
Document Identifier: DSP0242

Date: 2024-01-24

Version: 0.8.0

Platform Level Data Model (PLDM)
for File Transfer Specification

Supersedes: None

Document Class: Normative

Document Status: Work in Progress

Document Language: en-US

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views
of DMTF or its members. Because this document is a Work in Progress, this document
may still change, perhaps profoundly and without notice. This document is available for
public review and comment until superseded.

Provide any comments through the DMTF Feedback Portal: http://www.dmtf.org/
standards/feedback

http://www.dmtf.org/standards/feedback
http://www.dmtf.org/standards/feedback


DMTF is a not-for-profit association of industry members dedicated to promoting enterprise
and systems management and interoperability. Members and non-members may reproduce
DMTF specifications and documents, provided that correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release date
should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject
to third party patent rights, including provisional patent rights (herein "patent rights").
DMTF makes no representations to users of the standard as to the existence of such rights,
and is not responsible to recognize, disclose, or identify any or all such third party patent
right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure
of such rights, owners or claimants. DMTF shall have no liability to any party, in any
manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party's reliance on the
standard or incorporation thereof in its product, protocols or testing procedures. DMTF
shall have no liability to any party implementing such standard, whether such
implementation is foreseeable or not, nor to any patent owner or claimant, and shall have
no liability or responsibility for costs or losses incurred if a standard is withdrawn or
modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for
such implementations.

For information about patents held by third-parties which have notified DMTF that, in their
opinion, such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php.

This document's normative language is English. Translation into other languages is
permitted.

Copyright Notice
Copyright © 2022-2024 DMTF. All rights reserved.

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

2 Work in Progress Version 0.8.0

http://www.dmtf.org/about/policies/disclosures.php


CONTENTS

1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Document conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Terms and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Symbols and abbreviated terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 PLDM for File Transfer version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8 PLDM for File Transfer Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8.1 File Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.2 File Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.3 File Discovery, Hierarchy and Identity Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8.3.1 Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.3.2 File Types and Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.3.3 File and Directory Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.3.4 File System Hierarchy Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8.4 DSP0248 PLDM for Monitor and Control Specification Relationship . . . . . . . . . . . . . 16
8.4.1 The File Descriptor Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.4.2 The Directory Descriptor Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.4.3 File Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 PLDM for File Transfer Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.1 DfOpen Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.2 DfClose Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.3 DfDelete Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.3.1 - Delete Specific File Descriptor PDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.3.2 - Set the File Size Sensor to Zero (0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.3.3 Implementing the DfDelete Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.4 DfGetFileAttrib Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.5 DfSetFileAttrib Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.6 DfHeartbeat Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.7 Error Completion Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.8 DfRead (DSP0240 MultipartReceive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.8.1 Implementation Note: Serial FIFO type file characteristics . . . . . . . . . . . . . . . . 34
9.9 DfFifoSend (DSP0240 MultipartSend) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.10 PLDM for File Transfer sensor usage examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10 PLDM for File Transfer Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.1 PLDM for File Transfer initialization example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.2 Regular file read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.3 Polled serial log read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.4 Async serial log read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 3



Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

4 Work in Progress Version 0.8.0



1 Foreword
The Platform Level Data Model (PLDM) for File Transfer Specification (DSP0242) was prepared by the
Platform Management Communications Infrastructure (PMCI) Work Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and
systems management and interoperability. For information about the DMTF, see http://www.dmtf.org.

1.1 Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:

• Jeff Wolford – Hewlett Packard Enterprise (Co-Editor)
• Patrick Schoeller – Intel Corporation (Co-Editor)
• Patrick Caporale – Lenovo
• Yuval Itkin – NVIDIA Corporation
• Tom Joseph – IBM
• Justin King – IBM
• Eliel Louzoun – Intel Corporation
• Hemal Shah – Broadcom, Inc.
• Bill Scherer – Hewlett Packard Enterprise
• Supreeth Venkatesh – Advanced Micro Devices

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 5

http://www.dmtf.org/


2 Introduction
The Platform Level Data Model (PLDM) for File Transfer Specification defines messages and data
structures used for transferring files between PLDM termini, within a PLDM subsystem. Mechanisms to
discover files and their metadata are also defined.

2.1 Document conventions

Refer to DSP0240 for conventions, notations, and data types that are used across the PLDM
specifications.

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

6 Work in Progress Version 0.8.0



3 Scope
This specification describes messages and data structures used to transfer files between PLDM
termini, within a PLDM subsystem. It describes mechanisms for the following purposes:

• Discovery of files and directories available on a PLDM terminus for transfer via the File Transfer
specific PLDM PDR Repository entries

• Discovery of the file and directory metadata via PLDM PDR entries and File Transfer specific
sensors

• Reading regular and serial FIFO type files

This specification describes the expectations and requirements on PLDM termini that take part in file
transfer. The use-cases around file transfer, content, and format of the files, are outside the scope of
this specification. This specification does not specify whether a given system is required to implement
that capability. However, if a system does support file transfers over PLDM or other functions
described in this specification, the specification defines the requirements to access and use those
functions over PLDM. Portions of this specification rely on information and definitions from other
specifications, which are identified in Clause 2. Four of these references are particularly relevant:

• DMTF DSP0240 — Platform Level Data Model (PLDM) Base Specification, provides definitions of
common terminology, conventions, and notations used across the different PLDM specifications as
well as the general operation of the PLDM protocol and message format.

• DMTF DSP0245 — Platform Level Data Model (PLDM) IDs and Codes Specification, defines the
values that are used to represent different type codes defined for PLDM messages.

• DMTF DSP0248 — PLDM for Platform and Monitoring & Control provides details on file and state
sensors, and the file and directory PLDM PDR structures

• DMTF DSP0249 — PLDM State Set Specification provides the definition of the FILE State Sensor

The goal of this specification is to model the discovery and access semantics on the industry standard
ISO C Language FILE Library and enable easier / faster adoption. The ISO C Language FILE Library
semantics, such as open, read, close, are expected to be familiar to the reader. Additionally to
leverage to every extent possible DSP0240 multi-part transfers and existing PLDM capabilities
including PLDM sensor based event notifications.

Both a flat (no directories) and a hierarchical directory based file organization are supported.

The following are outside the scope of this specification:

• Creation of files or directories by a device besides the File Host
• Direct writes to the File Host

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 7



4 Normative references
The following referenced documents are indispensable for the application of this document. For dated
or versioned references, only the edition cited (including any corrigenda or DMTF update versions)
applies. For references without a date or version, the latest published edition of the referenced
document (including any corrigenda or DMTF update versions) applies.

DMTF DSP0248, Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification
1.3.0 http://dmtf.org/sites/default/files/standards/documents/DSP0248_1.3.x.pdf

DMTF DSP0249, Platform Level Data Model (PLDM) State Set Specification 1.2.0 http://dmtf.org/sites/
default/files/standards/documents/DSP0249_1.2.x.pdf

DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes 1.4.0 http://www.dmtf.org/standards/
published_documents/DSP0245_1.4.x.pdf

DMTF DSP0240 Platform Level Data Model (PLDM) Base Specification 1.2.0* http://www.dmtf.org/
standards/published_documents/DSP0240_1.2.x.pdf

DMTF DSP1001, Management Profile Specification Usage Guide 1.1 http://www.dmtf.org/standards/
published_documents/DSP1001_1.1.x.pdf

DMTF DSP4004, DMTF Release Process 2.3 http://www.dmtf.org/standards/published_documents/
DSP4004_2.3.x.pdf

IETF RFC2781, UTF-16, an encoding of ISO 10646 February 2000 http://www.ietf.org/rfc/rfc2781.txt

IETF RFC3629, UTF-8, a transformation format of ISO 10646 November 2003 http://www.ietf.org/rfc/
rfc3629.txt

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards
https://www.iso.org/sites/directives/current/part2/index.xhtml

ISO/IEC 9899:2018, Information technology - Programming languages - C https://www.iso.org/standard/
74528.html

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

8 Work in Progress Version 0.8.0

http://dmtf.org/sites/default/files/standards/documents/DSP0248_1.3.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0249_1.2.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0249_1.2.pdf
http://www.dmtf.org/standards/published_documents/DSP0245_1.4.pdf
http://www.dmtf.org/standards/published_documents/DSP0245_1.4.pdf
http://www.dmtf.org/standards/published_documents/DSP0240_1.2.pdf
http://www.dmtf.org/standards/published_documents/DSP0240_1.2.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP4004_2.3.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP4004_2.3.pdf
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html


5 Terms and definitions
In this document, some terms have a specific meaning beyond the normal English meaning. Those
terms are defined in this clause.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not
recommended"), "may", "need not" ("not required"), "can" and "cannot" in this document are to be
interpreted as described in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are
alternatives for the preceding term, for use in exceptional cases when the preceding term cannot be
used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies additional
alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English
meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as
described in ISO/IEC Directives, Part 2, Clause 6.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/
IEC Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled
"(informative)" do not contain normative content. Notes and examples are always informative
elements.

