

2 Document Identifier: DSP0222

Date: 2023-06-02

Version: 1.2.0WIP99

5 Network Controller Sideband Interface (NC-SI)

Specification

1

3

4

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the DMTF or its members. Because this document is a Work in Progress, this document may still change, perhaps profoundly and without notice. This document is available for public review and comment until superseded.

Provide any comments through the DMTF Feedback Portal:

http://www.dmtf.org/standards/feedback

7 Supersedes: 1.2.0WIP95

8 **Document Class: Normative**

9 Document Status: DMTF Work-in-Progress

10 Document Language: en-US

- 11 Copyright Notice
- 12 Copyright © 2009, 2013, 2015, 2019–2023 DMTF. All rights reserved.
- 13 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
- 14 management and interoperability. Members and non-members may reproduce DMTF specifications and
- documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
- time, the particular version and release date should always be noted.
- 17 Implementation of certain elements of this standard or proposed standard may be subject to third-party
- patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
- 19 to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
- 20 or identify any or all such third-party patent right, owners or claimants, nor for any incomplete or
- 21 inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
- any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
- disclose, or identify any such third-party patent rights, or for such party's reliance on the standard or
- 24 incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
- 25 party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
- owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
- 27 withdrawn or modified after publication, and shall be indemnified and held harmless by any party
- implementing the standard from any and all claims of infringement by a patent owner for such
- 29 implementations.
- For information about patents held by third-parties which have notified the DMTF that, in their opinion,
- 31 such patent may relate to or impact implementations of DMTF standards, visit
- 32 https://www.dmtf.org/about/policies/disclosures.php.
- This document's normative language is English. Translation into other languages is permitted.

CONTENTS

35	1	Scop	e		
36	2	Norn	native ref	ferences	17
37	3	Term	ns and de	efinitions	18
38	_	3.1		ng Interpretation	
39		3.2		ement term definitions	
40		3.3		term definitions	
41		3.4		ers and number bases	
42		3.5		rk Addresses	
43		3.6		ved fields	
44	4	Acro		d abbreviations	
45	5		•	9W	
46	O	5.1		3	
47		5.2		d topologies	
48		5.3		and integrated Network Controller implementations	
49		5.4		ort stack	
50		5.5		ort protocol	
51		5.6		nd bit ordering for transmission	
52	6		-	pehaviors	
52 53	O	6.1		l operational model	
53 54		0.1	6.1.1	State definitions and defined states	
54 55			6.1.1	NC-SI RBT pre-operational states	
56			6.1.3	Package Ready state	
50 57			6.1.4	Initial State	
58			6.1.5	NC-SI Initial State recovery	
59			6.1.6		
60			6.1.7	State transition diagramState diagram for NC-SI operation with hardware arbitration	
61			6.1.8	Resets	
62			6.1.9	Network Controller Channel ID	
63				Configuration-related settings	
64				Transmitting Pass-through packets from the Management Controller	
65				Receiving Pass-through packets for the Management Controller	
66				Pass-through operation in multiple medium implementations	
67				Startup sequence examples	
68		6.2		traffic types	
69		0.2	6.2.1	Overview	
70			-	Command protocol	
71		6.3		onfiguration and control	
72		0.5		Link Configuration	
73				Link Status	
74		6.4		filtering for Pass-through mode	
75		0.4	6.4.1	Overview	
76			6.4.2	Multicast filtering	
77			6.4.3	Broadcast filtering	
78			6.4.4	VLAN filtering	
79		6.5	-	buffering behavior	
80		6.6		flow control	
81		6.7		nronous Event Notification	
82		0.1	6.7.1	Overview	
83			6.7.1	AEN handling in multiple medium implementations	
84		6.8	_	andling	
85		0.0	6.8.1	Overview	
86			6.8.2	Transport errors	
55			0.0.2	1.d.1.op 5.1. 5.1.0.0	

87			6.8.3	Missing responses	53
88			6.8.4	Detecting Pass-through traffic interruption	
89		6.9	Suppor	rt for additional network fabrics	54
90			6.9.1	FC support	54
91			6.9.2	InfiniBand Support	54
92		6.10	PLDM:	and SPDM transport	54
93	7	Arbitr	ation in	configurations with multiple Network Controller packages	57
94	-	7.1		ew	
95		7.2		ontroller RBT	
96		7.3		are arbitration	
97			7.3.1	General	
98			7.3.2	Hardware arbitration opcodes	
99			7.3.3	Opcode operations	
100			7.3.4	Bypass mode	
101			7.3.5	Hardware arbitration startup	
102			7.3.6	ARB_MSTR assignment	
103			7.3.7	Token timeout mechanism	
104			7.3.8	Timing considerations	
105			7.3.9	Example hardware arbitration state machine	
106		7.4	Comma	and-based arbitration	
107	8	Pack		ions	
108	Ū	8.1		packet encapsulation	
109		0	8.1.1	Ethernet frame header	
110			8.1.2	Frame Check Sequence	
111			8.1.3	Data length	
112		8.2		I Packet data structure	
113		0	8.2.1	Control Packet header	
114			8.2.2	Control Packet payload	
115			8.2.3	Command packet payload	
116			8.2.4	Response packet payload	
117			8.2.5	Response codes and reason codes	
118			8.2.6	AEN packet format	
119			8.2.7	Single OEM AEN packet format	
120			8.2.8	Multiple OEMs AEN packet format	
121		8.3	Control	l Packet type definitions	77
122		8.4	Comma	and and response packet formats	82
123			8.4.1	NC-SI command frame format	82
124			8.4.2	NC-SI response packet format	83
125			8.4.3	Clear Initial State command (0x00)	84
126			8.4.4	Clear Initial State response (0x80)	84
127			8.4.5	Select Package command (0x01)	85
128			8.4.6	Select Package response (0x81)	
129			8.4.7	Deselect Package command (0x02)	
130			8.4.8	Deselect Package response (0x82)	
131			8.4.9	Enable Channel command (0x03)	
132			8.4.10	,	
133			8.4.11	Disable Channel command (0x04)	
134				Disable Channel response (0x84)	
				· · · · · · · · · · · · · · · · · · · ·	
135				Reset Channel command (0x05)	
136				Reset Channel response (0x85)	
137				Enable Channel Network TX command (0x06)	
138				Enable Channel Network TX response (0x86)	
139				Disable Channel Network TX command (0x07)	
140			8.4.18	Disable Channel Network TX response (0x87)	91

