

 1

Document Identifier: DSP0240 2

Date: 2021-02-11 3

Version: 1.1.0 4

Platform Level Data Model (PLDM) Base 5

Specification 6

Supersedes: 1.0.0 7

Document Class: Normative 8

Document Status: Published 9

Document Language: en-US 10

 11

Platform Level Data Model (PLDM) Base Specification DSP0240

2 Published Version 1.1.0

Copyright notice 12

Copyright © 2008, 2021 DMTF. All rights reserved. 13

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 14
management and interoperability. Members and non-members may reproduce DMTF specifications and 15
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 16
time, the particular version and release date should always be noted. 17

Implementation of certain elements of this standard or proposed standard may be subject to third party 18
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 19
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 20
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 21
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 22
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 23
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 24
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 25
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 26
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 27
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 28
implementing the standard from any and all claims of infringement by a patent owner for such 29
implementations. 30

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 31
such patent may relate to or impact implementations of DMTF standards, visit 32
http://www.dmtf.org/about/policies/disclosures.php. 33

This document’s normative language is English. Translation into other languages is permitted. 34

 35

http://www.dmtf.org/about/policies/disclosures.php

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 3

CONTENTS 36

Foreword ... 5 37

Introduction.. 6 38

1 Scope .. 7 39

2 Normative references .. 7 40

3 Terms and definitions .. 8 41

4 Symbols and abbreviated terms .. 13 42

5 Conventions .. 15 43
5.1 Notations ... 15 44
5.2 Reserved and unassigned values ... 15 45
5.3 Byte ordering ... 15 46
5.4 PLDM data types .. 16 47
5.5 UUID ... 19 48
5.6 Ver32 encoding ... 20 49
5.7 Notations ... 20 50

6 PLDM base version ... 21 51

7 PLDM base protocol .. 21 52
7.1 PLDM message fields ... 21 53
7.2 Generic PLDM completion codes (PLDM_BASE_CODES) ... 23 54
7.3 Concurrent PLDM command processing .. 24 55

7.3.1 Requirements for responders .. 24 56
7.3.2 Requirements for requesters ... 25 57

8 PLDM messaging control and discovery commands .. 26 58
8.1 PLDM Terminus .. 27 59

8.1.1 SetTID command (0x01) .. 27 60
8.1.2 GetTID command (0x02) ... 28 61

8.2 GetPLDMVersion (0x03) ... 28 62
8.3 GetPLDMTypes (0x04) ... 30 63
8.4 GetPLDMCommands (0x05) .. 30 64
8.5 SelectPLDMVersion (0x06) .. 31 65
8.6 Multipart transfer commands .. 32 66

8.6.1 Flag usage for MultipartSend ... 32 67
8.6.2 Flag usage for MultipartReceive .. 33 68
8.6.3 NegotiateTransferParameters (0x07) .. 34 69
8.6.4 MultipartSend (0x08) ... 36 70
8.6.5 MultipartReceive (0x09) ... 38 71

9 PLDM messaging control and discovery examples .. 40 72

ANNEX A (Informative) Change log .. 43 73

 74

Figures 75

Figure 1 – Generic PLDM message fields .. 21 76

Figure 2 – Example of multipart PLDM version data transfer using the GetPLDMVersion command 41 77

Figure 3 – PLDM discovery command example ... 42 78

 79

Platform Level Data Model (PLDM) Base Specification DSP0240

4 Published Version 1.1.0

Tables 80

Table 1 – PLDM notations... 15 81

Table 2 – PLDM data types... 16 82

Table 3 – Example UUID format ... 19 83

Table 4 – PLDM Message common fields .. 22 84

Table 5 – Generic PLDM completion codes (PLDM_BASE_CODES) ... 24 85

Table 6 – Timing specifications for PLDM messages ... 25 86

Table 7 – PLDM messaging control and discovery command codes ... 27 87

Table 8 – SetTID command format ... 27 88

Table 9 – GetTID command format .. 28 89

Table 10 – GetPLDMVersion request and response message format ... 28 90

Table 11 – PLDM representation of PLDMVersionData ... 29 91

Table 12 – GetPLDMTypes request and response message format ... 30 92

Table 13 – GetPLDMCommands request and response message format ... 30 93

Table 14 – SelectPLDMVersion request and response message format ... 31 94

Table 15 – NegotiateTransferParameters command format .. 34 95

Table 16 – MultipartSend command format .. 36 96

Table 17 – MultipartReceive command format ... 38 97

98

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 5

Foreword 99

The Platform Level Data Model (PLDM) Base Specification (DSP0240) was prepared by the Platform 100
Management Components Intercommunications (PMCI) Work Group. 101

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 102
management and interoperability. For more information about the DMTF, see http://www.dmtf.org. 103

Acknowledgments 104

The DMTF acknowledges the following individuals for their contributions to this document: 105

• Hemal Shah – Broadcom, Inc. 106

• Bill Scherer – Hewlett Packard Enterprise 107

• Alan Berenbaum – SMSC 108

• Patrick Caporale – Lenovo 109

• Philip Chidester – Flex 110

• Andy Currid – NVIDIA Corporation 111

• Hoan Do – Broadcom Inc. 112

• Dov Goldstein – Intel Corp. 113

• Christoph Graham – Hewlett Packard Inc. 114

• Yuval Itkin – NVIDIA Corporation 115

• Janiszewski, Jacek – Intel Corporation 116

• Ira Kalman – Intel Corporation 117

• Edward Klodnicki – Lenovo 118

• Deepak Kodihalli – IBM 119

• Eliel Louzoun – Intel Corp. 120

• Rob Mapes – Marvell 121

• Balaji Natrajan – Microchip Technology Inc. 122

• Edward Newman – Hewlett Packard Enterprise 123

• Stephen Phong – Advanced Micro Devices 124

• Patrick Schoeller – Hewlett Packard Enterprise 125

• Tom Slaight – Intel Corporation 126

• Bob Stevens – Dell Inc. 127

• Abeye Teshome – Dell Inc. 128

• Richard Thomaiyar – Intel Corp. 129

• Paul Vancil – Advanced Micro Devices 130

• Supreeth Venkatesh – Advanced Micro Devices 131

http://www.dmtf.org/

Platform Level Data Model (PLDM) Base Specification DSP0240

6 Published Version 1.1.0

Introduction 132

This document describes base protocol elements of the Platform Level Data Model (PLDM) for the 133
purpose of supporting platform-level data models and platform functions in a platform management 134
subsystem. PLDM is designed to be an effective interface and data model that provides efficient access 135
to low-level platform inventory, monitoring, control, event, and data/parameters transfer functions. For 136
example, temperature, voltage, or fan sensors can have a PLDM representation that can be used to 137
monitor and control the platform using a set of PLDM messages. PLDM defines data representations and 138
commands that abstract the platform management hardware.139

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 7

Platform Level Data Model (PLDM) Base Specification 140

1 Scope 141

This specification describes base protocol elements of the Platform Level Data Model (PLDM) for the 142
purpose of supporting platform-level data models and platform functions in a platform management 143
subsystem. PLDM defines data representations and commands that abstract the platform management 144
hardware. 145

This specification defines the following elements: 146

• the base Platform Level Data Model (PLDM) for various platform functions 147

• a common PLDM message format to support platform functions using PLDM 148

The PLDM message common fields support the identification of payload type, message, PLDM type, and 149
PLDM command/completion codes. 150

2 Normative references 151

The following referenced documents are indispensable for the application of this document. For dated or 152
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 153
For references without a date or version, the latest published edition of the referenced document 154
(including any corrigenda or DMTF update versions) applies. 155

DMTF DSP0004, CIM Infrastructure Specification 2.5, 156
http://www.dmtf.org/standards/published_documents/DSP0004_2.5.0.pdf 157

DMTF DSP0223, Generic Operations 1.0, 158
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf 159

DMTF DSP0241, Platform Level Data Model (PLDM) over MCTP Binding Specification, 160
http://www.dmtf.org/standards/published_documents/DSP0241_1.0.0.pdf 161

DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes, 162
http://www.dmtf.org/standards/published_documents/DSP0245_1.0.0.pdf 163

DMTF DSP1001, Management Profile Specification Usage Guide 1.1, 164
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf 165

DMTF DSP4004, DMTF Release Process 2.3, 166
https://www.dmtf.org/sites/default/files/standards/documents/DSP4004_2.3.0.pdf 167

IETF RFC4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005 168
http://www.ietf.org/rfc/rfc4122.txt 169

ANSI/IEEE Standard 754, Standard for Binary Floating Point Arithmetic, 170
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316 171

IETF RFC2781, UTF-16, an encoding of ISO 10646, February 2000, 172
http://www.ietf.org/rfc/rfc2781.txt 173

IETF RFC3629, UTF-8, a transformation format of ISO 10646, November 2003, 174
http://www.ietf.org/rfc/rfc3629.txt 175

http://www.dmtf.org/standards/published_documents/DSP0004_2.5.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0241_1.0.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0245_1.0.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP4004_2.3.0.pdf
http://www.ietf.org/rfc/rfc4122.txt
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc3629.txt

Platform Level Data Model (PLDM) Base Specification DSP0240

8 Published Version 1.1.0

ISO 8859-1, Final Text of DIS 8859-1, 8-bit single-byte coded graphic character sets — Part 1: Latin 176
alphabet No.1, February 1998 177

Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba, Advanced Configuration and Power Interface 178
Specification 3.0, ACPI, September 2, 2004, http://www.acpi.info/DOWNLOADS/ACPIspec30.zip 179

Intel, Hewlett-Packard, NEC, and Dell, Intelligent Platform Management Interface Specification: Second 180
Generation 2.0, IPMI, 2004, ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0markup.pdf 181

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 182
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 183

OMG, Unified Modeling Language (UML) from the Open Management Group (OMG), 184
http://www.uml.org/ 185

3 Terms and definitions 186

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 187
are defined in this clause. 188

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), 189
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 190
in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, 191
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 192
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 193
alternatives shall be interpreted in their normal English meaning. 194

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as 195
described in ISO/IEC Directives, Part 2, Clause 6. 196

