

 1

Document Identifier: DSP0237 2

Date: 2020-04-06 3

Version: 1.2.0 4

Management Component Transport Protocol 5

(MCTP) SMBus/I2C Transport Binding 6

Specification 7

Supersedes: 1.1.0 8

Document Class: Normative 9

Document Status: Published 10

Document Language: en-US 11

MCTP SMBus/I2C Transport Binding Specification DSP0237

2 Published Version 1.2.0

 12

Copyright Notice 13

Copyright © 2009, 2017, 2020 DMTF. All rights reserved. 14

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 15
management and interoperability. Members and non-members may reproduce DMTF specifications and 16
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 17
time, the particular version and release date should always be noted. 18

Implementation of certain elements of this standard or proposed standard may be subject to third party 19
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 20
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 21
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 22
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 23
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 24
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 25
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 26
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 27
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 28
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 29
implementing the standard from any and all claims of infringement by a patent owner for such 30
implementations. 31

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 32
such patent may relate to or impact implementations of DMTF standards, visit 33
http://www.dmtf.org/about/policies/disclosures.php. 34

PCI-SIG, PCIe, and the PCI HOT PLUG design mark are registered trademarks or service marks of PCI-35
SIG. 36

All other marks and brands are the property of their respective owners. 37

This document’s normative language is English. Translation into other languages is permitted. 38

 39

http://www.dmtf.org/about/policies/disclosures.php

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 3

CONTENTS 40

Foreword ... 5 41

Introduction.. 6 42

1 Scope .. 7 43

2 Normative references .. 7 44

3 Terms and definitions .. 7 45

4 Symbols and abbreviated terms .. 8 46

5 Conventions .. 10 47
5.1 Reserved and unassigned values ... 10 48
5.2 Byte ordering ... 10 49

6 MCTP over SMBus/I2C transport .. 11 50
6.1 Terminology .. 11 51
6.2 Transport binding use with I2C .. 11 52
6.3 MCTP packet encapsulation ... 12 53
6.4 Bridges and packet formatting .. 13 54
6.5 MCTP support discovery... 14 55
6.6 Support for fixed-address devices .. 14 56
6.7 Supported media ... 14 57
6.8 Physical address format for MCTP control messages .. 15 58
6.9 Get endpoint ID medium-specific information ... 15 59
6.10 Bus owner address ... 15 60
6.11 Bus address assignment .. 15 61
6.12 SMBus/I2C considerations for MCTP messages .. 19 62
6.13 Fairness arbitration ... 20 63
6.14 NACK window ... 21 64
6.15 Fairness arbitration requirements for MCTP bridges .. 22 65
6.16 Fairness arbitration requirements for non-bridge endpoints ... 23 66
6.17 Fairness arbitration timing .. 24 67
6.18 MCTP packet timing requirements ... 25 68
6.19 MCTP control message timing requirements.. 27 69
6.20 "Stuck 0" condition handling ... 29 70
6.21 MCTP over SMBus/I2C protocol anti-aliasing ... 29 71
6.22 Well-known and reserved slave addresses .. 30 72
6.23 Fixed address allocation ... 31 73
6.24 Recommended address range allocation for computer systems ... 32 74

ANNEX A (informative) Notation ... 36 75

ANNEX B (informative) Change log .. 37 76

 77

Figures 78

Figure 1 – MCTP over SMBus/I2C packet format ... 12 79

Figure 2 – Address assignment flow ... 19 80

Figure 3 – Allowed byte range for first NACK'd byte ... 21 81

Figure 4 – Fairness arbitration timing measurement for SMBus and I2C ... 24 82

Figure 5 – Example system configuration ... 32 83

 84

MCTP SMBus/I2C Transport Binding Specification DSP0237

4 Published Version 1.2.0

Tables 85

Table 1 – Packet header field descriptions ... 12 86

Table 2 – Supported media ... 15 87

Table 3 – Physical address format .. 15 88

Table 4 – Medium-specific information ... 15 89

Table 5 – Fairness arbitration timing values for 100 kHz SMBus/I2C ... 24 90

Table 6 – Fairness arbitration timing values for 400 kHz I2C .. 25 91

Table 7 – Fairness arbitration timing values for 1MHz I2C.. 25 92

Table 8 – Timing specifications for MCTP packets on SMBus/I2C ... 26 93

Table 9 – Timing specifications for MCTP control messages on SMBus ... 27 94

Table 10 – Well-known and reserved slave addresses .. 30 95

Table 11 – Slave address allocation for computer systems ... 34 96

 97

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 5

Foreword 98

The Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification 99
(DSP0237) was prepared by the PMCI Working Group. 100

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 101
management and interoperability. 102

Acknowledgments 103

The DMTF acknowledges the following individuals for their contributions to this document: 104

Editor: 105

• Yuval Itkin – Mellanox Technologies 106

Contributors: 107

• Alan Berenbaum – SMSC 108

• Patrick Caporale – Lenovo 109

• Phil Chidester – Dell Inc 110

• Edward Klodnicki - IBM 111

• Joe Kozlowski – Dell Inc 112

• John Leung - Intel Corporation 113

• Eliel Louzoun – Intel Corporation 114

• Patrick Schoeller – Hewlett Packard Enterprise 115

• Hemal Shah - Broadcom Limited 116

• Tom Slaight – Intel Corporation 117

• Yi Zeng – Intel Corporation 118

 119

MCTP SMBus/I2C Transport Binding Specification DSP0237

6 Published Version 1.2.0

Introduction 120

The Management Component Transport Protocol (MCTP) over SMBus/I2C transport binding defines a 121
transport binding for facilitating communication between platform management subsystem components 122
(e.g., management controllers, managed devices) over SMBus/I2C. 123

The MCTP Base Specification (MCTP) describes the protocol and commands used for communication 124
within, and the initialization of, an MCTP network. The MCTP over SMBus/I2C transport binding definition 125
in this specification includes a packet format, physical address format, message routing, and discovery 126
mechanisms for MCTP over SMBus/I2C communications. 127

 128

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 7

Management Component Transport Protocol (MCTP) 129

SMBus/I2C Transport Binding Specification 130

1 Scope 131

This document provides the specifications for the Management Component Transport Protocol (MCTP) 132
transport binding for SMBus/I2C. 133

2 Normative references 134

The following referenced documents are indispensable for the application of this document. For dated or 135
versioned references, only the edition cited applies (including any corrigenda or DMTF update versions) 136
applies. For references without a date or version, the latest published edition of the referenced document 137
(including any corrigenda or DMTF update versions) applies. 138

DMTF DSP0136, Alert Standard Format Specification 2.0, 139
https://www.dmtf.org/sites/default/files/standards/documents/DSP0136.pdf 140

DMTF, DSP0236, Management Component Transport Protocol (MCTP) Base Specification 1.3, MCTP, 141
http://www.dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.pdf 142

DMTF, DSP0239, Management Component Transport Protocol (MCTP) IDs and Codes 1.4, MCTP_ID, 143
http://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.4.pdf 144

IPMI Consortium, Intelligent Platform Management Interface Specification, Second Generation 2.0, 2006, 145
ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf 146

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 147
http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype 148

NXP Semiconductors, I2C-bus specification and user manual, 4 April 2014 149
http://www.nxp.com/documents/user_manual/UM10204.pdf 150

System Management Bus (SMBus) Specification, version 3.1 19-Mar-2018 151
http://smbus.org/specs/SMBus_3_1_20180319.pdf 152

3 Terms and definitions 153

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 154
are defined in this clause. 155

The terms "shall" ("required"), "shall not," "should" ("recommended"), "should not" ("not recommended"), 156
"may," "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 157
in ISO/IEC Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, 158
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 159
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 160
alternatives shall be interpreted in their normal English meaning. 161

The terms "clause," "subclause," "paragraph," and "annex" in this document are to be interpreted as 162
described in ISO/IEC Directives, Part 2, Clause 6. 163

https://www.dmtf.org/sites/default/files/standards/documents/DSP0136.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.4.0.pdf
ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf
http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.nxp.com/documents/user_manual/UM10204.pdf

MCTP SMBus/I2C Transport Binding Specification DSP0237

8 Published Version 1.2.0

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 164
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 165
not contain normative content. Notes and examples are always informative elements. 166

4 Symbols and abbreviated terms 167

The following symbols and abbreviations are used in this document. 168

4.1 169

ACK 170

acknowledge 171

4.2 172

ARP 173

Address Resolution Protocol 174

4.3 175

ASF 176

Alert Standard Format 177

4.4 178

BMC 179

baseboard management controller 180

4.5 181

EEPROM 182

Electrically Erasable Programmable Read-Only Memory 183

4.6 184

EID 185

endpoint identifier 186

4.7 187

I2C 188

Inter-Integrated Circuit 189

4.8 190

I/O 191

input/output 192

4.9 193

IPMB 194

Intelligent Platform Management Bus 195

4.10 196

IPMI 197

Intelligent Platform Management Interface 198

4.11 199

kHz 200

kilohertz 201

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 9

4.12 202

LSb 203

least significant bit 204

4.13 205

LSB 206

least significant byte 207

4.14 208

max 209

maximum 210

4.15 211

MCTP 212

Management Component Transport Protocol 213

4.16 214

min 215

minimum 216

4.17 217

ms 218

millisecond 219

4.18 220

MSB 221

most significant byte 222

4.19 223

MTU 224

Maximum Transmission Unit 225

4.20 226

NACK 227

not acknowledge 228

4.21 229

PCI 230

peripheral component interconnect 231

4.22 232

PCIe® 233

PCI Express™ 234

4.23 235

PEC 236

packet error code 237

4.24 238

PMCI 239

Platform Management Component Intercommunications 240

MCTP SMBus/I2C Transport Binding Specification DSP0237

10 Published Version 1.2.0

4.25 241

PSA 242

persistent slave address 243

4.26 244

rsvd 245

reserved (not case sensitive) 246

4.27 247

SCL 248

serial clock 249

4.28 250

SDA 251

serial data 252

4.29 253

sec 254

second 255

4.30 256

SEEPROM 257

serial EEPROM 258

4.31 259

SMBus 260

System Management Bus 261

4.32 262

UDID 263

unique device identifier 264

5 Conventions 265

The conventions described in the following clauses apply to this specification. 266