141		AEN Enable command (0x08)	
142	8.4.20	AEN Enable response (0x88)	93
143	8.4.21	Set Link command (0x09)	93
144		Set Link Response (0x89)	
145	8.4.23	Get Link Status command (0x0A)	97
146	8.4.24	Get Link Status response (0x8A)	97
147	8.4.25	Set VLAN Filter command (0x0B)	102
148	8.4.26	Set VLAN Filter response (0x8B)	104
149	8.4.27	Enable VLAN command (0x0c)	104
150	8.4.28	Enable VLAN response (0x8c)	105
151	8.4.29	Disable VLAN command (0x0D)	105
152	8.4.30	Disable VLAN response (0x8D)	106
153	8.4.31	Set MAC Address command (0x0E)	106
154	8.4.32	Set MAC Address response (0x8E)	108
155	8.4.33	Enable Broadcast Filter command (0x10)	108
156	8.4.34	Enable Broadcast Filter response (0x90)	110
157	8.4.35	, , ,	
158	8.4.36	Disable Broadcast Filter response (0x91)	
159		Enable Global Multicast Filter command (0x12)	
160		Enable Global Multicast Filter response (0x92)	
161		Disable Global Multicast Filter command (0x13)	
162		Disable Global Multicast Filter response (0x93)	
163		Set NC-SI Flow Control command (0x14)	
164		Set NC-SI Flow Control response (0x94)	
165		Get Version ID command (0x15)	
166		Get Version ID Response (0x95)	
167		Get Capabilities command (0x16)	
168		Get Capabilities response (0x96)	
169		Get Parameters command (0x17)	
170		Get Parameters response (0x97)	
171		Get Controller Packet Statistics command (0x18)	
172		Get Controller Packet Statistics response (0x98)	
173		Get NC-SI Statistics command (0x19)	
174		Get NC-SI Statistics response (0x99)	
175		Get NC-SI Pass-through Statistics command (0x1A)	
176		Get NC-SI Pass-through Statistics response (0x9A)	
177		Get Package Status command (0x1B)	
178		Get Package Status response (0x9B)	
179		Get NC Capabilities and Settings command (0x25)	
180		Get NC Capabilities and Settings response (0xA5)	
181		Set NC Configuration command (0x26)	
182		Set NC Configuration response (0xA6)	
183		Get PF Assignment command (0x27)	
184		Get PF Assignment Response (0xA7)	
185		Set PF Assignment command (0x28)	
186		Set PF Assignment Response (0xA8)	
187		Get Channel Configuration command (0x29)	
188		Get Channel Configuration response (0xA9)	
189	8.4.67	• • • • • •	
190		Set Channel Configuration response (0xAA)	
191		Get Partition Configuration command (0x2B)	
192		Get Partition Configuration response (0xAB)	

193	8.4.71 Set Partition Configuration command (0x2C)	154
194	8.4.72 Set Partition Configuration response (0xAC)	157
195	8.4.73 Get Boot Config Command (0x2D)	157
196	8.4.74 Get Boot Config Response (0xAD)	158
197	8.4.75 Set Boot Config command (0x2E)	163
198	8.4.76 Set Boot Config Response (0xAE)	164
199	8.4.77 Get Partition Statistics command (0x2F)	165
200	8.4.78 Get Partition Statistics response for Ethernet (0xAF)	166
201	8.4.79 Get Partition Statistics response for FCoE (0xAF)	
202	8.4.80 Get Partition Statistics response for iSCSI (0xAF)	
203	8.4.81 Get Partition Statistics response for InfiniBand (0xAF)	
204	8.4.82 Get Partition Statistics response for RDMA (0xAF)	
205	8.4.83 Get Partition Statistics Response for Fibre Channel (0xAF)	
206	8.4.84 Set Module Management Data command (0x30)	
207	8.4.85 Set Module Management Data response (0xB0)	
208	8.4.86 Get FC Link Status command (0x31)	
209	8.4.87 Get FC Link Status Response (0xB1)	
210	8.4.88 Get Module Management Data command (0x32)	
211	8.4.89 Get Module Management Data response (0xB2)	
212	8.4.90 Set Pass-through Mode Control Command (0x33)	
213	8.4.91 Set Pass-through Mode Control Response (0xB3)	
214	8.4.92 Get Pass-through Mode Command (0x34)	
215	8.4.93 Get Pass-through Mode Response (0xB4)	
216	8.4.94 Get VF Allocation command (0x35)	
217	8.4.95 Get VF Allocation Response (0xB5)	
218	8.4.96 Set VF Allocation command (0x36)	
219	8.4.97 Set VF Allocation Response (0xB6)	
220	8.4.98 Get InfiniBand Link Status command (0x38)	
221	8.4.99 Get InfiniBand Link Status Response (0x88)	
222	8.4.100 Get InfiniBand Statistics command (0x39)	
223		
223 224	8.4.101 Get InfiniBand Statistics Response (0xB9)	
	8.4.102 Settings Commit command (0x47)	
225	8.4.103 Settings Commit response (0xC7)	
226	8.4.104 Get ASIC Temperature (0x48)	
227	8.4.105 Get ASIC Temperature Response (0xC8)	
228	8.4.106 Get Ambient Temperature (0x49)	
229	8.4.107 Get Ambient Temperature Response (0xC9)	
230	8.4.108 Get Transceiver Temperature (0x4A)	
231	8.4.109 Get Transceiver Temperature Response (0xCA)	
232	8.4.110 Thermal Shutdown Control Command (0x4B)	
233	8.4.111 Thermal Shutdown Control Response (0xCB)	
234	8.4.112 Transmit Data to NC command (0x4c)	
235	8.4.113 Transmit Data to NC response (0xcc)	
236	8.4.114 Receive Data from NC command (0x4D)	
237	8.4.115 Receive Data from NC response (0xCD)	
238	8.4.116 Get Inventory Information command (0x4E)	
239	8.4.117 Get Inventory Information response (0xCE)	
240	8.4.118 OEM command (0x50)	
241	8.4.119 OEM response (0xD0)	
242	8.4.120 PLDM Request (0x51)	
243	8 4 121 PI DM Response (0xD1)	209

244			8.4.122	Package UUID command (0x52)	210
245			8.4.123	B Get Package UUID response (0xD2)	210
246			8.4.124	Query and Set OEM AEN command (0x54)	211
247			8.4.125	5 Query and Set OEM AEN Response (0xD4)	212
248			8.4.126	Transport-specific AEN Enable command (0x55)	213
249				7 Transport-specific AENs Enable Response (0xD5)	
250				B Query Pending NC PLDM Request (0x56)	
251				Query Pending NC PLDM Request Response (0xD6)	
252				Send NC PLDM Reply (0x57)	
253				Send NC PLDM Reply Response (0xD7)	
254				2 Get MC MAC Address command (0x58)	
255				B Get MC MAC Address response (0xD8)	
256				SPDM command (0x60)	
257				S SPDM Response (0xE0)	
258				S Query Pending NC SPDM Request (0x61)	
259				Query Pending NC SPDM Request Response (0xE1)	
260				S Send NC SPDM Reply (0x62)	
261			8 4 139	Send NC SPDM Reply Response (0xE2)	220
262		8.5		acket formats	
263		0.0	8.5.1	Link Status Change AEN	
264			8.5.2	Configuration Required AEN	
265			8.5.3	Host Network Controller Driver Status Change AEN	
266			8.5.4	Delayed Response Ready AEN	
267			8.5.5	InfiniBand Link Status Change AEN	
268			8.5.6	Fibre Channel Link Status Change AEN	
269			8.5.7	Transceiver Event AEN	
270			8.5.8	Request Data Transfer AEN	
271			8.5.9	Partition Link Status Change AEN	
272				Thermal Shutdown Event AEN	
273				Pending PLDM Request AEN	
274	_			Pending SPDM Request AEN	
275	9			and opcode timing	
276	10			l specification	
277		10.1		gies	
278		10.2		al and signal characteristics and requirements	
279				Companion specifications	
280			10.2.2	Full-duplex operation	233
281 282				Signals	
202 283				High-impedance controlHardware Implementations	
284				DC characteristics	
285				AC characteristics	
286			10.2.7		
287				REF CLK startup	
288		10.3		nplementation guidance	
289	ΔNI			ive) Extending the model	
290			•	ative) Relationship to RMII Specification	
			•	ative) Change log	
291			`	, 5 5	
292	RID	ııograp	ny		245

