

 1

Document Number: DSP0248 2

Date: 2019-09-23 3

Version: 1.2.0a 4

Platform Level Data Model (PLDM) for Platform 5

Monitoring and Control Specification 6

Supersedes: 1.1.2 7

Document Class: Normative 8

Document Status: Work in Progress 9

Document Language: en-US 10
11

Information for Work-in-Progress version:
IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the
DMTF or its members. Because this document is a Work in Progress, this document may still
change, perhaps profoundly and without notice. This document is available for public review and
comment until superseded.

Provide any comments through the DMTF Feedback Portal:
http://www.dmtf.org/standards/feedback

PLDM for Platform Monitoring and Control Specification DSP0248

2 Work in Progress Version 1.2.0a

Copyright Notice 12

Copyright © 2009-2011, 2016, 2019 DMTF. All rights reserved. 13

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 14
management and interoperability. Members and non-members may reproduce DMTF specifications and 15
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 16
time, the particular version and release date should always be noted. 17

Implementation of certain elements of this standard or proposed standard may be subject to third party 18
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 19
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 20
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 21
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 22
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 23
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 24
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 25
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 26
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 27
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 28
implementing the standard from any and all claims of infringement by a patent owner for such 29
implementations. 30

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 31
such patent may relate to or impact implementations of DMTF standards, visit 32
http://www.dmtf.org/about/policies/disclosures.php. 33

PCI-SIG, PCIe, and the PCI HOT PLUG design mark are registered trademarks or service marks of PCI-34
SIG. 35

All other marks and brands are the property of their respective owners. 36

This document’s normative language is English. Translation into other languages is permitted. 37

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 3

CONTENTS 38

Foreword .. 10	39
Introduction ... 11	40
1	 Scope .. 13	41
2	 Normative references ... 13	42
3	 Terms and definitions .. 14	43
4	 Symbols and abbreviated terms ... 16	44
5	 Conventions .. 16	45
6	 PLDM for Platform Monitoring and Control version .. 17	46
7	 PLDM for Platform Monitoring and Control overview .. 17	47
8	 PDR architecture .. 19	48

8.1	 General ... 19	49
8.2	 Primary PDR Repository and Device PDR repositories ... 19	50
8.3	 Use of PDRs ... 19	51

9	 Entities .. 23	52
9.1	 Entity Identification Information .. 23	53
9.2	 Entity Type and Entity IDs .. 24	54
9.3	 Entity Instance Numbers .. 25	55
9.4	 Container ID ... 25	56
9.5	 Use of Container ID in PDRs .. 25	57

10	 PLDM associations ... 26	58
10.1	 Association examples ... 26	59
10.2	 Internal and External Associations ... 26	60
10.3	 Sensor/Effecter to Entity associations .. 27	61
10.4	 FRU Record Set to Entity associations .. 29	62

11	 Entity Association PDRs ... 30	63
11.1	 Physical-to-Physical containment associations .. 30	64
11.2	 Entity identification relationships between PDRs ... 32	65
11.3	 Linked Entity Association PDRs ... 33	66
11.4	 Logical containment associations ... 34	67
11.5	 Sensor/effecter associations with logical entities ... 35	68
11.6	 Merged entity associations ... 36	69
11.7	 Separation of logical and physical associations ... 38	70
11.8	 Designing association PDRs for monitoring and control .. 38	71
11.9	 Terminus associations .. 39	72
11.10	 Interrupt associations ... 42	73

12	 PLDM terminus ... 43	74
12.1	 TIDs, PLDM Terminus Handles, and Terminus Locator PDRs .. 44	75
12.2	 Requirements for unique TIDs ... 44	76
12.3	 Terminus messaging requirements .. 44	77
12.4	 Terminus Locator PDRs ... 44	78
12.5	 Enumerating termini ... 45	79

13	 PLDM events .. 46	80
13.1	 PLDM Event Messages .. 47	81
13.2	 PLDM Event Receiver .. 47	82
13.3	 PLDM Event Logging ... 48	83
13.4	 PLDM Event Log clearing policies .. 48	84
13.5	 Oldest and newest log entries .. 49	85
13.6	 Event Receiver Location .. 49	86
13.7	 PLDM Event Log entry formats .. 49	87
13.8	 PLDM Platform Event Entry Data format .. 50	88

PLDM for Platform Monitoring and Control Specification DSP0248

4 Work in Progress Version 1.2.0a

13.9	 OEM Timestamped Event Entry Data format ... 51	89
13.10	OEM Event Entry Data format .. 51	90

14	 Discovery Agent .. 51	91
14.1	 Assignment of TIDs and Event Receiver location .. 52	92
14.2	 UUIDs for devices in hot-plug or add-in card applications ... 53	93
14.3	 UID implementation .. 53	94
14.4	 More than one terminus in a device ... 53	95
14.5	 Examples of PDR and UUID use with add-in cards ... 53	96

15	 Initialization Agent ... 56	97
15.1	 General ... 56	98
15.2	 PLDM and power state interaction ... 56	99
15.3	 RunInitAgent command .. 56	100
15.4	 Recommended Initialization Agent steps ... 57	101

16	 Terminus and event commands ... 57	102
16.1	 SetTID command ... 58	103
16.2	 GetTID command ... 59	104
16.3	 GetTerminusUID command .. 59	105
16.4	 SetEventReceiver command .. 60	106
16.5	 GetEventReceiver command ... 62	107
16.6	 PlatformEventMessage command ... 63	108
16.7	 PollForPlatformEventMessage command .. 64	109
16.8	 EventMessageSupported Command ... 67	110
16.9	 EventMessageBufferSize Command ... 69	111
16.10	eventData format for sensorEvent .. 70	112
16.11	eventData format for effecterEvent .. 71	113
16.12	eventData format for redfishTaskExecutedEvent ... 72	114
16.13	eventData format for redfishMessageEvent ... 72	115
16.14	eventData format for pldmPDRRepositoryChgEvent ... 73	116
16.15	eventData format for pldmMessagePollEvent .. 75	117
16.16	eventData format for heartbeatTimerElapsedEvent ... 75	118

17	 PLDM Numeric Sensors ... 76	119
17.1	 Sensor readings, data sizes ... 76	120
17.2	 Units and reading conversion ... 76	121
17.3	 Reading-only or threshold-based numeric sensors .. 77	122
17.4	 Readable and settable thresholds .. 77	123
17.5	 Update/polling intervals and states updates ... 77	124
17.6	 Thresholds, Present State, and Event State .. 77	125
17.7	 Manual re-arm and auto re-arm sensors .. 79	126
17.8	 Event message generation ... 79	127
17.9	 Threshold values and hysteresis .. 79	128

18	 PLDM Numeric Sensor commands .. 81	129
18.1	 SetNumericSensorEnable command ... 81	130
18.2	 GetSensorReading command .. 82	131
18.3	 GetSensorThresholds command .. 85	132
18.4	 SetSensorThresholds command .. 86	133
18.5	 RestoreSensorThresholds command ... 87	134
18.6	 GetSensorHysteresis command ... 87	135
18.7	 SetSensorHysteresis command ... 88	136
18.8	 InitNumericSensor command ... 89	137

19	 PLDM State Sensors .. 90	138
20	 PLDM State Sensor commands ... 91	139

20.1	 SetStateSensorEnables command .. 91	140
20.2	 GetStateSensorReadings command .. 92	141
20.3	 InitStateSensor command .. 94	142

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 5

21	 PLDM effecters ... 95	143
21.1	 PLDM State Effecters ... 95	144
21.2	 PLDM Numeric Effecters .. 96	145
21.3	 Effecter semantics .. 96	146
21.4	 PLDM and OEM effecter semantic IDs .. 97	147

22	 PLDM effecter commands .. 97	148
22.1	 SetNumericEffecterEnable command .. 98	149
22.2	 SetNumericEffecterValue command .. 98	150
22.3	 GetNumericEffecterValue command .. 99	151
22.4	 SetStateEffecterEnables command ... 100	152
22.5	 SetStateEffecterStates command .. 102	153
22.6	 GetStateEffecterStates command .. 103	154

23	 PLDM Event Log commands .. 104	155
23.1	 GetPLDMEventLogInfo command .. 105	156
23.2	 EnablePLDMEventLogging command ... 107	157
23.3	 ClearPLDMEventLog command ... 107	158
23.4	 GetPLDMEventLogTimestamp command .. 108	159
23.5	 SetPLDMEventLogTimestamp command .. 109	160
23.6	 ReadPLDMEventLog command ... 110	161
23.7	 GetPLDMEventLogPolicyInfo command .. 112	162
23.8	 SetPLDMEventLogPolicy command .. 114	163
23.9	 FindPLDMEventLogEntry command .. 116	164

24	 PLDM State Sets .. 118	165
25	 Platform Descriptor Records (PDRs) .. 118	166

25.1	 PDR Repository updates .. 118	167
25.2	 Internal storage and organization of PDRs .. 119	168
25.3	 PDR types .. 119	169
25.4	 PDR record handles ... 119	170
25.5	 Accessing PDRs ... 119	171

26	 PDR Repository commands ... 119	172
26.1	 GetPDRRepositoryInfo command .. 120	173
26.2	 GetPDR command ... 122	174
26.3	 FindPDR command .. 125	175
26.4	 RunInitAgent command .. 131	176
26.5	 GetPDRRepositorySignature command ... 131	177

27	 PDR definitions ... 132	178
27.1	 Sensor types .. 132	179
27.2	 Effecter types ... 132	180
27.3	 State sets ... 132	181
27.4	 Sensor and effecter units ... 133	182
27.5	 Counters ... 136	183
27.6	 Accuracy, tolerance, resolution, and offset .. 136	184
27.7	 Numeric reading conversion formula .. 142	185
27.8	 Numeric effecter conversion formula .. 143	186

28	 Platform Descriptor Record (PDR) formats .. 143	187
28.1	 Common PDR header format ... 143	188
28.2	 PDR type values ... 144	189
28.3	 Terminus Locator PDR ... 145	190
28.4	 Numeric Sensor PDR ... 148	191
28.5	 Numeric Sensor Initialization PDR ... 154	192
28.6	 State Sensor PDR .. 155	193
28.7	 State Sensor Initialization PDR .. 157	194
28.8	 Sensor Auxiliary Names PDR .. 160	195
28.9	 OEM Unit PDR ... 161	196
28.10	OEM State Set PDR ... 162	197

PLDM for Platform Monitoring and Control Specification DSP0248

6 Work in Progress Version 1.2.0a

28.11	Numeric Effecter PDR .. 164	198
28.12	Numeric Effecter Initialization PDR .. 169	199
28.13	State Effecter PDR ... 170	200
28.14	State Effecter Initialization PDR ... 171	201
28.15	Effecter Auxiliary Names PDR ... 174	202
28.16	OEM Effecter Semantic PDR ... 175	203
28.17	Entity Association PDR .. 176	204
28.18	Entity Auxiliary Names PDR ... 177	205
28.19	OEM EntityID PDR ... 178	206
28.20	 Interrupt Association PDR .. 179	207
28.21	Event Log PDR ... 180	208
28.22	FRU Record Set PDR .. 181	209
28.23	OEM Device PDR ... 182	210
28.24	OEM PDR ... 183	211
28.25	Compact Numeric Sensor PDR .. 184	212
28.26	Redfish Resource PDR .. 186	213
28.27	Redfish Entity Association PDR ... 189	214
28.28	Redfish Action PDR .. 190	215

29	 Timing ... 191	216
30	 PLDM Command numbers ... 191	217
ANNEX A (informative) Change log .. 193	218
Bibliography .. 194	219
 220

Figures 221

Figure 1 – PLDM used for access only .. 20	222
Figure 2 – PLDM with device PDRs ... 21	223
Figure 3 – PLDM with PDRs for subsystem ... 22	224
Figure 4 – Entity Identification Information ... 23	225
Figure 5 – Entity Identification Information format .. 23	226
Figure 6 – Entity Identification Information in a Numeric Sensor PDR ... 27	227
Figure 7 – Entity Identification Information in a FRU Record Set PDR .. 29	228
Figure 8 – Physical containment entity association PDR ... 31	229
Figure 9 – containerID relationships ... 32	230
Figure 10 – Entity identification relationship between PDRs .. 33	231
Figure 11 – Linked Entity Association PDRs .. 34	232
Figure 12 – Logical Containment PDR ... 35	233
Figure 13 – Sensor/effecter to logical entity association .. 36	234
Figure 14 – Merged entity association PDR example .. 37	235
Figure 15 – Block diagram for merged entity association PDR example ... 38	236
Figure 16 – TID and PLDM Terminus Handle associations ... 40	237
Figure 17 – Block diagram of Terminus-to-Sensor associations .. 41	238
Figure 18 – Received interrupt association example ... 43	239
Figure 19 – Example of TID and PLDM Terminus Handle relationships .. 45	240
Figure 20 – Hot-plug add-in card with single PLDM terminus .. 54	241
Figure 21 – Hot-plug add-in card with multiple PLDM termini .. 55	242
Figure 22 – Numeric sensor threshold and hysteresis relationships .. 80	243
Figure 23 – Accuracy, tolerance, and resolution example ... 137	244
Figure 24 – Figuring resolution from the design ... 140	245

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 7

 246

Tables 247

Table 1 – PLDM monitoring and control data types ... 16	248
Table 2 – Parts of the Entity Identification Information format .. 24	249
Table 3 – Field & value descriptions for Entity Identification Information in a Numeric Sensor PDR 28	250
Table 4 – Field and value descriptions for Entity Identification Information in a FRU Record Set PDR 29	251
Table 5 – PLDM Event Log clearing policies .. 48	252
Table 6 – PLDM Event Log entry format .. 50	253
Table 7 – Platform Event Entry Data format ... 50	254
Table 8 – OEM Timestamped Event Entry Data format ... 51	255
Table 9 – OEM Event Entry Data format .. 51	256
Table 10 – Terminus and event commands ... 57	257
Table 11 – PLDM Event Types .. 58	258
Table 12 – GetTerminusUID command format .. 59	259
Table 13 – SetEventReceiver command format ... 60	260
Table 14 – GetEventReceiver command format .. 62	261
Table 15 – PlatformEventMessage command format .. 63	262
Table 16 – PollForPlatformEventMessage command format ... 66	263
Table 17 – EventMessageSupported command format ... 67	264
Table 18 – EventMessageBufferSize command format ... 69	265
Table 19 – sensorEvent class eventData format .. 70	266
Table 20 – effecterEvent class eventData format .. 71	267
Table 22 – redfishMessageEvent class eventData format ... 72	268
Table 23 – pldmPDRRepositoryChgEvent class eventData format ... 74	269
Table 24 – pldmPDRRepositoryChgEvent changeRecord format ... 75	270
Table 25 – pldmMessagePollEvent class eventData format .. 75	271
Table 26 – heartbeatTimerElapsedEvent class eventData format ... 76	272
Table 27 – Threshold severity levels .. 78	273
Table 28 – Numeric Sensor commands ... 81	274
Table 29 – SetNumericSensorEnable command format .. 81	275
Table 30 – GetSensorReading command format ... 82	276
Table 31 – GetSensorThresholds command format .. 85	277
Table 32 – SetSensorThresholds command format ... 86	278
Table 33 – RestoreSensorThresholds command format .. 87	279
Table 34 – GetSensorHysteresis command format ... 88	280
Table 35 – SetSensorHysteresis command format .. 89	281
Table 36 – InitNumericSensor command format .. 90	282
Table 37 – State Sensor commands .. 91	283
Table 38 – SetStateSensorEnables command format ... 91	284
Table 39 – SetStateSensorEnables opField format ... 92	285
Table 40 – GetStateSensorReadings command format ... 93	286
Table 41 – GetStateSensorReadings stateField format ... 93	287
Table 42 – InitStateSensor command format ... 94	288
Table 43 – InitStateSensor initField format .. 95	289
Table 44 – Categories for effecter semantics ... 96	290

PLDM for Platform Monitoring and Control Specification DSP0248

8 Work in Progress Version 1.2.0a

Table 45 – State and Numeric Effecter commands .. 97	291
Table 46 – SetNumericEffecterEnable command format ... 98	292
Table 47 – SetNumericEffecterValue command format ... 98	293
Table 48 – GetNumericEffecterValue command format ... 99	294
Table 49 – SetStateEffecterEnables command format .. 101	295
Table 50 – SetStateEffecterEnables opField format .. 101	296
Table 51 – SetStateEffecterStates command format ... 102	297
Table 52 – SetStateEffecterStates stateField format ... 102	298
Table 53 – GetStateEffecterStates command format ... 103	299
Table 54 – GetStateEffecterStates stateField format ... 103	300
Table 55 – PLDM Event Log commands .. 104	301
Table 56 – GetPLDMEventLogInfo command format .. 105	302
Table 57 – EnablePLDMEventLogging command format .. 107	303
Table 58 – ClearPLDMEventLog command format .. 108	304
Table 59 – GetPLDMEventLogTimestamp command format ... 108	305
Table 60 – SetPLDMEventLogTimestamp command format ... 109	306
Table 61 – ReadPLDMEventLog command format .. 111	307
Table 62 – PLDMEventLogData format ... 112	308
Table 63 – GetPLDMEventLogPolicyInfo command format ... 113	309
Table 64 – SetPLDMEventLogPolicy command format ... 115	310
Table 65 – FindPLDMEventLogEntry command format ... 117	311
Table 66 – PDR Repository commands ... 119	312
Table 67 – GetPDRRepositoryInfo command format ... 121	313
Table 68 – GetPDR command format .. 122	314
Table 69 – FindPDR command format ... 126	315
Table 70 – FindPDR Command Parameter Format Numbers ... 129	316
Table 71 – FindPDR command parameter formats .. 130	317
Table 72 – RunInitAgent command format ... 131	318
Table 73 – GetPDRRepositorySignature command format ... 132	319
Table 74 – sensorUnits enumeration ... 134	320
Table 75 – Common PDR header format ... 143	321
Table 76 – PDR Type Values ... 145	322
Table 77 – Terminus Locator PDR format .. 146	323
Table 78 – Numeric Sensor PDR format .. 148	324
Table 79 – Numeric Sensor Initialization PDR format .. 154	325
Table 80 – State Sensor PDR format ... 155	326
Table 81 – State Sensor possible states fields format ... 156	327
Table 82 – State Sensor Initialization PDR format ... 157	328
Table 83 – Sensor Auxiliary Names PDR format ... 160	329
Table 84 – OEM Unit PDR format .. 161	330
Table 85 – OEM State Set PDR format .. 163	331
Table 86 – OEM State Value Record format .. 164	332
Table 87 – Numeric Effecter PDR format ... 165	333
Table 88 – Numeric Effecter Initialization PDR format ... 169	334
Table 89 – State Effecter PDR format .. 170	335
Table 90 – State Effecter Possible States fields format ... 171	336
Table 91 – State Effecter Initialization PDR format .. 172	337
Table 92 – Effecter Auxiliary Names PDR format .. 174	338

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 9

Table 93 – OEM Effecter Semantic PDR format .. 175	339
Table 94 – Entity Association PDR format ... 176	340
Table 95 – Entity Auxiliary Names PDR format .. 177	341
Table 96 – OEM EntityID PDR format .. 178	342
Table 97 - Interrupt Association PDR format .. 179	343
Table 98 – Event Log PDR format ... 180	344
Table 99 – FRU Record Set PDR format ... 182	345
Table 100 – OEM Device PDR format ... 183	346
Table 101 – OEM PDR format ... 183	347
Table 102 – Compact Numeric Sensor PDR format .. 184	348
Table 103 – Redfish Resource PDR format??? ... 186	349
Table 104 – Redfish Entity Association PDF format??? .. 189	350
Table 105 – Redfish Action PDR format??? .. 190	351
Table 106 – Monitoring and control timing specifications ... 191	352
Table 107 – Command numbers .. 191	353
 354

 355

PLDM for Platform Monitoring and Control Specification DSP0248

10 Work in Progress Version 1.2.0a

Foreword 356

The Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification (DSP0248) was 357
prepared by the Platform Management Components Intercommunications (PMCI) Working Group of the 358
DMTF. 359

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 360
management and interoperability. For information about the DMTF, see http://www.dmtf.org. 361

Acknowledgments 362

The DMTF acknowledges the following individuals for their contributions to this document: 363

Editors: 364

• Patrick Schoeller and Bill Scherer – Hewlett Packard Enterprise 365

Contributors: 366

• Richelle Ahlvers – Broadcom Inc. 367

• Alan Berenbaum – SMSC 368

• Chris Bussan – Hewlett Packard Enterprise 369

• Patrick Caporale – Lenovo 370

• Phil Chidester – Dell 371

• Hoan Do – Broadcom Inc. 372

• Yuval Itkin – Mellanox Technologies 373

• Ed Klodnicki – IBM 374

• John Leung – Intel Corporation 375

• Eliel Louzoun – Intel Corporation 376

• Balaji Natrajan – Microchip Technology 377

• Hemal Shah – Broadcom Inc. 378

• Tom Slaight – Intel Corporation 379

• Bob Stevens – Dell 380

• Supreeth Venkatesh – Arm Limited 381

 382

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 11

Introduction 383

The Platform Level Data Model (PLDM) Monitoring and Control Specification defines messages and data 384
structures for discovering, describing, initializing, and accessing sensors and effecters within the 385
management controllers and management devices of a platform management subsystem. Additional 386
functions related to platform monitoring and control, such as the generation and logging of platform level 387
events, are also defined. 388

Document conventions 389

Typographical conventions 390

The following typographical conventions are used in this document: 391

• Document titles are marked in italics. 392

• Important terms that are used for the first time are marked in italics. 393
394

PLDM for Platform Monitoring and Control Specification DSP0248

12 Work in Progress Version 1.2.0a

 395

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 13

Platform Level Data Model (PLDM) for Platform Monitoring 396

and Control Specification 397

1 Scope 398

This specification defines the functions and data structures used for discovering, describing, initializing, 399
and accessing sensors and effecters within the management controllers and management devices of a 400
platform management subsystem using PLDM messaging. Additional functions related to platform 401
monitoring and control, such as the generation and logging of platform level events, are also defined. This 402
document does not specify the operation of PLDM messaging. 403

This specification is not a system-level requirements document. The mandatory requirements stated in 404
this specification apply when a particular capability is implemented through PLDM messaging in a manner 405
that is conformant with this specification. This specification does not specify whether a given system is 406
required to implement that capability. For example, this specification does not specify whether a given 407
system must provide sensors or effecters. However, if a system does implement sensors or effecters or 408
other functions described in this specification, the specification defines the requirements to access and 409
use those functions under PLDM. 410

Portions of this specification rely on information and definitions from other specifications, which are 411
identified in clause 2. Two of these references are particularly relevant: 412

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, provides definitions of 413
common terminology, conventions, and notations used across the different PLDM specifications 414
as well as the general operation of the PLDM messaging protocol and message format. 415

• DMTF DSP0249, Platform Level Data Model (PLDM) State Sets Specification, defines the 416
values that are used to represent different types of states and entities within this specification. 417

2 Normative references 418

The following referenced documents are indispensable for the application of this document. For dated or 419
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 420
For references without a date or version, the latest published edition of the referenced document 421
(including any corrigenda or DMTF update versions) applies. 422

ANSI/IEEE Standard 754-1985, Standard for Binary Floating Point Arithmetic 423

DMTF DSP0218 Platform Level Data Model for Redfish Device Enablement 1.0 424
http://dmtf.org/sites/default/files/standards/documents/DSP0218_1.0.pdf 425

DMTF DSP0236, MCTP Base Specification 1.0, 426
http://dmtf.org/sites/default/files/standards/documents/DSP0236_1.0.pdf 427

DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification 1.0, 428
http://dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf 429

DMTF DSP0241, Platform Level Data Model (PLDM) Over MCTP Binding Specification 1.0, 430
http://dmtf.org/sites/default/files/standards/documents/DSP0241_1.0.pdf 431

DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes Specification 1.0, 432
http://dmtf.org/sites/default/files/standards/documents/DSP0245_1.0.pdf 433

PLDM for Platform Monitoring and Control Specification DSP0248

14 Work in Progress Version 1.2.0a

DMTF DSP0249, Platform Level Data Model (PLDM) State Sets Specification 1.0, 434
http://dmtf.org/sites/default/files/standards/documents/DSP0249_1.0.pdf 435

DMTF DSP0257, Platform Level Data Model (PLDM) FRU Data Specification 1.0, 436
http://dmtf.org/sites/default/files/standards/documents/DSP0257_1.0.pdf 437

DMTF DSP0266, Redfish Scalable Platforms Management API Specification 1.6.0, 438
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf 439

IETF RFC2781, UTF-16, an encoding of ISO 10646, February 2000, 440
http://www.ietf.org/rfc/rfc2781.txt 441

IETF RFC3629, UTF-8, a transformation format of ISO 10646, November 2003, 442
http://www.ietf.org/rfc/rfc3629.txt 443

IETF RFC4122, A Universally Unique Identifier (UUID) URN Namespace, July 2005, 444
http://www.ietf.org/rfc/rfc4122.txt 445

IETF RFC4646, Tags for Identifying Languages, September 2006, 446
http://www.ietf.org/rfc/rfc4646.txt 447

ISO 8859-1, Final Text of DIS 8859-1, 8-bit single-byte coded graphic character sets — Part 1: Latin 448
alphabet No.1, February 1998 449

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 450
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 451

3 Terms and definitions 452

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 453
are defined in this clause. 454

The terms "shall" ("required"), "shall not," "should" ("recommended"), "should not" ("not recommended"), 455
"may," "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 456
in ISO/IEC Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, 457
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 458
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 459
alternatives shall be interpreted in their normal English meaning. 460

The terms "clause," "subclause," "paragraph," and "annex" in this document are to be interpreted as 461
described in ISO/IEC Directives, Part 2, Clause 6. 462

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 463
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 464
not contain normative content. Notes and examples are always informative elements. 465

Refer to DSP0240 for terms and definitions that are used across the PLDM specifications. For the 466
purposes of this document, the following additional terms and definitions apply. 467

3.1 468
contained entity 469
an entity that is contained within a container entity 470

3.2 471
container entity 472
an entity that is identified as containing or comprising one or more other entities 473

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 15

3.3 474
container ID 475
a numeric value that is used within Platform Descriptor Records (PDRs) to uniquely identify a container 476
entity 477

3.4 478
containing entity 479
an alternative way of referring to the container entity for a given entity 480

3.5 481
entity 482
a particular physical or logical entity that is identified using PLDM monitoring and control data structures 483
for the purpose of monitoring, controlling, or identifying that entity within the platform management 484
subsystem, or for identifying the relationship of that entity to other entities that are monitored or controlled 485
using PLDM monitoring and control 486
Examples of physical entities include processors, fans, power supplies, and memory chips. Examples of 487
logical entities include a logical power supply (which may comprise multiple physical power supplies) and 488
a logical cooling unit (which may comprise multiple fans or cooling devices). 489

3.6 490
Entity ID 491
a numeric value that is used to identify a particular type of entity, but without designating whether that 492
entity is a physical or logical entity 493

3.7 494
Entity Instance Number 495
a numeric value that is used to differentiate among instances of the same type 496
For example, if two processor entities exist, one of them can be designated with instance number 1 and 497
the other with instance number 2. 498

3.8 499
Entity Type 500
a numeric value that identifies both the particular type of entity and whether the entity is a physical or 501
logical entity 502
The Entity ID is a subfield of the Entity Type. 503

3.9 504
Platform Descriptor Record 505
PDR 506
a set of data that is used to provide semantic information about sensors, effecters, monitored or controller 507
entities, and functions and services within a PLDM implementation 508
PDRs are mostly used to support PLDM monitoring and control and platform events. This information also 509
describes the relationships (associations) between sensor and control functions, the physical or logical 510
entities that are being monitored or controlled, and the semantic information associated with those 511
elements. 512

PLDM for Platform Monitoring and Control Specification DSP0248

16 Work in Progress Version 1.2.0a

4 Symbols and abbreviated terms 513

Refer to DSP0240 for symbols and abbreviated terms that are used across the PLDM specifications. For 514
the purposes of this document, the following additional symbols and abbreviated terms apply. 515

4.1 516
CIM 517
Common Information Model 518

4.2 519
EID 520
Endpoint ID 521

4.3 522
IANA 523
Internet Assigned Numbers Authority 524

4.4 525
MAP 526
Manageability Access Point 527

4.5 528
MCTP 529
Management Component Transport Protocol 530

4.6 531
PDR 532
Platform Descriptor Record 533

4.7 534
PLDM 535
Platform Level Data Model 536

4.8 537
TID 538
Terminus ID 539

5 Conventions 540

Refer to DSP0240 for conventions, notations, and data types that are used across the PLDM 541
specifications. The following data types are also defined for use in this specification: 542

Table 1 – PLDM monitoring and control data types 543

Data type Interpretation
strASCII A null (0x00) terminated 8-bit per character string. Unless otherwise specified, characters are

encoded using the 8-bit ISO8859-1 "ASCII + Latin1" character set encoding. All strASCII strings
shall have a single null (0x00) character as the last character in the string. Unless otherwise
specified, strASCII strings are limited to a maximum of 256 bytes including null terminator.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 17

Data type Interpretation
strUTF-8 A null (0x00) terminated, UTF-8 encoded string per RFC3629. UTF-8 defines a variable length

for Unicode encoded characters where each individual character may require one to four bytes.
All strUTF-8 strings shall have a single null character as the last character in the string with
encoding of the null character per RFC3629 Unless otherwise specified, strUTF-8 strings are
limited to a maximum of 256 bytes including null terminator character.

strUTF-16 A null (0x0000) terminated, UTF-16 encoded string with Byte Order Mark (BOM) per RFC2781.
All strUTF-16 strings shall have a single null (0x0000) character as the last character in the
string. An empty string shall be represented using two bytes set to 0x0000, representing a
single null (0x0000) character. Otherwise, the first two bytes shall be the BOM. Unless
otherwise specified, strUTF-16 strings are limited to a maximum of 256 bytes including the BOM
and null terminator.

strUTF-16LE A null (0x0000) terminated, UTF-16, "little endian" encoded string per RFC2781. All strUTF-
16LE strings shall have a single null (0x0000) character as the last character in the string.
Unless otherwise specified, strUTF16LE strings are limited to a maximum of 256 bytes including
the null terminator.

strUTF-16BE A null (0x0000) terminated, UTF-16, "big-endian" encoded string per RFC2781. All strUTF-16BE
strings shall have a single null character as the last character in the string. Unless otherwise
specified, strUTF16BE strings are limited to a maximum of 256 bytes including the null
terminator.

6 PLDM for Platform Monitoring and Control version 544

The version of this Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification 545
shall be 1.2.0 (major version number 1, minor version number 2, update version number 0, and no alpha 546
version). 547

For the GetPLDMVersion command described in DSP0240, the version of this specification is reported 548
using the encoding as 0xF1F2F000. 549

If the endpoint declares support for PLDM for Platform Monitoring and Control version 1.1.1 or later 550
specification versions, all previous versions (e.g., 1.1.0) should not be listed as supported in the 551
GetPldmVersion command because of the sensorID (Numeric Sensor PDR) or the effecterID (Numeric 552
Effecter PDR) size change from uint8 to uint16. 553

7 PLDM for Platform Monitoring and Control overview 554

This specification describes the operation and format of request messages (also referred to as 555
commands) and response messages for accessing the monitoring and control functions within the 556
management controllers and management devices of a platform management subsystem. These 557
messages are designed to be delivered using PLDM messaging. 558

The basic format that is used for sending PLDM messages is defined in DSP0240. The format that is 559
used for carrying PLDM messages over a particular transport or medium is given in companion 560
documents to the base specification. For example, DSP0241 defines how PLDM messages are formatted 561
and sent using MCTP as the transport. The Platform Level Data Model (PLDM) for Platform Monitoring 562
and Control Specification defines messages that support the following items: 563

• sensors and effecters 564

This specification defines a model for sensors and effecters through which monitoring and 565
control are achieved, and the commands that are used for sensor and effecter initialization, 566
configuration, and access. Sensors and effecters are classified according to the general type of 567
data that they use: 568

PLDM for Platform Monitoring and Control Specification DSP0248

18 Work in Progress Version 1.2.0a

– Numeric sensors provide a number that represents a monitored value that can be 569
expressed using units such as degrees Celsius, volts, and amps. 570

– State sensors are used for accessing a number from an enumeration that represents the 571
state of a monitored entity. Different states are enumerated in predefined sets called state 572
sets. Example state sets can include states for Availability (enabled, disabled, shut down, 573
and so on), Door State (open, closed), Presence (present, not present) and so on. The 574
values for State Sets are defined in DSP0249. 575

– Numeric effecters are used for setting a number that configures or controls the operation of 576
a controlled entity. Like numeric sensors, numeric effecters also use units such as degrees 577
Celsius, volts, and amps. 578

– State effecters are used for setting a number that configures or controls a state that is 579
associated with a controlled entity. State effecters draw upon the same state set definitions 580
as state sensors. 581

• Platform Descriptor Records (PDRs) 582

PDRs are data structures that can provide semantic information for sensors and effecters, their 583
relationship to the entities that are being monitored or controlled, and associations that exist 584
between entities within the platform. The PDRs also include information that describes the 585
presence and location of different PLDM termini. This information can be used to discover the 586
population of sensors and effecters and how to access them by using PLDM messaging. The 587
information also facilitates building Common Information Model objects and associations for the 588
sensors, effecters, and platform entities. PDRs can also hold information that is used to initialize 589
sensors and effecters. PDRs are collected into a logical storage area called a PDR Repository. 590
A central PDR Repository called the Primary PDR Repository can be used to hold an 591
aggregation of all PDR information within the PLDM subsystem. 592

• platform events 593

This specification defines messages that are asynchronously sent upon particular state changes 594
that occur within sensors, effecters, or the PLDM platform management subsystem. The 595
messages are delivered to a central function called the PLDM Event Receiver. Version 1.2.0 of 596
this specification also defines a synchronous polling method to retrieve events from an entity. 597

• platform event logging 598

The specification includes the definition of a central, nonvolatile storage function called the 599
PLDM Event Log that can be used to log PLDM Event Messages. The specification also defines 600
messages for accessing and maintaining the PLDM Event Log. 601

• support functions 602

This specification also includes the definition of support functions as required to support the 603
initialization of sensors and effecters, and the maintenance of PDRs in the Primary PDR 604
Repository. The main support functions are the Discovery Agent and the Initialization Agent. 605

– The Discovery Agent function is responsible for keeping the Primary PDR information up to 606
date if entities are added, relocated, or removed from the PLDM platform management 607
subsystem. The Discovery Agent function is also responsible for setting the Event Receiver 608
location into PLDM termini that support PLDM monitoring and control messages. 609

– The Initialization Agent function is responsible for initializing sensors and effecters that may 610
require initialization or reinitialization upon state changes to the PLDM terminus or the 611
managed system, such as system hard resets, the terminus coming online for PLDM 612
communication, and so on. 613

• OEM/vendor-specific functions 614

This specification includes provisions for supporting OEM or vendor-specific functions and 615
semantic information. This includes the ability to define OEM units for numeric sensors or 616

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 19

effecters, OEM state sets, and OEM entity types. An OEM PDR type is also available as an 617
opaque storage mechanism for holding OEM-defined data in PDR Repositories. 618

8 PDR architecture 619

This clause provides an overview of when and how PDRs are used within a platform management 620
subsystem that uses the PLDM Platform Monitoring and Control commands. 621

8.1 General 622

PLDM generally separates the access of functions such as sensors and effecters from the semantic 623
information or description of those functions. For example, PLDM commands such as 624
GetNumericSensorReading return binary values for a sensor, but the meaning of those values, such as 625
whether they represent a temperature or voltage, is described separately. The description or semantic 626
information for sensors, effecters, and other elements of the PLDM platform management subsystem is 627
provided through Platform Descriptor Records, or PDRs. 628

This separation provides several benefits: 629

• Overhead for simple Intelligent Management Devices is reduced. In many implementations, a 630
primary management controller may access one or two simpler controllers that act as Intelligent 631
Management Devices (sometimes also called "satellite controllers"). Those controllers generally 632
are very cost sensitive and limited in resources such as RAM, nonvolatile storage capabilities, 633
data transfer performance, and so on. The amount of data that needs to be stored and 634
transferred to provide the semantic information for a sensor is typically an order of magnitude or 635
more greater than the amount of data that needs to be transferred to get the state or reading 636
information from a sensor. 637

• PDRs provide information that associates sensors, effecters, and the entities that are being 638
monitored or controlled within the overall context of the PLDM platform management 639
subsystem. This eliminates the need for devices that implement sensors and effecters to 640
understand their position and use in the overall system. Providing this association and context 641
information for sensors and effecters enables the automatic instantiation of CIM objects and 642
CIM associations. 643

• The impact of extensions to descriptions is reduced. The definitions of the semantic information 644
(PDRs) can be extended and modified without affecting the commands that are used to access 645
sensors and effecters. 646

8.2 Primary PDR Repository and Device PDR repositories 647

The PDRs for a PLDM subsystem are collected into a single, central PDR Repository called the Primary 648
PDR Repository. A central repository provides a single place from which PDR information can be 649
retrieved and simplifies the inter-association of PDR semantic information for the different elements and 650
monitored or controlled entities within the subsystem. 651

Individual devices, such as hot-plug devices, can hold their own Device PDRs that describe their local 652
semantics. Typically, this information has only local context. That is, the information covers only the 653
elements on the add-in card and has no information about the positioning of the card and its capabilities 654
relative to the overall subsystem. Thus, additional steps are typically taken to integrate Device PDR 655
information into the overall context of the PLDM subsystem. 656

8.3 Use of PDRs 657

Whether PDRs are used is based on the needs and goals of the PLDM subsystem implementation. This 658
subclause describes three different applications of PLDM and their level of PDR support. 659

PLDM for Platform Monitoring and Control Specification DSP0248

20 Work in Progress Version 1.2.0a

8.3.1 PLDM for access only 660

Figure 1 shows an implementation that does not use PDRs. PLDM is used only as a mechanism for 661
accessing monitoring and control functions; it is not used for providing semantic information about those 662
functions. 663

In this example, Device A provides a DMTF Manageability Access Point (MAP) function that makes 664
platform information available over a network using CIM as the data model and WS-MAN as the transport 665
protocol for CIM. In this example, PLDM is used only for accessing the functions in Devices B and C, and 666
for Devices B and C to send PLDM Event Messages to Device A. 667

All the semantic or descriptive information that is needed to map the sensors and effecters to CIM objects 668
and properties is handled by proprietary mechanisms. Typically a vendor-specific configuration utility is 669
used by the system integrator to configure or customize a set of proprietary configuration information that 670
provides whatever contextual or semantic information is required for the particular platform 671
implementation. Since the mechanisms for recording semantic information are proprietary, most of the 672
PLDM-to-CIM mapping function is also proprietary. A standard approach for the PLDM-to-CIM mapping 673
function cannot be specified when proprietary mechanisms are used for the semantic information. 674

Thus, in this example PLDM does not offer much to assist or direct the way sensor and effecter functions 675
of external management devices would be mapped into the instantiation of CIM objects. The 676
implementation only uses PLDM to provide a common mechanism for accessing the functions in the 677
external Intelligent Management Devices. This enables the implementation to be designed with Device 678
Driver and PLDM Event Handling code that can be reused if it is necessary to change the design to 679
support different external Intelligent Management Devices. 680

Device C
Static device

Device A
(MAP) Device B

add-in device (using
proprietary self-

description mechanism)

CIM / WS-MAN

LAN

Proprietary
Configuration Info

 PLDM

Sensors, Effecters

Sensors, Effecters

PLDM
to

CIM

PLDM
“Device
Drivers”

PLDM
Event

Handling

 681

Figure 1 – PLDM used for access only 682

8.3.2 PLDM with PDRs for add-in devices 683

Figure 2 illustrates how PDRs can be used with add-in cards. The vendor of an add-in card knows the 684
relationships and semantics of the monitoring and control (sensor and effecter) capabilities on their card. 685

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 21

However, the vendor of the card typically will not know the relationship that card will have relative to a 686
particular overall system. For example, the vendor would not know a priori what the system name was, or 687
how many processors the system has, or into which slot the card will be plugged. Thus, in this example, 688
the add-in card exports PDRs that describe the relationships relative to the add-in card. The MAP takes 689
this information and integrates it into the semantic view of the overall system. The PDR information could 690
be converted and linked into a proprietary internal database, as shown in Figure 2. The PDRs thus 691
provide a common way for add-in cards to describe themselves to the MAP. 692

The internal database for the MAP could be implemented as a PDR Repository instead of a proprietary 693
database. This would potentially simplify the PLDM-to-CIM mapping process, enabling the integrated data 694
to be accessed as PDRs using PDR Repository access commands and enabling software or other parties 695
to see the integrated view of the platform at the PLDM level. Also, because the PLDM-to-CIM mapping is 696
defined using PDRs, the PDR format may also be useful in developing a consistent PLDM-to-CIM 697
mapping in the MAP. 698

Device B
Self-descriptive add-in

or hot-plug Device

Device M
(MAP)

Device PDR
Repository

PDRs

Device C
Static device or device using
proprietary self-description

mechanism

LAN

CIM / WS-MAN

Sensors, effecters
Sensors, effecters

Sensors, effecters
Proprietary
database

to CIM

Proprietary
Internal configuration

‘database’

PDR
derived
content

non-
PDR

derived
content

 PLDM

 699

Figure 2 – PLDM with device PDRs 700

8.3.3 PLDM with Primary PDR Repository 701

Figure 3 shows an example of using PDRs to describe an entire PLDM platform management subsystem 702
to an add-in card, Device M, that provides a MAP function. In this example, PDRs are collected into a 703
central PDR Repository called the Primary PDR Repository that is provided by Device A. 704

The PDRs in the Primary PDR Repository represent the entire PLDM subsystem behind Device A. Thus, 705
the MAP of Device M needs to connect only to Device A to discover and get semantic information about 706
the monitoring and control functions for that entire subsystem. This approach can enable Device M to 707
automatically adapt itself to the management capabilities offered by different systems. 708

Such an implementation enables the MAP to come from one party while the platform management 709
subsystem comes from another without the need to explicitly configure the MAP with the semantic 710
information for the subsystem. For example, the platform management subsystem represented through 711

PLDM for Platform Monitoring and Control Specification DSP0248

22 Work in Progress Version 1.2.0a

Device A could be built into a motherboard and the MAP of Device M provided on a PCIe add-in card 712
from a third party. The MAP on the add-in card can use the Primary PDR Repository to automatically 713
discover the capabilities and semantic information of the platform management subsystem and use that 714
information to instantiate CIM objects and data structures for the subsystem. 715

Device A maintains the Primary PDR Repository that includes information about static sensors and 716
effecters (such as those within Device C and within Device A itself) and integrates that information into 717
the overall view of the platform management subsystem held in the Primary PDR Repository. This 718
involves discovering and extracting PDRs from "Self-descriptive" devices such as Device B, and 719
synthesizing additional PDRs, such as association and Terminus Locator PDRs, in order to integrate the 720
PDRs into the repository and create a coherent view of the overall subsystem. 721

Because Device M is an add-in card, it could also have its own sensors and effecters and associated 722
PDRs that Device A would integrate into the Primary PDR Repository in the same manner that it 723
integrates PDR information from Device B. 724

Another advantage of implementing a Primary PDR Repository is that any party with access to Device A 725
can get the full set of semantic information for the subsystem. This is useful when more than one party 726
might need to access that information—for example, if support was necessary for multiple add-in cards 727
that provided MAP functions for different media (such as one card that provided MAP functions over 728
cabled Ethernet and another that provided MAP access using a wireless network connection). 729

Device B
Self-descriptive add-in

or hot-plug Device

Device A
Primary PDR Repository

Owner

Primary PDR Repository

Device PDR
Repository

PDRs
(B)

Device C
Static device or device using
proprietary self-description

mechanism

PDRs
(A) PDRs

(B)

PDRs
(C)

Device M
(MAP)

LAN

CIM / WS-MAN

Sensors, Effecters
Sensors, Effecters

Sensors, Effecters

PLDM
to

CIM

 PLDM PLDM

 730

Figure 3 – PLDM with PDRs for subsystem 731

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 23

9 Entities 732

Within the context of this specification, the term entity is used to refer to either a physical or a logical 733
entity that is monitored or controlled, or to describe the topology or structure of the system that is being 734
monitored or controlled. 735

Examples of typical physical entities include processors, fans, memory devices, and power supplies. 736
Examples of logical entities include logical power supplies that are formed from multiple physical power 737
supplies (as in the case of a redundant power supply subsystem) and a logical cooling unit formed from 738
multiple physical fans. 739

9.1 Entity Identification Information 740

Individual entities are identified within PLDM PDRs using three fields: Entity Type, Entity Instance 741
Number, and Container ID. Together, these fields are referred to as the Entity Identification Information. 742
Figure 4 presents an overview of the meaning of the individual fields. The fields are discussed in more 743
detail in the next subclauses. 744

Entity Identification Information:

Entity Type

Entity Instance Number

Container ID

Identifies whether the Entity is a logical or physical
Entity, and what the type of the Entity is.

A number that identifies the instance of the Entity.
This number is defined relative to the Entity that
contains it.

An opaque number that identifies the containing Entity
that the Instance number is defined relative to. If this
value is 0x0000, then the containing Entity is
considered to be the overall system.

 745

Figure 4 – Entity Identification Information 746

The combination of Entity Type, Entity Instance Number, and Container ID must be unique for each 747
individual entity referenced in the PDRs. These three fields are always used together in the PDRs and in 748
the same order. The combination of the three fields is represented in the PDRs using three uint16 values 749
in the format shown in Figure 5. 750

P/L

Entity Instance Number

Container ID

Entity ID
15

Entity Type

14 0

 751

Figure 5 – Entity Identification Information format 752

PLDM for Platform Monitoring and Control Specification DSP0248

24 Work in Progress Version 1.2.0a

Table 2 describes the parts of the Entity Identification Information format. 753

Table 2 – Parts of the Entity Identification Information format 754

Part Description

Entity Type Combination of the P/L bit and the Entity ID value

P/L Physical/Logical bit (0b = physical, 1b = logical)

Entity ID 15-bit Entity ID value from DSP0249 that identifies the general type of the entity

Entity Instance
Number

16-bit number that differentiates among instances of entities that have the same Entity
Type and Container ID values

Container ID 16-bit number that identifies the containing entity that the Entity Instance Number is
defined relative to. If this value is 0x0000, the containing entity is considered to be the
overall system.

