform to the Redfish Specification can also implement UPnP without conflict.

12.4.2 UPnP compatibility

For compatibility with general-purpose SSDP client software, primarily UPnP, the service should use
UDP port 1900 for all SSDP traffic. In addition, the Time-to-Live (TTL) hop count setting for SSDP
multicast messages should default to 2 .

12.4.3 USN format

The UUID in the USN field of the service shall equal the UUID property in the service root. If multiple or
redundant managers exist, the UUID of the service shall remain static regardless of redundancy
failover. The unique ID shall be in the canonical UUID format, followed by ::dmtf-org .

12.4.4 M-SEARCH response

The Redfish service Search Target (ST) is defined as:

urn:dmtf-org:service:redfish-rest:1

The managed device shall respond to M-SEARCH queries for Search Target (ST) of the Redfish service,
as well as ssdp:all . For UPnP compatibility, the managed device should respond to M-SEARCH queries
for Search Target (ST) of upnp:rootdevice .

The URN provided in the ST header in the reply shall use the redfish-rest: service name followed by
the major version of the Redfish Specification. If the minor version of the Redfish Specification to which

DSP0266 Redfish Specification

Version 1.18.0 Published 159



the service conforms is a non-zero value, that minor version shall be appended with and preceded by
a colon ( : ).

For example, a service that conforms to a Redfish Specification v1.4 would reply with a redfish-

rest:1:4 service.

The managed device shall provide clients with the AL header that points to the Redfish service root
URL.

For UPnP compatibility, the managed device should provide clients with the Location header that
points to the UPnP XML descriptor.

The response to an M-SEARCH multicast or unicast query shall use the following format:

HTTP/1.1 200 OK

CACHE-CONTROL:max-age=<MaxAgeSeconds>

ST:urn:dmtf-org:service:redfish-rest:1

USN:uuid:<ServiceUUID>::urn:dmtf-org:service:redfish-rest:1

AL:<ServiceRootURI>

EXT:

where

• <MaxAgeSeconds> is the number of seconds caches can store the response, and is at least 1800 .
• <ServiceUUID> is the UUID of the Redfish service, such as 92384634-2938-2342-8820-489239905423 .
• <ServiceRootURI> is the absolute URI of the Redfish service root, such as https://192.168.1.50/

redfish/v1/ .

A service may provide additional headers for UPnP compatibility.

12.4.5 Notify, alive, and shutdown messages

Redfish devices may implement the additional UPnP-defined SSDP messages to announce their
availability to software. If implemented, services shall allow the end user to disable the traffic
separately from the M-SEARCH response functionality. This capability enables users to use the
discovery functionality with minimal amounts of generated network traffic.

12.5 Server-sent events

12.5.1 General

Server-sent events (SSE), defined by the Web Hypertext Application Technology Working Group

Redfish Specification DSP0266

160 Published Version 1.18.0



(WHATWG), enables a client to open a connection with a web service. The web service can
continuously push data to the client, as needed.

Successful resource responses for SSE shall:

• Return the HTTP 200 OK status code.
• Have a Content-Type header set as text/event-stream or text/event-stream;charset=utf-8 .

Unsuccessful resource responses for SSE shall:

• Return an HTTP 400 or greater status code.
• Have a Content-Type header set as application/json or application/json;charset=utf-8 .
• Contain a JSON object in the response body, as described in Error responses, which details the

error or errors.

A service may occasionally send a comment within a stream to keep the connection alive. Services
shall separate events with blank lines. Blank lines should be sent as part of the end of an event,
otherwise dispatch may be delayed in conforming consumers.

The following clauses describe how Redfish uses SSE in different Redfish data model contexts. For
details about SSE, see the HTML5 Specification.

12.5.2 Event service

A service's implementation of the EventService resource may contain the ServerSentEventUri

property. If a client performs a GET request on the URI specified by the ServerSentEventUri property,
the service shall keep the connection open and conform to the HTML5 Specification until the client
closes the socket. Service-generated events shall be sent to the client by using the open connection.

When a client opens an SSE stream for the event service, the service shall create an EventDestination

resource in the Subscriptions collection for the event service to represent the connection. The
Context property in the EventDestination resource shall be a service-generated opaque string.

The service shall delete the corresponding EventDestination resource when the connection is closed.
The service shall close the connection if the corresponding EventDestination resource is deleted.

The service shall use the id field in the SSE stream to uniquely identify a payload in the SSE stream.
The value of the id field is determined by the service. A service should accept the Last-Event-ID

header from the client to allow a client to restart the event stream in case the connection is
interrupted.

The service shall use the data field in the SSE stream based on the payload format. The SSE streams
have these formats:

DSP0266 Redfish Specification

Version 1.18.0 Published 161



• Metric report SSE stream. Services shall use this format when the telemetry service generates or
updates a metric report.

• Event message SSE stream. Services shall use this format for all other types of events.

To reduce the amount of data returned to the client, the service should support the $filter query
parameter in the URI for the SSE stream.

Note: The $filter syntax shall follow the format in the $filter query parameter clause.

The service should support these properties as filter criteria:

• EventFormatType

The service sends events of the matching EventFormatType .

Example:

https://sseuri?$filter=EventFormatType eq 'Event'

Valid values are the EventFormatType enumerated string values that the Redfish EventService

schema defines.

• EventType

The service sends events of the matching EventType .

Example:

https://sseuri?$filter=EventType eq 'StatusChange'

Valid values are the EventType enumerated string values that the Redfish Event schema defines.

• MessageId

The service sends events with the matching MessageId .

Example:

https://sseuri?$filter=MessageId eq 'Contoso.1.0.TempAssert'

• MetricReportDefinition

Redfish Specification DSP0266

162 Published Version 1.18.0



The service sends metric reports generated from the MetricReportDefinition .

Example:

https://sseuri?$filter=MetricReportDefinition eq '/redfish/v1/TelemetryService/MetricReportDefinitions/PowerMetrics'

• OriginResource

The service sends events for the resource.

Example:

https://sseuri?$filter=OriginResource eq '/redfish/v1/Chassis/1/Thermal'

• RegistryPrefix

The service sends events with messages that are part of the RegistryPrefix .

Example:

https://sseuri?$filter=(RegistryPrefix eq 'Resource') or (RegistryPrefix eq 'Task')

• ResourceType

The service sends events for resources that match the ResourceType .

Example:

https://sseuri?$filter=(ResourceType eq 'Power') or (ResourceType eq 'Thermal')

• SubordinateResources

When SubordinateResources is true and OriginResource is specified, the service sends events for
the resource and its subordinate resources.

Example:

DSP0266 Redfish Specification

Version 1.18.0 Published 163



https://sseuri?$filter=(OriginResource eq '/redfish/v1/Systems/1') and (SubordinateResources eq true)

12.5.2.1 Event message SSE stream

The service shall use the data field in the SSE stream to include the JSON representation of the Event

object.

The following example payload shows a stream that contains a single event with the id field set to
1 , and a data field that contains a single Event object.

id: 1

data:{

data:    "@odata.type": "#Event.v1_6_0.Event",

data:    "Id": "1",

data:    "Name": "Event Array",

data:    "Context": "ABCDEFGH",

data:    "Events": [

data:        {

data:            "MemberId": "1",

data:            "EventType": "Alert",

data:            "EventId": "1",

data:            "Severity": "Warning",

data:            "MessageSeverity": "Warning",

data:            "EventTimestamp": "2017-11-23T17:17:42-0600",

data:            "Message": "The LAN has been disconnected",

data:            "MessageId": "Alert.1.0.LanDisconnect",

data:            "MessageArgs": [

data:                "EthernetInterface 1",

data:                "/redfish/v1/Systems/1"

data:            ],

data:            "OriginOfCondition": {

data:                "@odata.id": "/redfish/v1/Systems/1/EthernetInterfaces/1"

data:            },

data:            "Context": "ABCDEFGH"

data:        }

data:    ]

data:}

12.5.2.2 Metric report SSE stream

The service shall use the data field in the SSE stream to include the JSON representation of the
MetricReport object.

The following example payload shows a stream that contains a metric report with the id field set to
127 , and the data field containing the metric report object.

Redfish Specification DSP0266

164 Published Version 1.18.0



id: 127

data:{

data:    "@odata.id": "/redfish/v1/TelemetryService/MetricReports/AvgPlatformPowerUsage",

data:    "@odata.type": "#MetricReport.v1_3_0.MetricReport",

data:    "Id": "AvgPlatformPowerUsage",

data:    "Name": "Average Platform Power Usage metric report",

data:    "MetricReportDefinition": {

data:        "@odata.id": "/redfish/v1/TelemetryService/MetricReportDefinitions/AvgPlatformPowerUsage"

data:    },

data:    "MetricValues": [

data:        {

data:            "MetricId": "AverageConsumedWatts",

data:            "MetricValue": "100",

data:            "Timestamp": "2016-11-08T12:25:00-05:00",

data:            "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/PowerConsumedWatts"

data:        },

data:        {

data:            "MetricId": "AverageConsumedWatts",

data:            "MetricValue": "94",

data:            "Timestamp": "2016-11-08T13:25:00-05:00",

data:            "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/PowerConsumedWatts"

data:        },

data:        {

data:            "MetricId": "AverageConsumedWatts",

data:            "MetricValue": "100",

data:            "Timestamp": "2016-11-08T14:25:00-05:00",

data:            "MetricProperty": "/redfish/v1/Chassis/Tray_1/Power#/0/PowerConsumedWatts"

data:        }

data:    ]

data:}

12.6 Update service

12.6.1 Overview

This clause covers the mechanism for software updates by using the update service.

12.6.2 Software update types

Clients can use these methods to update software through the update service:

• Simple updates: The service pulls the update from a client-indicated network location.
• Multipart HTTP push updates: The client uses HTTP or HTTPS with a multipart-formatted request

body to push a software image to the service.

DSP0266 Redfish Specification

Version 1.18.0 Published 165



12.6.2.1 Simple updates

A service can support the SimpleUpdate action within the UpdateService resource. A client can perform
a POST request on the action target URI to initiate a pull-based update, as defined by the
UpdateService schema. After a successful POST , the service should return the HTTP 202 Accepted

status code with the Location header set to the URI of a task monitor. Clients can use this task to
monitor the progress and results of the update, which includes the progress of image transfer to the
service, as described in the Asynchronous operations clause.

12.6.2.2 Multipart HTTP push updates

A service may support the MultipartHttpPushUri property within the UpdateService resource. A client
can perform an HTTP or HTTPS POST request on the URI specified by this property to initiate a push-
based update.

• Access to this URI shall require the same privilege as access to the update service.
• A client POST to this URI shall contain the Content-Type HTTP header with the value multipart/

form-data , with the body formatted as defined by this specification. For more information about
multipart/form-data HTTP requests, see RFC7578.

• The client POST request shall contain the binary image as one of the parts in a multipart/form-

data request body, as defined by Table 40. In addition, the request shall include action parameters
for the update in a JSON formatted part in the same multipart/form-data request body, as defined
by Table 40. If the request has no action parameters, an empty JSON object shall be used.

• A service may require the Content-Length HTTP header for POST requests to this URI. In this case,
if a client does not include the required Content-Length header in the POST request, the service
shall return the HTTP 411 Length Required status code.

• A service should return the HTTP 413 Payload Too Large status code if the size of the binary image
is larger than the maximum image size that the service supports, as advertised in
MaxImageSizeBytes property in the UpdateService resource.

• After a successful POST to this URI, the service shall return the HTTP 202 Accepted status code
with a Location header set to the URI of a task monitor. Clients can use this task to monitor the
progress and results of the update, as described in the Asynchronous operations clause.

• Upon completion of the requested update, the service shall return the HTTP 200 OK status code
and an error response, with a message that indicates success or any additional relevant
messages, or the HTTP 204 No Content status code.
◦ The service should return the HTTP 200 OK status code. If the update was successfully

processed and completed without errors, warnings, or other notifications for the client, the
service should return the UpdateSuccessful message from the Update Message Registry in the
code property in the response body.

Table 40 describes the requirements of a multipart/form-data request body for an HTTP push software
update:

Redfish Specification DSP0266

166 Published Version 1.18.0



Table 40 — Multipart HTTP push updates
Request
body part HTTP headers Header value and

parameters Required Description

Action
parameters
JSON part

Content-Disposition
form-data;

name="UpdateParameters"
Yes

JSON-formatted part for passing the
action parameters. The value of the
name field shall be
"UpdateParameters" . The format of the

JSON shall follow the definition of the
UpdateParameters object in the
UpdateService schema.

Services may allow the inclusion of
the @Redfish.OperationApplyTime

property in the request body. See
Operation apply time.

Content-Type

application/

json;charset=utf-8 or
application/json

Yes Media type format and character set
of this request part.

Update file
binary part Content-Disposition

form-data;

name="UpdateFile";

filename=string

Yes

Binary file to use for this software
update. The value of the name field
shall be "UpdateFile" . The value of
the filename field should reflect the
name of the file as loaded by the
client.