5.1 Reserved and unassigned values 267

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other 268
numeric ranges are reserved for future definition by the DMTF. 269

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 270
(zero) and ignored when read. 271

5.2 Byte ordering 272

Unless otherwise specified, byte ordering of multibyte numeric fields or bit fields is "Big Endian" (that is, 273
the lower byte offset holds the most significant byte, and higher offsets hold lesser significant bytes). 274

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 11

6 MCTP over SMBus/I2C transport 275

The MCTP over SMBus/I2C transport binding defines how MCTP packets are delivered over a physical 276
SMBus or I2C medium using SMBus transactions. This includes how physical addresses are used, how 277
fixed addresses are accommodated, how physical address assignment is accomplished for hot-plug or 278
other devices that require dynamic physical address assignment, and how MCTP support is discovered. 279
Timing specifications for bus and MCTP control operations are also given, and a "fairness" protocol is 280
defined for the purpose of avoiding deadlock and starvation/lockout situations among MCTP endpoints. 281

The binding has been designed to be able to share the same bus as devices communicating using earlier 282
SMBus/I2C management protocols such as Alert Standard Format (ASF) and IPMI, and with vendor-283
specific devices using SMBus/I2C protocols. The specifications can also allow a given device to 284
incorporate non-MCTP SMBus functions alongside MCTP. This is described in more detail in 6.21. 285

6.1 Terminology 286

According to SMBus, SMBus devices are categorized as follows, where Address Resolution Protocol 287
(ARP) refers to the SMBus Address Resolution Protocol (a dynamic slave address assignment protocol) 288
and UDID refers to a "unique device identifier", a 128-bit value that a device uses during the ARP process 289
to uniquely identify itself. Because these protocols are implemented with command transactions that are 290
run on top of the SMBus physical specification, it is possible to use these protocols on devices that 291
support an I2C physical interface. 292

• ARP-capable 293

SMBus term indicating a device that supports all SMBus ARP commands with the exception of 294
the optional Host Notify command. The slave address is assignable. The device supports both 295
Reset commands. 296

• Fixed and Discoverable 297

SMBus term indicating a device supports the Prepare to ARP, directed Get UDID, general Get 298
UDID, and Assign Address commands. The slave address is fixed; the device will accept the 299
Assign Address command but will not allow address reassignment. The device supports both 300
Reset commands. 301

• Fixed - Not Discoverable 302

SMBus term indicating a device supports the directed Get UDID command. The slave address 303
is fixed. 304

• Non-ARP-capable 305

SMBus term indicating a device does not support any ARP commands. The slave address is 306
fixed. 307

• Fixed Address 308

For this specification, this term is be used to refer to any device that uses a fixed slave address, 309
without distinguishing whether it is "Fixed and Discoverable", "Fixed, not Discoverable", or 310
"Non-ARP-capable". 311

6.2 Transport binding use with I2C 312

The transport binding defined in this specification has also been designed to be able to work with 313
standard-mode fast-mode (400 kHz) and Fast-mode Plus (1MHz) I2C buses that use 7-bit addressing; 10-314
bit addressing is not supported. This binding has not been specified for use with high-speed I2C 315
specifications. 316

MCTP SMBus/I2C Transport Binding Specification DSP0237

12 Published Version 1.2.0

6.3 MCTP packet encapsulation 317

All MCTP transactions are based on the SMBus Block Write bus protocol. The first 8 bytes make up the 318
packet header. The first three fields—Destination Slave Address, Command Code, and Length—map 319
directly to SMBus functional fields. The remaining header and payload fields map to SMBus Block Write 320
"Data Byte" fields, as indicated in Figure 1. Hence, the inclusion of the Source Slave Address in the 321
header is specified by MCTP rather than SMBus. This is done to facilitate addressing required for 322
establishing communications back to the message originator. 323

7

+0

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

+1 +2 +3

Command Code =

MCTP = 0Fh
Byte Count0

Destination Slave

Address

Source Slave

Address
1Byte 1 >

Byte 5 >

Byte 9 >

Byte N >

Message

Header

 Message

 Data

PEC

Source

Endpoint ID

Destination

Endpoint ID

S

O

M

E

O

M

T

O

Msg

Tag

Pkt

Seq

#

Msg Type

MCTP

Reserved

Hdr

Version

I
C

Message Integrity Check

 324

Figure 1 – MCTP over SMBus/I2C packet format 325

Table 1 – Packet header field descriptions 326

Byte
Block Write
Field(s) Description

1 Slave Address

Wr

[7:1] SMBus Destination Slave Address: The slave address of the target
device for the local SMBus link

[0]: SMBus R/W# bit: Shall be set to 0b as all MCTP messages use

SMBus write transactions.

2 Command Code Command Code: SMBus Command Code

All MCTP over SMBus messages use a command code of 0x0F.

3 Byte Count Byte Count: Byte count for the SMBus Block Write protocol transaction that
is carrying the MCTP packet content.

This value is the count of bytes that follow the Byte Count field up to,
but not including, the PEC byte. For example, if the MCTP packet
payload length (starting with byte 9) is 64 bytes, the value in the Byte
Count field would be 69. (The count of 69 accounts for 64 bytes of
MCTP packet payload plus the five bytes [bytes 4 through 8,
inclusive] that comprise the bytes of the SMBus-specific header and
MCTP header that follow the Byte Count field.)

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 13

Byte
Block Write
Field(s) Description

4 Data Byte 1 SMBus Source Slave address

[7:1] : For the local SMBus link, the slave address of the source device.

[0]: This bit shall be set to 1b. The value enables MCTP to be

differentiated from IPMI over SMBus and IPMB (IPMI over I2C)
protocols.

5 Data Byte 2 [7:4] MCTP reserved: This nibble is reserved for definition by the MCTP
Base Specification.

[3:0] MCTP header version:

Set to 0001b for MCTP devices that are conformant to the MCTP
Base Specification 1.0 and this version of the SMBus transport
binding.

All other values = Reserved.

6 Data Byte 3 Destination endpoint ID (*)

7 Data Byte 4 Source endpoint ID (*)

8 Data Byte 5 [7] SOM: Start Of Message flag (*)

[6] EOM: End Of Message flag (*)

[5:4] Packet sequence number (*)

[3] Tag Owner (TO) bit (*)

[2:0] Message tag (*)

9 Data Byte 6 [7] IC: Integrity Check bit (*)

[6:0] Message type (*)

10:N-1 Data Bytes 7:M Message header and data (*)

N PEC Packet error code (PEC): The PEC as defined in the SMBus 2.0
Specification. All MCTP transactions shall include a PEC byte. The PEC
byte shall be transmitted by the source and checked by the destination.

(*) Indicates a field that is defined by the MCTP Base Specification.

6.4 Bridges and packet formatting 327

As an MCTP packet travels through a bridge from one SMBus/I2C port to another, the bridge leaves all 328
packet header and message header and data fields alone with the exception of the source and 329
destination slave address, which shall be modified to route across the intended bus/link. When an MCTP 330
bridge forwards a message from an input port to an output port, it replaces the destination slave address 331
with the targeted slave on the destination bus, and replaces the source slave address with the bridge’s 332
slave address. 333

The MCTP SMBus/I2C bridge shall re-calculate the PEC byte to account for changes in the source and 334
destination slave address fields. 335

A similar process is used when bridging between different media. The physical addressing and header 336
information gets changed by the bridge to match the requirements of the target bus, and any packet-level 337
integrity check information is also updated. 338

MCTP SMBus/I2C Transport Binding Specification DSP0237

14 Published Version 1.2.0

6.5 MCTP support discovery 339

All SMBus devices that support an MCTP endpoint and the SMBus Get UDID command for a particular 340
SMBus/I2C interface (that is, devices with ARP-capable, fixed and discoverable, or fixed-not discoverable 341
interfaces) are required to have their MCTP support discoverable through the Get UDID command. To do 342
this, endpoints shall return a value of 1b in bit 5 (the ASF bit) in the Interface field in the Get UDID 343

command. 344

Once support for ASF has been indicated, an MCTP control message (for example, Get MCTP Version 345
Support) can be issued to the device to determine whether it supports MCTP. The SMBus command byte 346
for MCTP packets uses a value that has been allocated by the DMTF for MCTP use and does not overlap 347
values used for ASF. This enables older devices that indicate ASF support to be queried for MCTP 348
support without conflict. This is described in more detail in 6.6. Devices that do not support the Get UDID 349
command will need to have their support for MCTP configured into the bus owner as described in 6.6. 350