Refer to DSP0240 for terms and definitions that are used across the PLDM specifications. For the
purposes of this document, the following additional terms and definitions apply. File Client A PLDM
Terminus that can receive files from a File Host

File Host A PLDM Terminus that has a PLDM File Repository and enables a File Client to receive files
from the File Host.

NegotiatedInterval The maximum negotiated time interval in milliseconds to be used between
commands issued by the File Client. See DfHeartbeat for the requirements.

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 9



6 Symbols and abbreviated terms
Refer to DSP0240 for symbols and abbreviated terms that are used across the PLDM specifications. For
the purposes of this document, the following additional symbols and abbreviated terms apply. IANA
Internet Assigned Numbers Authority

OEM Original Equipment Manufacturer

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

10 Work in Progress Version 0.8.0



7 PLDM for File Transfer version
The version of this Platform Level Data Model (PLDM) for File Transfer Specification shall be 1.0.0
(major version number 1, minor version number 0, update version number 0, and no alpha version).

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 11



8 PLDM for File Transfer Concepts
This section describes the key concepts of the File Transfer model, and outlines expectations on PLDM
termini that implement this specification. This section also describes the multipart transfer partnership
with DSP0240 PLDM Base Specification and DSP0248 PLDM for Monitor and Control specifications.

The PLDM for File Transfer specification is modeled after the ISO C Language FILE Library commands
but adding the prefix of "Df" (Device File) to the Open, Read, Close, Delete commands. As there is no
Seek command, the DfRead command adds an optional offset to implement a Seek and Read styled
command.

This PLDM specification is part of the PLDM protocol suite and depends on the DSP0240 PLDM Base
Specification Discovery and Multiple Part (Multipart) transfer commands, the DSP0248 PLDM for
Monitor and Control Specification Platform Data Records (PDR) which includes File Descriptor, Numeric
Sensor, State Sensor and Entity Association Records. There are also DSP0248 PLDM for Monitor and
Control commands to interact with the Platform Data Records.

The PLDM Initialization Agent discovers the PLDM for File Transfer support including supported
specification version and commands as defined in the DSP0240 PLDM Base Specification. The data
model definition for a file and an optional associated directory is represented by the DSP0248 PLDM
for Monitor and Control Specification File Descriptor Platform Data Record (PDR) with hierarchy
expressed with Entity Association Records. The data model provides static (meta) data in the File
Descriptor PDR and dynamic data using numeric and state sensors.

The following lists presents an example of a typical PLDM for File Transfer data flow:

• The File Client issues the NegotiateTransferParameters from DSP0240 with the File Host.
• The File Client retrieves the list of files, dynamic attributes (sensors), and optional directories from

the File Host DSP0248 PLDM for Monitor and Control specification defined Platform Data Record
(PDR) Repository.

• The File Host may generate events using the DSP0248 PLDM for Monitor and Control specification
PlatformEventMessage command. The File Client may elect to receive events using theDSP0248
PLDM for Monitor and Control specification SetEventReceiver command.

• The File Client issues the DfOpen command, using the FileIdentifier from a PLDM File Descriptor
PDR, to the File Host who returns a session FileDescriptor used in applicable PLDM for File Transfer
commands.

• The data transfer command from the File host is performed using a DfRead command, a logical
construction mapped to the the DSP0240 PLDM Base Specification MultipartReceive command.

• Upon completing the DfRead command, the File Client either issues a DfClose command or issues
a DfHeartbeat command.

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

12 Work in Progress Version 0.8.0



8.1 File Metadata

The static file metadata can be obtained by retrieving the appropriate PLDM File Descriptor PDR. The
dynamic file metadata, such as file size, can be obtained by reading the PLDM numeric sensor for size.
The method to retrieve the PLDM PDR and reading a PLDM numeric sensor are defined in the DSP0248
specification.

8.2 File Transfer

A PLDM requester, typically a platform Baseboard Management Controller, will be the originator of
PLDM for File Transfer, initiated by the DfOpen command and performs the role of the File Client. A
PLDM Terminus that responds to the DfOpen command performs the role of the File Host. The
characteristics of these roles are:

• File Host — A PLDM Terminus that:

◦ Creates, modifies, deletes files
◦ Presents a listing of files to a File Client using the DSP0248 PDR Repository
◦ Transfers files to a File Client using the mechanisms defined in this specification

• File Client — A PLDM Terminus that:

◦ Initiates a file transfer session to a File Host
◦ Receives files from a File Host using the mechanisms described in this specification
◦ Controls specific behavior such as preservation

8.3 File Discovery, Hierarchy and Identity Semantics

This section will describe the terminology and semantics used by this specification as it relates to the
ISO C Language FILE library semantics.

8.3.1 Semantics

• File

◦ A file is an entity identified by a PLDM File Descriptor Platform Data Record (PDR) and has the
EntityType set to DeviceFile

◦ A file is a physical object that consumes storage space. The allocated storage may be volatile
or non-volatile

◦ The File Descriptor PDR has a field, FileIdentifier that is a single unique numeric value

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 13



representing the file name within the File Host hierarchy. The file name is a defined field in the
File Descriptor PDR

◦ A file may be associated to a directory by the tuple: ContainerID, EntityType,
EntityInstanceNumber. If the File Host establishes a directory hierarchy, the directory
association to its file (members) is constructed using a PLDM Entity Association Record

• Directory

◦ A directory is a logical object that associates files within its hierarchy
◦ A directory is an entity identified by a PLDM File Descriptor Platform Data Record (PDR) and

has the EntityType set to DeviceFileDirectory
◦ The File Descriptor PDR has a field, FileIdentifier that is a single unique value representing the

directory name within the File Host hierarchy
◦ The directory shall be a PLDM Container of a PLDM Entity Association Record (EAR) PDR that

associates files into its hierarchy

• FileIdentifier

◦ A unique numeric value, obtained from the PLDM File Descriptor Platform Data Record (PDR),
and representing the file name or the "directory name* within the File Host hierarchy

◦ The FileIdentifier is used (instead of a name string) for specific FILE type commands such as
DfOpen, DfGetFileAttrib, DfSetFileAttrib. When the FileIdentifier represents a directory name,
there are no corresponding commands defined in this specification version.

◦ The FileIdentifier and the File Descriptor PDR field, FileName are part of the same PDR record.

• FileDescriptor

◦ The FileDescriptor is returned from the DfOpen command and represents a session to a
specific file.

◦ Similar to the ISO C Language FILE Library functions, the FileDescriptor is the session identifier
for DfRead, DfHeartbeat, DfDelete and DfClose commands defined in this specification, similar
to the FILE object returned from fopen().

◦ The FileDescriptor is the DfRead command (PLDM MultipartReceive command) TransferContext
value to identify the file and the session owning the data transfer.

8.3.2 File Types and Classification

Files are physical entities that have attributes and classifications. There are also dynamic attributes
that may be set by the File Client executing the DfSetFileAttrib command if the File Host supports the
command and dynamic attribute. Examples of static file attributes which are normatively defined in
the DSP0248 PLDM Monitor and Control Specification File Descriptor PDR are: Exclusive Open, File
Truncation / Wrapping, File Data Type.

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

14 Work in Progress Version 0.8.0



This specification, in collaboration with the DSP0248 PLDM Monitor and Control specification, is
recommending industry conventional file (data) classification to allow the File Client to understand the
type of contained file data. The typical file classification usage model is:

• Logs are appended
• Files are fixed length
• Serial FIFO (streaming file) requires special handling as documented

Below are some examples of file (data) classifications:

File Classification Definition

Boot Log Typically holds device initialization data (events) but has no additional entries after
initialization completes

Serial FIFO Typically removes the data after successful transfer to the receiver or if the FIFO
overflows

Diagnostic Log Typically a variable length file where data can be appended until maximum storage
limit is reached.

Crash Dump File A fixed length file (instance), written one time per crash event, typically containing
diagnostic data

FRU Data File A fixed length file that stores Field Replaceable Unit (FRU) data typically found on add-
in adapters

Other (OEM) Log A file classification that implies growth (appends) for new event (data).

Other (OEM) File A file classification that implies a "write data once" with no growth after event (data)
written.

8.3.3 File and Directory Discovery

Files and Directories are discovered by collecting the PLDM File Descriptor Platform Data Records (PDR)
with EntityType set to DeviceFile or DeviceFileDirectory. The PDR holds static (meta) data including
the hierarchy, identity and static maximum file size. When a File Host creates or deletes a file, the
GetPDRRepositoryInfo update time is modified, the GetPDRRepositorySignature is different, and a
PldmPDRRepositoryChgEvent may be signaled if PLDM Events are enabled.