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 197
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 198
not contain normative content. Notes and examples are always informative elements. 199

The terms defined in DSP0004, DSP0223, and DSP1001 apply to this document. The following additional 200
terms are used in this document. 201

For the purposes of this document, the following terms and definitions apply. 202

3.1 203

baseboard management controller 204

BMC 205

A term coined by the IPMI specifications for the main management controller in an IPMI-based platform 206
management subsystem. Also sometimes used as a generic name for a motherboard-resident 207
management controller that provides motherboard-specific hardware monitoring and control functions for 208
the platform management subsystem. 209

3.2 210

binary-coded decimal 211

BCD 212

Indicates a particular binary encoding for decimal numbers where each four bits (nibble) in a binary 213
number is used to represent a single decimal digit, and with the least significant four bits of the binary 214
number corresponding to the least significant decimal digit 215

The binary values 0000b through 1001b represent decimal values 0 through 9, respectively. For 216

example, with BCD encoding a byte can represent a two-digit decimal number where the most significant 217
nibble (bits 7:4) of the byte contains the encoding for the most significant decimal digit and the least 218

http://www.acpi.info/DOWNLOADS/ACPIspec30.zip
ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0markup.pdf
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.uml.org/

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 9

significant nibble (bits 3:0) contains the encoding for the least significant decimal digit (for example, 219
0010_1001b (0x29) in BCD encoding corresponds to the decimal number 29). 220

3.3 221

bridge 222

Generically, the circuitry and logic that connect one computer bus or interconnect to another, allowing an 223
agent on one to access the other 224

3.4 225

bus 226

A physical addressing domain shared between one or more platform components that share a common 227
physical layer address space 228

3.5 229

byte 230

An 8-bit quantity. Also referred to as an octet. 231

NOTE PLDM specifications shall use the term byte, not octet. 232

3.6 233

Common Information Model 234
CIM 235

The schema of the overall managed environment 236

It is divided into a core, model, common model, and extended schemas. For more information, see 237
DSP0004. 238

3.7 239

endpoint 240

See MCTP endpoint 241

3.8 242

endpoint ID 243

EID 244

See MCTP endpoint 245

3.9 246

Globally Unique Identifier 247

GUID 248

See UUID 249

3.10 250

Initialization Agent function 251

A software or firmware component that configures PLDM and assigns Terminus IDs; typically a 252
management controller 253

3.11 254

Inter-Integrated Circuit 255

I2C 256

A multiple-master, two-wire, serial bus originally developed by Philips Semiconductor 257

3.12 258

idempotent command 259

A command that has the same effect for repeated applications of the same command 260

Platform Level Data Model (PLDM) Base Specification DSP0240

10 Published Version 1.1.0

3.13 261

intelligent management device 262
IMD 263

A management device that is typically implemented using a microcontroller and accessed through a 264
messaging protocol 265

Management parameter access provided by an IMD is typically accomplished using an abstracted 266
interface and data model rather than through direct "register-level" access. 267

3.14 268

Intelligent Platform Management Interface 269
IPMI 270

A set of specifications defining interfaces and protocols originally developed for server platform 271
management by the IPMI Promoters Group: Intel, Dell, HP, and NEC 272

3.15 273

Manageability Access Point 274
MAP 275

A collection of services of a system that provides management in accordance to CIM profiles and 276
management protocol specifications published under the DMTF 277

3.16 278

managed entity 279

The physical or logical entity that is being managed through management parameters. Examples of 280
physical entities include fans, processors, power supplies, circuit cards, chassis, and so on. Examples of 281
logical entities include virtual processors, cooling domains, system security states, and so on. 282

3.17 283

Management Component Transport Protocol 284
MCTP 285

A media-independent transport protocol that was designed for intercommunication of low-level 286
management messages within a platform management subsystem 287

3.18 288

management controller 289

A microcontroller or processor that aggregates management parameters from one or more management 290
devices and makes access to those parameters available to local or remote software, or to other 291
management controllers, through one or more management data models 292

Management controllers may also interpret and process management-related data, and initiate 293
management-related actions on management devices. The microcontroller or processor that serves as a 294
management controller can also incorporate the functions of a management device. 295

3.19 296

management device 297

Any physical device that provides protocol terminus for accessing one or more management 298
parameters 299

A management device responds to management requests, but it does not initiate or aggregate 300
management operations except in conjunction with a management controller (that is, it is a satellite 301
device that is subsidiary to one or more management controllers). An example of a simple management 302
device would be a temperature sensor chip. Another example would be a management controller that has 303
I/O pins or built-in analog-to-digital converters that monitor state and voltages for a managed entity. 304

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 11

3.20 305

management parameter 306

A particular datum representing a characteristic, capability, status, or control point associated with a 307
managed entity 308
Example management parameters include temperature, speed, volts, on/off, link state, uncorrectable 309
error count, device power state, and so on. 310

3.21 311

MCTP bridge 312

An MCTP endpoint that can route MCTP messages (that are not destined for itself) that it receives on one 313
interconnect to another without interpreting them 314

The ingress and egress media at the bridge may be either homogeneous or heterogeneous. Also referred 315
to in this document as a "bridge". 316

3.22 317

MCTP bus owner 318

The entity that is responsible for MCTP EID assignment or translation on the buses of which it is a master 319

The MCTP bus owner may also be responsible for physical address assignment. For example, for SMBus 320
bus segments, the MCTP bus owner is also the ARP master. This means the bus owner assigns dynamic 321
SMBus addresses to devices that require it. 322

3.23 323

MCTP endpoint 324

A terminus or origin of an MCTP packet or message 325

The MCTP endpoint is identified by a value called the MCTP endpoint ID, or EID. 326

3.24 327

message 328

See PLDM message 329

3.25 330

message body 331

The portion of a PLDM message that carries the PLDM Type-specific data associated with the message 332

3.26 333

message originator 334

The original transmitter (source) of a message targeted to a particular PLDM terminus 335

3.27 336

most significant byte 337
MSB 338

The highest order byte in a number consisting of multiple bytes 339

3.28 340

non-idempotent command 341

A command that is not an idempotent command 342

3.29 343

nibble 344

The computer term for a four-bit aggregation, or half of a byte 345

Platform Level Data Model (PLDM) Base Specification DSP0240

12 Published Version 1.1.0

3.30 346

payload 347

The information-bearing fields of a message 348

These fields are separate from the fields and elements (such as address fields, framing bits, checksums, 349
and so on) that are used to transport the message from one point to another. In some instances, a given 350
field may be both a payload field and a transport field. 351

3.31 352

physical transport binding 353

Refers to specifications that define how a base messaging protocol is implemented on a particular 354
physical transport type and medium, such as SMBus/I2C, PCI Express™ Vendor Defined Messaging, and 355
so on 356

3.32 357

Platform Level Data Model 358
PLDM 359

An internal-facing low-level data model that is designed to be an effective data/control source for mapping 360
under the Common Information Model (CIM) 361

PLDM defines data structures and commands that abstract platform management subsystem 362
components. PLDM supports a Type field to distinguish various types of messages and group them 363
together based on the functions. 364

3.33 365

PLDM command 366

A command defined under the PLDM Type that is used for PLDM communications (for example, 367
commands to control BIOS configuration and attributes transfer, perform SMBIOS data transfer, and 368
monitor and control sensors) 369

3.34 370

PLDM message 371

A unit of communication based on the PLDM Type that is used for PLDM communications 372

3.35 373

PLDM message payload 374

A portion of the message body of a PLDM message 375

This portion of the message is separate from those fields and elements that are used to identify the 376
payload type, message, PLDM Type, and PLDM command/completion codes. 377

3.36 378

PLDM request 379

Same as PLDM command. See 3.33. 380

3.37 381

PLDM request message 382

A message that is sent to a PLDM terminus to request a specific PLDM operation 383

A PLDM request message is acknowledged with a corresponding response message. 384

3.38 385

PLDM response 386

A response to a specific PLDM request 387

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 13

3.39 388

PLDM response message 389

A message that is sent in response to a specific PLDM request message 390

This message includes a "Completion Code" field that indicates whether the response completed 391
normally. 392

3.40 393

PLDM subsystem 394

The collection of devices which are enumerated by the same PLDM initialization agent 395

3.41 396

PLDM terminus 397

Identifies a set of resources within the recipient endpoint that is handling a particular PLDM message 398

3.42 399

Platform Management Component Intercommunications 400
PMCI 401

The name of a working group under the Distributed Management Task Force that is chartered to define 402
standardized communication protocols, low-level data models, and transport definitions that support 403
communications with and between management controllers and management devices that form a 404
platform management subsystem within a managed computer system 405

3.43 406

point-to-point 407

Refers to the case where only two physical communication devices are interconnected through a physical 408
communication medium 409

The devices may be in a master and slave relationship, or the devices could be peers. 410

3.44 411

Universally Unique Identifier 412
UUID 413

An identifier originally standardized by the Open Software Foundation (OSF) as part of the Distributed 414
Computing Environment (DCE). UUIDs are created using a set of algorithms that enables them to be 415
independently generated by different parties without requiring that the parties coordinate to ensure that 416
generated IDs do not overlap 417

In this specification, RFC4122 is used as the base specification for describing the format and generation 418
of UUIDs. This identifier is also sometimes referred to as a globally unique identifier (GUID). 419

4 Symbols and abbreviated terms 420

The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document. The following 421
additional abbreviations are used in this document. 422

4.1 423

ACPI 424

Advanced Configuration and Power Interface 425

4.2 426

ARP 427

Address Resolution Protocol 428

Platform Level Data Model (PLDM) Base Specification DSP0240

14 Published Version 1.1.0

4.3 429

CIM 430

Common Information Model 431

4.4 432

DCE 433

Distributed Computing Environment 434

4.5 435

GUID 436

Globally Unique Identifier 437

4.6 438

IMD 439

Intelligent management device 440

4.7 441

IPMI 442

Intelligent Platform Management Interface 443

4.8 444

ISO/IEC 445

International Organization for Standardization/International Engineering Consortium 446

4.9 447

MC 448

Management Controller 449

4.10 450

MCTP 451

Management Component Transport Protocol 452

4.11 453

MSB 454

Most significant byte 455

4.12 456

OSF 457

Open Software Foundation 458

4.13 459

PLDM 460

Platform Level Data Model 461

4.14 462

PMCI 463

Platform Management Component Intercommunications 464

4.15 465

TID 466

Terminus ID 467

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 15

4.16 468

UUID 469

Universally Unique Identifier 470

4.17 471

WBEM 472

Web-Based Enterprise Management 473

5 Conventions 474

The conventions described in the following clauses apply to all of the PLDM specifications. 475

5.1 Notations 476

PLDM specifications use the following notations: 477

Table 1 – PLDM notations 478

Notation Interpretation

M:N In field descriptions, this notation typically represents a range of byte offsets starting from byte M
and continuing to and including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4] Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit.