I2C devices can also support the SMBus protocols and commands for being an ARP-able device that is 351
also discoverable as an MCTP device. This is required for hot-plug I2C devices using MCTP. 352

6.6 Support for fixed-address devices 353

MCTP bus owners shall include nonvolatile options to record the addresses used by fixed-address 354
devices on SMBus/I2C buses that they own, and which of those devices support MCTP. 355

For non-MCTP devices, the MCTP bus owner needs this information to know which fixed addresses to 356
avoid when performing SMBus ARP for the bus. (Alternatively, the bus owner could be configured with a 357
range of SMBus slave addresses that the bus owner is allowed to allocate from.) 358

For MCTP devices, the bus owner needs this information to perform EID assignment and, if the bus 359
owner is also an MCTP bridge, routing table initialization and operation. 360

For fixed-address MCTP devices that do not support the Get UDID command (that is, non-ARP-capable 361
devices), the bus owner needs to also be configured with information that identifies the device as 362
supporting MCTP. 363

For fixed-address devices that support the SMBus Get UDID command (that is, devices with ARP-364
capable, Fixed and Discoverable, or Fixed-Not Discoverable SMBus interfaces) the bus owner can either 365
discover whether the device supports MCTP by using the discovery approach described in 6.5, or could 366
have this information configured at the same time that the slave address information for the fixed-address 367
device is provided. 368

It is recommended that general-purpose devices that act as MCTP bus owners allow being configured to 369
support at least 16 different fixed-address devices for each SMBus/I2C bus they own. This number would 370
include both MCTP and non-MCTP devices. 371

6.7 Supported media 372

This physical transport binding has been designed to work with the media specified in DSP0239. Table 2 373
quotes relevant physical media identifiers from DSP0239. In case of any contradiction DSP0239 shall be 374
used as the normative definition. Use of this binding with other types of physical media is not covered by 375
this specification. At least one of the physical media identifiers listed in Table 2 shall be supported to 376
comply with this specification. 377

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 15

Table 2 – Supported media 378

Physical Media Identifier Description

0x01 SMBus 100 kHz compatible

0x02 SMBus + I2C 100 kHz compatible

0x03 I2C 100 kHz compatible

0x04 I2C 400 kHz compatible

0x05 SMBus + I2C 1 MHz compatible

6.8 Physical address format for MCTP control messages 379

The address format shown in Table 3 shall be used for MCTP control commands that require a physical 380
address parameter to be returned for a bus that uses this transport binding with one of the supported 381
media types listed in 6.7. This includes commands such as the Resolve Endpoint ID, Routing Information 382
Update, and Get Routing Table Entries commands. 383

Table 3 – Physical address format 384

Format Size Layout and Description

1 byte
[7:1] slave address bits

[0] 0b

6.9 Get endpoint ID medium-specific information 385

The medium-specific information as shown in Table 4 shall be used for the medium-specific Information 386
field returned in the response to the Get Endpoint ID MCTP control message. 387

Table 4 – Medium-specific information 388

Description

[7:1] reserved

[0] fairness arbitration support (see 6.13)

 0b = not supported

 1b = supported

6.10 Bus owner address 389

In order to be the target of the SMBus Notify ARP Master protocol transaction the MCTP bus owner shall 390
be configurable to be accessed at the SMBus host slave address. This configuration does not need to be 391
used if the bus implementation does not include any MCTP devices that require dynamic address 392
assignment of their slave address. For more information, see 6.11.4. 393

The bus owner may use a different, second slave address for all other MCTP communication functions. 394

6.11 Bus address assignment 395

This clause describes the configuration, setup, and operation of communication between MCTP 396
endpoints using SMBus/I2C as the communication medium. 397

MCTP SMBus/I2C Transport Binding Specification DSP0237

16 Published Version 1.2.0

6.11.1 Slave addresses 398

Each device on SMBus/I2C shall have a slave address to be the target of transactions by bus masters. 399
The MCTP transport protocol solely utilizes Master Write transactions to transfer MCTP packets between 400
MCTP endpoints. For endpoint "A" to send an MCTP packet to endpoint "B", endpoint A shall master the 401
bus and issue a Block-Write transaction to the slave address of endpoint B. Similarly, for endpoint B to 402
send an MCTP packet to endpoint A, it shall master the bus and issue a Block-Write transaction to the 403
slave address of endpoint A. Thus, bi-directional transfer of MCTP packets requires that both sides of the 404
communication have slave addresses. 405

Device support for slave addresses can be of two general types: fixed or assignable. Devices with 406
assignable addresses (also referred to as "ARP-capable" or "ARP-able") can use the SMBus ARP. The 407
entity that assigns slave addresses to ARP-able devices is referred to as the "ARP master". 408

A bus can include a mix of fixed-address and ARP-able devices. Most fixed-address devices do not 409
include a discovery mechanism, and neither SMBus nor I2C require one. Therefore, for a generic bus 410
implementation that support ARP-able devices (such as SMBus to PCI/PCIe connectors) the ARP master 411
needs to know what ranges of addresses are being used for fixed-address devices so that it doesn’t give 412
an ARP-able device an address that conflicts with a fixed-address device. 413

This transport binding allows for non-MCTP devices (both fixed address and ARP-able) to reside on the 414
same bus segment used for MCTP devices. The use and assignment of slave addresses shall therefore 415
be compatible with pre-existing devices. To accomplish this, the following approach is used for managing 416
devices on a bus that supports MCTP. 417

6.11.2 Well-known and reserved slave addresses 418

The SMBus and I2C specifications define certain slave addresses that should either be avoided by 419
devices or are reserved (not to be used as a general device slave address) because those addresses are 420
related to functions that are used by MCTP. These addresses are listed in Table 10. 421

6.11.3 Fixed address recommendations for device manufacturers 422

MCTP may be used within a typical computer system application where the motherboard/baseboard may 423
come from one supplier, the chassis from another supplier, and possibly add-in modules from yet 424
another. 425

Referring to Table 11, it is thus recommended that devices that use fixed addresses and are targeted for 426
uses that can include baseboard (B), chassis/system (C), and add-in (A) applications are configurable to 427
cover for at least three different "B" addresses, at least three different "C" addresses, and at least two 428
different "A" addresses to help avoid address conflicts in those applications. 429

6.11.4 Dynamic address assignment (SMBus ARP) support 430

MCTP buses that support connections to standard PCI/PCIe add-in cards are required by the PCI 431
specifications to support SMBus ARP (be ARP-capable) to allow the devices to be dynamically assigned 432
addresses to avoid address conflicts and eliminate the need for manual configuration of addresses. 433
Figure 2 presents an overview of the address assignment process. 434

6.11.5 Devices supporting multiple interfaces 435

Devices that support multiple, separate SMBus or I2C interfaces where the interfaces are intended to be 436
connected to the same bus shall meet the following requirements: 437

• The interfaces shall be either be ARP-capable or be fixed-address interfaces that are configured 438
to use a different slave address for each interface. 439

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 17

• If the interfaces support SMBus ARP, (as either ARP-able or ARP-enumerable devices) a 440
different SMBus UDID shall be used for each SMBus ARP-able interface. 441

NOTE Devices that have internal hardware interfaces that may be implemented as separate blocks but are 442
designed to share a slave address are not considered to have separate interfaces in this context. 443

MCTP SMBus/I2C Transport Binding Specification DSP0237

18 Published Version 1.2.0

Upon bus startup and also upon receiving a Notify ARP

Master command, the bus segment owner/SMBus ARP

master starts the ARP process by sending a Prepare to

ARP command to broadcast address C2h (recommend this

goes out at least three times for robustness).

Upon power-up, hot-plug devices periodically

send Notify ARP Master commands to SMBus

host address (10h) until they receive a Prepare

to ARP command.

All devices that support ARP should ACK this

command. Recipients clear their “AR” (address

resolved) flags and stop sending Notify ARP

Master commands.

Bus segment owner/SMBus ARP master sends Reset

Device command to address C2h

(recommend this goes out at least three times for

robustness).

All devices that support ARP should ACK this

command on receipt. Recipients that do not

implement persistent slave address support (per

SMBus) clear their “AR” (address resolved) and

“AV” (address valid) flags. If a device uses a

generated random number as part of its UDID, it

regenerates that number on this command.

Bus segment owner/SMBus ARP master sends a broadcast

Get UDID command to address C2h.

All recipients clock in the command at the same

time, and attempt to simultaneously respond

with their UDID information. Devices monitor the

data on the bus to see whether it matches what

they’re putting out. If there’s a mismatch, the

device must immediately drop off the bus until

the next SMBus transaction.

For each retrieved UDID, the ARP master extracts the

device’s present slave address field (if AV bit is set) and

IPMI flags from the response.

If the device already has an assignable slave address (that

is, it is a persistent slave address [PSA] device) the ARP

master should reassign that address unless it is outside the

range of addresses that are valid to allocate or conflicts with

an address that’s already been assigned.

Otherwise, (if the address is not a fixed address) the device

gets assigned a slave address from the pool of addresses

maintained by the ARP master sending the Assign Address

command to broadcast address C2h with the UDID of the

target device and the slave address to be assigned. If the

ARP master does not want to change the address

assignment, it must reassign the address that it received in

the Get UDID command.