Content-Type application/octet-stream Yes Media type format of the binary
update file.

OEM specific
parts Content-Disposition

form-data;

name="OemXXXX"
No

Optional OEM part. The value of the
name field shall start with "Oem .
Content-Type is optional, and

depends on the OEM part type.

This example shows a multipart/form-data request to push an update image:

POST /redfish/v1/UpdateService/upload HTTP/1.1

Host: <host-path>

Content-Type: multipart/form-data; boundary=---------------------------d74496d66958873e

Content-Length: <computed-length>

Connection: keep-alive

X-Auth-Token: <session-auth-token>

-----------------------------d74496d66958873e

Content-Disposition: form-data; name="UpdateParameters"

Content-Type: application/json

{

DSP0266 Redfish Specification

Version 1.18.0 Published 167



"Targets": ["/redfish/v1/Managers/1"],

"@Redfish.OperationApplyTime": "OnReset",

"Oem": {}

}

-----------------------------d74496d66958873e

Content-Disposition: form-data; name="UpdateFile"; filename="flash.bin"

Content-Type: application/octet-stream

<software image binary>

Redfish Specification DSP0266

168 Published Version 1.18.0



13 Security details

13.1 Transport Layer Security (TLS) protocol

13.1.1 Transport Layer Security (TLS) protocol overview

Implementations shall support the Transport Layer Security (TLS) protocol v1.2 with RFC7525
recommendations or later. Implementations may remove support for older versions for TLS in favor of
newer versions.

DEPRECATED: Previous versions of this specification allowed for TLS v1.1.

Implementations should support:

• The Storage Networking Industry Association (SNIA) TLS Specification for Storage Systems.
• The latest version of the TLS v1.x specification.

13.1.2 Cipher suites

Implementations shall only support cipher suites listed as "Recommended" in the TLS Cipher Suites
table defined by the IANA TLS Parameters registry.

Cipher suites that are listed as mandatory in various RFCs, but are not "Recommended" in the TLS
Cipher Suites table defined by the IANA TLS Parameters registry, shall not be supported.

Implementations should consider the support of pre-shared key ciphers suites listed as
"Recommended" in the TLS Cipher Suites table defined by the IANA TLS Parameters registry, which
enable authentication and identification without trusted certificates.

DEPRECATED

Implementations should support AES-256-based ciphers from the TLS suites.

Redfish implementations should consider the support of ciphers, such as the following ciphers, which
enable authentication and identification without trusted certificates:

TLS_PSK_WITH_AES_256_GCM_SHA384

DSP0266 Redfish Specification

Version 1.18.0 Published 169



TLS_DHE_PSK_WITH_AES_256_GCM_SHA384

TLS_RSA_PSK_WITH_AES_256_GCM_SHA384

The advantage of these recommended ciphers is:

AES-GCM is not only efficient and secure, but hardware implementations can achieve high speeds
with low cost and low latency because the mode can be pipelined.

Additionally, Redfish implementations should support the following cipher:

TLS_RSA_WITH_AES_128_CBC_SHA

For more information, see RFC5487 and RFC5288.

END DEPRECATED

13.1.3 Certificates

Redfish implementations shall support replacement of the default certificate if one is provided.

Redfish implementations shall use certificates that conform to X.509-v3, as defined in RFC5280.

13.2 Sensitive data

Operations that contain sensitive data should use HTTPS only. For example, a SimpleUpdate action with
a user name and password should use HTTPS to protect the sensitive data.

Properties in service responses that represent sensitive data, such as passwords, shall be null .

Responses from URIs where the URI itself contains sensitive data in a URI segment may return the
HTTP 404 Not Found status code instead of the HTTP 401 Unauthorized status code, the HTTP 403

Forbidden status code, or the HTTP 405 Method Not Allowed status code to prevent attackers from
obtaining the sensitive data in the URI.

Redfish Specification DSP0266

170 Published Version 1.18.0



13.3 Authentication

13.3.1 Authentication overview

Services:

• Shall support both HTTP Basic authentication and Redfish session login authentication.
• Shall use only connections that conform to TLS to transport the data between any third-party

authentication service and clients.
• Shall not require a client that uses HTTP Basic authentication to create a session.
• May implement other authentication mechanisms.

13.3.2 Authentication requirements

13.3.2.1 Resource and operation authentication requirements

Services shall authenticate all write requests to Redfish resources. For example:

• POST , except to the Sessions resource collection for authentication
• PUT

• PATCH

• DELETE

Redfish resources shall not be available as unauthenticated, except for:

• The service root to identify the device and service locations.
• The Redfish metadata document to get resource types.
• The OData service document for compatibility with OData clients.
• The Redfish OpenAPI YAML document for compatibility with OpenAPI clients.
• The version object at /redfish .

Services may reject requests to the previous resources if invalid credentials are provided by the client.

Note: This specification does not cover external services that are linked through external
references. These services may have other security requirements.

13.3.2.2 HTTP header authentication requirements

An authentication header shall accompany every request that establishes a secure channel.

DSP0266 Redfish Specification

Version 1.18.0 Published 171



Services:

• Shall process HTTP headers for authentication before other headers that may affect the response.
For example, ETag , If-Match , and so on.

• Shall not use HTTP cookies to authenticate any activity, such as GET , POST , PUT , PATCH , and
DELETE .

13.3.2.3 Authentication failure requirements

When authentication fails, extended error messages shall not provide privileged information.

13.3.3 HTTP Basic authentication

Services shall support HTTP Basic authentication, as defined by RFC7617, and shall use only
connections that conform to TLS to transport the data between any third-party authentication service
and clients.

All requests that use HTTP Basic authentication shall require HTTPS.

When multi-factor authentication is enabled, services shall reject HTTP Basic authentication for
accounts that are not configured to bypass multi-factor authentication. Session-based authentication
is required in this case.

Note: The IETF has highlighted security concerns with HTTP Basic authentication. While HTTPS is
required for the usage of HTTP Basic authentication, there are other concerns implementers need
to be aware of that RFC7617 documents.

13.3.4 Redfish session login authentication

Service shall provide login sessions that conform with this specification.

Session management is determined by the implementation of the Redfish service, which includes
orphaned session timeout and the management of the number of simultaneous open sessions.

13.3.4.1 Redfish login sessions

For improved performance and security, a client should use the session management interface to
create a Redfish login session. The session service specifies the URI for session management.

To establish a session, find the URI in either:

• The session service's Sessions property.
• The service root's links property under the Sessions property.

Redfish Specification DSP0266

172 Published Version 1.18.0



Both URIs shall be the same.

{

"SessionService": {

"@odata.id": "/redfish/v1/SessionService"

},

"Links": {

"Sessions": {

"@odata.id": "/redfish/v1/SessionService/Sessions"

}

},

...

}

13.3.4.2 Session login

To create a Redfish session without an authentication header, perform an HTTP POST request on the
session service's Sessions resource collection. The POST to create a session shall only be supported
with HTTPS. If both HTTP and HTTPS are enabled, a POST request to create a session through the HTTP
port should redirect to the HTTPS port. Include the following POST body:

POST /redfish/v1/SessionService/Sessions HTTP/1.1

Host: <host-path>

Content-Type: application/json;charset=utf-8

Content-Length: <computed-length>

Accept: application/json;charset=utf-8

OData-Version: 4.0

{

"UserName": "<username>",

"Password": "<password>"

}

Fields in brackets are placeholders for client-specific values.

When a multi-factor authentication type that requires tokens is enabled, services shall require the
Token property in the POST request to the SessionCollection resource for accounts that are not

configured to bypass multi-factor authentication. The service shall verify the provided token in addition
to verifying the username and password.

To verify that the request has been initiated from an authorized client domain, services should save
the Origin header in reference to this session creation and compare it to subsequent requests using
this session.

The response to the POST request to create a session shall include:

DSP0266 Redfish Specification

Version 1.18.0 Published 173



• X-Auth-Token header. Contains a session authentication token that the client can use in
subsequent requests.

• Location header. Contains a hyperlink to the new Session resource.
• JSON response body. Contains the full representation of the new Session resource.

The following sample response shows a newly created session:

HTTP/1.1 201 Created

Location: /redfish/v1/SessionService/Sessions/1

X-Auth-Token: <session-auth-token>

{

"@odata.id": "/redfish/v1/SessionService/Sessions/1",

"@odata.type": "#Session.v1_0_0.Session",

"Id": "1",

"Name": "User Session",

"Description": "User Session",

"UserName": "<username>",

"Password": null

}

The client that sends the session login request should save the session authentication token from the
X-Auth-Token header and the contents of the Location header from the response of the login POST

request.

To authenticate subsequent requests, the client sets the X-Auth-Token header to the session
authentication token that the POST login request returns.

Note: The session ID differs from the session authentication token, as follows:

• Session ID: The session ID uniquely identifies the Session resource. The response data with
the last segment of the Location header URI returns is the session ID. To view active sessions
and terminate any session, an administrator with sufficient privileges can use the session ID.

• Session authentication token: Only the client that executes the login has the session
authentication token.

13.3.4.3 Session lifetime

Unlike some token-based methods that use token expiration times, Redfish sessions time out. As long
as a client continues to send requests more frequently than the session timeout period, the session
remains open and the session authentication token remains valid. If the session times out, it is
automatically terminated.

Redfish Specification DSP0266

174 Published Version 1.18.0



13.3.4.4 Session termination or logout

When the client logs out, the Redfish session terminates. The session terminates through a DELETE

request to the Session resource defined in either the Location header URI or the session ID in the
response data.

This ability to DELETE a session through the Session resource enables an administrator with sufficient
privileges to terminate other users' sessions from a different session.

When a session is terminated, the service shall not affect independent connections established
originally by this session for other purposes, such as connections for server-sent events or transferring
an image for the update service.

13.3.5 Client certificate authentication

If client certificate authentication is enabled, the service shall send a client certificate request during
the Transport Layer Security (TLS) handshake. When the service obtains a client certificate during the
TLS handshake, the service shall verify the certificate with the certificates in CertificateCollection

resource referenced by the ClientCertificate property within the MFA property of the AccountService

resource. The service shall check for certificate revocation before processing the request with any
configured Online Certificate Status Protocol (OCSP) servers.

The RespondToUnauthenticatedClients property within the ClientCertificate property within the MFA

property of the AccountService resource controls the response behavior when an invalid certificate is
provided by the client.

• If the property contains true or is not supported by the service, the service shall not fail the TLS
handshake. This is to allow the service to send error messages or unauthenticated resources to the
client.

• If the property contains false , the service shall fail the TLS handshake.

13.4 Authorization

13.4.1 Authorization overview

The Redfish authorization subsystem controls which users have access to resources and the type of
access that users have. It consists of two parts: the privilege model and the operation-to-privilege
mapping.

The privilege model maps users to roles and maps roles to privileges. A privilege is a permission to
complete an operation, such as read or write, within a defined management domain. For example the
ConfigureUsers privilege allows adding a user. A user is authorized to access a resource if they have

DSP0266 Redfish Specification

Version 1.18.0 Published 175



the privileges required for that resource. The operation-to-privilege mapping defines which privileges
are required to access any given operation.

Redfish allows vendors to extend the standard privilege model with OEM privileges and custom OEM
roles. OEM privileges and custom roles participate in the privilege model the same as Redfish standard
privileges and roles. Services may also allow clients to create custom roles. Restricted roles and
restricted privileges allow vendors to further refine their authority model.

Services shall enforce the same privilege model for ETag-related activity as is enforced for the data
being represented by the ETag. For example, the privilege required to read an ETag shall be the same
as the privilege to read the data item that the ETag represents.

13.4.2 Privilege model

Each user shall be assigned exactly one role with the RoleId property in the ManagerAccount resource.
The value of the RoleId property identifies a Role resource in the RoleCollection resource, where a
role defines a set of privileges. A role shall be assigned to a user when a manager account is created.
The client shall provide the RoleId property when creating a manager account to select one of the
standard or custom roles.

Services shall provide information about all roles through the RoleCollection resource. The
AssignedPrivileges and OemPrivileges arrays in the Role resource define a set of assigned privileges

for the associated role. Two roles with the same privileges shall behave equivalently.

13.4.2.1 Roles

Redfish defines a set of standard roles, allows a service to define custom OEM roles, and allows client-
defined custom roles.

A service shall support all of the standard roles in Table 41. The value of the Id and
AssignedPrivileges properties in the Role resource for the standard roles shall contain the Role
name and Assigned privileges column values, respectively. The AssignedPrivileges property for
standard roles shall not be modifiable. The IsPredefined property for standard roles shall contain the
value true .