9.2 Entity Type and Entity IDs 755

The Entity Type field is a concatenation of the physical/logical designation for the entity and the value 756
from the Entity ID enumeration that identifies the general type or category of the entity, such as whether 757
the entity is a power supply, fan, processor, and so on. The Entity Type field indicates whether the entity 758
is a physical fan, logical power supply, and so on. 759

The different general types of entities within PLDM are identified using an enumeration value referred to 760
as an "Entity ID." The different types of standardized entities and their corresponding Entity ID values are 761
specified in DSP0249. 762

Physical and logical entities that have the same Entity ID are considered to be different Entity Types. 763

9.2.1 Vendor-specific (OEM) Entity IDs 764

The Entity ID values include a special range of values for identifying vendor- or OEM-specific entities. In 765
order to be interpreted, these values must be accompanied by an OEM EntityID PDR that identifies which 766
vendor defined the entity and, optionally, a string or strings that provide the name for the entity. Refer to 767
28.19 for additional information about how OEM Entity IDs are used. 768

9.2.2 Logical and physical entities 769

A physical entity is defined as an entity that is formed from one or more physically identifiable 770
components. For example, a physical Power Supply could be one or more integrated circuits and 771
associated components that together form a power supply. 772

A logical entity is defined as an entity that is formed when the entity or grouping of entities lacks a 773
physical definition or a readily identifiable physical boundary or grouping that would be associated with 774
the type of entity being represented. For example, a logical cooling device could be used to represent a 775
combination of physical fans that forms a redundant fan subsystem, or a logical power supply could be 776
used to represent the combination or grouping of power supplies that forms a redundant power supply 777
subsystem. 778

The choice of when to use a logical or physical designation for a particular type of entity can be subtle. 779
Consider the following questions: 780

• Is the entity or grouping of entities separately replaceable or identifiable as a single physical unit 781
or as a set of physical units? 782

• Would the physical grouping be something that a user would typically think of as a separate 783
physical unit that can be represented by a single type of entity? 784

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 25

For example, consider a system with a motherboard that directly supports connectors for a redundant fan 785
configuration. The fans would typically be individually replaceable, and the motherboard would be 786
individually replaceable, but the "redundant fan subsystem" would not be. A user would not typically 787
consider the combination of a motherboard and fans to be the definition of a physical redundant fan 788
subsystem because the motherboard provides many other functions beyond those that are part of the 789
implementation of a redundant fan subsystem. The redundant fan subsystem does not have a distinct 790
physical boundary that would let it be replaced independently from other subsystems. 791

9.3 Entity Instance Numbers 792

A given platform often has more than one occurrence of a particular type of entity. The Entity Instance 793
Number, in combination with the Container ID, differentiates one instance of a particular type of entity 794
from another within the PDRs. 795

Entity Instance Numbers are defined in a numeric space that is associated with a particular containing 796
entity. For example, the Entity Instance Numbers for processors contained on an add-in card are defined 797
relative to that add-in card, whereas the Entity Instance Numbers for processors on the motherboard are 798
defined relative to the motherboard. 799

The Entity Instance Number is a value that could be used when instantiating CIM objects or presenting 800
PLDM data as part of the "name" of the managed object. For example, if a processor entity has an Entity 801
Instance Number of "1", the expectation is that the entity would be presented as “Processor 1”. 802

The assignment of Entity Instance Number values under a given Container ID is left up to the 803
implementation. However, it is typical that Entity Instance Number values are allocated sequentially 804
starting from 0 or 1 for a given Entity Type under the Container ID. 805

9.4 Container ID 806

The value in this field identifies a "containing Entity" that in turn defines the numeric space under which 807
Entity Instance Numbers are allocated. For example, if an add-in card has two processors on it and a 808
motherboard has two processors on it, it would be common to refer to the processors on the add-in card 809
as "Processor 1" and "Processor 2" and to the processors on the motherboard also as "Processor 1" and 810
"Processor 2". 811

The Container ID field provides a mechanism that locates a particular containing entity, such as 812
"motherboard 1" or "add-in card 1". This enables the Entity Instance Numbers to be allocated relative to 813
each particular containing Entity. The Container ID field, therefore, effectively provides a value that 814
indicates that the "Processor 1" entity on the motherboard is a different entity than the "Processor 1" 815
entity on the add-in card. 816

In most cases, the Container ID field value points to a particular PDR that describes a "containment 817
association" that identifies a container entity (such as motherboard 1) and one or more contained entities 818
(such as processor 1 and processor 2). An exception occurs when an entity instance is defined only 819
relative to the overall system, in which case the Container ID holds a special value that indicates that the 820
"system" is the container entity. 821

9.5 Use of Container ID in PDRs 822

With the exception of the entity that represents an overall system, all entities are contained within at least 823
one other physical or logical entity. Each entity is thus part of a containment hierarchy that starts with the 824
overall system as the topmost entity. A strict hierarchy is formed when each entity is only allowed to 825
identify a single containing entity using the Container ID value. With this restriction, an entity's position in 826
the hierarchy can be uniquely identified, and when combined with the entity type and instance information 827
provides the unique Entity Identification Information for the entity. Thus, although a given entity may be 828
identified as being contained within more than one container entity, only one Container ID value shall be 829
used for the Entity Identification Information for an entity. 830

PLDM for Platform Monitoring and Control Specification DSP0248

26 Work in Progress Version 1.2.0a

The Container ID points to a particular type of PDR called an Entity Association PDR that holds the 831
information that identifies and associates a containing entity with one or more contained entities. 832
Association PDRs are described in clause 10. 833

The overall system is considered to be the top of the hierarchy of containment and thus does not appear 834
as a contained entity in any Entity Association PDR. In this case, there is no explicit Entity Association 835
PDR for the overall system. A special value (0x0000) is used for the Container ID to indicate when the 836
overall system is the container entity. 837

In some cases, a particular entity may be part of more than one containment hierarchy. For example, a 838
physical fan could be part of a logical cooling unit and a physical chassis. When both physical and logical 839
containers exist for a given entity, the physical container relationship should be used for identifying the 840
entity. 841

10 PLDM associations 842

Different mechanisms are used to associate different elements of PLDM with one another. This clause 843
describes the different association mechanisms and how they're used. 844

10.1 Association examples 845

Following are some examples of associations that are covered by PDRs: 846

• Sensor/Effecter Semantic Information to Sensor/Effecter Access associations: 847
Sensor and effecter PDRs describe the characteristics of a particular sensor or effecter. These 848
records include information that can be used to identify which PLDM terminus provides the 849
interface to the sensor, and the parameters that are used to access that sensor. These records 850
provide a way to form an association between the semantic information for a sensor/effecter 851
(provided by other information in the PDRs) and the access of the sensor (provided by PLDM 852
commands for sensor or effecter access). 853

• Sensor/Effecter to Entity associations: 854
A sensor or effecter monitors or controls some physical or logical entity. The PDRs provide a 855
mechanism for associating a sensor or effecter with the entity. 856

• Entity to Entity associations: 857
Entities have relationships with other entities, such as physical and logical containment. For 858
example, a redundant power supply subsystem may be represented as a logical power supply 859
that is made up of multiple physical power supplies. 860

• PLDM Event to PDR associations: 861
PLDM Event Messages identify the terminus that was the source of the message, and the 862
sensor within the terminus that was the source of the event, but semantic information and the 863
context for the sensor are not carried in the event information. The PDRs include information 864
that associates the information in an event message with the semantic information that enables 865
interpretation of the event and its context. 866

Two general mechanisms are used for specifying associations for PLDM: Internal Associations and 867
External Associations. 868

10.2 Internal and External Associations 869

The term "Internal Association" is used when a particular type of association is formed solely by using 870
fields within the PDRs that directly associate PDRs with one another. For example, a value called the 871
Terminus Handle is used in all PDRs that are associated with a particular terminus. The Terminus Handle 872
is a form of Internal Association, where the association is "PDRs that belong to a given terminus." Internal 873
Associations effectively associate records by defining and using a common field as a key. 874

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 27

Therefore, Internal Associations require a common field to be defined among the elements that are 875
associated with each other. The Internal Association mechanism is efficient, but not readily extensible, 876
because a new type of association would typically require new fields to be defined and added to the 877
PDRs that are to be associated with one another, along with specifications that document how the field is 878
used to form links to other records. Because the fields that support Internal Associations must be pre-879
defined as part of the PDR, Internal Associations are generally used only for the most fundamental and 880
common types of associations. For other types of associations, a more generalized mechanism called 881
"External Associations" is provided. 882

External Associations are formed by using a separate data structure (PDR) to associate different 883
elements with one another. This is accomplished among the PDRs by using another PDR that is referred 884
to as an “association PDR.” The advantage of using External Associations is that they enable 885
associations between PDRs or entities without requiring the definition of common fields among them. 886
Thus, new types of associations can be defined without requiring changes to existing PDR definitions. 887
The disadvantage is that External Associations require the use of at least one additional PDR to form the 888
association. 889

10.3 Sensor/Effecter to Entity associations 890

Each sensor or effecter that is described using PDRs has a corresponding Sensor or Effecter PDR that 891
provides semantic information for individual sensors or effecters, such as information that identifies which 892
terminus the sensor or effecter is associated with, the type of parameter that the sensor or effecter is 893
monitoring or controlling, and so on. Included in this information is Entity Identification Information for the 894
entity that is associated with the sensor or effecter. (The terms Sensor PDRs and Effecter PDRs are used 895
as shorthand to refer to a general class of PDRs. The actual PDRs define separate PDRs for numeric 896
sensors, state sensors, numeric effecters, state effecters, and so on.) 897

Figure 6 shows a subset of the fields in the Sensor PDR for a PLDM Numeric Sensor. The Entity 898
Identification Information is represented by the fields highlighted with dashed lines. Note that from this 899
point in the document onward figures and tables will use field names as they are given in the definition of 900
the PDRs, for example "entityInstanceNumber" instead of "entity instance number". 901

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

Numeric Sensor PDR

baseUnit = degrees C

sensorID = 14

 902

Figure 6 – Entity Identification Information in a Numeric Sensor PDR 903

Table 3 describes the meaning of the fields shown in Figure 6. 904

PLDM for Platform Monitoring and Control Specification DSP0248

28 Work in Progress Version 1.2.0a

Table 3 – Field & value descriptions for Entity Identification Information in a Numeric Sensor PDR 905

Field and value Description

sensorID = 14 All sensors and effecters within a given terminus have unique sensorID or
effecterID numbers. This field holds a value that is used in commands such as
GetSensorReading to access the particular sensor or effecter within the
terminus. The sensorID number is used only for accessing the sensor. The
example shows that the value 14 would be used in commands to access this
particular sensor.

baseUnit = degrees C The baseUnit field identifies the measurement unit for the parameter being
monitored by the sensor. The measurement unit is simplified for this example.
The actual PDR contains additional fields that contribute to the definition of the
measurement unit for a numeric sensor. Refer to the field’s description in Table
78 for more information.

entityType = physical | Power
Supply

This field represents the concatenation of the physical/logical bit and the Entity
ID for “power supply” from the Entity IDs table (see 9.2).

entityInstanceNumber = 2 The entityInstanceNumber differentiates instances of entities that have the
same Entity Type and Container ID values. Because the entityInstanceNumber
is defined relative to a containing entity, a system can have a processor on the
motherboard identified as "processor 1" and a processor on an add-on card
also identified as "processor 1". The two occurrences of "processor 1" are
recognized as being unique and separate entities because they have different
container entities. In this example, the entityInstanceNumber 2 indicates that
this numeric sensor is monitoring physical Power Supply 2, which is contained
within the container entity identified by containerID 123.

containerID = 123 This field is used to identify or locate the containing entity that defines the
numeric space for the entityInstanceNumber. In this example, the number 123
would be used to locate an Entity Association PDR that identifies the
containing entity (see 9.4 for more information). Association PDRs are
described in detail in clause 11.

The details included in Table 3 provide a significant amount of the information that is typically used for 906
identifying a sensor or effecter and its use within a management subsystem. For example, a string that 907
contains the following identification information for the sensor could be derived from the Numeric Sensor 908
PDR without referring to any additional PDRs: 909

"Entity(123) physical power supply 2, Sensor(14), degrees C" 910

The information is based on the following fields: 911

container ID | entityType | entityInstanceNumber | sensorID | baseUnit 912

Note that an application would typically not use just the baseUnits name "degrees C" but would augment 913
it to make it more readable. For example: 914

"Entity(123) physical power supply 2 Temperature Sensor(14) (Celsius)" 915

To interpret Entity(123), it is necessary to interpret the Container ID. If the Container ID is for "system," 916
the PDR may be interpreted as follows: 917

"System Physical Power Supply 2 Temperature Sensor (14) (Celsius)" 918

If the Container ID is for an entity other than system, the Container ID information can be used to locate 919
the Entity Association PDR that identifies the containing entity for the sensor. 920

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 29

10.4 FRU Record Set to Entity associations 921

Each FRU Record Set that is described using PDRs has a corresponding FRU Record Set PDR that 922
provides semantic information for individual FRUs, such as information that identifies which terminus is 923
associated with the FRU Record Set. Included in this information is Entity Identification Information for the 924
entity that is associated with the FRU Record Set. 925

Figure 7 shows a subset of the fields in the FRU Record Set PDR for a PLDM FRU Record Set. The 926
Entity Identification Information is represented by the fields highlighted with dashed lines. 927

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

FRU Record Set PDR

FRURecordSetIdentifier = 7

Serial Number = “1234567”

 928

Figure 7 – Entity Identification Information in a FRU Record Set PDR 929

Table 4 describes the meaning of the fields shown in Figure 7. 930

Table 4 – Field and value descriptions for Entity Identification Information in a FRU Record Set 931
PDR 932

Field and value Description

FRURecordSetIdentifier = 7 All FRU Record Sets within a given terminus have unique Record Set
Identifier. This field holds a value that is used in commands such as
GetFRURecordByOption to access the particular Record Set within the
terminus. The FRURecordSetIdentifier number is used only for accessing the
FRU Record Set. The example shows that the value 7 would be used in
commands to access this FRU Record Set.

Serial Number = “1234567” The Serial Number field identifies the serial number of the FRU Record Set.

entityType = physical | Power
Supply

This field represents the concatenation of the physical/logical bit and the Entity
ID for “power supply” from the Entity IDs table (see 9.2).

entityInstanceNumber = 2 The entityInstanceNumber differentiates instances of entities that have the
same Entity Type and Container ID values. Because the entityInstanceNumber
is defined relative to a containing entity, a system can have a processor on the
motherboard identified as "processor 1" and a processor on an add-on card
also identified as "processor 1". The two occurrences of "processor 1" are

PLDM for Platform Monitoring and Control Specification DSP0248

30 Work in Progress Version 1.2.0a

Field and value Description
recognized as being unique and separate entities because they have different
container entities. In this example, the entityInstanceNumber 2 indicates that
this numeric sensor is monitoring physical Power Supply 2, which is contained
within the container entity identified by containerID 123.

containerID = 123 This field is used to identify or locate the containing entity that defines the
numeric space for the entityInstanceNumber. In this example, the number 123
would be used to locate an Entity Association PDR that identifies the
containing entity (see 9.4 for more information). Association PDRs are
described in detail in clause 11.

The details included in Table 4 provide a significant amount of the information that is typically used for 933
identifying a FRU Record Set and its use within a management subsystem. For example, a string that 934
contains the following identification information for the FRU Record Set could be derived from the FRU 935
Record Set PDR without referring to any additional PDRs: 936

"Entity(123) physical power supply 2 Serial Number" 937

The information is based on the following fields: 938

container ID | entityType | entityInstanceNumber | Serial Number 939

Note that an application would typically use just Serial Number to make it more readable. For example: 940

"Entity(123) physical power supply 2 Serial Number" 941

To interpret Entity(123), it is necessary to interpret the Container ID. If the Container ID is for "system," 942
the PDR may be interpreted as follows: 943

"System Physical Power Supply 2 Serial Number" 944

If the Container ID is for an entity other than system, the Container ID information can be used to locate 945
the Entity Association PDR that identifies the containing entity for the sensor. 946

11 Entity Association PDRs 947

Entity Association PDRs associate entities with one another. 948

11.1 Physical-to-Physical containment associations 949

One of the most common associations is the "physical containment association." This association is used 950
to indicate that a physical entity contains one or more other physical entities. For example, the 951
association can be used to represent that a physical chassis contains multiple power supplies. Figure 8 952
shows an example of selected fields within an Entity Association PDR that describes a physical 953
containment association. 954

The example shows a containerID field and an associationType field in the PDR. The containerID is tied 955
to the identification information for the container entity, which in this example is "system physical chassis 956
1." The associationType field indicates that the association is a physical-to-physical containment 957
association. 958

The record has entries for two contained power supplies: physical Power Supply 1 and physical Power 959
Supply 2. The Entity Identification Information for both supplies refers back to the containerID 123 for the 960
container entity, system physical chassis 1. Although this may appear redundant, it is done so that Entity 961
Identification Information within PDRs is consistently represented with the same three-field format, and 962
because in some types of associations the contained entity references the ID for a container entity that is 963
identified in a different PDR. 964

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 31

Container
Entity

(Physical Chassis 1)

Contained
Entity 1

(Physical Power Supply 1)

Entity Association PDR

containerID = 123

entityID = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Contained
Entity 2

(Physical Power Supply 2)

entityID = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

associationType = physical to physical
containment

 965

Figure 8 – Physical containment entity association PDR 966

Although the definition and use of the first containerID field might be confusing at first, think of the value 967
as a single, unique number that identifies a container entity within the PLDM PDRs. The value thus 968
represents the combination of the EntityType, entityInstanceNumber, and containerID values for the 969
container entity. For example, referring to Figure 8, containerID 123 represents physical Chassis 1 (where 970
instance number 1 is defined relative to SYSTEM). 971

Figure 9 provides an illustration of how the containerID value links entities in a containment hierarchy. 972

PLDM for Platform Monitoring and Control Specification DSP0248

32 Work in Progress Version 1.2.0a

containerID = SYSTEM

entityID = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

containerID = 123

entityID = physical | power supply

entityInstanceNumber = 1

containerID = 123

entityID = physical | power supply

entityInstanceNumber = 2

containerID = 123

entityID = physical | system board

entityInstanceNumber = 1

containerID = 123

containerID = 456
entityID = physical | processor

entityInstanceNumber = 1

containerID = 456

entityID = physical | processor

entityInstanceNumber = 2

containerID = 456

 973

Figure 9 – containerID relationships 974

11.2 Entity identification relationships between PDRs 975

Figure 10 shows the kinds of association relationships that emerge when the PDRs are used in 976
combination. The Numeric Sensor PDR in this example has Entity Identification Information that 977
corresponds to "Power Supply 2." The containerID information in that Numeric Sensor PDR corresponds 978
to the containerID that is linked to Physical Chassis 1 through the Entity Association PDR. Note that 979
Physical Chassis 1 is identified as being contained only by the overall system. Hence, its containerID is 980
SYSTEM. 981

Putting this information together yields a view of the system that is represented by the block diagram 982
shown in Figure 10, which shows that the system contains a physical chassis that in turn contains two 983
physical power supplies, and that each physical power supply has a temperature sensor associated with 984
it. The link between the Numeric Sensor PDR and the entity it monitors/affects is [entityType, 985
entityInstance, containerID]. See clause 10.3 Sensor/Effecter to Entity associations for definition and 986
usage. 987

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 33

Container
Entity

(Physical Chassis 1)

Contained
Entity 1

(Physical Power Supply 1)

Entity Association PDR

containerID = 123

entityID = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Contained
Entity 2

(Physical Power Supply 2)

entityID = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

Association Type = physical to physical
containment

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Numeric Sensor PDR

baseUnit = Degrees C

sensorID = 14

System

Chassis 1

Power
Supply 1

Power
Supply 2

Temperature 1

block diagram

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

Numeric Sensor PDR

baseUnit = Degrees C

sensorID = 18

Temperature 1

 988

Figure 10 – Entity identification relationship between PDRs 989

The Entity Identification Information can thus be used for different types of associations within the PDRs. 990
In this example, it is used in the Numeric Sensor PDR to identify the monitored entity in a sensor-to-entity 991
association, and it is used within an Entity Association PDR to identify a containment association between 992
the power supplies and the chassis. 993

11.3 Linked Entity Association PDRs 994

Certain types of PDRs can be linked together using an Internal Association to form the equivalent of a 995
single joint PDR. In Figure 11, the two Entity Association PDRs on the right are implicitly linked together 996
by sharing the same containerID value. (Note that in Figure 11, the linked PDRs are also required to have 997
the same container entity information and associationType values.) 998

The two PDRs on the right and the large single PDR on the left represent exactly the same association 999
relationship: the container entity "physical chassis 1" contains two physical power supplies, "power supply 1000
1" and "power supply 2", and two physical fans, "fan 1" and "fan 2". 1001

It is a choice of the implementation whether a single PDR or multiple PDRs are used to represent a 1002
containment association. Some implementations might want to use multiple records to make it easier to 1003

PLDM for Platform Monitoring and Control Specification DSP0248

34 Work in Progress Version 1.2.0a

develop and maintain the records. For example, if a new physical entity is added for the chassis, it might 1004
be more convenient to create a new PDR and link it into the existing containment PDRs for a chassis 1005
rather than extending an existing containment PDR. 1006

equivalent

Container Entity

Contained Entity 1

Entity Association PDR

containerID = 123

entityType = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

associationType = physical to physical
containment

Container Entity

Contained Entity 1

Entity Association PDR

containerID = 123

entityType = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

entityType = physical | Fan

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

entityType = physical | Fan

entityInstanceNumber = 2

containerID = 123

associationType = physical to physical
containment

Container Entity

Contained Entity 1

Entity Association PDR

containerID = 123

entityType = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

associationType = physical to physical
containment

Contained Entity 3

entityType = physical | Fan

entityInstanceNumber = 1

containerID = 123

Contained Entity 4

entityType = physical | Fan

entityInstanceNumber = 2

containerID = 123

recordHandle = 7789

recordHandle = 4566 recordHandle = 3252

 1007

Figure 11 – Linked Entity Association PDRs 1008

11.4 Logical containment associations 1009

Entity Association PDRs can also be used to represent the relationship between logical entities and other 1010
entities. A logical containment association identifies which physical and logical entities are contained in a 1011
given logical container entity. A logical containment association can also consist of a physical container 1012
entity that contains logical entities. 1013

This type of association is typically used to group items that have a common parameter that is monitored 1014
or controlled. For example, power supplies might be grouped into a logical power supply because they 1015
form a redundant power supply subsystem. 1016

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 35

The example PDR in Figure 12 shows a logical power supply 1 that contains physical power supply 1 and 1017
a physical power supply 2. In this example, the containerIDs in the enclosed Entity Identification 1018
Information do not reference the containerID of this overall PDR, but instead reference a container entity 1019
from a different PDR. This follows from the previous example where containerID 123 corresponds to 1020
physical chassis 1. The explanation for this is provided in 11.5. 1021

A logical containment association can have logical entities, physical entities, or both as contained entities. 1022
The container entity must always be defined as a logical entity. 1023

Container Entity

Entity Association PDR

containerID = 828

entityType = logical | Power Supply

entityInstanceNumber = 1

containerID = 123

associationType = logical containment

recordHandle = 2257

Contained Entity 1

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

 1024

Figure 12 – Logical Containment PDR 1025

11.5 Sensor/effecter associations with logical entities 1026

Sensors and effecters can be associated with logical entities in the same way that they can be associated 1027
with physical entities. Figure 13 shows a state sensor that provides redundancy status and that has a 1028
sensor-to-entity association to logical power supply 1. Note that containerID 123 follows from the previous 1029
example where containerID 123 corresponds to physical chassis 1. 1030

PLDM for Platform Monitoring and Control Specification DSP0248

36 Work in Progress Version 1.2.0a

Container Entity

Entity Association PDR

containerID = 828

entityType = logical | Power Supply

entityInstanceNumber = 1

containerID = 123

associationType = logical containment

recordHandle = 2257

Contained Entity 1

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

entityType = logical | Power Supply

entityInstanceNumber = 1

containerID = 828

State Sensor PDR

stateSetID = Redundancy

sensorID = 14

recordHandle = 2045

 1031

Figure 13 – Sensor/effecter to logical entity association 1032

11.6 Merged entity associations 1033

Figure 14 presents a merged example that illustrates the different aspects and types of entity 1034
associations that were introduced in previous subclauses 11.1 through 11.5. The PDRs in the top portion 1035
of Figure 14 represent sensors and physical-to-physical containment associations. The lower half of 1036
Figure 14 has PDRs that are related to the sensor and containment associations that define a logical 1037
power supply. Together, these PDRs model a system that is represented in the block diagram shown in 1038
Figure 15. 1039

The Entity Association PDR that defines the contained entities for logical power supply 1 uses 123 as the 1040
containerID in the Entity Identification Information for the contained physical power supplies rather than 1041
828, the containerID for the logical association, for the following reasons: 1042

• An entity that is contained in both physical and logical containment associations should use the 1043
containerID that corresponds to a physical containment association. 1044

• The Entity Identification Information values for a given entity must be the same for all references 1045
to the entity within the PDRs. A given entity cannot be identified using different container IDs in 1046
different associations. 1047

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 37

Container Entity

Contained Entity 1

Entity Association PDR

containerID = 123

entityType = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

associationType = physical to physical
containment

Container Entity

Contained Entity 1

Entity Association PDR

containerID = 123

entityType = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

entityType = physical | Fan

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

entityType = physical | Fan

entityInstanceNumber = 2

containerID = 123

associationType = physical to physical
containment

recordHandle = 4566 recordHandle = 3252

Container Entity

Entity Association PDR

containerID = 828

entityType = logical | Power Supply

entityInstanceNumber = 1

containerID = 123

associationType = logical containment

recordHandle = 2257

Contained Entity 1

entityType = physical | Power Supply

entityInstanceNumber = 1
containerID = 123

Contained Entity 2

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

entityType = logical | Power Supply

entityInstanceNumber = 1

containerID = 123

State Sensor PDR

stateSetID = Redundancy

sensorID = 22

recordHandle = 2045

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Numeric Sensor PDR

baseUnit = Degrees C

sensorID = 14

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

Numeric Sensor PDR

baseUnit = Degrees C

sensorID = 18

recordHandle = 9323

recordHandle = 3481

Container Entity

Entity Association PDR

containerID = 123

entityType = physical | Chassis

entityInstanceNumber = 1

containerID = SYSTEM

associationType = logical containment

recordHandle = 6734

Contained Entity 1

entityType = logical | Power Supply

entityInstanceNumber = 1

containerID = 123

 1048

Figure 14 – Merged entity association PDR example 1049

PLDM for Platform Monitoring and Control Specification DSP0248

38 Work in Progress Version 1.2.0a

Physical Chassis 1

Logical Power Supply 1

Physical Power
Supply 1

Physical Power
Supply 2

Temperature
14

Temperature
18

Physical
Fan 1

Physical
Fan 2

Redundancy
Status

System

 1050

Figure 15 – Block diagram for merged entity association PDR example 1051

11.7 Separation of logical and physical associations 1052

Logical associations may be thought of as something that is layered on top of the physical association 1053
hierarchy. The previous example identifies container entity 123 (which corresponds to Physical Chassis 1054
1) as the container entity for both physical and logical association PDRs. The types of associations are 1055
handled through separate PDRs, which separates the types of associations and helps avoid confusion 1056
when a given entity is part of more than one association. 1057

Figure 15 highlights this by showing the physical-to-physical association PDRs in the upper part of the 1058
figure and the logical containment PDRs in the lower part. 1059

11.8 Designing association PDRs for monitoring and control 1060

Following is one method for creating or designing PDRs for a simple system: 1061

1) Identify the physical entities and assign them Entity Identification Information values: 1062

a) Identify the topmost physical container entities and give them the containerID for "system". 1063

b) Assign each remaining physical entity a different containerID value using whatever 1064
approach works best for the implementation. (For example, containerID values could be 1065
assigned sequentially starting from 1, or 1000 if it necessary to have a value that is more 1066
readily distinguishable as a being a containerID.) 1067

2) Create Entity Association PDRs for the physical-to-physical containment associations. 1068

3) Create the Sensor PDR, Effecter PDR, or other PDRs that are associated with the physical 1069
entities, and set the Entity Identification Information based on the containment PDRs that were 1070
created earlier. 1071

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 39

4) Create the PDRs for any logical entities and set the containerID value for the containing entity to 1072
the containerID for the appropriate physical container entities. 1073

5) Create the Sensor PDR, Effecter PDR, or other PDRs that reference those logical entities. 1074

11.9 Terminus associations 1075

Many PDRs that are related to monitoring and control include a value called the PLDM Terminus Handle. 1076
This is an opaque value that is used solely within the PDRs in a given repository as a means of identifying 1077
the records that are associated with a particular terminus. The Terminus ID (TID) is a value that is used 1078
with PLDM messaging as a way to identify a particular terminus. A PDR called the PLDM Terminus 1079
Locator PDR is used to bind the PLDM Terminus Handle and the TID for a given terminus. 1080

An overview of PLDM Terminus Handles and TIDs is given in 12.1. Figure 16 provides an illustration of 1081
the relationship of the PLDM Terminus Handle and TID and how they are used within the PDRs. 1082

The association of entities with sensors and effecters is independent of the terminus that provides access 1083
to the sensor or effecter. Sensors and effecters are associated with the entity that is being monitored or 1084
controlled rather than the entity that is providing the PLDM terminus that is used to access the sensor or 1085
effecter. For example, if a system board entity has a voltage sensor and a temperature sensor, the 1086
voltage sensor could be provided through one terminus and the temperature sensor through a different 1087
terminus. Both sensors would be associated with the same system board entity, however. 1088

Because Entity Association PDRs may have content in them that has associations with more than one 1089
terminus, the PLDM Terminus Handle is used to identify which terminus provided the PDR rather than 1090
which terminus is associated with the PDR. For example, this information can be used to identify when 1091
PDR information has been provided by an add-in card so that the PDRs can be updated if the add-in card 1092
is removed. In many applications, such as mapping PLDM to CIM, the PLDM Terminus Handle 1093
information in an Entity Association PDR can be ignored. 1094

Figure 16 also shows how the PLDMTerminusHandle field is used to identify which sensor PDRs are 1095
accessed through a particular terminus. The example shows two different termini providing sensors for 1096
the system. The terminus with TID 1 is bound to PLDMTerminusHandle 1000 using the Terminus Locator 1097
PDR with recordHandle 1776; the terminus with TID 2 is bound to PLDMTerminus Handle 1001 using the 1098
Terminus Locator PDR with recordHandle 1995. 1099

PLDMTerminusHandle 1000 is associated with the PDRs for two numeric temperature sensors that are 1100
then associated with physical power supplies 1 and 2. PLDMTerminusHandle 1001 is associated with a 1101
single redundancy state sensor that is associated with logical power supply 1. Figure 17 shows a block 1102
diagram of these relationships. Note that while this example shows different termini monitoring different 1103
entities, different termini can also provide sensors that monitor a common entity. For example, one 1104
terminus could provide voltage sensors for a processor while another terminus could provide a 1105
temperature sensor for the same processor. 1106

PLDM for Platform Monitoring and Control Specification DSP0248

40 Work in Progress Version 1.2.0a

entityType = logical | Power Supply

entityInstanceNumber = 1

containerID = 828

State Sensor PDR

stateSetID = Redundancy

sensorID = 14

recordHandle = 2045

entityType = physical | Power Supply

entityInstanceNumber = 1

containerID = 123

Numeric Sensor PDR

baseUnit = Degrees C

sensorID = 14

entityType = physical | Power Supply

entityInstanceNumber = 2

containerID = 123

Numeric Sensor PDR

baseUnit = Degrees C

sensorID = 18

recordHandle = 9323

recordHandle = 3481

Terminus Locator PDR

TID (terminus ID) = 1

recordHandle = 1776

PLDMTerminusHandle = 1000 PLDMTerminusHandle = 1000

PLDMTerminusHandle = 1000

PLDMTerminusHandle = 1001

Terminus Locator PDR

TID (terminus ID) = 2

recordHandle = 1995

PLDMTerminusHandle = 1001

Terminus Access Info...

Terminus Access Info...

 1107

Figure 16 – TID and PLDM Terminus Handle associations 1108

Figure 17 shows a block diagram representation of a hypothetical system that is consistent with the 1109
terminus-to-sensor associations shown in Figure 16. 1110

The example contains three management controllers. Management Controller 3 implements a PLDM 1111
terminus that includes a PLDM State Sensor that provides the redundancy status of logical power supply 1112
1. Management Controller 2 implements a PLDM terminus that supports PLDM access to temperature 1113
sensors for physical power supplies 1 and 2. Management Controller 2 also holds the Primary PDR 1114
Repository for the system. Management Controller 1 represents a management controller or some other 1115
party that is accessing the PLDM subsystem. Management Controller 1 gets its view of the PLDM 1116

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 41

subsystem by accessing the PDRs in the Primary PDR Repository provided by Management Controller 2. 1117
Although this example shows one terminus per management controller, more than one terminus can be 1118
implemented in a management controller. 1119

The PLDM Messaging cloud represents PLDM messaging connectivity between these three controllers. 1120
In an actual implementation, this connectivity would be accomplished using a transport protocol and 1121
physical medium that supports PLDM messaging, such as MCTP over SMBus/I2C. 1122

The example PDRs in Figure 16 are a subset of the PDRs that would be needed to represent the system 1123
shown in Figure 17. For example, in addition to the Terminus Locator and Sensor PDRs, Entity 1124
Association PDRs would identify that physical chassis 1 contains physical power supplies 1 and 2, logical 1125
power supply 1, and a physical system board 1; that system board 1 contains Management Controllers 1, 1126
2, and 3; and so on. 1127

Physical Chassis 1

Physical System Board 1

Logical Power Supply 1

Physical Power
Supply 1

Physical Power
Supply 2

System

Management
Controller 3

Terminus
TID = 2

Logical Power Supply 1
Redundancy Status

Management
Controller 2

Terminus
TID = 1

Power Supply 1
Temperature 1

Power Supply 2
Temperature 1

PLDM
Messaging

Management
Controller 1

(MAP)

PDR
Repository

 1128

Figure 17 – Block diagram of Terminus-to-Sensor associations 1129

PLDM for Platform Monitoring and Control Specification DSP0248

42 Work in Progress Version 1.2.0a

11.10 Interrupt associations 1130

Platform interrupts represent logical or physical signals that may be monitored or controlled by PLDM, 1131
such as NMIs, IRQs, software interrupts, and so on. PLDM State Sensors and PLDM State Effecters can 1132
be used to monitor or control platform interrupts. 1133

11.10.1 Interrupt Association PDR 1134

PLDM includes a type of Association PDR called an Interrupt Association PDR that can be used to 1135
identify the relationship between one or more interrupt source entities and the target entity for a platform 1136
interrupt. The Interrupt Association PDR also identifies which sensor or effecter is associated with the 1137
source entity. (Because a given target may receive interrupts from multiple sources, the sensor or effecter 1138
is typically associated with the source entity rather than the target entity.) 1139

Two kinds of interrupts can be monitored by a state sensor: 1140

• Received interrupt associations identify when an interrupt target entity has received an interrupt 1141
from an interrupt source entity. 1142

• Requested interrupt associations identify when an interrupt source has issued an interrupt 1143
request to an interrupt target entity. 1144

Received interrupts and requested interrupts have different state sets. Thus, received and requested 1145
interrupts are differentiated by the state set that is used with the sensor. Effecters will typically use only 1146
the state sets for requested interrupts. 1147

11.10.2 Interrupt Association example 1148

This clause presents an example of using an Interrupt Association PDR. In this example, processor 1 is 1149
the interrupt target entity that is associated with PCIe Bus 1 and Management Controller 2 as potential 1150
interrupt source entities. Management Controller 1 provides the implementation of two sensors that report 1151
whether interrupts have been received from those sources. 1152

For this example, assume that each state sensor detected that an interrupt occurred and subsequently 1153
generated an event message on that state change. The event message itself indicates only that "Sensor 1154
14 in TID 2 has entered state x". The PDRs are used to interpret this information as follows: 1155

1) The TID that is received in the event message is used to locate the PLDM Terminus Locator 1156
record for the terminus. From this, the PLDMTerminusHandle is obtained. 1157

2) The PLDMTerminusHandle and sensorID value are used to locate the State Sensor PDR for the 1158
sensor that triggered the event message. This PDR indicates that the stateSetID equals the 1159
"Interrupt" state set. The state set definition indicates that the value "x" means "received 1160
interrupt detected". 1161

3) The Entity Identification Information in the State Sensor PDR indicates that the interrupt is 1162
associated with Management Controller 1, which implies that Management Controller 1 is the 1163
source entity for the interrupt. 1164

4) At this point, the combination of the information in the event message and the state sensor PDR 1165
yields the following interpretation of the event message: 1166

– "Sensor 14 in TID 2 has detected that an interrupt has been received from Management 1167
Controller 1". 1168

5) This information does not identify the target of the interrupt, however. To identify the target, the 1169
PLDMTerminusHandle and sensorID are used to locate the Interrupt Association PDR that 1170
identifies the target. 1171

The format of the Interrupt Association PDR in Figure 18 is similar to that of the containment association 1172
PDRs shown earlier. The main difference is that sensorID information is provided in conjunction with the 1173

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 43

Entity Identification Information for the interrupt source entities. This additional information is required 1174
because a given source entity may be the source of more than one interrupt. The sensorID information 1175
provides the mechanism for differentiating different interrupts from the same interrupt source entity. 1176

interruptTargetEntity

interruptSourceEntity1

Interrupt Association PDR

containerID = 1000

entityID = physical | processor

entityInstanceNumber = 1

containerID = system board 1

entityType = physical | Management Controller

entityInstanceNumber = 2

containerID = system board 1

recordHandle = 7789

entityType = physical | Management Controller

entityInstanceNumber = 2

containerID = system board 1

State Sensor PDR

stateSetID = receivedInterrupt

sensorID = 14

recordHandle = 2045

entityType = physical | PCIe Bus

entityInstanceNumber = 1

containerID = system board 1

State Sensor PDR

stateSetID = receivedInterrupt

sensorID = 15

recordHandle = 2055

PLDMTerminusHandle = 100

PLDMTerminusHandle = 100
interruptSourceSensor1

PLDMTerminusHandle = 100

sensorID = 14

interruptSourceEntity2

interruptSourceSensor2

PLDMTerminusHandle = 100

sensorID = 15

entityID = physical | PCIe Bus

entityInstanceNumber = 1

containerID = system board 1

 1177

Figure 18 – Received interrupt association example 1178

12 PLDM terminus 1179

A PLDM terminus is the point of communication termination for PLDM messages and the PLDM functions 1180
associated with those messages. A terminus must be uniquely identifiable so that PLDM PDRs can 1181
associate semantic information with it. Additionally, a terminus must be identifiable when it generates 1182

PLDM for Platform Monitoring and Control Specification DSP0248

44 Work in Progress Version 1.2.0a

asynchronous messages, such as event messages. This identification is accomplished through a value 1183
called the Terminus ID (TID). 1184

12.1 TIDs, PLDM Terminus Handles, and Terminus Locator PDRs 1185

The TID is primarily used in PLDM messages to identify which terminus generated an asynchronous 1186
message, such as an event message. The PLDM Terminus Handle is a value that is used within a PDR 1187
Repository to identify PDRs that are associated with a particular terminus. Thus, the PLDM Terminus 1188
Handle is defined only within the scope of a particular PDR Repository. A PDR called the Terminus 1189
Locator PDR is used to associate a TID with a Terminus Handle. The Terminus Locator PDR also 1190
includes information that describes how the terminus is accessed using PLDM messaging. 1191

12.2 Requirements for unique TIDs 1192

The assignment of unique TIDs to termini is required in the following situations: 1193

• Unique TIDs are required for implementations that use PDRs for describing sensors, effecters, 1194
and associations within and among termini. 1195

• Unique TIDs are required when an implementation exposes a PLDM Event Log in order to 1196
discriminate events from different termini when reading the log. 1197

12.3 Terminus messaging requirements 1198

PLDM termini that meet this specification must implement PLDM Request (command) and Response 1199
messages per DSP0240. Additionally, a Management Controller that implements the Event Receiver 1200
function must be able to accept and process at least one Event Message request while it is processing 1201
other (non-Event Message) requests. Similarly, a device that generates Event Messages must be able to 1202
accept an incoming request while it is waiting for the response for the event message. 1203

It is recommended that a terminus can accept and track requests from multiple requesters if the terminus 1204
is used in an implementation where it is likely to receive simultaneous requests from multiple parties. 1205

12.4 Terminus Locator PDRs 1206

The Terminus Locator PDR forms the association between a TID and PLDM Terminus Handle for a 1207
terminus. The Terminus Locator PDR thus binds a given terminus and the semantic information that is 1208
provided through the PDRs for the terminus. Figure 19 illustrates the relationship between a TID and 1209
PLDM Terminus Handle. 1210

The Terminus Locator PDR also provides additional information about a terminus, such as how it can be 1211
accessed through PLDM messages (hence the name "Terminus Locator"), and whether the terminus and 1212
set of PDRs associated with that terminus should be considered present. 1213

If the terminus has a UID or UUID, the Terminus Locator PDR may also hold a copy of the UID/UUID 1214
value. This value provides an additional mechanism to help verify that the PDRs associated with the 1215
terminus are correct for the particular terminus instance. 1216

The relationship between the PDRs and PLDM Messaging to and from a given terminus is identified using 1217
the following data in the Terminus Locator PDR. (This information is expressed using multiple fields within 1218
the actual record format.) 1219

• The PLDM Terminus Handle is used to identify PDRs that are associated to a particular 1220
terminus. It is used only within the scope of a particular PDR Repository. 1221

• The TID identifies a terminus for PLDM messaging, particularly for identifying messages that 1222
come from a given terminus. A PLDM Terminus Locator PDR associates the TID with the PLDM 1223
Terminus Handle that is used for accessing the PDRs that are associated with the terminus. 1224

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 45

• The Terminus Access Info consists of a list of protocols and additional information, such as 1225
addressing, which enables a party to send PLDM messages to the terminus. 1226

Device C (EID 32)
hot-plug Device

Device A (EID 10)

Main PDR Repository
Device B (EID 20)
Static device

ß PLDM à

Sensors, Effecters

Sensors, Effecters

Event Receiver

Event Log

Initialization Agent

TID = 44 UUID = yy

TID = 22

Event Rcvr Loc. =
EID 10

Event Message

PTH = 3

TID = 44

UID = yy

Access Info =
MCTP, EID 32

Terminus Locator PDR

PDRs
(C)

PTH=3

PDRs
(C)

PTH=3

PDRs
(C)

PTH=3

PDRs
(C)

PTH=2

PDRs
(C)

PTH=2

PDRs
(B)

PTH=2

PDRs
(C)

PTH=1

PDRs
(C)

PTH=1

PDRs
(A)

PTH=1
Event Rcvr Loc. =

EID 10

TID = 44TID = 44

TID = 22

TID = xx

PTH = PLDM Terminus
Handle

 1227

Figure 19 – Example of TID and PLDM Terminus Handle relationships 1228

12.5 Enumerating termini 1229

A party that accesses the Primary PDR Repository can use the PDRs to enumerate the termini by listing 1230
and examining the Terminus Locator PDRs. 1231

12.5.1 General 1232

To support alternative platform configurations and hot-plug devices, the PDR Repository may have PDRs 1233
in it for termini that might not be present. This enables the PDR Repository to hold a superset of 1234
information for the possible termini that might be installed in the system. This helps enable 1235
implementations that support different configurations of termini using a preconfigured, static set of PDRs. 1236

To support this, the Terminus Locator PDR contains a field that indicates whether the record itself is valid. 1237
A terminus may also have a state sensor associated with it that reports whether the terminus is present 1238
and available for use (described in 12.5.3). 1239

PLDM for Platform Monitoring and Control Specification DSP0248

46 Work in Progress Version 1.2.0a

The following rules apply to using Terminus Locator PDRs for enumerating termini. When it is stated that 1240
a terminus should be ignored, it is not an error condition. It means that the status of the terminus is 1241
unknown and from a PLDM point-of-view should be treated as if it did not exist at all. 1242

• A terminus must have a Terminus Locator PDR that is marked as valid in order to be 1243
considered present. Only one Terminus Locator PDR is allowed to be valid at a time for a given 1244
PLDM Terminus Handle within a PDR Repository. It is an error condition if multiple Terminus 1245
Locator PDRs exist and are simultaneously marked as valid for a given PLDM Terminus 1246
Handle. 1247

• If the terminus has a sensor associated with it that reports Terminus State, the sensor must 1248
indicate that the terminus is present. Otherwise, the terminus and its associated PDRs should 1249
be ignored. 1250

• If the terminus has a sensor associated with it that reports Terminus State and the Terminus 1251
State information cannot be accessed because the operationalState of the sensor is not 1252
“enabled”, the terminus and its associated PDRs should be ignored. 1253

12.5.2 Unlisted or absent termini 1254

PDRs for a particular terminus should be ignored under the following conditions: 1255

• The PDR does not have an associated Terminus Locator PDR. 1256

• The PDR is related to a terminus that has an associated Terminus Locator PDR that is marked 1257
invalid or is not present based on a presence sensor. 1258

References to termini (for example, PLDM Terminus Handles) should be ignored under the following 1259
conditions: 1260

• The reference does not have an associated Terminus Locator PDR. 1261

• The reference is associated with a Terminus Locator PDR that is marked invalid or is not 1262
present based on a presence sensor. 1263

These conditions do not apply to OEM or vendor-defined PDRs. 1264

12.5.3 Terminus presence using Terminus State Sensors 1265

In some implementations, termini may need to be added or removed as devices are added to or removed 1266
from the platform or as platform configurations are changed. This can be handled by updating the validity 1267
field in the Terminus Locator PDRs or by updating the PDRs to add or remove Terminus Locator PDRs. 1268
Correspondingly, other PDRs that are associated with the terminus may also be updated, added, or 1269
removed. Updating PDRs may not be warranted in some implementations, such as when the 1270
implementation would have otherwise been able to use a static configuration of PDRs. 1271

A more dynamic way of indicating terminus presence is to associate a terminus with a "Terminus State 1272
Sensor". A Terminus State Sensor is a type of PLDM Composite State Sensor that is associated with a 1273
logical entity of type "PLDM Terminus" using a sensor to entity association. The sensor returns state set 1274
enumerations for "Presence status" and "Operational status". A Terminus State Sensor may be 1275
implemented as a sensor at the terminus itself, or it may be implemented as a sensor under another 1276
terminus. 1277

13 PLDM events 1278

PLDM events are primarily related to changes of PLDM sensor states or states that are related to the 1279
operation of PLDM or the PLDM subsystem itself. 1280

NOTE PLDM events are not the same as CIM indications. There will typically not be a one-to-one correspondence 1281
between PLDM events and CIM indications. In some cases, a PLDM event may trigger a MAP to generate 1282

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 47

indications or entries in a CIM record log, while in other cases a PLDM event may be used solely to update 1283
CIM properties to eliminate or reduce polling by the MAP, or to report information about the internal health or 1284
operation of the PLDM subsystem that is not exposed through CIM. 1285

PLDM Events are between a PLDM terminus and the PLDM Event Receiver (such as a management 1286
controller). PLDM Events may be shared externally using the PLDM Event Log. The method to share the 1287
PLDM Event Log is outside the scope of this specification. 1288

13.1 PLDM Event Messages 1289

PLDM Event Messages are PLDM monitoring and control messages that are used by a PLDM terminus to 1290
synchronously or asynchronously report PLDM events to a central party called the PLDM Event Receiver. 1291
This specification version also adds a method to allow the event receiver to poll for events from the PLDM 1292
terminus event log. 1293

The PlatformEventMessage command supports multiple Event Data Classes. 1294

The PLDM terminus is expected to maintain an internal event message FIFO (queue) for both 1295
asynchronous transmission and polled message requests; All PLDM Event Messages are acknowledged 1296
by the PLDM Event Receiver using the command specific method. The number of entries in the PLDM 1297
terminus FIFO (queue) is implementation specific but should be sufficient to hold early events that occur 1298
before the PLDM Event Receiver configures the PLDM terminus for events. The FIFO should allow at 1299
least one event entry for each enabled sensor. 1300

The PLDM Event Receiver can only poll or accept PLDM Event Messages from the terminus after the 1301
terminus responds to the 16.4 SetEventReceiver command. The PLDM terminus may overwrite the oldest 1302
event (entry) or the oldest event for a specific sensor entry in the FIFO when the terminus (event) queue 1303
is full. Once a terminus transmits an event, the PLDM Event Receiver must acknowledge the event using 1304
the command specific acknowledgement. The acknowledged events are removed from the FIFO. 1305

There are two methods to transmit an event message to the event receiver: 1306

1. 16.6 PlatformEventMessage command 1307

This command allows the PLDM terminus to asynchronously transmit a PLDM event message to 1308
the established and designated PLDM Event Receiver. The Event Receiver acknowledges 1309
receiving the PLDM Event Message in the response to this command. DSP0240 (PLDM Base 1310
Specification) provides timing parameters in “Table 5 – Timing Specifications for PLDM 1311
Messages”. The PLDM terminus is the Requester and shall retry sending this command “Number 1312
of request retries” (DSP0240, Table 5). 1313

2. 16.7 PollForPlatformEventMessage 1314

This command allows the designated PLDM Event Receiver to synchronously request (poll for) a 1315
PLDM terminus event message. The PLDM Event Receiver retrieves a single PLDM event 1316
message on each poll and should poll the terminus until the terminus indicates no more events. 1317
After the initial request (poll), the PLDM Event Receiver shall acknowledge the event returned on 1318
the next request (poll). The terminus may remove the event from the FIFO when the 1319
acknowledgement is received. 1320

13.2 PLDM Event Receiver 1321

The destination for event messages within PLDM is called the Event Receiver. The Event Receiver 1322
function is implemented by a PLDM terminus within the platform management subsystem. Multiple termini 1323
can send Event Messages to the Event Receiver function. The SetEventReceiver command is used to 1324
give the location of the Event Receiver function to termini that generate event messages. 1325

PLDM for Platform Monitoring and Control Specification DSP0248

48 Work in Progress Version 1.2.0a

A PLDM Subsystem is defined as the collection of devices enumerated by the same PLDM initialization 1326
agent. 1327

A PLDM subsystem implementation can have only one PLDM Event Receiver function enabled at a given 1328
time. It is expected that typical implementations will always assign the same Event Receiver location. 1329
However, the location of the Event Receiver function is allowed to be changed during PLDM subsystem 1330
operation. For example, some implementations may do this to support a failover of the Event Receiver 1331
function, or to migrate it to a management controller that is hot plugged into the system, and so forth. 1332

13.3 PLDM Event Logging 1333

PLDM Event Logging defines an interface through which event messages that have been received at the 1334
Event Receiver can be saved in an area of storage called the PLDM Event Log for later retrieval. Event 1335
logging includes mechanisms for storing and time-stamping event records, determining characteristics of 1336
the log (such as its capacity), and reading and clearing the contents of the log. 1337

Additionally, "virtual" PLDM Event Messages may be internally generated within the terminus that is 1338
providing the PLDM Event Log function and directly logged without being received as PLDM Event 1339
Messages on any external interface. 1340

A PLDM terminus shall be tied to at most one PLDM Event Receiver and at most one PLDM Event Log 1341
function. The PLDM Event Log function is expected to be provided by a “time aware” management 1342
controller for the PLDM Subsystem. A simple PLDM terminus supporting a device or adapter should 1343
maintain an internal structure to support the 16.6 PlatformEventMessage command or the 16.7 1344
PollForPlatformEventMessage . The definition of this internal structure is implementation specific and 1345
outside the scope of this specification. 1346

Additional information about event logging is provided in clause 23. 1347

13.4 PLDM Event Log clearing policies 1348

The PLDM Event Log can use different policies for automatically clearing entries from the log (Table 5). 1349
The active policy is configured through the SetPLDMEventLogPolicy command. Refer to the specification 1350
of this command for policy support requirements. 1351

Table 5 – PLDM Event Log clearing policies 1352

Policy Description

Fill and Stop The PLDM Event Log stops accepting new entries after it has become full. The log
does not automatically clear. It must be cleared using the ClearPLDMEventLog
command. This policy does not utilize any parameters.