All devices simultaneously receive the Assign

Address command, but only the device with the

matching UDID accepts the address and sets its

AR and AV flags. Devices that do not have the

matching UDID can NACK any byte of the

transmission. The device that has the matching

UDID must accept the address and ACK all

bytes. If there’s a data error, the device is

supposed to NACK the PEC.

If ACKs are received, there are ARP-able devices on the

segment. If no ACKs, there are no longer ARP-able devices

present on the segment.

If ACKs are received, there are ARP-able devices on the

segment.

Repeat until the Get UDID command gets NAK’d indicating ARP is completed for the devices that received the Prepare to

ARP command* (It is recommended that if the Get UDID is NACK’d that it be retried and seen as NAK’d at least two more

times in a row before assessing that ARP is completed.)

* It is possible that hot-plug devices may have been inserted after the Prepare to ARP command was initially sent out.

If the Assign Address command is NACKd, it is

recommended that the command be retried at least two

more times before proceeding.

ACK/NACK

Assign Address

(broadcast)

UDID INFO, ACK/

NACK

Get UDID

(broadcast)

ACK/NACK

Reset Device

(broadcast)

Prepare to ARP

(broadcast)

ACK/NACK

Notify ARP

Master

Some microcontrollers may not be able to readily NACK the

PEC if there’s a PEC error. While the SMBus specification

requires that to be done for the Assign Address command, it

is highly recommended that the ARP master use directed

Get UDID command to verify that all address assignments

occurred correctly.
Device returns its UDID and address

assignment information.

Get UDID

(directed)

UDID INFO,

ACK/NACK

If the command gets NACKd, retry the Assign Address

command.

If the wrong UDID is returned, there is an address conflict,

either because a new device with a persistent address was

plugged in and the Notify ARP Master command has not

been received yet, or because two devices from a vendor

generated the same random portion of their UDID. In either

case, if the wrong UDID is returned, for a given slave

address, the ARP process should be restarted from the

beginning.

Confirm Assignment (recommended):

Also refer to [SMBus 2.0] section 5.6.3.1.1, ARP

Master Behavior.

 444

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 19

Figure 2 – Address assignment flow 445

6.11.6 MCTP requirements on SMBus ARP master support 446

If the bus supports ARP-able devices, MCTP requires that each bus shall have a controller that operates 447
as the ARP master and assigns slave addresses to all ARP-able devices on the segment. Because the 448
MCTP bus owner shall know the physical addresses of ARP-able devices that support MCTP, the ARP 449
master role will typically be handled by the same device that serves as the MCTP bus owner. 450

If a different physical device than the device holding the bus owner functions as the ARP master, there 451
shall be a mechanism to communicate the address assignment information to the bus owner function. 452
The mechanism for this is not specified by MCTP. 453

Only one controller is allowed to function as the ARP master for the segment at a given time. The ARP 454
master function is allowed to fail-over or be transferred to another controller. The mechanism for this 455
capability, if provided, is not specified by MCTP. 456

6.11.7 Recommendations on ARP master allocation of slave addresses 457

For PCI and PCI Express™ (PCIe) bus implementations, it is recommended that, by default, the ARP 458
master only assigns addresses to ARP-able devices from the "B" range. This is because the PCI 459
slots/connectors themselves are most commonly implemented as part of the board set. 460

Device manufacturers of controllers that function as ARP masters should provide a mechanism to enable 461
system integrators to either configure which fixed addresses that ARP should avoid, or a pool of non-462
conflicting addresses from which ARP can draw. 463

For PCI and PCIe SMBus implementations, the ARP master should be able to assign at least two 464
addresses for each PCI connector on the segment. 465

6.11.8 MCTP requirements on hot-pluggable bridges using SMBus 466

Hot-pluggable MCTP devices that include bridging functionality are required to have static, pre-assigned, 467
SMBus UDIDs. This is because it is considered a more robust and reliable mechanism than randomly 468
generated UDIDs, and because it simplifies tracking and managing MCTP device hot-add and hot-469
removal. 470

If devices regenerate their UDIDs on hot-plug, the MCTP bus owner/ARP master cannot rely on the UDID 471
to determine whether a device was newly added to the system. When a hot-plug device includes MCTP 472
bridging functionality, the bus owner shall be able to allocate the device a range of EIDs from a fixed pool 473
of IDs. Thus, it is important for the bus owner to be able to determine which devices have been removed 474
so that any EIDs it had given out can be returned to the pool. 475

It is straightforward for the ARP master to re-enumerate the UDIDs on the bus and determine which 476
UDIDs (if any) are no longer present (re-enumeration is a natural fallout of the ARP process). If there are 477
MCTP devices without fixed UDIDs in the mix, however, the bus owner would need to take additional 478
steps to check to see which devices had already been allocated EIDs to determine by elimination which 479
ranges, if any, had become freed. With fixed UDID, the bus owner can track which EIDs have been 480
allocated to which UDIDs and thereby determine which have been freed by a hot swap by just re-481
enumerating the UDIDs. 482

6.12 SMBus/I2C considerations for MCTP messages 483

The following applies to MCTP messages on SMBus regardless of their message type. Note that MCTP 484
messages require Block Write byte count sizes that exceed limits specified by SMBus. Additional 485
restrictions on MCTP packets over what the SMBus and I2C allow are given in 6.3 and 6.18. 486

MCTP SMBus/I2C Transport Binding Specification DSP0237

20 Published Version 1.2.0

6.12.1 Slave address ACKs/NACKs 487

Per SMBus and I2C, the NACK of a slave address indicates the physical absence of the device interface. 488

• Devices are therefore required to always ACK their slave addresses. This includes ACK'ing 489
slave addresses used for ARP if the device is ARP-able or ARP-enumerable. 490

• An MCTP device shall ACK its slave address(es) when the R/W bit on the slave address is 0. 491

6.12.2 Clock stretching for non-addressed devices 492

MCTP devices that are monitoring the bus as slaves and do not have a slave address that matches the 493
transaction shall not clock stretch past the ACK bit for the slave address byte. This requirement only 494
applies to MCTP packet transactions. It does not apply to non-MCTP-defined messages or transactions, 495
such as those used for SMBus ARP. 496

6.13 Fairness arbitration 497

6.13.1 General 498

The following clauses describe an extension to the SMBus/I2C arbitration mechanism for device ports that 499
are used with MCTP. The extensions define a ‘fairness’ mechanism that helps ensure that ports that are 500
arbitrating for access to the bus will eventually get access and will not be locked out of access by other 501
MCTP ports that are using the bus. 502

NOTE Fairness arbitration only applies for messages using the MCTP base protocol. SMBus messages such as 503
Host Notify are not required to use fairness arbitration. 504

This mechanism works as follows: 505

• An MCTP port that wins bus arbitration (per SMBus or I2C) for a given transaction shall wait 506
until it detects a particular bus idle interval before the device can again attempt to arbitrate for 507
the bus. This is referred to as the device waiting to detect the "FAIR_IDLE" condition. 508

• Once the port has succeeded in detecting the FAIR_IDLE condition, it can attempt to get on the 509
bus and no longer needs to wait to detect the FAIR_IDLE condition. The port can continue to 510
attempt to access the bus without waiting for FAIR_IDLE until the next time the port wins 511
arbitration. After winning arbitration, the port shall again wait to detect the FAIR_IDLE condition 512
before it can attempt to get on the bus. 513

With this approach, all ports that lose arbitration will eventually get a turn at accessing the bus, because 514
any ports that win arbitration will need to wait until a bus idle interval is detected, while those that have 515
lost arbitration will not need to wait. 516

For this to work, endpoints shall be able to do two things: 517

1) Be able to recognize the FAIR_IDLE condition. Ports that are waiting to detect a FAIR_IDLE 518
condition shall recognize that no other port has made the bus become busy within a particular 519
window of time (TIDLE_WINDOW) after the bus becomes free. 520

2) Ports that have not won arbitration shall be able to issue a START condition soon enough after 521
the bus becomes free so that a bus busy condition is seen by ports that are waiting to detect a 522
FAIR_IDLE condition. To ensure this condition is met, START shall be issued by the port within 523
a particular window of time (TSTART_WINDOW) after the bus becomes free. 524

NOTE There is actually no explicit indication in SMBus or I2C that arbitration has been won. Instead, what the 525
master detects is that it was able to access the bus and did not have a collision (lose arbitration) with 526
another master. For this specification, this is referred to as winning arbitration. Because of the way 527
arbitration works, an MCTP endpoint that is transmitting as a master onto the bus will know that it has won 528
arbitration if it is able to transmit from the destination slave address byte through the end of the source slave 529
address byte (byte 4) without receiving a collision or NACK. 530

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 21

6.13.2 Deadlock avoidance with fairness arbitration 531

A device that wins arbitration but is subsequently NACK'd for its write transaction shall return to waiting 532
for the FAIR_IDLE period before it can attempt the transaction again. 533

6.13.3 Fairness arbitration support 534

Bridges and endpoints should support fairness arbitration. An endpoint's support for fairness arbitration 535
shall be reported through the medium-specific Information field in the response to the Get Endpoint ID 536
MCTP control message. 537