The expectation is file creation and deletion activity is not frequent. The recommended use case is for
the File Host to create expected files (with PDR) but not write the data until required. The File Client
may periodically poll the PLDM Numeric Sensor representing the current file size or the File Client may
enable PLDM Events for the file sensors to be alerted when a file has changed. The file does not have

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 15



to be open for this activity as this is normative PLDM Monitor and Control supporting functionality that
is foundational to this specification.

8.3.4 File System Hierarchy Discovery

The file system hierarchy of a File Host is learned through the PLDM Entity Association Record (EAR)
Platform Data Records (PDR), defined in DSP0248 PLDM for Monitor and Control. If the File Host
implements a hierarchy of directories to contain files, then the File Host shall implement the directory
structure using the PLDM EAR data model. The ContainerEntityContainerID shall be the directory
identifier and all PDRs whose ContainerID matches the directory identifier value shall be contained
within the specified directory.

This specification recommended implementation is to create the PDRs for known file types which
allows the File Client to collect the hierarchical data during PLDM Device Initialization.

8.4 DSP0248 PLDM for Monitor and Control Specification
Relationship

This section describes the Platform Level Data Model (PLDM) used within the context of this
specification. The specification declares normative usage of PLDM objects such as Platform Data
Records (PDRs) and specific value assignments within the data model. The reader should consider the
foundational PLDM specifications for objects and fields not explicitly stated in this specification.

8.4.1 The File Descriptor Data Model

• The File Descriptor Platform Data Record (Referencing DSP0248 PLDM for Monitor and Control
Specification)

◦ Every File shall have a File Descriptor PDR that provides static meta data such as the (file)
object maximum size.

◦ Every File shall have a EntityType set to DeviceFile
◦ Every File shall have a current File Size Monitoring Sensor association
◦ Every File shall have a current File State Monitoring Sensor association

• The File Size Monitoring Sensor

◦ The File Size Monitoring Sensor shall be implemented as a Compact or Numeric sensor PDR
used to report the current file size in bytes and monitor file size changes. Optionally, the File
Size Monitoring Sensor may be used to generate PLDM events (using threshold limits), either
by the File Host as a default or an explicit DSP0248 PLDM for Monitor and Control
SetNumericSensorEnable command

◦ The File Size Monitoring Sensor shall match the monitored File Descriptor PDR EntityType,

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

16 Work in Progress Version 0.8.0



EntityInstance and ContainerID fields to establish its association to the monitored file
◦ The File Size Monitoring Sensor BaseUnit shall be set to Bytes
◦ The File Size Monitoring Sensor UnitModifier shall be set to zero (0)
◦ The File Size Monitoring Sensor RateUnit shall be set to None
◦ Every File Size Monitoring Sensor shall have a WarningLow, WarningHigh, CriticalHigh,

FatalHigh whose initial values are set by the File Host
◦ The File Size monitoring Sensor should be supported by the DSP0248 PLDM for Monitor and

Control GetSensorThresholds command and SetSensorThresholds command to allow a file
client to receive events as a file is modified or deleted.

• For the associated File Descriptor PDR, the threshold values are defined as:

◦ WarningLow: Initially set by the File Host to zero (0) to allow detection of zero length file delete
operation, when the File Host sets the file size to zero (0). The File Client should not adjust this
value.

◦ WarningHigh: Initially set by the File Host to indicate 50% capacity status. The File Client may
adjust this value lower or higher using the DSP0248 PLDM Monitor and Control command,
SetSensorThresholds, as a method to generate an event when the file size changes

◦ CriticalHigh: Initially set by the File Host to indicate 90% capacity status. The File Client may
adjust this value lower or higher using the DSP0248 PLDM Monitor and Control command,
SetSensorThresholds, as a method to generate an event when the file changes. This
specification does not recommend setting the CriticalHigh greater than what the File Hosts
initially sets.

◦ FatalHigh: Initially set by the File Host to indicate data has been lost. The File Client shall not
adjust this value.

• The File State Monitoring Sensor

◦ The File State Monitoring Sensor shall be implemented as a PLDM State Sensor PDR to report
specific file states including file updates without a file size change (such as an inner record
modification). Optionally, the File State Monitoring Sensor may be used to generate PLDM
events or an explicit DSP0248 PLDM for Monitor and Control SetStateSensorEnables command

◦ The File State Monitoring Sensor shall match the monitored File Descriptor PDR EntityType,
EntityInstance and ContainerID fields to establish its association to the monitored file

◦ The File State Monitoring Sensor shall implement the DSP0249 PLDM State Set Specification
State Set Device File (68)

◦ The File Host shall update the the File State Monitoring Sensor after every
GetStateSensorReadings command, typically switching the state between File Data is
Reported Modified and No File Data Modification Reported states, unless another file event is
present which remain persistent until the event trigger is cleared.

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 17



8.4.2 The Directory Descriptor Data Model

• The File Descriptor Platform Data Record (Referencing DSP0248)

◦ Every directory shall have a File Descriptor PDR (DSP0248)
◦ Every directory shall have a EntityType set to DeviceFileDirectory
◦ The File Descriptor PDR field, FileAttributes shall be set to zero (0)
◦ The File Descriptor PDR field, FileVersion shall be set to unversioned (0xFFFFFFFF)
◦ The File Descriptor PDR field, FileMaximumSize shall be set to special value 0xFFFFFFFF

• A directory shall be represented as a PLDM Entity Association Record PDR, such that the directory
ContainerID shall be the directory EAR PDR ContainerID

• The PLDM Entity Association Record PDR AssociationType shall always be set to
LogicalContainment

• The PLDM Entity Association Record PDR fields: ContainerEntityType and
ContainerEntityInstanceNumber shall match the associated directory File Descriptor PDR
EntityType and EntityInstance values

• The PLDM Entity Association Record PDR field ContainerEntityContainerID is recommended to be
set to the special value System or to the ContainerID of a superior directory

• All files subordinate to a directory shall have their File Descriptor PDR EntityType, EntityInstance
and ContainerID fields listed in the directory Entity Association Record PDR Contained Entity
Identification Information section

See Figure 1 for an example of the implicit association of a file object with its associated sensors, using
the PDR association fields: EntityType, EntityInstance and ContainerID

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

18 Work in Progress Version 0.8.0



8.4.3 File Data Model

In Figure 1 the numeric and state sensors associated with the file have matching EntityType,
EntityInstance and ContainerID fields to the File Descriptor PDR.

File Object

File Device File PDR
recordHandle = 2045
File Descriptor = 100
File Name = Device Crash Log
entityType = Physical | Device File
entityInstanceNumber = 1
containerID = 1000

File Numeric Sensor
recordHandle = 3485
SensorID = 18
BaseUnit = Bytes (File Size)
entityType = Physical | Device File
entityInstanceNumber = 1
containerID = 1000

File State Sensor
recordHandle = 3481
SensorID = 14
Health State
Device File State
entityType = Physical | Device File
entityInstanceNumber = 1
containerID = 1000

Figure 1 — PLDM for File Transfer File Data Model implicit association

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 19



9 PLDM for File Transfer Commands
This section describes the commands that shall be used for File Transfer. Table 1 consists of the codes
assigned to commands. These commands have their own PLDM message type, which is defined in
DSP0245.

Table 1 — PLDM for File Transfer Command Codes

Command Code Value File Host support File Client support

DfOpen 0x01 Required Required

DfClose 0x02 Required Optional

DfDelete 0x03 Optional Optional

DfGetFileAttrib 0x04 Optional Optional

DfSetFileAttrib 0x05 Optional Optional

DfHeartbeat 0x06 Optional Conditional

Reserved 0x07-0xFF

DfRead MP Required Required

[DfFifoSend] MP Optional Optional

NOTE:
MP = DSP0240 PLDM Multipart Transfer

For Optional or Conditional command requirements, see the individual command descriptions.

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

20 Work in Progress Version 0.8.0



9.1 DfOpen Command

The File Client issues a DfOpen command to establish a file session between the File Client and a
specific file. The DfOpen command, as described in Table 2, uses a File Descriptor PDR FileIdentifier
field to access the specific file.

The returned FileDescriptor is used by the File Client for subsequent DfRead, DfClose, DfDelete
commands, including the DfHeartbeat command. The unique FileDescriptor can optionally be used by
the File Host to track how many File Clients have a file open.

The DfOpen command only supports the File Descriptor PDR with the entity type set to Device File. If
the File Host receives a DfOpen command with a FileIdentifier associated to a File Descriptor PDR with
the entity type set to Device File Directory, the File Host shall return a DFOPEN_DIR_NOT_ALLOWED
CompletionCode.