FIFO When the log is full, the oldest N entries are automatically deleted when the next entry
is received.

This policy uses a single parameter, N. N may be a fixed or configurable parameter,
depending on the implementation. An implementation can also express N as a
percentage of the log (NPercentage) instead of as an integral number of entries.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 49

Policy Description

Clear on Age When the log has filled past a threshold number of entries, M, the age of the first N
entries is checked to see if they have been in the log for more than a given age
interval. If the Nth entry is older than the age interval, the first N entries are
automatically cleared from the log. If the log is less than M entries full, entries are
retained indefinitely, regardless of their age.

This policy uses three parameters: Age, N, and M. The Age interval, the number of
automatically cleared entries, N, and the threshold value, M, may be fixed or
configurable parameters, depending on the implementation. The policy may also be
implemented with N and M given as percentages of the log (MPercentage and
NPercentage) instead of an integral number of entries.

13.5 Oldest and newest log entries 1353

Unless otherwise specified, when the terms old, older, oldest, new, newer, and newest are used to refer 1354
to PLDM Event Log entries, the terms refer to the time that the event was entered into the log rather than 1355
the timestamp of the entry. This is because the setting of the log timestamp clock might be changed 1356
during system operation, making it possible for temporally newer log entries to have timestamps that refer 1357
to an older time than temporally older entries. 1358

13.6 Event Receiver Location 1359

The information that is used by a given terminus to send messages to the Event Receiver function (such 1360
as addressing) is referred to as the Event Receiver Location information. Event Receiver Location 1361
information is transport dependent; for example, for MCTP the information would consist of the EID 1362
(MCTP Endpoint ID) of the Event Receiver. Additionally, the Event Receiver Location information may 1363
vary on a per-terminus basis, depending on the requirements of the transport and medium. The PLDM 1364
Transport binding specifications define how the Event Receiver Location is set for a particular transport 1365
and medium. 1366

PLDM supports a SetEventReceiver command that enables the Event Receiver Location information to 1367
be delivered to termini that generate event messages. This approach provides the following 1368
characteristics: 1369

• It eliminates the need to specify a well-known address for the Event Receiver function for each 1370
different medium and transport. 1371

• It supports assigning the Event Receiver function to a different location, which could be used to 1372

– support failover of the Event Receiver function to another device 1373

– enable the Event Receiver function to be handled by an alternative device that gets added 1374
into the system 1375

– support a situation in which the Event Receiver function is on a medium where its address 1376
changes during PLDM operation 1377

• It provides a mechanism that helps synchronize the generation of event messages with the 1378
availability of the Event Receiver function. 1379

• It provides a mechanism to allow synchronous (polling) and asynchronous event messages to 1380
be communicated to the Event Receiver. 1381

13.7 PLDM Event Log entry formats 1382

Table 6 shows the general format that is used for all PLDM Event Log entries. 1383

PLDM for Platform Monitoring and Control Specification DSP0248

50 Work in Progress Version 1.2.0a

Table 6 – PLDM Event Log entry format 1384

Byte Type Field

0 enum8 entryType

value: { PLDMPlatformEvent, OEMTimestampedEntry, OEMEntry }

1 uint8 entryDataLength

The size in bytes of the entryData field.

variable – entryData

Data for the entry, dependent on the entryType.

If entryType = PLDMPlatformEvent, the entryData format is given in Table 7.

If entryType = OEMTimestampedEntry, the entryData format is given in Table 8.

If entryType = OEMEntry, the entryData format is given in Table 9.

13.8 PLDM Platform Event Entry Data format 1385

Table 7 specifies the format used for the entryData field in PLDM Event Log entries that use the 1386
PLDMPlatformEvent value for the entryType field. 1387

Table 7 – Platform Event Entry Data format 1388

Byte Type Field

0 sint8 entryTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour

special value: 0xFF = unspecified

1:5 uint40 entryTimestampSeconds

This value corresponds to a 40-bit unsigned integer that represents the number of seconds
since midnight UTC of January 1, 1970 (not counting leap seconds).

6 uint8 entryTimestamp100s

This value provides a number of 1/100ths of a second added to entryTimestampSeconds.

value: 0 to 99

special value: 0xFF = unspecified. Use this value if the implementation timestamps entries to
no finer than a one-second resolution.

variable – eventData

The eventData format is the same as the format for the request parameters of the
PlatformEventMessage command (see Table 15).

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 51

13.9 OEM Timestamped Event Entry Data format 1389

Table 8 specifies the format used for the entryData field in PLDM Event Log entries that use the 1390
OEMTimestampedEntry value for the entryType field. 1391

Table 8 – OEM Timestamped Event Entry Data format 1392

Byte Type Field

0:3 uint32 vendorIANA

The IANA Enterprise Number for the vendor that is defining the OEMData. The list of
Enterprise Numbers can be found at www.iana.org/protocols/.

special value: 0 = unspecified.

4 sint8 entryTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour

special value: 0xFF = unspecified

5 uint40 entryTimestampSeconds

This value corresponds to a 40-bit unsigned integer that represents the number of seconds
since midnight UTC of January 1, 1970 (not counting leap seconds).

10 uint8 entryTimestamp100s

This value provides a number of 1/100ths of a second added to entryTimestampSeconds.

value: 0 to 99

special value: 0xFF = unspecified. This value is used if the implementation timestamps
entries to no finer than a one-second resolution.

variable variable OEMData

OEM-specific data that is specified by the vendor identified by vendorIANA

13.10 OEM Event Entry Data format 1393

Table 9 specifies the format used for the entryData field in PLDM Event Log entries that use the 1394
OEMEntry value for the entryType field. The format is similar to the OEM Timestamped Event Entry Data 1395
format (shown in Table 8), except that it does not include PLDM-defined timestamp fields. 1396

Table 9 – OEM Event Entry Data format 1397

Byte Type Field

0:3 uint32 vendorIANA

The IANA Enterprise Number for the vendor that is defining the OEMData

special value: 0 = unspecified

variable variable OEMData

OEM-specific data that is specified by the vendor identified by vendorIANA

14 Discovery Agent 1398

The Discovery Agent function is responsible for discovering termini, assigning them unique TID values, 1399
and assigning them the address of the Event Receiver function. 1400

PLDM for Platform Monitoring and Control Specification DSP0248

52 Work in Progress Version 1.2.0a

If the implementation is maintaining a Primary PDR Repository, the Discovery Agent may also be required 1401
to automatically create or update PDRs to support devices such as hot-plug devices that may be 1402
dynamically added or removed from the system. This includes the following actions: 1403

• creating records such as Terminus Locator PDRs 1404

• extracting Device PDR information and merging it into the Primary PDR Repository 1405

• updating associating records to link Device PDR information into the overall context of the 1406
platform management subsystem 1407

Any OEM PDRs in the Device PDR information that are identified to be copied to the Primary PDR 1408
Repository are also added to the Primary PDR Repository by the Discovery Agent. 1409

14.1 Assignment of TIDs and Event Receiver location 1410

Following are the support requirements for assignment of TIDs and the launching of the Initialization 1411
Agent by a Discovery Agent within a PLDM implementation: 1412

• All termini must support the SetTID command. 1413

• All termini that generate PLDM Event Messages shall support the SetEventReceiver command. 1414
Termini that do not generate PLDM Event Messages are not required to support the 1415
SetEventReceiver command. Those termini, however, that support “Polled Events” shall support 1416
the SetEventReceiver command. 1417

• The Discovery Agent function is responsible for discovering termini and assigning them unique 1418
TID values. (A default TID setting may be preconfigured for a PLDM terminus if the terminus is 1419
statically configured into the platform. This setting must be able to be overridden using the 1420
SetTID command.) 1421

• The Initialization Agent function is responsible for initializing PLDM sensors and effecters and 1422
setting Event Receiver location information into the termini. (A default Event Receiver setting 1423
may be preconfigured for a PLDM terminus if the terminus is statically configured into the 1424
platform. This setting must be able to be overridden using the SetEventReceiver command.) 1425
The Initialization Agent function is described in more detail in clause 15. 1426

• When PDRs are used, the Initialization Agent is also responsible for maintaining corresponding 1427
Terminus Locator PDR information. 1428

• A terminus must have its Event Receiver information set before it can begin to issue PLDM 1429
Event Messages. 1430

• A terminus that has standby power should retain its TID and Event Receiver settings. When the 1431
terminus comes back online, it can use that information for event messaging without requiring 1432
Event Receiver reinitialization. 1433

• A terminus should retain its TID and Event Receiver settings during a given PLDM subsystem 1434
operation. 1435

• Termini that are to be rediscovered (that is, termini that are not statically configured into the 1436
system and may lose PLDM communication temporarily, which might occur in different platform 1437
power states) must have a separate unique and persistent ID that can be associated with the 1438
terminus. For example, if a terminus is hot-plug, it should have a universally unique ID (UUID). 1439

• TIDs are not required to persist or remain constant across PLDM subsystem restarts, unless the 1440
system is using PDRs or exposes a PLDM Event Log. In such cases, TIDs must be persistently 1441
stored by the termini or reassigned to the same value by the Discovery Agent function. 1442

• A MAP or other entity that is accessing a PLDM subsystem should not cache TIDs because 1443
TIDs might change if the PLDM subsystem is reset or reinitialized. 1444

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 53

• Termini on hot-plug cards must have a UUID or be associated with a terminus on the same card 1445
that has a UUID. 1446

• Implementations that do not use PDRs can assign TIDs in any manner, including not assigning 1447
them at all. In this case, the implementation must define its own mechanisms for identifying and 1448
tracking termini and event messages from termini. 1449

14.2 UUIDs for devices in hot-plug or add-in card applications 1450

If the device is intended to be used on an add-in or hot-plug card, it may be required to support a 1451
universally unique ID (UUID) depending on higher-level system requirements or initiatives. In general, 1452
add-in cards that plug into standardized I/O connections and are used in multiple vendor systems, such 1453
as PCIe add-in cards, are required to use UUIDs so that multiple instances of the same card can be 1454
detected. 1455

14.3 UID implementation 1456

If a terminus is required to have a unique ID (UID), how the UID is implemented depends on the 1457
component and how the device manufacturer intends the device to be used in a system. For example, it 1458
is the device manufacturer's choice whether the entire UID must be configured by the system integrator 1459
after purchasing the device, or a number of preconfigured UIDs in the device are selectable by a pin or 1460
nonvolatile configuration selection, or the UID is permanently embedded in the device. Typically, each 1461
device will have fuses, PROM, EPROM/EEPROM, or some other nonvolatile mechanism for holding the 1462
unique ID that is configured either during device manufacture or when the device is integrated into a 1463
system. 1464

14.4 More than one terminus in a device 1465

The Terminus Locator PDR contains a containerEntity field that can be used to identify the entity that 1466
contains the terminus. This field provides the mechanism to identify when multiple termini are within the 1467
same device or are located within the same entity. 1468

14.5 Examples of PDR and UUID use with add-in cards 1469

Figure 20 and Figure 21 present examples of how Device PDRs, UUIDs, and Terminus Locator PDRs 1470
work together to identify PLDM termini on add-in cards, such as hot-plug add-in cards, that may be 1471
dynamically inserted or removed during PLDM subsystem operation. Both examples illustrate MCTP-1472
based implementations. However, the approach may be extrapolated to other transport types. 1473

PLDM for Platform Monitoring and Control Specification DSP0248

54 Work in Progress Version 1.2.0a

Hot-plug Add-in Card

Device with MCTP Endpoint

UUID A

EID X

Device
PDRsTID xx

Endpoint UUID = A

TID = xx

Terminus Handle = XX

EID = X

Terminus Locator PDR data for Endpoint X
in Primary PDR Repository:

Endpoint UUID = A

TID = unassigned

Terminus Handle = XX

Terminus Locator PDR data for Endpoint X:

EID = unassigned

Added by Discovery Agent as part of migrating
Device PDRs to Primary PDR Repository 1474

Figure 20 – Hot-plug add-in card with single PLDM terminus 1475

Figure 20 shows an add-in card that has a single PLDM terminus that is accessed through a single MCTP 1476
endpoint. The terminus is persistently and uniquely identified within the PLDM subsystem by a UUID that 1477
is associated with the endpoint and the terminus. This UUID is recorded in a partially filled-in Terminus 1478
Locator PDR that is part of the Device PDRs that are provided by the add-in card. The UUID can also be 1479
read by issuing a GetTerminusUID command to the terminus. The Device PDRs also report the presence 1480
of and semantic information about sensors, effecters, and other functions on the add-in card. 1481

The Terminus Locator PDR from the Device PDRs returns "unassigned" values for the Endpoint ID (EID) 1482
and Terminus ID (TID) fields because those values are unavailable before the card has been discovered 1483
and initialized by MCTP and the PLDM Discovery Agent within the PLDM subsystem. It also eliminates 1484
the need for the terminus to update those Device PDRs whenever TID or EID values are assigned or 1485
changed. The Discovery Agent sets the TID for the terminus and adds the EID and TID values to the 1486
Terminus Locator Record PDRs when they are integrated into the Primary PDR Repository. The 1487
Discovery Agent then synthesizes other PDRs as necessary to link the add-in card into the overall 1488
semantic information of the PLDM subsystem. For example, the Discovery Agent may create association 1489
PDRs that associate the add-in card with a particular bus and connector within the system. 1490

The Discovery Agent is also responsible for keeping those records up-to-date if EID assignments change 1491
during PLDM subsystem operation and for deleting or invalidating the PDRs that are associated with the 1492
card and its termini if it detects that the card has been removed. 1493

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 55

Figure 21 shows an add-in card that has several MCTP endpoints, each with its own PLDM terminus. 1494
One terminus is within an MCTP Bridge device that provides the Device PDRs for all the termini on the 1495
card. Additionally, the MCTP Bridge provides a UUID that identifies the overall card for MCTP. All MCTP 1496
endpoints are defined relative to MCTP Bridge function based on the position of their routing information 1497
in the routing table. 1498

Hot-plug Add-in Card

MCTP Bridge X

UUID A

ENDPT A

ENDPT B

Entry 1

Entry 2

Entry 3

Entry 4

EID Y

EID Z

EID X

routing table

Device
PDRs

TID xx

TID yy

TID zz

Bridge UUID = A

Routing Table Entry number = 1

TID = unassigned

Terminus Handle = XX

Terminus Locator PDR data for Bridge X:

EID = unassigned

Bridge UUID = A

Routing Table Entry number = 2

TID = yy

Terminus Handle = ZZ

EID = Y

Terminus Locator PDR data for Endpoint A
in Primary PDR Repository:

Bridge UUID = A

Routing Table Entry number = 2

TID = unassigned

Terminus Handle = ZZ

Terminus Locator PDR data for Endpoint A:

EID = unassigned

Added by Discovery Agent
as part of migrating Device
PDRs to Primary PDR
Repository 1499

Figure 21 – Hot-plug add-in card with multiple PLDM termini 1500

In Figure 21, the MCTP Bridge itself is associated with the first routing table entry, Endpoint A is 1501
associated with the second entry, and Endpoint B is associated with the third entry. The Device PDRs 1502
hold Terminus Locator PDRs for each terminus that is on the add-in card. These PDRs uniquely identify 1503
each terminus using two pieces of information: the UUID of the MCTP Bridge and the position of a routing 1504
table entry that is associated with the terminus. The routing table entry positions must not change during 1505

PLDM for Platform Monitoring and Control Specification DSP0248

56 Work in Progress Version 1.2.0a

PLDM subsystem operation. This approach eliminates the need for Endpoints A and B to have their own 1506
support for UUIDs. 1507

15 Initialization Agent 1508

This clause describes the role and operation of the Initialization Agent function in a PLDM subsystem that 1509
uses PDRs. 1510

15.1 General 1511

PLDM sensors are not required to completely self-initialize and enable themselves upon PLDM 1512
subsystem startup or upon power state changes of the device that is hosting the sensor. Thus, low-cost 1513
devices are not required to have nonvolatile configuration resources. Additionally, the mechanism 1514
provides options for overriding default configurations of sensors and event generation. 1515

The Initialization Agent is a function that initializes message generation and sensor configuration as 1516
described by Sensor Initialization PDRs. The Initialization Agent function normally runs whenever the 1517
platform management subsystem is first powered up, upon system Hard and Soft Resets, and on certain 1518
other transitions. Fields in the Sensor Initialization PDRs indicate the system transitions on which a given 1519
sensor is initialized. 1520

The Initialization Agent is also responsible for setting the Event Receiver Location information and 1521
enabling event message generation. 1522

The Sensor Initialization PDRs hold information that describes the default threshold values, states, and 1523
event generation settings for sensors that are initialized by the Initialization Agent function. Sensor 1524
Initialization PDRs are required only for sensors that are initialized by the Initialization Agent. Sensors that 1525
are self-initializing or are initialized through some mechanism that is outside the PLDM specifications do 1526
not need Sensor Initialization PDRs. 1527

The Initialization Agent function thus eliminates the need for all sensors to retain their own nonvolatile 1528
storage for their default settings, and also provides a mechanism to retrigger any events that may have 1529
been transmitted before the Event Receiver function was ready to accept them. 1530

Only one Initialization Agent function is supported within a given PLDM subsystem. The Initialization 1531
Agent shall be implemented behind the same terminus that provides the Primary PDR Repository for the 1532
PLDM subsystem. 1533

15.2 PLDM and power state interaction 1534

The Initialization Agent may need to reinitialize certain sensors or termini as the result of a change of 1535
system power state. An implementation should avoid requiring the Initialization Agent to execute because 1536
of low-latency power state transitions, such as transitions between ACPI S0 and S1, or S1 and S2 states. 1537
The implementation should instead ensure that termini retain their settings across low-latency power state 1538
transitions. 1539

The Sensor Initialization PDRs include a field that tells the Initialization Agent upon which system 1540
transitions a given sensor should be initialized. 1541

15.3 RunInitAgent command 1542

PLDM does not specify a particular mechanism for an implementation to use to detect when to run the 1543
Initialization Agent function. For example, it does not specify how a management controller would detect a 1544
system hard reset or power-up transition. In some implementations, it will be useful to have another 1545
management controller, system firmware, or another entity decide that the Initialization Agent should run. 1546
For example, system firmware may decide that the Initialization Agent should be run after a BIOS update. 1547

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 57

To enable this, PLDM defines a RunInitAgent command that can be used to launch the Initialization Agent 1548
“on demand.” The command includes a parameter that can select a subset of Sensor Initialization PDRs 1549
to be used. 1550

15.4 Recommended Initialization Agent steps 1551

The following presents an outline of the steps for an Initialization Agent in a system implementation that 1552
includes Initialization PDRs. 1553

1) Stop the Event Receiver function from accepting events received from any interface but the system 1554
(host) interface. 1555

2) Scan the PDR Repository for Terminus Locator PDRs. Collect a list of valid termini. 1556

3) For each terminus in the list, perform the following actions: 1557

a) Turn off Event Generation by using the SetEventReceiver command. If a terminus responds to 1558
the SetEventReceiver command, add the terminus to a list of termini to have events re-enabled 1559
later. 1560

b) Use the GetTID command to determine whether the terminus has a TID. If so, leave that value 1561
unchanged unless it is already assigned to another terminus. If not, use the SetTID command to 1562
assign a TID to the terminus. 1563

c) Scan the PDR Repository for Initialization PDRs (for example, numeric sensor/effecter 1564
initialization PDRs or state sensor/effecter initialization PDRs) that are associated for the 1565
terminus. For each PDR that is found, perform the following actions: 1566

– Set the sensor type, sensor thresholds, and hysteresis as directed by the PDR using the 1567
SetSensorThresholds and SetSensorHysteresis commands. 1568

– Use the appropriate enabling command (for example, SetNumericSensor Enables if the 1569
sensor is a numeric sensor) to enable scanning and event generation per the PDR. 1570

4) Enable the Event Receiver function to accept or poll for event messages. 1571

5) For each terminus with a Terminus Locator PDR, enable synchronous or asynchronous event 1572
message generation using the SetEventReceiver command or leave it disabled (This is done at the 1573
discretion of the Management Controller.) For each of these termini, configure an event message 1574
transfer size via the EventMessageBufferSize command. 1575

16 Terminus and event commands 1576

This clause describes the commands that are used by PLDM termini that implement PLDM monitoring 1577
and control as defined in this specification. The command numbers for the PLDM messages are given in 1578
clause 30. 1579

If a PLDM terminus is implemented to provide access to any of the capabilities of this specification, the 1580
Mandatory/Conditional (M/C) requirements shown in Table 10 apply. 1581

Table 10 – Terminus and event commands 1582

Command M/C Reference

SetTID (see DSP0240) M See 16.1.

GetTID (see DSP0240) M See 16.2.

GetTerminusUID C [1] See 16.3.

SetEventReceiver C [2][3] See 16.4.

PLDM for Platform Monitoring and Control Specification DSP0248

58 Work in Progress Version 1.2.0a

Command M/C Reference

GetEventReceiver C [2] See 16.5.

PlatformEventMessage C [2] See 16.6.

PollForPlatformEventMessage C [2] See 16.7

EventMessageSupported C [4] See 16.8

EventMessageBufferSize C [4] See 16.9
[1] See 16.3. 1583
[2] Support for at least one of PlatformEventMessage or PollForPlatformEventMessage is 1584

mandatory for termini that generate PLDM Event Messages. 1585
[3] Sending the SetEventReceiver command is Mandatory for termini that implement the 1586

Initialization Agent function. 1587
 [4] Mandatory for termini that generate redfishTaskExecutedEvent, redfishMessageEvent, or 1588

heartbeatTimerElapsedEvent class PLDM Event Messages. 1589

The following table details the classes of PLDM events supported in this specification: 1590

Table 11 – PLDM Event Types 1591

PLDM Event Class Event Class Name Description

00h sensorEvent Events related to PLDM numeric and state
sensors. See Table 19.

01h effecterEvent Events related to PLDM effecters. See Table 20.

02h redfishTaskExecutedEvent Events triggered by completion of long running
tasks spawned by execution of RDE Operations
as defined in DSP0218. See Table 21.

03h redfishMessageEvent Events triggered to transmit Redfish Events. See
Table 22.

04h pldmPDRRepositoryChgEvent Events triggered by changes to the repository of
PDRs. See Table 23.

05h pldmMessagePollEvent * This event indicates that the terminus FIFO
contains a large message that will require a
multipart transfer via the PollForPlatformEvent
command. See Table 25.

06h heartbeatTimerElapsedEvent * This event indicates that a keepalive heartbeat
timer has elapsed in the terminus. See Table 26.

07..EFh reserved reserved for future use

F0 .. FEh oemEvent An OEM-specific event in a format not described
in this specification.

FFh reserved reserved for future use
* These events shall only be sent asynchronously (via the PlatformEventMessage command) from the terminus. If the 1592

terminus is configured for synchronous events (via the SetEventReceiver command), it shall not send these events. 1593

16.1 SetTID command 1594

The SetTID command is used to set the TID for a PLDM terminus. This command is typically used by the 1595
PLDM Discovery Agent function. This command is defined in DSP0240. 1596

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 59

16.2 GetTID command 1597

The GetTID command is used to retrieve the present TID setting for a PLDM terminus. This command is 1598
defined in DSP0240. 1599

16.3 GetTerminusUID command 1600

The GetTerminusUID command is used to obtain a unique ID for the terminus when it is necessary to 1601
differentiate between different instances of identical devices that hold the terminus (such as two otherwise 1602
identical add-in cards), or when it is necessary to track a particular terminus that may be “relocated,” such 1603
as a terminus on an add-in card that is moved from one slot to another. 1604

The GetTerminusUID command shall be supported by a terminus when the terminus is on a hot-1605
pluggable or other add-in card where the platform management subsystem implementation is expected to 1606
discover and automatically adopt PLDM capabilities in the terminus (such as sensors) without requiring 1607
separate configuration steps to be taken outside of PLDM. See 14.3 and 14.2 for more information. 1608

If more than one terminus is on the same card, only the terminus that provides PDRs for the add-in card 1609
is required to support the GetTerminusUID command. Table 12 describes the format of the command. 1610

Table 12 – GetTerminusUID command format 1611

Type Request data

– none

Type Response data

enum8

completionCode

value: { PLDM_BASE_CODES }

UUID UUIDValue

PLDM for Platform Monitoring and Control Specification DSP0248

60 Work in Progress Version 1.2.0a

16.4 SetEventReceiver command 1612

The SetEventReceiver command is used to set the address of the Event Receiver into a terminus that 1613
generates event messages. It is also used to globally enable or disable whether event messages are 1614
generated from the terminus. This version of the specification provides a polling mechanism. There shall 1615
be a maximum of one event receiver as described in 13.2 PLDM Event Receiver. This command shall be 1616
executed on the specific medium (binding) where the event receiver is listening. The requestor is allowed 1617
to change the medium to transport the events by reissuing this command. 1618

The event originator (terminus) will receive the request to enable legacy asynchronous event message, 1619
enable polling of event messages or disable all event message generation. This command permits only 1620
one eventMessageGlobalEnable enumeration and is superseded by subsequent invocations of this 1621
command. This specification has added additional completion codes to allow the terminus to indicate its 1622
capabilities. While this causes the requestor to reiterate the command to determine support, the method 1623
preserves backward compatibility to previous specifications. 1624

Table 13 describes the format of the command. 1625

Table 13 – SetEventReceiver command format 1626

Type Request data

enum8 eventMessageGlobalEnable

This value is used to enable or disable event message generation from the terminus.

Values: Definitions

disable Disable all event message generation from the terminus. The
transportProtocolType and eventReceiverAddressInfo fields must be populated
in the request, but shall be ignored by the receiver of this command.

enableAsync Enable asynchronous event message generation from the terminus. This setting
is combined with the enable and disable settings for individual sensors,
effecters, and so on. For example, both this global enable and the individual
enable for a sensor must be set to “enable” for event messages to be generated
for the sensor.

Globally enabling event generation causes all sensors and effecters within the
terminus to evaluate their event state and the terminus will generate event
messages if sensors’ or effecters’ present state does not match their default
initialization state. Additional events (such as PDR or Redfish events) may be
generated independent of the status of sensors and effecters.

When enableAsync is chosen, the Event Receiver may also need to poll for
large multipart event messages.

enablePolling Similar to the enableAsync, the sensors and effecters will generate event
messages if their present state does not match their default initialization state. A
terminus is expected to return any sensor state or threshold transitions when
polled by the Event Receiver. Additional events (such as PDR or Redfish
events) may be generated independent of the status of sensors and effectors;
these should also be returned if generated.

enableAsyncKeepAlive

enableAsync as above plus the terminus shall periodically emit the
heartbeatTimerElapsedEvent as described with the heartbeatTimer field, below.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 61

Type Request data (continued)

enum8 transportProtocolType

This value is provided in the request to help the responder verify that the content of the
eventReceiverAddressInfo field used in this request is correct for the messaging protocol supported by the
terminus. This value is defined in DSP0245. The content of the eventReceiverAddressInfo field used in this
command depends on the transportProtocolType and in some cases also the medium that the terminus is
using. The command shall be rejected and an INVALID_PROTOCOL_TYPE 61 completionCode returned
if the transportProtocolType is incorrect.

varies eventReceiverAddressInfo

This value is a medium and protocol-specific address that the responder should use when transmitting
event messages using the indicated protocol. The format, size and specification of this field depends on
the transportProtocolType. The bytes in this field may contain additional information, such as protocol
version, medium type, transport binding type, and so on. For example, if the transportProtocolType is
MCTP (0x00), then this is a single byte field containing the Endpoint Identifier (EID) of the Event Receiver.

The format of this field is defined in the PLDM-to-Transport binding specification identified by the
transportProtocolType field.

If the transportProtocolType value from DSP0245 is “Vendor-specific”, the overall
eventReceiverAddressInfo format is vendor-specific. However, the first field of the
eventReceiverAddressInfo must be a uint32 that holds a value corresponding to the IANA Enterprise
Number of the vendor or organization that has specified the format.

uint16 heartbeatTimer

Amount of time in seconds after each elapsing of which the terminus shall emit a heartbeat event (the
heartbeatTimerElapsedEvent) to the event receiver. If the terminus cannot produce heartbeat events at the
requested rate, it shall return completion code HEARTBEAT_FREQUENCY_TOO_HIGH.

This field is mandatory if eventMessageGlobalEnable above is set to enableAsyncKeepAlive. This field
shall be omitted from the request data if eventMessageGlobalEnable is set to any other value. (This
preserves backward compatibility with previous versions of this specification.)

Type Response data

enum8

completionCode

value: { PLDM_BASE_CODES, INVALID_PROTOCOL_TYPE=0x80,
ENABLE_METHOD_NOT_SUPPORTED=0x81, HEARTBEAT_FREQUENCY_TOO_HIGH = 0x82 }

If the requested method in eventMessageGlobalEnable is not supported, the terminus shall respond with
ENABLE_METHOD_NOT_SUPPORTED. The MC may retrieve a list of supported methods via the
EventMessageSupported command (clause 16.8).

PLDM for Platform Monitoring and Control Specification DSP0248

62 Work in Progress Version 1.2.0a

16.5 GetEventReceiver command 1627

The GetEventReceiver command is used to verify the values that were set into an Event Generator using 1628
the SetEventReceiver command. Table 14 describes the format of the command. 1629

Table 14 – GetEventReceiver command format 1630

Type Request data

– none

Type Response data

enum8

completionCode

value: { PLDM_BASE_CODES }

enum8 transportProtocolType

This value indicates the transportProtocolType that the terminus uses for its eventReceiverAddress
and the format of the eventReceiverAddress field. This value is defined in DSP0245.

varies eventReceiverAddress

This value is a medium and protocol-specific address that the responder should use when
transmitting event messages using the indicated protocol. The format and specification of this field
depends on the protocolType. The bytes in this field may contain additional information, such as
protocol version, medium type, transport binding type, and so on.

The format of this field is defined in the PLDM-to-Transport binding specification identified by the
transportProtocolType field.

If the transportProtocolType value from DSP0245 is "Vendor-specific", the overall
eventReceiverAddress format is vendor-specific. However, the first field of the
eventReceiverAddress must be a uint32 that holds a value corresponding to the IANA Enterprise
Number of the vendor or organization that has specified the format.

The value in the eventReceiverAddress field is unspecified if the eventReceiverAddress has not yet
been initialized. Otherwise, the field returns the last value that was set using the SetEventReceiver
command.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 63

16.6 PlatformEventMessage command 1631

PLDM Event Messages are sent as PLDM request messages to the Event Receiver using the 1632
PlatformEventMessage command. Because PLDM requests have associated responses, this approach 1633
provides a positive acknowledgement that the event message was received. Table 15 describes the 1634
format of the command. 1635

When the terminus supplies a pldmMessagePollEvent, this indicates to the Event Receiver that the event 1636
data is large and must be retrieved via a series of multi-part transfers using the 1637
PollForPlatformEventMessage command. An example of this message flow may be found in clause 16.7. 1638

The formatVersion field shall be fixed at 0x01 for this format. 1639

Table 15 – PlatformEventMessage command format 1640

Type Request data

uint8 formatVersion

Version of the event format (the format and definition of the following bytes):

 0x01 for the format detailed in this specification.

uint8 TID

Terminus ID for the terminus that originated the event message

uint8 eventClass

The class of event being sent. See Table 11 for a list of event types.

var eventData

Event data based on the eventClass

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES,
 UNSUPPORTED_EVENT_FORMAT_VERSION = 0x81
 }

enum8 Status

Value Definition

noLogging The event message has been accepted. The implementation does not
provide a PLDM Event Log at the Event Receiver.

loggingDisabled The event message was accepted but will not be logged because
logging is disabled.

logFull The event message was accepted but will not be logged because the
log is full.

acceptedForLogging The event message has been accepted and queued up for logging.
Note that under some conditions the message may not be logged if the
log becomes full or is disabled before the queued message is
processed.

logged The event message was accepted. The implementation has confirmed
that the event has been logged prior to sending the response.

loggingRejected The implementation has accepted the event message but has rejected
logging it based on filtering of the event message content.

PLDM for Platform Monitoring and Control Specification DSP0248

64 Work in Progress Version 1.2.0a

16.7 PollForPlatformEventMessage command 1641

The PollForPlatformEventMessage command enables the Event Receiver to poll for events from a PLDM 1642
terminus and acknowledge the receipt of the event message. The SetEventReceiver command enables 1643
polling of event messages if the PLDM terminus supports this command. PollForPlatformEventMessage 1644
command format is described in table Table 16. This command is optional for this version of this 1645
specification. 1646

This command shall be the only method for retrieving large event messages from a terminus. This 1647
command provides a multiple part transfer mechanism to retrieve event messages, which have variable 1648
data fields. Large messages are broken into chunks of data, the size of which shall be negotiated through 1649
the EventMessageBufferSize command. An example of such a message is the 1650
pldmPDRRepositoryChgEvent. 1651

Only one event is returned on each requested poll cycle and is acknowledged by the requestor on the 1652
next command invocation. The eventIDToAcknowledge shall be set to 0x0000 when retrieving the first 1653
unacknowledged event message (as determined by the terminus). This could be an event message 1654
previously returned if that message was never acknowledged. The PLDM terminus shall return an 1655
eventID greater than 0x0000 if an event is available; otherwise, eventID 0x0000 shall be returned to 1656
indicate the terminus event queue is empty. The PLDM Event Receiver shall acknowledge reception of 1657
the event by issuing the command again with the eventIDToAcknowledge set to the previously retrieved 1658
eventID (from the PLDM terminus). The PLDM terminus shall remove the acknowledged event message 1659
from its internal FIFO upon reception of the acknowledgement. The eventClass and eventData fields are 1660
not present when the eventID field is set to 0x0000 or 0xFFFF or if the completionCode is not set to 1661
SUCCESS. The recommended operation is for the PLDM Event Receiver to retrieve all messages from 1662
the terminus (e.g., poll until the PLDM terminus returns an eventID equal to 0x0000). The PLDM terminus 1663
may overwrite the oldest event message in its internal FIFO should events occur faster than the PLDM 1664
Event Receiver polls and the FIFO fills up. 1665

In the event that the Event Receiver wishes to suspend polling while more events remain to be retrieved, 1666
it may do so by issuing a final invocation of this command, with TransferOperationFlag set to 1667
AcknowledgementOnly, to acknowledge the last event it has received and processed. The Event 1668
Receiver may use this technique to stop polling for PLDM events in the case of asynchronous message 1669
transfer (via PlatformEventMessage commands originated from the terminus). 1670

If an event is sent in asynchronous mode and the terminus is switched to polling mode before the Event 1671
Receiver acknowledges the event, then the terminus shall send the oldest event on the next polling 1672
request unless the terminus overwrites the event. 1673

The formatVersion field shall be fixed at 0x01 for this specification. 1674

Figure 22 shows an example flow that demonstrates switching to polled event transfer to receive an event 1675
with large event data. When the Event Receiver gets a pldmMessagePollEvent, this is a signal that an 1676
event with a large amount of event data is next to be transferred. The Event Receiver then uses the 1677
PollForPlatformEventMessage command with TransferOperationFlag set to GetFirstPart to initiate the 1678
transfer. In response, the terminus supplies the first chunk of data along with a transfer handle for the 1679
next portion and a transferFlag of Start, which indicates that this is the first chunk and there is at least one 1680
more. The Event Receiver then retrieves the next chunk in the same fashion, using the 1681
nextDataTransferHandle supplied in the previous response. So long as the response message 1682
transferFlag field is set to Middle, the Event Receiver knows that more data is waiting to be retrieved, and 1683
repeats this process using the most recently received nextDataTransferHandle to obtain the next data 1684
chunk each time. Finally, when the transferFlag comes back as End, the Event Receiver knows the 1685
transfer is complete and can verify the eventDataIntegrityChecksum against the reassembled event data. 1686
Assuming the transfer was successful, the Event Receiver can now acknowledge receipt of the event and 1687
switch back to asynchronous transfer of events by sending a final PollForPlatformEventMessage 1688
command with TransferOperationFlag set to AcknowledgementOnly. 1689

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 65

Event	Receiver Device	(PLDM	
Terminus)

PlatformEventMessage(pldmMessagePollEvent)

PollForPlatformEventMessage	(GetFirstPart,	0x0000)

return(PLDM_BASE_CODE)

return(nextDataTransferHandle,	
Start=0x00,	
eventClass,	

eventDataSize,	
eventData)

PollForPlatformEventMessage	(GetNextPart,	0xFFFF)

return(nextDataTransferHandle,
Middle=0x01,		
eventClass,	

eventDataSize,	
eventData)

PollForPlatformEventMessage	(GetNextPart,	0xFFFF)
return(nextDataTransferHandle,

End=0x04,		
eventClass,	

eventDataSize,	
eventData,	

eventDataIntegrityChecksum)

PollForPlatformEventMessage	(AcknowledgementOnly,	0xFFFF)

return(
EventID=0x0000	(empty	queue)	or	0xFFFF	(otherwise))

 1690

Figure 22: Switching from asynchronous eventing to poll for an event with large data 1691

PLDM for Platform Monitoring and Control Specification DSP0248

66 Work in Progress Version 1.2.0a

Table 16 – PollForPlatformEventMessage command format 1692

Type Request data

uint8 formatVersion

Version of the event format (the format and definition of the following bytes):

 0x01 for this specification.

enum8 TransferOperationFlag
The operation flag that indicates whether this is the start of the transfer.
Possible values: {GetNextPart=0x00, GetFirstPart=0x01, AcknowledgementOnly=0x02}

uint32 dataTransferHandle

A handle that is used to identify a package data transfer. This handle is ignored by the responder
when the TransferOperationFlag is set to GetFirstPart or AcknowledgementOnly.

uint16 eventIDToAcknowledge

An event previously received that should be acknowledged; The MC shall use the null value 0x0000
when requesting the first entry from the terminus’ event queue. The MC shall use the special value
0xFFFF when in the middle of a multipart event transfer (TransferOperatonFlag is GetNextPart)

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES,
 UNSUPPORTED_EVENT_FORMAT_VERSION = 0x81, EVENT_ID_NOT_VALID=0x82
 }

uint8 TID

Terminus ID for the terminus from which event messages are being supplied

uint16 eventID

The Event ID for the returned event in this response. The terminus assigns the Event ID to an event
so the requester can acknowledge it on the next invocation of this command. The terminus shall
supply a value of 0x0000 if the terminus internal event queue is empty. If TransferOperationFlag in
the request message was set to AcknowledgementOnly and the event queue is non-empty, the
terminus shall supply special value 0xFFFF for this field.

uint32 nextDataTransferHandle

A handle that is used to identify the next portion of the transfer.

This field shall be omitted if eventID is 0x0000 or 0xFFFF.

enum8 TransferFlag
The transfer flag that indicates what part of the transfer this response represents.
Possible values: {Start=0x00, Middle=0x01, End=0x04, StartAndEnd=0x05}

This field shall be omitted if eventID is 0x0000 or 0xFFFF.

uint8 eventClass

The type of event being returned. See Table 11 for a list of event types.

This field shall be omitted if eventID is 0x0000 or 0xFFFF.

uint32 eventDataSize

The size in bytes of the eventData field below. (Does not include eventDataIntegrityChecksum.)

This field shall be omitted if eventID is 0x0000 or 0xFFFF.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 67

Type Response data (continued)

var eventData

A chunk of Event data, based on the eventClass, in a buffer sized as negotiated in the
EventMessageBufferSize command.

This field shall be omitted if eventID is 0x0000 or 0xFFFF.

uint32 eventDataIntegrityChecksum

32-bit CRC for the entirety of event data (all parts concatenated together, excluding this checksum).
This field shall be omitted except for final chunks of event messages containing multiple parts
(TransferFlag = End).

The DataIntegrityChecksum shall not be split across multiple chunks. If appending the
DataIntegrityChecksum would cause this request message to exceed the negotiated maximum
transfer chunk size (see clause 16.9), the DataIntegrityChecksum shall be sent as the only data in
another chunk (with eventDataSize set to zero).

For this command, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 +
x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the
integrity checksum computation. The CRC computation involves processing a byte at a time with the
least significant bit first.

 1693

16.8 EventMessageSupported Command 1694

The EventMessageSupported command is optional for this specification version. It is recommended, 1695
however, that a terminus supports this command if the terminus accepts the SetEventReceiver command. 1696
This command returns a list of eventClass supported by the terminus. The enumeration values for the 1697
eventClass are defined in Table 11. 1698

Table 17 – EventMessageSupported command format 1699

Type Request data

uint8 formatVersion

Version of the event format (the format and definition of the following bytes):

 0x01 for this specification version

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES,
 UNSUPPORTED_EVENT_FORMAT_VERSION = 0x81
 }

enum8 synchronyConfiguration

This value indicates the messaging style most recently configured via the SetEventReceiver
command:

value: { NOT_CONFIGURED = 0x00, // SetEventReceiver command not received

 ASYNCHRONOUS_MESSAGING = 0x01, // Asynchronous messaging
 SYNCHRONOUS_MESSAGING = 0x02 // Poll-based messaging

 ASYNCHRONOUS_WITH_HEARTBEAT = 0x03 // Asynchronous messaging, heartbeat
 }

PLDM for Platform Monitoring and Control Specification DSP0248

68 Work in Progress Version 1.2.0a

Type Response data (continued)

bitfield8 synchronyConfigurationSupported

This value indicates the event messaging styles supported by the terminus. For each bit, a value of
1b shall indicate that the mode is supported.

[7:4] - Reserved for future use

[3] - Asynchronous messaging with heartbeat

[2] - Synchronous (poll-based) messaging

[1] - Asynchronous messaging, no heartbeat

[0] - Reserved; shall be 0b.

uint8 numberEventClassReturned

The count N of eventClass enumerated bytes returned in this response

uint8

eventClass [0]

The first eventClass message the device can generate. The eventClass values are defined in Table
11.

uint8 eventClass [1]

The second eventClass message the device can generate. The eventClass values are defined in
Table 11.

uint8 …

uint8 eventClass [N-1]

The last eventClass message the device can generate. The eventClass values are defined in Table
11.

 1700

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 69

16.9 EventMessageBufferSize Command 1701

The EventMessageBufferSize command is optional for this specification version. It is recommended, 1702
however, a terminus supports this command if the terminus accepts the SetEventReceiver command. 1703
This command communicates the maximum size of the event receiver buffer that can hold a single event 1704
message. The response is the maximum size of the terminus buffer that can transmit a single event 1705
message. The smaller of the two values shall be the negotiated event message size. Any event message 1706
that exceeds the negotiated event message buffer size shall be retrieved by the event receiver using the 1707
PollForPlatformEventMessage command. The terminus shall send the pldmMessagePollEvent to the 1708
PLDM event receiver when an event message exceeds the negotiated buffer size. 1709

In the event that this command is not invoked, a default message buffer size of 256 bytes shall be in 1710
effect. 1711

Table 18 – EventMessageBufferSize command format 1712

Type Request data

uint16 eventReceiverMaxBufferSize

This is the maximum buffer to hold an event message transferred from the terminus to the event
receiver.

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

uint16 terminusMaxBufferSize

This is the maximum size of an event message sent from the terminus to the event receiver. The
smaller of eventReceiverMaxBufferSize and terminusMaxBufferSize shall be the negotiated size for
all event messages regardless of asynchronous or polled.

 1713

 1714

PLDM for Platform Monitoring and Control Specification DSP0248

70 Work in Progress Version 1.2.0a

16.10 eventData format for sensorEvent 1715

Table 19 defines the format of the eventData field in PLDM Event Messages for the sensorEvent class. 1716
This field includes event data for PLDM state sensor and numeric sensor events, and for events related to 1717
changes of the sensor's operational state. 1718

Table 19 – sensorEvent class eventData format 1719

Type Request data

uint16 sensorID

The sensorID is the value that is used in PDRs and PLDM sensor access commands to identify and
access a particular sensor within a terminus.

enum8 sensorEventClass

value: {

 sensorOpState, // Events from a PLDM state or numeric sensor that are related to
 // changes of the sensor's operational state

 stateSensorState, // Events from a PLDM state sensor that are related to a change
 // in the present state from the set of states that the sensor is
 // monitoring

 numericSensorState // Events from a PLDM numeric sensor that are related to a change
 // in the present state from the set of states that the sensor is
 // monitoring. Also returns the reading value that triggered the event.

 }

For sensorEventClass = stateSensorState

uint8 sensorOffset

Identifies which state sensor within a composite state sensor the event is being returned for.

0x00 = first state sensor, 0x01 = second state sensor, and so on

value: 0x00 to 0x07

enum8 eventState

The event state value from the state change that triggered the event message.

See Table 41 for the definition of eventState.

enum8 previousEventState

The event state value for the state from which the present event state was entered.

See Table 41 for the definition of eventState.

special value: This value shall be set to the same value as eventState if the previous event state is
unknown, which may be the case for events that are generated on the first status
assessment that occurs after a sensor has been initialized.

For sensorEventClass = numericSensorState

enum8 eventState

The eventState value from the state change that triggered the event message.

See Table 30 for the enumeration values of eventState.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 71

Type Request data

enum8 previousEventState

The eventState value for the state from which the present state was entered.

See Table 30 for the enumeration values of eventState.

special value: This value shall be set to the same value as eventState if the previous event state is
unknown (which may be the case for events that are generated on the first status
assessment that occurs after a sensor has been initialized).

enum8 sensorDataSize

The bit width and format of reading and threshold values that the sensor returns

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

uint8 |
sint8 |
uint 16 |
sint16 |
sint32 |
uint32

presentReading

The present value indicated by the sensor. The sensorDataSize field returns an enumeration that
indicates the number of bits used to return the value.

For sensorEventClass = sensorOpState

enum8 presentOpState

The sensorOperationalState value from the state change that triggered the event message.

See Table 30 for the enumeration values of sensorOperationalState.

enum8 previousOpState

The sensorOperationalState value for the state from which the present state was entered.

See Table 30 for the enumeration values of sensorOperationalState.

special value: This value shall be set to the same value as presentOpState if the previousOpState
is unknown, which may be the case for events that are generated on the first status
assessment that occurs after a sensor has been initialized.

16.11 eventData format for effecterEvent 1720

Table 20 defines the format of the eventData field in PLDM Event Messages for the effecterEvent class. 1721
This field supports events for changes of the effecter's operational state. 1722

Table 20 – effecterEvent class eventData format 1723

Type Request data

uint16 effecterID

The effecterID is the value that is used in PDRs and PLDM effecter access commands to identify
and access a particular effecter within a terminus.

enum8 effecterEventClass

value: {

 effecterOpState // Events from a PLDM state or numeric effecter that are related to
 // changes of the effecter's operational state

 }

PLDM for Platform Monitoring and Control Specification DSP0248

72 Work in Progress Version 1.2.0a

Type Request data (continued)

For effecterEventClass = effecterOpState

enum8 presentOpState

The effecterOperationalState value from the state change that triggered the event message.

enum8 previousOpState

The effecterOperationalState value for the state from which the present state was entered.

special value: This value shall be set to the same value as presentOpState if the previousOpState
is unknown, which may be the case for events that are generated on the first status
assessment that occurs after an effecter has been initialized.