	_				
	: 4			-	_
	16	11	11	e'	6
•		45	41	v	v

295	Figure 1 – NC-SI functional block diagram	26
296	Figure 2 – NC-SI RBT traffic flow diagram	27
297	Figure 3 – Example topologies supported by the NC-SI	28
298	Figure 4 – Network Controller integration options	29
299	Figure 5 – NC-SI transport stack	31
300	Figure 6 – NC-SI package/channel operational state diagram	36
301	Figure 7 – NC-SI operational state diagram for hardware arbitration operation	37
302	Figure 8 – MC steps when the MC does not have prior knowledge of hardware arbitration	45
303	Figure 9 – NC-SI packet filtering flowchart	50
304	Figure 10 – Basic multi-drop block diagram	57
305	Figure 11 – Multiple Network Controllers in a ring format	59
306	Figure 12 – Opcode to RXD relationship	60
307	Figure 13 – Example TOKEN to transmit relationship	64
308	Figure 14 – Hardware arbitration state machine	65
309	Figure 15 – Ethernet frame encapsulation of NC-SI packet data without VLAN tag	68
310	Figure 16 – Example NC-SI RBT signal interconnect topology	232
311	Figure 17 – DC measurements	
312	Figure 18 – AC measurements	
313	Figure 19 – Overshoot measurement	238
314	Figure 20 – Undershoot measurement	239
047	Table 4. NO Clarametica atom descriptions	20
317 318	Table 1 – NC-SI operating state descriptions	
319	Table 2 – Channel ID format	
320	Table 3 – Channel Ready state configuration settings	
321	Table 5 – Hardware arbitration di-bit encoding	
322	Table 6 – Hardware arbitration opcode format	
323	Table 7 – Hardware arbitration states	
324	Table 8 – Hardware arbitration events	
325	Table 9 – Ethernet Header Format	
326	Table 10 – Control Packet header format	
327		
328		71
329	Table 11 – Generic example of Control Packet payload	
J_ J	Table 11 – Generic example of Control Packet payload	72
330	Table 11 – Generic example of Control Packet payload	72 73
	Table 11 – Generic example of Control Packet payload	72 73 73
330	Table 11 – Generic example of Control Packet payload	72 73 73
330 331	Table 11 – Generic example of Control Packet payload	72 73 73 74
330 331 332	Table 11 – Generic example of Control Packet payload Table 12 – Generic example of Response packet payload format Table 13 – Generic example of Delayed Response packet payload Table 14 – Reason code ranges Table 15 – Standard response code values Table 16 – Standard Reason Code Values	72 73 73 74 75
330 331 332 333	Table 11 – Generic example of Control Packet payload Table 12 – Generic example of Response packet payload format Table 13 – Generic example of Delayed Response packet payload Table 14 – Reason code ranges Table 15 – Standard response code values Table 16 – Standard Reason Code Values Table 17 – AEN packet format	727374757676

337	Table 21 – Command and Response types	77
338	Table 22 – Example of complete minimum-sized NC-SI command packet	83
339	Table 23 – Example of complete minimum-sized NC-SI response packet	83
340	Table 24 – Clear Initial State command packet format	84
341	Table 25 – Clear Initial State response packet format	84
342	Table 26 – Select Package command packet format	86
343	Table 27 – Features Control byte	86
344	Table 28 – Select package response packet format	86
345	Table 29 – Deselect Package command packet format	87
346	Table 30 – Deselect Package response packet format	87
347	Table 31 – Enable Channel command packet format	88
348	Table 32 – Enable Channel response packet format	88
349	Table 33 – Disable Channel command packet format	89
350	Table 34 – Disable Channel response packet format	89
351	Table 35 – Reset Channel command packet format	89
352	Table 36 – Reset Channel response packet format	90
353	Table 37 – Enable Channel Network TX command packet format	90
354	Table 38 – Enable Channel Network TX response packet format	90
355	Table 39 – Disable Channel Network TX command packet format	91
356	Table 40 – Disable Channel Network TX response packet format	91
357	Table 41 – AEN Enable command packet format	92
358	Table 42 – Format of AEN control	92
359	Table 43 – AEN Enable response packet format	93
360	Table 44 – Set Link command packet format	93
361	Table 45 – Set Link bit definitions	94
362	Table 46 – OEM Set Link bit definitions	95
363	Table 47 – Set Link response packet format	96
364	Table 48 – Set Link command-specific reason codes	96
365	Table 49 – Get Link Status command packet format	97
366	Table 50 – Get Link Status response packet format	97
367	Table 51 – Link Status field bit definitions	98
368	Table 52 – Other Indications field bit definitions	101
369	Table 53 – OEM Link Status field bit definitions (optional)	102
370	Table 54 – Get Link Status command-specific reason code	
371	Table 55 – IEEE 802.1q VLAN Fields	
372	Table 56 – Set VLAN Filter command packet format	103
373	Table 57 – Possible Settings for Filter Selector field (8-bit field)	103
374	Table 58 – Possible Settings for Enable (E) field (1-bit field)	103
375	Table 59 – Set VLAN Filter response packet format	104
376	Table 60 – Set VLAN Filter command-specific reason code	104
377	Table 61 – Enable VLAN command packet format	104
378	Table 62 – VLAN Enable modes	
379	Table 63 – Enable VLAN response packet format	105
380	Table 64 – Disable VLAN command packet format	
381	Table 65 – Disable VLAN response packet format	
382	Table 66 – Set MAC Address command packet format	
383	Table 67 – Possible settings for MAC Address Number (8-bit field)	
384	Table 68 – Possible settings for Address Type (3-bit field)	
	-	

385	Table 69 – Possible settings for Enable Field (1-bit field)	108
386	Table 70 – Set MAC Address response packet format	108
387	Table 71 – Set MAC Address command-specific reason code	108
388	Table 72 – Enable Broadcast Filter command packet format	109
389	Table 73 – Broadcast Packet Filter Settings field	109
390	Table 74 – Enable Broadcast Filter response packet format	110
391	Table 75 – Disable Broadcast Filter command packet format	
392	Table 76 – Disable Broadcast Filter response packet format	
393	Table 77 – Enable Global Multicast Filter command packet format	112
394	Table 78 – Bit Definitions for Multicast Packet Filter Settings field	112
395	Table 79 – Enable Global Multicast Filter response packet format	116
396	Table 80 – Disable Global Multicast Filter command packet format	116
397	Table 81 – Disable Global Multicast Filter response packet format	117
398	Table 82 – Set NC-SI Flow Control command packet format	117
399	Table 83 – Values for the Flow Control Enable field (8-bit field)	117
400	Table 84 – Set NC-SI Flow Control response packet format	118
401	Table 85 – Set NC-SI Flow Control command-specific reason code	118
402	Table 86 – Get Version ID command packet format	118
403	Table 87 – Get Version ID response packet format	
404	Table 88 – Get Capabilities command packet format	
405	Table 89 – Get Capabilities response packet format	
406	Table 90 – Capabilities Flags bit definitions	
407	Table 91 – VLAN Mode Support bit definitions	
408	Table 92 – Get Parameters command packet format	
409	Table 93 – Get Parameters response packet format	
410	Table 94 – Get Parameters data definition	
411	Table 95 – MAC Address Flags bit definitions	
412	Table 96 – VLAN Tag Flags bit definitions	
413	Table 97 – Configuration Flags bit definitions	
414	Table 98 – Get Controller Packet Statistics command packet format	
415	Table 99 – Get Controller Packet Statistics response packet format	
416	Table 100 – Get Controller Packet Statistics counters	
417	Table 101 – Counters Cleared from Last Read Fields format	
418	Table 102 – Get NC-SI Statistics command packet format	
419	Table 103 – Get NC-SI Statistics response packet format	
420	Table 104 – Get NC-SI Statistics counters	
421	Table 105 – Get NC-SI Pass-through Statistics command packet format	
422	Table 106 – Get NC-SI Pass-through Statistics response packet format	
423	Table 107 – Get NC-SI Pass-through Statistics counters	
424	Table 108 – Get Package Status packet format	
425	Table 109 – Get Package Status response packet format	
426	Table 110 – Package Status field bit definitions	
427	Table 111 – Get NC Capabilities and Settings command packet format	
428	Table 113 – Fabrics field bit definitions	
429	Table 114 – Enabled Fabrics field bit definitions	
430	Table 115 – Capabilities Flags bit definitions	
431	Table 116 – Set NC Configuration command packet format	140