Table 41 describes the standard roles:

Table 41 — Required standard roles
Role name Assigned privileges

Administrator Login , ConfigureManager , ConfigureUsers , ConfigureComponents , ConfigureSelf

Operator Login , ConfigureComponents , ConfigureSelf

Redfish Specification DSP0266

176 Published Version 1.18.0



Role name Assigned privileges

ReadOnly Login , ConfigureSelf

A service may support one or more of the standard roles in Table 42. The value of the Id and
AssignedPrivileges properties in the Role resource for the standard roles shall contain the Role
name and Assigned privileges column values, respectively. The AssignedPrivileges property for
standard roles shall not be modifiable. The IsPredefined property for standard roles shall contain the
value true .

Table 42 describes the optional standard roles:

Table 42 — Optional standard roles
Role name Assigned privileges Description

SystemAdministrator
Login , ConfigureSelf ,
AdministrateSystems

Adminsitrator for systems found in the systems collection. Able
to manage boot configuration, keys, and certificates for
systems.

SystemOperator
Login , ConfigureSelf ,
OperateSystems

Operator for systems found in the systems colletion. Able to
perform resets and configure interfaces.

StorageAdministrator
Login , ConfigureSelf ,
AdministrateStorage

Administrator for storage subsystems and storage systems
found in the storage collection and storage system collection
respectively.

StorageBackupOperator
Login , ConfigureSelf ,
OperateStorageBackup

Operator for storage backup functionality for storage
subsystems and storage systems found in the storage collection
and storage system collection respectively.

A service may define custom OEM roles. The IsPredefined property for OEM roles shall contain the
value true . A service shall not allow users to modify predefined OEM roles. OEM role names should
begin with a lowercase character or "Oem" followed by a vendor name to avoid conflict with future
Redfish predefined role names.

A service may allow custom client-defined roles to be created, modified, and deleted. If allowed, a user
can perform a POST request on the RoleCollection resource to create a role, indicating privileges in
the AssignedPrivileges and OemPrivileges properties in the Role resource. A service may restrict
which privileges are allowed. The IsPredefined property for client-defined roles shall contain the value
false . A service shall not allow a client-defined role to be deleted while it is in use, for example, when

it is assigned to a local user or an LDAP RemoteRoleMapping property.

The value of the RoleId property shall be unique across all roles within the RoleCollection resource.

Non-Redfish services, such as those enabled by the AccountTypes property within the ManagerAccount

DSP0266 Redfish Specification

Version 1.18.0 Published 177



resource, should map the Redfish RoleId to their permission system. For example, an SSH user with
Administrator as the value of the RoleId property could map to "root" for the SSH service. However,

the privileges specified by the AssignedPrivileges and OemPrivileges do not necessarily map to non-
Redfish services.

13.4.2.2 Restricted roles and restricted privileges

Restricted roles and restricted privileges are intended to prevent privilege escalation. Restricted roles
and restricted privileges are not less functional, but their usage is restricted to particular users. For
example, to have a security administrator have privileges that the administrator does not have, you
need to ensure the administrator cannot escalate to the security administrator role. An
implementation can help achieve this by restricting the Administrator role and providing an alternate
administrator role that lacks the security privilege.

A service may restrict any role. The Restricted property for restricted roles shall contain the value
true . When a standard role is restricted, services shall provide the AlternateRoleId property to

reference a non-restricted custom role intended for clients to use as an alternate. Services may pre-
define or create accounts that are configured with a restricted role.

Services shall not allow:

• A RoleId value for a restricted role to be specified when creating or modifying a ManagerAccount

resource. This ensures administrators cannot create an account for themselves that has a
restricted role.

• Modification of ManagerAccount resources with a RoleId property containing a value for a
restricted role, with the exception of the Enabled property. This ensures administrators cannot
gain access to another account.

• Deletion of ManagerAccount resources with a RoleId property containing a value for a restricted
role.

• A restricted role to be specified in the LocalRole property within the RemoteRoleMapping property
within the AccountService and ExternalAccountProvider resources.

A service may restrict any privilege, including standard and OEM privileges. The RestrictedPrivileges

and RestrictedOemPrivileges properties in the AccountService resource shall specify the restricted
privileges. Services shall not allow custom roles to specify restricted privileges. Services may contain
predefined roles that are configured with restricted privileges.

13.4.2.3 OEM privileges

OEM privileges allow a service to extend the privilege model by adding additional privileges to have
additional control of what operations are allowed. It can be used when a standard privilege is overly
broad.

A service may define OEM privileges and may include OEM privileges in any predefined role, including

Redfish Specification DSP0266

178 Published Version 1.18.0



standard and custom OEM roles. The OemPrivileges property within the Role resource shall contain
the OEM privileges that are assigned to the role. The OemPrivileges property in the Role resource for
the predefined roles shall not be modifiable.

A service may allow OEM privileges to be assigned to client-defined roles.

13.4.3 Redfish service operation-to-privilege mapping

For every request that a client makes to a service, the service shall determine that the authenticated
identity of the requester has the authorization to complete the requested operation on the resource in
the request.

Using the role and privileges authorization model where an authenticated identity context is assigned
a role and a role is a set of privileges, the service typically checks an HTTP request against a mapping
of the authenticated requesting identity role and privileges to determine whether the identity
privileges are sufficient to complete the operation in the request.

A service may perform additional checks based on the identity of the user and remove data from
responses. For example, a service might restrict access for non-administrative users to only access
their own ManagerAccount , Session , and EventDestination resources.

13.4.3.1 Why specify operation-to-privilege mapping?

Initial versions of the Redfish Specifications defined several role-to-privilege mappings for
standardized roles and normatively identified several privilege labels but did not normatively detail
what these privileges or how privilege-to-operations mappings could be specified or represented in a
normative fashion.

The lack of a methodology to define which privileges are required to complete a requested operation
against the URI in the request puts at risk the interoperability between service implementations that
clients may encounter due to variances in privilege requirements between implementations.

Also, a lack of methodology for specifying and representing the operation-to-privilege mapping
prevents the Redfish Forum or other governing organizations from normatively defining privilege
requirements for a service.

13.4.3.2 Representing operation-to-privilege mappings

A service should provide a Privilege Registry in the registry collection. This registry represents the
privileges required to complete HTTP operations against resources supported by the service.

The Privilege Registry is a JSON document that contains a Mappings array of where an individual entry
exists for every resource type that the service supports.

DSP0266 Redfish Specification

Version 1.18.0 Published 179



The operation-to-privilege mapping is defined for every resource type and applies to every resource
the service implements for the applicable resource type.

In several situations, specific resources or properties may have differing operation-to-privilege
mappings than the resource type-level mappings. In these cases, the resource type-level mappings
need to be overridden. The PrivilegeRegistry schema defines the methodology for resource type-
level operation-to-privilege mappings and related overrides.

If a service provides a Privilege Registry, the service shall use the Redfish Forum's Privilege Registry
definition as a base operation-to-privilege mapping definition for operations that the service supports
to promote interoperability for Redfish clients.

13.4.3.3 Operation map syntax

An operation map defines the set of privileges required to complete an operation on a resource-type.

The mapped operations are GET , PUT , PATCH , POST , DELETE , and HEAD . A privilege mapping is
defined for each operation, irrespective of whether the service or data model supports the operation
on the resource-type.

The privilege labels may be the Redfish standardized labels that the PrivilegeType enumeration in the
Privileges schema defines and they may be OEM-defined privilege labels. The required privileges for

an operation are specified using logical AND and OR behavior. For more information, see the Privilege
AND and OR syntax clause.

The following example defines the privileges required for various operations on the Manager resource.
Unless the implementation defines mapping overrides to the OperationMap array, the specified
operation-to-privilege mapping represents behavior for all Manager resources in a service
implementation.

{

"Entity": "Manager",

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"HEAD": [{

"Privilege": ["Login"]

}],

"PATCH": [{

"Privilege": ["ConfigureManager"]

}],

"POST": [{

"Privilege": ["ConfigureManager"]

}],

Redfish Specification DSP0266

180 Published Version 1.18.0



"PUT": [{

"Privilege": ["ConfigureManager"]

}],

"DELETE": [{

"Privilege": ["ConfigureManager"]

}]

}

}

13.4.3.4 Mapping overrides syntax

Table 43 describes the operation-to-privilege mapping, which varies from the resource type-level
mapping:

Table 43 — Mapping overrides syntax
Situation Description

Property override

Property has different privilege requirements than the resource in which it resides. For
example, the Password property in the ManagerAccount resource requires the
ConfigureSelf or ConfigureUsers privilege to change, in contrast to the
ConfigureUsers privilege required for the other properties in ManagerAccount resources.

If multiple properties with the same name are present in a resource, the property
override applies to all property instances.

Subordinate override

Resource is used in context of another resource and the contextual privileges need to
govern. For example, the privileges for PATCH operations on EthernetInterface

resources depend on whether the resource is subordinate to the Manager resource,
where ConfigureManager is required, or the ComputerSystem resource, where
ConfigureComponents is required.

Resource URI override Resource instance has different privilege requirements for an operation than those
defined for the resource type.

The overrides are defined in the context of the operation-to-privilege mapping for a resource type.

If multiple overrides are specified for a single resource type, the following precedence should be used
for determining the appropriate override to apply:

• Property override
• Resource URI override
• Subordinate override

DSP0266 Redfish Specification

Version 1.18.0 Published 181



13.4.3.5 Property override example

In the following example, the Password property on the ManagerAccount resource requires the
ConfigureSelf or ConfigureUsers privilege to change, in contrast to the ConfigureUsers privilege

required for the other properties in ManagerAccount resources:

{

"Entity": "ManagerAccount",

"OperationMap": {

"GET": [{

"Privilege": ["ConfigureManager"]

}, {

"Privilege": ["ConfigureUsers"]

}, {

"Privilege": ["ConfigureSelf"]

}],

"HEAD": [{

"Privilege": ["Login"]

}],

"PATCH": [{

"Privilege": ["ConfigureUsers"]

}],

"POST": [{

"Privilege": ["ConfigureUsers"]

}],

"PUT": [{

"Privilege": ["ConfigureUsers"]

}],

"DELETE": [{

"Privilege": ["ConfigureUsers"]

}]

},

"PropertyOverrides": [{

"Targets": ["Password"],

"OperationMap": {

"PATCH": [{

"Privilege": ["ConfigureUsers"]

}, {

"Privilege": ["ConfigureSelf"]

}]

}

}]

}

13.4.3.6 Subordinate override

The Targets property in SubordinateOverrides lists a hierarchical representation for when to apply the
override. In the following example, the override for an EthernetInterface resource is applied when it is

Redfish Specification DSP0266

182 Published Version 1.18.0



subordinate to an EthernetInterfaceCollection resource, which in turn is subordinate to a Manager

resource. If a client were to PATCH an EthernetInterface resource that matches this override
condition, it requires the ConfigureManager privilege. Otherwise, the client requires the
ConfigureComponents privilege.

{

"Entity": "EthernetInterface",

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"HEAD": [{

"Privilege": ["Login"]

}],

"PATCH": [{

"Privilege": ["ConfigureComponents"]

}],

"POST": [{

"Privilege": ["ConfigureComponents"]

}],

"PUT": [{

"Privilege": ["ConfigureComponents"]

}],

"DELETE": [{

"Privilege": ["ConfigureComponents"]

}]

},

"SubordinateOverrides": [{

"Targets": ["Manager", "EthernetInterfaceCollection"],

"OperationMap": {

"PATCH": [{

"Privilege": ["ConfigureManager"]

}],

"POST": [{

"Privilege": ["ConfigureManager"]

}],

"PUT": [{

"Privilege": ["ConfigureManager"]

}],

"DELETE": [{

"Privilege": ["ConfigureManager"]

}]

}

}]

}

DSP0266 Redfish Specification

Version 1.18.0 Published 183



13.4.3.7 Resource URI override

The following example demonstrates the resource URI override syntax to define operation privilege
variations for resource URIs.

The example defines both ConfigureComponents and OEMAdminPriv privileges as required to make a
PATCH operation on the two resource URIs listed as targets.

{

"Entity": "ComputerSystem",

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"HEAD": [{

"Privilege": ["Login"]

}],

"PATCH": [{

"Privilege": ["ConfigureComponents"]

}],

"POST": [{

"Privilege": ["ConfigureComponents"]

}],

"PUT": [{

"Privilege": ["ConfigureComponents"]

}],

"DELETE": [{

"Privilege": ["ConfigureComponents"]

}]

},

"ResourceURIOverrides": [{

"Targets": ["/redfish/v1/Systems/VM6", "/redfish/v1/Systems/Sys1"],

"OperationMap": {

"GET": [{

"Privilege": ["Login"]

}],

"PATCH": [{

"Privilege": ["ConfigureComponents", "OEMSysAdminPriv"]

}]

}

}]

}

13.4.3.8 Privilege AND and OR syntax

The array placement of the privilege labels in the OperationMap GET , HEAD , PATCH , POST , PUT , and

Redfish Specification DSP0266

184 Published Version 1.18.0



DELETE operation element arrays define the logical combinations of privileges that are required to call
an operation on a resource or property.