6.13.4 Bus busy sampling requirements for fairness arbitration 538

It is atypical and unlikely that the bus will go busy and then free again within TIDLE_WINDOW. This is because 539
TIDLE_WINDOW is shorter than the time required to send one byte on the bus. Thus, this condition would only 540
occur on an error or under a usage of the bus that is not legal within the specifications. Therefore, an 541
implementation is not required to continuously check the bus busy status during the entire duration of 542
TIDLE_WINDOW (though this is recommended). An implementation is allowed to check the bus busy status 543
only at the conclusion of the TIDLE_WINDOW interval that is measured by the device. 544

6.14 NACK window 545

An endpoint/bridge is required to NACK an incoming packet if the device does not have input buffer 546
space available for the packet. For the NACK to be recognized by the transmitter as the NACK for a 547
packet retry, the first NACK bit shall be issued no earlier than byte two (that is, the Command Code byte) 548
and no later than byte 8 (the MCTP flags byte). These bytes are represented by the bold outlined bytes in 549
Figure 3 below. After the first NACK has been issued any subsequent bytes that are received for the 550
packet shall also be NACK’d until a START, STOP, or bus free condition is detected. 551

An endpoint/bridge that NACKs a packet shall continue to NACK any remaining bytes for the transaction 552
until it recognizes the next START or STOP condition on the bus. 553

 554

0
Destination Slave

Address

Source Slave

Address

MCTP

Reserved

S

O

M

Msg

Tag

Pkt

Seq

#

7

+0

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

+1 +2 +3

Byte 1 >

Byte 5 >

Byte 9 >

Byte N >

Message

Header

 Message

 Data

PEC

Msg Type
I

C
Message Integrity Check

Command Code =

MCTP = 0Fh
Byte Count 1

Source

Endpoint ID

E

O

M

T

O

Hdr

Version

Destination

Endpoint ID

 555

Figure 3 – Allowed byte range for first NACK'd byte 556

 557

MCTP SMBus/I2C Transport Binding Specification DSP0237

22 Published Version 1.2.0

6.15 Fairness arbitration requirements for MCTP bridges 558

MCTP bridges that support fairness arbitration shall meet the following requirements: 559

• The bridge shall support FAIR_IDLE detection and implement the corresponding fairness policy 560
separately for each port on the bridge. 561

• Upon device power up or initialization, a port does not need to detect a FAIR_IDLE condition 562
before first attempting to access the bus. 563

• A bridge that loses arbitration when attempting to transmit shall continue to retry the transaction 564
when the bus becomes free for up to PN2 retries (see Table 8). If the retry limit is reached, the 565
bridge shall drop the packet data. 566

• A bridge that receives a NACK when attempting to transmit to a given physical address shall 567
continue to retry the transaction when the bus becomes free for up to PN2 retries. The bridge 568
will return to attempting to arbitrate for the bus as described in the preceding requirement, 569
restarting its number of arbitration retries. If the retry limit is reached, the bridge shall drop the 570
packet data. 571

• An MCTP bridge shall provide dedicated input buffer space per port. The minimum input buffer 572
size is large enough to store one full baseline MTU-sized MCTP packet. It is recommended, but 573
not required, that a bridge also implement a dedicated output buffer per port, sized to store at 574
least one full baseline MTU-sized MCTP packet. 575

• If the MCTP bridge is the target of an MCTP packet and it does not have enough buffer space in 576
its input buffer to store the full packet, it shall NACK the packet. If the bridge has an output 577
packet to transmit on that same port, it shall be able to issue a START within TSTART_WINDOW after 578
issuing the retry NACK. 579

• A bridge is required to drop a received packet if it finds that the packet error code (PEC) byte for 580
the transaction is incorrect. 581

• An MCTP bridge is not allowed to perform "connected" transactions where the decision to ACK 582
or NACK an incoming packet is dependent on the bridge’s ability to acquire the destination bus 583
prior to accepting the packet. 584

• MCTP bridges are required to implement "store and forward" packet processing. That is, once a 585
bridge has accepted a packet for routing, it shall retain that packet until it can successfully 586
transmit it onto the target bus (except when running out of retries when trying to access the 587
target bus, or upon receiving a packet for a bus that is unavailable or an endpoint that is not 588
present.) 589

• A bridge cannot make the acceptance of a receive packet on its upstream port (port that 590
connects to a bus that is not owned by the bridge itself) conditional on its ability to transmit a 591
packet on its upstream port. This requirement does not apply to a downstream port on a bridge 592
(that is, a downstream port may elect to NACK an incoming packet to allow the bridge to 593
transmit from that port). This requirement is to help avoid deadlock situations if a bridge is 594
required to route a packet back onto the bus from which the packet came. 595

• A bridge that receives a NACK while it is performing a Master Write operation is not required to 596
immediately conclude the Master Write operation and drop off the bus. The bridge may continue 597
the write operation through its conclusion. In either case, the master shall always conclude its 598
transaction with a STOP condition, unless some other device on the bus first produces a 599
START or STOP condition. The latter situation is an erroneous condition on the bus, but bridges 600
shall be able to handle it. Devices shall always recognize START and STOP conditions 601
regardless of the transaction or bit position on which they occur. 602

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 23

6.16 Fairness arbitration requirements for non-bridge endpoints 603

Non-bridge/bus owner endpoints ("simple endpoints") are required to implement the MCTP fairness 604
arbitration extensions (when enabled) as follows: 605

• The endpoint's port shall support FAIR_IDLE detection and implement the corresponding 606
fairness policy. 607

• Upon device power up or initialization, the endpoint does not need to detect a FAIR_IDLE 608
condition before first attempting to access the bus. 609

• The endpoint cannot make the acceptance of a receive packet conditional on its ability to 610
transmit a packet (that is, a simple endpoint shall not NACK incoming packets because it is 611
trying to send an outgoing packet). 612

Meeting this requirement may require the endpoint to have separate transmit and receive 613
buffers. This is the recommended implementation. 614

If a device is severely limited in buffer space and cannot allocate separate space for both 615
transmit and received data, options are for the endpoint to allow its buffer to be over-written by 616
the receive packet, or in some cases the endpoint may elect to do a dummy receive of the 617
incoming packet (that is, ACK the incoming bytes, but internally drop them as they are coming 618
in.) 619

• Higher layer protocols shall be used to handle the case when the endpoint is targeted by more 620
messages than it can process. The buffering requirement for the MCTP Control Protocol 621
messages is defined in the MCTP Base Specification. Buffering requirements for other message 622
types are defined in the respective specifications for the message type. 623

• An endpoint is allowed to NACK a packet if it is temporarily unable to accept it (for example, 624
because of an input buffer-full condition). This should typically only occur if the endpoint is the 625
target of packets from more than one source endpoint. 626

• There is no direct limit of how long a non-bridge endpoint is allowed to successively NACK 627
incoming packets. However, there are limits on how many packet-level retries a transmitter will 628
attempt before it drops the transmitted packet, as well as message type-specific limits on how 629
long and how many times a given message will be retried. 630

• If an endpoint has an output transmit packet and it NACKs an input receive packet from lack of 631
input buffer space, it shall be able to issue a START condition to transmit the output packet 632
within TSTART_WINDOW after the bus becomes free, unless the endpoint is waiting to detect TIDLE. 633

• An endpoint that receives a NACK while it is performing a Master Write operation is not required 634
to immediately conclude the Master Write operation and drop off the bus. The endpoint may 635
continue the write operation through its conclusion. In either case, the master shall always 636
conclude its transaction with a STOP condition, unless some other device on the bus first 637
produces a START or STOP condition. The latter situation is an erroneous condition on the bus, 638
but bridges shall be able to handle it. Devices shall always recognize START and STOP 639
conditions regardless of the transaction or bit position on which they occur. 640

• Endpoints that are NACK'd or lose arbitration shall retry transaction for PN1 retries (see 641
Table 8). 642

MCTP SMBus/I2C Transport Binding Specification DSP0237

24 Published Version 1.2.0

6.17 Fairness arbitration timing 643

Figure 4, Table 5, and Table 6 present the specifications for the timing intervals for fairness arbitration on 644
SMBus and I2C relative to the data (SDA) signal. Refer to SMBus and I2C for the additional specifications 645
on the relationship between SCL and SDA for STOP, bus idle, and START conditions. 646

TBUF

TIDLE_WINDOW

SDA

Latest time by which a party that

lost arbitration and is not waiting

to detect a FAIR_IDLE condition

must generate a START

transition to retry the transaction

on the bus.

Earliest time by which a

party that is not waiting for

Tidle to expire can begin

generating the SDA

transition for a START

condition.

Earliest time by which a

party that is waiting to

detect TIDLE can begin

generating the SDA

transition for a START

condition.

TSTART_WINDOW

TIDLE_DELAY

 647

Figure 4 – Fairness arbitration timing measurement for SMBus and I2C 648

Table 5 – Fairness arbitration timing values for 100 kHz SMBus/I2C 649

Symbol Min Max Unit Notes

TBUF 4.7 – µs Per SMBus 100 kHz specification

TSTART_WINDOW – 20 µs Window of time within which a device that is not waiting to detect a
FAIR_IDLE condition shall generate START if the device is retrying
to gain bus access after losing arbitration.

TIDLE_WINDOW 30 60 µs Window of time within which a device that is waiting to detect a
FAIR_IDLE condition shall not detect a bus busy condition. A
FAIR_IDLE condition exists when bus busy is not detected within
this interval.