[M:N] A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the right

1b A lowercase b after a number consisting of 0 s and 1 s indicates that the number is in binary
format.

0x12A The sequence “0x” preceding a number of decimal digits and the letters A..F indicates that the
number is in hexadecimal format.

Numeric constants in specifications will generally be presented in decimal; however, two exceptions exist 479
where non-decimal presentations may be used in addition or instead of decimal presentations: 480

• Numeric constants for fields of size less than one byte should be represented in binary 481

• Numeric constants that exceed 15 or in sets where at least one value exceeds 15 (such as the 482
Generic PLDM completion codes of clause 7.2) should be presented in hexadecimal 483

5.2 Reserved and unassigned values 484

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other 485
numeric ranges are reserved for future definition by the DMTF. 486

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 487
(zero) and ignored when read. 488

5.3 Byte ordering 489

Unless otherwise specified, for all PLDM specifications byte ordering of multibyte numeric fields or 490
multibyte bit fields is "Little Endian" (that is, the lowest byte offset holds the least significant byte, and 491
higher offsets hold the more significant bytes). 492

Platform Level Data Model (PLDM) Base Specification DSP0240

16 Published Version 1.1.0

5.4 PLDM data types 493

Table 2 lists the abbreviations and descriptions for common data types that are used in PLDM message 494
fields and data structure definitions. 495

Table 2 – PLDM data types 496

Data Type Interpretation

uint8 Unsigned 8-bit binary integer

sint8 Signed 8-bit binary integer

uint16 Unsigned 16-bit binary integer

sint16 Signed 16-bit binary integer

uint32 Unsigned 32-bit binary integer

sint32 Signed 32-bit binary integer

uint40 Unsigned 40-bit binary integer

sint40 Signed 40-bit binary integer

uint64 Unsigned 64-bit binary integer

sint64 Signed 64-bit binary integer

string UCS-2 string as defined in ISO/IEC 10646

bool8 Boolean value represented using an unsigned 8-bit binary integer where 0x00 means False, and
any non-zero value means True

real32 Four-byte floating-point format, also known as "single precision", where:

[31] – S (sign) bit (1 = negative, 0 = positive)

[30:23] – exponent as a binary integer (8 bits)

[22:0] – mantissa as a binary integer (23 bits)

Per ANSI/IEEE Standard 754 convention, the value represented is determined as follows:

If Exponent = 255 and Mantissa is nonzero, then Value = NaN ("Not a number").

If Exponent = 255 and Mantissa is zero and S is 1, then Value = -Infinity.

If Exponent = 255 and Mantissa is zero and S is 0, then Value = Infinity.

If 0<Exponent<255, then Value=(-1)**S * 2 ** (Exponent-127) * (1.Mantissa) where "1.Mantissa"
is intended to represent the binary number created by prefixing Mantissa with an implicit leading
1 and a binary point.

If Exponent = 0 and Mantissa is nonzero, then Value = (-1)**S * 2 ** (-126) * (0.Mantissa).
These are "unnormalized" values.

If Exponent = 0 and Mantissa is zero and S is 1, then Value = -0.

* If Exponent = 0 and Mantissa is zero and S is 0, then Value = 0.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 17

Data Type Interpretation

real64 Eight-byte floating-point, also known as "double-precison", where:

[63] – S (sign) bit (1 = negative, 0 = positive)

[62:52] – exponent as a binary integer (11 bits)

[51:0] – mantissa as a binary integer (52 bits)

Per IEEE 754 convention, the value represented is determined as follows:

If Exponent = 2047 and Mantissa is nonzero, then Value = NaN ("Not a number").

If Exponent = 2047 and Mantissa is zero and S is 1, then Value = -Infinity.

If Exponent = 2047 and Mantissa is zero and S is 0, then Value = Infinity.

If 0<Exponent<2047, then Value = (-1)**S * 2 ** (Exponent-1023) * (1.Mantissa) where
"1.Mantissa" is intended to represent the binary number created by prefixing Mantissa with an
implicit leading 1 and a binary point.

If Exponent = 0 and Mantissa is nonzero, then Value = (-1)**S * 2 ** (-1022) * (0.Mantissa).
These are "unnormalized" values.

If Exponent = 0 and Mantissa is zero and S is 1, then Value = -0.

* If Exponent = 0 and Mantissa is zero and S is 0, then Value = 0.

datetime String containing a date-time per DSP0004

char16 Sixteen-bit UCS-2 character as defined in ISO/IEC 10646

enum4 Sequential enumeration, starting from 0 as the default, with optional numeric declarator. The
number 4 indicates that the enum is encoded using an 4-bit binary number. Enum4 enumeration
values shall be presented in decimal in PLDM specifications.

enum8 Sequential enumeration, starting from 0 as the default, with optional numeric declarator. The
number 8 indicates that the enum is encoded using an 8-bit binary number. Enum8 enumeration
values shall be presented primarily in decimal in PLDM specifications

Example: enum8 { fred, mary, bob, george } has the value 0 correspond to fred, 1 for mary,
2 for bob, and 3 for george. A value may be explicitly declared such as: enum { fred, mary=2,
bob, george }, in which case 0 corresponds to fred, 2 corresponds to mary, and 4
corresponds to george.

Platform Level Data Model (PLDM) Base Specification DSP0240

18 Published Version 1.1.0

Data Type Interpretation

timestamp104 Binary datetime type formatted as a series of 13 bytes, as follows:

(Generally, this format can be mapped to a CIM Datetime timestamp value.)

byte 12 UTC and Time resolution

 The CIM Datetime format allows a variable number of significant digits to be
represented for the date/time and UTC fields using a '*' character in the string to
indicate which contiguous digit positions should be ignored, starting from the least
significant position. PLDM generally supports this format by using this byte to
present an enumeration for the resolution.

[7:4] UTC resolution = enum4 {UTCunspecified = 0, minute = 1, 10minute = 2, hour = 3 }

[3:0] Time resolution = enum4 { microsecond = 0, 10microsecond = 1, 100microsecond =
2, millisecond = 3, 10millisecond = 4, 100millisecond = 5, second = 6, 10second = 7,
minute = 8, 10minute = 9, hour = 10, day = 11, month = 12, year = 13, null (see
below) = 15 }

bytes 11:10 year as uint16

byte 9 month as uint8 (starting with 1)

byte 8 day within the month as uint8 (starting with 1)

byte 7 hour within the day as uint8 (24-hour representation starting with 0)

byte 6 minute within the hour as uint8 (starting with 0)

byte 5 seconds within the minute as uint8 (starting with 0)

byte 4:2 microsecond within the second as a 24-bit binary integer (starting with 0)

bytes 1:0 UTC offset in minutes as sint16

If the time resolution bits in byte 12 are set to enumeration value null (15), the timestamp value
shall be interpreted as an unknown time.

interval72 Binary datetime interval formatted as a series of 9 bytes, as follows:

(Generally, this format can be mapped to a CIM Datetime interval value.)

byte 8 Time resolution

[7:4] reserved

[3:0] enum4 { microsecond = 0, 10microsecond = 1, 100microsecond = 2, 1millisecond =
3, 10millisecond = 4, 100millisecond = 5, second = 6, 10second = 7, minute = 8,
hour = 9, day = 10, 10day = 11, 100day = 12}

byte 7:6 number of days as uint16 (starting with 1)
NOTE: CIM DateTime specifies this as six-digit field.

byte 5 hour within the day as uint8 (24-hour representation starting with 0)

byte 4 minute within the hour as uint8 (starting with 0)

byte 3 seconds within the minute as uint8 (starting with 0)

bytes 2:0 microsecond within the second as a 24-bit binary integer (starting with 0)

ver32 Thirty-two-bit encoding of a version number. The encoding of the version number and alpha fields
is defined in 5.6.

[31:24] = major version number

[23:16] = minor version number

[15:8] = update version number

[7:0] = "alpha" byte

UUID See 5.5.

bitfield8 Byte with 8 bit fields. Each of these bit fields can be defined separately.

bitfield16 Two-byte word with 16 bit fields. Each of these bit fields can be defined separately.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 19

Data Type Interpretation

strASCII

A null terminated 8-bit per character string. Unless otherwise specified, characters are encoded
using the 8-bit ISO8859-1 "ASCII + Latin1" character set encoding. All strASCII strings shall have
a single null (0x00) character as the last character in the string. Unless otherwise specified,
strASCII strings are limited to a maximum of 256 bytes including the null terminator.

strUTF-8

A null terminated, UTF-8 encoded string per RFC3629. UTF-8 defines a variable length for
Unicode encoded characters where each individual character may require one to four bytes. All
strUTF-8 strings shall have a single null character as the last character in the string with encoding
of the null character per RFC3629 Unless otherwise specified, strUTF-8 strings are limited to a
maximum of 256 bytes including the null terminator.

strUTF-16

A null terminated, UTF-16 encoded string with Byte Order Mark (BOM) per RFC2781. All strUTF-
16 strings shall have a single null (0x0000) character as the last character in the string. An empty
string shall be represented using two bytes set to 0x0000, representing a single null (0x0000)
character. Otherwise, the first two bytes shall be the BOM. Unless otherwise specified, strUTF-16
strings are limited to a maximum of 256 bytes including the BOM and null terminator.

strUTF16LE
A null terminated, UTF-16, "little endian" encoded string per RFC2781. All strUTF-16LE strings
shall have a single null (0x0000) character as the last character in the string. Unless otherwise
specified, strUTF16LE strings are limited to a maximum of 256 bytes including the null terminator.

strUTF-16BE
A null terminated, UTF-16, "big-endian" encoded string per RFC2781. All strUTF-16BE strings
shall have a single null (0x0000) character as the last character in the string. Unless otherwise
specified, strUTF16BE strings are limited to a maximum of 256 bytes including the null terminator.