For OR logical combinations, the privilege label appears in the operation element array as individual
elements.

The following example defines either Login or OEMPrivilege1 privileges that are required to perform a
GET request.

{

"GET": [{

"Privilege": ["Login"]

}, {

"Privilege": ["OEMPrivilege1"]

}]

}

For logical AND combinations, the privilege label appears in the Privilege property array in the
operation element.

The following example defines both ConfigureComponents and OEMSysAdminPriv that are required to
perform a PATCH request.

{

"PATCH": [{

"Privilege": ["ConfigureComponents", "OEMSysAdminPriv"]

}]

}

13.4.4 Delegated authorization with OAuth 2.0

Services may support the RFC6749-defined OAuth 2.0 authorization framework.

13.4.4.1 OAuth 2.0 overview

The OAuth 2.0 authorization framework allows a client to obtain access to a resource server from a
resource owner and an authorization server.

Clients request access from a resource owner and is given an authorization grant. The authorization
grant is then provided to the authorization server and an access token is provided to the client. The
client provides the access token to the resource server in order to access a protected resource.

A Redfish service is considered to be a resource server in the OAuth 2.0 authorization framework.

DSP0266 Redfish Specification

Version 1.18.0 Published 185



13.4.4.2 OAuth 2.0 data model requirements

Services that support OAuth 2.0:

• Shall support the OAuth2 property in the AccountService resource.
• May support additional OAuth 2.0 servers with ExternalAccountProvider resources.

13.4.4.3 OAuth 2.0 access tokens

Access tokens are the credentials the client provides to a service to access a protected resource.
Clients provide the access token to the service in the Authorization request header as a bearer token.

Services that support OAuth 2.0 shall support receiving an RFC7519-defined JSON Web Token (JWT) in
the Authorization request header.

JWTs are a compressed JSON structure that contain a JOSE Header, a set of claims that describe the
type of access that is granted to a client, and a signature. Each component of a JWT is Base64URL-
encoded and concatenated with a . to form the token string for the Authorization header.

Table 44 describes the JWT JOSE Header parameters and their requirements for services and clients.
Any other parameters are outside the scope of this specification.

Services shall process the parameters in Table 44 if the Service requirement column contains Yes.
Services should process other parameters.

The JWT provided by the client shall contain the parameters in Table 44 if the JWT requirement
column contains Yes. The JWT provided by the client may omit other parameters.

Table 44 — OAuth 2.0 JWT JOSE Header parameters

Parameter Service
requirement

JWT
requirement Description

typ Yes No Type of token. The string is case insensitive. If not present,
services shall assume the value is JWT .

alg Yes Yes Algorithm for the signature of the token. Services shall not
accept the value none .

Table 45 describes the claims and their requirements for services and clients. Any other claims are
outside the scope of this specification.

Services shall process the claims in Table 45 if the Service requirement column contains Yes.
Services should process other claims.

Redfish Specification DSP0266

186 Published Version 1.18.0



The JWT provided by the client shall contain the claims in Table 45 if the JWT requirement column
contains Yes. The JWT provided by the client may omit other claims.

Table 45 — OAuth 2.0 JWT claims

Claim Service
requirement

JWT
requirement Description

iss Yes Yes Issuer of the token. Identifies the authorization server that
signed the token.

sub Yes Yes Subject of the token. Identifies the client issued the token.

aud Yes Yes Audience of the token. Identifies the resource server intended
to accept the token.

exp Yes No Expiration time of the token.

nbf Yes No "Not before" time of the token.

iat Yes No Issued time of the token.

jti Yes No Unique identifier of the token.

scope Yes Yes Type of access the token grants. See the Redfish OAuth2.0
scope usage clause.

Example JOSE Header:

{

"typ": "JWT",

"alg": "RS256"

}

Example JWT claims:

{

"iss": "https://contoso.org/services/oauth2",

"sub": "Joe Smith",

"aud": "92384634-2938-2342-8820-489239905423",

"exp": 1735707600,

"scope": "Redfish.Role.Operator",

"jti": "97d52311-5f55-4482-b947-8a70c326fdfd"

}

Example token encoded in the Authorization request header:

DSP0266 Redfish Specification

Version 1.18.0 Published 187



Authorization: Bearer mF_9.B5f-4.1JqM

Note: The previous example does not reflect a real JWT and is provided to show encoding in the
Authorization request header.

13.4.4.4 Redfish OAuth2.0 scope usage

The value of the scope claim is expressed as a list of space-delimited, case-sensitive strings. Each
value in the list describes a type of access that was granted to the client.

This specification defines two formats for values in the scope claim: Redfish roles and Redfish
privileges. Other formats are outside the scope of this specification.

Redfish roles within the scope claim shall be in the form Redfish.Role.<RoleId> where <RoleId> is the
identifier of the Redfish role granted to the client.

Redfish privileges within the scope claim shall be in the form Redfish.Privilege.<PrivilegeId> where
<PrivilegeId> is the standard privilege or OEM privilege granted to the client.

Services shall ignore unsupported values in the scope claim. If the token provided by the client is
valid, the service shall apply roles and privileges in the scope claim to the operation.

13.5 Account service

13.5.1 Account service overview

• Implementations should store user passwords with one-way encryption techniques.
• Implementations may support exporting user accounts with passwords, but shall do so using

encryption methods to protect them.
• User accounts shall support ETags and atomic operations. Implementations may reject requests

that do not include an ETag.
• When authentication fails, extended error messages shall not provide privileged information.

13.5.2 Password management

A Redfish service provides local user accounts through a collection of ManagerAccount resources
located under the account service. The ManagerAccount resources enable users to manage their own
account information, and for administrators to create, delete, and manage other user accounts.

When account properties are changed, the service may close open sessions for this account and
require re-authentication.

Redfish Specification DSP0266

188 Published Version 1.18.0



13.5.3 Password change required handling

The service may require that passwords assigned by the manufacturer be changed by the end user
prior to accessing the service. In addition, administrators may require users to change their account's
password upon first access.

The ManagerAccount resource contains a PasswordChangeRequired boolean property to enable this
functionality. Resources that have the property set to true shall require the user to change the write-
only Password property in that resource before access is granted. Manufacturers including user
credentials for the service may use this method to force a change to those credentials before access is
granted.

When a client accesses the service by using credentials from a ManagerAccount resource that has a
PasswordChangeRequired value of true , the service shall allow:

• A session login and include a @Message.ExtendedInfo object in the response containing the
PasswordChangeRequired message from the Base Message Registry. This indicates to the client that

their session is restricted to performing only the password change operation before access is
granted.

• A GET operation on the ManagerAccount resource associated with the account.
• A PATCH operation on the ManagerAccount resource associated with the account to update the

Password property. If the value of Password is changed, the service shall also set the
PasswordChangeRequired property to false .

For all other operations, the service shall respond with the HTTP 403 Forbidden status code and
include a @Message.ExtendedInfo object that contains the PasswordChangeRequired message from the
Base Message Registry.

13.6 Asynchronous tasks

Irrespective of which user or privileged context starts a task, services shall enforce the privileges
described in the privilege registry required to perform operations on the Task resource.

13.7 Event subscriptions

Before pushing event data object to the destination, the service may verify the destination for identity
purposes.

DSP0266 Redfish Specification

Version 1.18.0 Published 189



14 Redfish Host Interface
The Redfish Host Interface Specification defines how software that runs on a host computer system
can interface with a Redfish service that manages the host. For details, see DSP0270.

Redfish Specification DSP0266

190 Published Version 1.18.0



15 Redfish composability
A service may implement the CompositionService resource off of ServiceRoot to bind resources. One
example is disaggregated hardware, which allows for independent components, such as processors,
memory, I/O controllers, and drives, to be bound to create logical constructs that operate together.
This enables a client to dynamically assign resources for an application.

A service that supports composability shall implement resource blocks, defined by the ResourceBlock

schema, and resource zones, defined in the Zone schema, for the composition service. Resource
blocks provide an inventory of components available to the client for building compositions. Resource
zones describe the binding restrictions of the resource blocks that the service manages.

The resource zones within the composition service shall include the collection capabilities annotation
in responses. The collection capabilities annotation allows a client to discover which resource
collections in the service support compositions, the different composition request types allowed, how
the POST request for the resource collection is formatted, and which properties are required.

A service that supports composability and client multi-tenancy shall:

• Implement the FreePool and ActivePool properties in the CompositionService resource.
• Implement the CompositionReservations property in the CompositionService resource.
• Filter GET requests for the ResourceBlocks , FreePool , ActivePool , ResourceZones , and

CompositionReservations resource collections where the value of the Client property in the
ResourceBlock resource or CompositionReservation resource matches the client identity.

• Ensure the resources in composition requests are assigned to the client specified by the Client

property in the ResourceBlock resource or CompositionReservation resource.
• Not filter any HTTP operations within the composition service for clients that contain the privilege

ConfigureCompositionInfrastructure unless specified by query parameters.
• Move resource blocks between the FreePool and ActivePool resource collections based on the

outcome of composition requests.
◦ A resource block is moved to the FreePool resource collection when it is not contributing to

any composed resources.
◦ A resource block is moved to the ActivePool resource collection when it is contributing to one

or more composed resources.

DSP0266 Redfish Specification

Version 1.18.0 Published 191



15.1 Composition requests

15.1.1 Composition requests overview

A service that implements the composition service, as defined by the CompositionService schema,
shall support one or more of the following types of composition requests:

• Specific composition
• Constrained composition
• Expandable resources

A service that supports the removal of a composed resource shall support the DELETE method on the
composed resource.

A service may implement the Compose action in the CompositionService resource for the above
composition requests.

15.1.2 Specific composition

A specific composition is when a client identifies an exact set of resources in which to build a logical
entity.

A service that supports specific compositions shall support a POST request that contains an array of
hyperlinks to resource blocks. The schema for the resource being composed defines where the
resource blocks are specified in the request.

The following example shows a ComputerSystem being composed with a specific composition request:

POST /redfish/v1/Systems HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"Name": "Sample Composed System",

"Links": {

"ResourceBlocks": [{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/ComputeBlock0"

}, {

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock2"

}, {

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/NetBlock4"

}]

Redfish Specification DSP0266

192 Published Version 1.18.0



}

}

15.1.3 Constrained composition

A constrained composition is when a client has identified a set of criteria, or constraints, in which to
build a logical entity. This includes criteria such as quantities of components, or characteristics of
components. A service that supports constrained compositions shall support a POST request that
contains the set of characteristics to apply to the composed resource. The specific format of the
request is defined by the schema for the resource being composed. This type of request may include
expanded elements of resources subordinate to the composed resource.

The following constrained composition request composes a ComputerSystem :

POST /redfish/v1/Systems HTTP/1.1

Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"Name": "Sample Composed System",

"PowerState": "On",

"BiosVersion": "P79 v1.00 (09/20/2013)",

"Processors": {

"Members": [{

"@Redfish.RequestedCount": 4,

"@Redfish.AllowOverprovisioning": true,

"ProcessorType": "CPU",

"ProcessorArchitecture": "x86",

"InstructionSet": "x86-64",

"MaxSpeedMHz": 3700,

"TotalCores": 8,

"TotalThreads": 16

}]

},

"Memory": {

"Members": [{

"@Redfish.RequestedCount": 4,

"CapacityMiB": 8192,

"MemoryType": "DRAM",

"MemoryDeviceType": "DDR4"

}]

},

"SimpleStorage": {

"Members": [{

"@Redfish.RequestedCount": 6,

DSP0266 Redfish Specification

Version 1.18.0 Published 193



"Devices": [{

"CapacityBytes": 322122547200

}]

}]

},

"EthernetInterfaces": {

"Members": [{

"@Redfish.RequestedCount": 1,

"SpeedMbps": 1000,

"FullDuplex": true,

"NameServers": ["names.redfishspecification.org"],

"IPv4Addresses": [{

"SubnetMask": "255.255.252.0",

"AddressOrigin": "Dynamic",

"Gateway": "192.168.0.1"

}]

}]

}

}

15.1.4 Expandable resources

An expandable resource is when a service has a baseline composition that cannot be removed. Instead
of a client making requests to create a composed resource, a client can only add or remove resources
from the composed resource. A service that supports expandable resources shall support one or more
of the update methods that the Updating a composed resource clause describes.

15.2 Updating a composed resource

A service that supports updating a composed resource shall provide one or more of the following
methods to update composed resources:

• The PUT or PATCH methods on the composed resource with a modified list of resource blocks.
• Actions on the composed resource for adding and removing resource blocks.

◦ If the actions for adding and removing resource blocks are present in the resource, clients
should use this method before attempting PUT or PATCH .

Redfish Specification DSP0266

194 Published Version 1.18.0



16 Aggregation
Aggregation has been a Redfish concept since its inception. Redfish uses collection for services that
can represent more than one system. As the scale of Redfish implementations increase, clients want to
operate on Redfish resources in bulk.