16.12 eventData format for redfishTaskExecutedEvent 1724

Table 21 defines the format of the eventData field in PLDM Event Messages for the redfishTaskExecuted 1725
class. This field supports PLDM events for completion of a long-running Redfish Task as defined in 1726
DSP0218. 1727

Table 21 – redfishTaskExecutedEvent class eventData format 1728

Type Request data

uint32 resourceID

The ResourceID is the value that is used in PDRs and PLDM for Redfish Device Enablement
commands to identify and access a particular collection of schema-based Redfish data

uint16 operationID

Operation associated with the Task that has completed execution

16.13 eventData format for redfishMessageEvent 1729

Table 22 defines the format of the eventData field in PLDM Event Messages for the redfishMessageEvent 1730
class. A PLDM event may contain one or more Redfish Events. See DSP0218 for information on how 1731
PLDM for Redfish Device Enablement uses RDE events and DSP0266 for information on the events 1732
themselves. 1733

Redfish Events contain timestamps. For RDE Devices that do not contain realtime clocks, the timestamp 1734
shall be set to a sentinel value of zero. When decoding Redfish Events with the timestamp set to the zero 1735
sentinel, the MC may substitute a current timestamp. 1736

Table 22 – redfishMessageEvent class eventData format 1737

Type Request data

uint8 eventCount

The number of Redfish Events N encoded in the eventData field below.

uint16 eventDataLength

Length in bytes of the eventData field below, which comprises the encoding of one or more
Redfish Events contained within this PLDM event. This value shall not exceed the negotiated event
message size.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 73

Type Request data (continued)

uint32 resourceID [0]

An opaque handle referencing the particular collection of schema-based Redfish data associated
with the first Redfish Event encoded in the eventData field below.

enum8 eventSeverity [0]

The severity of the first Redfish Event in the Redfish EventRecords array encoded in eventData
below.

Value = {OK = 0, Warning = 1, Critical = 2}

… …

uint32 resourceID [N - 1]

An opaque handle referencing the particular collection of schema-based Redfish data associated
with the last Redfish Event encoded in the eventData field below.

enum8 eventSeverity [N - 1]

The severity of the last Redfish Event in the Redfish EventRecords array encoded in eventData
below.

Value = {OK = 0, Warning = 1, Critical = 2}

bejEncoding eventData

BEJ encoded Event payload data. The bejEncoding PLDM type is defined in DSP0218.

16.14 eventData format for pldmPDRRepositoryChgEvent 1738

This Event is to signal the PLDM Event Receiver that there is a change in the terminus PDR repository. 1739
The device will return the PDR Types or the PDR Record Handles for the PDRs to be retrieved from the 1740
terminus. This allows a simple method for a terminus to indicate which portion of its “virtual” PDR 1741
Repository needs to be refreshed. The PLDM terminus client (or event receiver) will need to comprehend 1742
additions, deletions and modifications of the PDRs as it updates the system primary PDR repository. The 1743
terminus may indicate the entire repository is to be retrieved by setting the eventDataFormat to a special 1744
value of “refreshEntireRepository”. The terminus shall not mix “PDR Types” and “PDR Record Handles” in 1745
a single event message. 1746

The terminus may have multiple operations in each event message but the operations shall be sent in the 1747
following sequence: 1748

1. PDR records to be removed (deleted) from the event receiver’s repository shall be first, grouped 1749
either in a single event message or as individual event messages. 1750

2. PDR records to be added to the event receiver’s repository shall be after the deleted records, 1751
grouped either in a single event message or as individual event messages. 1752

3. The existing PDR records to be modified in the event receiver’s repository shall be last, grouped 1753
either in a single event message or as individual event messages. 1754

For example, if a hard drive is added to a storage enclosure under control of an intelligent storage 1755
adapter, the terminus could indicate the addition of PDRs representing the newly added hard drive in one 1756
event message followed by another event message indicating the affected Entity Association PDRs. The 1757
event receiver, which may also be the primary repository manager, only needs to retrieve the affected 1758
PDRs rather than the entire repository. 1759

PLDM for Platform Monitoring and Control Specification DSP0248

74 Work in Progress Version 1.2.0a

Another example is if an entire storage enclosure is removed, the number of affected PDRs returned in 1760
this event message may exceed the MCTP baseline transmission unit size. In this example, setting the 1761
eventDataFormat to a special value of “refreshEntireRepository” is the best choice. 1762

The goal of this event is to avoid retrieving the entire device PDR repository for a small device PDR 1763
repository differences. 1764

Table 23 – pldmPDRRepositoryChgEvent class eventData format 1765

Type Request data

enum8 eventDataFormat { refreshEntireRepository, formatIsPDRTypes, formatIsPDRHandles }

This field indicates if the changedRecords are of PDR Types or PDR Record Handles.

The device may signal to the event receiver to re-enumerate the entire device PDR repository by
supplying the value refreshEntireRepository. To signal that only certain types of PDRs should be
refreshed, the device shall supply the value formatIsPDRTypes and provide one change record
below for each type of PDR to be refreshed.

uint8 numberOfChangeRecords

The number of changeRecords NR following this field. If the eventDataFormat is
refreshEntireRepository, this value shall be zero.

var changeRecord [0]

See Table 24 – pldmPDRRepositoryChgEvent changeRecord format for details. This field is not
present if the numberOfChangeRecords is zero.

var changeRecord [1]

.

var changeRecord [NR – 1]

 1766

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 75

Table 24 – pldmPDRRepositoryChgEvent changeRecord format 1767

Type Request data

enum8 eventDataOperation { refreshAllRecords, recordsDeleted, recordsAdded, recordsModified }

For each pldmPDRRepositoryChgEvent record, there can only be a single operation. This simplifies
the parsing for both the terminus and the event receiver. The order the event records are provided
shall be “RefreshAll”, “Deleted”, “Added”, “Modifed”.

The value refreshAllRecords shall only be supplied when eventDataFormat was set to
formatIsPDRTypes. In this case, the entries below represent a series of PDR types to be refreshed.

uint8 numberOfChangeEntries

The number of change entries NE following this field.

uint32 changeEntry [0]

This value will be either a “PDR Type” enumeration or a “PDR Record Handle” as enumerated by
the “eventDataFormat” field in the pldmPDRRepositoryChgEvent event message.

There may be multiple PDR Types (such as Numeric Sensor, State Sensor and Entity Association
Sensor) to be retrieved due to a “hot-plug” event for the terminus. All the changed PDR Types may
be returned in a single event message. The client (or event receiver) can use the FindPDR
command to gather the PDR record.

Alternatively, the terminus may provide a list of PDR Record Handles, which the MC can use as
input to the GetPDR command.

uint32 changeEntry [1]

.

uint32 changeEntry [NE – 1]

16.15 eventData format for pldmMessagePollEvent 1768

Table 25 defines the format of the eventData field in PLDM Message Poll Event. This event typically 1769
signals the event receiver that a polling command is needed to retrieve a large event message from the 1770
terminus. 1771

Table 25 – pldmMessagePollEvent class eventData format 1772

Type Request data

uint8 formatVersion

Version of the event format (the format and definition of the following bytes):

 0x01 for this specification.

uint16 eventID

Identifier for the event that requires multipart transfer.

uint32 dataTransferHandle

A handle that is used to identify the event data to be received via the PollForPlatformEventMessage
command.

16.16 eventData format for heartbeatTimerElapsedEvent 1773

Table 26 defines the format of the eventData field in Heartbeat Timer Elapsed Event. The terminus 1774
periodically emits this event in order to assert that the connection between itself and the MC remains 1775

PLDM for Platform Monitoring and Control Specification DSP0248

76 Work in Progress Version 1.2.0a

active. This event shall only be emitted when the eventMessageGlobalEnable field in the 1776
SetEventReceiver command (clause 16.4) request message is set to enableAsyncKeepAlive. 1777

Table 26 – heartbeatTimerElapsedEvent class eventData format 1778

Type Request data

uint8 formatVersion

Version of the event format (the format and definition of the following bytes):

 0x01 for this specification.

uint8 sequenceNumber

A sequence number for the heartbeat timer, incremented by one each time the timer elapses. This
enables the MC to detect whether it has missed a heartbeat.

17 PLDM Numeric Sensors 1779

This clause provides information that describes the characteristics and operation of PLDM Numeric 1780
Sensors. 1781

17.1 Sensor readings, data sizes 1782

PLDM Numeric Sensors can return a present reading value. The value is returned as a binary integer. 1783
The size of this integer and whether it is signed can vary on a per-sensor basis. The PLDM 1784
GetSensorReading command includes a parameter in its response that indicates the format used for 1785
returning the reading. The same format is used for any thresholds and hysteresis values that are used for 1786
request or response parameters. Additionally, the data size is supported in PDR information for the 1787
sensor. 1788

17.2 Units and reading conversion 1789

The sensor commands do not intrinsically identify what type of unit, such as volts, amps, or RPM, is used 1790
for the sensor's present reading value. Additionally, the value may require scaling to convert the value to 1791
normalized units, such as millivolts (mV), nanoseconds, and so on. 1792

For example, microcontrollers commonly incorporate an 8-bit analog-to-digital (A/D) converter. If the 1793
converter is monitoring a signal where the 0x00 value of the conversion corresponds to 0 volts and a 1794
0xFF reading corresponds to 4.00 volts, each count of the converter corresponds to a value of 4.0/255 ~= 1795
15.686274 mV per count. Converting a particular reading from counts into volts requires multiplying the 1796
reading by a conversion factor. A reasonable guideline is that the conversion factor should be accurate to 1797
at least 4 times the resolution of the converter. In this case, the resolution of the converter is 1 part in 255, 1798
which would require the accuracy of the conversion factor to be to better than 1 part in 1020, which 1799
rounds up to four significant digits, or 15.69 mV per count. 1800

To avoid the need for a floating point format for sensor readings and the need for multibyte multiplications 1801
and divisions in simple devices, PLDM readings are returned as “raw” integers that are converted to 1802
normalized units by the consumer of the reading data by using a specified conversion formula and 1803
sensor-specific conversion factors. The consumer of the PLDM sensor reading data will be a device 1804
serving a role such as a MAP that has more resources for doing mathematical operations. This approach 1805
avoids burdening simple devices with the conversion task. 1806

The conversion formula is specified in 27.7. The conversion factors must be provided by the vendor or 1807
designer of the particular sensor implementation. The PDR for a numeric sensor supports returning 1808
conversion factors and the type of units (volts, amps, and so on) used for a particular numeric sensor. 1809

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 77

17.3 Reading-only or threshold-based numeric sensors 1810

A particular instance of a PLDM Numeric Sensor can return just a numeric reading or a numeric reading 1811
and a threshold-based status. These sensors are referred to as "reading-only" or "threshold-based" 1812
numeric sensors. 1813

17.4 Readable and settable thresholds 1814

A given instance of a PLDM Numeric Sensor may have thresholds that are readable through the 1815
GetSensorThresholds command or that are settable through the SetSensorThresholds command. The 1816
PDR information can indicate whether a particular numeric sensor uses thresholds and, if so, which 1817
thresholds are supported and whether they are settable. To avoid the need for a floating point format for 1818
threshold settings and the need for multibyte multiplications and divisions in simple devices, the 1819
GetSensorThresholds and SetSensorThresholds commands must use “raw” integers to be used in the 1820
conversion formula specified in the specific numeric sensor PDR. 1821

17.5 Update/polling intervals and states updates 1822

A sensor may periodically collect internal readings and status (that is, it may poll for updates) and 1823
respond to a GetSensorReading request with the last collected values, or it may collect the values "on 1824
demand" upon receiving the request. 1825

An updateInterval value in the PDR for the sensor provides a way for the requester to determine the 1826
maximum time from when a sensor was re-armed or accessed to when the subsequent eventState or 1827
reading update should have occurred. 1828

For a sensor that polls for updates, the updateInterval corresponds to the nominal polling interval, ±50%. 1829
(The ±50% variation is to accommodate manufacturing variations between devices implementing sensors 1830
and variations in firmware-based polling intervals.) There is no requirement for a sensor's polling interval 1831
to be synchronized (restarted) when a re-arm occurs. A sensor is also allowed to take as long as two 1832
polling intervals before updating its state following a re-arm (one interval to recognize the re-arm, and one 1833
interval to collect and apply the updated state). 1834

For a sensor that updates "on demand," the updateInterval indicates the maximum time, ±50%, from 1835
receiving a GetSensorReading command to when a reading and status update should occur. If the sensor 1836
can update itself within the PLDM Request-to-response time (refer to DSP0240), either an updateInterval 1837
value of 0 or the actual update interval may be used in the PDR. 1838

If the updateInterval for a given sensor is longer than the PLDM Request-to-response time, the 1839
updateInterval must be specified and the sensorOperationalStatus must be returned as "initializing" while 1840
the sensor is performing its initial state assessment after being enabled or re-armed. 1841

Because a sensor is allowed to take up to two polling intervals to update after a re-arm, and because the 1842
variation is allowed to be ±50%, it may take as long as three nominal polling intervals (two nominal 1843
intervals times 1.5) plus a PLDM Request-to-response time before the effect of a re-arm is realized. 1844

17.6 Thresholds, Present State, and Event State 1845

PLDM Numeric Sensors that are threshold-based have associated thresholds against which the reading 1846
is compared. 1847

17.6.1 Threshold severity levels 1848

Each threshold is associated with a severity that is related to how far the threshold is from the normal 1849
range of the sensor. Unless otherwise specified, the severity level is generally based on the view that a 1850
sensor is monitoring parameters that are associated with a physical entity. Table 27 describes the 1851
threshold severity levels. 1852

PLDM for Platform Monitoring and Control Specification DSP0248

78 Work in Progress Version 1.2.0a

Table 27 – Threshold severity levels 1853

Severity level Description

warning The reading is outside of normal expected operating range but the monitored entity is
expected to continue to operate normally. The warning may be an indication of a
condition that is expected to become critical or fatal with time unless steps are taken to
counter the condition that is causing the warning. As such, warning thresholds are
usually implemented when some automated or remote action can be taken as a result
of seeing the warning. For example, an application might use a warning related to an
over-temperature condition to take actions to increase the system cooling or decrease
its load. A warning related to increasing levels of correctable errors in a memory
device might trigger an action to schedule a service call to replace the memory device
before it fails.

critical The reading is outside of supported operating range. Monitored entities might operate
abnormally, have transient failures, or propagate errors to other entities under this
condition. Prolonged operation under this condition might result in degraded lifetime
for the monitored entity. The monitored entity will usually return to normal operation if
the condition returns to a warning or normal level. A sensor reaching the critical
threshold should not cause a permanent failure of the entity.

fatal The reading is outside of rated operating range. Monitored entities might experience
permanent failures or cause permanent failures to other entities under this condition.
Remedial actions might require replacement of the monitored entity or other
components. The reaction to the entity crossing the fatal threshold is outside the scope
of this specification which may include becoming nonresponsive.

17.6.2 Upper and lower thresholds 1854

A given threshold for a PLDM Numeric Sensor can be either an upper or a lower threshold. Upper 1855
thresholds are for tracking events that become more severe as the reading becomes more positive 1856
numerically. Lower thresholds are for events that become more severe as the reading becomes more 1857
negative numerically. 1858

PLDM has three upper thresholds: upper warning, upper critical, and upper fatal. Similarly, PLDM has 1859
three lower thresholds: lower warning, lower critical, and lower fatal. By convention, these thresholds 1860
occur in the following order: lower fatal, lower critical, lower warning, upper warning, upper critical, and 1861
upper fatal. Lower fatal corresponds to the most negative threshold value, and upper fatal corresponds to 1862
the most positive threshold value. This order is illustrated in Figure 23. 1863

A sensor is not required to implement all thresholds. For example, a sensor that monitors for an over-1864
voltage condition may implement only an upper critical threshold. A sensor that is monitoring a low-RPM 1865
condition may implement only lower warning and lower critical thresholds. A temperature sensor may 1866
implement both upper and lower thresholds so that it can track both over-temperature and under-1867
temperature conditions. 1868

17.6.3 Present State 1869

A PLDM Numeric Sensor that uses thresholds returns a presentState value that is based on a simple 1870
numeric comparison of the present reading against the sensor to the thresholds and returns the threshold 1871
range with which the reading is associated. The presentState value is updated solely based on a numeric 1872
comparison of the present reading to the thresholds. For upper thresholds, the presentState value is 1873
based on whether the present reading is greater than or equal to the threshold value. For lower 1874
thresholds, the presentState value is based on whether the present reading is less than or equal to the 1875
threshold value. For example, if the presentState value is greater than or equal to the value for upper 1876
critical threshold but is less than the value for upper fatal threshold, the presentState value will be 1877
UpperCritical. 1878

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 79

17.6.4 Event State 1879

The eventState field of a PLDM Numeric Sensor is updated based on transitions between the different 1880
monitored states of the sensor. Unlike presentState, the eventState value includes the effect of the 1881
hysteresis setting. If the hysteresis value for the sensor is equal to one count of the reading, the 1882
eventState and presentState values will be the same. Otherwise, the eventState setting may vary from 1883
the presentState due to the effect of hysteresis. See 17.9 for more information about hysteresis and its 1884
relationship to eventState. 1885

The eventState behavior is also affected by whether the sensor implementation is manual- or auto-rearm 1886
(see 17.7). 1887

17.7 Manual re-arm and auto re-arm sensors 1888

The event state tracking for a sensor can be either auto re-arm or manual re-arm. An auto re-arm sensor 1889
updates its eventState automatically whenever the sensor detects that a state transition has occurred. 1890

A manual re-arm sensor retains the most severe event state transition that it has detected since the time 1891
the sensor was initialized or since the last time the eventState value was explicitly cleared (using the re-1892
arm operation in the GetSensorReading command). If a new state is assessed that has the same 1893
criticality as the previous state, the most recently assessed value shall be returned. For example, if the 1894
previous value was upperCritical and the presentState value is lowerCritical, then upperCritical shall be 1895
returned. 1896

Thus, auto re-arm sensors automatically update their status on any detected state transition, while 1897
manual re-arm sensors automatically update their eventState value only on detecting a worsening 1898
(increasing severity) transition (or upon a transition to a different state of equivalent severity as the 1899
previous state). 1900

Re-arming of numeric sensors is done through the GetSensorReading command. Re-arming causes the 1901
sensor to internally enter its “initializing” operating state until it next updates its presentState and 1902
eventState. (This update may happen so quickly that the temporary entry into the initializing state is never 1903
reflected in the sensorOperationalState parameter of the GetSensorReading command.) 1904

17.8 Event message generation 1905

A PLDM Numeric Sensor that supports and is enabled to generate event messages shall generate them 1906
whenever an Event State (eventState) change is detected. To detect changes in the Event State, the 1907
sensor implementation must do periodic polling or incorporate some other asynchronous mechanism, 1908
such as the occurrence of an interrupt, which causes the sensor to obtain a new reading, the eventState 1909
to update and an event message to be generated. 1910

17.9 Threshold values and hysteresis 1911

Threshold settings for PLDM Numeric Sensors are required to be ordered from numerically most negative 1912
to most positive in the following order: lower fatal, lower critical, lower warning, upper warning, upper 1913
critical, upper fatal. The hysteresis value is always subtracted from the "upper" thresholds and added to 1914
the "lower" thresholds. 1915

Thus, hysteresis is always applied on the transition from a more severe state to a less severe state. For 1916
example, assume that a sensor has a hysteresis value of 2, has an upper critical threshold set to 80, and 1917
is presently in the "upper warning" state. The sensor will transition to the "upper critical" state when it 1918
detects that the reading value reaches a value that is greater than or equal to the threshold setting of 80. 1919
The sensor is now in the "upper critical" state. To return to the "upper warning" state, the reading has to 1920
drop to 78 (80 minus the hysteresis value of 2). 1921

PLDM for Platform Monitoring and Control Specification DSP0248

80 Work in Progress Version 1.2.0a

Figure 23 helps further describe and illustrate the relationships between thresholds, hysteresis, 1922
eventState, and presentState for numeric sensors. 1923

hysteresis

upper eventStatus becomes asserted
when a transition from the deasserted state
to a reading greater than or equal to the
threshold is detected.

upper fatal threshold

upper critical threshold

upper warning threshold

lower warning threshold

lower critical threshold

lower fatal threshold

upper eventStatus becomes
deasserted when a reading less
than or equal to the threshold
minus the hysteresis is detected.

lower eventStatus becomes asserted when
a transition from the deasserted state to a
reading less than or equal to the threshold
is detected.

lower eventStatus becomes deasserted
when a reading greater than or equal to the
threshold plus the hysteresis is detected.

normal

The normal eventStatus becomes asserted
when no other eventStatus is asserted.

normal presentStatus occurs when the
reading is not greater than or equal to any of
the upper thresholds or is less than or equal to
any of the lower thresholds.

presentStatus is always just based on how
the present reading compares to the
threshold values, regardless of the hysteresis
value.

For upper thresholds the presentStatus
reflects whether the reading is greater than or
equal to the threshold, while for lower
thresholds the presentStatus reflects whether
the reading is less than or equal to the
threshold.

in
cr

ea
si

ng
ly

 p
os

iti
ve

 th
re

sh
ol

d
va

lu
es

 1924

Figure 23 – Numeric sensor threshold and hysteresis relationships 1925

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 81

18 PLDM Numeric Sensor commands 1926

This clause describes the commands for accessing PLDM Numeric Sensors per this specification. The 1927
command numbers for the PLDM messages are given in clause 30. 1928

If PLDM numeric sensors are implemented, the Mandatory/Optional/Conditional (M/O/C) requirements 1929
shown in Table 28 apply. 1930

Table 28 – Numeric Sensor commands 1931

Command M/O/C Reference

SetNumericSensorEnable M See 18.1.

GetSensorReading M See 18.2.

GetSensorThresholds O, C [1] See 18.3.

SetSensorThresholds O See 18.4.

RestoreSensorThresholds O See 18.5.

GetSensorHysteresis O, C [2] See 18.6.

SetSensorHysteresis O See 18.7.

InitNumericSensor C [3] See 18.8.

[1] The GetSensorThresholds command is required if the SetSensorThresholds command is implemented. Otherwise, 1932
the command is optional. 1933

[2] The GetSensorHysteresis command is required if the SetSensorHysteresis command is implemented. Otherwise, 1934
the command is optional. 1935

[3] The InitNumericSensor command is required if the sensor requires initialization following any one of the conditions 1936
identified in the initConditions field of the PLDM Numeric Sensor Initialization PDR. 1937

18.1 SetNumericSensorEnable command 1938

The SetNumericSensorEnable command is used to set the operating state of the sensor itself and 1939
whether the sensor generates event messages. Changing this state affects only the operation of the 1940
sensor; it has no effect on the operational state of the entity or parameter that is being monitored. Event 1941
message generation is optional for a sensor. Table 29 describes the format of the command. 1942

Table 29 – SetNumericSensorEnable command format 1943

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

enum8 sensorOperationalState

The desired state of the sensor

This enumeration is a subset of the operational state values that are returned by the GetSensorReading
command. Refer to the GetSensorReading command for the definition of the values in this enumeration.

value: { enabled, disabled, unavailable }

PLDM for Platform Monitoring and Control Specification DSP0248

82 Work in Progress Version 1.2.0a

Type Request data (continued)

enum8 sensorEventMessageEnable

This value is used to enable or disable event message generation from the sensor.

value: { noChange, disableEvents, enableEvents, enableOpEventsOnly, enableStateEventsOnly}

noChange means do not alter the present setting. Use noChange when the sensor does not support
event message generation.

Type Response data

enum8

completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID = 0x80,
 INVALID_SENSOR_OPERATIONAL_STATE = 0x81,
 EVENT_GENERATION_NOT_SUPPORTED = 0x82 //an attempt was made to enable or disable
 event generation for a sensor that does not support event message generation. }

18.2 GetSensorReading command 1944

The GetSensorReading command is used to get the present reading and threshold event state values 1945
from a numeric sensor, as well as the operating state of the sensor itself. Table 30 describes the format of 1946
the command. 1947
NOTE The Numeric Sensor PDR sensorID type, in clause 28.4 Numeric Sensor PDR has been changed in version 1948

1.1.1 of this specification from uint8 to uint16 to be consistent with GetSensorReading command. 1949

Table 30 – GetSensorReading command format 1950

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF reserved

bool8 rearmEventState

true = manually re-arm EventState after responding to this request

Re-arming causes the sensor to enter the “initializing” state until it updates its presentState and
eventState.

Sensor implementations shall either update that status immediately upon responding to this
command or wait for the conclusion of their polling interval before updating the eventState.

If event messages are enabled, the status update shall also cause the sensor to issue a
corresponding assertion event message based on the eventState that it assesses. This includes
generating an event message for the "normal" state.

false = no manual re-arm

 1951

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 83

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID = 0x80,
REARM_UNAVAILABLE_IN_PRESENT_STATE = 0x81 }

enum8 sensorDataSize

The bit width and format of reading and threshold values that the sensor returns

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

enum8

sensorOperationalState

The state of the sensor itself

value: { enabled, disabled, unavailable, statusUnknown, failed, initializing, shuttingDown, inTest }

enabled Enabled and operating. The sensor is able to return valid presentState,
previousState, presentReading, and eventState values. This state can be set
through the SetNumericSensorEnable command.

The unavailable operational state indicates a condition in which the sensor is unable to assess
one of the other state values. This typically transient condition may occur when a sensor is
being initialized or has been re-armed. For the following states, the presentState, eventState,
and eventDeassertionStatus values shall be set to "Unknown". Other actions related to
monitoring by the sensor may also cease in this state. For example, a sensor device that polls
to collect monitored values may stop polling. Unless otherwise specified, the following states
are not settable through PLDM commands.

disabled The sensor is disabled from returning presentReading and event state values.
This state is settable through the SetNumericSensorEnable command.

unavailable The sensor should be ignored due to the configuration of the platform or
monitored entity. For example, the sensor is for monitoring a processor
temperature, but the processor is not installed. This state is settable through
the SetNumericSensorEnable command.

statusUnknown The sensor cannot presently return valid state or reading information for the
monitored entity.

failed The sensor has failed. The sensor implementation has determined that it can
not return correct values for one or more of its presentState or eventState
values.

initializing The sensor is in the process of transitioning to the operating state because
the sensor is initializing (starting) or reinitializing. The presentState and
eventStatevalues shall be ignored while the sensor is in this state.

shuttingDown The sensor is transitioning to the disabled, failed, or unavailable states.

inTest The sensor is presently undergoing testing.

 NOTE The operation of sensor testing and the mechanisms for sensor testing are
outside the scope of this specification.

enum8 sensorEventMessageEnable

value: { noEventGeneration, eventsDisabled, eventsEnabled, opEventsOnlyEnabled,
stateEventsOnlyEnabled }

PLDM for Platform Monitoring and Control Specification DSP0248

84 Work in Progress Version 1.2.0a

Type Response data (continued)

enum8 presentState

The most recently assessed state value monitored by the sensor. Refer to 17.5 for additional information
on how presentState is assessed.

If the sensorOperationalState is set to enabled the sensor must return a value other than "Unknown" for
the presentState.

If the sensorOperationalState is not set to enabled the sensor shall return "Unknown" for the
presentState. Parties that are using this command should also ignore the presentState value except
when sensorOperationalState is set to enabled. Refer to 17.6 for important information about how
presentState and eventState are generated.

value: { Unknown, Normal, Warning, Critical, Fatal,
 LowerWarning, LowerCritical, LowerFatal,
 UpperWarning, UpperCritical, UpperFatal }

enum8 previousState

The state that the presentState was entered from. This must be different from the present state (with the
exception that there may be conditions where both the presentState and previousState are returned as
"Unknown").

The previousState is updated whenever the presentState is assessed as different from the previously
assessed value for presentState. Refer to 17.5 for additional information on how presentState is
assessed.

If the sensorOperationalState is set to enabled the sensor may temporarily return "Unknown" for the
previousState if the sensor has not yet assessed a previousState value (as may happen immediately
after the sensor has become enabled). Otherwise, the sensor must return a value other than "Unknown".
If the sensorOperationalState is not set to enabled the sensor shall return "Unknown" for the
previousState. Parties that are using this command should also ignore the previousState value except
when sensorOperationalState is set to enabled. Refer to 17.6 for important information about how
presentState and eventState are generated.

value: { Unknown, Normal, Warning, Critical, Fatal,
 LowerWarning, LowerCritical, LowerFatal,
 UpperWarning, UpperCritical, UpperFatal }

enum8 eventState

Indicates which threshold crossing assertion events have been detected. The sensor is required to return
one of the specified values in the enumeration. However, the value is required to be valid only when the
sensor is in the enabled state.

If the sensorOperationalState is set to enabled the sensor may temporarily return "Unknown" for the
eventState if the sensor has not yet assessed a eventState value (as may happen immediately after the
sensor has become enabled). Otherwise, the sensor must return a value other than "Unknown".
The eventState value is set to "Unknown" when sensorOperationalState is set to any value except
enabled. Parties that are using this command should ignore the eventState value under this condition.
Refer to 17.6 for additional information about how presentState and eventState are generated.

value: { Unknown, Normal, Warning, Critical, Fatal,
 LowerWarning, LowerCritical, LowerFatal,
 UpperWarning, UpperCritical, UpperFatal }

uint8 |
sint8 |
uint16 |
sint16 |
sint32 |
uint32

presentReading

The present value indicated by the sensor

NOTE The SensorDataSize field returns an enumeration that indicates the number of bits used to return the
value. An implementation may either periodically sample the value and return the most recently collected
sample, or it may sample the value at the time the presentReading is requested. The presentReading
value is not required to return a correct value and must be ignored while the sensorOperationalState value
of the sensor is Unavailable.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 85

18.3 GetSensorThresholds command 1952

The GetSensorThresholds command is used to get the present threshold settings for a PLDM Numeric 1953
Sensor. To avoid the need for a floating point format for threshold settings and the need for multibyte 1954
multiplications and divisions in simple devices, the GetSensorThresholds and SetSensorThresholds 1955
commands must use “raw” integers to be used in the conversion formula specified in the numeric sensor 1956
PDR. 1957

Table 31 describes the format of the command. 1958

Table 31 – GetSensorThresholds command format 1959

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

Type Response data

enum8 completionCode
value: { PLDM_BASE_CODES, INVALID_SENSOR_ID = 0x80 }

enum8 sensorDataSize

The bit width and format of reading and threshold values that the sensor returns

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

NOTE The sensorDataSize return value provides an enumeration that indicates the number of bits used to
return the threshold values. All six threshold fields must be returned regardless of which thresholds
are implemented. If a given threshold is not implemented the implementation can elect to put any
value in the corresponding field (0 is recommended). The Numeric Sensor PDRs describe which
thresholds are supported and how the values are to be converted.

For sensorDataSize = uint8 or sint8

uint8 | sint8 upperThresholdWarning

uint8 | sint8 upperThresholdCritical

uint8 | sint8 upperThresholdFatal

uint8 | sint8 lowerThresholdWarning

uint8 | sint8 lowerThresholdCritical

uint8 | sint8 lowerThresholdFatal

For sensorDataSize = uint16 or sint16

uint16 | sint16 upperThresholdWarning

uint16 | sint16 upperThresholdCritical

uint16 | sint16 upperThresholdFatal

uint16 | sint16 lowerThresholdWarning

uint16 | sint16 lowerThresholdCritical

uint16 | sint16 lowerThresholdFatal

PLDM for Platform Monitoring and Control Specification DSP0248

86 Work in Progress Version 1.2.0a

Type Response data (continued)

For sensorDataSize = uint32 or sint32

uint32 | sint32 upperThresholdWarning

uint32 | sint32 upperThresholdCritical

uint32 | sint32 upperThresholdFatal

uint32 | sint32 lowerThresholdWarning

uint32 | sint32 lowerThresholdCritical

uint32 | sint32 lowerThresholdFatal

18.4 SetSensorThresholds command 1960

The SetSensorThresholds command is used to set the thresholds of a PLDM Numeric Sensor. Values for 1961
all threshold parameters must be provided. However, if a particular threshold is not supported by the 1962
sensor, the value passed in the corresponding parameter is ignored. The numeric sensor PDR indicates 1963
which thresholds are supported. To avoid unintended event transitions, it is recommended that the sensor 1964
be disabled while changing threshold settings. After disabling the sensor, it is recommended that a “read-1965
modify-write” operation be used to set the specific threshold values. 1966

Threshold values may be volatile or nonvolatile. The level of volatility is reflected in the PDR for the 1967
sensor. 1968

To avoid the need for a floating point format for threshold settings and the need for multibyte 1969
multiplications and divisions in simple devices, the GetSensorThresholds and SetSensorThresholds 1970
commands must use “raw” integers to be used in the conversion formula specified in the numeric sensor 1971
PDR. 1972

Table 32 describes the format of the command. 1973

Table 32 – SetSensorThresholds command format 1974

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

enum8 sensorDataSize

The bit width and format for the thresholds that are set in the sensor

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

NOTE This value is used for checking purposes only. A sensor accepts only one particular data format.
The sensor data size must be known a priori; it can be obtained from a PDR for the sensor or by
issuing a GetSensorThresholds command. Values for all six threshold parameters must be provided
regardless of which thresholds are supported. If a particular threshold is not supported by the
sensor, the value passed in the corresponding parameter is ignored.

For sensorDataSize = uint8 or sint8

uint8 | sint8 upperThresholdWarning

uint8 | sint8 upperThresholdCritical

uint8 | sint8 upperThresholdFatal

uint8 | sint8 lowerThresholdWarning

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 87

Type Request data (continued)

uint8 | sint8 lowerThresholdCritical

uint8 | sint8 lowerThresholdFatal

For sensorDataSize = uint16 or sint16

uint16 | sint16 upperThresholdWarning

uint16 | sint16 upperThresholdCritical

uint16 | sint16 upperThresholdFatal

uint16 | sint16 lowerThresholdWarning

uint16 | sint16 lowerThresholdCritical

uint16 | sint16 lowerThresholdFatal

For sensorDataSize = uint32 or sint32

uint32 | sint32 upperThresholdWarning

uint32 | sint32 upperThresholdCritical

uint32 | sint32 upperThresholdFatal

uint32 | sint32 lowerThresholdWarning

uint32 | sint32 lowerThresholdCritical

uint32 | sint32 lowerThresholdFatal

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID=0x80 }

18.5 RestoreSensorThresholds command 1975

The RestoreSensorThresholds command restores default thresholds for the device. Table 33 describes 1976
the format of the command. 1977

Table 33 – RestoreSensorThresholds command format 1978

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID=0x80 }

18.6 GetSensorHysteresis command 1979

The GetSensorHysteresis command is used to read the present hysteresis setting for a PLDM Numeric 1980
Sensor. The hysteresis value uses the same units, data size, and conversion factors that are specified for 1981
the reading from the sensor. Table 34 describes the format of the command. 1982

PLDM for Platform Monitoring and Control Specification DSP0248

88 Work in Progress Version 1.2.0a

Table 34 – GetSensorHysteresis command format 1983

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID=0x80 }

enum8 sensorDataSize

The bit width of the hysteresis value that is being returned

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

For sensorDataSize = uint8 or sint8

uint8 | sint8 hysteresis value

For sensorDataSize = uint16 or sint16

uint16 | sint16 hysteresis value

For sensorDataSize = uint32 or sint32

uint32 | sint32 hysteresis value

18.7 SetSensorHysteresis command 1984

The SetSensorHysteresis command is used to set the present hysteresis setting for a PLDM Numeric 1985
Sensor. The hysteresis value uses the same units, data size, and conversion factors that are specified for 1986
the reading from the sensor. It is recommended that the sensor be disabled while changing the hysteresis 1987
setting. Table 35 describes the format of the command. 1988

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 89

Table 35 – SetSensorHysteresis command format 1989

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

enum8 sensorDataSize

The bit width and format for the following hysteresis value that is being set into the sensor

value: { uint8, sint8, uint16, sint16, uint32, sint32 }
NOTE This value is used for checking purposes only. A sensor accepts only one particular data format.

The sensor data size must be known a priori; it can be obtained from a PDR for the sensor or by
issuing a GetSensorHysteresis command.

For sensorDataSize = uint8 or sint8

uint8 | sint8 hysteresis value

For sensorDataSize = uint16 or sint16

uint16 | sint16 hysteresis value

For sensorDataSize = uint32 or sint32

uint32 | sint32 hysteresis value

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID=0x80 }

18.8 InitNumericSensor command 1990

The InitNumericSensor command is typically used by the Initialization Agent function (see clause 15) to 1991
initialize PLDM Numeric Sensors. The command may also be used as an interface for “virtual sensors,” 1992
which do not actually poll and update their own state but instead rely on another management controller 1993
or system software to set their state. 1994

Implementations should avoid virtual sensors that require initialization by the Initialization Agent function. 1995
Conflicts could occur if the sensor needs to be accessed by the Initialization Agent function at the same 1996
time it is being accessed as a virtual sensor. Typically, however, a virtual sensor would not require 1997
initialization by the Initialization Agent function. 1998

Table 36 describes the format of the command. 1999

PLDM for Platform Monitoring and Control Specification DSP0248

90 Work in Progress Version 1.2.0a

Table 36 – InitNumericSensor command format 2000

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

enum8 sensorOperationalState

The expected operational state of the sensor. This enumeration is a subset of the operational state
values that are returned by the GetSensorReading command. Refer to the GetSensorReading
command for the definition of the values in this enumeration.

This parameter is applied to the sensor after all other fields (sensorPresentState, eventMsgEnable,
and numericReadingSetting) have been applied to the sensor.

value: { enabled, disabled, unavailable }

enum8 sensorPresentState

The expected present state of the numeric sensor. See the description of the presentState field in
Table 30.

enum8 eventMsgEnable

This value is used to enable or disable event message generation from the sensor.

value: {

enableEventMessages,

disableEventMessages,

noChange=0xFF // Do not alter the present event enable setting.

 }

bool8 setNumericReading

value: { false, true }

True directs the receiver to accept the following numericReadingSetting.

var numericReadingSetting

The size of this field depends on the sensor data size. This value is used as the initial value for the
presentReading returned by the numeric sensor. Some sensor implementations may ignore this
value if it is given.

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID=0x80 }

19 PLDM State Sensors 2001

PLDM State Sensors are used to return a status from one or more state sets. A state set is simply the 2002
name of an enumeration that is a collection of a set of related platform states. Common state sets are 2003
defined in DSP0249. 2004

A PLDM State Sensor that returns values from only a single state set is referred to as a simple state 2005
sensor. A state sensor that returns values from more than one state set is referred to as a composite 2006
state sensor. 2007

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 91

This specification also includes support for the definition of vendor-specific state sets using the OEM 2008
State Set PDR. (See 28.10 for more information.) 2009

If a state sensor is reporting events or status and is based on a numeric sensor, the state sensor shall 2010
use the threshold and hysteresis values for the associated numeric sensor for state change notification. 2011
State Sensors that reflect logical states, such as redundancy, are device dependent and these sensor 2012
types are outside the scope of this specification. 2013

20 PLDM State Sensor commands 2014

This clause describes the commands for accessing PLDM State Sensors per this specification. The 2015
command numbers for the PLDM messages are given in clause 30. 2016

If PLDM State Sensors are implemented, the Mandatory/Conditional (M/C) requirements shown in Table 2017
37 apply. 2018

Table 37 – State Sensor commands 2019

Command M/C Reference

SetStateSensorEnables M See 20.1.

GetStateSensorReadings M See 20.2.

InitStateSensor C [1] See 20.3.
[1] Required for sensors that are to be initialized through the Initialization Agent function. 2020

20.1 SetStateSensorEnables command 2021

The SetStateSensorEnables command is used to set enable or disable sensor operation and event 2022
message generation for sensors within a PLDM Composite State Sensor. Event message generation is 2023
optional for a sensor. Table 38 describes the format of the command. 2024

Table 38 – SetStateSensorEnables command format 2025

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

uint8 compositeSensorCount

The number of individual sets of sensor information that this command accesses. Up to eight sets of
state sensor information (accessed as sensor offsets 0 through 7) can be accessed through a given
sensorID within a PLDM terminus.

value: 0x01 to 0x08

opField

xN

opFields

Each opField is an instance of an opField structure that is used to set the present operational state
setting and event message enables for a particular sensor within the state sensor. The opField
structure is defined in Table 39.

PLDM for Platform Monitoring and Control Specification DSP0248

92 Work in Progress Version 1.2.0a

Type Response data

enum8

completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID=0x80,
EVENT_GENERATION_NOT_SUPPORTED = 0x82 }

Table 39 – SetStateSensorEnables opField format 2026

Type Description

enum8 sensorOperationalState

The expected state of the sensor
This enumeration is a subset of the operational state values that are returned by the
GetStateSensorReading command. Refer to the GetStateSensorReading command for the definition
of the values in this enumeration.
value: { enabled, disabled, unavailable }

enum8 eventMessageEnable

This value is used to enable or disable event message generation from the sensor.

value: { noChange, disableEvents, enableEvents, enableOpEventsOnly, enableStateEventsOnly }

noChange means do not alter the present setting. Use noChange when the sensor does not support
event message generation.

NOTE Event message generation is optional for a sensor.

20.2 GetStateSensorReadings command 2027

The GetStateSensorReadings command can return readings for multiple state sensors (a PLDM State 2028
Sensor that returns more than one set of state information is called a composite state sensor). 2029

State information is returned as a sequence of one to N "stateField" structures. The first stateField 2030
structure is referred to as the structure for the sensor at offset 0, second is for the sensor at offset 1, and 2031
so on. 2032

The same number of stateField structures must be returned and in the same sequence during platform 2033
management subsystem operation, regardless of the operational status of the sensors. 2034

Table 40 describes the format of the command. 2035

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 93

Table 40 – GetStateSensorReadings command format 2036

Type Request data

uint16 sensorID

A handle that is used to identify and access the simple or composite sensor

special values: 0x00, 0xFFFF = reserved

bitfield8 sensorRearm

Each bit location in this field corresponds to a particular sensor within the state sensor, where bit [0]
corresponds to the first state sensor (sensor offset 0) and bit [7] corresponds to the eighth sensor
(sensor offset 7), sequentially.

For each bit position [n] from n = 0 to compositeSensorCount-1, the bit setting operates as follows:

0b = do not re-arm sensor [n]+1
1b = re-arm sensor [n]+1

uint8 reserved

value: 0x00

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_SENSOR_ID=0x80 }

unit8 compositeSensorCount

The number of individual sets of sensor information that this command accesses. Up to eight sets of
state sensor information (accessed as sensor offsets 0 through 7) can be accessed through a given
sensorID within a PLDM terminus.

value: 0x01 to 0x08

stateField

xN

stateFields

Each stateField is an instance of a stateField structure that is used to return the present operational
state setting and the present state and event state for a particular set of sensor information
contained within the state sensor. The stateField structure is defined in Table 41.

Table 41 – GetStateSensorReadings stateField format 2037

Type Description

enum8 sensorOperationalState

The state of the sensor itself

See Table 30 for the enumeration values of sensorOperationalState.

enum8 presentState

This field is used to return a state value from a PLDM State Set that is associated with the sensor.
The value reflects the most recently assessed state.

PLDM for Platform Monitoring and Control Specification DSP0248

94 Work in Progress Version 1.2.0a

Type Description

enum8 previousState

The state that the presentState was entered from. This must be different from the present state (with
the exception that there may be conditions where both the presentState and previousState are
returned as "Unknown").

The previousState is updated whenever the presentState is assessed as different from the
previously assessed value for presentState. Refer to 17.5 for additional information on how
presentState is assessed.

special value: This value shall be set to the same value as presentState if the previousState is
unknown, which might be the case for events that are generated on the first status
assessment that occurs after a sensor has been initialized.

enum8 eventState

This field is used to return a state value from a PLDM State Set that is associated with the sensor.
The value reflects the most recently assessed state that caused an event to be generated. The
eventState can be different than either the presentState or the previousState.

20.3 InitStateSensor command 2038

The InitStateSensor command is typically used by the Initialization Agent function (see clause 15) to 2039
initialize PLDM State Sensors. The command may also be used as an interface for virtual sensors, which 2040
do not actually poll and update their own state but instead rely on another management controller or 2041
system software to set their state. 2042

Implementations should avoid virtual sensors that require initialization by the Initialization Agent function. 2043
Conflicts could occur if the sensor needs to be accessed by the Initialization Agent function at same time 2044
it is being accessed as a virtual sensor. Typically, however, a virtual sensor would not require initialization 2045
by the Initialization Agent function. 2046

Table 42 describes the format of the command. 2047

Table 42 – InitStateSensor command format 2048

Type Request data

uint16 sensorID

A handle that is used to identify and access the sensor

special values: 0x0000, 0xFFFF = reserved

unit8 compositeSensorCount

The number of individual sets of sensor information that this command accesses. Up to eight sets of
state sensor information (accessed as sensor offsets 0 through 7) can be accessed through a given
sensorID within a PLDM terminus.

value: 0x01 to 0x08

initField

xN

Each initField is an instance of an initField structure that is used to set the present operational state
setting and event message enables for a particular sensor within the state sensor. The initField
structure is defined in Table 43.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 95

Type Response data

enum8

completionCode

value: { PLDM_BASE_CODES,
 INVALID_SENSOR_ID = 0x80,
 UNSUPPORTED_SENSORSTATE = 0x81 // an illegal value was submitted for
 sensorOperationState or sensorPresentState for one or more sensors

 }

Table 43 – InitStateSensor initField format 2049

Type Description

enum8 sensorOperationalState

The expected operational state of the sensor. This enumeration is a subset of the operational state
values that are returned by the GetSensorReading command. Refer to 18.2 for the definition of the
values in this enumeration.

This parameter is applied to the sensor after all other fields (sensorPresentState and
eventMsgEnable) have been applied to the sensor.

value: { enabled, disabled, unavailable }

enum8 sensorPresentState

The expected state of the sensor. The state values are based on the particular state set used for the
sensor. The set of states that the sensor can be initialized with may be a subset of the states that
the sensor reports while monitoring.

value: { dependent on sensor State Set }

enum8 eventMsgEnable

This value is used to enable or disable event message generation from the sensor.

value: { enableEvents, disableEvents, noChange=0xFF }

noChange means do not alter the present setting.

21 PLDM effecters 2050

PLDM effecters provide a general mechanism for controlling or configuring a state or numeric setting of 2051
an entity. PLDM effecters are similar to PLDM sensors, except that entity state and numeric setting values 2052
are written into an effecter rather than read from it. 2053

PLDM commands are specified for writing the state or numeric setting to an effecter. Effecters are 2054
identified by and accessed using an EffecterID that is unique for each effecter within a given terminus. 2055
Corresponding PDRs provide basic semantic information for effecters, such as what type of states or 2056
numeric units the effecter accepts, what terminus and EffecterID value are used to access the effecter, 2057
which entity the effecter is associated with, and so on. 2058

21.1 PLDM State Effecters 2059

PLDM State Effecters provide a regular command structure for setting state information in order to 2060
change the state of an entity. Effecters use the same PLDM State Sets definitions as PLDM State 2061
Sensors, but instead of using the state set information to interpret the value that is read from a sensor, 2062
the state sets are used to define the value to write to an effecter. Like PLDM Composite State Sensors, 2063
PLDM State Effecters can be implemented and accessed as composite state effecters where a single 2064

PLDM for Platform Monitoring and Control Specification DSP0248

96 Work in Progress Version 1.2.0a

EffecterID is used to access a set of state effecters. This enables multiple states to be set using a single 2065
command and to share a single PDR that provides the basic information for the effecters. 2066

21.2 PLDM Numeric Effecters 2067

PLDM Numeric Effecters provide a regular command structure for setting a numeric value for a 2068
controllable parameter of an entity. Numeric effecters use the same definition of units as the units for 2069
readings returned by numeric sensors (see 27.2). For example, a numeric effecter could be used to set a 2070
value for revolutions per second. 2071

21.3 Effecter semantics 2072

An effecter has a meaning or use that is associated with what an effecter does or is used for. This will be 2073
referred to as the "effecter semantic", or just the "semantic." 2074

Although PLDM effecters provide a straightforward mechanism for setting a state or numeric value for an 2075
entity, conveying the semantic of how that state or numeric value affects the entity, or how the setting 2076
should be used, is not always straightforward. 2077

Suppose a numeric effecter is defined for setting a fan speed. A PDR for the numeric effecter can readily 2078
indicate that the effecter is for "Physical Fan 1", and that "Fan 1" is contained by Processor 1. The PDR 2079
can also indicate that the units for the setting are "RPM". However, this does not convey what the RPM is 2080
actually doing. For example, is the RPM a speed limit or a target speed? 2081

Additionally, other information may be necessary for understanding how the effecter is to be used. If a fan 2082
speed needs to be set because one or more temperatures have become too high, how does the user of 2083
PLDM know which temperatures are associated with the fan, and what RPM value should be set for a 2084
particular temperature? 2085

The information required to describe the meaning and use of an effecter can vary significantly depending 2086
on how generic or specific the use is to the platform implementation. The level of generality of effecter 2087
semantics in PLDM is categorized as shown in Table 44. 2088

Table 44 – Categories for effecter semantics 2089

Category Description

By State Set or Units
Only

The definition of the state set or numeric units, along with the Entity Association
Information provided through the effecter PDRs, is sufficient to convey the semantic for
the effecter. For example, the state set for System Power State when combined with
"System" as the containerID identifies an effecter for overall system power control.