If the File Client sets the DfOpenRegFifo attribute to one (1) and DfOpenPolledAsync attribute to one
(1) in the DfOpen command and the DfOpen command is successfully completed, the File Client shall
be able to immediately receive the start of a DfFifoSend command and no DfRead command is
required or allowed.

File Client / File Host DfOpenAttrib rules:

• If bit DfOpenRegFifo is zero (0), then the bit DfOpenPolledAsync shall be ignored by the File Host
and shall be zero (0)

If the File Client issues a DfOpen command with an invalid FileIdentifier, then the File Host shall return
a INVALID_FILE_IDENTIFIER CompletionCode.

If the File Client issues a DfOpen command with an invalid combination of DfOpenAttrib or
unsupported DfOpenAttrib for the requested FileIdentifier then the File Host shall return the
INVALID_DFOPEN_ATTRIB CompletionCode.

If the File Host can not establish exclusive ownership of the requested FileIdentifier at this time or the
File Client requested FileIdentifier does not support exclusive ownership, then the File Host shall return
the EXCLUSIVE_OWNERSHIP_NOT_ESTABLISHED CompletionCode to the File Client issued DfOpen
command.

If the File Client successfully completes a DfOpen command with the DfOpenAttrib DfOpenExclusive
set to one (1), the File Host shall not make any updates, including changing the length of the file
represented by the request FileDescriptor. If the File Host can not support this requirement then it
shall return the EXCLUSIVE_OWNERSHIP_NOT_ESTABLISHED CompletionCode.

The File Client should only open a file exclusively for the following reasons:

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 21



• The File Client would like to issue a DfDelete command on this file
• The File Client needs to make sure the file does not change while it is reading the file.

Due to the restrictions placed on the File Host with a file opened exclusively, the File Client should
minimize the time the file is opened with the DfOpenAttrib DfOpenExclusive set to one (1).

Table 2 — DfOpen command format

Byte Type Request Data

0 uint16 FileIdentifier

2..3 bitfield16

DfOpenAttrib
[ 0] DfOpenExclusive — Non-exclusive Read (0) / Exclusive Read
(1)
[ 1] DfOpenRegFifo — regular (0) or FIFO (serial) (1)
[ 2] DfOpenPolledAsync — Polled (0) or Pushed / Async
(DfFifoSend) (1)
[ 3..15 ] Reserved (0)

Byte Type Response Data

0 enum8

CompletionCode
Possible values:
{ PLDM_BASE_CODES, INVALID_FILE_IDENTIFIER, INVALID_DF_ATTRIB,
EXCLUSIVE_OWNERSHIP_NOT_ALLOWED,
EXCLUSIVE_OWNERSHIP_NOT_AVAILABLE,
EXCLUSIVE_OWNERSHIP_REQUIRED, DFOPEN_DIR_NOT_ALLOWED,
MAX_NUM_FDS_EXCEEDED }
See Table 10 for values

1..2 uint16 FileDescriptor

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

22 Work in Progress Version 0.8.0



9.2 DfClose Command

The DfClose command, as described in Table 3, is used to by the File Client to tell a File Host it no
longer needs access to a file. After the File Client has successfully completed a DfClose, it no longer
needs to issue DfHeartbeat commands for that file.

If the File Client issues a DfClose command with an invalid FileDescriptor, then the File Host shall
return an INVALID_FILE_DESCRIPTOR CompletionCode.

If there are no other outstanding DfOpen, then a File Client may open a file for exclusive access in
preparation of a optional DfDelete command.

Table 3 — DfClose command format

Byte Type Request Data

0..1 uint16 FileDescriptor

Byte Type Response Data

0 enum8
CompletionCode
Possible values: {PLDM_BASE_CODES, INVALID_FILE_DESCRIPTOR}
See Table 10 for values

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 23



9.3 DfDelete Command

The DfDelete command, as described in Table 4, is used to by the File Client to request a File Host
delete the file identified by the FileDescriptor.

The File Host may implement the DfDelete command in one of two ways. The File Client shall support
both DfDelete implementations

9.3.1 - Delete Specific File Descriptor PDR

This method is an expensive operation since multiple things must change on the host such as the
GetPDRRepositoryInfo UpdateTime, the GetPDRRepositorySignature PdrRepositorySignature and
additionally, send a PldmPDRRepositoryChgEvent for both the File Descriptor PDR deletion and
subsequent File Descriptor PDR addition. This is not considered to be the best practice.

9.3.2 - Set the File Size Sensor to Zero (0)

This method is simple as it changes a value that already may have a lower threshold value set which
can trigger a DSP0248 PLDM Sensor Event and also can be detected by a PLDM GetSensorReading
command.

9.3.3 Implementing the DfDelete Command

The File Host shall support the DfDelete command if any of the files in the file PLDM PDR Repository
has the PDR FileAttributes FcDeletePermitted bit set to one (1).

A File Client shall successfully complete a DfOpen command with the DfOpenExclusive bit equal to one
(1) prior to issuing a DfDelete command.

If a File Host supports the DfDelete command and the FileDescriptor represents a file that has the
FileAttributes FcDeletePermitted bit set to one (1) and the File Host can not delete the file at the time
of the request, the CompletionCode, DFDELETE_NOT_ALLOWED, is returned.

If the File Client has not successfully completed a DfOpen command with the DfOpenExclusive bit
equal to one (1), then the File Host shall return a EXCLUSIVE_OWNERSHIP_NOT_ESTABLISHED
CompletionCode.

If the FileDescriptor provided by the File Client is or is no longer valid, the File Host shall return a
INVALID_FILE_DESCRIPTOR CompletionCode.

Upon successful completion of the DfDelete command, the equivalent of a DfClose command shall be
completed and the FileDescriptor referenced by the DfDelete shall no longer be valid.

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

24 Work in Progress Version 0.8.0



Table 4 — DfDelete command format

Byte Type Request Data

0..1 uint16 FileDescriptor

Byte Type Response Data

0 enum8

CompletionCode
Possible values: { PLDM_BASE_CODES, INVALID_FILE_DESCRIPTOR,
DFDELETE_NOT_ALLOWED, EXCLUSIVE_OWNERSHIP_NOT_ESTABLISHED
} See Table 10 for values

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 25



9.4 DfGetFileAttrib Command

The DfGetFileAttrib command, as described in Table 5, is used to by the File Client to obtain attributes
of a file.

If the FileIdentifier requested by the File Client is invalid, the File Host shall return a
INVALID_FILE_IDENTIFIER CompletionCode.

If the File Host does support the requested AttribReq for that FileDescriptor then it shall return the
INVALID_DF_ATTRIB CompletionCode.

Table 5 — DfGetFileAttrib command format

Byte Type Request Data

0..1 uint16
FileIdentifier
This is the FileIdentifier returned in the PLDM File
Descriptor PDR for this file (directory)

2..3 bitfield32

FileAttribReq
[ 0] ClientDeleteOnly — Request ClientDeleteOnly
attribute (1)
[1..15] Reserved (0)
[16] RequestCI — Request Change Indictor (1)
[17] ReqMaxPoll — Request maximum poll interval
(1)
[ 18..31] Reserved (0)

Byte Type Response Data

0 enum8

CompletionCode
Possible values: { PLDM_BASE_CODES,
INVALID_DF_ATTRIB, INVALID_FILE_IDENTIFIER} See
Table 10 for values

1 uint8

FileAttribReturnCount
This is the number of AttribReq values returned in this
response. The response values are returned in the bit
order requested

Var uint32
FileAttribValue
This will be a fixed length return value, in FileAttribReq
bit-wise order. See Table 6

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

26 Work in Progress Version 0.8.0



Table 6 — DfGetFileAttrib Returned Value Definition

FileAttribName Definition

ClientDeleteOnly

This has been designed by the File Client to be
preserved until explicitly deleted by the File
Client. The file should be opened exclusively if
this attribute is set

RequestCI

Returned when the FileAttribReq RequestCI bit
is set. The ChangeIndicator file attribute is
generated by the File Host either at the time of
the reception of the DfGetFileAttrib or at the
time when the file was last changed. The File
Client can compare the current value to a
previously saved value to indicate if the file has
changed since the last time the File Client read
the file. It is recommended ChangeIndicator be
a 32-bit CRC.

RequestMaxPoll

This is the maximum time allowed between
reading the PLDM file size sensor or DfRead
command before the data may either truncate
or wrap, depending on the PLDM File Descriptor
PDR FileAttribute settings.

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 27



9.5 DfSetFileAttrib Command

The DfSetFileAttrib command, as described in Table 7, is used to by the File Client to set specific file
attributes such as file preservation.

If the File Host does support the requested AttribReq for that FileDescriptor then it shall return the
INVALID_DF_ATTRIB CompletionCode.