Aggregation is the representation of Redfish resources from a variety of sources so that they can be
managed, in whole or in part, by a Redfish client. Membership can be heterogeneous and arbitrary,
but it is expected that most aggregate members are the same resource type, such as an aggregate of
ComputerSystem resource, which is represented by an Aggregate resource where members of its
Elements array are exclusively of type ComputerSystem . The Redfish service proxies on behalf of the

aggregated components to provide common operations. The Redfish service is representing resources
on behalf of the components and incoming operations must be tracked by the Redfish service before
being accomplished by communicating with the individual resources. Thus, aggregation also allows a
Redfish client to act on resources as a group using aggregates.

16.1 Classes of aggregators

16.1.1 Implicit and complex aggregators

There are at least two classes of Redfish aggregators:

• Implicit aggregators. An example of an implicit aggregator is an enclosure manager, such as a
manager of blades in an enclosure. This implementation has ComputerSystem resources
representing blades in the ComputerSystemCollection resource, and one or more Manager resources
in the ManagerCollection resource. It also would likely have a Chassis resource for each blade and
a Chassis resource for the enclosure, which would use the Contains property in Links to express
the containment relationship to the individual blades. This class of aggregator has tight coupling
with system design, and proxies requests to and from the blades to perform management
functions.

• Complex aggregators. An example of a complex aggregator is a rack-level manager, fabric
manager, or a manager of similar scale, especially if it represents resources that it gathers through
the proxy of information from other managers, like BMCs. The sources that this manager
aggregates are more complex in nature and potentially varying. This manager probably has an
interface to the resources and proxies the Redfish service on behalf of each set of resources. At
this scale, a Redfish client would prefer to provide common functions, such as resetting a set of
systems, to the Redfish service as a whole rather than invoking actions individually to achieve
scalability requirements. This class of service also may need assistance in adding members to the
service, such as providing address and account information for the aggregator to contact the
components and initiate the proxy of Redfish operations.

DSP0266 Redfish Specification

Version 1.18.0 Published 195



16.1.2 Use cases

Several use cases make explicit aggregator representation necessary. What they have in common is
the need for common functions for scalability. There are several classes of these common functions.

One use case is service-type functions. An example is a firmware update on a large number of
systems. Rather than invoke actions on individual resources, it is more efficient for a client to specify
to which resources to apply the image. In this case, a service already exists in the model so an
aggregation service is not needed. Instead the existing service must be augmented to enable the
application of an image to a list of resources.

Another use case is common actions. Examples are the Reset or SetDefaultBootOrder actions. These
actions are defined in the ComputerSystem schema, but the Redfish URI structure requires that the
action occur on each ComputerSystem resource. Thus, an individual operation applies to each resource.
It is more efficient for a client to send one action with the list of the resources to which to apply the
action. For example, to reset one thousand systems, sending one thousand individual reset operations
requires significant overhead as compared to sending a single operation with a list of one thousand
systems to reset.

A final use case is changing an attribute on multiple members of a collection. An example is changing
the boot order on a large number of systems. This use case requires one operation per system.
However, assuming the resources are in the same collection, the deep PATCH operation meets the
requirements of this use case.

16.2 Aggregation service

16.2.1 Aggregation service overview

The AggregationService resource represents the Redfish aggregation service, which provides
aggregation functions.

The aggregation service contains the group actions that can apply to groups of resources. The
AggregationService schema defines the common actions that a client can take on groups of resources.

These actions take an array of resource URIs as one of the parameters to which the action applies. If
all members of the resource array do not support the method, a 4xx status code shall be returned and
the body shall contain an error response. If at least one member of the resource array successfully
completed the action but others did not, the status code should be 200 OK with @Message.ExtendedInfo

objects for the failed members.

The aggregation service also contains Aggregate , AggregationSource , and ConnectionMethod resources.

Redfish Specification DSP0266

196 Published Version 1.18.0



16.2.2 Aggregator requirements

By implementing the AggregationService resource and including an AggregationSourceCollection

resource, a complex aggregator shall meet the following requirements:

• Proxy to the aggregated resources on behalf of the service.
• Provide error and state propagation, such as health roll-up, when needed to provide such data to

the parent resource.
• Combine resource collections from the aggregated resources.

◦ For example, ComputerSystem resources that were gathered through proxy shall be in one
ComputerSystemCollection resource.

◦ Services shall complete a URI fix-up for all aggregated resources because every system cannot
be at /redfish/v1/Systems/1 .

◦ It is advisable for Redfish implementations to use unique values for the Id properties. For
example, base the Id property of a ComputerSystem resource on something unique like a UUID
or serial number, or the manufacturer MAC address for network adapters, or WWN for Fibre
Channel controllers.

• Unify other services.
◦ The aggregation implementation hosts only one event service. The implementation shall

combine all events into one stream. The implementation also hosts only one sessions service,
telemetry service, update service, and other services. Thus the aggregator represents
unification of Redfish services with which it communicates and proxies on the client's behalf to
the providers of those services and information.

16.2.3 Aggregates

The Aggregate resource is the grouping mechanism that clients use to indicate to the service that this
group of resources can be treated the same for certain functions, such as the actions. Each aggregate
contains the list of individual resources that are to be treated as a single unit for operations. For
example, if a client wishes to express that a subset of the ComputerSystemCollection resource be
treated as a single unit for certain operations like reset, reset boot order, or firmware update, it can
express the aggregate as the target URI for the operation.

The Aggregate schema defines the common actions that a client can make on an aggregate. The
Aggregate resource contains an Elements array that specifies the members of the aggregate. Actions

that are supported on an aggregate but not supported on all Elements , such as a Reset action that is
not supported on an individual member of the Elements array, are not silently skipped. If all members
of the Elements array do not support the method, a 4xx status code shall be returned and the body
shall contain an error response. If at least one member of the Elements array successfully completed
the action, but others did not, the status code should be 200 OK with @Message.ExtendedInfo objects
for the failed members.

DSP0266 Redfish Specification

Version 1.18.0 Published 197



16.2.4 Aggregation sources and connection methods

The aggregation service model also includes a definition for the information used to access the
resources being represented by the aggregator. Two collections of resources are used to represent this.
These are the AggregationSource and ConnectionMethod resources.

The AggregationSource resource represents the source of information for the resources being reflected
by the aggregator. It typically represents a lower layer service provided by another manager. It
contains information needed to access that source, such as the address and account information. It
also has a reference to the ConnectionMethod resource used to access it.

The ConnectionMethod resource represents the protocol and other semantics required to communicate
with the resources being aggregated. Examples of connection methods are Redfish, IPMI, and
proprietary access methods. For methods such as IPMI, it's also possible to specify the variations and
nuances from multiple vendors.

Redfish Specification DSP0266

198 Published Version 1.18.0



17 ANNEX A (informative) Change log

Version Date Description

1.18.0 2023-04-04 Added URI segment annotation clause to allow schema to describe when URIs do
not meet expected naming rules.

1.17.1 2023-04-04 Updated example in M-SEARCH response to better explain the different values a
service provides in an M-SEARCH response.

Updated Writable properties annotation to include an example.

Updated Modification success responses to provide links to appropriate sections
for each operation. Clarified that response bodies for create operations are optional.

Updated the response table in POST (action) to use consistent terminology for action
responses.

Updated Resource and operation authentication requirements to state that
services can optionally reject requests to unauthenticated resources if the provided
credentials are invalid.

Updated Action responses to provide guidance for finding the schema definition of
the action response based on the action's name in response payloads.

Updated The $select query parameter to clarify that unsupported properties are
omitted from responses.

Updated Response headers to make Access-Control-Allow-Origin an optional
response header.

Clarified Duration values to state that negative durations are not allowed.

1.17.0 2022-12-08 Updated Deprecated annotation to allow for deprecating URIs.

Updated Protocol details to allow for optional HTTP 2.0 support.

Updated Permissions annotation to allow for write-only to be specified to enforce
services respond with null for their value.

Updated HTTP Basic authentication and Redfish session login authentication to
describe behavior when multi-factor authentication is enabled.

Added Client certificate authentication clause to allow for client certificates to be
authenticated during TLS handshaking.

1.16.1 2022-12-08 Updated GUID and UUID values to correct the format for GUID and UUID properties.

Updated The $select query parameter to clarify the syntax of $select for arrays.

DSP0266 Redfish Specification

Version 1.18.0 Published 199



Version Date Description

Updated Status codes to remove references to nonexistent HTTP headers.

Updated Sensitive data to clarify that the phrase "URIs containing sensitive data" is
meant to reflect the URI itself rather than the response body.

Corrected the example RelatedProperties property in message objects throughout the
specification to remove the leading # to meet syntax specified by RFC6901.

Updated MessageId format to better formalize the string tokens used to distinguish
the different parts of MessageId values.

1.16.0 2022-08-04 Added optional standard roles to the Roles clause.

Added new Allowable patterns for string values, Allowable values for numbers
and durations, and Writable properties annotation payload annotations.

Renamed allowable values payload annotation to Allowable values for strings.

1.15.2 2022-08-04 Updated URI naming rules to give an example URI when a hyperlink to a subordinate
resource is not found at the root of the resource.

Updated Modification success responses to not imply a service deficiency if HTTP
204 No Content is returned.

Clarified the usage of the WWW-Authenticate header in the Response headers clause.

Updated Redfish service operation-to-privilege mapping to explain that the
service can filter response data based on the user's identity beyond what is assigned
as a privilege.

Updated Links to state that some design exceptions have been made for putting a
hyperlink inside of Links or at the root of a resource.

Updated ETags to give guidance to implementers when managing resources that
update frequently.

Updated Properties overview to state that all properties are required to have well-
known types, with some exceptions.

Updated OEM-specified object naming to allow for exceptions to domain suffix rules
for listed organizations.

Updated Asynchronous operations to better distinguish Task resources from task
monitors to the reader.

Updated The $select query parameter to allow for object-level messages and
messages for requested properties even if not specified by the client.

Clarified The $select query parameter that error responses act as if $select was
not specified.

Redfish Specification DSP0266

200 Published Version 1.18.0



Version Date Description

1.15.1 2022-04-07 Updated Query parameter overview to recommend the = character is ignored if
specified with the only and excerpt query parameters.

Updated Multipart HTTP push updates to use consistent terminology for action
parameters, and to correct the use of HTTP status code 413 instead of 412 to indicate
a payload is too large to be processed by the service.

Updated Schema definition languages to use normative terminology throughout.

Clarified Asynchronous tasks to explain the allowable operations on a Task resource
are controlled by the privilege registry.

Clarified ETags to describe the behavior of ETags during expansion.

Deprecated statement in POST to subscription collection with regards to keeping
MessageIds and RegistryPrefixes as mutually exclusive.

Updated Subscribing to events to match the schema updates made to
EventDestination .

1.15.0 2021-12-02
Updated the Operation apply time and Multipart HTTP push updates to expand
the usage of the @Redfish.OperationApplyTimeSupport annotation to properties
referencing URIs for multipart HTTP POST operations.

1.14.2 2021-12-02 Clarified that the Created message from the Base Message Registry is an acceptable
response in the POST (action) clause when a new resource is created.

Clarified the Permissions annotation clause to describe requirements for schemas
published by DMTF.

Updated the Units of measure annotation clause to describe encoding rules for
units not covered by UCUM. Provided alternative recommendations for RPM units.

Clarified Collection capabilities annotation clause that properties marked as
required are not required for the resource referenced by the CapabilitiesObject

property.

Clarified that @Redfish.MaintenanceWindow property behavior in Task resources in the
Asynchronous operations clause.

1.14.1 2021-10-06
Corrected various examples for @Redfish.OperationApplyTimeSupport ,
@Redfish.Settings , @Redfish.MaintenanceWindow , and @Redfish.SettingsApplyTime to

include @odata.type .

Clarified the Link header clause to state the Link response header requirement only
applies to resources.

1.14.0 2021-09-15 Extended Query parameter overview clause to define how OEM query parameters
are constructed.

DSP0266 Redfish Specification

Version 1.18.0 Published 201



Version Date Description

Added Delegated authorization with OAuth 2.0 clause to define how clients
provide OAuth 2.0 tokens to a service as a method of authorization.

1.13.1 2021-08-04 Various clarifications to the Extending standard resources clause to better describe
naming rules for OEM resources.

Added recommended URI for local schema files to the Redfish-defined URIs and
relative reference rules clause.

Clarified the OData $metadata clause that any absolute or relative URI is allowed for
referencing schema files.

Adding missing statement to the URI naming rules clause that Members cannot be
used as the value of a URI segment for resource collections.

Added missing exceptions to the PATCH (update) clause for when @odata.id is to not
be ignored by the service.

Clarified the ETags clause that both strong and weak ETags are allowed in If-Match

and If-None-Match request headers.

Clarified the Deep operations clause to specify that services ignore resources in the
payload if no modifications are requested.

Added the Enumerations clause to clarify the design patterns for creating
enumerations.