By Semantic ID The state sets or units definitions and entity associations alone are not sufficient to
identify the semantic of the effecter, but the effecter use can be indicated by providing a
single "Semantic ID" value that identifies a predefined semantic for the effecter. For
example, a Semantic ID could be defined for "System Power Down with Delay" where
the definition specifies that the effecter accepts a time value that identifies a delay from
1 to 60 seconds and triggers a system power down after that delay when the effecter
value gets set. This specification makes provision for DMTF PLDM defined or OEM
(vendor-defined) Semantic IDs. See 21.4 for more information.

By Semantic ID plus
PDRs

The effecter PDR information and the Semantic ID are not sufficient to identify the
semantic of the effecter, but the semantic can be communicated when the Semantic ID
is used with other PDRs. For example, an effecter could be defined for setting a "Fan
speed override" where the fan speed is set to a "boost mode" if one or more
temperature sensors in the system exceed their critical thresholds. One or more
additional PDRs would be used to identify which temperature sensors in the particular
platform would contribute to boost mode. Note that in this case the effecter itself is not
implementing this policy. A third party, such as a MAP, would read the PDR information
and use that information to know when it should change the effecter's setting.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 97

Category Description

External Information
Required

The effecter semantic may not be described using the mechanisms offered by this
specification. In some cases, use of the effecter may require access to information that
is not provided through PDRs–for example, an effecter where the user (such as a MAP)
requires access to SMBIOS data to understand how the effecter should be used. In
other cases, the effecter semantic may have a private or proprietary where the effecter
is implemented using PLDM commands and described in the PDRs only because the
implementation wants to reuse the command infrastructure from this specification or
take advantage of functions such as the Initialization Agent or Event Log.

The most generic and efficient use of effecters comes when they fall into the state sets or units only 2090
category and use standard state set or units definitions. The second most generic and efficient use of 2091
effecters is when they use a standard defined Semantic ID. Thus, if new standard effecter semantics 2092
need to be defined, it should be first examined whether a new state set or units definition should be 2093
added to the specifications, or whether a new Semantic ID should be added. 2094

21.4 PLDM and OEM effecter semantic IDs 2095

Effecter Semantic ID values are specified in DSP0249. A range of values is reserved for definition by the 2096
DMTF PLDM specifications and another range of values is available for OEM (vendor-defined) effecter 2097
semantics. When the OEM range is used, the semantic is identified and optionally named using an OEM 2098
Effecter Semantic PDR. The use of the OEM Effecter Semantic PDR is similar to how OEM units, entities, 2099
and state sets are defined within the PDRs. 2100

22 PLDM effecter commands 2101

This clause describes the commands for accessing PLDM effecters per this specification. The command 2102
numbers for the PLDM messages are given in clause 30. 2103

If PLDM Numeric Effecters or PLDM State Effecters are implemented, the Mandatory (M) requirements 2104
shown in Table 45 apply. 2105

Table 45 – State and Numeric Effecter commands 2106

Command M Reference

SetNumericEffecterEnable M [1] See 22.1.

SetNumericEffecterValue M [1] See 22.2.

GetNumericEffecterValue M [1] See 22.3.

SetStateEffecterEnables M [2] See 22.4.

SetStateEffecterStates M [2] See 22.5.

GetStateEffecterStates M [2] See 22.6.
[1] Required if one of more numeric effecters are implemented 2107
[2] Required if one or more state effecters are implemented 2108

PLDM for Platform Monitoring and Control Specification DSP0248

98 Work in Progress Version 1.2.0a

22.1 SetNumericEffecterEnable command 2109

The SetNumericEffecterEnable command is used to enable or disable effecter operation. A disabled 2110
effecter cannot have its state updated. An effecter may have a default state that it automatically returns to 2111
when it is disabled. An effecter may also be able to be returned to its default state through the 2112
SetStateNumericEffecterValue command. The PLDM Numeric Effecter PDR can describe a numeric 2113
effecter and whether it has a default state. 2114

NOTE The Numeric Effecter PDR effecterID type, in clause 28.11 Numeric Effecter PDR has been changed in 2115
version 1.1.1 of this specification from uint8 to uint16 to be consistent with SetNumericEffecterEnable 2116
command. 2117

Table 46 describes the format of this command. 2118

Table 46 – SetNumericEffecterEnable command format 2119

Type Request data

uint16 effecterID
A handle that is used to identify and access the effecter
special values: 0x0000, 0xFFFF = reserved

enum8 effecterOperationalState
The expected state of the effecter. This enumeration is a subset of the operational state values that
are returned by the GetStateEffecterStates command. Refer to the GetStateEffecterStates
command for the definition of the values in this enumeration.
value: { enabled, disabled = 2, unavailable }

Type Response data
enum8

completionCode
value: { PLDM_BASE_CODES, INVALID_EFFECTER_ID=0x80 }

22.2 SetNumericEffecterValue command 2120

The SetNumericEffecterValue command is used to set the value for a PLDM Numeric Effecter. Table 47 2121
describes the format of this command. 2122

Table 47 – SetNumericEffecterValue command format 2123

Type Request data
uint16 effecterID

A handle that is used to identify and access the effecter
special values: 0x0000, 0xFFFF = reserved

enum8 effecterDataSize
The bit width and format of the setting value for the effecter
value: { uint8, sint8, uint16, sint16, uint32, sint32 }
NOTE This value does not select a data size that is to be accepted by the effecter. The value is used only to

enable the responder to confirm that the effecterValue is being given in the expected format.

uint8 |
sint8 |
uint16 |
sint16 |
sint32 |
uint32

effecterValue
The setting value of numeric effecter being requested

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 99

Type Response data
enum8

completionCode
value: { PLDM_BASE_CODES,
 INVALID_EFFECTER_ID=0x80,
 }

22.3 GetNumericEffecterValue command 2124

The GetNumericEffecterValue command is used to return the present numeric setting of a PLDM Numeric 2125
Effecter. Table 48 describes the format of this command. 2126

Table 48 – GetNumericEffecterValue command format 2127

Type Request data

uint16 effecterID

A handle that is used to identify and access the effecter

special values: 0x0000, 0xFFFF = reserved

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_EFFECTER_ID=0x80 }

enum8 effecterDataSize

The bit width and format of the setting value for the effecter

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

PLDM for Platform Monitoring and Control Specification DSP0248

100 Work in Progress Version 1.2.0a

Type Response data (continued)

enum8

effecterOperationalState

The state of the effecter itself

value: { enabled-updatePending, enabled-noUpdatePending, disabled, unavailable, statusUnknown,
failed, initializing, shuttingDown, inTest }

enabled-updatePending = Enabled and operating. The effecter is able to return valid setting
values. The setting of the numeric effecter is in the process of being changed to the pending
value.

enabled-noUpdatePending = Enabled and operating. The effecter is able to return valid
setting values. The pending and presentValue fields return the present numeric setting of the
effecter.

The pendingValue and presentValue fields may not be valid and should be ignored when the
effecter is in any of the following states. The implementation is not required to return any
particular values for the pendingValue or presentValue fields in these states.

disabled The effecter is disabled from returning presentReading and event state
values. This state is set through the SetNumericEffecterEnable command.

unavailable The effecter should be ignored due to configuration of the platform or
monitored entity. For example, the effecter is for monitoring a processor
temperature, but the processor is not installed. This state is set through the
SetNumericEffecterEnable command.

statusUnknown The effecter cannot presently return valid reading information for the
monitored entity.

failed The effecter has failed. The effecter implementation has determined that it
cannot return correct values for its present setting.

initializing The effecter is in the process of transitioning to the operating state because
the effecter has been initialized (starting) or reinitialized. The presentState
and eventState values shall be ignored while the effecter is in this state.

shuttingDown The effecter is transitioning to the disabled, failed, or unavailable state.

inTest The effecter is presently undergoing testing.

NOTE The operation of effecter testing and the mechanisms for effecter testing are outside the scope of this
specification.

uint8 |
sint8 |
uint16 |
sint16 |
sint32 |
uint32

pendingValue

The pending numeric value setting of the effecter. The effecterDataSize field indicates the number of
bits used for this field.

uint8 |
sint8 |
uint16 |
sint16 |
sint32 |
uint32

presentValue

The present numeric value setting of the effecter. The effecterDataSize indicates the number of bits
used for this field.

22.4 SetStateEffecterEnables command 2128

The SetStateEffecterEnables command is used to enable or disable effecter operation. A disabled 2129
effecter cannot have its state updated. An effecter may have a default state that it automatically returns to 2130
when it is disabled. An effecter may also be able to be returned to its default state through the 2131

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 101

SetStateEffecterStates command. The PLDM State Effecter PDR describes a state effecter and whether 2132
it has a default state. Table 49 describes the format of this command. 2133

Table 49 – SetStateEffecterEnables command format 2134

Type Request data

uint16 effecterID

A handle that is used to identify and access the effecter

special values: 0x0000, 0xFFFF = reserved

uint8 compositeEffecterCount

The number of individual sets of state effecter information that are accessed by this command. Up
to eight sets of effecter information (accessed as effecter offsets 0 through 7) can be accessed
through a given effecterID within a PLDM terminus.

value: 0x01 to 0x08

opField

xN

opFields

Each opField is an instance of an opField structure that is used to set the present operational state
setting and event message enables for a particular sensor within the state effecter. The opField
structure is defined in Table 50.

Type Response data

enum8

completionCode

value: { PLDM_BASE_CODES, INVALID_EFFECTER_ID=0x80 }

Table 50 – SetStateEffecterEnables opField format 2135

Type Description

enum8 effecterOperationalState

The expected state of the effecter. This enumeration is a subset of the operational state values that
are returned by the GetStateEffecterStates command. Refer to the GetStateEffecterStates
command for the definition of the values in this enumeration.

value: { enabled, disabled=2, unavailable }

enum8 eventMsgEnable

This value is used to enable or disable event message generation from the effecter.

value: { enableEvents, disableEvents, noChange=0xFF }

noChange means do not alter the present setting.

PLDM for Platform Monitoring and Control Specification DSP0248

102 Work in Progress Version 1.2.0a

22.5 SetStateEffecterStates command 2136

The SetStateEffecterStates command is used to set the state of one or more effecters within a PLDM 2137
State Effecter. Table 51 describes the format of this command. 2138

Table 51 – SetStateEffecterStates command format 2139

Type Request data

uint16 effecterID

A handle that is used to identify and access the effecter

special values: 0x0000, 0xFFFF = reserved

unit8 compositeEffecterCount

The number of individual sets of effecter information that are accessed by this command. Up to
eight sets of state effecter information (accessed as effecter offsets 0 through 7) can be accessed
through a given effecterID within a PLDM terminus.

value: 0x01 to 0x08

stateField

xN

Each stateField is an instance of a stateField structure that is used to set the requested state for a
particular effecter within the state effecter. The stateField structure is defined in Table 52.

Type Response data

enum8

completionCode

value: { PLDM_BASE_CODES, INVALID_EFFECTER_ID=0x80,
 INVALID_STATE_VALUE=0x81,
 UNSUPPORTED_EFFECTERSTATE = 0x82 // An illegal value was submitted for
 effecterState for one or more effecters.
 }

Table 52 – SetStateEffecterStates stateField format 2140

Type Description

enum8 setRequest

value: {

noChange, // Do not request a change of the state of this effecter.

requestSet // Request the effecter state to be set to the state given by the following
// effecterState value.

}

enum8 effecterState

The expected state of the effecter. The state values come from the particular state set used for the
implementation of the effecter.

value: { dependent on effecter state set }

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 103

22.6 GetStateEffecterStates command 2141

The GetStateEffecterStates command is used to get the present state of an effecter. Table 53 describes 2142
the format of this command. 2143

Table 53 – GetStateEffecterStates command format 2144

Type Request data

uint16 effecterID

A handle that is used to identify and access the simple or composite effecter

special values: 0x0000, 0xFFFF = reserved

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES, INVALID_EFFECTER_ID=0x80 }

unit8 compositeEffecterCount

The number of individual sets of effecter information that are accessed by this command. Up to
eight sets of state effecter information (accessed as effecter offsets 0 through 7) can be accessed
through a given effecterID within a PLDM terminus.

value: 0x01 to 0x08

stateField

xN

stateFields

Each stateField is an instance of a stateField structure that is used to return the present operational
state setting and the present state for a particular effecter contained within the state effecter. The
stateField structure is defined in Table 54.

Table 54 – GetStateEffecterStates stateField format 2145

Type Description

enum8 effecterOperationalState

The state of the effecter itself

See Table 48 for the enumeration values of effecterOperationalState.

enum8 pendingState

If the value of effecterOperationalState is updatePending, this field returns the value for the requested
state that is presently being processed. Otherwise, this field returns the present state of the effecter.
The effecter implementation should return the "Unknown" state value whenever the
effecterOperationalState is anything except enabled-updatePending or enabled-noUpdatePending.
Parties that are accessing this information should also ignore this field (treat it as unknown) when the
effecterOperationalState is anything except enabled-updatePending or enabled-noUpdatePending.

value: { dependent on effecter state set on which the effecter implementation is based }

enum8 presentState

The present state of the effecter. The effecter implementation should return the "Unknown" state value
whenever the value of effecterOperationalState is anything except enabled-updatePending or
enabled-noUpdatePending. Parties that are accessing this information should also ignore this field
(treat it as unknown) when the effecterOperationalState is anything except enabled-updatePending or
enabled-noUpdatePending.

value: { dependent on the state set used for the effecter implementation }

PLDM for Platform Monitoring and Control Specification DSP0248

104 Work in Progress Version 1.2.0a

23 PLDM Event Log commands 2146

This clause describes the commands for accessing a PLDM Event Log per this specification. The 2147
command numbers for the PLDM messages are given in clause 30. 2148

The PLDM Event Log is typically accessed through the same PLDM terminus as the Event Receiver. 2149
However, this is not mandatory. The PDRs include information that describes which terminus is used to 2150
access the PLDM Event Log. 2151

If a PLDM Event Log is implemented, the Mandatory/Optional/Conditional (M/O/C) requirements shown in 2152
Table 55 apply. 2153

Table 55 – PLDM Event Log commands 2154

Command M/O/C Reference

GetPLDMEventLogInfo M See 23.1.

EnablePLDMEventLogging M See 23.2.

ClearPLDMEventLog M See 23.3.

GetPLDMEventLogTimestamp M See 23.4.

SetPLDMEventLogTimestamp M See 23.5.

ReadPLDMEventLog M See 23.6.

GetPLDMEventLogPolicyInfo M See 23.7.

SetPLDMEventLogPolicy C [1] See 23.8.

FindPLDMEventLogEntry O See 23.9
[1] Required if the PLDMEventLog implementation supports configurable policy parameters 2155

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 105

23.1 GetPLDMEventLogInfo command 2156

The GetPLDMEventLogInfo command returns basic information about the PLDM Event Log, such as its 2157
operational status, percentage used, and timestamps for the most recent add and erase actions. Table 56 2158
describes the format of the command. 2159

Table 56 – GetPLDMEventLogInfo command format 2160

Type Request data

– none

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

enum8 logOperationalStatus

value: {

 loggingDisabled, // Log can be accessed, but is disabled from accepting entries.

 enabledReady, // Log can be accessed and is enabled to accept entries.

 clearInProgress, // Log is enabled but log information and entries are unable to be
// accessed because the log is in the process of being cleared.

enabledFull, // Log is enabled but cannot accept more entries because it is
// full. The log shall automatically resume accepting entries once
// entries are cleared. It is not necessary to explicitly re-enable
// logging.

failedLoggingDisabled,
// Log has had a failure where it can no longer accept entries.
// Clearing and re-enabling logging must restore the log to
// normal operation. If this cannot occur, the 'failedDisabled'
// logOperationalStatus value shall be returned.

failedDisabled, // Log has had a failure where it is unable to
// accept entries. Additionally, existing entries may not be able
// to be accessed successfully. The log may or may not be able
// to be restored to normal operation by clearing and re-enabling
// the log.

corrupted // Some or all log data has been lost due to a data corruption.
// Clearing the log and re-enabling logging shall restore internal
// integrity. If this cannot be done, the implementation shall
// return a logOperationalStatus of failedLoggingDisabled or
// failedDisabled. The log implementation shall not return records
// that are known to be corrupted.

}

enum8 activeLogClearingPolicy

The log clearing policy that is presently in effect for this PLDM Event Log. See 13.4 for a
description of the log clearing policies.

value: { fillAndStop, FIFO, clearOnAge }

PLDM for Platform Monitoring and Control Specification DSP0248

106 Work in Progress Version 1.2.0a

Type Response data (continued)

uint32 entryCount

number of entries presently in the Event Log

uint8 storagePercentUsed

The percentage of log storage space presently used up by entries in the log, given in increments
based on the percentUsedResolution parameter from the PLDM Event Log PDR

value: 0 to 100

special value: 0xFF = unspecified

uint8 percentWear

The implementation may elect to return this value as an indication of the present level of wear on
the storage medium. Values 0 to 100 indicate an estimated percentage of normal rated lifetime
or storage cycles used up on the device. Values greater than 100 indicate levels that have
exceeded the rated or expected lifetime. The mechanism and algorithms that are used for
returning this parameter are implementation-specific and outside the scope of this specification.

value: 0x00 to 0x064 = wear in %

special value: 0xFF = unspecified

mostRecentAddTimestamp

The following three fields return the timestamp of the most recent addition or change to the log.

The implementation must automatically adjust the mostRecentAddTimestamp whenever the Event Log timestamp
clock is set using the SetPLDMEventLogTimestamp command. See the description of the
SetPLDMEventLogTimestamp command for more information.

special value: The implementation may choose to retain the mostRecentAddTimestamp value after the log has
been cleared, or it may elect to set the value to the 'unspecified' value for the data type. The
unspecified value shall only be used when the log is empty (cleared), or if the timestamp has been
lost due to an error or firmware update condition.

sint8 mostRecentAddTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour.

special value: 0xFF = unspecified

uint40 mostRecentAddTimestampSeconds

This value corresponds to a 40-bit unsigned integer representing the number of seconds since
midnight UTC of January 1, 1970 (not counting leap seconds). 0x0000000000 = unspecified.

uint8 mostRecentAddTimestamp100s

This value provides a number of 1/100ths of a second added to entryTimestampSeconds.

value: 0 to 99.

special value: 0xFF = unspecified. This value is used if the implementation timestamps entries to
no finer than a one-second resolution.

mostRecentEraseTimestamp

The following three fields return the most recent time that entries were deleted from the log or the log was cleared.

The implementation must automatically adjust the mostRecentEraseTimestamp whenever the Event Log
timestamp clock is set using the SetPLDMEventLogTimestamp command. See the description of the
SetPLDMEventLogTimestamp command for more information.

special value: The implementation may choose to retain the mostRecentAddTimestamp value after the log has
been cleared, or it may elect to set the value to the 'unspecified' value for the data type. The
unspecified value shall only be used if the timestamp has never been initialized, or if the
timestamp has been lost due to an error or firmware update condition.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 107

Type Response data (continued)

sint8 mostRecentEraseTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour.

special value: 0xFF = unspecified

uint40 mostRecentEraseTimestampSeconds

This value corresponds to a 40-bit unsigned integer representing the number of seconds since
midnight UTC of January 1, 1970 (not counting leap seconds). 0x0000000000 = unspecified.

uint8 mostRecentEraseTimestamp100s

This value provides a number of 1/100ths of a second added to entryTimestampSeconds.

value: 0 to 99.

special value: 0xFF = unspecified. This value is used if the implementation timestamps entries to
no finer than a one-second resolution.

23.2 EnablePLDMEventLogging command 2161

The EnablePLDMEventLogging command is used to enable or disable the PLDM Event log from logging 2162
events. The log can be accessed and cleared while in the disabled state unless the logOperationalStatus 2163
is “failed”, in which case logging may not be able to be enabled. Table 57 describes the format of the 2164
command. 2165

Table 57 – EnablePLDMEventLogging command format 2166

Type Request data

enum8 enableLogging

value: {

disableLogging, // Disable accepting events into the log.

enableLogging // Enable logging events.

}

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

enum8 logOperationalStatus

value: { See the definition of logOperationalStatus field for the GetPLDMEventLogInfo command
(Table 56). }

23.3 ClearPLDMEventLog command 2167

The ClearPLDMEventLog command is used to clear the contents of the PLDM Event Log. The execution 2168
of this command does not affect whether logging is enabled or disabled. Depending on the subsystem 2169
and its implementation, it is possible that events may be received or be in the process of being received 2170
during the terminus' execution of this command. If event logging is enabled, a terminus should continue to 2171
accept events while it is processing this command. It is recognized that in some implementations clearing 2172
the log device may take a significant amount of time. The number of events that an implementation may 2173
support queuing up while the log is being cleared is implementation dependent. Table 58 describes the 2174
format of this command. 2175

PLDM for Platform Monitoring and Control Specification DSP0248

108 Work in Progress Version 1.2.0a

Table 58 – ClearPLDMEventLog command format 2176

Type Request data

– none

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

enum8 logOperationalStatus

The status of the log following acceptance of this command. This status will typically be
clearInProgress, enabledReady, or loggingDisabled, depending on the implementation.

value: { See the definition of logOperationalStatus for the GetPLDMEventLogInfo command
(Table 59). }

23.4 GetPLDMEventLogTimestamp command 2177

The GetPLDMEventLogTimestamp command returns a snapshot of the present PLDM Event Log 2178
Timestamp time. Table 59 describes the format of this command. 2179

Table 59 – GetPLDMEventLogTimestamp command format 2180

Type Request data

– none

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

sint8

entryTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour

special value: 0xFF = unspecified

uint40 entryTimestampSeconds

This value corresponds to a 40-bit unsigned integer that represents the number of seconds since
midnight UTC of January 1, 1970 (not counting leap seconds).

uint8 entryTimestamp100s

This value provides a number of 1/100 of a second that is added to entryTimestampSeconds.

value: 0 to 99

special value: 0xFF = unspecified. This value is used if the implementation timestamps entries to
no finer than a one-second resolution.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 109

23.5 SetPLDMEventLogTimestamp command 2181

The SetPLDMEventLogTimestamp command can be used to set the PLDM Event Log Timestamp time. 2182

Some implementations may not implement the ability to set the timestamp to 1/100 of a second resolution 2183
and will round the time up or down to match the resolution that it supports. Therefore, the timestamp 2184
value in the response may vary from what was submitted because of rounding. The returned value may 2185
also vary due to delays in command response processing within the terminus. 2186

Implementations are required to support a 1 second or finer resolution for the timestamp. Table 60 2187
describes the format of this command. 2188

Table 60 – SetPLDMEventLogTimestamp command format 2189

Type Request data

sint8

entryTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour

special value: 0xFF = unspecified

uint40 entryTimestampSeconds

This value corresponds to a 40-bit unsigned integer that represents the number of seconds since
midnight UTC of January 1, 1970 (not counting leap seconds).

uint8 entryTimestamp100s

This value provides a number of 1/100 of a second that is added to entryTimestampSeconds.

value: 0 to 99

This value is ignored if the implementation only timestamps entries to a one-second resolution.

enum8 logUpdateEvent

value: {

 noEvent,

 logEvent // automatically logs a timestamp change event if the new timestamp clock
// value is accepted. See DSP0249 for the state set definition for time
// stamp change events.

}

PLDM for Platform Monitoring and Control Specification DSP0248

110 Work in Progress Version 1.2.0a

 2190
Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

sint8

entryTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour

special value: 0xFF = unspecified

uint40 entryTimestampSeconds

This value corresponds to a 40-bit unsigned integer that represents the number of seconds since
midnight UTC of January 1, 1970 (not counting leap seconds).

uint8 entryTimestamp100s

This value provides a number of 1/100 of a second that is added to entryTimestampSeconds.

value: 0 to 99

special value: 0xFF = unspecified. This value is used if the implementation timestamps entries to
no finer than a one-second resolution.

uint8 timestampResolution

The resolution of the timestamp that is kept by the implementation in 1/100 of a second.

value: 1 to 100 (100 = 1 second resolution, 5 = .05 seconds resolution, and so on)

23.6 ReadPLDMEventLog command 2191

The ReadPLDMEventLog command can be used iteratively to read all or part of the entries in the PLDM 2192
Event Log. Entries are returned one at a time. The data for one or more entries may be requested. Table 2193
61 describes the format of this command. 2194

To use the command to start reading from the first entry in the log: 2195

� Set entryID to 0 and transferOperationFlag to GetFirstPart. 2196

� Issue the command to get the first portion of data for the first entry in the log. 2197

� Take the nextEntryID and nextTransferOperationFlag data from the response and use it as the 2198
entryID and transferOperationFlag for the next request. 2199

� Repeat this until the desired number of entries have been read or the end of the log has been 2200
reached. 2201

The FindPLDMEventLogEntry command can be used to get the entryID for an entry that is at an offset 2202
into the log, or that has a timestamp that is older or newer than a given value. This entryID can then be 2203
used in the ReadPLDMEventLog command, along with setting transferOperationFlag = GetFirstPart, to 2204
begin reading the log starting with the found entry. 2205

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 111

Table 61 – ReadPLDMEventLog command format 2206

Type Request data

uint32 entryID

A handle that identifies a particular log entry to be transferred or that is in the process of being
transferred. The entryID values for the first portion of a given record are required to be unique and
unchanging among all entries that are presently in the log. If the data for the entry is split across
multiple responses, the entryID is also used to track which portion of the record is being returned
in the response. How this is accomplished is implementation specific. For example, one possible
implementation would be to use the upper bits of the entryID as an ID for the overall record, and
the least significant bits of entryID to track an offset into the record.

The entryID that is delivered in the response when in the middle of a multipart transfer (splitEntry
= firstFragment or middleFragment) is allowed to time out. The timeout value is specified in the
Event Log PDR. This provision is made to allow the responder implementation to assign a
temporary ID and buffer space that can be freed up if the requester does not complete the
multipart transfer of an entry. The default value for the timeout is the same value that is used for
PDR Handle Timeouts, MC1. (See clause 28.25.) If PDRs are not used, a requester should
assume the default timeout value is being used unless the requester has a priori knowledge of the
implementation.

value: Set to 0x00000000 and transferOperationFlag = GetFirstPart to start reading from the first
(oldest) entry in the log;

enum8 transferOperationFlag

The operation flag indicates whether this is the start of a new transfer or the continuation of a
multipart transfer of an entry. GetFirstPart identifies transfer of the first entry of a multiple entry
read. GetNextPart refers to a request to transfer entries that follow the first entry in a multiple
entry transfer.

Possible values: {GetNextPart=0x00, GetFirstPart=0x01}

Type Response data

enum8 completionCode

Possible values:

 { PLDM_BASE_CODES,

 INVALID_TRANSFER_OPERATION_FLAG=0x81,
 INVALID_ENTRY_ID=0x82,
 }

uint32 nextEntryID

An implementation-specific handle that is used by the implementation to track and identify the
next portion of the transfer. This value is used as the dataTransferHandle to retrieve the next
portion of eventLog data. Note that if the value for the splitEntry field (below) is firstFragment or
middleFragment, the nextEntryID value is an ID that identifies the next portion of the record that is
being transferred. If splitEntry field is full or lastFragment, the nextEntryID is the ID for the first
portion of the next record in the log.

special value: 0x00000000 = No next record. This value is only allowed when splitEntry = full or
lastFragment. It indicates that there are no records that follow in the log. That is, the
PLDMEventLogData that is being returned in the response holds the last portion of data for the
last record in the log.

PLDM for Platform Monitoring and Control Specification DSP0248

112 Work in Progress Version 1.2.0a

Type Response data (continued)

enum8 splitEntry

value: {

full, // All of the data for the entry is provided in the entryData field.

firstFragment, // The eventData for the entry is split across ReadPLDMEventLog messages.
// The entryData field holds the first portion of the data for the entry.

middleFragment, // The eventData for the entry is split across ReadPLDMEventLog messages.
// The entryData field holds a middle portion of the data for the entry.

lastFragment // The eventData for the entry is split across ReadPLDMEventLog messages.
// The entryData field holds the last portion of the data for the entry.

}

– PLDMEventLogData

The data or partial data for the requested PLDM Event Log entry. Entries are transferred starting
from the oldest to the newest.

If splitEntry = lastFragment

uint8 transferCRC

A CRC-8 for the overall PLDM Event Log entry. This is provided to help verify data integrity when
the entry is transferred using a multipart transfer. The CRC is calculated over the entire PLDM
Event Log entry data as specified in Table 6 using the polynomial x8 + x2 + x1 + 1 (This is the
same polynomial used in the MCTP over SMBus/I2C transport binding specification). The CRC is
calculated from most-significant bit to least-significant bit on bytes in the order that they are
received. This field is only present when splitEntry = lastFragment.

Table 62 – PLDMEventLogData format 2207

Type Field

uint8 transferredDataSize

If splitEntry = full, then dataSize = number of bytes of entryData for the entire entry.

If splitEntry = firstFragment, middleFragment, or lastFragment, then dataSize = number of bytes
of entryData for the portion that is being transferred.

– transferredEntryData

Data for all or part of an event log entry, depending on whether the entry is split across PLDM
messages. See 13.7 for PLDM Event Log entry formats.

23.7 GetPLDMEventLogPolicyInfo command 2208

The GetPLDMEventLogPolicyInfo command returns details about the different log clearing policies that 2209
are supported for the particular PLDM Event Log implementation. Table 63 describes the format of this 2210
command. 2211

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 113

Table 63 – GetPLDMEventLogPolicyInfo command format 2212

Type Request data

enum8 logClearingPolicy

This parameter selects the logClearingPolicy for which information is to be returned. See 13.4 for
a description of the log clearing policies. The command returns the same fields regardless of
whether they are used by the selected policy. Fields are filled with a special value if they are not
used by the policy. The PLDM Event Log PDR indicates which policies are supported.

value: { fillAndStop, FIFO, clearOnAge }

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

bitfield8 configurableParameterSupport

This information and the following fields are specific to the logClearingPolicy that was selected in
the request.

[7:5] – reserved

[4:3] – 00b = M and MPercentage are not configurable.

 01b = M is configurable

 10b = MPercentage is configurable.

 11b = reserved

[2:1] – 00b = N and NPercentage are not configurable.

 01b = N is configurable.

 10b = NPercentage is configurable.

 11b = reserved

[0] – 1b = Age is configurable.

uint32 NMin

The smallest number that the implementation accepts or uses as a value for N for the given
logClearingPolicy (see 13.4).

special value: Return 0x00000000 if the policy implementation uses NPercentage instead of N,
or if the policy does not use an N value.

uint32 NMax

The largest number that the implementation accepts or uses as a value for N for the given
logClearingPolicy (see 13.4).

special value: Return 0x00000000 if the policy implementation uses NPercentage instead of N,
or if the policy does not use an N value.

uint8 NPercentageMin

The smallest number that the implementation accepts or uses as a value for NPercentage for the
given logClearingPolicy (see 13.4).

value: 1 to 100; all other values = reserved

special value: Return 0x00 if the policy implementation uses N instead of NPercentage, or if the
policy does not use an NPercentage value.

PLDM for Platform Monitoring and Control Specification DSP0248

114 Work in Progress Version 1.2.0a

Type Response data (continued)

uint8 NPercentageMax

The largest number that the implementation accepts or uses as a value for NPercentage for the
given logClearingPolicy (see 13.4).

value: 1 to 100; all other values = reserved

special value: Return 0x00 if the policy implementation uses N instead of NPercentage, or if the
policy does not use an NPercentage value.

uint32 MMin

The smallest number that the implementation accepts or uses as a value for M for the given
logClearingPolicy (see 13.4).

special value: Return 0x00000000 if the policy implementation uses MPercentage instead of M,
or if the policy does not use an M value.

uint32 MMax

The largest number that the implementation accepts or uses as a value for M for the given
logClearingPolicy (see 13.4).

special value: Return 0x00000000 if the policy implementation uses MPercentage instead of M,
or if the policy does not use an M value.

uint8 MPercentageMin

The smallest number that the implementation accepts or uses as a value for MPercentage for the
given logClearingPolicy (see 13.4).

value: 1 to 100; all other values = reserved

special value: Return 0x00 if the policy implementation uses M instead of MPercentage, or if
the policy does not use an MPercentage value.

uint8 MPercentageMax

The largest number that the implementation accepts or uses as a value for MPercentage for the
given logClearingPolicy (see 13.4).

value: 1 to 100; all other values = reserved

special value: Return 0x00 if the policy implementation uses M instead of MPercentage, or if
the policy does not use an MPercentage value.

uint32 ageMin

The smallest value that the implementation accepts or uses as a value for age in seconds for the
given logClearingPolicy (see 13.4).

special value: Return 0x00000000 if the policy does not use an age value.

uint32 ageMax

The largest value that the implementation accepts or uses as a value for age in seconds for the
given logClearingPolicy (see 13.4).

special value: Return 0x00000000 if the policy does not use an age value.

23.8 SetPLDMEventLogPolicy command 2213

The SetPLDMEventLogPolicy command is used to select and configure the PLDM Event Log clearing 2214
policies. Table 64 describes the format of the command. 2215

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 115

Table 64 – SetPLDMEventLogPolicy command format 2216

Type Request data

enum8 selectedLogClearingPolicy

This parameter selects the log clearing policy to be used by the PLDM Event Log. See 13.4 for a
description of the log clearing policies.

value: { fillAndStop, FIFO, clearOnAge }

enum8 setOperation

value: {

configureOnly, // Change the configuration of the policy identified by
// selectedLogClearingPolicy by using the following configuration parameters,
// but do not change which policy is selected as the active policy.

setOnly, // Set the active policy to the policy identified by selectedLogClearingPolicy, but
// do not set any of the configuration parameters. If this setOperation is used,
// the following configuration parameters in the request shall be ignored by the
// responder.

configureAndSet // Set the active policy to the policy identified by selectedLogClearingPolicy and
// set the configuration parameters for the selected policy using the following
// configuration parameters.

}

uint32 N

The number of entries that will be automatically cleared for the given selectedLogClearingPolicy.
See 13.4 for a description of the log clearing policies.

special value: Use 0x00000000 if the policy implementation does not support a configurable N
value. If the responder does not support a configurable N value, an error
completionCode must be returned if this is set to a value other than 0.

uint8 NPercentage

The percentage of the log that will be automatically cleared for the given
selectedLogClearingPolicy. See 13.4 for a description of the log clearing policies.

value: 1 to 100; all other values = reserved

special value: Use 0x00 if the policy implementation does not support NPercentage as a
configurable value. If the responder does not support a configurable NPercentage
value, an error completionCode must be returned if this is set to a value other than 0.

uint32 M

The number of entries that must be in the log before entries will be automatically cleared based
on the selectedLogClearingPolicy. See 13.4 for a description of the log clearing policies.

special value: Use 0x00000000 if the policy implementation does not support a configurable M
value. If the responder does not support a configurable M value, an error
completionCode must be returned if this is set to a value other than 0.

uint8 MPercentage

The percentage of the log that must be filled before entries will be automatically cleared based on
the selectedLogClearingPolicy. See 13.4 for a description of the log clearing policies.

value: 1 to 100; all other values = reserved

special value: Use 0x00 if the policy does not support MPercentage as a configurable value. If the
responder does not support a configurable MPercentage value, an error
completionCode must be returned if this is set to a value other than 0.

PLDM for Platform Monitoring and Control Specification DSP0248

116 Work in Progress Version 1.2.0a

Type Request data (continued)

uint32 age

This parameter sets the age interval in seconds for the given selectedLogClearingPolicy. See
13.4 for a description of the log clearing policies.

special value: Use 0x00000000 if the policy implementation does not support a configurable age.
If the responder does not support a configurable age, an error completionCode must
be returned if this is set to a value other than 0.

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

23.9 FindPLDMEventLogEntry command 2217

This command can be used to obtain the Entry ID value for the first entry in the Event Log that meets the 2218
identified search parameter. This value can then be used in the ReadPLDMEventLog command to start 2219
reading the log from that entry onward. The search parameters support finding the first entry that is newer 2220
or older than a specified timestamp value, or the entry that corresponds to a particular offset from the 2221
start or the present end of the log. Table 65 describes the format of this command. 2222

NOTE The order of fields in the response message for this command has been changed to having the 2223
completionCode before the entryID in version 1.2.0 of this specification; this achieves consistency with all 2224
other PLDM commands. 2225

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 117

Table 65 – FindPLDMEventLogEntry command format 2226

Type Request data

enum8 searchType

value: {newerThan, olderThan, offsetFromStart, offsetFromEnd}

uint32 startingPoint

The EntryID for the log entry or the offset from which searching will start. Searches include the
entry at the identified starting point.

The search always occurs in the direction from the start of the log (first entries) to the end of the
log (last entries).

If searchType = newerThan or olderThan:

A nonzero value indicates an EntryID to start searching from. Use the value 0x00000000 to
start searching from the first entry in the log. Use the value 0xFFFFFFFF to start searching
from the last entry in the log.

If searchType = offsetFromStart:

The value identifies the Nth entry from the start of the log. For example, if starting point = 10
the search will start with the 10th entry at the beginning of the log. An error completionCode
shall be returned if the value exceeds the number of entries in the log.

If searchType = offsetFromEnd:

The value identifies the Nth entry from the end of the log. For example, if starting point = 10
and the log contains 100 entries, the search will start with the 91st entry. An error
completionCode shall be returned if the value exceeds the number of entries in the log.

compareTimestamp

The compareTimestamp fields are only present when searchType = newerThan or olderThan.

If searchType = newerThan, the response will hold the entryID for the first log entry that was found with a
timestamp that is more recent than or equal to compareTimestamp.

If searchType = olderThan, the response will hold the entryID for the first log entry that was found with a timestamp
that is older than or equal to compareTimestamp.

sint8 compareTimestampUTCOffset

The UTC offset for the log entry timestamp in increments of 1/2 hour.

special value: 0xFF = unspecified

uint40 compareTimestampSeconds

This value corresponds to a 40-bit unsigned integer representing the number of seconds since
midnight UTC of January 1, 1970 (not counting leap seconds). 0x0000000000 = unspecified.

uint8 compareTimestamp100s

This value provides a number of 1/100ths of a second added to entryTimestampSeconds.

value: 0 to 99.

special value: 0xFF = unspecified. This value is used if the implementation timestamps entries to
no finer than a one-second resolution.

PLDM for Platform Monitoring and Control Specification DSP0248

118 Work in Progress Version 1.2.0a

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES,
 INVALID_SEARCH_TYPE = 0x80 }

uint32 entryID

The entryID for the found log entry. This value can be used in the ReadPLDMEventLog
command.

special value: 0xFFFFFFFF = Not found. The command did not find a record matching the
searchType.

24 PLDM State Sets 2227

PLDM State Sets are specified enumerations for sets of state information that can be returned from 2228
PLDM state sensors. State sets may also be used to provide a common definition for state information 2229
used by other parts of PLDM. 2230

The state sets are the basis of state data that can be mapped as a data source into CIM properties that 2231
return state information, and also provide state information that can be used for monitoring and controlling 2232
the operation of PLDM itself. 2233

PLDM State Sets are defined in DSP0249. This specification defines a numeric ID for each different state 2234
set, defines the enumeration values for the states that make up the set, and provides definitions for each 2235
state within the set. Because the state sets are expected to be extended over time as new CIM properties 2236
are defined, the state sets are maintained in a separate document to allow them to be extended without 2237
having to revise other PLDM specifications. 2238

25 Platform Descriptor Records (PDRs) 2239

PLDM can return collections of semantic and association information about the platform by using 2240
collections of information called Platform Descriptor Records (PDRs). This information can include 2241
records that return semantic information about sensors, such as their sensor resolution, tolerance, 2242
accuracy, and conversion factors, as well as records that return information about the associations 2243
between sensors and monitored entities, management controllers, effecters, and other platform 2244
associations or capabilities. 2245

PDRs are called descriptor records because they are mainly used to describe the subsystem, rather than 2246
to control it or configure it. 2247

25.1 PDR Repository updates 2248

A PDR Repository is not necessarily a static set of records. A platform that includes hot-plug devices or 2249
supports field updates may have its PDRs change over time as devices are added or removed. Even if 2250
the implementation of a particular platform management subsystem is static, the PDRs must still be 2251
generated and installed so that they represent the semantic information and relationships of the particular 2252
platform implementation. 2253

PLDM does not specify the mechanisms by which PDRs get generated, installed, or updated. This was 2254
done intentionally to allow the vendor of the PDR Repository devices to create update or configuration 2255
utilities that are appropriate for the particular implementation. PLDM does, however, specify how the 2256
information is accessed and used. 2257

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 119

25.2 Internal storage and organization of PDRs 2258

The PLDM specifications do not place any requirements on how PDRs are internally stored or organized 2259
within the device or devices that implement the PDR Repository. PDRs may be compressed, stored with 2260
additional pointers, sorted, cross indexed, split, replicated, and so on, as long as the information meets 2261
the byte order and formats specified for the PDR commands. The byte order and formats for PDRs are 2262
specified in tables for the different PDR types in clause 28. 2263

25.3 PDR types 2264

PDRs are identified by a PDR Type value that is given in a field in the header for each different PDR. 2265
PDR types include type values for records that identify PDRs for PLDM numeric and state sensors, 2266
records that direct sensor initialization, records that describe PLDM effecters, and so on. The PDR Type 2267
values are given in Table 76. 2268

25.4 PDR record handles 2269

All PDRs are assigned an opaque numeric value called the recordHandle. This value is used for 2270
accessing individual PDRs within the PDR Repository. Additional information about recordHandles and 2271
their use is provided in the specification of the GetPDR command (see 26.2). 2272

25.5 Accessing PDRs 2273

For most implementations, PDR data rarely changes. A party that uses PDR information may want to 2274
cache certain information to reduce the need for accessing the PDR Repository. The 2275
GetPDRRepositoryInfo command provides timestamps that can be used to identify whether any record 2276
data in a particular PDR Repository has changed. If a change is detected the party can then update its 2277
cached information as necessary. 2278

26 PDR Repository commands 2279

This clause describes the commands for accessing PDRs from a PDR Repository per this specification. 2280
The command numbers for the PLDM messages are given in clause 30. 2281

If a PDR Repository is implemented, the Mandatory/Optional/Conditional (M/O/C) requirements shown in 2282
Table 66 apply. 2283

Table 66 – PDR Repository commands 2284

Command M/O/C Reference

GetPDRRepositoryInfo M See 26.1.

GetPDR M See 26.2.

FindPDR O [1] See 26.3.

RunInitAgent C [2] See 26.4.

GetPDRRepositorySignature C [1] See 26.5
[1] Because this command reduces or eliminates the need to 'walk' the PDRs in order to find particular records, it is 2285

recommended for Primary PDR Repositories that include multiple entity-association hierarchies, use a wide 2286
range of PDR types, incorporate a large number of PDRs, or where specific PDRs, such as OEM PDRs, need 2287
to be accessed by entities that do not care about other PDRs types. 2288

[2] The RunInitAgent command is required for the terminus that provides the primary PDR Repository. 2289

PLDM for Platform Monitoring and Control Specification DSP0248

120 Work in Progress Version 1.2.0a

26.1 GetPDRRepositoryInfo command 2290

The GetPDRRepositoryInfo command returns information about the size and number of records in the 2291
PDR Repository of a particular PLDM terminus, and timestamps that indicate the last time that an update 2292
to the repository occurred. Two timestamps are returned: one that indicates whether any PLDM standard 2293
PDRs have changed, and another that indicates whether any OEM PDRs (if any) have changed. 2294

See 25.5 for more information about accessing PDRs. Table 67 describes the format of this command. 2295

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 121

Table 67 – GetPDRRepositoryInfo command format 2296

Type Request data

– none

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

enum8 repositoryState

value: { available, // Record data can be read from the repository.

 updateInProgress , // Record data is unavailable because an update is in progress.

 failed // Record data is unavailable because of a detected failure
// condition.

 }

timestamp104 updateTime

This timestamp identifies when the standard PDR Repository data was originally created, or
the time of the most recent update if the data has been updated after it was created. This
time does not include changes of PDRs that have a PDR Type of "OEM".

timestamp104 OEMUpdateTime

This timestamp identifies when OEM PDRs in the PDR Repository were originally created, or
the time of the most recent update if the data has been updated after it was created.

uint32 recordCount

Total number of PDRs in this repository

uint32 repositorySize

Size of the PDR Repository in bytes. This value provides information that can be used for
helping estimate buffer size requirements when accessing PDRs.

This size covers only the cumulative sizes of the PDR record fields. This size does not
include the size for any internal header structures that are used for maintaining the PDRs.
This number does not report and may not directly correlate to the amount of internal storage
used for PDRs because, for example, an implementation may elect to internally compress or
use other encodings of the PDR data.

An implementation is allowed to round this number up to the nearest kilobyte (1024 bytes).

uint32 largestRecordSize

Size of the largest record in the PDR Repository in bytes. This value provides information
that can be used for helping estimate buffer size requirements when accessing PDRs.

An implementation is allowed to round this number of up to the nearest 64-byte increment.

uint8 dataTransferHandleTimeout

The minimum interval, in seconds, that a dataTransferHandle value remains valid after it was
delivered in the response of a GetPDR or FindPDR command.

special values: { 0x00 = no timeout, 0x01 = default minimum timeout (MC1, see clause
28.25), 0xFF = timeout >254 seconds. Any timeout values that are less than the specified
default minimum timeout are illegal. }

PLDM for Platform Monitoring and Control Specification DSP0248

122 Work in Progress Version 1.2.0a

26.2 GetPDR command 2297

The GetPDR command is used to retrieve individual PDRs from a PDR Repository. The record is 2298
identified by the PDR recordHandle value that is passed in the request. The command can also be used 2299
to dump all the PDRs within a PDR Repository. 2300

26.2.1 GetPDR command format 2301

Table 68 describes the format of the GetPDR command. 2302

Table 68 – GetPDR command format 2303

Type Request data
uint32 recordHandle

The recordHandle value for the PDR to be retrieved. For more information, see 26.2.3 and 26.2.4.
special value: {0x0000_0000 = Get first PDR in the repository}

uint32 dataTransferHandle
A handle that is used to identify a particular multipart PDR data transfer operation. For more
information, see 26.2.7 and 26.2.8.
special value: { use 0x0000_0000 if the transferOperationFlag is GetFirstPart }

enum8 transferOperationFlag
Indicates whether this request is for the first portion of the PDR
value: { GetNextPart = 0x00, GetFirstPart = 0x01}

uint16 requestCount
The maximum number of record bytes requested to be returned in the response to this instance of
the GetPDR command.
NOTE The responder may return fewer bytes than were requested.

uint16 recordChangeNumber
value: If the transferOperationFlag field is set to GetFirstPart, set this value to 0x0000. If the

transferOperationFlag field is set to GetNextPart, set this to the recordChangeNumber
value that was returned in the header data from the first part of the PDR (see 28.1).

Type Response data
enum8 completionCode

value: { PLDM_BASE_CODES,
INVALID_DATA_TRANSFER_HANDLE = 0x80,
INVALID_TRANSFER_OPERATION_FLAG=0x81,
INVALID_RECORD_HANDLE = 0x82,
INVALID_RECORD_CHANGE_NUMBER = 0x83,
TRANSFER_TIMEOUT = 0x84,
REPOSITORY_UPDATE_IN_PROGRESS = 0x85
}

uint32 nextRecordHandle
The recordHandle for the PDR that is next in the PDR Repository. The value can be used as the
recordHandle in a subsequent GetPDR command as a means of sequentially reading PDRs from
the repository. PDRs are not required to be returned in any particular order.
special value: { 0x0000_0000 = no more PDRs following this one. }

uint32 nextDataTransferHandle
A handle that identifies the next portion of the PDR data to be transferred, if any portions are
remaining
special value: { returns 0x0000_0000 if there is no remaining data. }

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 123

Type Response data (continued)
enum8 transferFlag

Indicates what portion of the PDR is being transferred
value: {Start = 0x00, Middle = 0x01, End = 0x04, StartAndEnd = 0x05}

uint16 responseCount
The number of recordData bytes returned in this response
special value: { returns 0x0000 if the requestCount was 0x0000 }

(var) recordData
PDR data bytes. This field is absent if responseCount = 0x0000. The number of PDR data bytes
returned in this field must match responseCount.

If transferFlag = End

uint8 transferCRC

A CRC-8 for the overall PDR. This is provided to help verify data integrity for a PDR when it is
transferred using a multipart transfer. The CRC is calculated over the entire PDR data using the
polynomial x8 + x2 + x1 + 1 (This is the same polynomial used in the MCTP over SMBus/I2C
transport binding specification). The CRC is calculated from most-significant bit to least-significant
bit on bytes in the order that they are received. This field is only present when transferFlag = End.