5.5 UUID 497

The format of the ID follows the byte (octet) format specified in RFC4122. RFC4122 specifies the 498
following four different versions of UUID formats and generation algorithms suitable for use with PLDM: 499

• version 1 (0001b) ("time based") 500

• version 3 (0011b) "MD5 hash" ("name-based") 501

• version 4 (0100b) "Pseudo-random" ("name-based") 502

• version 5 "SHA1 hash" ("name-based") 503

The version 1 format is recommended. A UUID value should never change over the lifetime of the device 504
or software version associated with the UUID. 505

For PLDM, the individual fields within the UUID are transferred in network byte order (most-significant 506
byte first) per the convention described in RFC4122. For example, Table 3 shows byte order for a UUID in 507
version 1 format. 508

Table 3 – Example UUID format 509

Field UUID Byte MSB

time low 1 MSB

2

3

4

time mid

5 MSB

6

time high and version 7 MSB

8

Platform Level Data Model (PLDM) Base Specification DSP0240

20 Published Version 1.1.0

Field UUID Byte MSB

clock seq high and reserved 9

clock seq low 10

Node 11

12

13

14

15

16

5.6 Ver32 encoding 510

The version field is comprised of four bytes referred to as the "major," "minor," "update," and "alpha" 511
bytes. These bytes shall be encoded as follows: 512

• The "major," "minor," and "update" bytes are BCD-encoded, and each byte holds two BCD 513
digits. 514

• The "alpha" byte holds an optional alphanumeric character extension that is encoded using the 515
ISO/IEC 8859-1 Character Set. 516

• The semantics of these fields follow those in DSP4004. 517

• The value 0x00 in the alpha field means that the alpha field is not used. Software or utilities that 518

display the version number should not display any characters for this field. 519

• The value 0xF in the most-significant nibble of a BCD-encoded value indicates that the most-520

significant nibble should be ignored and the overall field treated as a single-digit value. Software 521
or utilities that display the number should display only a single digit and should not put in a 522
leading "0" when displaying the number. 523

• A value of 0xFF in the "update" field indicates that the entire field is not present. 0xFF is not 524

allowed as a value for the "major" or "minor" fields. Software or utilities that display the version 525
number should not display any characters for this field. 526

EXAMPLE: 527

Version 3.7.10a → 0xF3F71061 528

Version 10.01.7 → 0x1001F700 529

Version 3.1 → 0xF3F1FF00 530

Version 1.0a → 0xF1F0FF61 531

5.7 Notations 532

The following notations are used for PLDM specifications: 533

• M:N In field descriptions, this will typically be used to represent a range of byte offsets 534
starting from byte M and continuing to and including byte N (M ≤ N). The lowest offset 535
is on the left, and the highest is on the right. 536

• rsvd Abbreviation for Reserved. Case insensitive. 537

• [4] Square brackets around a number are typically used to indicate a bit offset. Bit offsets 538
are given as zero-based values (that is, the least significant bit [LSb] offset = 0). 539

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 21

• [7:5] A range of bit offsets. The most-significant is on the left, and the least-significant is on 540
the right. 541

• 1b A lowercase "b" after a number consisting of 0s and 1s indicates that the number is in 542

binary format. 543

• 0x12A A leading "0x" indicates that the number is in hexadecimal format. 544

6 PLDM base version 545

The version of this Platform Level Data Model (PLDM) Base Specification shall be 1.1.0 (major version 546
number 1, minor version number 1, update version number 0, and no alpha version). 547

In response to the GetPLDMVersion command in clause 8.2, the reported version for Type 0 (PLDM 548
base, this specification) shall be encoded as 0xF1F1F000. 549

7 PLDM base protocol 550

The PLDM base protocol defines the common fields for PLDM messages and their usage. 551

Though there are command-specific PLDM header fields and trailer fields, the fields for the base protocol 552
are common for all PLDM messages. These common fields support the identification of payload type, 553
message, PLDM Type, and PLDM command/completion codes. The base protocol’s common fields 554
include a PLDM Type field that identifies the particular class of PLDM messages. 555

7.1 PLDM message fields 556

Figure 1 shows the fields that constitute a generic PLDM message. The fields within PLDM messages are 557
transferred from the lowest offset first. 558

7

PLDM Message Payload (zero or more bytes)

PLDM TypeInstance ID

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 1 Byte 2 Byte 3 Byte 4

D
Hdr

Ver

Hdr

Verrs
v

dR

q
PLDM Completion Code*PLDM Command Code

559
 560

*The PLDM Completion Code is present only in PLDM response messages. 561

Figure 1 – Generic PLDM message fields 562

Platform Level Data Model (PLDM) Base Specification DSP0240

22 Published Version 1.1.0

Table 4 defines the common fields for PLDM messages. 563

Table 4 – PLDM Message common fields 564

Field Name Field Size Description

Rq 1 bit Request bit, used to help differentiate between PLDM request
messages and other PLDM messages.

This field is set to 1b for PLDM request messages and
unacknowledged datagram request messages.

This field is set to 0b for PLDM response messages. See the
following row of this table for valid combinations of Rq and D bits.

D 1 bit Datagram bit, used to indicate whether the Instance ID field is
being used for tracking and matching requests and responses, or
just being used for asynchronous notifications.

This field is set to 1b for asynchronous notifications.

This field is set to 0b to indicate that the Instance ID field is being
used for tracking and matching requests and responses.

Rq and D bit combinations:

Rq D Meaning

0b 0b For PLDM response messages

0b 1b Reserved

1b 0b For PLDM request messages

1b 1b For unacknowledged PLDM request messages
or asynchronous notifications

rsvd 1 bit Reserved

Instance ID 5 bits The Instance ID (Instance Identifier) field is used to identify a new
instance of a PLDM request to differentiate new PLDM requests
that are sent to the same PLDM terminus. The Instance ID field is
used to match up a particular instance of a PLDM response
message with the corresponding instance of PLDM request
message.

If the requester issued a non-idempotent command, it shall
complete any retries for that command before issuing a command
with a new Instance ID.

Hdr Ver 2 bits The Hdr Ver (Header Version) field identifies the header format.
For this version of the specification, the value is set to 00b. This
version applies to the PLDM message format.

PLDM Type 6 bits The PLDM Type field identifies the type of PLDM that is being
used in the control or data transfer carried out using this PLDM
message. The PLDM Type field allows PLDM messages to be
grouped together based on functions. See DSP0245 for the
definitions of PLDM Type values.

PLDM Command Code 8 bits For PLDM request messages, the PLDM Command Code field
identifies the type of operation the message is requesting. The
PLDM command code values are defined per PLDM Type. The
PLDM Command Code that is sent in a PLDM request message
shall be returned in the corresponding PLDM response message.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 23

Field Name Field Size Description

PLDM Message Payload Variable The PLDM message payload is zero or more bytes that are
specific to a particular PLDM Message. By convention, the PLDM
Message formats are described using tables with the first byte of
the payload identified as byte 0.

NOTE: The baseline PLDM message payload size is PLDM Type-
specific.

PLDM Completion Code 8 bits The PLDM Completion Code field provides the status of the
operation. This field is the first byte of the PLDM Message Payload
for PLDM response messages and is not present in PLDM request
messages. This field indicates whether the PLDM command
completed normally. If the command did not complete normally,
then the completion code provides additional information regarding
the error condition. The PLDM Completion Code can be generic or
PLDM Type-specific.

7.2 Generic PLDM completion codes (PLDM_BASE_CODES) 565

The command completion code fields are used to return PLDM operation results in the PLDM response 566
messages. On a successful completion of a PLDM operation, the specified response parameters (if any) 567
shall also be returned in the response message. For a PLDM operation resulting in an error, unless 568
otherwise specified, the responder shall not return any additional parametric data and the requester shall 569
ignore any additional parameter data provided in the response. 570

Table 5 defines the generic completion codes for the PLDM commands. PLDM Type-specific command 571
completion codes are defined in the respective PLDM specification. Unless otherwise specified in a 572
PLDM specification, specific error completion codes are optional. If a PLDM command completes with an 573
error, the generic failure message (ERROR), an appropriate generic error completion code from Table 5, 574
or a PLDM Type-specific error completion code shall be returned. For an unsupported PLDM command, 575
the ERROR_UNSUPPORTED_PLDM_CMD completion code shall be returned unless the responder is in 576
a transient state (not ready), in which it cannot process the PLDM command. If the responder is in a 577
transient state, it may return the ERROR_NOT_READY completion code. 578

Platform Level Data Model (PLDM) Base Specification DSP0240

24 Published Version 1.1.0

Table 5 – Generic PLDM completion codes (PLDM_BASE_CODES) 579

Value Name Description

0 (0x00) SUCCESS The PLDM command was accepted and completed
normally.

1 (0x01) ERROR This is a generic failure message to indicate an error
processing the corresponding request message. It
should not be used when a more specific error code
applies.

2 (0x02) ERROR_INVALID_DATA The PLDM request message payload contained invalid
data or an illegal parameter value.

3 (0x03) ERROR_INVALID_LENGTH The PLDM request message length was invalid. (The
PLDM request message body was larger or smaller
than expected for the particular PLDM command.)

4 (0x04) ERROR_NOT_READY The Receiver is in a transient state where it is not
ready to process the corresponding PLDM command.

5 (0x05) ERROR_UNSUPPORTED_PLDM_CMD The command field in the PLDM request message is
unspecified or not supported for this PLDM Type. This
completion code shall be returned for any unsupported
command values received.