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

28 Work in Progress Version 0.8.0



Table 7 — DfSetFileAttrib command format

Byte Type Request Data

0..1 uint16
FileIdentifier
This is the FileIdentifier returned in the PLDM File
Descriptor PDR for this file (directory)

2..3 bitfield16

FileAttribSet
[ 0] ClientDeleteOnly (1) — Set the
ClientDeleteOnly attribute (1)
[ 1..15] Reserved for future(0)

1 uint8

FileAttribSetCount
This is the number of FileAttribValue set in this
response. The set values are sent in the ordinal
FileAttribSet bit order. This value shall be in range
[1..16]

Var uint32
FileAttribValue
This will be a fixed length value, in FileAttribSet bit-
wise order. See Table 8

Byte Type Response Data

0 enum8

CompletionCode
Possible values: { PLDM_BASE_CODES,
INVALID_DF_ATTRIB, INVALID_FILE_IDENTIFIER,
FILE_OPEN} See Table 10 for values

1..2 bitfield16

AcceptedFileAttribSet
This field shall have the corresponding bit set for a
FileAttribSet attribute change accepted. If the
CompletionCode returned is SUCCESS, then this
value shall be equal to request parameter
FileAttribSet. If the CompletionCode is not equal to
SUCCESS, this field shall set the accepted bits from
the request FileAttribSet parameter. The File Client
shall execute a Logical Exclusive OR (XOR) of the
request FileAttribSet parameter and the response
AcceptedFileAttribSet parameter to learn which
attributes were accepted or rejected.
When the File Host rejects a request FileAttribSet,
the returned CompletionCode shall be
INVALID_DF_ATTRIB

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 29



Table 8 — DfSetFileAttrib Returned Value Definition

FileAttribName Definition

ClientDeleteOnly

If ClientDeleteOnly FileAttribValue is set to one
(1), then the file has been designated by the
File Client to be preserved until explicitly
deleted by the File Client. Setting the
ClientDeleteOnly FileAttribValue to zero(0)
allows the file to be deleted by the File Host or
by the File Client.

The file shall be subsequently opened
exclusively if this attribute is set to one.

If the file is currently open, the File Host shall
not change the ClientDeleteOnly state and
return the FILE_OPEN CompletionCode

There are 2 options to clear this attribute:
1) The File Client can issue a DfSetFileAttrib
command with the ClientDeleteOnly attribute
set to zero (0) or
2) The File Client can open the file exclusively
and issue a DfDelete command if the File Host
supports deleting this file

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

30 Work in Progress Version 0.8.0



9.6 DfHeartbeat Command

The DfHeartbeat command is a multiple function command, providing both an initialization /
negotiation function and a simple flow control function for Serial FIFO type files.

The DfHeartbeat command, as described in Table 9, enables:

• initialization to negotiate the maximum time interval allowed between the last DfOpen, DfRead,
DfHeartbeat command and when the File Host may optionally close the the FileDescriptor,

• an indication to the File Host that the current FileDescriptor is still active(also known as keep
alive), even with no periodic DfRead activity,

• the File Client or the File Host to request a shorter or longer maximum time interval as a flow
control function.

The maximum time interval may be negotiated during any DfHeartbeat command invocation. The File
Host is permitted to request a different ResponderMaxInterval when the file data is not retrieved at a
rate to avoid an overflow or truncation condition. This method typically will be used to inform the File
Client when a Serial FIFO file is approaching capacity and needs a faster polling DfRead to avoid
dropping data. The File Client may also request a different RequesterMaxInterval but this is not the
usual expected use case (flow) since the File Client can control the polling rate for the DfRead
command with the invocation frequency and for the DfFifoSend command, the File Client can increase
/ decrease the DfFifoSend response rate.

Upon successful completion of each invocation of this command, the lesser value of of
RequestorMaxInterval and ResponderMaxInterval is defined as the current NegotiatedInterval. The File
Client shall issue a DfHeartbeat or DfRead commands using the current NegotiatedInterval as the
maximum period between DfOpen, DfRead, DfHeartbeat commands.

If the File Host has not received a DfHeartbeat or a DfRead command within the current
NegotiatedInterval, it may optionally close the FileDescriptor. If the File Host has closed the
FileDescriptor, then it shall return a INVALID_FILE_DESCRIPTOR CompletionCode on any uses of that
FileDescriptor by the File Client.

If the FileDescriptor requested by the File Client is or is no longer valid, the File Host shall return a
INVALID_FILE_DESCRIPTOR CompletionCode.

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 31



Table 9 — DfHeartbeat command format

Byte Type Request Data

0..1 uint16 FileDescriptor

2..5 uint32 RequestorMaxInterval
The requested maximum supported NegotiatedInterval in milliseconds

Byte Type Response Data

0 enum8
CompletionCode
Possible values: { PLDM_BASE_CODES, INVALID_FILE_DESCRIPTOR } See
Table 10 for values

1..4 uint32
ResponderMaxInterval
The maximum supported NegotiatedInterval in milliseconds from the
responder

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

32 Work in Progress Version 0.8.0



9.7 Error Completion Codes

PLDM completion codes for file transfer that are beyond the scope of PLDM_BASE_CODES in DSP0240
are defined in Table 10. The context in which these are used are described below as well.

Table 10 — PLDM File Transfer Completion Codes

Value Name Returned By Usage Description

Various PLDM_BASE_CODES File Host & File
Client Refer DSP0240 PLDM Base Specification

0x80 INVALID_FILE_DESCRIPTOR File Host & File
Client

Invalid FileDescriptor was provided to one of the
following commands: DfRead, DfClose, DfDelete,
DfHeartbeat.

0x81 INVALID_DF_ATTRIB File Host
Invalid attribute or combinations of attributes
was provided to one of the following commands:
DfOpen, DfGetFileAttrib, DfSetFileAttrib.

0x82 DFDELETE_NOT_ALLOWED File Host Deletion of this file is not allowed DfDelete

0x83 EXCLUSIVE_OWNERSHIP_NOT_ESTABLISHED File Host Attempted to delete a file without proper
ownership, DfDelete

0x84 EXCLUSIVE_OWNERSHIP_NOT_ALLOWED File Host Requested file is not allowed to be opened
exclusively DfOpen

0x85 EXCLUSIVE_OWNERSHIP_NOT_AVAILABLE File Host Requested file can not be opened exclusively at
this time

0x86 INVALID_FILE_IDENTIFIER File Host
Invalid FileIdentifier was provided to one of the
following commands: DfOpen, DfGetFileAttrib,
DfSetFileAttrib

0x87 EXCLUSIVE_OWNERSHIP_REQUIRED File Host Exclusive ownership required for the requested
attributes DfOpen

0x88 DFOPEN_DIR_NOT_ALLOWED File Host Opening a directory is not allowed DfOpen

0x89 MAX_NUM_FDS_EXCEEDED File Host A File Host has run out FileDescriptor either for
this file or overall DfOpen

0x8A FILE_OPEN File Host Attempted to change a file attribute on a
currently opened file DfSetFileAttrib

0x8B-0xFF Reserved Reserved

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 33



9.8 DfRead (DSP0240 MultipartReceive)

The DfRead command is a PLDM for File Transfer (type) specific implementation of the DSP0240 PLDM
Base Specification Multipart Transfer Commands, and specifically the MultipartReceive command. The
DSP0240 PLDM Base Specification MultipartReceive command allows the File Client to initiate a data
transfer command (e.g. DfRead) from the File Host. The Multipart Transfer Commands allow a PLDM
specification to define specific context to the command parameters which allows this definition of the
DfRead command to map values to the Multipart Transfer Commands.

The File Host shall not invalidate the FileDescriptor or close the file if an error completion code is sent
or if the File Client sets the TransferOperation parameter to XFER_ABORT. The File Client and File Host
shall use the MultipartReceive command as specified in the DSP0240 PLDM Base Specification with the
mappings defined in Table 12.

The File Host, as the MultipartReceive command responder, shall respond with a CompletionCode set
to ERROR_INVALID_TRANSFER_CONTEXT if the File Client MultipartReceive command request provides
an invalid FileDescriptor.

There is no defined behavior for the File Client after it issues the XFER_ABORT and is out of scope of
this specification.

Before the first DfRead command is initiated between the File Client and File Host, the DSP0240 PLDM
Base Specification NegotiateTransferParameters command shall be initiated by the File Client to the
File Host. The File Host shall successfully respond to this request before any MultipartReceive
commands are executed by the File Client. The NegotiateTransferParameters command is typically
executed once during PLDM initialization and applies to both MultipartReceive and MultipartSend
commands.