26.2.2 Single-part and multipart transfers 2304

The data from a given PDR may be accessed using a single-part or multipart transfer. A single transfer 2305
occurs when the entire PDR content is delivered using a single GetPDR command response. A multipart 2306
transfer is required either when the record data exceeds the amount of data that the responder can return 2307
using a single response, or when it exceeds the amount of data that the requester can accept in a single 2308
response. In this case, the GetPDR command is used iteratively to retrieve the first portion of the record 2309
and then subsequent portions. Additional information and requirements for multipart transfers is provided 2310
in 26.2.7. 2311

Partial transfers from the beginning of a record are allowed. That is, a requester is not required to read 2312
out an entire record if only the beginning portion of the record data is of interest. 2313

26.2.3 PDR recordHandle 2314

The recordHandle is an opaque value that is used by the implementation of the PDR Repository to 2315
identify individual records and to track where the next data of a multipart transfer will come from. This 2316
value is obtained from the response data of a previous instance of the GetPDR command. A special 2317
value of 0x0000_0000 is used to retrieve the first PDR in the repository. 2318

Some implementations may use the recordHandle as a direct offset into storage memory, others may use 2319
it as offset that is relative to the start of the PDR data, and others may use it as a table or list index. 2320

26.2.4 PDR recordHandle retention 2321

The recordHandle values that are used to access a particular PDR may change when the 2322
recordChangeNumber is changed. recordHandle values are also not guaranteed to endure across 2323
connections to the given PLDM terminus that is implementing the command. A party that needs to re-2324
establish a connection to the terminus must assume that any PDR recordHandle values that it previously 2325
had are no longer valid. If any multipart transfers were not completed before the connection was re-2326
established, those transfers must be restarted from the beginning. 2327

PLDM for Platform Monitoring and Control Specification DSP0248

124 Work in Progress Version 1.2.0a

26.2.5 PDR recordChangeNumber 2328

The recordChangeNumber provides a mechanism for preventing the use of invalid PDR data if a record's 2329
data gets updated while the record was in the process of being read out. The mechanism helps ensure 2330
that a requester does not get the first parts from an earlier version of the record and remaining parts from 2331
a later version of the record. The recordChangeNumber can also be used to help a requester scan and 2332
identify which PDRs may have changed after an update to the PDR Repository has occurred. 2333

To accomplish this, the PDR recordChangeNumber that is returned in the GetPDR response is required 2334
to change whenever the data of a PDR changes during a multipart access of the PDR. The party that is 2335
accessing a PDR gets the recordChangeNumber when the first part of the record is returned. This 2336
number is then used as one of the input parameters when retrieving the remaining parts of the record. 2337

The PLDM responder compares this number against the present recordChangeNumber that is associated 2338
with the record. If there is a mismatch, the PLDM responder returns an error completionCode. The 2339
requester can then handle the error by starting the PDR transfer over. 2340

It is recommended that an implementation update the recordChangeNumber only for records that have 2341
changed due to an update. However, implementations may elect to update the recordChangeNumber for 2342
some or all unchanged records. This latter approach can be used for small and simple implementations in 2343
which PDR exits and updates are rare, but should be avoided in large implementations in which the party 2344
that is accessing the PDR data may see significant delays due to the unnecessary re-reading and 2345
handling of PDRs that have not actually changed. 2346

26.2.6 PDR Repository timestamp and PDR Repository locking 2347

The recordChangeNumber mechanism protects against inconsistent data only on a per record basis; it 2348
does not automatically protect against inconsistencies that may occur due to individual updates of 2349
interrelated records. For example, if record A and B are interrelated and both need synchronized updates, 2350
it is possible that a party could access the records at a time when A has been updated but B has not. The 2351
individual records would be correct, but their interrelationship could be incorrect. 2352

The party that is updating the PDRs can lock the repository while updates are occurring (the mechanisms 2353
used for updating and locking the PDRs are outside this specification). In this case, commands such as 2354
the GetPDR command will return an error completionCode indicating that the repository records are 2355
inaccessible because an update is in progress. Update-in-progress status is also available in the 2356
GetPDRRepositoryInfo command. 2357

A party that updates records in a PDR Repository while PLDM command handling is active must either: 2358
lock the PDRs and update the timestamp and recordChangeNumber values before making the repository 2359
available; or update the timestamp and recordChangeNumber values as each individual updated record 2360
is made available through PLDM. 2361

The PDR Repository has a timestamp that can be read using the GetPDRRepositoryInfo command. The 2362
timestamp value is updated whenever changes are made to the repository. A party that is accessing 2363
multiple PDRs and relying on an interrelationship between those records should check the timestamp 2364
value after retrieving the records to verify that a repository update did not occur while the records were 2365
being accessed. 2366

If an update has occurred while records were being read, the records should either be re-read or have 2367
their recordChangeNumber values checked to see if they have changed. Because the 2368
recordChangeNumber is in the beginning portion of a PDR, it is not necessary to read the entire record to 2369
get the value. 2370

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 125

26.2.7 Multipart PDR transfers 2371

The command is intended to support multipart transfer of PDR data only in a sequential manner, starting 2372
from the beginning of the PDR. Random access to a middle portion of a PDR is not required by 2373
implementations, nor is it intentionally supported as an option in this specification. 2374

The dataTransferHandle value is therefore required to remain valid only for use with the next GetNextPart 2375
operation from a given requester. Although many implementations will likely return the same data for an 2376
identical sequence of PDR access commands regardless of the ID of the requester, an implementation 2377
may allocate and track dataTransferHandles on a per-requester basis. The dataTransferHandle 2378
information given to one requester might not be usable by another requester. 2379

26.2.8 PDR dataTransferHandle retention 2380

The dataTransferHandle value for a multipart transfer is required to remain valid for at least MC1 seconds 2381
after it has been delivered in a response. After this interval, an implementation may elect to implement a 2382
timeout and terminate the multipart transfer. To support this, an implementation would use some aspect 2383
of the recordHandle value to track the particular multipart transfer in progress. 2384

The provisions that allow a dataTransferHandle value to become invalid or expire allow implementations 2385
the option of temporarily queuing PDR data in memory and freeing up that memory if the record data is 2386
no longer being accessed. The provisions eliminate the need for the recordHandle values for a given 2387
request to remain valid indefinitely. 2388

26.2.9 Multipart PDR transfer termination and timeouts 2389

No formal release mechanism exists for multipart PDR transfers. Multipart transfers may be terminated by 2390
the responder under the following conditions: 2391

• The responder implementation may restrict a given requester to having only one PDR transfer 2392
in process at a time. If the requester starts a different transfer, the earlier multipart transfer that 2393
was in progress may be aborted. 2394

• The responder implementation may terminate any multipart PDR transfer in progress following 2395
expiration of the PDR dataTransferHandle retention interval, MC1. 2396

• Execution of the Initialization Agent function may terminate a multipart PDR transfer in progress. 2397

26.2.10 Reuse of prior request values 2398

Except for the first part of a PDR, an implementation is not required to support returning a previously 2399
transferred portion of a PDR after the transfer has progressed to a later portion. For example, if the first 2400
three portions of a PDR have been transferred, the implementation may not allow a re-transfer of the 2401
second portion without restarting the transfer from the beginning. If an implementation does accept 2402
request parameters that were used for reading an earlier portion of a given PDR, it must return the same 2403
PDR data that was returned for the original request. 2404

26.3 FindPDR command 2405

The FindPDR command is provided to improve the efficiency of common types of access to a Primary 2406
PDR Repository. The FindPDR command is primarily designed to provide operations that can assist a 2407
MAP in using information from the PDRs to instantiate CIM objects and associations. 2408

The FindPDR command returns the PLDMHandleType and PLDMHandle values for a particular PDR or 2409
set of PDRs, depending on the parameters that were passed in the request. The response can also 2410
include the first portion of the PDR data. The response from the FindPDR command can then be used 2411
with the GetPDR command to read the PDR or the remaining portions of the PDR. 2412

PLDM for Platform Monitoring and Control Specification DSP0248

126 Work in Progress Version 1.2.0a

To reduce implementation and validation complexity, the FindPDR command does not provide a generic 2413
search engine but supports only a limited number of different preconfigured queries that are restricted to 2414
using particular key fields within the PDRs. 2415

For example, the FindPDR command can be used to find all the PDRs that have a particular 2416
PLDMTerminusHandle, or Entity Association PDRs that have a common Container ID. It can also be used 2417
to find Numeric Sensor PDRs that share a particular type of monitored numeric unit, such as temperature, 2418
or state sensors that use a particular state set. However, the FindPDR command does not support less 2419
common operations such as finding records that have a particular hysteresis value setting or state 2420
sensors that implement a particular state from within a state set. 2421

The findParameters field holds the PDRType-specific search fields. The format of findParameters is 2422
identified by the parameterFormatNumber that is passed in the request. The findParameters value may 2423
be applicable to more than one PDRType. The parameterFormatNumber and PDRType field in the 2424
request are used together to identify which PDRs should be searched. Table 70 lists the values for 2425
parameterFormatNumber and the PDRType values that are associated with each 2426
parameterFormatNumber. Table 71 lists the different PDR fields that make up the findParameters value 2427
for each different parameterFormatNumber. 2428

If the PDRType field value is set to 0, all of the PDRType values that are specified for the 2429
parameterFormatNumber in Table 70 are searched. Otherwise, only PDRs that have the given PDRType 2430
value are searched. 2431

For example, if PDRType = 0 and parameterFormatNumber = 7, all PDRs with PDRType values that are 2432
identified for searching with parameterFormatNumber = 7 are searched: Numeric Effecter Initialization, 2433
State Effecter Initialization, and Effecter Auxiliary Names. If the PDRType is set to the value for State 2434
Effecter Initialization PDR, only State Effecter Initialization PDRs are searched. 2435

The findParameters value is included in each request to eliminate the need for implementations to retain 2436
the findParameters value when a multi-PDR find operation is being done. 2437

Table 69 describes the format of this command. 2438

Table 69 – FindPDR command format 2439

Type Request data

uint32 findHandle

A handle that is used to track the point from which searching should resume. With the exception of
the first find, the nextFindHandle value is set with the nextFindHandle value from the previous
response for the find operation in process.

special values: { use 0x0000_0000 if the findOperation is findFirst,

 0xFFFF_FFFF = reserved. }

NOTE: This field has the same retention specifications as the dataTransferHandle field used in the GetPDR
command. See 26.2.4 for more information.

enum8 findOperationFlag

Indicates whether this request is for locating the first matching PDR.

value: { findNext = 0x00, findFirst = 0x01}

uint16 requestCount

The maximum number of record bytes requested to be returned in the response to this instance of
the FindPDR command.

NOTE: The responder may return fewer bytes than were requested.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 127

Type Request data (continued)

uint16 PDRType

The PDRType for the records to be located.

special value: 0x0000 = match any PDRType.

uint8 parameterFormatNumber

A number that identifies the format and number of parameters in the findParameters field. Table 71
lists the different PDR fields that make up the findParameters value for each different
parameterFormatNumber.

bitfield16 wildcards

Each Nth bit position indicates whether the Nth parameter from the findParameters field should be
matched or ignored (treated as a wildcard). Use 0b for any bit position for which a parameter is not
defined.

[15] – 1b = sixteenth parameter value in findParameters must be matched

 0b = sixteenth parameter value in findParmeters is ignored

…

[0] – 1b = first parameter value in findParameters must be matched

 0b = first parameter value in findParameters is ignored

varies findParameters

A series of parameters that correspond to fields in the PDRs that are used for the find operation.

Table 71 lists the PDR fields that make up the findParameters value for each
parameterFormatNumber. Each field within findParameters is provided in the order listed in Table 71,
starting from the top of the table to the bottom for the column that is identified by
parameterFormatNumber. Dots in the column identify which parameters are to be provided in
findParameters. The data type and size (for example, uint8) and meaning of each parameter are
given by the definition of the PDR that is identified by the PDRTypes for the given
parameterFormatNumber, as listed in Table 70.

Values for all parameters must be provided even if a particular parameter is to be ignored in the
search. The values for ignored parameters shall not be checked for validity by the responder. An
implementation may optionally check non-wildcard parameters for validity and return an error
completionCode if the parameter is not a legal value for the corresponding field in the PDR.

PLDM for Platform Monitoring and Control Specification DSP0248

128 Work in Progress Version 1.2.0a

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES,

INVALID_FIND_HANDLE = 0x80,

INVALID_FIND_OPERATION_FLAG = 0x81,

INVALID_PDR_TYPE = 0x82,

INVALID_PARAMETER_FORMAT_NUMBER = 0x83,

INVALID_FIND_PARAMETERS = 0x84,

REPOSITORY_UPDATE_IN_PROGRESS = 0x85

 }

uint32 nextFindHandle

A handle that identifies the next part of a Find operation that may return more than one PDR. The
implementation uses this field to track the point from which it needs to resume searching. An
implementation may elect to look ahead to see if there are any more matching PDRs before sending
the response, or it may elect to wait until getting the next request before searching to see if there are
any remaining matching records. The “look-ahead” approach is recommended.

special values: { returns 0x0000_0000 if no matching PDR was found.
returns 0xFFFF_FFFF if this response holds data for the last matching PDR. That
is, there are no more matching PDRs beyond this one.}

uint32 nextDataTransferHandle

A handle that identifies the next portion of the PDR data to be transferred, if any portions are
remaining. This value is used in the GetPDR command to retrieve any remaining portions of the
PDR.

special value: { returns 0x0000_0000 if there is no remaining recordData beyond the recordData that
is being returned in this response data. }

enum8 transferFlag

Indicates what portion of the PDR is being transferred

value: {Start = 0x00, Middle = 0x01, End = 0x04, StartAndEnd = 0x05}

uint16 responseCount

The number of recordData bytes returned in this response

special value: { returns 0x0000 if the requestCount was 0x0000 }

(var) recordData

PDR data bytes. This field is absent if responseCount = 0x0000. Otherwise, the number of PDR data
bytes returned in this field must match responseCount.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 129

Table 70 – FindPDR Command Parameter Format Numbers 2440

PDRType parameterFormatNumber

ANY = 0 1[1]

Event Log 1[2]

Terminus Locator 2

Numeric Sensor 3

Numeric Sensor Initialization

4 State Sensor Initialization

Sensor Auxiliary Names

State Sensor 5

Numeric Effecter 6

Numeric Effecter Initialization

7 State Effecter Initialization

Effecter Auxiliary Names

State Effecter 8

Entity Association 9

Interrupt Association 10

OEM Unit 11

OEM State Set 12

OEM Entity 13

OEM Device
14

OEM

OEM Unit

15 [3]

OEM State Set

OEM Entity

OEM Device

OEM

[1] The entire contents of the repository can be read by using this format along with PDRType = ANY and PLDMTerminusHandle set 2441
for “wildcard.” 2442

[2] The PLDMTerminusHandle parameter must be set for “wildcard” when using this format to search for Event Log PDRs. 2443
[3] This search format can be used to return all PDRs that have any of the indicated "OEM" PDRType values or all PDRs that have 2444

any of the indicated "OEM" PDRType values and match a particular vendorIANA. 2445

PLDM for Platform Monitoring and Control Specification DSP0248

130 Work in Progress Version 1.2.0a

Table 71 – FindPDR command parameter formats 2446

Parameter (PDR field)
parameterFormatNumber

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PLDMTerminusHandle l l l l l l l l l l l l l l

TID l

sensorID l l l l

effecterID l l l

stateSetID l l

containerID l l l l

associationType l

entityType l l

entityInstanceNumber l l

baseUnit l l

unitModifier l l

rateUnit l l

baseOEMUnitHandle l l

auxUnit l l

auxUnitModifier l l

auxrateUnit l l

auxOEMUnitHandle l l

containerEntityType l

containerEntityInstanceNumber l

containerEntityEntityID l

interruptTargetEntityType l

interruptTargetEntityInstanceNumber l

interruptTargetEntityContainerID l

interruptSourceEntityType l

interruptSourceEntityInstanceNumber l

interruptSourceEntityContainerID l

OEMUnitHandle l

OEMStateSetIDHandle l

OEMEntityIDHandle l

vendorIANA l l l l l

OEMUnitID l

OEMStateSetID l

OEMEntityID l

OEMRecordID l

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 131

26.4 RunInitAgent command 2447

The RunInitAgent command directs the terminus that provides the Primary PDR Repository to run the 2448
Initialization Agent function. This command can be used to trigger a reinitialization of the monitoring and 2449
control capabilities in the PLDM subsystem. Table 72 describes the format of the command. 2450

Table 72 – RunInitAgent command format 2451

Type Request data

bitfield8 initConditionEmulation

This value selects a condition that emulates a transition that triggers the Initialization Agent to run.
The Initialization Agent then performs its steps accordingly. For example, if the
initConditionEmulation is set to SystemHardReset, the Initialization Agent initializes only those
sensors and effecters that have SystemHardReset set in the initCondition parameter of their
Initialization PDRs.

value: {

0x00 = InitializationAgentRestart, // Directs the Initialization Agent to take the same steps
// as it would if the controller that holds the Initialization
// Agent was restarted or reinitialized.

0x01 = PLDMSubsystemPowerUp, // Directs the Initialization Agent to take the same steps
// as it would when the PLDM subsystem becomes
// powered up.

0x02 = SystemHardReset, // Directs the Initialization Agent to take the same steps
// as it would following a system hard reset.

0x03 = SystemWarmReset, // Directs the Initialization Agent to take the same steps
// as it would following a system warm reset.

0x04 = PLDMTerminusOnline // Directs the Initialization Agent to initialize the
// terminus that has a TID that matches the TID
// parameter in this request.

}

uint8 TID

Terminus ID for the terminus to be initialized when the initConditionEmulation field in this request is
set to PLDMTerminusOnline.

special value: The value in this field is ignored when the initConditionEmulation field in this request
is set to any value other than PLDMTerminusOnline.

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

26.5 GetPDRRepositorySignature command 2452

The PDR Repository Signature is a value that represents the entire collection of terminus Platform Device 2453
Records (PDRs). This is different than the GetPDRRepositoryInfo command because only an opaque 32 2454
bit value is returned. The purpose of the PDR Repository Signature is to provide the management 2455
controller the capability to determine whether a terminus PDR repository has changed during state 2456
transitions such as power cycles. The PDR Repository signature shall remain persistent unless there is a 2457
change in any PDR. This allows the management controller to not retrieve large number of PDRs if the 2458
management controller caches the specific terminus PDR repository. The terminus is allowed to create 2459
the PDR Repository Signature using any method that creates unique values to indicate a change. The 2460

PLDM for Platform Monitoring and Control Specification DSP0248

132 Work in Progress Version 1.2.0a

management controller is expected to compare the current value to the previous value to detect a 2461
terminus PDR Repository modification. 2462

Table 73 – GetPDRRepositorySignature command format 2463

Type Request data

-- none

Type Response data

enum8 completionCode

value: { PLDM_BASE_CODES }

uint32 pdrRepositorySignature

This is a 32 bit value and remains persistent unless a change is detected in any record of the PDR
repository. The supplier of the PDR Repository may choose the best method to create at least two
different values. The receiver of the PDR Repository simply checks for a difference between
previous pdrRepositorySignature and current pdrRepositorySignature to detect a change or update
to the repository.

27 PDR definitions 2464

This clause describes certain important characteristic parameters that are provided within the PDRs for 2465
interpreting the readings and settings of sensors and effecters. 2466

27.1 Sensor types 2467

PLDM contains two basic types of sensors that are described using PDRs: 2468

• The PLDM Numeric Sensor is used to obtain a numeric value for a monitored parameter. The 2469
sensor definition also optionally includes returning state information based on whether the 2470
numeric reading has crossed one or more defined threshold levels. 2471

• The PLDM State Sensor/PLDM Composite State Sensor is used to obtain the present state of a 2472
monitored parameter. The PLDM sensor access commands allow an implementation to provide 2473
multiple sets of state information using a single access command. When this is done, the 2474
implementation is referred to as providing a Composite State Sensor. 2475

27.2 Effecter types 2476

PLDM contains two basic types of effecters that are described using PDRs: 2477

• The PLDM Numeric Effecter is used to set a numeric value for a monitored parameter. 2478

• The PLDM State Effecter/PLDM Composite State Effecter is used to set the present state of a 2479
monitored parameter. The PLDM effecter access commands allow an implementation to provide 2480
multiple sets of state information using a single access command. When this is done, the 2481
implementation is referred to as providing a Composite State Effecter. 2482

27.3 State sets 2483

State information is returned using an enumeration called a “state set.” Each state set has a different ID 2484
number. This number is used within the PDRs to identify what particular state set a sensor or effecter is 2485
using. See clause 24 for more information. 2486

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 133

27.4 Sensor and effecter units 2487

This subclause and following subclauses describe the fields that are used within PDRs to define and 2488
describe sensor and effecter units and related characteristics such as accuracy, tolerance, and resolution. 2489

The type of units that are associated with the value that a sensor returns or monitors, or that an effecter 2490
controls, such as volts or amps, is identified in the PDRs by a sensorUnits enumeration, listed in Table 2491
74. Unless otherwise indicated, the units apply to all numeric properties of the sensor, such as the sensor 2492
reading, threshold values, and resolution. 2493

Vendor-defined units are identified by a special value for OEMUnit. A special PDR called the OEM Unit 2494
PDR is used to define the meaning of the OEMUnit when it is used in the PDRs that describe a sensor or 2495
effecter. Refer to 28.9 for more information about how OEMUnits are used in PDRs. 2496

PLDM for Platform Monitoring and Control Specification DSP0248

134 Work in Progress Version 1.2.0a

Table 74 – sensorUnits enumeration 2497

0 None 30 Cubic Feet 60 Bits

1 Unspecified 31 Meters 61 Bytes

2 Degrees C 32 Cubic Centimeters 62 Words (data)

3 Degrees F 33 Cubic Meters 63 DoubleWords

4 Kelvins 34 Liters 64 QuadWords

5 Volts 35 Fluid Ounces 65 Percentage

6 Amps 36 Radians 66 Pascals

7 Watts 37 Steradians 67 Counts

8 Joules 38 Revolutions 68 Grams

9 Coulombs 39 Cycles 69 Newton-meters

10 VA 40 Gravities 70 Hits

11 Nits 41 Ounces 71 Misses

12 Lumens 42 Pounds 72 Retries

13 Lux 43 Foot-Pounds 73 Overruns/Overflows

14 Candelas 44 Ounce-Inches 74 Underruns

15 kPa 45 Gauss 75 Collisions

16 PSI 46 Gilberts 76 Packets

17 Newtons 47 Henries 77 Messages

18 CFM 48 Farads 78 Characters

19 RPM 49 Ohms 79 Errors

20 Hertz 50 Siemens 80 Corrected Errors

21 Seconds 51 Moles 81 Uncorrectable Errors

22 Minutes 52 Becquerels 82 Square Mils

23 Hours 53 PPM (parts/million) 83 Square Inches

24 Days 54 Decibels 84 Square Feet

25 Weeks 55 DbA 85 Square Centimeters

26 Mils 56 DbC 86 Square Meters

27 Inches 57 Grays
- all other = reserved

28 Feet 58 Sieverts

29 Cubic Inches 59 Color Temperature Degrees K 255 OEMUnit

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 135

27.4.1 Base units 2498

The base unit of measurement that is associated with the reading values returned by a PLDM Numeric 2499
Sensor or set into a PLDM Numeric Effecter is represented by the combination of three fields from the 2500
PDR for the sensor: baseUnits, unitModifier, and rateUnits. These fields are interpreted according to the 2501
following formula: 2502

Sensor/Effecter Units = baseUnit * 10unitModifier rateUnit 2503

For example, if baseUnits is Volts and the unitModifier is -6, the units of the values returned are 2504
microvolts. 2505

If the rateUnits property is set to a value other than None, the units are further qualified as rate units. In 2506
the preceding example, if rateUnits is set to Per Second, the values returned by the sensor are in 2507
microvolts/second. 2508

27.4.2 Auxiliary units 2509

In some cases, additional modification of the base unit of the sensor might be required. For example, 2510
acceleration is commonly given in units such as "meters per second per second". The PDRs include a 2511
provision for modifying the base units with an additional set of units called auxiliary units. Auxiliary units 2512
are defined by three elements: auxUnit, auxUnitModifier, and auxRateUnit. These elements are used in 2513
combination with the base units as follows: 2514

Sensor/Effecter Units = baseUnit * 10unitModifier [rel] auxUnit * 10auxUnitModifier rateUnit auxRateUnit 2515

[rel] is the relationship between the base unit and the auxiliary unit, as follows: 2516

rel = enum8 { dividedBy, multipliedBy} 2517

And: 2518

dividedBy implies a "/" or "per" relationship, such as "per foot" 2519

multipliedBy implies a "*" operation, such as "foot*lbs (foot-lbs)" 2520

auxUnit and auxRateUnit shall not be used if an equivalent definition can be made using only base units. 2521

27.4.3 Units for use with CIM 2522

Developers are cautioned that PLDM units may include types of units that are not presently supported by 2523
standard CIM objects such as CIM_Sensor. PLDM supports additional types of units because certain 2524
types of sensors or effecters may be used within a platform management subsystem but are not exposed 2525
through CIM, or are mapped into CIM using proprietary CIM extensions. Parties developing platform 2526
management subsystems in which sensors are intended to be exposed as CIM objects should first verify 2527
which types of sensors and units are supported by CIM and the CIM profiles. 2528

27.4.4 OEM (vendor-defined) sensor units 2529

OEM (vendor-defined) sensor units are identified in PLDM sensor PDRs when the OEMUnit value from 2530
Table 74 is used for the baseUnit or auxUnit. The semantic information of an OEMUnit can then be 2531
further described using an OEM Sensor Units PDR that is associated with the particular sensor that is 2532
returning the OEMUnit. Multiple OEM Sensor Units PDRs can be defined if there is a need for defining 2533
more than one type of OEM unit. Additionally, multiple PLDM Sensor PDRs can be associated with a 2534
particular OEM Sensor Units PDR. 2535

PLDM for Platform Monitoring and Control Specification DSP0248

136 Work in Progress Version 1.2.0a

27.5 Counters 2536

A counter is a numeric sensor that returns a value that returns a count. PLDM does not define any 2537
requirements on whether a counter must increment, decrement, or both, or whether it does so 2538
sequentially or monotonically, and so on. 2539

Many common types of counters can use predefined sensor unit values, such as Hits, Misses, Corrected 2540
Errors, Uncorrected Errors, and others. If no predefined unit fits, it is recommended that the auxiliary 2541
sensor unit (auxUnit) be designated using the predefined unit "Counts" in the PDR for the sensor, and 2542
that an OEM unit type is defined for the base unit. 2543

For example, if an implementation needed a counter for "widgets," it would be noted that no predefined 2544
sensor unit type for "widgets" exists. In this case, an OEM Unit PDR for "widgets" is created and used for 2545
the base unit type, and "Counts" is used as the auxUnit. 2546

Counters enable a party that accesses PDR information for the sensor to get a partial interpretation of the 2547
sensor semantics. Thus, although the party interpreting the sensor may not know what a widget is, it will 2548
know that the sensor is returning Counts of something. 2549

27.6 Accuracy, tolerance, resolution, and offset 2550

The PDRs for numeric sensors and effecters include fields for reporting the accuracy, tolerance, and 2551
resolution associated with the numeric value for the reading or setting. This subclause provides 2552
definitions for accuracy, tolerance, and resolution as used within this specification and information on how 2553
the values are calculated and used. Accuracy, tolerance, and resolution are summarized as follows: 2554

Accuracy An error in the reading that scales proportionally with the magnitude of the input. Typically 2555
given as a ± percentage of the reading. 2556

Tolerance A ± error in the reading that, unlike accuracy, does not scale with the magnitude of the 2557
reading. Tolerance typically comes from a combination of quantization (round off) errors 2558
including errors due to offsets in the measurement. 2559

Resolution The nominal size of the “steps” between sequential reading values. 2560

Accuracy specifies a degree of error that varies in proportion to the reading, and tolerance specifies a 2561
constant error. The combination of these two generally provides enough flexibility to cover a range of 2562
conversion errors in most linear analog-to-digital (A/D) converters. 2563

Although other error types, such as nonlinearity, can exist in converters, the contribution of those errors 2564
can be accounted for by increasing the size of the reported values for tolerance, accuracy, or both as 2565
necessary. 2566

27.6.1 Additional information about numeric sensor/effecter tolerance 2567

Tolerance can be considered to be a constant portion of the quantization error in the conversion of an 2568
analog input to a numeric sensor. Consider a sensor where 0x00 ideally corresponds to 0.000 to 0.500 V 2569
and 0x01 corresponds to 0.500 V to 1.000 V. When the input is 0.500 V exactly, the sensor could report 2570
either 0x00 or 0x01. Now assume that the input is 0.501 V. Ideally, this would result in a value of 0x01 2571
from the sensor, but because of offsets in an implementation, it is possible that some implementations 2572
could return a value of either 0x00 or 0x01. If 0x00 is reported, the sensor is effectively returning a value 2573
that is -1 count from ideal. It is possible that the sensor implementation could be asymmetric with respect 2574
to tolerance. For example, a sensor implementation may sometimes map 0.501 V to 0x00, but would 2575
never map anything less than 0.500 V to 0x01. In this case, the tolerance would be +0 counts and -1 2576
counts. Generally, an implementation is subject to both positive and negative offsets because of 2577
component manufacturing variation, noise, and so on. Thus, it is common to see a tolerance of ± 1 count. 2578

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 137

27.6.2 Examples of accuracy, tolerance, and resolution use 2579

Figure 24 shows an example of a "3-bit" (eight step) converter. In this example, the converter is hooked 2580
up for monitoring a nominal signal that can vary from 0.0 V to 8.0 V. The resolution is defined as the size 2581
of the steps between nominal readings. The resolution is 1.0 V because there is 1.0 V difference between 2582
each successive reading value. 2583

0x1 0x2 0x40x3 0x5 0x6 0x7

0x1

- +

0x0

8.0V

7.5V

8.0V
+ 5%

8.0V
- 5%

7.0V

1.0V

0.5V 1.5V
The effect of accuracy is proportional to the magnitude of the
nominal input value. The dotted lines represent input values
that, because of accuracy, would map to the same
conversion value. For example, because of accuracy alone
any input value within this region would result in a converter
value of 0x6.

The effect of tolerance may be viewed as a +/-
shift of the reading relative to the input. In this
specification it is defined as a constant offset
that, unlike accuracy, does not scale with the
input. It is specified as a +/- variation of the
conversion value (e.g., +/- counts).

 2584

Figure 24 – Accuracy, tolerance, and resolution example 2585

In this example, the input value that corresponds to a reading of 0x0 is actually centered around 0.50 V, 2586
not 0.0 V. That is, the meaning of a reading of 0x0 does not mean 0.0 V, as might be expected, but 2587
actually means "0.5 V plus or minus 0.5 V". This represents a typical way that A/D converters are 2588
connected in systems. It is a common mistake to assume that a reading of zero actually corresponds to 2589
0.0 V. 2590

If this converter had no additional offsets or accuracy errors, the reading values would correspond to input 2591
values as follows: 2592

0x0 à 0 V to 1.0 V (0.5 V ± 0.5 V) 2593

0x1 à 1.0 V to 2.0 V (1.5 V ± 0.5 V) 2594

0x2 à 2.0 V to 3.0 V (2.5 V ± 0.5 V) 2595

0x3 à 3.0 V to 4.0 V (3.5 V ± 0.5 V) 2596

0x4 à 4.0 V to 5.0 V (4.5 V ± 0.5 V) 2597

0x5 à 5.0 V to 6.0 V (5.5 V ± 0.5 V) 2598

PLDM for Platform Monitoring and Control Specification DSP0248

138 Work in Progress Version 1.2.0a

0x6 à 6.0 V to 7.0 V (6.5 V ± 0.5 V) 2599

0x7 à 7.0 V to 8.0 V (7.5 V ± 0.5 V) 2600

If these readings were converted to their corresponding nominal input voltage (Vin) values, the formula 2601
would be as follows: 2602

Vin(nominal) à (resolution * reading) + 1/2 resolution 2603

Note that this follows the Cartesian coordinate formula for a line: y = Mx + B 2604

Now, suppose that the implementation could add a negative D.C. offset of 0.5 V to the input. Then the 2605
center point for a reading of 0.0 V would correspond to 0.0 V, and a reading of 0x0 would correspond to a 2606
range of 0.0 V ± 0.5 V instead of 0.0 V to 1.0 V. In this case, the conversion would then be V = (resolution 2607
* reading) + 0.0 V. There is now no offset relative to the center of the reading value because of a D.C. 2608
offset. If the converted negative offset of 4.0 V was connected to the input, a reading of 0x0 would now 2609
correspond to -3.5 V ± 0.5 V and a reading of 111b would correspond to 3.5 V ± 0.5 V. 2610

It is very common for an A/D converter implementation to have a D.C. offset that needs to be accounted 2611
for when converting a reading to the corresponding nominal input value. The party that implements the 2612
hardware for the sensor needs to provide this offset value as well at the resolution (step size per count) 2613
so that the basic conversion of the reading can be accomplished. 2614

After the basic conversion of the reading is done, the effects of accuracy and tolerance may need to be 2615
taken into account. For example, if someone is depending on the reading to determine whether 2616
something has failed, it is important to understand how much error might be in the reading so that a 2617
failure is not falsely assessed for a healthy component. 2618

For PLDM, the effects of accuracy and tolerance are considered to be orthogonal to one another and 2619
additive. First consider the effect of accuracy. Suppose the accuracy of the sensor is specified as ±5%. 2620
Using that figure, a value of 001b will nominally correspond to 1.5 V ± 5%, but because of quantization 2621
and accuracy, any value from 1.0 V ± 5% to 2.0 V ± 5% (a range of 0.95 V to 2.10 V) could result in a 2622
reading of 0x1. 2623

The next step is to factor in tolerance. The quantization within a converter is never perfect; some slight 2624
variation always exists in the comparison points that yield a particular converter output. Instead of the 2625
conversion ranges being evenly spaced as shown in Figure 24, some ranges may be a little wider and 2626
others a little narrower. The effect of this is that in an actual implementation, borderline values such as 2627
1.99 V or 2.01 V, for example, may sometimes yield a value of 0x1 and sometimes 0x2. 2628

Tolerance in PLDM is defined as an error in the quantization that is applied to all counts of the converter 2629
equally. Because PLDM sensors are all specified as returning integer values, any errors in the reading 2630
will always result in an integral number of counts. Thus, tolerance is specified as a +/- effect on the count. 2631

The tolerance value is typically used to account for quantization errors in A/D conversion circuitry that 2632
occur because of effects such as D.C. voltage offsets within the circuit. For example, suppose the input to 2633
an A/D converter that monitors voltage was shifted up by a constant amount, as would be the case if a 2634
D.C. offset was added to the input. Per the figure, if a D.C. offset error of 0.25 V were added when 2635
converting, the input reading 0x01 would represent a range that actually goes from 0.75 V to 1.75 V 2636
instead of the nominal range 1.0 V to 2.0 V. This means that an input between 0.75 V and 1.0 V will 2637
cause a reading of 0x1 to be returned instead 0x0. Thus, because of this offset error, the reading would 2638
be one count higher than it was intended to be for inputs in that range. Similarly, with the same offset, a 2639
reading of 0x2 would correspond to an input of 1.75 V to 2.75 V, and so an input between 1.75 V and 2640
2.00 V would also result in a reading that is one count higher than intended. 2641

This does not mean that all conversions are off by one count. In this example, the reading is incorrect 2642
only for inputs that are in the range caused by the offset. A reading of 0x1 would be correctly returned for 2643

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 139

an input of 1.5 V. The reading can thus be incorrect by 0 counts or +1 counts depending on what range 2644
the input value is in. In this case, the tolerance would be specified as +1/-0 counts. 2645

Manufacturing variations and tolerances in A/D conversion circuitry mean that both positive and negative 2646
offsets are possible. This is why it is typical to see a specification of ± 1 count for tolerance. In many 2647
implementations, tolerance is specified as ± 1 count for these types of conversions. Because resolution is 2648
given in units of 1 count, tolerance and resolution may sometimes appear to equate to the same value. 2649
However, tolerance and resolution should not be misinterpreted as being the same thing. 2650

Lastly, in some cases PLDM Numeric Sensors will return values such as counts or other measurements 2651
that to not use a conversion process that can introduce errors in the reading. In this case, the tolerance is 2652
specified as ± 0 counts. 2653

27.6.3 Accuracy, tolerance, and resolution relationship to thresholds 2654

Accuracy, tolerance, and resolution must all be taken into account to generate a threshold that does not 2655
generate a "false positive" (a false indication of a failure). For example, if accuracy, tolerance, and 2656
resolution are not taken into account when calculating the threshold for a warning level, it is possible that 2657
an input could be assessed as being within the warning range when the input was actually near the limit 2658
of the normal range. 2659

A consequence of avoiding false positives is that for a particular range a value that is actually within the 2660
intended warning range can be assessed as being within the normal range. That is, false positives are 2661
avoided at the cost of having the possibility of 'false negatives'. However, in most implementations it is 2662
considered better to avoid the false alarms that false positives would cause. Whether to design thresholds 2663
to avoid false positives or false negatives is a choice of the system implementation. 2664

Because it is the more common case, the following examples describe how thresholds may be calculated 2665
to avoid false positives. 2666

EXAMPLE: An 8-bit A/D converter monitoring a 5.0 V nominal signal where the sensor has been designed such 2667
that the 5.0 V level corresponds to a reading of C0h and the 0.0 V level corresponds to a reading of 2668
00h (as shown by Figure 25A). Assume the converter implementation has a specified worst-case 2669
accuracy of ± 4%, and a tolerance of ± 1 count. 2670

PLDM for Platform Monitoring and Control Specification DSP0248

140 Work in Progress Version 1.2.0a

0.0V

0x00 0x01 ... 0xC0

5.0V

0xC0-1 = 191
counts

0xC0 = 192
counts

Resolution = (5.0 – 0.0) / 191
 = 26.21801 mV per count

Resolution = (5.0 – 0.0) / 192 =
26.041666 mV per count

0.0V

0x00 0x01 ... 0xC0

5.0V

191.5
counts Resolution = (5.0 – 0.0) / 191.5

 = 26.10966 mV per count

A

B

C

5.02617801V
5.05236021V

0xC1 ... 0xC8

5.23560209V

5.25V

0.0V

0x00 0x01 ... 0xC0

5.0V

0xC0-0x10 = 176
counts Resolution = 5.0 / 176

= 28.40909 mV per count

5.0V

D

0.0V

0x10 0x11 ... 0xC0

5.0V

0x0F... ...

...

...

...

 2671

Figure 25 – Figuring resolution from the design 2672

For Figure 25A, this yields resolution, tolerance, and accuracy values as follows: 2673

Resolution 2674

 = 5.0 V / (C0h -1) = 26.17801 mV 2675

Accuracy 2676

 = ± 4% (given, from the design) 2677

Tolerance 2678

 = ± 1 count (given) = ± 26.17801 mV 2679

Now, suppose it is necessary to calculate an upper critical threshold for the 5.0 V + 5% point (5.25 V) 2680
where this threshold will not produce "false positives" (falsely return 'critical') across the range of 2681
accuracy, tolerance, and resolution. The following example shows steps that can be used to calculate a 2682
threshold suitable for a PLDM Numeric Sensor: 2683

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 141

Step 1: Divide the target threshold value by the resolution to find how many counts correspond to 2684
5.25 V: 2685

 5.25 V / 26.17801 mV = 200.55 counts 2686
(which puts the 5.25 V point within the nominal range of reading 0xC8, as shown in 2687
Figure 25A) 2688

Step 2: Factor in the tolerance: 2689

 Important: Because tolerance is specified as an error, a "+" count for tolerance means that 2690
the reading may be higher than it should be, and a "-" count means that the reading may be 2691
lower than it should be. To account for these errors, the "-" tolerance value should be added 2692
to upper thresholds, and the "+" tolerance value subtracted from lower thresholds. This is 2693
particularly important when the plus and minus tolerance values are different from one 2694
another. 2695

 200.55 + 1 = 201.55 counts 2696

Step 3: Account for the effect of accuracy: 2697

 201.55 * 1.04 = 209.612 counts 2698

Step 4: Round up (because an A/D converter cannot give a non-integer count) 2699

 209.612 à 210 counts = 0xD2 2700

This yields a threshold value of 210, which corresponds to 5.497 V. This shows that even though a 2701
threshold of 5.25 V is being targeted, it is necessary to set the threshold to a value that, because of the 2702
effects of accuracy, tolerance, and resolution, could allow the actual monitored value to be as high as 2703
5.497 V in some implementations before a threshold match would be detected. 2704

The calculations for lower thresholds are the same, except that negative values for the accuracy, 2705
tolerance, and resolution are used. 2706

Figure 25 illustrates what to be aware of when deriving the values for resolution from an implementation. 2707
To get an accurate value for resolution, it is important to know whether the input values that correspond to 2708
a particular reading are given as values that are at the point of change (quantization point) between 2709
successive readings, are a nominal “center point” of a reading, or a combination of the two. (The 2710
difference in the resolution value between Figure 25A and Figure 25C is almost 0.5%. This shows that a 2711
nontrivial amount of error could be introduced if the implementer uses the wrong calculation point for its 2712
implementation). 2713

Lastly, area D in Figure 25 shows that offsets in the implementation also need to be taken into account. 2714
Offset adds a new first step to the threshold calculation: 2715

Step 0: Take the target threshold and subtract (or add, depending on the implementation) the D.C. 2716
offset value before calculating the counts for the threshold. 2717

PLDM for Platform Monitoring and Control Specification DSP0248

142 Work in Progress Version 1.2.0a

27.7 Numeric reading conversion formula 2718

The following formula is used with data from the Numeric Sensor PDR to convert the corresponding 2719
PLDM Numeric Sensor's raw reading to the units specified in the Numeric Sensor PDR. 2720

Reading Conversion formula: Y = (m * X + B) 2721

Where: 2722

Y = converted reading in Units 2723

X = reading from sensor 2724

m = resolution from PDR in Units 2725

B = offset from PDR in Units 2726

Units = sensor/effecter Units, based on the Units and auxUnits fields from the PDR for the 2727
numeric sensor 2728

For example, a sensor with the following units, resolution, offset, and reading: 2729

Reading = 0xBF 2730

Units = Volts 2731

Resolution: 26.17801 mV 2732

Offset = -1.00 V 2733

would have the following the converted reading: 2734

Y = (26.17801 * 10-3 V * 0xBF + (-1.00 V)) = [(.02617801 * 191) - 1.00] V = 4.00 V 2735

A full interpretation of the reading should also take tolerance and accuracy into account. For example, if 2736
the PDR indicates the following: 2737

Accuracy: ± 4% 2738

Tolerance: ± 1 count (given) 2739

combined with the previous example, the full interpretation of the reading would be: 2740

(4.00 V ± 26.17801 mV) ± 4% 2741

where ± 26.17801 mV corresponds to the effect of a Tolerance of ± 1 count. 2742

27.7.1 Rounding 2743

Some precision may often be lost in the conversion of binary to decimal. For example, the previous 2744
conversion that was shown as 4.00 V actually calculates out to 3.99999991 V using the given value for 2745
the resolution, but the result was rounded up to 4.00. This raises a question about how much rounding 2746
should be applied, or how many digits of precision should be used for a converted value. 2747

The number of digits of precision for the converted value can be based on the overall size of the binary 2748
number. For example, an eight-bit unsigned value has a range of 0 to 255, which is three decimal digits. 2749
Thus, rounding the converted reading to three significant digits is appropriate. 2750

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 143

27.8 Numeric effecter conversion formula 2751

A reverse process from that used to convert a sensor reading is used to generate the raw value to be set 2752
into a PLDM Numeric Effecter. In this case, the formula is as follows: 2753

Setting Conversion formula: X = Round [(Y - B) / m] 2754

Where: 2755

X = integer setting value for the effecter 2756

Y = target setting in Units 2757

m = resolution from PDR in Units 2758

B = offset from PDR in Units 2759

Round = rounding operation to round the value in [] to the nearest integer value 2760

Units = sensor/effecter Units, based on the Units and auxUnits fields from the Numeric Effecter 2761
PDR 2762

28 Platform Descriptor Record (PDR) formats 2763

This clause defines the content and format of the PDRs that are used for supporting sensor monitoring 2764
and control in PLDM. 2765

28.1 Common PDR header format 2766

All PDRs have a common, fixed format header followed by variable length record data. The size and 2767
definition of the bytes within the PDR data field are specific to each PDR Type. Table 75 describes the 2768
format of the common PDR header. 2769

The PDR data length can vary on a per record basis. It is generally recommended that the definition of 2770
PDRs of a given type use a fixed length when practical. 2771

The header fields are not shown in the succeeding PDR format subclauses. 2772

Table 75 – Common PDR header format 2773

Type PDR fields

uint32 recordHandle

An opaque number that is used for accessing individual PDRs within a PDR Repository. The PDR
Handle value is required to be unique for all PDRs within a PDR Repository. PDR Handle values are not
required to be unique across PDR Types or across other PDRs in the system. See 26.2.3 for more
information.

special value: {0x0000_0000 = reserved }

uint8 PDRHeaderVersion

This field is provided in case a future version of this specification requires a modification to the format of
the PDR Header. Any PDR fields that follow this field are eligible for change.

value: The value 0x01 shall be used as the PDRHeaderVersion for PDRs that are defined in this
specification.

uint8 PDRType

The type of the PDR. See 25.3 and 28.2.

PLDM for Platform Monitoring and Control Specification DSP0248

144 Work in Progress Version 1.2.0a

Type PDR fields

uint16 recordChangeNumber

See 26.2.3 for more information.

uint16 dataLength

The total number of PDR data bytes following this field.

28.2 PDR type values 2774

Table 76 lists the different types of PDRs defined in this document and the corresponding PDR Type 2775
values used for those PDRs. Unspecified values are reserved for future definition by this specification. 2776

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 145

Table 76 – PDR Type Values 2777

28.3 Terminus Locator PDR 2778

The Terminus Locator PDR provides information that associates a PLDMTerminusHandle with values that 2779
uniquely identify the device or software that contains the PLDM terminus. Table 77 describes the format 2780
of this PDR. 2781

PDR type number PDR type name Reference

1 Terminus Locator PDR See 28.3.

2 Numeric Sensor PDR See 28.4.

3 Numeric Sensor Initialization PDR See 28.5.

4 State Sensor PDR See 28.6.

5 State Sensor Initialization PDR See 28.7.

6 Sensor Auxiliary Names PDR See 28.8.

7 OEM Unit PDR See 28.9.

8 OEM State Set PDR See 28.10.

9 Numeric Effecter PDR See 28.11.

10 Numeric Effecter Initialization PDR See 28.12.

11 State Effecter PDR See 28.13.

12 State Effecter Initialization PDR See 28.14.

13 Effecter Auxiliary Names PDR See 28.15.

14 Effecter OEM Semantic PDR See 28.16.

15 Entity Association PDR See 28.17.

16 Entity Auxiliary Names PDR See 28.18.

17 OEM Entity ID PDR See 28.19.

18 Interrupt Association PDR See 28.20.

19 PLDM Event Log PDR See 28.21.

20 FRU Record Set PDR See 28.22.

21 Compact Numeric Sensor PDR See 28.25

22 Redfish Resource PDR See 28.26

23 Redfish Entity Association PDR See 28.27

24 Redfish Action PDR See 28.28

25..125 Reserved for future use

126 OEM Device PDR See 28.23

127 OEM PDR See 28.24.

PLDM for Platform Monitoring and Control Specification DSP0248

146 Work in Progress Version 1.2.0a

Table 77 – Terminus Locator PDR format 2782

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus.

enum8 validity

Indicates whether the PDR contains valid information for the terminus. This is also used as part of
identifying (enumerating) which termini are present. See 12.5 for more information.

value: {

notValid, // The PDR should be ignored.

valid // The PDR is valid.

}

uint8 TID

PLDM Terminus ID. This value is used to identify asynchronous messages from a given terminus.

uint16 containerID

The containerID for the containing entity that holds this terminus. See 9.1 for more information.

enum8 terminusLocatorType

value: {

 UID,

 MCTP_EID,

 SMBusRelative, // Used when the device has a fixed slave address and bus connection
// that is relative to a device that is identified through a UID (for example,
// if the terminus was an SMBus device on an add-in card and was
// located on bus #3 of another device on that same add-in card that had
// a UID)

 systemSoftware // Used when the terminus is a software or firmware agent that is running
// under the host processors of the managed system

 }

uint8 terminusLocatorValueSize

Size of the following terminusLocatorValue, in bytes.

NOTE This helps facilitate backward compatibility in case terminusLocatorTypes get extended. The
combination of terminusLocatorType and all fields of the terminusLocatorValue is persistent and unique
for a given terminus in PLDM.

terminusLocatorValue for terminusLocatorType = UID:

uint8 terminusInstance

This field is used to differentiate between different PLDM termini if the device contains more than
one PLDM terminus.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 147

Type Description

UUID deviceUID

Although using the UUID format, the value may not be universally unique among different
platforms. For example, a device manufacturer could assign the same value to all the devices of a
particular type that it manufactures, provided that only one instance of that device would be used
within a given PLDM implementation. Similarly, a device manufacturer could manufacture a device
that contains a set of UUIDs and provide a mechanism such as configuration pins or nonvolatile
memory that would enable one UUID from the set to be selected when the device was integrated
into the system. The value may also be derived from another UID or UUID, such as the unique ID
for the device containing the terminus, a UUID for the overall system, and so on.