TIDLE_DELAY 31 – µs A device that detects FAIR_IDLE condition shall wait this delay
before attempting to generate START. This delay accommodates
the difference between the TIDLE_WINDOW intervals implemented by
different devices on the bus, plus additional time to accommodate
bus skews between devices that are generating START and
devices that are monitoring for it. This guarantees that one party
that has detected TIDLE_WINDOW does not generate START before
other devices that are detecting FAIR_IDLE have completed
checking for their TIDLE window. Otherwise, the other devices would
not see a FAIR_IDLE condition even though one occurred.
(Therefore TIDLE_DELAY shall be greater than the difference between
the TIDLE_WINDOW maximum and minimum.)

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 25

Table 6 – Fairness arbitration timing values for 400 kHz I2C 650

Symbol Min Max Unit Notes

TBUF 1.3 – µs Per I2C 400 kHz specification

TSTART_WINDOW – 4 µs Window of time within which a device that is not waiting to detect a
FAIR_IDLE condition shall generate START if the device is retrying
to gain bus access after losing arbitration.

TIDLE_WINDOW 5 20 µs Window of time within which a device that is waiting to detect a
FAIR_IDLE condition shall not detect a bus busy condition. A
FAIR_IDLE condition exists when bus busy is not detected within
this.

TIDLE_DELAY 16 – µs Device that detects FAIR_IDLE condition shall wait for this delay
before attempting to generate START. This delay accommodates
the difference between the TIDLE_WINDOW intervals implemented by
different devices on the bus, plus additional time to accommodate
bus skews between devices that are generating START and
devices that are monitoring for it. This guarantees that one party
that has detected TIDLE does not generate START before other
devices that are detecting TIDLE have completed their TIDLE window.
Otherwise, the other devices would not see a FAIR_IDLE condition
even though one occurred. (Therefore TIDLE_DELAY shall be greater
than the difference between the TIDLE_WINDOW maximum and
minimum.)

Table 7 – Fairness arbitration timing values for 1MHz I2C 651

Symbol Min Max Unit Notes

TBUF 0.5 – µs Per I2C 1MHz specification

TSTART_WINDOW – 2 µs Window of time within which a device that is not waiting to detect a
FAIR_IDLE condition shall generate START if the device is retrying
to gain bus access after losing arbitration.

TIDLE_WINDOW 3 6 µs Window of time within which a device that is waiting to detect a
FAIR_IDLE condition shall not detect a bus busy condition. A
FAIR_IDLE condition exists when bus busy is not detected within
this interval.

TIDLE_DELAY 3.1 – µs Device that detects FAIR_IDLE condition shall wait this delay
before attempting to generate START. This delay accommodates
the difference between the TIDLE_WINDOW intervals implemented by
different devices on the bus, plus additional time to accommodate
bus skews between devices that are generating START and
devices that are monitoring for it. This guarantees that one party
that has detected TIDLE_WINDOW does not generate START before
other devices that are detecting FAIR_IDLE have completed
checking for their TIDLE window. Otherwise, the other devices would
not see a FAIR_IDLE condition even though one occurred.
(Therefore TIDLE_DELAY shall be greater than the difference between
the TIDLE_WINDOW maximum and minimum.)

6.18 MCTP packet timing requirements 652

The timing specifications shown in Table 8 are specific to MCTP packet transfers on SMBus. Timing is 653
specified for a "point-to-point" connection. That is, timing is specified as if there were only two endpoints 654
in direct communication on the bus. In particular, the timing specifications assume that there is no clock 655
stretching that occurs due to other parties on the bus. 656

MCTP SMBus/I2C Transport Binding Specification DSP0237

26 Published Version 1.2.0

Table 8 – Timing specifications for MCTP packets on SMBus/I2C 657

Timing Specification Symbol Value Description

Endpoint packet level retries PN1 8

Number of times a non-bridge endpoint shall
retry sending an MCTP packet upon receiving a
NACK during the specified window (see
Figure 3). An endpoint that gets successive
NACKs shall do one retry for each NACK up to at
least this number of retries. This also includes
bridges when bridges are transmitting as an
endpoint (as opposed to a bridge transmitting
from its routing functionality).

Bridge packet level retries PN2 12 Number of times an MCTP bridge (when
transmitting packet for routing) shall retry
sending an MCTP packet upon receiving a
NACK during the specified window (see 6.14). A
bridge shall do one retry on each NACK up to
this number.

Packet transaction originator
duration

PT1a 250 μs per
byte[1]

Overall duration shall be less than the specified
interval times the number of bytes in the packet,
starting from the byte following the slave byte
through and including the PEC byte. Individual
data byte transmissions may exceed the
specification provided the cumulative duration for
the packet is met.

Originator slave address byte
duration

PT1b 250 μs[1] Amount of time, including any clock stretching,
used to transmit the slave address, Wr, and ACK
bits on the bus.

Slave-induced clock stretching PT1c 250 μs per
byte[1]

MCTP devices that are receiving MCTP packets
shall not clock stretch the overall packet more
than the specified amount.

Note that MCTP devices may share the bus with
non-MCTP SMBus devices that cause clock
stretching that exceeds this specification.

The PT2 parameters are intended to help guide a controller in determining when it is acceptable to initiate a
Master Write transaction if the controller powers up or initializes itself on a bus segment that may already be
active. It also helps controllers know when it is acceptable to continue under conditions where a STOP
condition may have been lost because a controller dropped off the bus due to an error condition. An
implementation shall meet at least one of specifications PT2a or PT2b.

Time-out waiting for bus free
without seeing a STOP condition
(Bus free determined by not
detecting START or STOP)

PT2a 100 ms For controllers that have hardware that can only
detect bus-free/busy-busy status by monitoring
for START and STOP conditions, the controller
can assume the bus is free if PT2a seconds
goes by without detecting a START or STOP
condition.

If a START condition is detected, the time-out
interval restarts.

If a STOP condition is detected, the controller
can assuming the bus is free following the TBUF
interval specified in SMBus.

NOTE This interval effectively places an upper limit on
the duration of a single transaction. The byte
count in an MCTP packet limits the size of the
transaction to 260 bytes. 100 ms is more than
sufficient to cover this transfer.

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 27

Timing Specification Symbol Value Description

Time-out waiting for bus free
without seeing a STOP condition
(Bus free determined by data/clock
activity)

PT2b 50 μs The SMBus specification defines a bus-free (idle)
condition as TBUF seconds after a STOP
condition, or by the data and clock lines being
high for PT2b seconds (where the value for PT2b
is taken from THIGH, max as defined in SMBus).

If a controller has appropriate hardware support,
monitoring PT2b and TBUF can be used to
determine the bus-free (idle) condition in lieu of
PT2a. This is generally the most efficient and
highest performance way to detect bus free on
SMBus.

SYSTEM IMPLEMENTATION NOTE: If "bit banged"
I2C devices may be used on the same segment, it is
important to ensure that those devices do not drive the

clock and data high for more than THIGH, max seconds

during transactions.

SDA Low TImeout PT3 2 sec min,
5 sec max

Time for a bus owner to monitor the SDA low
level for a “Stuck 0” before attempting to clear
the condition. (See 6.20.)

NOTE 1: Intervals include the ACK bit associated with the byte.

6.19 MCTP control message timing requirements 658

The following timing specifications are specific to MCTP control messages on SMBus/I2C. Timing is 659
specified for a "point-to-point" connection. That is, timing is specified as if there were only two endpoints 660
in direct communication on the bus. In particular, the timing specifications assume that there is no clock 661
stretching occurs due to other parties on the bus. 662

Response specifications are given assuming that the requester is able to operate at full speed on the bus. 663
That is, clock stretching, if any, is solely generated by the requester. 664

Responses are not retried. A "try" or "retry" of a request is defined as a complete transmission of the 665
MCTP control message. 666

Table 9 – Timing specifications for MCTP control messages on SMBus 667

Timing Specification Symbol Min Max Description

Endpoint ID reclaim TRECLAIM 5 sec – Minimum time that a bus owner
shall wait before reclaiming the EID
for a non-responsive hot-plug
endpoint.

Number of request retries MN1 2 See

descr.

Total of three tries, minimum: the
original try plus two retries. The
maximum number of retries for a
given request is limited by the
requirment that all retries shall
occur within MT4, max of the initial
request.

MCTP SMBus/I2C Transport Binding Specification DSP0237

28 Published Version 1.2.0

Timing Specification Symbol Min Max Description

Request-to-response time MT1 – 100 ms This interval is measured at the
responder from the end of the
reception of the MCTP Control
Protocol request to the beginning
of the transmission of the
response. This requirement is
tested under the condition where
the responder can successfully
transmit the response on the first
try.

Time-out waiting for a response MT2 MT1 max+
2*MT3 max

MT4, min[1] This interval is measured at the
requester from the end of the
successful transmission of the
MCTP Control Protocol request to
the beginning of the reception of
the corresponding MCTP Control
Protocol response. This interval at
the requester sets the minimum
amount of time that a requester
should wait before retrying an
MCTP Control Protocol request.

Note: This specification does not
preclude an implementation from
adjusting the minimum time-out
waiting for a response to a smaller
number than MT2 based on
measured response times from
responders. The mechanism for
doing so is outside the scope of
this specification.