This specification requires that PLDM for File Transfer PLDM Type is specified in the
NegotiateTransferParameters command fields RequesterProtocolSupport and
ResponderProtocolSupport.

A DfRead command within the NegotiatedInterval is equivalent to executing the DfHeartbeat
command.

9.8.1 Implementation Note: Serial FIFO type file characteristics

Files classified as a Serial FIFO have specific characteristics, similar to an endpoint streaming data to a
Universal Asynchronous Receiver-Transmitter (UART) device. The following rules apply:

• Seeking not supported (MultipartReceive Requested SectionOffset shall be set to zero)
• Single part per section (MultipartReceive Requested SectionOffset shall be set to zero)

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

34 Work in Progress Version 0.8.0



• Single section (no pigging backing multiple sections as the offset is always zero)
• The File Host shall move the FIFO read pointer when the the File Client sets the MultipartReceive

TransferOperation field to XFER_COMPLETE
• The File Client shall issue the MultipartReceive to read a Serial FIFO type file until the data length

is less than the negotiated part size, indicating all the data has been transferred at this time
interval.

The DfRead command is implemented using the Multipart Transfer Commands, as Table 11 describes.

Table 11 — PLDM for File Transfer Multipart Transfer Commands Mapping

Command File Host Request File Client Respond File Client Request File Host
Respond

NegotiateTransferParameters Not Supported Not Supported Mandatory Mandatory

MultipartSend Optional Optional Not supported Not Supported

MultipartReceive Not Supported Not Supported Mandatory Mandatory

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 35



The DfRead command will map to the MultipartReceive command as described in Table 14. The DfRead
command Request Data fields not specified in this table or by the following requirements are set to the
MultipartReceive command defaults.

DfRead File Client request requirements are detailed in Table 12:

Table 12 — DfRead File Client Request Requirements

MultipartReceive
TransferOperation All File Types

Additional Requirements
when DfOpenRegFifo is set

to one (1).

XFER_FIRST_PART

The FileOffset may be zero (0) (beginning
of file) or a non-zero value representing the
file offset.

The initial DataTransferHandle shall be zero
(0).

The FileOffset shall be set to
zero (0).

The
RequestedSectionLengthBytes
shall be equal to or less than
the Negotiated Transfer Part
Size from the most recent
successfully completed
NegotiateTransferParameters
command.

XFER_NEXT_PART
or
XFER_COMPLETE

XFER_COMPLETE:
RequestedSectionOffset shall
be zero (0)

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

36 Work in Progress Version 0.8.0



DfRead File Host response requirements are detailed in Table 13:

Table 13 — DfRead File Client Request Requirements

MultipartReceive
TransferOperation All File Types Additional Serial FIFO File

Type Requirements

XFER_FIRST_PART

The File Host shall respond
with a TransferFlag equal to
START_AND_END, as required
by DSP0240 when
DataLengthBytes is less than
or equal to the Negotiated
Transfer Part Size.

XFER_COMPLETE

The File Host shall move the
read pointer ahead by the
number of bytes successfully
transferred.

The data is not retained by
the File Host.

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 37



Table 14 — DfRead command to MultipartReceive command mapping format

Byte Type DfRead Request Data MultipartReceive Request Data

0 uint8 0x07 PLDMType

1 enum8 TransferOperation

2..5 uint32 FileDescriptor TransferContext

6..9 uint32 DataTransferHandle

10..13 uint32 FileOffset RequestedSectionOffset

14..17 uint32 RequestedSectionLengthBytes

Byte Type DfRead Response Data MultipartReceive Response Data

0 enum8 CompletionCode (MultipartReceive command)

1 enum8 TransferFlag

2..5 uint32 NextDataTransferHandle

6..9 uint32 DataLengthBytes

10..N+10 uint8[N] Data

N+11..N+14 uint32 DataIntegrityChecksum

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

38 Work in Progress Version 0.8.0



9.9 DfFifoSend (DSP0240 MultipartSend)

The DfFifoSend command is used exclusively for a file PDR with attribute type PushedFifo and are
opened by the File Client with the DfOpen command DfOpenAttrib set:

• DfOpenExclusive — Exclusive Read (1)
• DfOpenRegFifo — FIFO (serial) (1)
• DfOpenPolledAsync — Pushed / Async (DfFifoSend) (1)

The DfFifoSend command is equated to a PLDM for File Transfer (type) specific implementation of the
DSP0240 PLDM Base Specification Multipart Transfer Commands, and specifically the MultipartSend
command. The MultipartSend command allows the File Host to initiate a data transfer (e.g. DfFifoSend)
to the File Client. The Multipart Transfer Commands allow a PLDM specification to define specific
context to the command parameters which allows this definition of the DfFifoSend command to map
values to the MultipartSend command.

The File Client shall expect a DfFifoSend command to take place immediately after the File Host
successfully responds to the DfOpen command request.

The File Host will asynchronously, without prompting and when file data is placed in the FIFO file,
initiate a data transfer from the File Host to the File Client. The File Host then waits for the reception
acknowledgment to be received. The transfer semantics are defined in DSP0240 PLDM Base
Specification MultipartSend command but using the PLDM for File Transfer field mappings in Table 15:

Similar to the DfRead command, upon receiving the multipart XFER_ABORT operation from a File Client
in response to MultipartSend command, a File Host shall discard the entire transfer and the
DataTransferHandle is invalidated. The file shall not be closed and the FileDescriptor shall remain
valid.

There is no defined behavior for the File Client after the issuance of the XFER_ABORT TransferFlag and
is out of scope for this specification.

The File Host shall make SectionLengthBytes equal to DataLengthBytes and shall be equal to or less
than the Negotiated Transfer Part Size from the most recent successfully completed
NegotiateTransferParameters command. Upon reception of the NextTransferOperation with
XFER_COMPLETE shall move the read pointer ahead by the number of bytes successfully transferred
and this data section is no longer re-transmittable (DSP0240 section complete).

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 39



Table 15 — DfFifoSend to MultipartSend command mapping format

Byte Type DfFifoSend Request Data MultipartSend Data

0 uint8 0x07 PLDMType

1 enum8 START_AND_END TransferFlag

2..5 uint32 FileDescriptor TransferContext

6..9 uint32 DataTransferHandle

10..13 uint32 0 (DSP0240) NextDataTransferHandle

14..17 uint32 0 (DSP0242) SectionOffset

18..21 uint32 SectionLengthBytes

22..25 uint32 DataLengthBytes

26..N+26 uint8[N] Data

uint32 DataIntegrityChecksum

Byte Type DfFifoSend Response Data MultipartSend Response Data

0 enum8 CompletionCode (MultipartSend command)

1 enum8 NextTransferOperation

2..5 uint32 NextDataTransferHandle

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

40 Work in Progress Version 0.8.0



9.10 PLDM for File Transfer sensor usage examples

Figure 2 shows a flat file sensor usage example

FILE1

File1 State Sensor
RecordHandle = 3481
SensorID = 14
Device File State
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = SYSTEM

File1 Numeric Sensor
RecordHandle = 3485
SensorID = 18
BaseUnit = Bytes (File Size)
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = SYSTEM

File1 Device File PDR
recordHandle = 2045
FileIdentifier = 100
FileName = Device Crash Log
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = SYSTEM

FILE2

File2 State Sensor
RecordHandle = 6481
SensorID = 24
Device File State
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = SYSTEM

File2 Numeric Sensor
RecordHandle = 6485
SensorID = 28
BaseUnit = Bytes (File Size)
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = SYSTEM

File2 Device File PDR
RecordHandle = 2046
FileIdentifier = 200
FileName = Device Crash Log
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = SYSTEM

Figure 2 — PLDM for File Transfer Flat File Sensor Usage Example

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 41



Figure 3 shows a Directory EAR sensor usage example

FILE1

File1 State Sensor
RecordHandle = 3481
SensorID = 14
Device File State
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = 828

File1 Numeric Sensor
RecordHandle = 3485
SensorID = 18
FileSize
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = 828

File1 Device File PDR
RecordHandle = 2045
FileIdentifier = 100
FileName = Device Crash Log
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = 828

FILE2

File2 State Sensor
RecordHandle = 6481
SensorID = 24
Device File State
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = 828

File2 Numeric Sensor
recordHandle = 6485
SensorID = 28
File Size
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = 828

File2 Device File PDR
RecordHandle = 2046
FileIdentifier = 100
FileName = Device Crash Log
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = 828

DIR1

Dir1 State Sensor
RecordHandle = 4481
SensorID = 24
Device File State
EntityType = Physical | Device File Dir
EntityInstanceNumber = 1
ContainerID = 828

Dir1 Device File PDR
RecordHandle = 2047
FileIdentifier = 100
FileName = Directory 1
EntityType = Physical | Device File Dir
EntityInstanceNumber = 1
ContainerID = 828