A PLDM terminus that is identified using this type of ID must support the GetTerminusUID
command.

terminusLocatorValue for terminusLocatorType = MCTP_EID:

uint8 EID

A MCTP EID that is assigned to an MCTP Endpoint that provides the transport protocol termination
for a PLDM terminus

terminusLocatorValue for terminusLocatorType = SMBusRelative

UUID UID

A UID for the controller that owns the bus to which the device is connected. For more information,
see the preceding description for "terminusLocatorType = UID".

uint8 busNumber

A bus number for the bus to which the device is connected, relative to the controller that owns the
bus.

If the PLDM terminus is accessed through an MCTP Endpoint, the busNumber must be the port
number used in the routing table for accessing the endpoint.

uint8 slaveAddress

The SMBus or I2C slave address for the device that is providing the

[7:1] - SMBus or I2C slave address value.

[0] - 0b.

terminusLocatorValue for terminusLocatorType = systemSoftware

enum8 softwareClass

{

 unspecified, other, systemFirmware, OSloader, OS, CIMprovider, otherProvider,
 virtualMachineManager

}

UUID UUID

A UID for the software or instance of software that is acting as a PLDM terminus. This ID is
required to be unique for the particular instance of software within the system that is providing or
emulating a PLDM terminus within a single PLDM platform management subsystem
implementation. For example, a software application running on a platform may emulate sensors
for the purpose of generating events to be handled by PLDM. This piece of software can be
assigned a fixed UUID by the software vendor that is used to identify it as a unique PLDM terminus.
If multiple instances of that software could exist on the platform where each instance individually
provides an emulation of a PLDM terminus, each instance must have a different UUID. Similarly, if
a common piece of software implements multiple PLDM termini, each terminus must have a
different UUID.

PLDM for Platform Monitoring and Control Specification DSP0248

148 Work in Progress Version 1.2.0a

28.4 Numeric Sensor PDR 2783

The Numeric Sensor PDR is primarily used to describe the semantics of a PLDM Numeric Sensor to a 2784
party such as a MAP. It also includes the factors that are used for converting raw sensor readings to 2785
normalized units. The record also identifies the Entity that is being monitored by the sensor. Table 78 2786
describes the format of this PDR. 2787

NOTE The Numeric Sensor PDR sensorID type in this clause has been changed in version 1.1.1 of this 2788
specification from uint8 to uint16 to be consistent with GetSensorReading command. 2789

 2790

Table 78 – Numeric Sensor PDR format 2791

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus.

uint16 sensorID

ID of the sensor relative to the given PLDM Terminus ID.

uint16 entityType

The Type value for the entity that is associated with this sensor. See 9.1 for more information.

uint16 entityInstanceNumber

The Instance Number for the entity that is associated with this sensor. See 9.1 for more
information.

uint16 containerID

The containerID for the containing entity that instantiates the entity that is measured by this
sensor. See 9.1 for more information.

enum8 sensorInit

Indicates whether the sensor requires initialization by the initializationAgent.

value: { noInit, // The Initialization Agent does not take any steps to initialize, enable,
// or disable this particular sensor.

 useInitPDR, // The sensor has an associated Numeric Sensor Initialization PDR
// that should be used to initalize the sensor.

 enableSensor, // Whenever the Initialization Agent runs, it will enable this sensor
// using a SetNumericSensorEnable command to set the
// operationalState.

 disableSensor. // Whenever the Initialization Agent runs, it will disable this sensor by
// using the SetNumericSensorEnable command.

}

bool8 sensorAuxiliaryNamesPDR

true = sensor has a Sensor Auxiliary Names PDR

false = sensor does not have an associated Sensor Auxiliary Names PDR

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 149

Type Description

enum8 baseUnit

The base unit of the reading returned by this sensor. See 27.4 for more information.

value: { see Table 74 }

sint8 unitModifier

A power-of-10 multiplier for the baseUnit. See 27.4 for more information.

enum8 rateUnit

value: { None, Per MicroSecond, Per MilliSecond, Per Second, Per Minute, Per Hour, Per Day,
Per Week, Per Month, Per Year }

uint8 baseOEMUnitHandle

This value is used to locate the corresponding PLDM OEM Unit PDR that defines the OEMUnit
when the OEMUnit value is used for the baseUnit.

enum8 auxUnit

The base unit of the reading returned by this sensor. See 27.4 for more information.

value: { see Table 74 }

sint8 auxUnitModifier

A power-of-10 multiplier for the auxUnit. See 27.4 for more information.

enum8 auxrateUnit

value: { None, Per MicroSecond, Per MilliSecond, Per Second, Per Minute, Per Hour, Per Day,
Per Week, Per Month, Per Year }

enum8 rel

The relationship between the base unit and the auxiliary unit, as follows:

value = { dividedBy, multipliedBy}

dividedBy implies a "/" or "per" relationship, such as "per foot"

multipliedBy implies a "*" operation, such as "foot*lbs (foot-lbs)"

uint8 auxOEMUnitHandle

This value is used to locate the PLDM OEM Unit PDR that defines the OEMUnit if the OEMUnit
value is used for the auxUnit.

bool8 isLinear

Indicates whether a sensor is linear or dynamic in its range.

For example, this value can be used by a MAP to populate the IsLinear attribute of
CIM_NumericSensor.

value: This field is set to "true" to show that a sensor is linear.

enum8 sensorDataSize

The bit width and format of reading and threshold values that the sensor returns

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

real32 resolution

The resolution of the sensor in Units (see 27.7).

PLDM for Platform Monitoring and Control Specification DSP0248

150 Work in Progress Version 1.2.0a

Type Description

real32 offset

A constant value that is added in as part of the conversion process of converting a raw sensor
reading to Units (see 27.7).

uint16 accuracy

Given as a +/- percentage in 1/100ths of a % from 0.00 to 100.00. For example, the integer value
510 corresponds to ± 5.10%. See 27.6 for more information.

uint8 plusTolerance

Tolerance is given in +/- counts of the reading value. It indicates a constant magnitude possible
error in the quantization of an analog input to the sensor. It is possible that the tolerance could be
asymmetric. The plusTolerance field provides the '+' value of the tolerance; the minusTolerance
field provides the minus portion. For example, if plusTolerance is 0x02 and minusTolerance is
0x00, the tolerance is +2/-0 counts.

See 27.6 for more information about how tolerance is defined and used.

uint8 minusTolerance

Tolerance is given in +/- counts of the reading value. It indicates a constant magnitude possible
error in the quantization of an analog input to the sensor. It is possible that the tolerance could be
asymmetric. The plusTolerance field provides the '+' value of the tolerance; the minusTolerance
field provides the minus portion. For example, if plusTolerance is 0x02 and minusTolerance is
0x00, the tolerance is +2/-0 counts.

See 27.6 for more information about how tolerance is defined and used.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32

hysteresis

The amount of hysteresis associated with the sensor thresholds, given in raw sensor counts. See
17.9 for more information. This value may be overridden if the sensor supports the
SetSensorThresholds command.

The size of this field is identified by sensorDataSize.

value: 1 or greater

special value: 0 = sensor does not use hysteresis

bitfield8 supportedThresholds

For PLDM: bit field where bit position represents whether a given threshold is supported

0x1b = threshold is supported

0x0b = threshold is not supported

[6:7] – reserved

[5] – lowerThresholdFatal

[4] – lowerThresholdCritical

[3] – lowerThresholdWarning

[2] – upperThresholdFatal

[1] – upperThresholdCritical

[0] – upperThresholdWarning

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 151

Type Description

bitfield8 thresholdAndHysteresisVolatility

Identifies under which conditions any threshold or hysteresis settings that were set through the
SetSensorThresholds or SetSensorHysteresis command may be lost. The threshold values either
return to default values or will require reinitialization through the Initialization Agent function.

special value: 00000b = nonvolatile. The threshold settings retained indefinitely regardless of
system state.

[7:5] – reserved

[4] – 1b = PLDM terminus returns to online condition

[3] – 1b = System warm resets

[2] – 1b = System hard resets

[1] – 1b = PLDM subsystem power up

[0] – 1b = Initialization Agent controller restart/update (initialize/reinitialize this sensor
whenever the device that holds the Initialization Agent has been restarted or
reinitialized)

real32 stateTransitionInterval

How long the sensor device takes to do an enabledState change (worst case), in seconds.

NOTE Because this is floating point format, fractional seconds can be represented. The real32 format also
supports a value for "Unknown".

real32 updateInterval

Polling or update interval in seconds expressed using a floating point number (generally
corresponds to the CIM PollingInterval property)

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32

maxReadable

The maximum value that the sensor may return. The size of this field is given by the
sensorDataSize field in this PDR.

This number is given in the same format as the reading returned by the sensor. The conversion
formula is used to convert this number to normalized units. See 27.7.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32

minReadable

The minimum value that the sensor may return. The size of this field is given by the
sensorDataSize field in this PDR.

This number is given in the same format as the reading returned by the sensor. The conversion
formula is used to convert this number to normalized units. See 27.7.

enum8 rangeFieldFormat

Indicates the format used for the following nominalValue, normalMax, normalMin, criticalHigh,
criticalLow, fatalHigh, and fatalLow fields.

NOTE The “warningHigh” and “warningLow” fields are not listed in this field. This is an error in the original
specification and will be corrected in the next major release of this specification. The compact PDR
provides these fields if required by the implementer.

value: { uint8, sint8, uint16, sint16, uint32, sint32, real32 }

PLDM for Platform Monitoring and Control Specification DSP0248

152 Work in Progress Version 1.2.0a

Type Description

bitfield8 rangeFieldSupport

Indicates which of the fields that identify the operating ranges of the parameter monitored by the
sensor are supported. (This bitfield indicates whether the following nominalValue, normalMax, and
so on, fields contain valid range values.)

NOTE The “warningHigh” and “warningLow” fields are not listed in this field. The industry practice
assumes that warningHigh and warningLow are always supported. This is an error in the original
specification and will be corrected in the next major release of this specification. The compact PDR
provides these fields if required by the implementer.

[7] – reserved

[6] – 1b = fatalLow field supported

[5] – 1b = fatalHigh field supported

[4] – 1b = criticalLow field supported

[3] – 1b = criticalHigh field supported

[2] – 1b = normalMin field supported

[1] – 1b = normalMax field supported

[0] – 1b = nominalValue field supported

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

nominalValue

This value presents the nominal value for the parameter that is monitored by the sensor. The size
of this field is given by the rangeFieldFormat field in this PDR. This value is given directly in the
specified units without the use of any conversion formula.

For example, if the units are millivolts and the nominalValue is 5000, the nominalValue
corresponds to 5000 mV, or 5.000 V. It is possible that the nominal value could be some fraction
of the given units for the sensor (for example, if the units are volts and the nominal value is 2.5 V).
For this reason, the nominalValue can be expressed using a real32.

The value is defined as the nominal value for what is being monitored. Thus, nominalValue is not
required to match a value that can be returned as a reading by the sensor implementation. For
example, if the nominal value for a given monitored voltage is 5.00 V, the nominalValue would
typically be reported as 5.00 V even though the closest reading the sensor implementation may be
able to return is 5.05 V.

A common use of the nominalValue is as a source of part of an identifying 'name' for a sensor. For
example, it is common for voltage sensors to be identified by their nominal reading. So, a sensor
with a nominal reading of +5.00 V would be referred to as a "+5 V sensor", while one with a
nominal reading of +3.3 V would be referred to as a "+3.3 V sensor". The definition of
nominalValue in the PDR supports this usage. An application that uses or displays this value will
typically elect to round the value to some number of significant digits using an algorithm based on
the resolution of the sensor. For example, if the nominalValue is given as a real32 as 2.50000 V,
but the resolution of the sensor is 0.05 V, the nominalValue displayed would typically be rounded
as 2.50 V.

It is possible that a given sensor may not be considered as having a nominal reading, in which
case this field should be ignored. For example, a numeric sensor that tracks a count or size of
some parameter may not be considered as having a nominal reading depending on its application.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

normalMax

The upper limit of the normal operating range for the parameter that is monitored by the numeric
sensor. The monitored parameter is considered to be operating outside of normal range when this
value is exceeded. For example, if a monitored voltage of a component is specified in its data
sheet to have a normal maximum operating range of 4.75 to 5.25 V, this value would be set to
5.25 (assuming the units in the PDR are for “volts”). This value is given directly in the specified
units without the use of any conversion formula. This value is used together with normalMin to
indicate the normal operating range for the sensor.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 153

Type Description

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

normalMin

The lower limit of the normal operating range for the parameter that is monitored by the numeric
sensor. Sensor thresholds are typically set for a value that is lower than normalMin to
accommodate the effects of sensor accuracy, tolerance, and resolution, in order to prevent false
reporting of an “out-of-range” event state. This value is given directly in the specified units without
the use of any conversion formula.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

warningHigh

A warning condition that occurs when the monitored value is greater than the value reported by
warningHigh. In many implementations, this value may be the same value as normalMax. Sensor
thresholds that may be derived from this value are typically set for a value that is higher than
warningHigh to accommodate the effects of sensor accuracy, tolerance, and resolution, in order to
prevent false reporting of an out-of-range condition. This value is given directly in the specified
units without the use of any conversion formula.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

warningLow

A warning condition that occurs when the monitored value is less than or equal to the value
reported by warningLow. In many implementations, this value may be the same value as
normalMin. Sensor thresholds that may be derived from this value are typically set for a value that
is lower than warningLow to accommodate the effects of sensor accuracy, tolerance, and
resolution, in order to prevent false reporting of an out-of-range condition. This value is given
directly in the specified units without the use of any conversion formula.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

criticalHigh

A critical condition that occurs when the monitored value is greater than or equal to the value
reported by criticalHigh. In some implementations, this value may be the same value as
normalMax. Sensor thresholds that may be derived from this value are typically set for a value that
is higher than criticalHigh to accommodate the effects of sensor accuracy, tolerance, and
resolution, in order to prevent false reporting of an out-of-range condition. This value is given
directly in the specified units without the use of any conversion formula.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

criticalLow

A critical condition that occurs when the monitored value is less than the value reported by
criticalLow. In some implementations, this value may be the same value as normalMin. Sensor
thresholds that may be derived from this value are typically set for a value that is lower than
criticalLow to accommodate the effects of sensor accuracy, tolerance, and resolution, in order to
prevent false reporting of an out-of-range condition. This value is given directly in the specified
units without the use of any conversion formula.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

fatalHigh

A fatal condition that occurs when the monitored value is greater than the value reported by
fatalHigh. In many implementations, this value may be the same value as normalMax. Sensor
thresholds that may be derived from this value are typically set for a value that is higher than
fatalHigh to accommodate the effects of sensor accuracy, tolerance, and resolution, in order to
prevent false reporting of an out-of-range condition. This value is given directly in the specified
units without the use of any conversion formula.

uint8 |
sint8 |
uint16 |
sint16 |
uint32 |
sint32 |
real32

fatalLow

A fatal condition that occurs when the monitored value is less than the value reported by fatalLow.
In many implementations, this value may be the same value as normalMin. Sensor thresholds that
may be derived from this value are typically set for a value that is lower than fatalLow to
accommodate the effects of sensor accuracy, tolerance, and resolution, in order to prevent false
reporting of an out-of-range condition. This value is given directly in the specified units without the
use of any conversion formula.

PLDM for Platform Monitoring and Control Specification DSP0248

154 Work in Progress Version 1.2.0a

28.5 Numeric Sensor Initialization PDR 2792

The Numeric Sensor Initialization PDR is used when a PLDM Numeric Sensor requires initialization by a 2793
PLDM Initialization Agent. Table 79 describes the format of this PDR. 2794

Table 79 – Numeric Sensor Initialization PDR format 2795

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus

uint16 sensorID

ID of the sensor relative to the given PLDM Terminus ID

bitfield8 initConditions

Identifies under which conditions the Initialization Agent must initialize or reinitialize this sensor

[7:5] – reserved

[4] – 1b = PLDM terminus returns to online condition

[3] – 1b = System warm resets

[2] – 1b = System hard resets

[1] – 1b = PLDM subsystem power up

[0] – 1b = Initialization Agent controller restart/update (initialize/reinitialize this sensor
whenever the device that holds the Initialization Agent has been restarted or
reinitialized)

enum8 sensorEnable

The operational state that the sensor is to be left in after it has been initialized. This state is
written to the sensor sensorOperationalState using the SetNumericSensorEnable command.

special value: { 0xFF = do not change the sensorOperationalState }

bitfield8 thresholdInitMask

Indicates which thresholds should be initialized

NOTE Be careful to match the bit up with the correct threshold.

[7:6] – reserved

[5] – 1b = initialize lowerThresholdFatal threshold

[4] – 1b = initialize lowerThresholdCritical threshold

[3] – 1b = initialize lowerThresholdWarning threshold

[2] – 1b = initialize upperThresholdFatal threshold

[1] – 1b = initialize upperThresholdCritical threshold

[0] – 1b = initialize upperThresholdWarning threshold

enum8 sensorDataSize

The bit width of reading and threshold values that the sensor returns

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 155

Type Description

uint8 | sint8 |
uint16 | sint16
| uint32 |
sint32

upperThresholdWarning

This value is given in raw units for the sensor. The size of this field is given by the
sensorDataSize field in this PDR.

uint8 | sint8 |
uint16 | sint16
| uint32 |
sint32

upperThresholdCritical

This value is given in raw units for the sensor.The size of this field is given by the
sensorDataSize field in this PDR.

uint8 | sint8 |
uint16 | sint16
| uint32 |
sint32

upperThresholdFatal

This value is given in raw units for the sensor.The size of this field is given by the
sensorDataSize field in this PDR.

uint8 | sint8 |
uint16 | sint16
| uint32 |
sint32

lowerThresholdWarning

This value is given in raw units for the sensor.The size of this field is given by the
sensorDataSize field in this PDR.

uint8 | sint8 |
uint16 | sint16
| uint32 |
sint32

lowerThresholdCritical

This value is given in raw units for the sensor.The size of this field is given by the
sensorDataSize field in this PDR.

uint8 | sint8 |
uint16 | sint16
| uint32 |
sint32

lowerThresholdFatal

This value is given in raw units for the sensor.The size of this field is given by the
sensorDataSize field in this PDR.

28.6 State Sensor PDR 2796

The State Sensor PDR provides the sensorID for a composite state sensor within a PLDM terminus and 2797
the number of sensors, and the state set and the possible state values for each sensor that is accessed 2798
through the given sensorID. The record also identifies the entity that is being monitored by the sensor. 2799
Only one set of fields exists for the entity identification information. Therefore, all sensors in this record 2800
must be associated with the same entity. Table 80 describes the format of this PDR. 2801

Table 80 – State Sensor PDR format 2802

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus

uint16 sensorID

ID of the sensor relative to the given PLDM Terminus ID

uint16 entityType

The Type value for the entity that is associated with this sensor. See 9.1 for more information.

uint16 entityInstanceNumber

The Instance Number for the entity that is associated with this sensor. See 9.1 for more
information.

PLDM for Platform Monitoring and Control Specification DSP0248

156 Work in Progress Version 1.2.0a

Type Description

uint16 containerID

The containerID for the containing entity that instantiates the entity that is measured by this
sensor. See 9.1 for more information.

enum8 sensorInit

Indicates whether the sensor requires initialization by the initializationAgent.

value: { noInit, // The Initialization Agent does not take any steps to initialize,
// enable, or disable this particular sensor.

 useInitPDR, // The sensor has an associated State Sensor Initialization PDR
// that should be used to initalize the sensor.

 enableSensor, // When the Initialization Agent runs, it enables this sensor using
// a SetStateSensorEnables command to set the
// operationalState.

 disableSensor. // When the Initialization Agent runs, it disables this sensor using
// the SetStateSensorEnables command.

}

bool8 sensorAuxiliaryNamesPDR

true = sensor has a Sensor Auxiliary Names PDR

false = sensor does not have an associated Sensor Auxiliary Names PDR

uint8 compositeSensorCount

The number of state sensors in the terminus that are accessed under the sensorID given in
this PDR

value: 0x01 to 0x08

var possibleStates

One instance of State Sensor Possible States Fields (see Table 81) for each sensor in the
PLDM State Sensor, up to sensorCount.

Table 81 – State Sensor possible states fields format 2803

Type Description

uint16 stateSetID

A numeric value that identifies the PLDM State Set that is used with this sensor

uint8 possibleStatesSize

The number of bytes (M) in the following possibleStates bitfield

value: 0x01 to 0x20

special value : 0x00 can be used to indicate a sensor that is unavailable or disabled from use
and should be ignored when accessing the parent compositeSensor through
PLDM.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 157

Type Description

bitfield8 x M possibleStates [subset of the State Set that is supported]

A variable length bitfield consisting of one or more bytes, based on the size of the stateSet. If
stateSetSize is nonzero, possibleStates consists of one or more 8-bit fields where X = 0 for the
first field, X = 1 for the second field (if any), and so on, up to M fields as required by the size of
the largest value in the state set.

For example, if the largest value in the State Set is 7 or less, this is a one-byte bitfield. If the
largest value in the State Set is 15 or less, this is a two-byte bitfield, and so on.

The value 0b is also used when there is no state set value that corresponds to the
corresponding bit position. For example, if a state set has a maximum value of 5, bits [6] and
[7] are unused and shall be set to 0b.

[7] – 1b = The state that corresponds to value X*8+7 in the state set is supported.

 0b = The state that corresponds to value X*8+7 in the state set is not supported.

…

[2] – 1b = The state that corresponds to value X*8+2 in the state set is supported.

 0b = The state that corresponds to value X*8+2 in the state set is not supported.

[1] – 1b = The state that corresponds to value X*8+1 in the state set is supported.

 0b = The state that corresponds to value X*8+1 in the state set is not supported.

[0] – 1b = The state that corresponds to value X*8+0 in the state set is supported.

 0b = The state that corresponds to value X*8+0 in the state set is not supported.

28.7 State Sensor Initialization PDR 2804

The State Sensor Initialization PDR contains values that direct the Initialization Agent's initialization of a 2805
particular PLDM Single or Composite State Sensor. This action includes enabling or disabling PLDM 2806
Event Message generation for individual sensors within the PLDM Composite State Sensor and directing 2807
whether a particular sensor will assess an event if the initialization state value does not match the present 2808
state of the sensor. 2809

The PDR always has eight state values (stateValue0 through stateValue7). Dummy values must be used 2810
(0x00 is recommended) if the implementation does not have a sensor that corresponds to a particular 2811
offset. Table 82 describes the format of the PDR. 2812

Table 82 – State Sensor Initialization PDR format 2813

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus

uint16 sensorID

ID of the sensor relative to the given PLDM terminus

PLDM for Platform Monitoring and Control Specification DSP0248

158 Work in Progress Version 1.2.0a

Type Description

bitfield8 initConditions

Identifies under which conditions the Initialization Agent must initialize or reinitialize these
sensors

The initConditions are shared across all sensors that are identified as requiring initialization
through the sensorInitMask field. If some sensors require different initialization conditions, a
separate PLDM Composite State Sensor Initialization PDR must be used for those sensors.

[7:5] – reserved

[4] – 1b = PLDM terminus returns to online condition

[3] – 1b = System warm resets

[2] – 1b = System hard resets

[1] – 1b = PLDM subsystem power up

[0] – 1b = Initialization Agent controller restart/update (initialize/reinitialize this sensor
whenever the device that holds the Initialization Agent has been restarted or
reinitialized)

enum8 sensorEnable

The operational state of the overall composite state sensor after it has been initialized. This
state is written to the sensorOperationalState of each sensor that is identified for initialization
through the sensorInitMask field of this PDR using the SetStateSensorEnables command.

special value: {0xFF = do not set the sensorOperationalStates}

bitfield8 sensorInitMask

Identifies which sensors within the composite state sensor require initialization

[7] – 1b = state sensor at offset 7 requires initialization
0b = state sensor at offset 7 does not require initialization

[6] – 1b = state sensor at offset 6 requires initialization
0b = state sensor at offset 6 does not require initialization

…

[2] – 1b = state sensor at offset 2 requires initialization
0b = state sensor at offset 2 does not require initialization

[1] – 1b = state sensor at offset 1 requires initialization
0b = state sensor at offset 1 does not require initialization

[0] – 1b = state sensor at offset 0 requires initialization
0b = state sensor at offset 0 does not require initialization

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 159

Type Description

bitfield8 sensorOpStateEventEnableMask

Identifies which sensors within the composite state sensor should have their operational state
event message generation enabled after initialization

[7] – 1b = enable event message generator for state sensor at offset 7
0b = disable event message generator for state sensor at offset 7

[6] – 1b = enable event message generator for state sensor at offset 6
0b = disable event message generator for state sensor at offset 6

…

[2] – 1b = enable event message generator for state sensor at offset 2
0b = disable event message generator for state sensor at offset 2

[1] – 1b = enable event message generator for state sensor at offset 1
0b = disable event message generator for state sensor at offset 1

[0] – 1b = enable event message generator for state sensor at offset 0
0b = disable event message generator for state sensor at offset 0

bitfield8 sensorStateEventEnableMask

Identifies which sensors within the composite state sensor should have their state event
message generation enabled after initialization

[7] – 1b = enable event message generator for state sensor at offset 7
0b = disable event message generator for state sensor at offset 7

[6] – 1b = enable event message generator for state sensor at offset 6
0b = disable event message generator for state sensor at offset 6

…

[2] – 1b = enable event message generator for state sensor at offset 2
0b = disable event message generator for state sensor at offset 2

[1] – 1b = enable event message generator for state sensor at offset 1
0b = disable event message generator for state sensor at offset 1

[0] – 1b = enable event message generator for state sensor at offset 0
0b = disable event message generator for state sensor at offset 0

bitfield8 sensorEventRearm

Directs the sensor to assess an event if the initialization stateValue does not match the
present state, or to accept the initialization stateValue as its initial state and ignore any prior
state

sensorEventRearm value:

1b = trigger an event if the initialization stateValue does not match the present state

0b = accept the initialization stateValue as the present state

[7] – sensorEventRearm value for the state sensor at offset 7

[6] – sensorEventRearm value for the state sensor at offset 6

…

[2] – sensorEventRearm value for the state sensor at offset 2

[1] – sensorEventRearm value for the state sensor at offset 1

[0] – sensorEventRearm value for the state sensor at offset 0

PLDM for Platform Monitoring and Control Specification DSP0248

160 Work in Progress Version 1.2.0a

Type Description

uint8 stateValue0

State value to write to sensor offset 0 for initialization

special value: Use 0x00 as a placeholder value for sensors that do not require initialization.

uint8 stateValue1

State value to write to sensor offset 1 for initialization

special value: Use 0x00 as a placeholder value for sensors that do not require initialization.

uint8 stateValue2

State value to write to sensor offset 2 for initialization

special value: Use 0x00 as a placeholder value for sensors that do not require initialization.

 …

uint8 stateValue6

State value to write to sensor offset 14 for initialization

special value: Use 0x00 as a placeholder value for sensors that do not require initialization.

uint8 stateValue7

State value to write to sensor offset 15 for initialization

special value: Use 0x00 as a placeholder value for sensors that do not require initialization.

28.8 Sensor Auxiliary Names PDR 2814

The Sensor Auxiliary Names PDR may be used to provide optional information that names the sensor. 2815
This record may be used for a single numeric or state sensor, or multiple sensors if the sensor is a 2816
composite state sensor. 2817

The nameLanguageTag field can be used to identify the language (such as French, Italian, or English) 2818
that is associated with the particular sensorName. Table 83 describes the format of this PDR. 2819

Table 83 – Sensor Auxiliary Names PDR format 2820

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus

uint16 sensorID

ID of the sensor relative to the given PLDM terminus

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 161

Type Description

uint8 sensorCount [1..M]

For each sensor x in sensorCount, there can be 1..nameStringCount[x] strings, where each set
of strings corresponds to a sensor in a composite sensor. The record must be populated
sequentially starting from 1 regardless of whether a sensor requires auxiliary names. Thus, each
entry has at least one byte (the nameStringCount). Sensors that have offsets that are greater
than sensorCount are treated as if they have no auxiliary names.

For example, if a composite sensor contains four sensors and only the third sensor requires an
auxiliary name, the sensorCount can be 3 and the nameStringCount for the first two sets of
sensor name information is 0.

uint8 nameStringCount

Number of following pairs [0..N] of nameLanguageTag + sensorName fields for sensor[1].

strASCII nameLanguageTag [1]

This field is absent if nameStringCount = 0.

A null-terminated ISO646 ASCII string that holds a language tag, per RFC4646, that identifies
the primary language in which the sensorName was defined (for example, "en" for English, "zh-
cmn-Hans" for simplified Mandarin Chinese, and so on). This field may be used to help select
which string to use when multiple character encodings for the sensorName are provided.

special value: null string = 0x0000 = unspecified

strUTF-16BE sensorName [1]

This field is absent if nameStringCount = 0.

A null-terminated unicode string for the auxiliary name of the sensor

special value: null string = 0x0000 = name not provided

… …

strASCII nameLanguageTag [N]

strUTF-16BE sensorName [N]

28.9 OEM Unit PDR 2821

The OEM Unit PDR is used to define one or more strings that are used as the name for an OEM Unit 2822
used for PLDM sensors or effecters. The OEM Unit is defined relative to the given Vendor ID and for a 2823
given terminus. The OEMUnitHandle value is required to be unique among all OEM Unit PDRs within a 2824
PDR Repository. The OEMUnitHandle value is not required to be unique across PDR Repositories. 2825

The record also includes a vendor-defined OEMUnitID value that identifies different types of OEM Units 2826
from the given vendor. 2827

The record allows the unit name to be specified using multiple character sets. The unitLanguageTag can 2828
be used to identify the language that is associated with the particular unitName (for example, whether the 2829
unitName is in French, Italian, English, and so on). Table 84 describes the format of this PDR. 2830

Table 84 – OEM Unit PDR format 2831

Type Description

– commonHeader

See 28.1.

PLDM for Platform Monitoring and Control Specification DSP0248

162 Work in Progress Version 1.2.0a

Type Description

uint16 PLDMTerminusHandle

The terminus that originated this PDR

uint8 OEMUnitHandle

An opaque number that is used to identify different OEM Units PDRs

uint32 vendorIANA

The IANA Enterprise Number for the vendor that is defining the OEM Sensor Unit

uint8 OEMUnitID

A search field for the FindPDR command. This number is assigned by the vendor and provides
a numeric ID for the vendor-defined Unit. This value can be used by the vendor to provide a
constant ID that always identifies a particular Unit definition from that vendor.

uint8 stringCount

The number 1..N of unitLanguageTag and unitName field pairs that follow this field

strASCII unitLanguageTag[1]

A null-terminated ISO646 ASCII string that holds a language tag, per RFC4646, that identifies
the primary language in which the unitName was defined (for example, "en" for English, "zh-
cmn-Hans" for simplified Mandarin Chinese, and so on). This field may be used to help select
which string to use when multiple character encodings for the unitName are provided.

special value: null string = unspecified

strUTF-16BE unitName[1]

A null-terminated unicode string that contains the name of the OEM Sensor Unit

… …

strASCII unitLanguageTag[N]

strUTF-16BE unitName[N]

28.10 OEM State Set PDR 2832

The OEM State Set PDR is used to identify the vendor and OEM State Set ID value when the stateSetID 2833
is treated as an OEMStateSetIDHandle. The PDR can also optionally be used to provide names for the 2834
different OEM-defined states. Each different state can be assigned a name in one or more languages. A 2835
contiguous range of state values can also be assigned a single set of names. It is also possible for the 2836
PDR to provide a “hint” to help an entity such as a MAP decide how to treat state values that are not 2837
explicitly specified in the PDR. The OEM State Set PDR is applicable to OEM State Sets for both sensors 2838
and effecters. 2839

Depending on what range the stateSetID value falls in, the stateSetID value in a PDR, such as the PLDM 2840
State Sensor PDR, either identifies the state set number for a particular state set defined in DSP0249 or 2841
is a value that is interpreted as an OEMStateSetIDHandle. The OEMStateSetIDHandle value is used to 2842
form an association with a particular PLDMOEMStateSetPDR within the PDR Repository. 2843
OEMStateSetIDHandle values are thus required to be unique for each different PLDM OEM State Set 2844
PDR within a given PDR Repository. 2845

The following example describes the steps that could be taken to interpret the state value information 2846
from an event message that originated from a PLDM State Sensor. This includes showing the difference 2847
between using one of the standard state set numbers and an OEM State Set number. 2848

1) A PLDM Event Message is received from a state sensor. 2849

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 163

2) The TID, sensorID, sensorOffset, and state values (that is, eventState and previousEventState) 2850
are read from the message. 2851

3) The TID is used to look up the Terminus Locator Record and obtain the PLDMTerminusHandle 2852
value that is associated with the TID. 2853

4) PLDMTerminusHandle and sensorID values are used to look up the PLDM State Sensor PDR 2854
for the sensor. 2855

5) The Sensor Offset is used to get the stateSetID from the PLDM State Sensor PDR. If the 2856
stateSetID is in the range of standard IDs, the meaning of the state value is given according to 2857
the stateSetID defined by the state set identified in DSP0249. 2858

6) Otherwise the stateSetID from the PLDM State Sensor PDR is used as an 2859
OEMStateSetIDHandle to look up the OEM State Set PDR that defines the OEM State Set. The 2860
PDR identifies the OEM that defined the state set and provides the OEM-specified State Set 2861
number (OEMStateSetID) for the state set. The state value from the event message can be 2862
used to locate the OEM State Value Record in the PLDM OEM State Set PDR that provides a 2863
name string for the particular OEM-defined state. 2864

Table 85 describes the format of the PDR. 2865

Table 85 – OEM State Set PDR format 2866

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

The terminus that originated this PDR

uint16 OEMStateSetIDHandle

An OEM State Set within this PDR Repository. The value is taken from the range of
OEMStateSet numbers defined in DSP0249.

This value is used in place of standard State Set ID numbers in the PDR for the sensor. When a
value in the OEM State Set range is used as the State Set ID in a PDR, it indicates that the
corresponding PLDM OEM State Set PDR should be referenced in order to get the OEM
identification and definition for the OEM State Set.

uint32 vendorIANA

The IANA Enterprise Number for the vendor that is defining the OEM State Set given in this
PDR

uint16 OEMStateSetID

A number, assigned by the vendor, that provides a numeric ID for the vendor-defined state set.
The vendor can use this value to provide a constant ID that always identifies a particular state
set from that vendor.

The value shall be in the range defined for OEM State Set numbers defined in DSP0249.

enum8 unspecifiedValueHint

This field can be used to provide a hint to a higher level entity, such as a MAP, regarding how
OEM state values should be treated if they are not explicitly covered by the
OEMStateValueRecords field.

value: { treatAsUnspecified, treatAsError }

PLDM for Platform Monitoring and Control Specification DSP0248

164 Work in Progress Version 1.2.0a

Type Description

uint8 stateCount

The number of OEM State Value Records following this field in the PDR. Records shall be
stored starting from the lowest stateValue to the highest.

variable OEMStateValueRecord

Zero or more OEM State Value Records as specified by the stateCount field. See Table 86.

Table 86 – OEM State Value Record format 2867

Type Description

uint8 minStateValue

The lowest state enumeration value that corresponds to the definition given in this OEM State
Value Record instance.

uint8 maxStateValue

The highest state enumeration value that corresponds to the definition given in this OEM State
Value Record instance. State value ranges are not allowed to overlap.

If maxStateValue = minStateValue, the following strings apply only to a single state.

If maxStateValue > minStateValue, the following strings apply to state values in the range from
minStateValue through maxStateValue.

uint8 stringCount

The number 1..N of stateLanguageTag and stateName field pairs that follow this field.

strASCII stateLanguageTag[1]

A null-terminated ISO646 ASCII string that holds a language tag, per RFC4646, that identifies
the primary language in which the stateName was defined (for example, "en" for English, "zh-
cmn-Hans" for simplified Mandarin Chinese, and so on). This field may be used to help select
which string to use when multiple character encodings for the stateName are provided.

special value: null string = unspecified

strUTF-16BE stateName[1]

A null-terminated unicode string that contains the name for the state

… …

strASCII stateLanguageTag[N]

strUTF-16BE stateName[N]

28.11 Numeric Effecter PDR 2868

The Numeric Effecter PDR is used to describe the semantics of a PLDM Numeric Effecter to a party such 2869
as a MAP. It also includes the factors that are used for converting raw sensor readings to normalized 2870
units. The PDR also identifies the entity on which the effecter is operating. Table 87 describes the format 2871
of the PDR. 2872

NOTE The Numeric Effecter PDR effecterID type in this clause has been changed in version 1.1.1 of this 2873
specification from uint8 to uint16 to be consistent with SetNumericEffecterEnable command. 2874

 2875

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 165

Table 87 – Numeric Effecter PDR format 2876

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus

uint16 effecterID

ID of the effecter relative to the given PLDM Terminus ID.

uint16 entityType

The Type value for the entity that is associated with this effecter. See 9.1 for more information.

uint16 entityInstanceNumber

The Instance Number for the entity that is associated with this effecter. See 9.1 for more
information.

uint16 containerID

The containerID for the containing entity that is associated with this effecter. See 9.1 for more
information.

uint16 effecterSemanticID

This field either identifies a PLDM-defined effecter semantic or provides an
OEMEffecterSemanticHandle value, depending on what range the value falls in. If the
effecterSemanticID field is set to a value in the OEM range, this value does not directly identify
a particular vendor-defined semantic but instead is interpreted as an
OEMEffecterSemanticHandle that can be used to locate an OEM Effecter Semantic PDR that
identifies the vendor and provides optional name information for the semantic. See DSP0249
for the definition of Effecter Semantic ID values and ranges, and 21.3 for more information.

special value: {0x0000 = unspecified }

enum8 effecterInit

value: { noInit, // The Initialization Agent does not take any steps to initialize,
// enable, or disable this particular sensor.

 useInitPDR, // The sensor has an associated Numeric Effecter Initialization
// PDR that should be used to initalize the sensor.

 enableEffecter, // When the Initialization Agent runs, it enables this effecter using
// a SetNumericEffecterEnable command to set the
// operationalState.

 disableEffecter // When the Initialization Agent runs, it disables this effecter using
// the SetNumericEffecterEnable command.

}

bool8 effecterAuxiliaryNames PDR

true = effecter has an Effecter Auxiliary Names PDR

false = effecter does not have an associated Effecter Auxiliary Names PDR

enum8 baseUnit

The base unit of the reading returned by this effecter. See 27.1 for more information.

value: { see Table 74 }

PLDM for Platform Monitoring and Control Specification DSP0248

166 Work in Progress Version 1.2.0a

Type Description

sint8 unitModifier

A power-of-10 multiplier for the baseUnit. See 27.1 for more information.

enum8 rateUnit

value: { None, Per MicroSecond, Per MilliSecond, Per Second, Per Minute, Per Hour, Per
Day, Per Week, Per Month, Per Year }

uint8 baseOEMUnitHandle

This value is used to locate the PLDM OEM Unit PDR that defines the OEMUnit if the
OEMUnit value is used for the baseUnit.

enum8 auxUnit

The base unit of the reading returned by this effecter. See 27.2 for more information.

value: { see Table 74 }

sint8 auxUnitModifier

A power-of-10 multiplier for the auxUnit. See 27.2 for more information.

enum8 auxrateUnit

value: { None, Per MicroSecond, Per MilliSecond, Per Second, Per Minute, Per Hour, Per
Day, Per Week, Per Month, Per Year }

uint8 auxOEMUnitHandle

This value is used to locate the PLDM OEM Unit PDR that defines the OEMUnit if the
OEMUnit value is used for the auxUnit.

bool8 isLinear

Indicates whether a sensor is linear or dynamic in its range.

For example, this value is used to provide information that can be used by a MAP to populate
the IsLinear attribute of CIM_NumericSensor.

value: This field is set to "true" to show that a sensor is linear.

enum8 effecterDataSize

The bit width and format of reading and threshold values that the effecter returns

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

real32 resolution

The resolution of the effecter in Units (see 27.7)

real32 offset

A constant value that is added as part of the conversion process of converting a raw effecter
reading to Units (see 27.7).

uint16 accuracy

Given as a +/- percentage in 1/100ths of a % from 0.00 to 100.00. For example, the integer
value 510 corresponds to ± 5.10%. See 27.6 for more information.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 167

Type Description

uint8 plusTolerance

Tolerance is given in +/- counts of the setting value. It indicates a constant magnitude possible
error in the generation of an analog output from an effecter. It is possible that the tolerance
could be asymmetric. The plusTolerance field provides the “+” value of the tolerance; the
minusTolerance field provides the minus portion. For example, if plusTolerance is 0x02 and
minusTolerance is 0x00, the tolerance is +2/-0 counts.

See 27.6 for more information about how tolerance is defined and used.

uint8 minusTolerance

Tolerance is given in +/- counts of the setting value. It indicates a constant magnitude possible
error in the generation of an analog input from an effecter. It is possible that the tolerance
could be asymmetric. The plusTolerance field provides the “+” value of the tolerance; the
minusTolerance field provides the minus portion. For example, if plusTolerance is 0x02 and
minusTolerance is 0x00, the tolerance is +2/-0 counts.

See 27.6 for more information about how tolerance is defined and used.

real32 stateTransitionInterval

The length of time the effecter takes to do an enabledState change (worst case), in seconds

NOTE Because this is floating point format, fractional seconds can be represented. The real32 format
also supports a value for "Unknown".

real32 TransitionInterval

The length of time the effecter takes to have a setting change take effect (worst case), in
seconds.

uint8 | sint8 |

uint16 | sint16 |
uint32 | sint32

maxSettable

The maximum legal setting value that the effecter accepts. The size of this field is given by the
effecterDataSize field in this PDR.

This number is given in the same format as the reading returned by the effecter. The
conversion formula is used to convert this number to normalized units. See definition in 27.1.

uint8 | sint8 |

uint16 | sint16 |
uint32 | sint32

minSettable

The minimum legal setting value that the effecter accepts. The size of this field is given by the
effecterDataSize field in this PDR.

This number is given in the same format as the reading returned by the effecter. The
conversion formula is used to convert this number to normalized units. See definition in 27.1.

enum8 rangeFieldFormat

Indicates the format used for the following nominalValue, normalMax, and normalMin fields.

value: { uint8, sint8, sint16, uint32, sint32, real32 }

Bitfield8 rangeFieldSupport

This field indicates which of the fields that identify the operating ranges of the parameter set by
the effecter are supported. (This bitfield indicates whether the following nominalValue,
normalMax, and so on, fields contain valid range values.)

[7:5] – reserved

[4] – 1b = ratedMin field supported

[3] – 1b = ratedMax field supported

[2] – 1b = normalMin field supported

[1] – 1b = normalMax field supported

[0] – 1b = nominalValue field supported

PLDM for Platform Monitoring and Control Specification DSP0248

168 Work in Progress Version 1.2.0a

Type Description

uint8 | sint8 |
uint16 | sint16 |
uint32 | sint32 |
real32

nominalValue

This value presents the nominal value for the parameter that is accepted by the effecter. The
size of this field is given by the rangeFieldFormat field in this PDR. This value is given directly
in the specified units without the use of any conversion formula.

For example, if the units are millivolts and the nominalValue is 5000, the nominalValue
corresponds to 5000 mV, or 5.000 V. It is possible that the nominal value could be some
fraction of the given units for the effecter (for example, if the units are volts and the nominal
value is 2.5 V). For this reason, the nominalValue can be expressed using a real32.

The value is defined as the nominal value for what is being set. The nominalValue is not
required to match a value that can be returned as a reading by the effecter implementation.
For example, if the nominal value for a voltage setting effecter was 5.00 V, the nominalValue
would typically be reported as 5.00 V even though the closest setting the effecter
implementation may be able to accept is 5.05 V.

A common use of the nominalValue is as a source of part of the identifying “name” for an
effecter. For example, it is common for voltage effecters to be identified by their nominal
reading. So, an effecter with a nominal reading of +5.00 V would be referred to as a "+5 V
effecter", while one with a nominal reading of +3.3 V would be referred to as a "+3.3 V
effecter". The definition of nominalValue in the PDR supports this usage. An application that
uses or displays this value will typically elect to round the value to some number of significant
digits using an algorithm based on the resolution of the effecter. For example, if the
nominalValue is given as a real32 as 2.50000 V, but the resolution of the effecter is 0.05 V, the
nominalValue displayed would typically be rounded as 2.50 V.

It is possible that a given effecter may not be considered as having a nominal setting, in which
case this field should be ignored. For example, a numeric effecter that sets a count or size of
some parameter may not be considered as having a nominal setting depending on its
application.

uint8 | sint8 |
uint16 | sint16 |
uint32 | sint32 |
real32

normalMax

The upper limit of the normal operating range for the parameter that is set by the numeric
effecter. The setting is considered to be operating outside of normal range when this value is
exceeded. For example, if a monitored voltage of a component is specified in its data sheet to
have a normal maximum operating range of 4.75 to 5.25 V, this value would be set to 5.25
(assuming the units in the PDR are for volts). This value is given directly in the specified units
without the use of any conversion formula. This value is used together with normalMin to
indicate the normal operating range for the effecter.

uint8 | sint8 |
uint16 | sint16 |
uint32 | sint32 |
real32

normalMin

The lower limit of the normal operating range for the parameter that is set by the numeric
effecter. Effecter thresholds are typically set for a value that is lower than normalMin to
accommodate the effects of effecter accuracy, tolerance, and resolution, in order to prevent
false reporting of an “out-of-range” event state. This value is given directly in the specified
units without the use of any conversion formula.

uint8 | sint8 |
uint16 | sint16 |
uint32 | sint32 |
real32

ratedMax

The upper limit of the rated operating range for the parameter that is set by the numeric
effecter. The monitored parameter is considered to be operating outside of rated operating
range when this value is exceeded.

uint8 | sint8 |
uint16 | sint16 |
uint32 | sint32 |
real32

ratedMin

The lower limit of the rated operating range for the parameter that is set by the numeric
effecter. The monitored parameter is considered to be operating outside of rated operating
range below this value.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 169

28.12 Numeric Effecter Initialization PDR 2877

The Numeric Effecter Initialization PDR reports the values that are used when a PLDM Effecter Sensor is 2878
initialized by a PLDM Initialization Agent. Table 88 describes the format of this PDR. 2879

Table 88 – Numeric Effecter Initialization PDR format 2880

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus

uint16
effecterID

ID of the effecter relative to the given PLDM Terminus ID

enum8

effecterEnable

The operational state of the effecter after it has been initialized. This state is written to the
effecter using the SetEffecterEnable command.

special value: {0xFF = do not issue a SetEffecterEnable command to set the Effecter
Operational State }

bitfield8

initConditions

Identifies under which conditions the Initialization Agent must initialize or reinitialize this effecter

[7:5] – reserved

[4] – 1b = PLDM terminus returns to online condition

[3] – 1b = System warm resets

[2] – 1b = System hard resets

[1] – 1b = PLDM subsystem power up

[0] – 1b = Initialization Agent controller restart/update (initialize/reinitialize this effecter
whenever the device that holds the Initialization Agent has been restarted or
reinitialized)

enum8

effecterDataSize

The bit width of reading and threshold values that the effecter returns

value: { uint8, sint8, uint16, sint16, uint32, sint32 }

uint8 | sint8 |
uint16 | sint16 |
uint32 | sint32

effecterData

The numeric value written to the effecter. The size of this field is determined by the value of the
effecterDataSize field.

PLDM for Platform Monitoring and Control Specification DSP0248

170 Work in Progress Version 1.2.0a

28.13 State Effecter PDR 2881

The State Effecter PDR is used to provide information about a PLDM Composite State Effecter. Table 89 2882
describes the format of this PDR. 2883

Table 89 – State Effecter PDR format 2884

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus

uint16 effecterID

ID of the effecter relative to the given PLDM Terminus ID

uint16 entityType

The Type value for the entity that is associated with this effecter. See 9.1. for more
information.

uint16 entityInstanceNumber

The Instance Number for the entity that is associated with this effecter. See 9.1. for more
information.

uint16 containerID

The containerID for the containing entity that is associated with this effecter. See 9.1. for more
information.

uint16 effecterSemanticID

This field either identifies a PLDM-defined effecter semantic or provides an
OEMEffecterSemanticHandle value, depending on what range the value falls in. If the
effecterSemanticID field is set to a value in the OEM range, this value does not directly identify
a particular vendor-defined semantic but instead is interpreted as an
OEMEffecterSemanticHandle that can be used to locate an OEM Effecter Semantic PDR that
identifies the vendor and provides optional name information for the semantic. See DSP0249
for the definition of Effecter Semantic ID values and ranges, and 21.3 for more information.

special value: {0x0000 = unspecified }

enum8 effecterInit

value: { noInit, // The Initialization Agent does not take any steps to initialize,
// enable, or disable this particular effecter.

 useInitPDR, // The effecter has an associated State Effecter Initialization PDR
// that should be used to initalize the effecter.

 enableEffecter, // When the Initialization Agent runs, it enables this effecter using
// a SetStateEffecterEnables command to set the
// operationalState.

 disableEffecter. // When the Initialization Agent runs, it disables this effecter using
// the SetStateEffecterEnables command.