Transmission Delay

MT3 -

100 ms Time to take into account
transmission delay of an MCTP
Control Protocol Message.
Measured as the time between the
end of the transmission of an
MCTP Control Protocol message at
the transmitter to the beginning of
the reception of the MCTP Control
Protocol message at the receiver.

Inter-Packet delay for Multi-Packet
messages

MT3a 100ms Allowed time measured from the
end of the transmission of an
MCTP packet with EOM=0 to the
beginning of the following MCTP
packet of the same Message (see
Message assembly in DSP0236),
measured at the transmitter

Instance ID expiration interval MT4 5 sec [2] 6 sec Interval after which the instance ID
for a given response will expire and
become reusable if a response has
not been received for the request.
This is also the maximum time that
a responder tracks an instance ID
for a given request from a given
requester.

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 29

Timing Specification Symbol Min Max Description

NOTE 1: Unless otherwise specified, this timing applies to the mandatory and optional MCTP commands.

NOTE 2: If a requester is reset, it may produce the same sequence number for a request as one that was previously issued.
To guard against this, it is recommended that sequence number expiration be implemented. Any request from a
given requester that is received more than MT4 seconds after a previous, matching request should be treated as a
new request, not a retry.

 668

6.20 "Stuck 0" condition handling 669

A possible condition exists in SMBus and I2C where a slave device that is being read or is driving ACK 670
could be left driving a low (0) level onto the data line (SDA) of the bus. The bus uses a "wire OR'd" 671
approach, where the low (0) level takes precedence over the high (1) level. Therefore, if one party drives 672
a low (0) level onto the bus, the bus cannot go to a high (1) level until the low level is released. 673

This means that no other transactions can occur until this condition is cleared (because generating a 674
START or STOP condition on the bus requires being able to drive a high-to-low or low-to-high transition 675
on the data line, respectively). 676

This condition can occur due to the premature termination of a transaction from the master (as could 677
happen on device resets, power cycles, or firmware restarts, for example) or could occur due to the loss 678
of a clock due to electrical noise. 679

Effectively, what happens is that the device that was being accessed does not recognize that the 680
transaction has been terminated or that a clock was missed. The device continues to drive the 0 onto the 681
bus because it is waiting to get more clocks from the master to conclude the transaction, but those clocks 682
will never come unless some bus master takes steps to generate them. 683

The solution to this condition is to have a master clock the bus until the SDA line goes high, at which point 684
the master can issue a START or STOP condition to get the bus back in synchronization. 685

To accomplish this, the master needs to be able to access and clock the bus without paying attention to 686
the present state of the SDA line. 687

Many microcontrollers have the ability to have firmware dynamically reconfigure their SMBus pins as 688
general purpose I/O pins. If this is supported, it is straightforward for firmware to generate the necessary 689
clocks on the SCL line by bypassing the SMBus controller hardware and using programmed I/O to control 690
the pins instead. The firmware would then simply clock the bus until it sees a "1" condition on the SDA 691
line and then a new SMBus transaction can be launched. 692

NOTE It is recommended that MCTP bus owners include a provision to detect and clear Stuck 0 conditions on 693
SMBus buses that they own. The controller should do this if it can detect that a constant 0 condition has 694
existed on the SDA line for more than PT3 seconds. 695

6.21 MCTP over SMBus/I2C protocol anti-aliasing 696

MCTP over SMBus has been designed to allow one endpoint to support multiple protocols, such as ASF, 697
IPMI, or legacy device-specific protocols with a single slave address. The following clauses describe 698
provisions that can help support implement MCTP over SMBus in devices that also need to support other 699
SMBus or I2C protocols. 700

6.21.1 IPMI 701

The IPMI protocols for SMBus (IPMI over SMBus) and I2C (Intelligent Platform Management Bus, IPMB) 702
use the fourth byte of the transaction as a Source Slave Address byte, as does MCTP over SMBus. 703
However, the IPMI protocols require the least significant bit of that byte to be 0b, whereas MCTP over 704

MCTP SMBus/I2C Transport Binding Specification DSP0237

30 Published Version 1.2.0

SMBus requires the bit to be 1b. Thus, a device that needs to differentiate between MCTP over SMBus 705

and the IPMI SMBus/I2C protocols can do so using that bit. 706

6.21.2 ASF 707

MCTP over SMBus uses the ASF specification reserved value of 0x0F for the command byte. Thus, the 708

ASF-defined commands that use SMBus block-write protocol can be differentiated from MCTP over 709
SMBus block-write using the command byte value. If necessary, other ASF SMBus write transactions, 710
such as those for legacy sensor and control access can be differentiated from MCTP packets based on 711
the length of the transaction. The ASF transactions are all shorter. 712

6.21.3 Integrating MCTP with legacy SMBus functions 713

This clause describes some possible options if MCTP is being added to a device that shall also support 714
functions using a non-MCTP SMBus interface. 715

In general, there should be no problems having those functions co-exist with MCTP provided that the 716
legacy SMBus operations do not require generating or accepting write transactions that use the MCTP 717
value of 0x0F. 718

If the SMBus device currently uses the 0x0F MCTP command value for a device-specific purpose and it 719

wants to use the same slave address, the following can be done: 720

• The device-specific command can be moved to a different command value. This is generally the 721
most straightforward approach if it can be supported. 722

• Depending on the device-specific command definition, it may be possible to differentiate 723
between the command and MCTP packets based on other differences, such as the overall 724
length of the command or differences between the values in the fourth or fifth bytes of the 725
command. (MCTP always uses 1b as the least significant bit of the fourth byte, and the fifth 726

byte holds a fixed 4-bit value for the Header Version.) 727

• The device can implement MCTP over SMBus on a separate slave address from the legacy 728
functions. 729

6.22 Well-known and reserved slave addresses 730

For bus segments that support ARP-able devices, Table 10 summarizes addresses that are generally 731
reserved by SMBus or I2C and should either be avoided by devices. In addition, some are reserved (not 732
to be used as a general device slave address) because those addresses are related to functions that are 733
used by MCTP. 734

Table 10 – Well-known and reserved slave addresses 735

Slave Address
bits [7:1]

R/W#
bit [0] Hex[7] Comment Disposition

0000 000 0 0x00 I2C general call address, IPMI
broadcast

avoid[1]

0000 000 1 0x01 START byte avoid [2]

0000 001 X 0x02,

0x03
CBUS address avoid [3]

0000 010 X 0x04,

0x05
Address reserved for different bus
format

avoid

0000 011 X 0x06,

0x07
Reserved for future use by I2C
specifications

avoid

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 31

Slave Address
bits [7:1]

R/W#
bit [0] Hex[7] Comment Disposition

0000 1XX X 0x08-

0x0F
I2C specification, high-speed mode
master code

avoid [4]

0001 000 X 0x10 SMBus host rsvd

0001 100 X 0x18,

0x19
SMBus Alert Response address rsvd

0010 000 X 0x20,

0x21
IPMI BMC address avoid [5]

0101 000 X 0x50,

0x51
Reserved for ACCESS.bus host avoid

(ACCESS.bus defunct)

0110 111 X 0x6E,

0x6F
Reserved for ACCESS.bus default
address

avoid

1111 0XX X 0xF0-

0xF7
I2C 10-bit slave addressing [1] avoid [6]

1111 1XX X 0xF8-

0xFF
Reserved for future use by I2C
specifications

avoid

1100 001 X 0xC2,

0xC3
SMBus Device Default address rsvd. Used for SMBus

ARP with MCTP

NOTE 1. This address is used as a broadcast address in IPMI and I2C. It should be avoided if IPMI management
controllers may be used on the same bus segment. In I2C, it is reserved for two purposes: to broadcast a
portion of an address that is used for devices that have a portion of their address that is configurable, and
as an optional mechanism for a device to master and broadcast its slave address onto the bus. MCTP does
not support the use of this address for the I2C address assignment or slave address broadcast purposes.

NOTE 2. The I2C START byte is a pre-amble to the slave address that is intended to provide time for firmware driven
I2C interfaces to shift into polling of I2C clock and data lines after a START condition has been detected. This
is a very rarely used option in I2C. MCTP does not support the use of the START byte with MCTP or non-
MCTP devices.

NOTE 3. CBUS is an ancestor of I2C, developed by Philips Semiconductor. It uses a data and clock signal similar to
I2C, but with a third signal (SEN) used to generate the START and STOP conditions on the bus. This address
range was reserved by the I2C specification to enable a degree of backward compatibility with CBUS devices
sharing the I2C SCL and SDA lines as the CBUS clock and data lines, respectively. While listed as a reserved
address in the I2C specification, few SMBus/I2C implementations using MCTP will have any need to also
support CBUS devices.

NOTE 4. MCTP is not defined to support I2C high-speed mode operation.

NOTE 5. This address is the "well known address" for an IPMI BMC. This address should be avoided if an IPMI BMC
may be used on the same MCTP segment.

NOTE 6. Used in conjunction with the R/W# bit position to deliver the most-significant three address bits for I2C 10-bit
addressing. MCTP protocols and data structures do not support 10-bit addressing on SMBus or I2C
segments. MCTP only supports 7-bit addresses for MCTP and non-MCTP devices on a bus segment.