32 (0x20) ERROR_INVALID_PLDM_TYPE The PLDM Type field value in the PLDM request
message is invalid or unsupported.

128-255
(0x80-0xFF)

COMMAND_SPECIFIC This range of completion code values is reserved for
values that are specific to a particular PLDM request
message. The particular values (if any) and their
definition is provided in the specification for the
particular PLDM command.

All other Reserved Reserved

7.3 Concurrent PLDM command processing 580

This clause describes the specifications and requirements for handling concurrent overlapping PLDM 581
requests. 582

7.3.1 Requirements for responders 583

A PLDM terminus is not required to process more than one request at a time (that is, it can be "single 584
threaded" and does not have to accept and act on new requests until it has finished responding to any 585
previous request). 586

A responder that is not ready to accept a new request can either silently discard the request, or it can 587
respond with an ERROR_NOT_READY message completion code (preferred). 588

The PLDM does not restrict any specific model for the number of requesters or responders that can 589
communicate simultaneously. The PLDM specification allows an implementation to have a responder that 590
handles one request at a time and to not maintain contexts for multiple requests or multiple requesters. 591

If a PLDM terminus is working on a request from a requester, then the PLDM terminus shall be able to 592
process (or queue up processing) and send the response independently from sending its own request. 593

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 25

When a responder allows simultaneous communications with multiple requesters, the requirements on 594
the responder are as follows: 595

• The responder shall use the following fields to track a PLDM request: the transport address 596
(which is transport-binding specific, for example EID for MCTP transport) of the requester, 597
PLDM Type, PLDM Command Code, and Instance ID of the PLDM request. 598

• If the responder runs out of internal resources, it may fail PLDM requests. 599

7.3.2 Requirements for requesters 600

A PLDM terminus that issues PLDM requests to another PLDM terminus shall wait until one of the 601
following occurs before issuing a new PLDM request: it gets the response to a particular request, it times 602
out waiting for the response, or it receives an indication that transmission of the particular request failed. 603

A PLDM terminus that issues PLDM requests is allowed to have multiple simultaneous requests 604
outstanding to different responders. 605

A PLDM terminus that issues PLDM requests should be prepared to handle the order of responses that 606
may not match the order in which the requests were sent (that is, it should not automatically assume that 607
a response that it receives is in the order in which the request was sent). It should check to see that the 608
PLDM Type, PLDM Command Code, and Instance ID values in the response match up with a 609
corresponding outstanding command before acting on any parameters returned in the response. 610

The timing specifications shown in Table 6 are specific to PLDM request messages. The PLDM 611
responses are not retried. A “try” or “retry” of a request is defined as a complete transmission of the 612
PLDM request message. 613

Table 6 – Timing specifications for PLDM messages 614

Timing Specification Symbol Min Max Description

Number of request retries PN1 2 See
"Descrip-
tion"

The number of times a requester is
obligated to retry a request.

Total of three tries, minimum: the original try
plus two retries. The maximum number of
retries for a given request is limited by the
requirment that all retries shall occur within
PT3Max of the initial request.

Request-to-response time PT1 – 100 msec The amount of time a responder has to
begin transmission of a response message.

This interval is measured at the responder
from the end of the reception of the PLDM
request to the beginning of the transmission
of the response. This requirement is tested
under the condition where the responder
can successfully transmit the response on
the first try.

Platform Level Data Model (PLDM) Base Specification DSP0240

26 Published Version 1.1.0

Timing Specification Symbol Min Max Description

Time-out waiting for a response PT2 PT1Max+
2*PT4Max

PT3Min –
2*PT4Max

The amount of time a requester has to wait
for a response message.

This interval is measured at the requester
from the end of the successful transmission
of the PLDM request to the beginning of the
reception of the corresponding PLDM
response. This interval at the requester sets
the minimum amount of time that a
requester should wait before retrying a
PLDM request.

Note: This specification does not preclude
an implementation from adjusting the
minimum time-out waiting for a response to
a smaller number than PT2 based on
measured response times from responders.
The mechanism for doing so is outside the
scope of this specification.

Instance ID expiration interval PT3 5 sec [1] 6 sec This is the interval after which the Instance
ID for a given response will expire and
become reusable if a response has not
been received for the request. This is also
the maximum time that a responder tracks
an Instance ID for a given request from a
given requester.

Transmission Delay PT4 – 100 ms Time to take into account transmission
delay of a PLDM Message.

Measured as the time between the end of
the transmission of a PLDM message at the
transmitter to the beginning of the reception
of the PLDM message at the receiver.

Not ready retry delay PT5 250 ms – Time requestor must wait before retrying a
command when receiving completion code
ERROR_NOT_READY This interval is
measured as the time between when the
requester finishes receiving a response
containing the ERROR_NOT_READY
completion code and when the requeser
begins retransmitting a retry.

NOTE:There are no requirements for a
retry delay when a request receives a
response other than
ERROR_NOT_READY, or when a request
does not receive a response at all.

NOTE: [1] If a requester is reset, it may produce the same Instance ID for a request as one that was previously issued. To
guard against this, it is recommended that Instance ID expiration be implemented. Any request from a given requester
that is received more than PT3 seconds after a previous, matching request should be treated as a new request, not a
retry.

8 PLDM messaging control and discovery commands 615

The PLDM base definition supports a PLDM Type field that allows the commands to be grouped using a 616
PLDM Type. This section contains detailed descriptions for PLDM messages that are used for control and 617
discovery operations. The PLDM commands for PLDM messaging control and discovery are also defined 618
in this section. 619

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 27

Table 7 defines the PLDM command codes for PLDM messaging control and discovery. 620

Table 7 – PLDM messaging control and discovery command codes 621

Command Code Value Requirement Section

SetTID 0x01 Optional See 8.1.1.

GetTID 0x02 Mandatory See 8.1.2.

GetPLDMVersion 0x03 Mandatory See 8.2.

GetPLDMTypes 0x04 Mandatory See 8.3.

GetPLDMCommands 0x05 Mandatory See 8.4.

SelectPLDMVersion 0x06 Conditional 1 See 8.5

NegotiateTransferParameters 0x07 Conditional 2 See 8.6.3.

MultipartSend 0x08 Optional See 8.6.4.

MultipartReceive 0x09 Optional See 8.6.5.

Conditional requirements: 622

1. Implementing SelectPLDMVersion is mandatory only if a terminus advertises support for multiple 623
versions of any given PLDM type. 624

2. Implementing NegotiateTransferParameters is mandatory for PLDM Termini that support MultipartSend 625
or MultipartReceive for any version of any PLDM Type. 626

8.1 PLDM Terminus 627

A PLDM Terminus is defined as the point of communication termination for PLDM messages and the 628
PLDM functions associated with those messages. Given a PLDM terminus, a mechanism is required that 629
can uniquely identify each terminus so that the semantic information can be bound to that identification. 630
The Terminus ID (TID) is a value that identifies a PLDM terminus. TIDs are used in PLDM messages 631
when it is necessary to identify the PLDM terminus that is the source of the PLDM Message. TIDs are 632
defined within the scope of PLDM Messaging. 633

8.1.1 SetTID command (0x01) 634

The SetTID command is used to set the Terminus ID (TID) for a PLDM Terminus. This command is 635
typically only used by the PLDM Initialization Agent function. The command format is shown in Table 8. 636

Table 8 – SetTID command format 637

Byte Type Request Data

0 uint8 TID

Special value: 0x00, 0xFF = reserved.

Byte Type Response Data

0 enum8

completionCode

Possible values: { PLDM_BASE_CODES }

Platform Level Data Model (PLDM) Base Specification DSP0240

28 Published Version 1.1.0

8.1.2 GetTID command (0x02) 638

The GetTID command is used to retrieve the present Terminus ID (TID) setting for a PLDM Terminus. 639
The command format is shown in Table 9. 640

Table 9 – GetTID command format 641

Byte Type Request Data

0 – No request data

Byte Type Response Data

0 enum8

completionCode

possible value: { PLDM_BASE_CODES }

1 uint8 TID

special value: 0x00 – Unassigned TID, 0xFF – reserved

8.2 GetPLDMVersion (0x03) 642

The GetPLDMVersion command can be used to retrieve the PLDM base specification versions that the 643
PLDM terminus supports, as well as the PLDM Type specification versions supported for each PLDM 644
Type. The format of the request and response message parameters for this command is shown in 645
Table 10. 646

More than one version number can be returned for a given PLDM Type by the GetPLDMVersion 647
command. This enables the command to be used for reporting different levels of compatibility and for 648
backward compatibility with different specification versions. The individual specifications for the given 649
PLDM Type define the requirements for which version number values should be used for that PLDM 650
Type. Those documents define which earlier version numbers, if any, shall also be listed. 651

Generally, implementations that do not support SelectPLDMVersion should only report a single version 652
for a PLDM Type as there is no way without this command to target a particular version of the Type. 653
When interacting with a terminus that advertises support for more than one version of a PLDM Type but 654
does not support the SelectPLDMVersion command, the requestor should assume that commands sent 655
will be responded to following the highest version advertised as supported. Likewise, responders that 656
advertise support for more than one version of a PLDM Type and do not implement the 657
SelectPLDMVersion command should respond according to the highest version of the PLDM Type that 658
they support. 659

The command returns a completion code that indicates whether the PLDM Type number passed in the 660
request is supported. This enables the command to also be used to query the endpoint for whether it 661
supports a given PLDM Type. 662

Table 10 – GetPLDMVersion request and response message format 663

Byte Type Request Data

0:3 uint32 DataTransferHandle

This field is a handle that is used to identify PLDM version data transfer.

This handle is ignored by the responder when the TransferOperationFlag is set to
GetFirstPart.

4 enum8 TransferOperationFlag

This field is an operation flag that indicates whether this is the start of the transfer.

Value: {GetNextPart=0, GetFirstPart=1}

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 29

Byte Type Request Data

5 uint8 PLDMType

This field identifies the PLDM Type whose version information is being requested.

See DSP0245 for valid PLDMType values.