432	Table 117 -	- Set NC Configuration response packet format	140
433	Table 118 -	- Get PF Assignment Command Packet Format	141
434	Table 119 -	- Get PF Assignment Response packet format	141
435	Table 120 -	- Channel Function Assignment bitmap field	142
436	Table 121 -	- Function Port Association bitmap field	142
437	Table 122 -	- Function Enablement bitmap field	142
438	Table 123 -	- PCIe Endpoint Assignment bitmap field	143
439	Table 124 -	- Set PF Assignment Command packet format	144
440	Table 125 -	- Channel Function Assignment bitmap field	144
441	Table 126 -	- Function Enablement bitmap field	145
442	Table 127 -	- PCIe Endpoint Assignment bitmap field	145
443	Table 128 -	- Set PF Assignment Response packet format	146
444	Table 129 -	- Get Channel Configuration command packet format	146
445	Table 130 -	- Get Channel Configuration response packet format	146
446	Table 131 -	– Fabric Type definitions	147
447	Table 132 -	- Media Type bit definitions	147
448	Table 133 -	- Set Channel Configuration command packet format	148
449	Table 134 -	– Fabric Type definitions	148
450	Table 135 -	– Set Channel Configuration response packet format	149
451	Table 136 -	- Get Partition Configuration command packet format	150
452	Table 137 -	- Get Partition Configuration response packet format	150
453	Table 138 -	- Personality Cfg bit definitions	151
454	Table 139 -	- Personality Spt bit definitions	151
455	Table 140 -	- Configuration Flags bit definitions	152
456	Table 141 -	– Address Type-Length-Value Field Bit Definitions	153
457	Table 142 -	- Set Partition Configuration command packet format	155
458	Table 143 -	- Personality Cfg bit definitions	156
459	Table 144 -	- Values for the Partition Link Control field (8-bit field)	156
460	Table 145 -	- Address Type-Length field bit definitions	156
461	Table 146 -	- Set Partition Configuration response packet format	157
462	Table 147 -	- Get Boot Config command packet	157
463	Table 148 -	- Protocol Type field	158
464	Table 149 -	- Get Boot Config Response packet	158
465	Table 150 -	- Protocol Type field	159
466	Table 151 -	- PXE Boot Protocol Type-Length field	159
467	Table 152 -	- Get FC Boot Protocol Type-Length field	160
468	Table 153 -	- FCoE Boot Protocol Type-Length field	160
469	Table 154 -	- iSCSI Boot Protocol Type-Length field	161
470	Table 155 -	- NVMeoFC Boot Protocol Type-Length field	162
471	Table 156 -	- Set Boot Config command packet format	164
472	Table 157 -	- Set Boot Config Response packet format	165
473	Table 158 -	- TLV Error Reporting field	165
474	Table 159 -	- Get Partition Statistics command packet format	166
475		- Stats Type Field	
476	Table 161 -	- Get Partition Statistics (Ethernet) response packet format	166
477	Table 162 -	– Counter Sizes field format	167
478	Table 163 -	- Counters Cleared from Last Read field format	168
479	Table 164 -	- Get Partition Statistics (FCoE) response packet format	169

480	Table 166 – Counters Cleared from Last Read field format	170
481	Table 167 – Get Partition Statistics (iSCSI) response packet format	
482	Table 169 – Counters Cleared from Last Read field format	
483	Table 170 – Get Partition Statistics (IB) response packet format	
484	Table 171 – Counter Sizes field format	
485	Table 172 – Counters Cleared from Last Read field format	
486	Table 173 – Get Partition Statistics (RDMA) response packet format	
487	Table 174 – Counter Sizes field format	
488	Table 175 – Counters Cleared from Last Read field format	
489	Table 176 – Get Partition Statistics (FC) Response packet	
490	Table 177 – Counters Cleared from Last Read field format	
491	Table 178 – FC Statistics	
492	Table 179 – Set Module Management Data command packet format	
493	Table 180 – Set Module Management Data response packet format	
494	Table 181 – Get FC Link Status command packet format	
495	Table 182 – Get FC Link Status Response packet format	
496	Table 183 – FC Trunk Status field bit definitions	
497	Table 184 – FC Link Status field bit definitions	
498	Table 185 – Trunk Speeds field	182
499	Table 186 – Channel Link Speed field	
500	Table 187 – Get Module Management Data command packet format	
501	Table 188 – Flag field bit definitions	
502	Table 189 – Get Module Management Data response packet format	185
503	Table 190 – Module Type definitions	186
504	Table 191 – Set Pass-through Mode Control Command	187
505	Table 192 – Pass-through Type definitions	187
506	Table 193 – Set Pass-through Mode Control Response Packet	187
507	Table 194 – Get Pass-through Mode Command Packet	188
508	Table 195 – Get Pass-through Mode Response Packet	
509	Table 196 – Pass-through Type definitions	188
510	Table 197 – Pass-through Type definitions	189
511	Table 198 – Get VF Allocation Command Packet Format	189
512	Table 199 – Get VF Allocation Response packet format	190
513	Table 200 – Function Num VFs Fields	190
514	Table 201 – Set VF Allocation Command packet format	
515	Table 202 – Function Num VFs Fields	
516	Table 203 – Set VF Allocation Response packet format	
517	Table 204 – Get InfiniBand Link Status command	
518	Table 205 – Get InfiniBand Link Status Response packet	
519	Table 206 – InfiniBand Link Status definitions	
520	Table 207 – Get InfiniBand Statistics Command	
521	Table 208 – Get InfiniBand Statistics Response packet	
522	Table 209 – InfiniBand Statistics Counter definitions	
523	Table 210 – Settings Commit command packet format	
524	Table 211 – Settings Commit response packet format	
525	Table 212 – Get ASIC Temperature Command packet	
526	Table 213 – Get ASIC Temperature Response packet	198