Entity Association PDR
RecordHandle 2257
ContainerID 828

Container Entity
EntityType = logical | Device File Dir
EntityInstanceNumber = 1
ContainerEntityContainedID = 000

associationType = logical containment
Contained Entity 1

EntityType = physical | Device File
EntityInstanceNumber = 1
ContainedID = 828

Contained Entity 2
EntityType = physical | Device File
EntityInstanceNumber = 2
ContainedID = 828

Figure 3 — PLDM for File Transfer Directory EAR Sensor Usage Example

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

42 Work in Progress Version 0.8.0



10 PLDM for File Transfer Examples
This informative section describes typical flows involving File Transfer commands.

1. Initialization example
2. Regular file read
3. Polled serial log read
4. Async serial log read

10.1 PLDM for File Transfer initialization example

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 43



Figure 4 shows an example of the PLDM for File Transfer initialization sequence

Example File IO Initialization

File Client

File Client

File Host

File Host

1GetPLDMVersion
TBD

2GetPLDMVersion response
Version=1.1.0

3PLDM GetPLDMTypes (DSP0240 0x04)
TBD

4PLDM GetPLDMTypes response
PLDMTypes=10000101b

Type 0 is base
Type 2 is required for File IO sensors
Type 7 is required for File IO

5PLDM GetPLDMCommands (DSP0240 0x05)

6PLDM GetPLDMCommands response

DSP0240
FileIO - makes MultipartRecieve (0x09) (Req)
FileIO - makes MaltipartSend (0x08) (Req if
AsyncIO is supported)
Note: expected only done once on reset /
enumeration
NegociateTransferParameters (0x07) (Req)

7
NegotiateTransferParameters Request DSP0240

RequestorPartSize=0x200
RequesterProtocolSupport=Multipart transfer[PLDM for File IO]

8
NegotiateTransferParameters response

ResponderPartSize=0x100
ResponderProtocolSupport=Multipart transfer[PLDM for File IO]

Size is MCTP bus specific

9GetPLDMCommands (0x05)
PDMType=0x07

10 GetPLDMCommands response
PLDMCommands=0x999

11 GetPDR (DSP0248)

12
Return the applicable FileIdentifier, entityType, containerID,

entityInstanceNumber, FileClassification, OemFileClassification,
FileAttributes

ACTION: File IO PDR: Add a uint8 after
FileNameLength
if more than 1 instance of a file clasification type
exists, it is required to be a monotomic sequencial,
max holds at 255

Figure 4 — PLDM for File Transfer initialization example

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

44 Work in Progress Version 0.8.0



10.2 Regular file read

Figures 5, 6, 7, and 8 show an example of a regular file read. The part size of 0x100 (256) bytes is a
result of a previously executed NegotiateTransferParameters command. As defined in DSP0240 PLDM
Base Specification, the NextDataTransferHandle returned from the FileHost and required to be
provided by the File Client on subsequent Parts is totally defined by the File Host and the values are
opaque to the File Client.

• Figure 5 shows an example of a logical block incrementing NextDataTransferHandle
• Figure 6 shows an example of a sequential incrementing NextDataTransferHandle
• Figure 7 shows an example of Multipart transfer with a TransferFlag = Middle
• Figure 8 shows an example of reading a file at the end of file mark

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 45



File Client

File Client

File Host

File Host

1
DfOpen (DSP0242)
FileIdentifier from PDR repository
FileAttributes

DfOpen

2 Return FileDescriptor

3
DfHeartbeat
    RequestorMaxInterval
    FileDescriptor

DfHeartbeat

4
DfHearbeat response
    ResponderMaxInterval

CompletionCode=SUCCESS

5 GetSensorReading
SensorID=File Numeric Sensor

6 GetSensorReading Response
    PresentReading=0x280 (FileSize)

7

MultipartRecieve Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext=FileDescriptor (from dfOpen)
DataTransferHandle=0x00000000 (DSP0242 Req)
RequestSectionOffset=0 (Start of File)
RequestedSectionLengthBytes=0x200 (Section size)

DfRead Section 0, Part 0

8

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=START
NextDataTransferHandle=0x000000100
DataLengthBytes=0x100

9

MultipartRecieve Request
TrasnferOperation=XFER_NEXT_PART
TransferContext=FileDescriptor
DataTransferHandle=0x000000100
RequestSectionOffset=0 (DSP0240 Req)
RequestedSectionLengthBytes=0 (DSP0240 Req)

Section 0, Part 1

10

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=END
NextDataTransferHandle=0x00000000
DataLengthBytes=0x100

Section 0, Part 1
(last part)

Figure 5 — Regular file read example - Page 1

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

46 Work in Progress Version 0.8.0



File Client

File Client

File Host

File Host

11

MultipartRecieve Request
TrasnferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
RequestSectionOffset=0x200 (client calculated)
RequestedSectionLengthBytes=0x80 (remaining bytes)

Section 0, Part 1
(finish the section)

12
MultipartReceive Response

CompletionCode=SUCCESS
TransferFlag=ACKNOWLEDGE_COMPLETION
NextDataTransferHandle=0x00000200

13

MultipartRecieve Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext=FileDescriptor (from dfOpen)
DataTransferHandle=0x00000200
RequestSectionOffset=0x200 (FileOffset)
RequestedSectionLengthBytes=0x80 (Section size)

DfRead Section 1, Part 0

14

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=START_AND_END (only 1 part)
NextDataTransferHandle=0x00000000 (end of section)
DataLengthBytes=0x80

15

MultipartRecieve Request
TrasnferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
RequestSectionOffset=0 (no further requests)

Section 1, Part 0
(end of section)

16
MultipartReceive Response

CompletionCode=SUCCESS
TransferFlag=ACKNOWLEDGE_COMPLETION
NextDataTransferHandle=0x00000000

File Client retains file offset it wants to later read from end of
file
 
File Host:
1) Adds 0x300 bytes to the file,
2) updates the Device File Numeric Sensor / Nominal Value
3) sets the Device State Sensor Update bit to cause an event to
be generated to the previously registerd FileClient.

Figure 6 — Regular file read example - Page 2

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 47



File Client

File Client

File Host

File Host

17
DfHeartbeat
    RequestorMaxInterval

FileDescriptor
DfHeartbeat

18
DfHearbeat response
    ResponderMaxInterval

CompletionCode=SUCCESS

19

MultipartRecieve Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext=FileDescriptor (from dfOpen)
DataTransferHandle=0x00000000 (DSP0242 Req)
RequestSectionOffset=0x280 (FileOffset)
RequestedSectionLengthBytes=0x300 (Section size)

DfRead Section 2, Part 0
(Previous End of File)

20

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=START
NextDataTransferHandle=0x000000001
DataLengthBytes=0x100

21

MultipartRecieve Request
TrasnferOperation=XFER_NEXT_PART
TransferContext=FileDescriptor
DataTransferHandle=0x000000001
RequestSectionOffset=0 (DSP0240 Req)
RequestedSectionLengthBytes=0 (DSP0240 Req)

Section 2, Part 1

22

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=MIDDLE
NextDataTransferHandle=0x00000002
DataLengthBytes=0x100

23

MultipartRecieve Request
TrasnferOperation=XFER_NEXT_PART
TransferContext=FileDescriptor
DataTransferHandle=0x0000000002
RequestSectionOffset=0 (DSP0240 Req)
RequestedSectionLengthBytes=0 (DSP0240 Req)

Section 2, Part 2

24

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=END
NextDataTransferHandle=0x00000000
DataLengthBytes=0x100

Section 2, Part 2 (Last)

Figure 7 — Regular file read example - Page 3

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

48 Work in Progress Version 0.8.0



File Client

File Client

File Host

File Host

25

MultipartRecieve Request
TrasnferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
RequestSectionOffset=0 (no further requests)

26
MultipartReceive Response

CompletionCode=SUCCESS
TransferFlag=ACKNOWLEDGE_COMPLETION
NextDataTransferHandle=0x00000000

27
DfHeartbeat
    RequestorMaxInterval

FileDescriptor
DfHeartbeat

28
DfHearbeat response
    ResponderMaxInterval

CompletionCode=SUCCESS

29

MultipartRecieve Request
TransferOperation=XFER_FIRST_PART
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
RequestSectionOffset=0x00000580 (client computed)
RequestedSectionLengthBytes=0x100

DfRead Section 3, Part 0
No Data, still at End Of File

30

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=START_AND_END
NextDataTransferHandle=0x000000000 (DSP0240 Req)
DataLengthBytes=0 (No data, read from end of file)

31

MultipartRecieve Request
TrasnferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle=0x00000000 (DSP0240 Req)
RequestSectionOffset=0 (no further requests)