Byte Type Response Data

0 enum8

CompletionCode

 possible values:

 {

PLDM_BASE_CODES,

 INVALID_DATA_TRANSFER_HANDLE=128 (0x80),

 INVALID_TRANSFER_OPERATION_FLAG=129 (0x81),

 INVALID_PLDM_TYPE_IN_REQUEST_DATA=131(0x83)

}

1:4 uint32 NextDataTransferHandle

This field is a handle that is used to identify the next portion of PLDM version data transfer.

5 enum8 TransferFlag

This field is the transfer flag that indicates what part of the transfer this response represents.

Possible values: {Start=1, Middle=2, End=4, StartAndEnd = 5}

Variable –

Portion of PLDMVersionData (contains one or more version fields as described in Table 11)

See Table 11 for the format.

Table 11 – PLDM representation of PLDMVersionData 664

Byte Type Field

0:3 ver32 Version[0]

This field is the first entry of the version supported for the specified PLDM type.

… … …

4*(N-1):4*N-1 ver32 Version[N-1]

This field is the Nth entry of the version supported for the specified PLDM type.

4*N:4*N+3 uint32 PLDMVersionDataIntegrityChecksum

Integrity checksum on the PLDM version data. It is calculated starting at the first byte
of the PLDM representation of PLDMVersionData.

For this specification, CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16
+ x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3)
shall be used for the integrity checksum computation. The CRC computation involves
processing a byte at a time with the least significant bit first.

This command is defined in such a manner that it allows the PLDM version data to be transferred using a 665
sequence of one or more command or response messages. When more than one command is used to 666
transfer the PLDM version data, the response messages contain the non-overlapping contiguous portions 667
of PLDM version data as defined in Table 11. By combining the portions of PLDM version data from the 668
response messages, the entire PLDM version data can be reconstructed. 669

Platform Level Data Model (PLDM) Base Specification DSP0240

30 Published Version 1.1.0

8.3 GetPLDMTypes (0x04) 670

The GetPLDMTypes command can be used to discover the PLDM type capabilities supported by a PLDM 671
terminus and to get a list of the PLDM types that are supported. The request and response parameters 672
for this message are listed in Table 12. 673

The response to this command may be specific according to which transport endpoint over which the 674
request was received (that is, a device that supports a given PLDM Type on a transport endpoint may not 675
support that PLDM Type equally across all the transport endpoints that connect to the device). 676

Table 12 – GetPLDMTypes request and response message format 677

Byte Type Request Data

- - None

Byte Type Response Data

0 enum8

CompletionCode

 Possible values:

 { PLDM_BASE_CODES}

1:8 bitfield8[8] PLDMTypes

Each bit represents whether a given PLDM Type is supported:

 1b = PLDM Type is supported.

 0b = PLDM Type is not supported.

For bitfield8[N], where N = 0 to 7

 [7] – PLDM Type N*8+7 Supported

 [..] – …

 [1] – PLDM Type N*8+1 Supported

 [0] – PLDM Type N*8+0 Supported

8.4 GetPLDMCommands (0x05) 678

The GetPLDMCommands command can be used to discover the PLDM command capabilities supported 679
by aPLDM terminus for a specific PLDM Type and version as a responder. The request and response 680
parameters for this message are listed in Table 13. 681

The response to this command may be specific according to which transport endpoint over which the 682
request was received (that is, a device that supports a given PLDM Type on a transport endpoint may not 683
support that PLDM Type equally across all the transport endpoints that connect to the device). 684

Table 13 – GetPLDMCommands request and response message format 685

Byte Type Request Data

0 uint8 PLDMType

This field identifies the PLDM Type for which command support information is being
requested.

See DSP0245 for valid PLDMType values.

1:4 ver32 Version

This field identifies the version for the specified PLDM Type.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 31

Byte Type Response Data

0 enum8

CompletionCode

 Possible values:

 {

PLDM_BASE_CODES,

 INVALID_PLDM_TYPE_IN_REQUEST_DATA=131(0x83)

 INVALID_PLDM_VERSION_IN_REQUEST_DATA=132(0x84)

}

1:32 bitfield8[32] PLDMCommands (up to 256 commands supported for the specified PLDM Type)

Each bit represents whether a given PLDM command is supported:

 1b = PLDM command is supported.

 0b = PLDM command is not supported.

For bitfield8[N], where N = 0 to 31

 [7] – PLDM Command N*8+7 Supported

 [..] – …

 [1] – PLDM Command N*8+1 Supported

 [0] – PLDM Command N*8 Supported

8.5 SelectPLDMVersion (0x06) 686

The SelectPLDMVersion command can be used to specify the version of a PLDM type that a PLDM 687
endpoint shall use when interpreting request messages and providing response messages for PLDM 688
commands. The request and response parameters for this message are listed in Table 14. 689

A PLDM endpoint that supports multiple versions of a PLDM Type but has not received a 690
SelectPLDMVersion command for that Type shall interpret request messages and provide response 691
messages according to the highest version of the Type it supports. Similarly, any time PLDM is reset for a 692
terminus, it shall revert to the highest version of each Type it supports. 693

PLDM termini are not responsible for ensuring compatibility among the versions of PLDM types that they 694
are asked to use via this command. Even if version selection results in mutually incompatible types, it is 695
the requester’s responsibility to manage the resultant behavior. Termini are not obligated to track 696
compatibility between different versions of PLDM types. 697

Table 14 – SelectPLDMVersion request and response message format 698

Byte Type Request Data

0 uint8 PLDMType

This field identifies the PLDM Type for which version selection is being performed. This
command may not be used to select a version for PLDM type 0.

See DSP0245 for valid PLDM type values.

1:4 ver32 Version

This field identifies the version for the specified PLDM Type that the endpoint shall use for
interpreting request messages and providing response messages.

Platform Level Data Model (PLDM) Base Specification DSP0240

32 Published Version 1.1.0

Byte Type Response Data

0 enum8

CompletionCode

 Possible values:

 {

PLDM_BASE_CODES,

 INVALID_PLDM_TYPE_IN_REQUEST_DATA=131 (0x83),

 INVALID_PLDM_VERSION_IN_REQUEST_DATA=132 (0x84)

}

Response codes INVALID_PLDM_TYPE_IN_REQUEST_DATA and
INVALID_PLDM_VERSION_IN_REQUEST_DATA shall additionally be used to
indicate that a particular PLDM Type or version for that type is not supported.

8.6 Multipart transfer commands 699

The various commands defined in this clause support bulk transfers via the MultipartSend and 700
MultipartReceive commands. The MultipartSend and MultipartReceive commands use flags and data 701
transfer handles to perform multipart transfers of data. The transfer can be contiguous (one section) or 702
composed of multiple sections sent separately. Each section of a larger block of data that is transferred is 703
identified by its offset within the larger block so that both sender and receiver know what is being 704
transferred and how to process it. Each section in turn may comprise multiple parts of data (the amount 705
that can be sent in a single message). In multipart transfers, a data transfer handle identifies each part of 706
the transfer. Data transfer handle values are implementation specific. For example, an implementation 707
can use memory offsets or sequence numbers as data transfer handles. 708

Each multipart transfer is flagged with an indication of the PLDM Type on behalf of which the transfer is 709
occurring as well as a type-specific context field that differentiates different types of transfers within the 710
type. 711

8.6.1 Flag usage for MultipartSend 712

The following list shows some requirements for using NextTransferOperation, TransferFlag, 713
TransferContext, and DataTransferHandle fields in MultipartSend data transfers: 714

• Defining the initial DataTransferHandle and TransferContext for a multipart transfer is out of 715
scope for this specification. These fields are PLDM Type specific and should be documented 716
with the PLDM Type for the transfer. (Similarly, definition of section offsets and byte counts are 717
out of scope for this specification.) 718

• DataTransferHandles are opaque handles that are specific to PLDM Types and 719
TransferContexts. Recipients shall make no inferences about the numeric values of valid 720
DataTransferHandles. 721

• When sending the first part of data in the current section, the sender shall set the TransferFlag 722
in the request message to START (for a multi-part section) or START_AND_END (for a single- 723
part section). 724

• To request the next part in the current section, the responder shall set NextTransferOperation to 725
XFER_NEXT_PART in the response message. This may only be done if the TransferFlag in the 726
request message was set to START or MIDDLE. 727

• To request that transfer of the current section of data be restarted with a MultipartSend 728
command, the responder shall set NextTransferOperation to XFER_FIRST_PART in the 729
response message. NOTE: The ability of the responder to request that the transmission of a 730

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 33

section be restarted at any time means that the requester must retain data for the section until 731
the transfer is complete. 732

• To request retransmission of a part of data, such as upon detection of a checksum error, the 733
responder shall set NextTransferOperation to XFER_CURRENT_PART in the response 734
message. 735

• To convey that a part being sent is the last part of the current section, the requester shall set the 736
TransferFlag to END (for a multi-part section) or START_AND_END (for a single-part section). 737

• To acknowledge successful transfer of a section of data, the responder shall set 738
NextTransferOperation to XFER_COMPLETE. The transfer of the current section is complete 739
when the requester receives a response message with a success CompletionCode and 740
NextTransferOperation set to XFER_COMPLETE. 741

• The TransferFlag specified in the request for a MultipartSend command request message has 742
the following meanings: 743

– START, which is the first part of the data transfer for the current section 744

– MIDDLE, which is neither the first nor the last part of the data transfer for the current 745
section 746

– END, which is the last part of the data transfer for the current section 747

– START_AND_END, which is the first and the last part of the data transfer. In this case, the 748
transfer for the current section consists of a single part 749

8.6.2 Flag usage for MultipartReceive 750

The following list shows some requirements for using TransferOperationFlag, TransferFlag, and 751
DataTransferHandle in MultipartReceive data transfers: 752

• Defining the initial DataTransferHandle and TransferContext for a multipart transfer is out of 753
scope for this specification. These fields are PLDM Type specific and should be documented 754
with the PLDM Type for the transfer. (Similarly, definition of section offsets and byte counts are 755
out of scope for this specification.) 756

• DataTransferHandles are opaque handles that are specific to PLDM Types and 757
TransferContexts. Recipients shall make no inferences about the numeric values of valid 758
DataTransferHandles. 759