527	Table 214 -	- Get Ambient Temperature command packet	199
528	Table 215 -	- Get Ambient Temperature Response packet	199
529	Table 216 -	- Get Transceiver Temperature Command Packet	200
530	Table 217 -	- Get Transceiver Temperature Response packet	200
531	Table 218 -	- Thermal Shutdown Control Command packet	201
532	Table 219 -	- Operation field definitions	201
533	Table 220 -	- Thermal Shutdown Control Response packet	202
534	Table 221 -	- Status field bit definitions	202
535	Table 222 -	- Transmit Data to NC command packet format	203
536	Table 223 -	– Opcode field format	203
537	Table 224 -	- Transmit Data to NC response packet format	204
538	Table 225 -	- Transmit Data to NC command-specific reason codes	204
539	Table 226 -	- Receive Data from NC command packet format	205
540	Table 227 -	– Opcode field format	205
541	Table 229 -	- Receive Data from NC response packet format	206
542	Table 230 -	– Opcode field format	206
543	Table 231 -	- Receive Data from NC command-specific reason codes	206
544	Table 232 -	Get Inventory Information command packet format	207
545	Table 233 -	Get Inventory Information response packet format	207
546	Table 234 -	- Inventory Information Type-Length field	208
547	Table 235 -	– OEM command packet format	208
548	Table 236 -	- OEM response packet format	209
549	Table 237 -	- PLDM Request packet format	209
550	Table 238 -	– PLDM Response packet format	210
551	Table 239 -	Get Package UUID command packet format	210
552	Table 240 -	Get Package UUID response packet format	211
553	Table 241 -	– UUID Format	211
554	Table 242 -	– Query and Set OEM AEN command packet	212
555	Table 243 -	- Query and Set OEM AEN Response packet	212
556	Table 244 -	- Transport-specific AEN Enable command packet format	213
557	Table 245 -	- Transport-specific AEN enable field format	213
558	Table 246 -	- Transport-specific AEN Enable Response packet format	215
559		Query Pending NC PLDM Request packet format	
560	Table 248 -	 Query Pending NC PLDM Request Response Packet Format 	215
561		Query Pending NC PLDM Request Response parameters	
562	Table 250 -	– Send NC PLDM Reply packet format	216
563	Table 251 -	– Send NC PLDM Reply Response packet format	216
564	Table 252 -	- Reply NC PLDM Response parameters	216
565	Table 253 -	Get MC MAC Address command packet format	217
566	Table 254 -	Get MC MAC Address response packet format	217
567	Table 255 -	– SPDM command packet	218
568	Table 256 -	– SPDM Response packet	219
569	Table 257 -	Query Pending NC SPDM Request packet format	219
570	Table 258 -	Query Pending NC SPDM Request Response Packet Format	219
571	Table 259 -	Query Pending NC SPDM Request Response parameters	220
572	Table 260 -	– Send NC SPDM Reply packet format	220
573		- Send NC SPDM Reply Response packet format	
574	Table 262 -	- Reply NC SPDM Response parameters	221

	Network Controller Sideband Interface (NC-SI) Specification	DSP0222
575	Table 263 – Link Status Change AEN packet format	221
576	Table 264 – Configuration Required AEN packet format	222
577	Table 265 – Host Network Controller Driver Status Change AEN packet format	223
578	Table 266 – Host Network Controller Driver Status format	223
579	Table 267 – Delayed Response Ready AEN packet format	223
580	Table 268 – InfiniBand Link Status Change AEN packet format	224
581	Table 269 – Fibre Channel Link Status Change AEN packet format	224
582	Table 270 – Transceiver Event AEN packet format	225
583	Table 271 – Transceiver Event List format	225
584	Table 272 – Transceiver Presence format	226
585	Table 273 – Request Data Transfer AEN packet format	227
586	Table 274 – Partition Link Status Change AEN packet format	227
587	Table 275 – Partition Map Field	227
588	Table 276 – Partition Link Status	228
589	Table 277 – Thermal Shutdown Event AEN packet format	228
590	Table 278 – Pending PLDM Request AEN format	229
591	Table 279 – NC-SI packet-based and opcode timing parameters	230
592	Table 280 – Physical RBT signals	234
593	Table 281 – DC specifications	236

594

596	Foreword		
597 598	The Network Controller Sideband Interface (NC-SI) Specification (DSP0222) was prepared by the PMC Working Group.		
599	This version supersedes version 1.2.0WIP95. For a list of changes, see the Change Log in ANNEX C.		
600 601	DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability.		
602	Acknowledgments		
603	The DMTF acknowledges the following individuals for their contributions to this document:		
604	Editors:		
605	Hemal Shah – Broadcom Inc.		
606	Bob Stevens – Dell Technologies		
607	Contributors:		
808	Patrick Caporale – Lenovo		
609	Phil Chidester – Dell Inc.		
610	Yuval Itkin – NVIDIA Corporation		
611	Ira Kalman – Intel Corporation		
612	Patrick Kutch – Intel Corporation		
613	Eliel Louzoun – Intel Corporation		
614	Rob Mapes – Marvell Corporation		
615	Edward Newman – Hewlett Packard Enterprise		
616	Patrick Schoeller – Intel Corporation		
617	Tom Slaight – Intel Corporation		
618	Dov Goldstein – Intel Corporation		
619	Jason Kilpatrick – Dell Technologies		
620			

621	Introduction
622 623 624	In out-of-band management environments, the interface between the out-of-band Management Controlle and the Network Controller is critical. This interface is responsible for supporting communication between the Management Controller and external management applications.
625 626 627 628	The goal of this specification is to define an interoperable sideband communication interface standard to enable the exchange of management data between the Management Controller and Network Controller. The Sideband Interface is intended to provide network access for the Management Controller, and the Management Controller is expected to perform all the required network functions.
629 630 631 632	This specification defines the protocol and commands necessary for the operation of the sideband communication interface. This specification also defines physical and electrical characteristics of a sideband binding interface that is a variant of RMII targeted specifically for sideband communication traffic.
633 634 635 636	The specification is primarily intended for architects and engineers involved in the development of Network and Management Controllers that will be used in providing out-of-band management functionality.

638	1 Scope		
639 640 641 642	This specification defines the functionality and behavior of the Sideband Interface responsible for connecting the Network Controller (including Ethernet, Fibre Channel, and InfiniBand controllers) to the Management Controller. It also outlines the behavioral model of the network traffic destined for the Management Controller from the Network Controller.		
643	This specification defines the following two aspects of the Network Controller Sideband Interface (NC-SI)		
644 645	 behavior of the interface, which include its operational states as well as the states of the associated components 		
646	 the payloads and commands of the communication protocol supported over the interface 		
647 648	The scope of this specification is limited to addressing only a single Management Controller communicating with one or more Network Controllers.		
649 650	This specification also defines the following aspects of a 3.3V RMII-Based Transport (RBT) based physical medium:		
651	transport binding for NC-SI over RBT		
652	electrical and timing requirements for the RBT		
653	an optional hardware arbitration mechanism for RBT		
654 655	Only the topics that may affect the behavior of the Network Controller or Management Controller, as it pertains to the Sideband Interface operations, are discussed in this specification.		
656	2 Normative references		
657 658 659 660	The following referenced documents are indispensable for the application of this document. For dated or versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions) applies.		
661 662	DMTF DSP0240, <i>Platform Level Data Model (PLDM) Base Specification</i> 1.0 https://www.dmtf.org/dsp/DSP0240		
663 664	DMTF DSP0261, NC-SI over MCTP Binding Specification 1.2 https://www.dmtf.org/dsp/DSP0261		
665 666	DMTF DSP0274, Security Protocol and Data Model (SPDM) Specification 1.1 & 1.2 https://www.dmtf.org/dsp/DSP0274		
667 668	IEEE 802.3, IEEE Standard for Ethernet, June 2018 https://standards.ieee.org/ieee/802.3/7071/		
669 670	IETF, RFC4122, A Universally Unique Identifier (UUID) URN Namespace, July 2005 http://datatracker.ietf.org/doc/rfc4122/		
671 672	InfiniBand™ Architecture Specification https://www.infinibandta.org/ibta-specification/		