Clarified the Id clause that HTTP unsafe characters are not permitted in the value of
the Id property due to its usage in URI construction.

Clarified the Non-resource reference properties that these properties are strings
containing URIs.

1.13.0 2021-04-08 Added client multi-tenancy behavior to the Redfish composability clause. This adds
free pool, active pool, and composition reservation constructs to Redfish composability.

Added Compose action as a method of performing composition requests to the Redfish
composability clause.

1.12.1 2021-04-08 International Organization for Standardization (ISO) updates:

Added paragraph numbering.

Added Foreword to the table of contents as an unnumbered heading, and placed
Acknowledgments inside Foreword.

Made Scope a level-1 clause.

Redfish Specification DSP0266

202 Published Version 1.18.0



Version Date Description

Normative references: Removed unused normative references and moved some
references into Bibliography. The Bibliography lists, for information, those
documents which are cited informatively in the document, as well as other information
resources.

Changed Abstract to Introduction.

Corrected level-1 clauses to remove hanging paragraphs and to correct the occurrence
of the single Use cases and Aggregator requirements sub-clauses.

Terms, definitions, symbols, and abbreviated terms:
• Combined Symbols and abbreviated terms clause with Terms and definitions

clause into Terms, definitions, symbols, and abbreviated terms clause.
• Formatted the clause correctly.
• Added the Hardware terms, Web development terms, and Redfish terms

sub-clauses to this clause.
• Removed may, shall, and should from definitions.
• Removed these terms: managed system, Redfish event receiver, and Redfish

provider.
• Corrected definitions so none begin with an article.

Changed may to can or might where appropriate.

Changed one must to shall.

Added numbered captions to tables and changed occurrences of the following table to
use precise references to the table numbers.

Fixed broken cross-references.

Corrected URIs in the deep PATCH example.

Fixed several query parameter examples where string values were not properly
wrapped with single quotes.

Corrected Accept-Encoding usage to allow for encoded responses if the client does not
provide the header to align with RFC7231.

Clarified usage of DELETE for the @Redfish.OperationApplyTimeSupport term.

Removed duplicative clauses for HTTP 405 Method Not Allowed usage in PATCH
(update) in favor of more general clauses.

Replaced exception table in PATCH (update) in favor of text.

Moved error cases from response table in POST (action) to be with other text that
describes error cases.

DSP0266 Redfish Specification

Version 1.18.0 Published 203



Version Date Description

Added linkage in the description for HTTP 201 Created to reference response bodies
for actions.

Added informative text regarding the usage of If-Match and If-Match-None headers in
GET , PATCH , and PUT clauses.

Clarified the behavior of $select when an object property is selected.

Added introductory text to guide readers to other Redfish documents.

Clarified the ordering of processing query parameters.

Clarified that update restrictions for a resource can be modified to support writable
OEM properties.

Clarified the Settings resource clause to show behavior of properties in the active
resource and settings resource based on the service's capabilities.

Corrected behavior for usage of null based on the configuration of a resource and
other special situations.

Clarified OEM naming rules for all OEM definitions to ensure names don't collide.

Removed the term "namespace" from all non-CSDL related clauses and replaced them
with references to a new resource type term.

1.12.0 2020-12-01 Added introductory text to the Authorization clause.

Clarified usage of RoleId and how there are standard roles, custom OEM roles, and
client-defined custom roles.

Added Restricted roles and restricted privileges to describe behavior for when
roles and privileges are marked as restricted.

1.11.2 2020-12-01 Clarified that the Accept-Encoding header is used to request compression of response
bodies.

Corrected the PATCH (update), PUT (replace), and DELETE (delete) clauses to
leverage all normative statements for successful operations found in the Modification
success responses clause.

Replaced RFC5988 reference with RFC8288.

Updated IETF links to use the "IETF Tools" site.

Clarified that insert capabilities is just for resource creation.

Fixed ETag examples to be RFC7234-conformant.

Clarified that OEM resources can have subordinate resources.

Redfish Specification DSP0266

204 Published Version 1.18.0



Version Date Description

Replaced RFC4627 reference with RFC8259.

Replaced conflicting statements found in "HTTP redirect authentication requirements"
with general clause for enforcing authentication and authorization at the target
resource.

Clarified behavior of @odata.count when a collection is filtered.

Created standalone "MessageId format" clause.

Removed duplicative text found in the event format table and referenced the message
object clauses as needed.

Corrected the response body specified for a PATCH operation containing read-only
properties.

Added informative text in the intro to the Data model clause describing the methods
for OEM extensions.

Clarified that sensitive data in URIs can be hidden from unauthorized users by
returning HTTP 404 Not Found .

Added embedded links to the Location header entry in the response header table.

Corrected $select example in the The $select query parameter clause.

Corrected several embedded links to direct to the correct clause.

1.11.1 2020-08-04 Added missing clause requiring sensitive data to be returned as null .

Clarified that Resolution , Severity , and MessageSeverity in responses can be service-
defined and not come from a message registry.

Relaxed schema rules to require description, long description, URI, and capabilities
annotations only for schemas published or republished by DMTF.

Added clauses to Schema modification rules to allow for properties, actions,
parameters, and URIs to be removed, descriptions to be modified, and pattern and
length annotations to be added if not specified.

Relaxed rule for the OData metadata document to not require, but only recommend
that all referenced namespaces are included in the document.

Added clause to clarify the usage of empty strings.

Clarified behavior of $skip when the value is greater than or equal to the number of
members in a resource collection.

Corrected the minimum value for $top to align with OData.

Clarified behavior of PATCH for partial success scenarios.

DSP0266 Redfish Specification

Version 1.18.0 Published 205



Version Date Description

Various clarifications and style fixes to the Aggregation clause.

Clarified that HEAD requests shall be rejected when a query parameter is provided.

Removed erroneous requirement for ETags to be strong.

1.11.0 2020-04-30 Added Aggregation clause.

Clarified that services are allowed use HTTP 501 Not Implemented for unsupported
HTTP methods.

Clarified the normative semantics around the term "deprecated".

Clarified clauses describing the usage of null for properties versus not reporting a
property.

1.10.0 2020-03-27

Restructured the Security details clause for ease of reading. Other than the changes
listed below, no other changes were intended. Any clarifications that inadvertently
altered the normative behavior are considered errata, and will be corrected in future
revisions to the specification.

Deprecated TLS v1.1, and set the minimum TLS requirement to be TLS v1.2 with
RFC7525 recommendations.

Deprecated existing cipher suites clause in favor of new clause to leverage IANA
recommendations.

Added requirement for supporting the /redfish URI.

Added support for deep operations.

1.9.1 2020-03-27 Deprecated full ISO8601 duration format in favor of a simplified version that does not
contain years, months, and weeks.

Added missing normative language for how actions with response bodies are defined
in schema.

Added HTTP 201 Created as valid responses for actions.

Clarified the ~ operator for the $expand query parameter to expand hyperlinks found
in all Links properties.

Clarified the * and . operators for the $expand query parameter to expand
hyperlinks found in payload annotations, such as @Redfish.Settings .

Clarified usage of action parameters that point to resources; the expectation is a
reference object pointing to the resource in question is passed by the client.

Clarified that DELETE on a resource likely deletes subordinate resources.

Clarified best practices for naming rules, in particular with regards to acronyms.

Redfish Specification DSP0266

206 Published Version 1.18.0



Version Date Description

Clarified behavior for when individual members of a resource collection cannot be
returned as part of a $expand request.

Clarified usage of @Message.ExtendedInfo in error responses and provided guidance for
clients for handling error responses.

1.9.0 2019-12-06 Made change to no longer require the Server response header.

Added clause to Schema modification rules to allow for the addition of OEM URIs to
standard resources.

Loosened requirements on @odata.type within Oem to not require it in arrays where
the type is used repeatedly.

1.8.1 2019-12-06

Made many changes for style consistency, grammar, and general clarity. Except for
the following additions, no normative changes were made. Any clarifications that
inadvertently altered the normative behavior are considered errata, and will be
corrected in future revisions to the Specification.

Clarified SSE with regards to requiring a blank line after each event.

Clarified order of precedence for resolving multiple operation overrides within the
Privilege Registry.

Clarified cases for property overrides in the Privilege Registry where multiple objects in
the same resource contain the same property name.

Updated references for HTTP Basic authentication to use RFC7617 instead of RFC7235.

Added text/event-stream , application/yaml , and application/vnd.oai.openapi usage
to the Accept and Content-Type header table entries.

Added clause that provides guidance on service behavior when null is a property
value in POST (create) operations.

Loosened requirements on SSE id based on client usage.

Added documentation for settings, settings apply time, operation apply time,
operation apply time support, maintenance window, collection capabilities, requested
count, allow over-provisioning, zone affinity, supported certificates, and deprecated
terms to the Payload annotations clause.

Added clauses that document responses for actions with a response body defined in
schema.

Clarified the allowable values payload annotation to show it can be used for both
properties and action parameters.

1.8.0 2019-08-08 Added clause for using /redfish/v1/openapi.yaml as the well-known URI for the
OpenAPI document.

DSP0266 Redfish Specification

Version 1.18.0 Published 207



Version Date Description

Added clause that specifies non-resource reference properties with Uri in the name
are accessed using Redfish protocol semantics.

Added SubordinateResources $filter parameter for SSE.

Added Update service clause that describes requirements for the SimpleUpdate

action and the MultipartHttpPushUri property.

1.7.1 2019-08-08 Added statements about the owning entity annotation term and its usage in schema
modifications.

Clarified SSE id from Id in an event payload and EventId within an event record.

Fixed recommended sequencing of the SSE id to be related to EventId within an
event record.

Clarified that services are allowed to close sessions for an account when its password
has changed.

Corrected the Password management clause to describe how a user can GET their
respective account resources when a password change is required.

Clarified that registries are not required to return @odata.id .

Clarified that services should use HTTP 400 Bad Request for invalid query requests.

Clarified that services should use HTTP 400 Bad Request when the only query is being
combined with other query parameters.

Clarified that services should use HTTP 400 Bad Request when query parameters are
used on non-GET operations.

Added clause about how to construct enumeration values.

Clarified references to specific messages to also reference their Message Registry.

Added language about the construction of action names in payloads.

Added informative text for how OEM actions can be defined.

Added guidance for using HTTPS whenever sensitive data is being transmitted.

Added clause restricting the maximum size of an event payload to be 1MiB.

Clarified that auto expanded resource collections can use paging.

Clarified error response format for SSE.

Clarified that charset=utf-8 is not required within the Content-Type header for SSE.

Added clause about how URI patterns are constructed.

Redfish Specification DSP0266

208 Published Version 1.18.0



Version Date Description

Added Excerpt term.

1.7.0 2019-05-16

Made many changes for style consistency, grammar, and general clarity. Except for
the following additions, no normative changes were made. Any clarifications that
inadvertently altered the normative behavior are considered errata, and will be
corrected in future revisions to the Specification.

Added normative statements about how to handle array properties and PATCH

operations on arrays.

Separated data model and schema language clauses.

Added clauses that describe how JSON Schema and OpenAPI files are formatted.

Added clause that describes the schema versioning methodology.

Added clause about how URI patterns are constructed based on the resource tree and
property hierarchy.

Added dictionary file naming rules and repository locations.

Enhanced localization definitions and defined repository locations.

Added statement about SSE to the Eventing mechanism clause.

Added Constrained composition and Expandable resources clauses to Redfish
Composability.

Added clause about requiring event subscriptions to be persistent across service
restarts.

Added clause about persistence of tasks generated as a result of using
@Redfish.OperationApplyTime across service restarts.

Added clause about using @Redfish.OperationApplyTime and
@Redfish.MaintenanceWindow within task responses.

Removed @odata.context property from example payloads.

Added Password management clause to describe functional behavior for restricting
access when an account requires a password change.

Added clause around the usage of the HTTP 403 Forbidden status code when an
account requires a password change.

1.6.1 2018-12-13 Added clause about percent encoding being allowed for query parameters.

Changed $expand example to use SoftwareInventory instead of LogEntry .

Added clause about the use of a separator for multiple query parameters.

DSP0266 Redfish Specification

Version 1.18.0 Published 209



Version Date Description

Fixed $filter examples to use / instead of . for property paths.

Clarified the usage of messages in a successful action response; provided an example.

Added clarification about services supporting a subset of HTTP operations on resources
specified in schema.

Added clarification about services implementing writable properties as read only.

Added clarification about session termination not affecting connections opened by the
session.

Added Redfish Provider term definition.

Updated JSON Schema references to point to Draft 7 of the JSON Schema Specification.

Added clarifications about scenarios for when a request to add an event subscription
contains conflicting information and how services respond.

Removed language about ignoring the Links property in PATCH requests.

Clarified usage of ETags to show that a client is not supposed to PATCH @odata.etag

when attempting to use ETag protection for a resource.

Clarified usage of the only query parameter to show it's not to be combined with
$expand and not to be used with singular resources.