• To initiate transfer of a section of data with a MultipartReceive command, the requester shall set 760
TransferOperation to XFER_FIRST_PART in the request message. This flag may also be used 761
to request restart of the transfer for the current section. NOTE: The ability of the requester to 762
request that the transmission of a section be restarted at any time means that the responder 763
must retain data for the section until the transfer is complete. 764

• To request retransmission of the current part of data (such as upon detection of a checksum 765
error), the requestor shall set TransferOperation to XFER_CURRENT_PART in the request 766
message and shall set DataTransferHandle to the handle that was previously used with this 767
part. 768

• To request the next part of data, the requestor shall set TransferOperation to 769
XFER_NEXT_PART and shall set DataTransferHandle to the NextDataTransferHandle that was 770
obtained in the response to the previous MultipartReceive command for this data transfer. This 771
may only be done if TransferFlag in the previous response message was set to START or 772
MIDDLE. 773

• To acknowledge successful transfer of the current section of data, the requestor shall set 774
TransferOperation to XFER_COMPLETE. The requestor may initiate transfer of another section 775
at the same time by specifying RequestedSectionLengthBytes and RequestedSectionOffset for 776

Platform Level Data Model (PLDM) Base Specification DSP0240

34 Published Version 1.1.0

the new section In this case, the NextDataTransferHandle in the response message becomes 777
the initial handle for the new section. The transfer of the current section is complete when the 778
requester receives a response to a message in which TransferOperation is set to 779
XFER_COMPLETE. 780

• The TransferFlag specified in the response of a MultipartReceive command has the following 781
meanings: 782

– START, which is the first part of the data transfer for the current section 783

– MIDDLE, which is neither the first nor the last part of the data transfer for the current 784
section 785

– END, which is the last part of the data transfer for the current section 786

– START_AND_END, which is the first and the last part of the data transfer for the current 787
section 788

8.6.3 NegotiateTransferParameters (0x07) 789

The NegotiateTransferParameters command is used to establish transfer parameters and support for 790
multipart transfers. In the event that a MultipartSend or MultipartReceive command is issued before this 791
negotiation completes for a PLDM Type, the command shall be rejected by the receiving terminus. An 792
endpoint that does not support the NegotiateTransferParameters command shall be considered as not 793
supporting the MultipartSend and MultipartReceive commands, even if it reflects support for them in the 794
response to the GetPLDMCommands command. 795

This command is typically only used by the PLDM Initialization Agent function. Because responder’s 796
support for Multipart transfers for a PLDM Type may be limited to some versions of that Type, Initialization 797
Agent functions shall invoke this command after using any SelectPLDMVersion commands to determine 798
whether MultipartSend and MultipartReceive are to be used with that PLDM Type. 799

The PLDM Initialization Agent function may invoke this command multiple times in order to establish 800
different part sizes with different PLDM Types. The transfer part sizes established with each such 801
invocation only apply to the PLDM Types selected by the Initialization Agent function in 802
RequestorProtocolSupport. The part size value represents the size of the PLDM header and PLDM 803
payload; upper-level protocol and medium specific headers shall not be counted against this size. 804

The command format is shown in Table 15. 805

Table 15 – NegotiateTransferParameters command format 806

Byte Type Request Data

0..1 uint16 RequestorPartSize

Requestor’s maximum transfer part size for a single message in a multipart transfer. Upon
successful completion of this command, the requestor and responder shall use the lesser of
RequestorPartSize and ResponderPartSize as the part size for messages sent via the
MultipartSend and MultipartReceive commands.

The minimum part size is 256 bytes; a value of less than 256 bytes shall be interpreted as a
lack of support for the MultipartSend and MultipartReceive commands with all PLDM types
on the part of the requestor.

Implementations that support multipart transfers are strongly recommended to support at
least 512 bytes for the part size.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 35

Byte Type Request Data (continued)

2..9 bitfield8[8] RequestorProtocolSupport

Each bit represents whether multipart transfer with a given PLDM Type is supported by the
requestor and negotiation of transfer part size for that Type should proceed:

 1b = multipart transfer is supported and negotiation of transfer part size should proceed.

 0b = multipart transfer is not supported or negotiation of transfer part size should not
proceed with this invocation of the NegotiateTransferParameters command.

For bitfield8[N], where N = 0 to 7

 [7] – Multipart transfer with PLDM Type N*8+7 supported and negotiation should
proceed

 [..] – …

 [1] – Multipart transfer with PLDM Type N*8+1 supported and negotiation should
proceed

 [0] – Multipart transfer with PLDM Type N*8+0 supported and negotiation should
proceed

Upon successful completion of this command, the requestor and responder shall use the
PLDM base MultipartSend and MultipartReceive commands with PLDM Types where both
the requestor and the responder have indicated support and negotiated a part size.

Byte Type Response Data

0 enum8

completionCode

Possible values: { PLDM_BASE_CODES }

ERROR_INVALID_DATA: RequestorPartSize in the request message was less than 256
bytes or not a power of two.

1..2 uint16 ResponderPartSize

Responder’s maximum transfer part size for a single message in a multipart transfer. Upon
successful completion of this command, the requestor and responder shall use the lesser of
RequestorPartSize and ResponderPartSize as the part size for messages sent via the
MultipartSend and MultipartReceive commands.

The minimum part size is 256 bytes; a value of less than 256 bytes shall be interpreted as a
lack of support for the MultipartSend and MultipartReceive commands with all PLDM types
on the part of the responder. This indication may also be expressed by denying support for
the NegotiateTransferParameters command.

In the event that a requestor queries support for multiple PLDM Types and the responder
supports different maximum transfer part sizes for those Types, it shall respond with the
minimum transfer part size it supports across the supported Types.

Implementations that support multipart transfers are strongly recommended to support at
least 512 bytes for the part size.

Platform Level Data Model (PLDM) Base Specification DSP0240

36 Published Version 1.1.0

Byte Type Response Data (continued)

3..10 bitfield8[8] ResponderProtocolSupport

Each bit represents whether multipart transfer with a given PLDM Type queried by the
requestor is supported by the responder:

 1b = multipart transfer is supported.

 0b = multipart transfer is not supported or the requestor did not query support for this
Type.

For bitfield8[N], where N = 0 to 7

 [7] – Multipart transfer with PLDM Type N*8+7 supported

 [..] – …

 [1] – Multipart transfer with PLDM Type N*8+1 supported

 [0] – Multipart transfer with PLDM Type N*8+0 supported

Upon successful completion of this command, the requestor and responder shall use the
PLDM base MultipartSend and MultipartReceive commands with PLDM Types where both
the requestor and the responder have indicated support. The manner in which these
commands are to be used for a given PLDM type is documented in the specification
corresponding to that type.

8.6.4 MultipartSend (0x08) 807

This command enables a requestor to transmit a large volume of data to a responder in one or more 808
sections, each of which is broken into a series of single-message parts. In the event of a data checksum 809
error, the responder may ask the requestor to resend the current part or restart the transfer. Responders 810
may also abort transmissions or restart them entirely; motivations for and expected behavior with such 811
actions are protocol-specific and should be documented in the corresponding PLDM Type specification. 812

Table 16 – MultipartSend command format 813

Byte Type Request Data

0 uint8 PLDMType

The PLDM Type for the protocol under which this transfer is being performed.

1 enum8 TransferFlag

An indication of current progress within the transfer. The value START_AND_END indicates
that the entire transfer consists of a single part.

value: { START = 1, MIDDLE = 2, END = 4, START_AND_END = 5 }

2..5 uint32 TransferContext

A protocol-specific indication of the context in which this transfer is being performed. See the
documentation for the corresponding PLDM type for details of the way in which this field is
used.

6..9 uint32 DataTransferHandle

A handle to uniquely identify the part of data to be sent.

The DataTransferHandle supplied shall be one of: the initial handle, to begin or restart a
transfer; the most recently sent handle, to resend the previous part; or the
NextDataTransferHandle as specified in the previous part.

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 37

Byte Type Request Data (continued)

10..13 uint32 NextDataTransferHandle

The handle for the next part of data for this transfer.

Special value: zero (0x00000000) if no further data remains to be transferred in the current
section

14..17 uint32 SectionOffset

The start offset when initiating transfer of a new section.

Special value: Zero (0x00000000) if TransferFlag is not one of START or
START_AND_END.

18..21 uint32 SectionLengthBytes

The size in bytes of data to be supplied when initiating transfer of a new section.

Special value: Zero (0x00000000) if data size is unavailable or if TransferFlag is not one of
START or START_AND_END.

22..25 uint32 DataLengthBytes

The length in bytes N of data being sent in this part in the Data field. This value and the data
bytes associated with it shall not cause this request message to exceed the negotiated
maximum transfer part size (clause 8.6.3).

26..N+26 uint8[N] Data

The current part of data.

N+27..
N+30

uint32 DataIntegityChecksum

32-bit cumulative CRC for the entirety of data received so far for this section (all parts
concatenated together, excluding checksums). Shall be included with all part transfers.

When beginning a transfer of a new section of data within a single MultipartSend sequence,
the data integrity checksum for the previous section is not included in the calculation.

For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 +
x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be
used for the integrity checksum computation. The CRC computation involves processing a
byte at a time with the least significant bit first.

Byte Type Response Data

0 enum8 completionCode

Possible values: { PLDM_BASE_CODES, NEGOTIATION_INCOMPLETE=131 (0x83) }

Platform Level Data Model (PLDM) Base Specification DSP0240

38 Published Version 1.1.0

Byte Type Response Data (continued)

1 enum8 NextTransferOperation

The follow-up action that the responder is requesting of the requestor.
NextTransferOperation flags are described in more detail in clause 8.6.1.

• XFER_FIRST_PART: resend the initial part (restarting transmission of the section,
such as if the receiver had to reallocate a larger receive buffer and restart the
transfer)

• XFER_NEXT_PART: send the next part of data for the current section

• XFER_ABORT: stop the transmission and do not retry. The expected behavior for
an aborted transmission is PLDM type-specific.