NOTE 7. By convention, when the 7-bit slave address field is represented as a two-digit hexadecimal number, it is
treated as an 8-bit value where the 7-bit address occupies the upper 7 bits and the least significant bit is 0b
or 1b according to the value of the SMBus/I2C Read-Write bit associated with the slave address.

6.23 Fixed address allocation 736

One of the problems that an implementer often faces is choosing which slave address to use. For the 737
PCI™ and PCI Express™ bus specifications, the specifications require that devices on standard 738
connectors defined by those specifications have their addresses set through SMBus ARP. Therefore, 739
fixed address allocation is not an option for PCI add-in cards themselves. In fixed bus implementations, 740
however, there are many situations where it is desired or necessary to utilize fixed-address devices. 741

From a practical point-of-view, SMBus and I2C do not have an effective central registry or other 742
mechanism for avoiding conflicts in the assignment and use of slave addresses among device vendors. 743

MCTP SMBus/I2C Transport Binding Specification DSP0237

32 Published Version 1.2.0

While there are potential registries of device slave address usage for SMBus (under the System 744
Management Interface Forum) and I2C (from Philips Semiconductor), these have not generally been used 745
by device vendors and there is no group or standard that works to enforce conformance to those 746
registries. 747

Most device vendors provide a configurable range of three or more addresses to enable an implementer 748
to reconcile address conflicts on a single segment. Because typically only a small number of fixed-749
address devices are used on a given segment, it is frequently possible to configure devices so they do 750
not have overlapping addresses. This approach is problematic, however, in situations where a component 751
that is attached to that segment in the platform may come from several sources. Clause 6.23 provides 752
guidelines to allocating fixed addresses that are designed to reduce the number of conflicts that could 753
occur when multiple suppliers provide different elements of a computer system (see Figure 5 for an 754
example). 755

Motherboard

MCTP

Mgmt

Controller

Chassis

Add-in

Management

Card

Temperature

Sensor
PCI Express™

Card

PCI Express™

Card

MCTP

Controller
MCTP

Controller

MCTP

Controller

Temperature

Sensor
SEEPROM

Fan Speed

Sensor

Power

Supply

SMBus

 756

Figure 5 – Example system configuration 757

6.24 Recommended address range allocation for computer systems 758

This clause provides a recommended allocation of SMBus addresses between board, chassis, and add-in 759
uses that help avoid address conflicts when fixed addresses are used. It also serves as a general 760
guideline of what addresses a generic ARP master should use for allocation to PCI/PCIe add-in cards. 761

There might be cases when MCTP is used within a typical computer system application where the 762
motherboard may come from one supplier, the chassis from another supplier, and possibly add-in 763
modules from yet another supplier. To facilitate the mix-and-match of these elements and to help avoid 764
the need for every system manufacturer to set up their own address allocation conventions with suppliers, 765
MCTP recommends that system manufacturers follow the address allocation approach initially defined by 766
the IPMI specifications (see Table 11). This approach splits the available fixed addresses (addresses 767
other than reserved addresses) into four main usage areas: 768

B Board: An area reserved for board set manufacturer use (where board set would be the 769
motherboard and other boards that accompany that motherboard from the same vendor). 770

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 33

C Chassis: An area reserved for use by vendors that make chassis in which a third-party board 771
set would be used. 772

A Add-in: For third-party add-in devices (for example, modules or add-in cards that used fixed 773
addresses and would be used in combination with a motherboard or chassis where there is a 774
connection to a SMBus segment implementing MCTP). 775

NOTE PCI/PCIe add-in cards that use standard PCI connectors are required to support SMBus ARP 776
and fixed addresses are not used. 777

R Reserved for IPMI, I2C, SMBus, or MCTP uses. Includes the avoid addresses from Table 10. 778

By following this convention, future motherboards can offer connections to chassis elements and third-779
party modules where those devices can use fixed addresses, if required. It also provides a convention to 780
avoid conflicts if legacy non-MCTP devices share the same SMBus segment. 781

MCTP SMBus/I2C Transport Binding Specification DSP0237

34 Published Version 1.2.0

Table 11 – Slave address allocation for computer systems 782

Use Address Typical Device Use Address Typical Device

R 0x00 I2C, IPMB broadcast C

0x01 I2C

0x02 I2C 0x48 SMBUS/I2C IO Expander, such as
8574

0x04-0x0E I2C 0x4A SMBUS/I2C IO Expander, such as
8574

0x20 IPMB uC (BMC) 0x4C SMBUS/I2C IO Expander, such as
8574

0x50 ACCESS.bus 0x4E SMBUS/I2C IO Expander, such as
8574

0x6E ACCESS.bus 0x52-0x6C 58h, 5Ah, 5Ch = Heceta

0xF0-0xF6 I2C

0xF8-0xFE I2C

A 0x10 SMBus host (B) 0x78 SMBUS/I2C IO Expander, such as
8574A

0x12-0x16 0x7A SMBUS/I2C IO Expander, such as
8574A

0x18 SMBus Alert Response address (B) 0x7Ch SMBUS/I2C IO Expander, such as
8574A

0x1A-0x1E 0x7E SMBUS/I2C IO Expander, such as
8574A

0x30-0x3E 0x9A TEMPERATURE SENSORS, SUCH
AS LM75, DS1624, DS1621

 0x9C uC (pri. HSC), DS1624, DS1621

0xD0-0xDE 0x9E uC (sec. HSC), DS1624, DS1621

B 0x22 uC (FPC, ICMB)[1] 0xA0-0xA2 FRU (Power Supply FRU or
SEEPROM)

0x24 uC (PBC)[1] 0xAC SEEPROMSEEPROM

0x26 0xAE SEEPROM

0x28 SM Card[1] 0xB0-0xB2 Power Supply Device (PMBus)

0x2A-0x2E 0xE8-0xEE I2C Bus Switch

0x40 SMBUS/I2C IO Expander, such as
8574A

NOTE 1: Term from IPMI usage. FPC = front panel controller,
PBC = Power Backplane Controller, ICMB = Intelligent
Chassis Management Bus bridge, SM Card = System
Management Card

0x42 SMBUS/I2C IO Expander, such as
8574A

0x44 SMBUS/I2C IO Expander, such as
8574A

0x46 SMBUS/I2C IO Expander, such as
8574A

0x70 SMBUS/I2C IO Expander, such as
8574A

0x72 SMBUS/I2C IO Expander, such as
8574A

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 35

Use Address Typical Device Use Address Typical Device

0x74 SMBUS/I2C IO Expander, such as
8574A

0x76 SMBUS/I2C IO Expander, such as
8574A

0x80-0x8E

0x90 TEMPERATURE SENSORS,
SUCH AS LM75, DS1624, DS1621,
8591

0x92 TEMPERATURE SENSORS,
SUCH AS LM75, DS1624, DS1621,
8591

0x94 TEMPERATURE SENSORS,
SUCH AS LM75, DS1624, DS1621,
8591

0x96 TEMPERATURE SENSORS,
SUCH AS LM75, DS1624, DS1621,
8591

0x98 TEMPERATURE SENSORS,
SUCH AS LM75, DS1624, DS1621,
8591

0xA4 SEEPROM

0xA6 SEEPROM

0xA8 SEEPROM

0xAA SEEPROM

0xC0

0xC2 SMBus Device Default address

0xC4-0xCE

0xE0-0xE6 I2C Bus Switch

MCTP SMBus/I2C Transport Binding Specification DSP0237

36 Published Version 1.2.0

ANNEX A 783

(informative) 784

 785

 786

Notation 787

Notations 788

Examples of notations used in this document are as follows: 789

• 2:N In field descriptions, this will typically be used to represent a range of byte offsets 790
starting from byte two and continuing to and including byte N. The lowest offset is on 791
the left, the highest is on the right. 792

• (6) Parentheses around a single number can be used in message field descriptions to 793
indicate a byte field that may be present or absent. 794

• (3:6) Parentheses around a field consisting of a range of bytes indicates the entire range 795
may be present or absent. The lowest offset is on the left, the highest is on the right. 796

• PCIe Underlined, blue text is typically used to indicate a reference to a document or 797
specification called out in 2, "Normative References" or to items hyperlinked within the 798
document. 799

• rsvd Abbreviation for “reserved.” Case insensitive. 800

• [4] Square brackets around a number are typically used to indicate a bit offset. Bit offsets 801
are given as zero-based values (that is, the least significant bit [LSb] offset = 0). 802

• [7:5] A range of bit offsets. The most significant bit is on the left, the least significant bit is 803
on the right. 804

• 1b The lower case "b" following a number consisting of 0s and 1s is used to indicate the 805

number is being given in binary format. 806

• 0x12A A leading "0x" is used to indicate a number given in hexadecimal format. 807

 808

DSP0237 MCTP SMBus/I2C Transport Binding Specification

Version 1.2.0 Published 37

ANNEX B 809

(informative) 810

 811

 812

Change log 813

Version Date Description

1.0.0 2009-07-28

1.1.0 2017-02-16 Added 1MHz speed mode

Moved NACK window to a separate clause

Corrected timing parameters description

Updated reserved addresses mapping in Table 11

Updated Table 2

Updated revisions for the normative references

1.2.0 2020-04-06 Added timing parameter MT3a

Removed redundant definition of ARP term

Updated hyperlink to SMBus spec

 814

	Mark2
	MCTP
	DSP0236
	IDs_and_Codes
	MCTP_ID
	RefISO_P2
	SMBus