Clarified the usage of the HTTP status codes with task monitors.

Made various spelling and grammar fixes.

1.6.0 2018-08-23 Added methods of using $filter on the SSE URI for the event service.

Added support for the OpenAPI Specification v3.0. This allows OpenAPI-conforming
software to access Redfish service implementations. This change might require
modification to an implementation to support this version of the
specification.

Added strict definitions for the URI patterns used for Redfish resources to support
OpenAPI. Each URI is now constructed using a combination of fixed, defined path
segments and the values of Id properties for resource collections. Also added
restrictions on usage of unsafe characters in URIs. Implementations reporting support
for Redfish v1.6.0 conform to these URI patterns.

Added support for creating and naming Redfish schema files in the OpenAPI YAML-
based format.

Added URI construction rules for OEM extensions.

Changed ETag usage to require strong ETag format.

Redfish Specification DSP0266

210 Published Version 1.18.0



Version Date Description

Added requirement for HTTP Allow header as a response header for GET and HEAD

operations.

Added metric reports as a type of event that can be produced by a Redfish service.
Added support for SSE streaming of metric reports in support of new telemetry service.

Added registry, resource, origin, or EventFormatType -based event subscription methods
as detailed in the Specification and schema. Added an EventFormatType to enable
additional payload types for subscription-based or streaming events. Deprecated
EventType -based event subscription mechanism.

Added event message grouping capability.

Provided guidance for defining and using OEM extensions for messages and Message
Registries.

Added excerpt and only query parameters.

Clarified requirements for resource collection responses, which includes required
properties that were expected, but not listed explicitly in the Specification.

Changed the requirement for the @odata.context annotation to be optional.

Removed requirement for clients to include the OData-Version HTTP header in all
requests.

1.5.1 2018-08-10 Added clarifications to required properties in structured properties derived from
ReferenceableMembers .

Reorganized Eventing clause to break out the different subscription methods to
differentiate pub-sub from SSE.

Removed statements referencing OData conformance levels.

Clarified terminology to explain usage of absolute versus relative reference
throughout.

Clarified client-side HTTP Accept header requirements.

Added evaluation order for supported query parameters and clarified examples.

Clarified handling of annotations in response payloads when used with $select

queries.

Clarified service handling of annotations in PATCH requests.

Clarified handling of various PATCH request error conditions.

Clarified ability to create resource collection members by POST operations to the
resource collection or the Members array within the resource.

DSP0266 Redfish Specification

Version 1.18.0 Published 211



Version Date Description

Corrected several examples to show required properties in payload.

Clarified usage of the Link header and values of rel=describedBy .

Clarified that the HTTP status code table only describes Redfish-specific behavior and
that unless specified, all other usage follows the definitions within the appropriate
RFCs.

Added entry for the HTTP 431 Request Header Fields Too Large status code.

Added statement that the HTTP 503 Service Unavailable status code can be used
during reboot or reset of a service to indicate that the service is temporarily
unavailable.

Clarified usage of the @odata.type annotation within embedded objects.

Added statements about the required Name , Id , and MemberId properties, and the
common Description property, which have always been shown as required in schema
files, but which the Specification did not mention.

Added guidance for the value of time-date properties when time is unknown.

Added the title property description in actions.

Clarified usage of the @odata.nextLink annotation at the end of resource collections.

Added additional guidance for naming properties and enumeration values that contain
"OEM" or that include acronyms.

Corrected requirements for description and long description annotations.

Corrected name of ConfigureComponents in the Operation-to-privilege mapping
clause.

Various typographical errors and grammatical improvements.

1.5.0 2018-04-05 Added support for server-sent eventing for streaming events to web-based GUIs or
other clients.

Added @Redfish.OperationApplyTime annotation to provide a mechanism for specifying
deterministic behavior for the application of Create, Delete or Action (POST)
operations.

1.4.1 2018-04-05 Updated name of the forum from SPMF to Redfish Forum.

Consistently used the term, hyperlink.

Added example to clarify usage of $select query parameter with $expand , and
clarified expected results when using AutoExpand . Corrected order of precedence for
$filter parameter options.

Redfish Specification DSP0266

212 Published Version 1.18.0



Version Date Description

Corrected terminology for OEM-defined actions removing "custom" in favor of OEM,
and clarified that the action target property is always required for an action, along
with its usage.

Corrected location header values for responses to data modification requests that
create a task ( Task resource vs. task monitor). Clarified error handling of DELETE

operations on Task resources.

Removed references to obsolete and unused Privilege annotation namespace.

Clarified usage of the Base.1.0.GeneralError message in the Base Message Registry.

Added durable URIs for registries and profiles, and clarified intended usage for each
folder in the repository. Added file naming conventions for registries and profiles, and
clarified file naming for schemas.

Added statement to clarify that additional headers may be added to M-SEARCH
responses for SSDP to enable UPnP compatibility.

Clarified assignment requirements for predefined or custom roles when new manager
account instances are created, using the RoleId property.

1.4.0 2017-11-17
Added support for optional query parameters ( $expand , $filter , and $select ) on
requests to enable more efficient retrieval of resources or properties from a Redfish
service.

Clarified HTTP status and payload responses after successful processing of data
modification requests. This includes POST operations to complete actions, and other
POST , PATCH , or PUT requests.

Added entries for the HTTP 428 Precondition Required and 507 Insufficient Storage

status codes to clarify the proper response to certain error conditions. Added reference
links to the HTTP status code table throughout.

Updated the Abstract to reflect the current state of the specification.

Added reference to RFC6585 and clarified expected behavior when ETag support is
used in conjunction with PUT or PATCH operations.

Added definition for Property term and updated text to use term consistently.

Added Client requirement column and information for HTTP headers on requests.

Clarified the usage and expected format of the @odata.context property value.

Added clause to describe how to revise structured properties and resolve their
definitions in schema.

Added more descriptive definition for the settings resource. Added an example for the
SettingsObject . Added description and example for using the
@Redfish.SettingsApplyTime annotation.

DSP0266 Redfish Specification

Version 1.18.0 Published 213



Version Date Description

Added Action example using the ActionInfo resource in addition to the simple
@Redfish.AllowableValues example. Updated example to show a proper subset of the

available enumerations to reflect a real-world example.

Added statement explaining the updates required to TaskState upon task completion.

1.3.0 2017-08-11
Added support for a service to optionally reject a PATCH or PUT operation if the If-

Match or If-Match-None HTTP header is required by returning the HTTP 428

Precondition Required status code.

Added support for a service to describe when the values in the settings object for a
resource are applied via the @Redfish.SettingsApplyTime annotation.

1.2.1 2017-08-10 Clarified wording of the Oem object definition.

Clarified wording of the Partial resource results clause.

Clarified behavior of a service when receiving a PATCH with an empty JSON object.

Added statement about other uses of the HTTP 503 Service Unavailable status code.

Clarified format of URI fragments to conform to RFC6901.

Clarified use of absolute and relative URIs.

Clarified definition of the target property as originating from OData.

Clarified distinction between hyperlinks and the links property.

Corrected the JSON example of the privilege map.

Clarified format of the @odata.context property.

Added clauses about the schema file naming conventions.

Clarified behavior of a service when receiving a PUT with missing properties.

Clarified valid values in the Accept header to include wildcards per RFC7231.

Corrected ConfigureUser privilege to be spelled ConfigureUsers .

Corrected the Session login clause to include normative language.

1.2.0 2017-04-14 Added support for the Redfish composability service.

Clarified service handling of the Accept-Encoding header in a request.

Improved consistency and formatting of example requests and responses throughout.

Corrected usage of the @odata.type property in response examples.

Clarified usage of the required annotation.

Redfish Specification DSP0266

214 Published Version 1.18.0



Version Date Description

Clarified usage of SubordinateOverrides in the Privilege Registry.

1.1.0 2016-12-09
Added Redfish service operation-to-privilege mapping clause. This functionality
enables a service to present a resource or even property-level mapping of HTTP
operations to roles and privileges.

Added references to the Redfish Host Interface Specification (DSP0270).

1.0.5 2016-12-09 Errata release. Various typographical errors.

Corrected the use of collection, resource collection, and members throughout.

Added glossary entries for resource collection and members.

Corrected certificate requirements to reference definitions and requirements in
RFC5280 and added a normative reference to RFC5280.

Clarified usage of the HTTP POST and PATCH operations.

Clarified usage of the HTTP status codes and error responses.

1.0.4 2016-08-28 Errata release. Various typographical errors.

Added example of an HTTP Link Header and clarified usage and content.

Added the Schema modification clause, which describes the allowed usage of the
schema files.

Added recommendation to use TLS 1.2 or later, and to follow the SNIA TLS
Specification. Added reference to the SNIA TLS Specification. Added additional
recommended TLS_RSA_WITH_AES_128_CBC_SHA cipher suite.

Clarified that the Id property of a Role resource matches the role name.

1.0.3 2016-06-17
Errata release. Fixed the missing numbering in the table of contents and clauses.
Corrected URL references to external specifications. Added missing normative
references. Corrected typographical error in ETag example.

Clarified examples for @Message.ExtendedInfo to show arrays of messages.

Clarified that a POST to session service to create a new session does not require
authorization headers.

1.0.2 2016-03-31 Errata release. Various typographical errors.

Corrected normative language for M-SEARCH queries and responses.

Corrected Cache-Control and USN format in M-SEARCH responses.

DSP0266 Redfish Specification

Version 1.18.0 Published 215



Version Date Description

Corrected schema namespace rules to conform to OData namespace requirements
and updated examples throughout the document to conform to this format.
Specifically, <namespace>.<n>.<n>.<n> becomes <namespace>.v<n>_<n>_<n> . File naming
rules for JSON Schema and CSDL (XML) schemas were also corrected to match this
format and to enable future major (v2) versions to coexist.

Added clause that details the location of the schema repository and lists the durable
URLs for the repository.

Added definition for the value of the Units annotation, using the definitions from the
UCUM Specification. Updated examples throughout to use this standardized form.

Modified the naming requirements for Oem property naming to avoid future use of
colon : and period . in property names, which can produce invalid or problematic
variable names when used in some programming languages or environments. Both
separators have been replaced with underscore ( _ ), with colon ( : ) and period ( . )
usage now deprecated (but valid).

Removed duplicative or out-of-scope subclauses from the Security clause, which
made unintended requirements on Redfish service implementations.

Added the requirement that property names in resource responses match the casing
(capitalization) as specified in schema.

Updated normative references to current HTTP RFCs and added clause references
throughout the document where applicable.

Clarified ETag header requirements.

Clarified that no authentication is required for accessing the service root.

Clarified description of retrieving resource collections.

Clarified usage of charset=utf-8 in the HTTP Accept and Content-Type headers.

Clarified usage of the Allow HTTP response header and added a table entry for the
Retry-After header usage.

Clarified normative usage of the type property and context property, explaining the
ability to use two URL forms, and corrected the @odata.context URL examples
throughout.

Corrected inconsistent terminology throughout the resource collection response
clause.

Corrected name of normative resource Members property ( Members , not value ).

Clarified that error responses may include information about multiple error conditions.

Corrected name of Measures.Unit annotation term as used in examples.

Redfish Specification DSP0266

216 Published Version 1.18.0



Version Date Description

Corrected outdated reference to Core OData Specification in annotation term
examples.

Added the Members property to the Common Redfish resource properties clause.

Clarified terminology and usage of the task monitor and related operations in the
Asynchronous operations clause.

Clarified that implementation of the SSDP protocol is optional.

Corrected typographical error in the SSDP USN field's string definition (now ::dmtf-

org ).

Added the OPTIONS method to the allowed HTTP methods list.

Fixed nullablity in example.

1.0.1 2015-09-17 Errata release. Various grammatical corrections.

Clarified normative use of long description in schema files.

Clarified usage of the rel-describedby Link header.

Corrected text in example of "Select List" in OData context property.

Clarified Accept-Encoding request header handling.

Deleted duplicative and conflicting statement on returning extended error resources.

Clarified relative URI resolution rules.

Clarified USN format.

1.0.0 2015-08-04 Initial release.