32
MultipartReceive Response

CompletionCode=SUCCESS
TransferFlag=ACKNOWLEDGE_COMPLETION
NextDataTransferHandle=0x00000000

33 DfClose
FileDescriptorDfClose

34 DfClose response
CompletionCode=SUCCESS

Figure 8 — Regular file read example - Page 4

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 49



10.3 Polled serial log read

Figures 9, 10, and 11 show an example of a serial (FIFO) log read

Polled Serial Read Pg 1

File Client

File Client

File Host

File Host

1
DfOpen (DSP0242)
FileIdentifier from PDR repository
FileAttributes

DfOpen

2 DfOpen Response
FileDescriptor

3

MultipartRecieve Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext=FileDescriptor (from DfOpen),
DataTransferHandle=0x00000000
RequestSectionOffset=0
RequestedSectionLengthBytes=0x100 (from negotiated value)

Section 0 Part 0
DfRead
 
Read the first 0x100 bytes

4

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=START_AND_END
NextDataTransferHandle=0x0
DataLengthBytes=0x100

Section 0 Part 0

5

MultipartRecieve Request
TrasnferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle=0x0
RequestSectionOffset=0x0
RequestedSectionLengthBytes=0x0

Section 0 Part 0

6
MultipartReceive Response

CompletionCode=SUCCESS
TransferFlag=ACKNOWLEDGE_COMPLETION
NextDataTransferHandle=0x0

Section 0 Part 0File Host moves read pointer

7

MultipartRecieve Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext=FileDescriptor (from DfOpen),
DataTransferHandle=0x00000000
RequestSectionOffset=0
RequestedSectionLengthBytes=0x100 (from negotiated value)

Section 1 Part 0
DfRead
 
Read the 2nd 0x100 bytes

8

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=START_AND_END
NextDataTransferHandle=0x0
DataLengthBytes=0x100

Section 1 Part 0

9

MultipartRecieve Request
TrasnferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle=0x0
RequestSectionOffset=0x0
RequestedSectionLengthBytes=0x0

Section 1 Part 0

10
MultipartReceive Response

CompletionCode=SUCCESS
TransferFlag=ACKNOWLEDGE_COMPLETION
NextDataTransferHandle=0x0

Section 1 Part 0File Host moves read pointer

Figure 9 — Polled serial read example - Page 1

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

50 Work in Progress Version 0.8.0



File Client

File Client

File Host

File Host

11

MultipartRecieve Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext=FileDescriptor (from DfOpen),
DataTransferHandle=0x00000000
RequestSectionOffset=0
RequestedSectionLengthBytes=0x100 (from negotiated value)

Section 2 Part 0
DfRead
 
No data in FiFo

12

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=START_AND_END
NextDataTransferHandle=0x0
DataLengthBytes=0x0

Section 2 Part 0

13

MultipartRecieve Request
TrasnferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
RequestSectionOffset=0x0
RequestedSectionLengthBytes=0x0

Section 2 Part 0

14
MultipartReceive Response

CompletionCode=SUCCESS
TransferFlag=ACKNOWLEDGE_COMPLETION
NextDataTransferHandle=0x0

Section 2 Part 0File Host does NOT move read pointer

15
DfHeartbeat

RequestorMaxInterval
FileDescriptor

DfHeartbeat

16
DfHearbeat response

ResponderMaxInterval
CompletionCode=SUCCESS

File Host:
1) adds to the file,
2) updates the Device File Numeric Sensor / Nominal Value
3) sets the Device State Sensor Update bit to cause an event to
be generated to the previously registerd FileClient.

Figure 10 — Polled serial read example - Page 2

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 51



File Client

File Client

File Host

File Host

17

MultipartRecieve Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
RequestSectionOffset=0x
RequestedSectionLengthBytes=0x100 (from negotiated value)

Section 3 Part 0
DfRead
 
Last 64 bytes

18

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag=START_AND_END
NextDataTransferHandle=0x0
DataLengthBytes=0x40

Section 3 Part 0

19

MultipartRecieve Request
TrasnferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle=0x0
RequestSectionOffset=0x0

Section 3 Part 0

20
MultipartReceive Response

CompletionCode=SUCCESS
TransferFlag=ACKNOWLEDGE_COMPLETION
NextDataTransferHandle=0x0

Section 3 Part 0File Host moves read pointer

21 DfClose
FileDescriptorDfClose

22 DfClose response
CompletionCode=SUCCESS

File Client will need to do an additional DfOpen if it wants to
read additional data later, but no longer needs to generate
DfHearbeat commands

Figure 11 — Polled serial read example - Page 3

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

52 Work in Progress Version 0.8.0



10.4 Async serial log read

Figures 12 and 13 shows an example of a Async serial (FIFO) log read

Async Serial Read

File Client

File Client

File Host

File Host

1
DfOpen (DSP0242)
FileIdentifier from PDR repository
FileAttributes - Async Serial

DfOpen

2 DfOpen Response
FileDescriptor

File Client must be ready for the File Host to immediately start a
MultipartSend after it returns the FileDescriptor

3

MultipartSend Request (DSP0240)
TransferOperation=START_AND_END
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
NextDataTransferHandle=0x0
SectionOffset=0 (DSP0242)
SectionLengthBytes=0 (DSP0242)
DataLengthBytes=0x00000100

DfFifoSend File Host sends 1st 256 bytes
Section 0 Part 0

4 MultipartSend Response
TransferOperation=XFER_COMPLETE

File Host moves read pointer
Section 0 Part 0

5

MultipartSend Request (DSP0240)
TransferOperation=START_AND_END
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
NextDataTransferHandle=0x0
SectionOffset=0 (DSP0242)
SectionLengthBytes=0 (DSP0242)
DataLengthBytes=0x00000080

DfFifoSend File Host sends last 128 bytes
Section 1 Part 0

6 MultipartSend Response
TransferOperation=XFER_COMPLETE

File Host moves read pointer
Section 1 Part 0

File Client needs to continue to show activity

7
DfHeartbeat

RequestorMaxInterval
FileDescriptor

DfHeartbeat

8
DfHeartbeat response

ResponderMaxInterval
CompletionCode=SUCCESS

Figure 12 — Async serial read example - Page 1

DSP0242 Platform Level Data Model (PLDM) for File Transfer Specification

Version 0.8.0 Work in Progress 53



File Client

File Client

File Host

File Host

File Host has more data (64 bytes) to send

9

MultipartSend Request)
TransferOperation=START_AND_END
TransferContext=FileDescriptor
DataTransferHandle=0x00000000
NextDataTransferHandle=0x0
SectionOffset=0
SectionLengthBytes=0
DataLengthBytes=0x00000040

DfFifoSend File Host sends new 64 bytes
Section 2 Part 0

10 MultipartSend Response
TransferOperation=XFER_COMPLETE

File Host moves the read pointer
Section 2 Part 0

File Client no longer wants to receive async serial data
 
Until the File Client receives the DfClose response it must be
prepared to respond to a MultipartSend

11 DfClose
FileDescriptorDfClose

12 DfClose response
CompletionCode=SUCCESS

Figure 13 — Async serial read example - Page 2

Platform Level Data Model (PLDM) for File Transfer Specification DSP0242

54 Work in Progress Version 0.8.0


	Platform Level Data Model (PLDM) for File Transfer Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Document conventions
	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 PLDM for File Transfer version
	8 PLDM for File Transfer Concepts
	8.1 File Metadata
	8.2 File Transfer
	8.3 File Discovery, Hierarchy and Identity Semantics
	8.3.1 Semantics
	8.3.2 File Types and Classification
	8.3.3 File and Directory Discovery
	8.3.4 File System Hierarchy Discovery

	8.4 DSP0248 PLDM for Monitor and Control Specification Relationship
	8.4.1 The File Descriptor Data Model
	8.4.2 The Directory Descriptor Data Model
	8.4.3 File Data Model

	9 PLDM for File Transfer Commands
	9.1 DfOpen Command
	9.2 DfClose Command
	9.3 DfDelete Command
	9.3.1 - Delete Specific File Descriptor PDR
	9.3.2 - Set the File Size Sensor to Zero (0)
	9.3.3 Implementing the DfDelete Command

	9.4 DfGetFileAttrib Command
	9.5 DfSetFileAttrib Command
	9.6 DfHeartbeat Command
	9.7 Error Completion Codes
	9.8 DfRead (DSP0240 MultipartReceive)
	9.8.1 Implementation Note: Serial FIFO type file characteristics

	9.9 DfFifoSend (DSP0240 MultipartSend)
	9.10 PLDM for File Transfer sensor usage examples
	10 PLDM for File Transfer Examples
	10.1 PLDM for File Transfer initialization example
	10.2 Regular file read
	10.3 Polled serial log read
	10.4 Async serial log read