- 673 ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents
- 674 http://isotc.iso.org/livelink/livelink?func=ll&objld=4230456&objAction=browse&sort=subtype
- Reduced Media Independent Interface (RMII) Consortium, RMII Specification, revision 1.2, March 20,
- 676 1998
- 677 http://ebook.pldworld.com/ eBook/-Telecommunications, Networks-/TCPIP/RMII/rmii rev12.pdf
- 678 CMIS, Common Management Interface Specification 4.0 / 5.0 / 5.1
- 679 https://www.oiforum.com/documents/archived-non-oif-generated-specifications/
- 680 CMIS, Common Management Interface Specification 5.2
- 681 https://www.oiforum.com/wp-content/uploads/OIF-CMIS-05.2.pdf
- 682 SFF, SFF-8024, SFF Cross Reference to Industry Products
- 683 https://www.snia.org/technology-communities/sff/specifications
- SFF, SFF-8436, QSFP+ 10Gbs 4X Pluggable Transceiver
- 685 https://www.snia.org/technology-communities/sff/specifications
- 686 SFF, SFF-8472, Diagnostic Monitoring Interface for Optical Transceivers
- 687 https://www.snia.org/technology-communities/sff/specifications
- SFF, SFF-8636, Management Interface for Cabled Environments
- 689 https://www.snia.org/technology-communities/sff/specifications
- 690 DSFP, Dual Small Form Factor Pluggable Module, 1.0
- 691 https://dsfpmsa.org/wp-content/uploads/2021/07/DSFP Module Specification.pdf
- 692 Fibre Channel Technical Committee (ANSI/INCITS TC T11)
- 693 http://www.t11.org and http://www.incits.org

694 3 Terms and definitions

3.1 Wording Interpretation

- In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
- are defined in this clause.

- The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),
- "may", "need not" ("not required"), and "can" in this document are to be interpreted as described in
- 700 ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term,
- for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that
- 702 <u>ISO/IEC Directives</u>, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional
- alternatives shall be interpreted in their normal English meaning.
- 704 The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as
- 705 described in ISO/IEC Directives, Part 2, Clause 6.
- 706 The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC
- 707 Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do
- not contain normative content. Notes and examples are always informative elements.
- 709 The terms defined in <u>DSP0004</u>, <u>DSP0223</u>, and <u>DSP1001</u> apply to this document. The following additional
- 710 terms are used in this document.

711 3.2 Requirement term definitions

- 712 This clause defines key phrases and words that denote requirement levels in this specification.
- 713 **3.2.1**
- 714 can
- 715 indicates an ability or capability expressed by the specification or of the possibility of some outcome in the
- 716 context of the specification
- 717 3.2.2
- 718 cannot
- 719 indicates the inability or denial of the possibility of a certain outcome in the context of the specification
- 720 **3.2.3**
- 721 conditional
- 722 indicates that an item is required under specified conditions
- 723 **3.2.4**
- 724 deprecated
- 725 indicates that an element or profile behavior has been outdated by newer constructs
- 726 **3.2.5**
- 727 mandatory
- 728 indicates that an item is required under all conditions
- 729 **3.2.6**
- 730 **may**
- 731 a permission expressed by this specification
- 732 **3.2.7**
- 733 may not
- an expression of permission in the negative; a lack of requirement
- 735 **3.2.8**
- 736 not recommended
- 737 indicates that valid reasons may exist in particular circumstances when the particular behavior is
- acceptable or even useful, but the full implications should be understood and carefully weighed before
- 739 implementing any behavior described with this label
- 740 **3.2.9**
- 741 obsolete
- 742 indicates that an item was defined in prior specifications but has been removed from this specification
- 743 **3.2.10**
- 744 optional
- 745 indicates that an item is not mandatory, conditional, or prohibited
- 746 **3.2.11**
- 747 recommended
- 748 indicates that valid reasons may exist in particular circumstances to ignore a particular item, but the full
- 749 implications should be understood and carefully weighed before choosing a different course

- 750 **3.2.12**
- 751 required
- indicates that the item is an absolute requirement of the specification
- 753 **3.2.13**
- 754 **shall**
- indicates that the item is an absolute requirement of the specification
- 756 **3.2.14**
- 757 shall not
- indicates that the item is an absolute prohibition of the specification
- 759 **3.2.15**
- 760 should
- indicates a recommendation of the specification, but the full implications should be understood and
- 762 carefully weighed before choosing a different course
- 763 **3.2.16**
- 764 should not
- indicates a recommendation against, but the full implications should be understood and carefully weighed
- 766 before implementing any behavior described with this label

767 3.3 NC-SI term definitions

- For the purposes of this document, the following terms and definitions apply.
- 769 **3.3.1**
- 770 frame
- a data packet of fixed or variable length that has been encoded for digital transmission over a node-to-
- 772 node link
- 773 Frame is used in references to <u>IEEE 802.3 Frames</u>. Packet is used in all other references.
- 774 3.3.2
- 775 packet
- a formatted block of information carried by a computer network
- 777 Frame is used in references to IEEE 802.3 Frames. Packet is used in all other references.
- 778 **3.3.3**
- 779 external network interface
- 780 the interface of the Network Controller that provides connectivity to the external network infrastructure;
- 781 also known as *port*
- 782 **3.3.4**
- 783 internal host interface
- 784 the interface of the Network Controller that provides connectivity to the host operating system running on
- 785 the platform

786	3.3.5

787 Management Controller

- an intelligent entity composed of hardware/firmware/software that resides within a platform and is
- 789 responsible for some or all of the management functions associated with the platform; also known as
- 790 BMC and Service Processor
- 791 **3.3.6**
- 792 Network Controller
- 793 the component within a system that is responsible for providing connectivity to an external Ethernet, Fibre
- 794 Channel, or InfiniBand network
- 795 **3.3.7**
- 796 remote media
- 797 a manageability feature that enables remote media devices to appear as if they are attached locally to the
- 798 host
- 799 **3.3.8**
- 800 Network Controller Sideband Interface
- 801 NC-SI
- The RBT interface of the Network Controller that provides network connectivity to a Management
- 803 Controller; also shown as Sideband Interface, RBT or NC-SI as appropriate in the context
- 804 3.3.9
- 805 integrated controller
- a Network Controller device that supports two or more channels for the NC-SI that share a common
- NC-SI physical interface (for example, a Network Controller that has two or more physical network ports
- and a single NC-SI bus connection)
- 809 3.3.10
- 810 **multi-drop**
- 811 refers to the situation in which multiple physical communication devices share an electrically common bus
- and a single device acts as the master of the bus and communicates with multiple "slave" or "target"
- 813 devices
- Related to NC-SI, a Management Controller serves the role of the master, and the Network Controllers
- are the target devices
- 816 **3.3.11**
- 817 **point-to-point**
- 818 refers to the situation in which only a single Management Controller and single Network Controller
- 819 package are used on the bus in a master/slave relationship, where the Management Controller is the
- 820 master
- 821 **3.3.12**
- 822 Channel
- 823 refers to the logical representation of a network port in a Network Controller that supports Control traffic
- 824 and may support Pass-through traffic
- 825 A Network Controller may have a 1:1 relationship of NC-SI channels to physical network ports, or Network
- 826 Controllers that support partitioning can have multiple channels on a given network port