DSP0266 Redfish Specification

Version 1.18.0 Published 217



18 Bibliography
• R. Fielding, 2000, Architectural Styles and the Design of Network-based Software Architectures,

https://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
• IETF RFC5288, J. Salowey et al, AES Galois Counter Mode (GCM) Cipher Suites for TLS,

https://tools.ietf.org/html/rfc5288
• IETF RFC5487, M. Badra et al, Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES

Galois Counter Mode, https://tools.ietf.org/html/rfc5487
• IETF RFC5789, L. Dusseault et al, PATCH Method for HTTP, https://tools.ietf.org/html/rfc5789
• IETF RFC6906, E. Wilde, The 'profile' Link Relation Type, https://tools.ietf.org/html/rfc6906
• 28 October 1999, Simple Service Discovery Protocol/1.0 Operating without an Arbiter,

https://tools.ietf.org/html/draft-cai-ssdp-v1-03
• 10 March 2016, OData Version 4.0 Plus Errata 03: Core Vocabulary, https://docs.oasis-open.org/

odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
• 24 February 2014, OData JSON Format Version 4.0, https://docs.oasis-open.org/odata/odata-json-

format/v4.0/os/odata-json-format-v4.0-os.html
• 24 February 2014, OData Version 4.0 Part 2: URL Conventions, https://docs.oasis-open.org/odata/

odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html

Redfish Specification DSP0266

218 Published Version 1.18.0

https://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5487
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6906
https://tools.ietf.org/html/draft-cai-ssdp-v1-03
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
https://docs.oasis-open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.V1.xml
https://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
https://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html

	Redfish Specification
	Foreword
	Acknowledgments
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, symbols, and abbreviated terms
	3.1 Hardware terms
	3.1.1 baseboard management controller (BMC)
	3.1.2 IPMI
	3.1.3 KVM-IP
	3.1.4 NIC
	3.1.5 PCI
	3.1.6 PCIe

	3.2 Web development terms
	3.2.1 CORS
	3.2.2 CRUD
	3.2.3 CSRF
	3.2.4 event
	3.2.5 excerpt
	3.2.6 HTTP
	3.2.7 HTTPS
	3.2.8 hypermedia API
	3.2.9 IP
	3.2.10 JSON
	3.2.11 member
	3.2.12 message
	3.2.13 OData
	3.2.14 OData service document
	3.2.15 operation
	3.2.16 parent resource
	3.2.17 property
	3.2.18 request
	3.2.19 response
	3.2.20 subscription
	3.2.21 task
	3.2.22 task monitor
	3.2.23 TCP
	3.2.24 TLS
	3.2.25 XSS

	3.3 Redfish terms
	3.3.1 collection
	3.3.2 Redfish client
	3.3.3 Redfish protocol
	3.3.4 Redfish schema
	3.3.5 Redfish service
	3.3.6 resource
	3.3.7 resource collection
	3.3.8 resource tree
	3.3.9 resource type
	3.3.10 service root
	3.3.11 subordinate resource

	4 Typographical conventions
	5 Overview
	5.1 Goals
	5.2 Design tenets
	5.3 Limitations
	5.4 Additional design background and rationale
	5.4.1 REST-based interface
	5.4.2 Data-oriented
	5.4.3 Separation of protocol from data model
	5.4.4 Hypermedia API service root
	5.4.5 OpenAPI v3.0 support
	5.4.6 OData conventions

	5.5 Service elements
	5.5.1 Synchronous and asynchronous operation support
	5.5.2 Eventing mechanism
	5.5.3 Actions
	5.5.4 Service discovery
	5.5.5 Remote access support

	5.6 Security
	6 Protocol details
	6.1 Universal Resource Identifiers
	6.2 HTTP methods
	6.3 HTTP redirect
	6.4 Media types
	6.5 ETags
	6.6 Protocol version
	6.7 Redfish-defined URIs and relative reference rules
	7 Service requests
	7.1 Request headers
	7.2 GET (read requests)
	7.2.1 GET (read requests) overview
	7.2.2 Resource collection requests
	7.2.3 Service root request
	7.2.4 OData service and metadata document requests

	7.3 Query parameters
	7.3.1 Query parameter overview
	7.3.2 The $expand query parameter
	7.3.3 The $select query parameter
	7.3.4 The $filter query parameter

	7.4 HEAD
	7.5 Data modification requests
	7.5.1 Data modification requests overview
	7.5.2 Modification success responses
	7.5.3 Modification error responses

	7.6 PATCH (update)
	7.7 PATCH on array properties
	7.8 PUT (replace)
	7.9 POST (create)
	7.10 DELETE (delete)
	7.11 POST (action)
	7.12 Operation apply time
	7.13 Deep operations
	8 Service responses
	8.1 Response headers
	8.2 Link header
	8.3 Status codes
	8.4 OData metadata responses
	8.4.1 OData metadata responses overview
	8.4.2 OData $metadata
	8.4.2.1 Referencing other schemas
	8.4.2.2 Referencing OEM extensions

	8.4.3 OData service document

	8.5 Resource responses
	8.6 Error responses
	9 Data model
	9.1 Resources
	9.2 Resource types
	9.3 Resource collections
	9.4 OEM resources
	9.5 Common data types
	9.5.1 Primitive types
	9.5.2 Enumerations
	9.5.3 Empty string values
	9.5.4 GUID and UUID values
	9.5.5 Date-Time values
	9.5.6 Duration values
	9.5.7 Reference properties
	9.5.8 Non-resource reference properties
	9.5.9 Array properties
	9.5.10 Structured properties
	9.5.11 Message object
	9.5.11.1 Overview
	9.5.11.2 MessageId format


	9.6 Properties
	9.6.1 Properties overview
	9.6.2 Resource identifier (@odata.id) property
	9.6.3 Resource type (@odata.type) property
	9.6.4 Resource ETag (@odata.etag) property
	9.6.5 Resource context (@odata.context) property
	9.6.6 Id
	9.6.7 Name
	9.6.8 Description
	9.6.9 MemberId
	9.6.10 Count (Members@odata.count) property
	9.6.11 Members
	9.6.12 Next link (Members@odata.nextLink) property
	9.6.13 Links
	9.6.13.1 Reference to a related resource
	9.6.13.2 References to multiple related resources

	9.6.14 Actions property
	9.6.14.1 Action representation
	9.6.14.2 Action responses

	9.6.15 Oem
	9.6.16 Status

	9.7 Naming conventions
	9.7.1 Naming rules
	9.7.2 URI naming rules

	9.8 Extending standard resources
	9.8.1 Extending standard resources overview
	9.8.2 OEM property format and content
	9.8.3 OEM-specified object naming
	9.8.4 OEM resource types
	9.8.5 OEM registries
	9.8.6 OEM URIs
	9.8.7 OEM property examples
	9.8.8 OEM actions

	9.9 Payload annotations
	9.9.1 Payload annotations overview
	9.9.2 Allowable values for strings
	9.9.3 Allowable patterns for string values
	9.9.4 Allowable values for numbers and durations
	9.9.5 Extended information
	9.9.5.1 Extended object information
	9.9.5.2 Extended property information

	9.9.6 Action info annotation
	9.9.7 Settings and settings apply time annotations
	9.9.8 Operation apply time and operation apply time support annotations
	9.9.9 Maintenance window annotation
	9.9.10 Collection capabilities annotation
	9.9.11 Requested count and allow over-provisioning annotations
	9.9.12 Zone affinity annotation
	9.9.13 Supported certificates annotation
	9.9.14 Deprecated annotation
	9.9.15 Writable properties annotation

	9.10 Settings resource
	9.11 Special resource situations
	9.11.1 Overview
	9.11.2 Absent resources

	9.12 Registries
	9.13 Schema annotations
	9.13.1 Schema annotations overview
	9.13.2 Description annotation
	9.13.3 Long description annotation
	9.13.4 Resource capabilities annotation
	9.13.5 Resource URI patterns annotation
	9.13.6 Additional properties annotation
	9.13.7 Permissions annotation
	9.13.8 Required annotation
	9.13.9 Required on create annotation
	9.13.10 Units of measure annotation
	9.13.11 Expanded resource annotation
	9.13.12 Owning entity annotation
	9.13.13 Deprecated annotation
	9.13.14 URI segment annotation

	9.14 Versioning
	9.15 Localization
	10 File naming and publication
	10.1 Registry file naming
	10.2 Profile file naming
	10.3 Dictionary file naming
	10.4 Localized file naming
	10.5 DMTF Redfish file repository
	11 Schema definition languages
	11.1 OData Common Schema Definition Language
	11.1.1 OData Common Schema Definition Language overview
	11.1.2 File naming conventions for CSDL
	11.1.3 Core CSDL files
	11.1.4 CSDL format
	11.1.4.1 Referencing other CSDL files
	11.1.4.2 CSDL data services

	11.1.5 Elements of CSDL namespaces
	11.1.5.1 Qualified names
	11.1.5.2 Entity type and complex type elements
	11.1.5.3 Action element
	11.1.5.4 Action element for OEM actions
	11.1.5.5 Action with a response body
	11.1.5.6 Property element
	11.1.5.7 Navigation property element
	11.1.5.8 Enum type element
	11.1.5.9 Annotation element


	11.2 JSON Schema
	11.2.1 JSON Schema overview
	11.2.2 File naming conventions for JSON Schema
	11.2.3 Core JSON Schema files
	11.2.4 JSON Schema format
	11.2.5 JSON Schema definitions body
	11.2.5.1 Resource definitions in JSON Schema
	11.2.5.2 Enumerations in JSON Schema
	11.2.5.3 Actions in JSON Schema
	11.2.5.4 OEM actions in JSON Schema
	11.2.5.5 Action with a response body

	11.2.6 JSON Schema terms

	11.3 OpenAPI
	11.3.1 OpenAPI overview
	11.3.2 File naming conventions for OpenAPI schema
	11.3.3 Core OpenAPI schema files
	11.3.4 openapi.yaml
	11.3.5 OpenAPI file format
	11.3.6 OpenAPI components body
	11.3.6.1 Resource definitions in OpenAPI
	11.3.6.2 Enumerations in OpenAPI
	11.3.6.3 Actions in OpenAPI
	11.3.6.4 OEM actions in OpenAPI

	11.3.7 OpenAPI terms used by Redfish

	11.4 Schema modification rules
	12 Service details
	12.1 Eventing
	12.1.1 Eventing overview
	12.1.2 POST to subscription collection
	12.1.3 Open an SSE connection
	12.1.4 EventType-based eventing
	12.1.5 Subscribing to events
	12.1.6 Event formats
	12.1.7 OEM extensions

	12.2 Asynchronous operations
	12.3 Resource tree stability
	12.4 Discovery
	12.4.1 Discovery overview
	12.4.2 UPnP compatibility
	12.4.3 USN format
	12.4.4 M-SEARCH response
	12.4.5 Notify, alive, and shutdown messages

	12.5 Server-sent events
	12.5.1 General
	12.5.2 Event service
	12.5.2.1 Event message SSE stream
	12.5.2.2 Metric report SSE stream


	12.6 Update service
	12.6.1 Overview
	12.6.2 Software update types
	12.6.2.1 Simple updates
	12.6.2.2 Multipart HTTP push updates


	13 Security details
	13.1 Transport Layer Security (TLS) protocol
	13.1.1 Transport Layer Security (TLS) protocol overview
	13.1.2 Cipher suites
	13.1.3 Certificates

	13.2 Sensitive data
	13.3 Authentication
	13.3.1 Authentication overview
	13.3.2 Authentication requirements
	13.3.2.1 Resource and operation authentication requirements
	13.3.2.2 HTTP header authentication requirements
	13.3.2.3 Authentication failure requirements

	13.3.3 HTTP Basic authentication
	13.3.4 Redfish session login authentication
	13.3.4.1 Redfish login sessions
	13.3.4.2 Session login
	13.3.4.3 Session lifetime
	13.3.4.4 Session termination or logout

	13.3.5 Client certificate authentication

	13.4 Authorization
	13.4.1 Authorization overview
	13.4.2 Privilege model
	13.4.2.1 Roles
	13.4.2.2 Restricted roles and restricted privileges
	13.4.2.3 OEM privileges

	13.4.3 Redfish service operation-to-privilege mapping
	13.4.3.1 Why specify operation-to-privilege mapping?
	13.4.3.2 Representing operation-to-privilege mappings
	13.4.3.3 Operation map syntax
	13.4.3.4 Mapping overrides syntax
	13.4.3.5 Property override example
	13.4.3.6 Subordinate override
	13.4.3.7 Resource URI override
	13.4.3.8 Privilege AND and OR syntax

	13.4.4 Delegated authorization with OAuth 2.0
	13.4.4.1 OAuth 2.0 overview
	13.4.4.2 OAuth 2.0 data model requirements
	13.4.4.3 OAuth 2.0 access tokens
	13.4.4.4 Redfish OAuth2.0 scope usage


	13.5 Account service
	13.5.1 Account service overview
	13.5.2 Password management
	13.5.3 Password change required handling

	13.6 Asynchronous tasks
	13.7 Event subscriptions
	14 Redfish Host Interface
	15 Redfish composability
	15.1 Composition requests
	15.1.1 Composition requests overview
	15.1.2 Specific composition
	15.1.3 Constrained composition
	15.1.4 Expandable resources

	15.2 Updating a composed resource
	16 Aggregation
	16.1 Classes of aggregators
	16.1.1 Implicit and complex aggregators
	16.1.2 Use cases

	16.2 Aggregation service
	16.2.1 Aggregation service overview
	16.2.2 Aggregator requirements
	16.2.3 Aggregates
	16.2.4 Aggregation sources and connection methods

	17 ANNEX A (informative) Change log
	18 Bibliography