}

bool8 effecterDescriptionPDR

true = effecter has an effecterDescription PDR

false = effecter does not have an associated effecterDescription PDR

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 171

Type Description

uint8 compositeEffecterCount

The number of state effecters in the terminus that are accessed under the effecterID given in
this PDR.

value: 0x01 to 0x08

var possibleStates

One instance of State Effecter Possible States Fields (see Table 90) for each effecter in the
PLDM State Effecter, up to effecterCount.

Table 90 – State Effecter Possible States fields format 2885

Type Description

uint16 stateSetID

A numeric value that identifies the PLDM State Set that is used with this effecter.

uint8 possibleStatesSize

The number of bytes (M) in the possibleStates bitfield.

value: 0x01 to 0x20

special value : 0x00 can be used to indicate a effecter that is unavailable or disabled from use
and should be ignored when accessing the parent composite effecter with
PLDM.

bitfield8 x M possibleStates [subset of the State Set that is supported]

A variable length bitfield that consists of one or more bytes, based on the size of the state set.
If stateSetSize is non-zero, possibleStates consists of one or more 8-bit fields where X=0 for
the first field, X=1 for the second field (if any), and so on, up to M fields as required by the size
of the largest value in the state set.

For example, if the largest value in the state set is 7 or less, this will be a one-byte bitfield. If
the largest value in the state set is 15 or less, this will be a two-byte bitfield, and so on.

The value 0b is also used when no state set value corresponds to the corresponding bit
position. For example, if a state set has a maximum value of 5, bits [6] and [7] are unused and
shall be set to 0b.

[7] – 1b = state that corresponds to value X*8+7 in the state set is supported
0b = state that corresponds to value X*8+7 in the state set is not supported

…

[2] – 1b = state that corresponds to value X*8+2 in the state set is supported
0b = state that corresponds to value X*8+2 in the state set is not supported

[1] – 1b = state that corresponds to value X*8+1 in the state set is supported.
0b = state that corresponds to value X*8+1 in the state set is not supported

[0] – 1b = state that corresponds to value X*8+0 in the state set is supported
0b = state that corresponds to value X*8+0 in the state set is not supported

28.14 State Effecter Initialization PDR 2886

The State Effecter Initialization PDR describes settings that the Initialization Agent uses to initialize a 2887
PLDM Single or Composite State Effecter. 2888

PLDM for Platform Monitoring and Control Specification DSP0248

172 Work in Progress Version 1.2.0a

The PDR always has eight state values. Dummy values must be used (0x00 is recommended) if the 2889
implementation does not have an effecter that corresponds to a particular offset. Table 91 describes the 2890
format of the PDR. 2891

Table 91 – State Effecter Initialization PDR format 2892

Type Description
– commonHeader

See 28.1.
uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus
uint16 effecterID

ID of the effecter relative to the given PLDM terminus
uint16 entityType

The Type value for the entity that is associated with this effecter. See 9.1 for more information.
This field has been deprecated and may be deleted in a future version of this specification.
Termini should set this value to zero, and this value should be ignored by readers.

uint16 entityInstanceNumber
The Instance Number for the entity that is associated with this effecter. See 9.1 for more
information.
This field has been deprecated and may be deleted in a future version of this specification.
Termini should set this value to zero, and this value should be ignored by readers.

uint16 containerID
The containerID for the containing entity that is associated with this effecter. See 9.1 for more
information.
This field has been deprecated and may be deleted in a future version of this specification.
Termini should set this value to zero, and this value should be ignored by readers.

bitfield8 initConditions
Identifies the conditions under which the Initialization Agent must initialize or reinitialize this
effecter
[7:5] – reserved
[4] – 1b = PLDM terminus returns to online condition
[3] – 1b = System warm resets
[2] – 1b = System hard resets
[1] – 1b = PLDM subsystem power up
[0] – 1b = Initialization Agent controller restart/update (initialize/reinitialize this effecter

whenever the device that holds the Initialization Agent has been restarted or
reinitialized)

enum8 effecterEnable
The operational state of the overall composite state sensor after it has been initialized. This
state is written to the sensorOperationalState of each sensor that is identified for initialization
through the effecterInitMask field of this PDR using the SetStateEffecterEnables command.
special value: {0xFF = do not set the effecterOperationalStates}

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 173

Type Description
bitfield8 effecterInitMask

Identifies which effecters within the composite state effecter require initialization
[7] – 1b = state effecter at offset 7 requires initialization

0b = state effecter at offset 7 does not require initialization
[6] – 1b = state effecter at offset 6 requires initialization

0b = state effecter at offset 6 does not require initialization
…
[2] – 1b = state effecter at offset 2 requires initialization

0b = state effecter at offset 2 does not require initialization
[1] – 1b = state effecter at offset 1 requires initialization

0b = state effecter at offset 1 does not require initialization
[0] – 1b = state effecter at offset 0 requires initialization

0b = state effecter at offset 0 does not require initialization
bitfield8 effecterOpStateEventEnableMask

Identifies which sensors within the composite state effecter should have their operational state
event message generation enabled after initialization
[7] – 1b = enable event message generator for state sensor at offset 7

0b = disable event message generator for state sensor at offset 7
[6] – 1b = enable event message generator for state sensor at offset 6

0b = disable event message generator for state sensor at offset 6
…
[2] – 1b = enable event message generator for state sensor at offset 2

0b = disable event message generator for state sensor at offset 2
[1] – 1b = enable event message generator for state sensor at offset 1

0b = disable event message generator for state sensor at offset 1
[0] – 1b = enable event message generator for state sensor at offset 0

0b = disable event message generator for state sensor at offset 0
uint8 stateValue0

State value to write to effecter offset 0 for initialization
special value: Use 0x00 as a placeholder value for effecters that do not require initialization.

uint8 stateValue1
State value to write to effecter offset 1 for initialization
special value: Use 0x00 as a placeholder value for effecters that do not require initialization.

uint8 stateValue2
State value to write to effecter offset 2 for initialization
special value: Use 0x00 as a placeholder value for effecters that do not require initialization.

 …
uint8 stateValue6

State value to write to effecter offset 6 for initialization
special value: Use 0x00 as a placeholder value for effecters that do not require initialization.

uint8 stateValue7
State value to write to effecter offset 7 for initialization
special value: Use 0x00 as a placeholder value for effecters that do not require initialization.

PLDM for Platform Monitoring and Control Specification DSP0248

174 Work in Progress Version 1.2.0a

28.15 Effecter Auxiliary Names PDR 2893

The Effecter Auxiliary Names PDR may be used to provide optional information that names an effecter. 2894
This record may be used for a single effecter or multiple effecters if the effecter is a composite state 2895
effecter. 2896

The nameLanguageTag field can be used to identify the language (such as French, Italian, or English) 2897
that is associated with the particular effecter name. Table 92 describes the format of this PDR. 2898

Table 92 – Effecter Auxiliary Names PDR format 2899

Type Description
– commonHeader

See 28.1.
uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus
uint16 effecterID

ID of the effecter relative to the given PLDM terminus
uint8 effecterCount [1..M]

For each effecter x in effecterCount, there can be 1..nameStringCount[x] strings, where
each set of strings corresponds to a effecter in a composite effecter. The record must be
populated sequentially starting from 1 regardless of whether an effecter requires auxiliary
names. Thus, each entry has at least one byte (the nameStringCount). Effecters that have
offsets that are greater than effecterCount are treated as if they have no auxiliary names.
For example, if a composite effecter contains four effecters and only the third effecter
requires an auxiliary name, the effecterCount can be 3 and the nameStringCount for the
first two sets of effecter name information is 0.

effecter [1] names:
uint8 nameStringCount

Number of following pairs [0..N] of nameLanguageTag + effecterName fields for
effecter[1].

strASCII nameLanguageTag[1]
This field is absent if nameStringCount = 0.
A null-terminated ISO646 ASCII string that holds a language tag, per RFC4646, that
identifies the primary language in which the effecterName was defined (for example, "en"
for English, "zh-cmn-Hans" for simplified Mandarin Chinese, and so on). This field may be
used to help select which string to use when multiple character encodings for
effecterName are provided.
special value: null string = 0x0000 = unspecified

strUTF-16BE effecterName[1]
This field is absent if nameStringCount = 0.
A null-terminated unicode string for the name of the auxiliary effecter
special value: null string = 0x0000 = name not provided.

… …
strASCII nameLanguageTag[N]
strUTF-16BE effecterName[N]
effecter [2] names:
…
effecter [M] names:

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 175

28.16 OEM Effecter Semantic PDR 2900

The OEM Effecter Semantic PDR is used to provide information about an OEM effecter semantic used 2901
with one or more PLDM effecters that are represented in the PDRs. The information includes an ID for the 2902
vendor and a vendor-defined ID number for identifying the effecter semantic. The PDR also allows one or 2903
more descriptive name strings to be provided for the vendor-defined effecter semantic. The name strings 2904
may be provided in different character sets and languages. 2905

The OEMEffecterSemanticHandle value in the PDR is used by other PDRs, such as the PLDM State 2906
Effecter PDR, to point to the particular PLDM OEM Effecter Semantic PDR within the PDR Repository. 2907
OEMStateSetIDHandle values are thus required to be unique for each different PLDM OEM State Set 2908
PDR within a given PDR Repository. 2909

The OEMSemanticID field enables the vendor that defined the semantic to assign an ID value to its 2910
semantic. The OEMSemanticID field is thus defined relative to the given vendor ID. 2911

The OEM Effecter Semantic PDR also contains a PLDMTerminusHandle value. The 2912
PLDMTerminusHandle is used to provide a record of the terminus from which the PDR was imported. It is 2913
expected that most vendors will define their OEMSemanticID values in a global manner in which the ID 2914
has the same meaning regardless of the PLDMTerminusHandle value. 2915

Table 93 describes the format of this PDR. 2916

Table 93 – OEM Effecter Semantic PDR format 2917

Type Description
– commonHeader

See 28.1.
uint16 PLDMTerminusHandle

This value is used to identify the terminus that originated this PDR.
uint8 OEMEffecterSemanticHandle

An opaque number that is used to identify different OEM effecter semantics that are defined by
the given vendor on the given terminus. The value is used in PDRs such as the PLDM State
Effecter PDR to indicate that a vendor-defined effecter semantic is being used and to locate the
PLDM OEM Effecter Semantic PDRs (if any) that provide the vendor-defined ID number and
optional descriptive names for the effecter semantic.

uint32 vendorIANA
The IANA Enterprise Number for the vendor that is defining the OEM Sensor Unit

uint8 OEMEffecterSemanticID
A value that can be used as a search field for the FindPDR command. This number is assigned
by the vendor and provides a numeric ID for the vendor-defined effecter semantic. Thus, the
vendor can use this value to provide a constant ID that always identifies a particular Unit
definition from that vendor.

uint8 stringCount
The number 1..N of languageTag and name field pairs that follow this field.
{ 0 = no name information provided }

strASCII languageTag[1]
A null-terminated ISO646 ASCII string that holds a language tag, per RFC4646, that identifies
the primary language in which the unitName was defined (for example, "en" for English, "zh-
cmn-Hans" for simplified Mandarin Chinese, and so on). This field may be used to help select
which string to use when multiple character encodings for the unitName are provided.
special value: null string = unspecified

strUTF-16BE name[1]
A null-terminated unicode string that contains the name of the OEM Sensor Unit

… …

PLDM for Platform Monitoring and Control Specification DSP0248

176 Work in Progress Version 1.2.0a

Type Description
strASCII languageTag[N]
strUTF-16BE name[N]

28.17 Entity Association PDR 2918

The Entity Association PDR is used to form associations between entities, such as physical and logical 2919
entities. See clause 10 for more information. Table 94 describes the format of this PDR. 2920

Table 94 – Entity Association PDR format 2921

Type Description

– commonHeader

See 28.1.

uint16 containerID

value: 0x0001 to 0xFFFF = An opaque number that identifies a particular container entity in
the hierarchy of containment. See 11.1 for more information.

special value: 0x0000 = "SYSTEM". This value is used to identify the topmost containing entity in
PLDM Entity Association containment hierarchies.

enum8 associationType

value: { physicalToPhysicalContainment, logicalContainment }

Container Entity Identification Information

uint16 containerEntityType

uint16 containerEntityInstanceNumber

A top-level PDR shall use containerEntityInstanceNumber 1.

Any sensor which relates to this level shall use the containerEntityType and
containerEntityInstanceNumber to reference the top level.

This method should only be used on the top-level entity association PDR.

uint16 containerEntityContainerID

Contained Entity Identification Information

uint8 containedEntityCount

The number of contained entities (1 to N) listed in this particular PDR. This may not be the total
number of contained entities because multiple containment association PDRs may exist for the
same container entity. See 11.3 for more information.

uint16 containedEntityType[1]

uint16 containedEntityInstanceNumber[1]

uint16 containedEntityContainerID[1]

 …

uint16 containedEntityType[N]

uint16 containedEntityInstanceNumber[N]

uint16 containedEntityContainerID[N]

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 177

28.18 Entity Auxiliary Names PDR 2922

The Entity Auxiliary Names PDR may be used to provide optional information that names a particular 2923
instance of an entity. The PDR can also be used to name a particular range of instances of an entity, 2924
provided that the instances share the same containerID. 2925

The nameLanguageTag field can be used to identify the language (such as French, Italian, or English) 2926
that is associated with the particular entity name. Table 95 describes the format of this PDR. 2927

Table 95 – Entity Auxiliary Names PDR format 2928

Type Description

– commonHeader

See 28.1.

uint16 entityType

uint16 entityInstanceNumber

uint16 entityContainerID

uint8 sharedNameCount

This number is added to the EntityInstanceNumber to identify how many additional
EntityInstanceNumber values share this auxiliary name PDR, where EntityInstanceNumber
identifies the starting value for the range. For example, if the EntityInstanceNumber is 100 and
the sharedNameCount is 2, this PDR applies to EntityInstanceNumbers 100, 101, and 102.

If the sharedNameCount is 0, this PDR applies only to the given EntityInstanceNumber.

Entity auxiliary names:

uint8 nameStringCount

Number of following pairs [0..N] of nameLanguageTag + entityAuxName fields for
entityAuxName[1].

strASCII nameLanguageTag [1]

This field is absent if nameStringCount = 0.

A null-terminated ISO646 ASCII string that holds a language tag, per RFC4646, that identifies
the primary language in which the entityAuxName was defined (for example, "en" for English,
"zh-cmn-Hans" for simplified Mandarin Chinese, and so on). This field may be used to help
select which string to use when multiple character encodings for the entityAuxName are
provided.

special value: null string = 0x0000 = unspecified

strUTF-16BE entityAuxName [1]

This field is absent if nameStringCount = 0.

A null-terminated unicode string for the auxiliary name of the entity.

special value: null string = 0x0000 = name not provided

… …

strASCII nameLanguageTag [N]

strUTF-16BE entityAuxName [N]

PLDM for Platform Monitoring and Control Specification DSP0248

178 Work in Progress Version 1.2.0a

28.19 OEM EntityID PDR 2929

The OEM EntityID PDR can be used to provide a vendor-specific EntityID definition when no PLDM 2930
predefined EntityID corresponds to the type of entity that the vendor wants to represent. 2931

When the entityType value is in the OEM range of values, the EntityID portion of the entityType field is 2932
OEM-defined. The EntityID value is then used as an OEMEntityIDHandle to locate the corresponding 2933
OEM EntityID PDR. 2934

OEM Entity Type PDRs need to be able to be exported by a terminus, such as a terminus on a hot-plug 2935
card. The numbers in a given vendor's Device PDRs must be picked a priori by the vendor. Thus, 2936
duplications may exist among the OEM EntityID values that different vendors choose. The Discovery 2937
Agent function is responsible for adjusting the OEM Entity Type values to resolve any conflicts that may 2938
occur when it integrates PDRs into the Primary PDR Repository. Users of OEM EntityID values must be 2939
aware that these values may differ between different PDR Repositories. That is, an OEM EntityID for 2940
"widget" from vendor "ABC" will not always have the same Entity ID value across PDRs. 2941

To facilitate the identification of particular OEM EntityIDs from a given vendor, each PDR includes a 2942
vendor-specific ID value that does not get altered by the Discovery Agent function. When used in 2943
conjunction with the vendor's ID, this provides a value that can always be used to identify the particular 2944
vendor-defined EntityID definition. 2945

Table 96 describes the format of this PDR. 2946

Table 96 – OEM EntityID PDR format 2947

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

This value is used to identify the terminus that originated this PDR.

uint16 OEMEntityIDHandle

[15] – 0b = reserved

[14:0] – OEM entityID handle value. The value that is used in entity associations and other
PDRs to identify the entity defined by this PDR. This value may be changed if the PDR
is migrated and integrated into a Primary PDR Repository.

uint32 vendorIANA

The IANA Enterprise Number for the vendor that is defining the OEM PDR vendor-specific data

uint16 vendorEntityID

This value can be used as a search field for the FindPDR command. This number is assigned by
the vendor and provides a numeric ID for the vendor-defined entity. This field is intended to
provide a consistent and constant ID that can be relied on to identify the vendor-defined entity
even if the name strings need to be changed or updated.

[15] – 0b = reserved

[14:0] – vendorEntityID value

uint8 stringCount

The number 1..N of entityIDLanguageTag and entityIDName field pairs that follow this field.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 179

Type Description

strASCII entityIDLanguageTag[1]

A null-terminated ISO646 ASCII string that holds a language tag, per RFC4646, that identifies
the primary language in which the EntityID name was defined (for example, "en" for English, "zh-
cmn-Hans" for simplified Mandarin Chinese, and so on). This field may be used to help select
which string to use when multiple character encodings for the entityIDName are provided.

special value: null string = unspecified

strUTF-16BE entityIDName[1]

A null-terminated unicode string that contains the name of the EntityID name

… …

strASCII entityIDLanguageTag[N]

strUTF-16BE entityIDName[N]

28.20 Interrupt Association PDR 2948

The Interrupt Association PDR is used to form associations between interrupt source entities and interrupt 2949
target entities. See 11.10 for more information. Table 97 describes the format of this PDR. 2950

Table 97 - Interrupt Association PDR format 2951

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

This value is used to identify the terminus that provides access to the sensor that is monitoring the
interrupt that is related to this association.

uint16 sensorID

The ID of the sensor that monitors this interrupt at a source or target

enum8 sourceOrTargetSensor

Identifies whether the sensor is monitoring the interrupt at the source or the target. The association
record for a sensor that monitors an interrupt source is required to identify only a single target entity
and a single source entity.

value: { targetSensor, sourceSensor }

Target Entity Identification Information

uint16 interruptTargetEntityType

uint16 interruptTargetEntityInstanceNumber

uint16 interruptTargetEntityContainerID

Source Entity Identification Information

uint8 interruptSourceEntityCount

The number of interruptSource entities (1 to N) listed in this particular PDR. This number may not
be the total number of interruptSource entities associated with a particular interrupt target entity
because multiple interrupt association PDRs may exist for the same target entity. See 11.3 and
11.10 for more information.

uint32 interruptSourcePLDMTerminusHandle[1]

PLDM for Platform Monitoring and Control Specification DSP0248

180 Work in Progress Version 1.2.0a

Type Description

uint16 interruptSourceEntityType[1]

uint16 interruptSourceEntityInstanceNumber[1]

uint16 interruptSourceEntityContainerID[1]

uint16 interruptSourceSensorID[1]

 …

uint32 interruptSourcePLDMTerminusHandle[N]

uint16 interruptSourceEntityType[N]

uint16 interruptSourceEntityInstanceNumber[N]

uint16 interruptSourceEntityContainerID[N]

uint16 interruptSourceSensorID[N]

28.21 Event Log PDR 2952

The Event Log PDR is used to describe characteristics of the PLDM Event Log (if implemented). The 2953
specification defines the existence of only a single, central PLDM Event Log function. Therefore, only one 2954
occurrence of a PLDM Event Log PDR shall exist in a Primary PDR Repository. 2955

Table 98 describes the format of this PDR. 2956

Table 98 – Event Log PDR format 2957

Type Description

– commonHeader

See 28.1.

uint32 logSize

The size in bytes of the log storage area that is used for storing log entries. This number is
exclusive of any fixed overhead for maintaining the overall log, but may include per entry overhead.

special value:

{

0x0000_0000 = unspecified.

0xFFFF_FFFE = reserved for future definition

0xFFFF_FFFF = log size is greater than or equal to 4 GB-1 bytes

}

bitfield8 supportedLogClearingPolicies

See 13.4 for a description of the log clearing policies.

[7:3] – reserved

[2] – 1b = clearOnAge supported

[1] – 1b = FIFO supported

[0] – 1b = fillAndStop supported

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 181

Type Description

uint8 entryIDTimeout

The minimum interval, in seconds, that the entryID used in the middle of a partial transfer remains
valid after it was delivered in the response for a GetPLDMEventLogEntry command that returns
partial data. This corresponds to the entryID value returned in any GetPLDMEventLogEntry
responses where the splitEntry field in the response is firstFragment or middleFragment.

special values: { 0x00 = no timeout, 0x01 = default minimum timeout is the same as the PDR
Handle Timeout, MC1, (see clause 28.25), 0xFF = timeout >254 seconds. Any timeout values that
are less than the specified default minimum timeout are illegal. }

uint8 perEntryOverhead

The number of bytes of storage overhead per entry if that overhead is counted as using space from
the log area specified by logSize. For example, if this value is 2 and an N-byte entry was added to
the log, the amount of logSize consumed would be N+2 bytes.

An implementation may elect to hide some or all of the impact of per-entry overhead on the
available log space. For example, the implementation may have an internal overhead of 2 bytes but
keep that overhead in a separate data structure that does not affect the amount of space
consumed from the log. In this case, adding an N-byte entry to the log would be counted as
consuming only N-bytes of log space, not N+2 bytes.

special value: 0xFF = unspecified

uint8 allocationGranularity

The byte multiple or increment by which storage space is allocated to entries. This value typically
corresponds to some byte, word, or block boundary related to the physical medium used for storing
entries. For example, if this value is 16 and a 24-byte entry were added, the result would be that
the entry would consume 32-bytes of storage space.

special value: 0xFF = unspecified

uint8 percentUsedResolution

Indicates the resolution of the storagePercentUsed value from the GetPLDMEventLogInfo
command

value: 1 to 100; all other values = reserved

 A percentUsedResolution value of 0x01 indicates that the storagePercentUsed value is given
with a resolution of 1 count (1%), which means a storagePercentUsed value of 0x00 indicates
that the log is from 0 to <1% full, a storagePercentUsed value of 0x01 indicates that the log is
1% to <2% full, and so on.

A percentUsedResolution value of 0x05 indicates that the storagePercentUsed value is given
with a resolution of 5 count (5%), which means a storagePercentUsed value of 0x00 indicates
that the log is from 0 to <5% full, a storagePercentUsed value of 0x01 indicates that the log is
5% to <10% full, and so on.

28.22 FRU Record Set PDR 2958

The FRU Record Set PDR is used to describe characteristics of the PLDM FRU Record Set Data defined 2959
in DSP0257. The information can be used to locate a Terminus that holds FRU Record Set Data in order 2960
to access that data using the commands specified in DSP0257. The PDR also identifies the particular 2961
Entity that is associated with the FRU information. 2962

Table 99 describes the format of this PDR. 2963

 2964

PLDM for Platform Monitoring and Control Specification DSP0248

182 Work in Progress Version 1.2.0a

Table 99 – FRU Record Set PDR format 2965

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

The terminus that originated or maintains this PDR. .

uint16 FRURecordSetIdentifier

A unique number per terminus that is used to identify the Record Set for the FRU Data for the
associated entity. The Record Set value is used for accessing FRU Data using the commands
specified in DSP0257.

uint16 entityType

The Type value for the entity that is associated with this FRU data.

uint16 entityInstanceNumber

The Instance Number for the entity that is associated with this FRU data.

uint16 containerID

The containerID for the containing entity that is associated with this FRU data.

28.23 OEM Device PDR 2966

The OEM Device PDR can be used to provide OEM (vendor-specific) information. The OEM-specific data 2967
portion in an OEM Device PDR is limited to a maximum size of 64 KB. Higher-level system specifications 2968
may place additional limits on the size and number of OEM Device PDRs that may be supported in a 2969
given PLDM subsystem implementation. An OEM Device PDR must have at least one byte of 2970
VendorSpecificData. 2971

This type of PDR shall be copied by the Discovery Agent into the Primary PDR Repository dependent on 2972
the setting of the copyPDR field. The PDR may also be preconfigured into the Primary PDR Repository. 2973
That is, this PDR is not restricted to being only used or migrated from repositories that are separate from 2974
the Primary PDR Repository. 2975

The OEM PDR is a slightly smaller version of the OEM Device PDR that can be used in situations where 2976
it is not necessary or desired to associate the PDR to a particular terminus or have the information copied 2977
from a Device PDR Repository into the Primary PDR Repository. 2978

Table 100 describes the format of this PDR. 2979

28.23.1 Copy Behavior 2980

If the copyPDR parameter is set to copyToPrimaryRepository, the Discovery Agent shall overwrite any 2981
pre-existing PDRs for the terminus that have the same vendorIANA and VendorHandle values. 2982

28.23.2 Removal Behavior 2983

The OEM Device PDR is allowed to be removed from the Primary PDR Repository if the Discovery Agent 2984
detects that the terminus that is associated with the PDR has been removed or is no longer available. 2985

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 183

Table 100 – OEM Device PDR format 2986

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

The PLDMTerminusHandle for the terminus from which this record was obtained.

special value: 0x0000 may be used to indicate "unspecified' when this record is in a device's PDR
Repository. The Discovery Agent typically assigns a different value to this field when merging the
record into the Primary PDR Repository.

enum8 copyPDR

value: { doNotCopy, copyToPrimaryRepository }

uint32 vendorIANA

The IANA Enterprise Number for the vendor that is defining the OEM PDR vendor -specific data

special value: 0 = unspecified

uint16 OEMRecordID

This value can be used as a search field for the FindPDR command. This value must be unique
among all OEM Device PDRs for a given terminus that share the same vendorIANA value. Any
other semantics associated with this value are vendor-specific and defined by the vendor or group
that is identified by vendorIANA.

uint16 dataLength

The number of following vendorSpecificData bytes starting from 0.

0 = 1 byte, 1 = 2 bytes, and so on

byte vendorSpecificData[0]

… …

byte vendorSpecificData[N]

28.24 OEM PDR 2987

The OEM PDR can be used to provide OEM (vendor-specific) information. The OEM-specific data portion 2988
in an OEM PDR is limited to a maximum size of 64 KB. Higher-level system specifications may place 2989
additional limits on the size and number of OEM PDRs that may be supported in a given PLDM 2990
subsystem implementation. An OEM PDR must have at least one byte of vendorSpecificData. The OEM 2991
Device PDR is an extended version of the OEM PDR that is used when it is necessary to associate the 2992
PDR to a particular terminus or to have the information copied from a Device PDR Repository into the 2993
Primary PDR Repository. 2994

Table 101 describes the format of this PDR. 2995

Table 101 – OEM PDR format 2996

Type Description
– commonHeader

See 28.1.

PLDM for Platform Monitoring and Control Specification DSP0248

184 Work in Progress Version 1.2.0a

Type Description
uint32 vendorIANA

The IANA Enterprise Number for the vendor that is defining the OEM PDR vendor-specific data
special value: 0 = unspecified

uint16 OEMRecordID
This value can be used as a search field for the FindPDR command. This value must be unique
among all OEM PDRs within the PDR Repository that share the same vendorIANA value. Any other
semantics associated with this value are vendor-specific and defined by the vendor or group that is
identified by vendorIANA.

uint16 dataLength
The number of following vendor-specific data bytes starting from 0
0 = 1 byte, 1 = 2 bytes, and so on.

byte vendorSpecificData[1]
… …
byte vendorSpecificData[N]

28.25 Compact Numeric Sensor PDR 2997

The Compact Numeric Sensor PDR is designed for Management Controller (MC) monitoring of a 2998
sophisticated PLDM terminus (device) where data conversion is not required. This sensor always reports 2999
normalized integer values. Temperature and counting sensors are examples of sensor types that may be 3000
defined by this PDR sensor type. Any mapping to an external management protocol is defined outside of 3001
this specification. 3002

The commands, which specify a “raw value” such as SetSensorThresholds, GetSensorThresholds and 3003
GetSensorReading, shall use the sensor's (integer) value. 3004

This sensor is for simple numeric sensor reporting. For complex designs, the standard Numeric Sensor 3005
PDR is retained and supported. 3006

Table 102 – Compact Numeric Sensor PDR format 3007

Type Description

– commonHeader

See 28.1.

uint16 PLDMTerminusHandle

A handle that identifies PDRs that belong to a particular PLDM terminus.

uint16 sensorID

ID of the sensor relative to the given PLDM Terminus ID.

uint16 entityType

The Type value for the entity that is associated with this sensor. See 9.1 for more information.

uint16 entityInstanceNumber

The Instance Number for the entity that is associated with this sensor. See 9.1 for more
information.

uint16 containerID

The containerID for the containing entity that is associated with this sensor. See 9.1 for more
information.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 185

Type Description

uint8 sensorNameStringByteLength

If this is greater than zero, then the “sensorNameString” is present at the end of this PDR. This
field is a vendor supplied sensor name. This is the an explicit name for display. The recommended
maximum length is 96 bytes.

enum8 baseUnit

The base unit of the reading returned by this sensor. See 27.4 for more information.

value: { see Table 74 }

sint8 unitModifier

A power-of-10 multiplier for the baseUnit. See 27.4 for more information.

enum8 occurrenceRate

0 : No Occurrence Rate

1 : Per Microsecond

2 : Per Millisecond

3 : Per Second

4 : Per Minute

5 : Per Hour

6 : Per Day

bitfield8 rangeFieldSupport

Indicates which of the fields that identify the operating ranges of the parameter monitored by the
sensor are supported. (This bitfield indicates whether the following threshold fields contain valid
range values).

[6:7] – reserved

[5] – 1b = fatalLow field supported

[4] – 1b = fatalHigh field supported

[3] – 1b = criticalLow field supported

[2] – 1b = criticalHigh field supported

[1] – 1b = warningLow field supported

[0] – 1b = warningHigh field supported

sint32 warningHigh

A warning condition that occurs when the monitored value is greater than the value reported by
warningHigh. In many implementations, this value may be the same value as normalMax. Sensor
thresholds that may be derived from this value are typically set for a value that is higher than
warningHigh to accommodate the effects of sensor accuracy, tolerance, and resolution, in order to
prevent false reporting of an out-of-range condition. This value is given directly in the specified
units without the use of any conversion formula.

sint32 warningLow

A warning condition that occurs when the monitored value is less than or equal to the value
reported by warningLow. In many implementations, this value may be the same value as
normalMin. Sensor thresholds that may be derived from this value are typically set for a value that
is lower than warningLow to accommodate the effects of sensor accuracy, tolerance, and
resolution, in order to prevent false reporting of an out-of-range condition. This value is given
directly in the specified units without the use of any conversion formula.

PLDM for Platform Monitoring and Control Specification DSP0248

186 Work in Progress Version 1.2.0a

Type Description

sint32 criticalHigh

A critical condition that occurs when the monitored value is greater than or equal to the value
reported by criticalHigh. In some implementations, this value may be the same value as
normalMax. Sensor thresholds that may be derived from this value are typically set for a value that
is higher than criticalHigh to accommodate the effects of sensor accuracy, tolerance, and
resolution, in order to prevent false reporting of an out-of-range condition. This value is given
directly in the specified units without the use of any conversion formula.

sint32 criticalLow

A critical condition that occurs when the monitored value is less than the value reported by
criticalLow. In some implementations, this value may be the same value as normalMin. Sensor
thresholds that may be derived from this value are typically set for a value that is lower than
criticalLow to accommodate the effects of sensor accuracy, tolerance, and resolution, in order to
prevent false reporting of an out-of-range condition. This value is given directly in the specified
units without the use of any conversion formula.

sint32 fatalHigh

A fatal condition that occurs when the monitored value is greater than the value reported by
fatalHigh. In many implementations, this value may be the same value as normalMax. Sensor
thresholds that may be derived from this value are typically set for a value that is higher than
fatalHigh to accommodate the effects of sensor accuracy, tolerance, and resolution, in order to
prevent false reporting of an out-of-range condition. This value is given directly in the specified
units without the use of any conversion formula.

sint32 fatalLow

A fatal condition that occurs when the monitored value is less than the value reported by fatalLow.
In many implementations, this value may be the same value as normalMin. Sensor thresholds that
may be derived from this value are typically set for a value that is lower than fatalLow to
accommodate the effects of sensor accuracy, tolerance, and resolution, in order to prevent false
reporting of an out-of-range condition. This value is given directly in the specified units without the
use of any conversion formula.

strUTF-8 sensorNameString

This is the vendor defined name for this sensor. This field is expected to be use for display and
not an explicit identifier. This field is NOT present if the sensorNameStringByteLength value is
equal to zero.

28.26 Redfish Resource PDR 3008

The Redfish Resource PDR provides the Redfish Schema information for every Redfish resource 3009
managed by a data provider. The usage of this PDR is defined in DSP0218, Platform Level Data Model 3010
for Redfish Device Enablement. 3011

Table 103 – Redfish Resource PDR format 3012

Type Description

– CommonHeader

See [28.1].

uint32 ResourceID

The primary resourceID for this collection of data. All ResourceIDs (including those in the
AdditionalResourceID field below) across all Redfish Resource PDRs presented by an RDE Device
shall be unique to that device.

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 187

Type Description

bitfield8 ResourceFlags

Flags associated with this Resource:

[7:3] - reserved for future use

[2] - is_collection; if 1b, this resource is a Redfish collection that contains zero or more
resources sharing a common schema

[1] - is_contained_in_collection; if 1b, the resource in which this resource is contained is a
collection

[0] - is_device_root; if 1b, this resource is a root of the RDE Device’s logical containment
hierarchy and shall have ContainingResourceID below set to EXTERNAL

uint32 ContainingResourceID
value: 0x0000 0001 to 0xFFFF FFFE = An opaque number that references a Redfish
 Resource PDR in the hierarchy of containment. See DSP0218 for more
 information.
special value: 0x0000 0000 = “ EXTERNAL ”. This value is used to identify the logical root of
 a device component’s management topology.
special value: 0xFFFF FFFF is reserved for special use within DSP0218.

uint16 ProposedContainingResourceLengthBytes

Length in bytes of the proposed parent resource that the resource this PDR represents should be
subordinate to. Shall be 1 if ContainingResourceID is not EXTERNAL

strUTF-8 ProposedContainingResourceName

Name of the schema for the proposed parent resource to which this PDR’s primary resource (and
any additional resources) should be subordinate. Shall be a null byte if ContainingResourceID is
not EXTERNAL. The MC may accept or reject this placement recommendation at its discretion.
The format and usage of this field is defined in DSP0218, Platform Level Data Model for Redfish
Device Enablement.

The name specified shall be the fully qualified Odata name, in the format Namespace.EntityType.
For example, a storage controller might specify StorageCollection.StorageCollection as its
proposed containing resource name.

uint16 SubURILengthBytes

Length in bytes of the SubURI path fragment (including the null terminator) for the primary resource

strUTF-8 SubURI

Null-terminated SubURI path fragment corresponding to the primary resource’s portion of the
canonical OpenAPI pathname for this resource. Shall neither begin nor end with a slash (‘/’)
character. Shall be a null byte if ContainingResourceID is EXTERNAL.

To define the contents for this field, let:

• PP (parent path) be the standardized OpenAPI path for the Redfish resource containing
this resource

• PR (resource path) be the standardized OpenAPI path for this resource

The subURI for this field shall be the difference (PR – PP). In most cases it will consist of a single
path segment, but may consist of several slash-separated segments.

For example, the OpenAPI path for a NetworkPortCollection (PR) is
/redfish/v1/Chassis/{ChassisID}/NetworkAdapters/{NetworkAdapterID}/NetworkPorts.

PP is /redfish/v1/Chassis/{ChassisID}/NetworkAdapters/{NetworkAdapterID}.

The SubURI for this case would be “NetworkPorts”.

For further details on the usage of this field, please refer to DSP0218, Platform Level Data Model
for Redfish Device Enablement.

PLDM for Platform Monitoring and Control Specification DSP0248

188 Work in Progress Version 1.2.0a

Type Description

uint16 AdditionalResourceIDCount

Number NA of additional resourceIDs, each of which represents a separate instance of a Redfish
resource that shares all the same schema data with the primary resourceID

uint32 AdditionalResourceID [0]

The resourceID for another resource instance that shares all the same schema data detailed in this
PDR with the primary resource instance. All ResourceIDs across all Redfish Resource PDRs
presented by an RDE Device shall be unique to that device.

uint16 AdditionalResourceSubURILengthBytes [0]

Length in bytes of the SubURI path fragment (including the null terminator) for this additional
resource

strUTF-8 AdditionalResourceSubURI [0]

Null-terminated SubURI path fragment corresponding to this resource’s portion of the canonical
OpenAPI pathname for this additional resource. Shall neither begin nor end with a slash (‘/’)
character. Shall be a null byte if ContainingResourceID is EXTERNAL. This field shall be formatted
according to the rules defined above for the SubURI field.

… …

uint32 AdditionalResourceID [NA-1]

The resourceID for another resource instance that shares all the same schema data detailed in this
PDR with the primary resource instance. All ResourceIDs across all Redfish Resource PDRs
presented by an RDE Device shall be unique to that device.

uint16 AdditionalResourceSubURILengthBytes [NA – 1]

Length in bytes of the SubURI path fragment (including the null terminator) for this additional
resource

strUTF-8 AdditionalResourceSubURI [NA – 1]

Null-terminated SubURI path fragment corresponding to this resource’s portion of the canonical
OpenAPI pathname for this additional resource. Shall neither begin nor end with a slash (‘/’)
character. Shall be a null byte if ContainingResourceID is EXTERNAL. This field shall be formatted
according to the rules defined above for the SubURI field.

ver32 MajorSchemaVersion

In standard PLDM version format; 0xFFFFFFFF for an unversioned schema

uint16 MajorSchemaDictionaryLengthBytes

Length of dictionary data for the major schema

uint32 MajorSchemaDictionarySignature

32-bit CRC for the major schema dictionary, including all OEM extensions.

For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11
+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the
signature computation. The CRC computation involves processing a byte at a time with the least
significant bit first.

uint8 MajorSchemaNameLength

Length of the name of the major schema, including null terminator

strUTF-8 MajorSchemaName

Null-terminated UTF-8 string containing the name of the major schema

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 189

Type Description

uint16 OEMCount

Number NO of OEMs associated with this resource in the device

uint16 OEMNameLengthBytes [0]

Length in bytes of OEMName [0], below, including the null terminator

strUTF-8 OEMName [0]

Null-terminated UTF-8 string containing the name of the first OEM

… …

uint16 OEMNameLengthBytes [NO – 1]

Length in bytes of OEMName [0], below, including the null terminator

strUTF-8 OEMName [NO – 1]

Null-terminated UTF-8 string containing the name of the last OEM

28.27 Redfish Entity Association PDR 3013

The Redfish Entity Association PDR provides the topology (or hierarchy) of Redfish (data) resources. The 3014
usage of this PDR is defined in DSP0218, Platform Level Data Model for Redfish Device Enablement. 3015

Table 104 – Redfish Entity Association PDF format 3016

Type Description

– CommonHeader

See 28.1.

Container Entity Identification Information

uint32 ContainingResourceID
value: 0x0000 0001 to 0xFFFFFFFE = An opaque number that references a Redfish
 Resouce PDR in the hierarchy of containment. See DSP0218 for more information.
special value: 0x0000 0000 = “EXTERNAL”. This value is used to identify the topmost containing
 entity for a device component in PLDM Entity Association containment
 hierarchies.

special value: 0xFFFF FFFF is reserved for special use within DSP0218.

uint16 ProposedContainingResourceLengthBytes

Length in bytes of the proposed parent resource that the resource this PDR represents should be
subordinate to. Shall be 1 if ContainingResourceID is not EXTERNAL

utf8string ProposedContainingResourceName

Name of the proposed parent resource that the resource this PDR represents should be
subordinate to. Shall be null (“\0”) if ContainingResourceID is not EXTERNAL. The MC may accept
or reject this placement recommendation at its discretion.

Contained Entity Identification Information

uint8 ContainedEntityCount

The number of contained entities NC listed in this particular PDR. This may not be the total number
of contained entities because multiple containment association PDRs may exist for the same
container entity. See 11.3 for more information.

uint32 ContainedEntityResourceID [0]

PLDM for Platform Monitoring and Control Specification DSP0248

190 Work in Progress Version 1.2.0a

Type Description

 …

uint32 ContainedEntityResourceID [NC - 1]

28.28 Redfish Action PDR 3017

The Redfish Action PDR provides the details of the “Actions” a resource can execute. The “Actions” are 3018
described in standard Redfish resource schema definition. The usage of this PDR is defined in DSP0218 3019
Platform Level Data Model for Redfish Device Enablement. 3020

Table 105 – Redfish Action PDR format 3021

Type Description

– CommonHeader

See 28.1.

uint8 ActionPDRIndex

Zero-based index for Action PDRs linked to a single Redfish Resource PDR; this established an
ordering on the Actions in the event that they are split across multiple Redfish Action PDRs.

Host Resource Information

uint16 RelatedResourceCount

The number NR of Resources the Actions in this PDR are being linked to. If listing the full number
of related resources would cause this PDR to exceed the maximum supported PDR size, the
PDR may be split into multiple copies, each listing a subset of the related resources. Splitting
related resources should be employed in preference to splitting actions for the same resource.

uint32 RelatedResourceID [0]
value: 0x0000 0001 to 0xFFFF FFFE = An opaque number that identifies the Redfish
 Resource PDR in which the Action is defined. Values 0x0000 0000 and
 0xFFFF FFFF are reserved.

… …

uint32 RelatedResourceID [NR - 1]

value: 0x0000 0001 to 0xFFFF FFFE = An opaque number that identifies the Redfish
 Resource PDR in which the Action is defined. Values 0x0000 0000 and
 0xFFFF FFFF are reserved.

Action Information

uint8 ActionCount

The number of Redfish Actions NA associated with the host Redfish Resource PDR. If listing all of
the actions for a resource would cause this PDR to exceed the maximum supported PDR size,
the PDR may be split into multiple copies, each listing a subset of the supported actions. Splitting
actions in this fashion should only be done if the actions themselves cannot fit within a single
PDR; PDRs should be preferentially split by resource ahead of action.

uint8 ActionNameLengthBytes [0]

Including null terminator

utf8string ActionName [0]

The name of action, null-terminated

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 191

Type Description

uint8 ActionPathLengthBytes [0]

The length in bytes of the null-terminated string detailing the path to the root of the Action within
the resource’s major dictionary.

utf8string ActionPath [0]

Null-terminated string detailing the path to the root of the Action within the resource’s major
dictionary.

 …

uint8 ActionNameLengthBytes [NA - 1]

Including null terminator

utf8string ActionName [NA - 1]

The name of action, null-terminated

uint8 ActionPathLengthBytes [NA - 1]

The length in bytes of the null-terminated string detailing the path to the root of the Action within
the resource’s major dictionary.

utf8string ActionPath [NA - 1]

Null-terminated string detailing the path to the root of the Action within the resource’s major
dictionary.

29 Timing 3022

Table 106 defines timing values that are specific to this document. 3023

Table 106 – Monitoring and control timing specifications 3024

Timing specification Symbol Min Max Description
PDR record handle retention MC1 30 sec – See 26.2.8.

30 PLDM Command numbers 3025

Table 107 defines the PLDM command numbers used in the requests and responses for the PLDM 3026
monitoring and control commands defined in this specification. 3027

Table 107 – Command numbers 3028

Command Reference
Terminus commands
0x01 SetTID (see DSP0240) See 16.1.
0x02 GetTID (see DSP0240) See 16.2
0x03 GetTerminusUID See 16.3.
0x04 SetEventReceiver See 16.4.
0x05 GetEventReceiver See 16.5.
0x0A PlatformEventMessage See 16.6.
0x0B PollForPlatformEventMessage See 16.7
0x0C EventMessageSupported See 16.8

PLDM for Platform Monitoring and Control Specification DSP0248

192 Work in Progress Version 1.2.0a

Command Reference
0x0D EventMessageBufferSize See 16.9
Numeric Sensor commands
0x10 SetNumericSensorEnable See 18.1.
0x11 GetSensorReading See 18.2.
0x12 GetSensorThresholds See 18.3.
0x13 SetSensorThresholds See 18.4.
0x14 RestoreSensorThresholds See 18.5.
0x15 GetSensorHysteresis See 18.6.
0x16 SetSensorHysteresis See 18.7.
0x17 InitNumericSensor See 18.8.

State Sensor commands
0x20 SetStateSensorEnables See 20.1.
0x21 GetStateSensorReadings See 20.2.
0x22 InitStateSensor See 20.3.

PLDM Effecter commands
0x30 SetNumericEffecterEnable See 22.1.
0x31 SetNumericEffecterValue See 22.2.
0x32 GetNumericEffecterValue See 22.3.
0x38 SetStateEffecterEnables See 22.4.
0x39 SetStateEffecterStates See 22.5.
0x3A GetStateEffecterStates See 22.6.
PLDM Event Log commands
0x40 GetPLDMEventLogInfo See 23.1.
0x41 EnablePLDMEventLogging See 23.2.
0x42 ClearPLDMEventLog See 23.3.
0x43 GetPLDMEventLogTimestamp See 23.4.
0x44 SetPLDMEventLogTimestamp See 23.5.
0x45 ReadPLDMEventLog See 23.6.
0x46 GetPLDMEventLogPolicyInfo See 23.7.
0x47 SetPLDMEventLogPolicy See 23.8.
0x48 FindPLDMEventLogEntry See 23.9
PDR Repository commands
0x50 GetPDRRepositoryInfo See 26.1.
0x51 GetPDR See 26.2.
0x52 FindPDR See 26.3.
0x58 RunInitAgent See 26.4.
0x53 GetPDRRepositorySignature See 26.5

 3029

DSP0248 PLDM for Platform Monitoring and Control Specification

Version 1.2.0a Work in Progress 193

ANNEX A 3030
(informative) 3031

 3032
 3033

Change log 3034

Version Date Description

1.0.0 2009-03-16
1.0.1 2010-01-13 Update to correct address issues from TC ballot
1.1.0 2011-11-08 DMTF Standard. Added FRU Record Set PDR and description of

FRU Record Set to Entity Association relationship. A ‘rel’ field that
describes the relationship between the base unit and aux unit
was added to the Numeric Sensor PDR format. This update also
included edits for consistency, typos, and clarifications per Mantis
entries, including: References to “effecterDescriptionPDR” and
“sensorDescription PDR” in v1.0.x were changed to refer to the
EffecterAuxiliaryNames and SensorAuxiliaryNames PDRs,
respectively. The enumeration values of effecterOperationalState
in Tables 37 and 43 were made consistent. Similarly, the
enumeration values for sensorOperationalState in Table 19 &
Table 30 were also made consistent. In Table 77, the type of
effecterInit was incorrectly specified as bool8 instead of enum8.
In table 19, sensorEventMessageEnable type was specified as
bool8 instead of enum8.

1.1.1 2016-12-20 Corrected the data type length of the “sensorID” and
corresponding “effecterID” field from “uint8” to “uint16”. This
affects the following PDR definitions:
28.4 Numeric Sensor PDR
28.11 Numeric Effecter PDR

1.1.2 2019-08-28 Errata update to correct field ordering in response message for
FindPLDMEventLogEntry command

1.2.0 2019-09-23 Added Support for Redfish Device Enablement (DSP0218)
Clarified Get - Set Sensor Threshold commands
Added Compact Numeric Sensor PDR to simplify reporting of
numeric data
Extended PLDM event model to support synchronous (polled)
events, and keepalive heartbeat timers
Added PDR repository management commands to better support
dynamic modifications to PDRs

 3035

 3036

PLDM for Platform Monitoring and Control Specification DSP0248

194 Work in Progress Version 1.2.0a

Bibliography 3037

DMTF DSP4004, DMTF Release Process 2.4, 3038
http://dmtf.org/sites/default/files/standards/documents/DSP4004_2.4.pdf 3039

 3040