	· · ·
827 828	3.3.13 Partition
829	one or more NC-SI channels in a Network Controller that share a common network port
830 831 832 833	3.3.14 Package one or more NC-SI channels in a Network Controller that share a common set of electrical buffers and common electrical buffer controls for the NC-SI bus
834 835 836	Typically a single, logical NC-SI package exists for a single physical Network Controller package (chip or module). However, this specification allows a single physical chip or module to hold multiple NC-SI logical packages
837 838 839 840 841	3.3.15 control traffic Control Packets control packets command, response, and asynchronous event notification packets transmitted between the Management
842 843 844 845 846	Controller and Network Controllers for the purpose of managing the NC and NC-SI 3.3.16 Command Control Packet sent by the Management Controller to the Network Controller to request the Network Controller to perform an action, and/or return data
847 848 849 850 851	3.3.17 Response Control Packet sent by the Network Controller to the Management Controller as a positive acknowledgement of a command received from the Management Controller, and to provide the execution outcome of the command, as well as to return any required data
852 853 854 855	3.3.18 Asynchronous Event Notification Control Packet sent by the Network Controller to the Management Controller as an explicit notification of the occurrence of an event of interest to the Management Controller
856 857 858 859 860	3.3.19 pass-through traffic pass-through packets network packets passed between the external network and the Management Controller through the Network Controller
861 862 863	3.3.20 RBT RMII-Based Transport
864	Electrical and timing specification for a 3.3V-signaling physical medium that is derived from RMII
865 866	3.3.21 PCIe Endpoint

868

22

Also PCIe Port, physically the collection of Transmitters and Receivers located on the same chip that

define a Link, logically the interface between a component and a PCI Express Link. For the purposes of

- 869 this specification, it is a PCIe upstream port on the NC that is assigned a PCI Bus number when
- 870 connecting to a PCIe Switch or Root Complex
- 871 **3.3.22**
- 872 PCle Link
- 873 The collection of two Ports and their interconnecting Lanes. A Link is a dual-simplex communications path
- between two components.

875 3.4 Numbers and number bases

- Numbers in this specification are written as follows:
- Hexadecimal numbers are written with a "0x" prefix (for example, 0xFF and 0x80).
- Binary numbers are written with a lowercase "b" suffix (for example, 1001b and 10b).
- Hexadecimal and binary numbers are formatted in the Courier New font.
- "uint8" describes an unsigned 8-bit integer value.

881 3.5 Network Addresses

- Network addresses in this specification are written as follows:
- IPv4 addresses are written as decimal numbers with period (.) separators
- IPv6 addresses are written as hexadecimal numbers with colon (:) separators
- MAC addresses are written as 6 hexadecimal number pairs with colon (:) separators
- InfiniBand GUIDs are written as hexadecimal numbers with no separators
- Fibre Channel WWNs are written as hexadecimal numbers with no separators

888 3.6 Reserved fields

- 889 Unless otherwise specified, reserved fields (bytes, bits, etc.) are reserved for future use and should be
- written as zeros and ignored when read.

891 4 Acronyms and abbreviations

- The following symbols and abbreviations are used in this document.
- 893 **4.1**
- 894 AC
- 895 Alternating Current
- 896 **4.2**
- 897 **AEN**
- 898 Asynchronous Event Notification
- 899 **4.3**
- 900 **BMC**
- 901 Baseboard Management Controller (often used interchangeably with MC)
- 902 4.4
- 903 CMIS
- 904 Common Management Interface Specification

- 905 **4.5**
- 906 CRC
- 907 Cyclic Redundancy Check
- 908 4.6
- 909 CRS_DV
- 910 a physical NC-SI signal used to indicate Carrier Sense/Received Data Valid
- 911 **4.7**
- 912 **DC**
- 913 Direct Current
- 914 4.8
- 915 **DHCP**
- 916 Dynamic Host Configuration Protocol
- 917 4.9
- 918 **EEE**
- 919 Energy Efficient Ethernet
- 920 4.10
- 921 **FC**
- 922 Fibre Channel
- 923 4.11
- 924 **FCS**
- 925 Frame Check Sequence
- 926 **4.12**
- 927 **IE**
- 928 InfiniBand
- 929 4.13
- 930 **MC**
- 931 Management Controller
- 932 4.14
- 933 **NC**
- 934 Network Controller
- 935 4.15
- 936 NC-SI
- 937 Network Controller Sideband Interface
- 938 4.16
- 939 **NC-SI RX**
- 940 the direction of traffic on RBT from the Network Controller to the Management Controller
- 941 **4.17**
- 942 NC-SI TX
- 943 the direction of traffic RBT to the Network Controller from the Management Controller

DSP0222

- 944 **4.18**
- 945 **RMII**
- 946 Reduced Media Independent Interface
- 947 4.19
- 948 **RX**
- 949 Receive
- 950 **4.20**
- 951 **RXD**
- 952 physical NC-SI signals used to transmit data from the Network Controller to the Management Controller
- 953 **4.21**
- 954 **RX_ER**
- 955 a physical NC-SI signal used to indicate a Receive Error
- 956 **4.22**
- 957 **SerDes**
- 958 serializer/deserializer; an integrated circuit (IC or chip) transceiver that converts parallel data to serial data
- and vice-versa. This is used to support interfaces such as 1000Base-X and others.
- 960 4.23
- 961 **SFF**
- 962 Small Form Factor
- 963 4.24
- 964 **TX**
- 965 Transmit
- 966 **4.25**
- 967 **TXD**
- 968 physical NC-SI signals used to transmit data from the Management Controller to the Network Controller
- 969 4.26
- 970 **VLAN**
- 971 Virtual LAN
- 972

5 NC-SI overview

5.1 General

This specification enables a common interface definition between different Management Controller and Network Controller vendors. This specification addresses not only the electrical and protocol specifications, but also the system-level behaviors for the Network Controller and the Management Controller related to the NC-SI.

The NC-SI is defined as the interface (protocol, messages, and medium) between a Management Controller and one or more Network Controllers. This interface, referred to as a Sideband Interface in Figure 1, is responsible for providing external network connectivity for the Management Controller while also allowing the external network interface to be shared with traffic to and from the host.

The specification of how the NC-SI protocol and messages are implemented over a particular physical medium is referred to as a transport binding. This document, DSP0222, includes the definition of the transport binding, electrical, framing, and timing specifications for a physical interface called RBT (RMII based Transport). Electrically, RBT, as described in clause 10, is similar to the Reduced Media Independent Interface $^{\text{TM}}$ (RMII) – see ANNEX B. Transport bindings for NC-SI over other media and transport protocols are defined through external transport binding specifications, such as $\frac{\text{DSP0261}}{\text{DSP0261}}$, the NC-SI over MCTP Transport Binding Specification. That specification defines the Get Supported Media command (0x54) which is used to discover support for operations over multiple media types. This command may be issued on any NC-SI transport including RBT.