• XFER_COMPLETE: transmission of the section completed normally. If there is
another section to transmit, the sender may begin sending it at this time.

• XFER_CURRENT_PART: resend the last part, such as if the checksum of data
cumulatively received did not match the DataIntegrityChecksum in the current part

value: { XFER_FIRST_PART = 0, XFER_NEXT_PART = 1, XFER_ABORT = 2,
XFER_COMPLETE = 3, XFER_CURRENT_PART = 4 }

8.6.5 MultipartReceive (0x09) 814

This command enables the requestor to receive a large volume of data from a responder in one or more 815
sections, each of which is broken into a series of single-message parts. In the event of a data checksum 816
error, the requestor may ask the responder to resend the current part or restart the transfer. Responders 817
may also abort transmissions or restart them entirely; motivations for and expected behavior with such 818
actions are protocol-specific and should be documented in the corresponding PLDM Type specification. 819

Table 17 – MultipartReceive command format 820

Byte Type Request Data

0 uint8 PLDMType

The PLDM Type for the protocol under which this transfer is being performed.

1 enum8 TransferOperation

The section of data requested for the transfer.

TransferOperation flags are described in more detail in clause 8.6.2.

• XFER_FIRST_PART: The requestor is asking that the section transfer begin or restart
from the beginning

• XFER_NEXT_PART: The requestor is asking for the next part of the current section

• XFER_ABORT: The requestor is requesting that the transfer be discarded. Handling
of aborted transfers is PLDM Type specific; see the documentation for the
corresponding PLDM type.

• XFER_COMPLETE: The requestor is acknowledging completion of transfer for the
current section of data and may be requesting another section of data

• XFER_CURRENT_PART: The requestor is asking for the part just sent to be
retransmitted, such as if the checksum of data cumulatively received did not match
the DataIntegrityChecksum in the current part

value: { XFER_FIRST_PART = 0, XFER_NEXT_PART = 1, XFER_ABORT = 2,
XFER_COMPLETE = 3, XFER_CURRENT_PART = 4 }

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 39

Byte Type Request Data (continued)

2..5 uint32 TransferContext

A protocol-specific indication of the context in which this transfer is being performed. See the
documentation the corresponding PLDM type for details of the way in which this field is used.

6..9 uint32 DataTransferHandle

A handle to uniquely identify the part of data to be received.

The DataTransferHandle supplied shall be one of:

• the initial handle, to begin or restart a transfer for a section of data

• the previous handle, when requesting retransmission with the XFER_CURRENT flag

• the NextDataTransferHandle as specified in the previous part, to obtain the next part

Special Value: Zero (0x00000000) when acknowledging completion of a section transfer with
the XFER_COMPLETE flag

10..13 uint32 RequestedSectionOffset

The requested start offset for a new section.

Special Value: Zero (0x00000000) if TransferOperation is not one of XFER_FIRST_PART or
XFER_COMPLETE. It may also be zero if TransferOperation is XFER_COMPLETE, the last
part was successfully received, and no further sections are to be transferred,

14..17 uint32 RequestedSectionLengthBytes

The size in bytes of data requested for a new section.

Special value: Zero (0x00000000) if data size is unavailable or if TransferOperation is not one
of XFER_FIRST_PART or XFER_COMPLETE. It may also be zero if TransferOperation is
XFER_COMPLETE, the last part was successfully received, and no further sections are to be
transferred,

Byte Type Response Data

0 enum8

completionCode

Possible values: { PLDM_BASE_CODES, NEGOTIATION_INCOMPLETE=131 (0x83) }

1 enum8

TransferFlag

value: { START = 1, MIDDLE = 2, END = 4, START_AND_END = 5,
ACKNOWLEDGE_COMPLETION = 8 }

2..5 uint32 NextDataTransferHandle

The handle for the next part of data for this section transfer.

Special Value: Zero (0x00000000) if no further data remains for the transfer of this section.

In response to a request message where TransferOperation was set to XFER_COMPLETE
that requested transfer of another section of data, this shall be the initial DataTransferHandle
for that section.

6..9 uint32 DataLengthBytes

The length in bytes N of data being sent in this part in the Data field. This value and the data
bytes associated with it shall not cause this response message to exceed the negotiated
maximum transfer part size (clause 8.6.3).

This value shall be zero in response to a request message where TransferOperation was set to
XFER_COMPLETE.

Platform Level Data Model (PLDM) Base Specification DSP0240

40 Published Version 1.1.0

Byte Type Response Data (continued)

10..
N+10

uint8[N] Data

The current part of data. This field shall be omitted in response to a request message where
TransferOperation was set to XFER_COMPLETE.

N+11..
N+14

uint32 DataIntegrityChecksum

32-bit cumulative CRC for the entirety of data received so far for this section (all parts
concatenated together, excluding checksums). Shall be included with all part transfers.

When beginning a transfer of a new section of data within a single MultipartReceive sequence,
the data integrity checksum for the previous section is not included in the calculation.

For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12
+ x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used
for the integrity checksum computation. The CRC computation involves processing a byte at a
time with the least significant bit first.

This field shall be omitted in response to a request message where TransferOperation was set
to XFER_COMPLETE.

9 PLDM messaging control and discovery examples 821

The GetPLDMVersion command (see 8.2) for transferring PLDM version data supports multipart 822
transfers. The GetPLDMVersion command uses flags and data transfer handles to perform multipart 823
transfers. The following requirements apply to the usage of TransferOperationFlag, TransferFlag, and 824
DataTransferHandle for a given data transfer: 825

1) For initiating a data transfer (or getting the first part of data) by using a Get* command, the 826
TransferOperationFlag shall be set to GetFirstPart in the request of the Get* command. 827

• For transferring any part of the data other than the first part by using a Get* command, the 828
TransferOperationFlag shall be set to GetNextPart and the DataTransferHandle shall be 829
set to the NextDataTransferHandle that was obtained in the response of the previous Get* 830
command for this data transfer. 831

• The TransferFlag specified in the response of a Get* command has the following 832
meanings: 833

– Start, which is the first part of the data transfer. 834

– Middle, which is neither the first nor the last part of the data transfer. 835

– End, which is the last part of the data transfer. 836

– StartAndEnd, which is the first and the last part of the data transfer. 837

• The requester shall consider a data transfer complete when the TransferFlag in the 838
response of a Get* command is set to End or StartAndEnd. 839

EXAMPLE 1: The example in Figure 2 shows how multipart transfers can be performed using the generic mechanism 840
defined in the GetPLDMVersion command. In Figure 2, the PLDM version data is transferred in three 841
parts. Figure 2 shows the flow of the data transfer. 842

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 41

Requester Responder

GetPLDMVersion Response

(CompletionCode = SUCCESS, NextDataTransferHandle= 0x00000005, TransferFlag = Start,

1
st

 Part of PLDMVersionData)

GetPLDMVersion Response

(CompletionCode = SUCCESS, NextDataTransferHandle= 0x00000001, TransferFlag = Middle,

2
nd

 Part of PLDMVersionData)

GetPLDMVersion Response

(CompletionCode = SUCCESS, NextDataTransferHandle= 0x00000002, TransferFlag = End,

3
rd

Part of PLDMVersionData)

 843

Figure 2 – Example of multipart PLDM version data transfer using the GetPLDMVersion command 844

EXAMPLE 2: Figure 3 shows an example sequence of steps performed by a requester to discover the PLDM versions 845
and types supported by the responder as well as the commands supported for each PLDM type. 846

In the example, the following steps are performed by the requester: 847

1) The requester first uses the GetTID command to get the PLDM Terminus ID of the responder. 848

2) The requester then uses GetPLDMTypes to discover the PLDM types supported by the 849
responder. (In the example shown in Figure 3, the responder supports two PLDM types, PLDM 850
Type 0 and PLDM Type 1.) 851

3) For each PLDM type that is supported by the responder, the requester uses GetPLDMVersion 852
and GetPLDMCommands to discover the supported versions of the specifications for the PLDM 853
type and the supported PLDM commands for the specific PLDM version and type. In this 854
example, the responder supports only one version of the specification (1.0.0) for each PLDM 855
Type. 856

Platform Level Data Model (PLDM) Base Specification DSP0240

42 Published Version 1.1.0

Requester Responder

GetTID Request

GetTID Response

GetPLDMTypes Request

GetPLDMVersion Request (for PLDM Type 0)

GetPLDMVersion Response (indicates that one version 1.0.0 is supported for the PLDM Type 0)

GetPLDMCommands Request (for PLDM Type 0 version 1.0.0)

GetPLDMVersion Request (for PLDM Type 1)

GetPLDMVersion Response (indicates that one version 1.0.0 is supported for the PLDM Type 1)

GetPLDMCommands Request (for PLDM Type 1 version 1.0.0)

GetPLDMCommands Response

GetPLDMCommands Response

GetPLDMTypes Response (indicates PLDM Type 0 and 1 are supported)

 857

Figure 3 – PLDM discovery command example 858

DSP0240 Platform Level Data Model (PLDM) Base Specification

Version 1.1.0 Published 43

ANNEX A 859

(Informative) 860

 861

 862

Change log 863

Version Date Description

1.0.0 2008-04-23

1.1.0 2021-02-11 • Add standard string types to baseline list of PLDM data types

• Add enum4 to baseline list of PLDM data types

• Add contributors list

• Add support for unknown timestamp value

• Clarify use of D/Rq bits in PLDM message headers

• Add timing parameter PT5 for time delay between retries

• Add common multipart transfer commands

• Add SelectPLDMVersion command to enable concurrent support of
multiple versions of a PLDM type

 864

	DSP0004
	Ref_DMTF_DSP0223
	DSP0241
	DSP0245
	Ref_DMTF_DSP1001
	Ref_DMTF_DSP4004
	rfc4122
	Ref_IETF_RFC2781
	Ref_IETF_RFC3629
	Ref_ISO_8859_1
	ACPI
	IPMI
	ISO2
	UML
	MCTPendpoint
	PhysicalTransportBinding
	PLDMMessage
	PLDMMessagePayload
	UUID