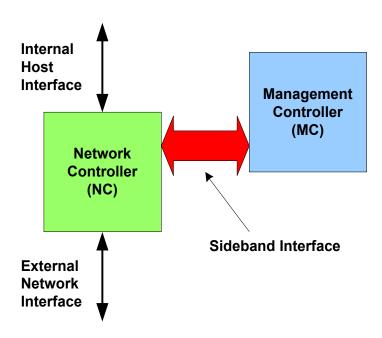


Figure 1 - NC-SI functional block diagram

NC-SI traffic flow is illustrated in Figure 2. Two classes of packet data can be delivered over the Sideband Interface:

- "Pass-through" packets that are transferred between the Management Controller and the external network and/or an internal host.
- "Control" packets that are transferred between the Management Controller and Network
 Controllers for control or configuration functionality. This specification defines NC-SI commands
 and responses as well as a mechanism to customize and extend functionality via OEM
 commands extensions see ANNEX A.

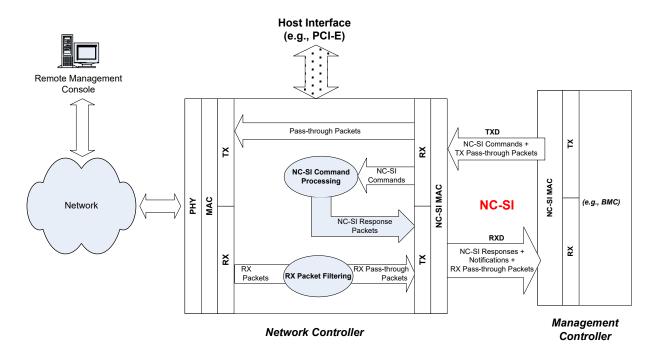
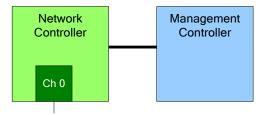
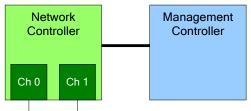


Figure 2 - NC-SI RBT traffic flow diagram

NC-SI is intended to operate independently from the in-band activities of the Network Controller. As such, the Sideband Interface is not specified to be visible through the host interface of the Network Controller. From the external world, this interface should behave and operate like a standard Ethernet Interface.


5.2 Defined topologies

The topologies supported under this specification apply to the case in which a single Management Controller is actively communicating with one or more Network Controllers on the Sideband Interface over RBT. The RBT electrical specification is targeted to directly support up to four physical Network Controller packages. The protocol specification allows up to eight Network Controller packages, with up to 31 channels per package.


Figure 3 illustrates some examples of Network Controller configurations supported by the NC-SI in the current release:

- Configuration 1 shows a Management Controller connecting to a single Network Controller with a single external network connection.
- Configuration 2 shows a Management Controller connecting to a Network Controller package that supports two NC-SI channel connections.
- Configuration 3 shows a Management Controller connecting to four discrete Network Controllers.

Configuration 1: Single Channel, Single Package

Configuration 2: Integrated Dual Channel, Single Package

Configuration 3: Single Channels, Four Discrete Packages

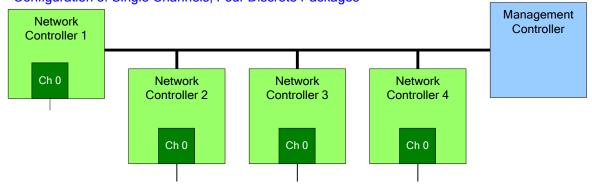


Figure 3 – Example topologies supported by the NC-SI

5.3 Single and integrated Network Controller implementations

This clause illustrates the general relationship between channels, packages, receive buffers, and bus buffers for different controller implementations.

1023

1021

1022

1013

10141015

10161017

1018

1019

An integrated controller is a Network Controller that connects to the NC-SI RBT (or other physical interfaces that support NC-SI) interface and provides NC-SI support for two or more network connections.

A single controller is a controller that supports only a single NC-SI channel.

For the *NC-SI Specification*, an integrated controller can be logically implemented in one of three basic ways, as illustrated in Figure 4. Although only two channels are shown in the illustration, an integrated controller implementation can provide more than two channels. The example channel and package numbers (for example, channel 0, package 0) refer to the Internal Channel and Package ID subfields of the Channel ID. For more information, see clause 6.1.9.

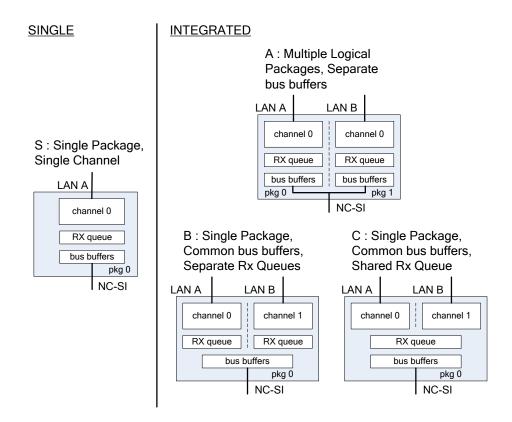


Figure 4 – Network Controller integration options

Packages that include multiple channels are required to handle internal arbitration between those channels and the Sideband Interface. The mechanism by which this occurs is vendor-specific and not specified in this document. This internal arbitration is always active by default. No NC-SI commands are defined for enabling or disabling internal arbitration between channels.

The following classifications refer to a logical definition. The different implementations are distinguished by their behavior with respect to the NC-SI bus and command operation. The actual physical and internal implementation can vary from the simple diagrams. For example, an implementation can act as if it has separate RX queues without having physically separated memory blocks for implementing those queues.

S: Single Package, Single Channel

This implementation has a single NC-SI interface providing NC-SI support for a single LAN port, all contained within a package or module that has a single connection to the NC-SI physical

1047 bus. Note that FC Bonding is supported in this specification and thus multiple physical ports 1048 may be aggregated into one logical port.

A: Multiple Logical Packages, Separate Bus Buffers

This implementation acts like two physically separate Network Controllers that happen to share a common overall physical container. Electrically, they behave as if they have separate electrical buffers connecting to the NC-SI bus. This behavior might be accomplished by means of a passive internal bus or by separate physical pins coming from the overall package. From the point of view of the Management Controller and the NC-SI command operation, this implementation behaves as if the logical controllers were implemented as physically separate controllers.

This type of implementation could include internal hardware arbitration between the two logical Network Controller packages. If hardware arbitration is provided external to the package, it shall meet the requirements for hardware arbitration described later in this specification. (For more information, see clause 7.3.)

B: Single Package, Common Bus Buffers, Separate RX Queues

In this implementation, the two internal NC-SI channels share a common set of electrical bus buffers. A single Deselect Package command will deselect the entire package. The Channel Enable and Channel Disable commands to each channel control whether the channel can transmit Pass-through and AEN packets through the NC-SI interface. The Channel Enable command also determines whether the packets to be transmitted through the NC-SI interface will be queued up in an RX Queue for the channel while the channel is disabled or while the package is deselected. Because each channel has its own RX Queue, this queuing can be configured for each channel independently.

C: Single Package, Common Bus Buffers, Shared RX Queue

This implementation is the same as described in the preceding implementation, except that the channels share a common RX Queue for holding Pass-through packets to be transmitted through the NC-SI interface. This queue could also queue up AEN or Response packets.

In addition to the general purpose architectures listed above, some Network Controllers support more advanced architectures that provide for multiple host interfaces that share a single channel/physical port (commonly called partitions), a single host interface that sends and receives traffic over multiple physical ports, but modeled as a single channel, and lastly an internally terminated channel that can be used to control some other functionality in the NC that requires a communication and control path to the MC.

5.4 Transport stack

1080 The overall transport stack of the NC-SI is illustrated in Figure 5. The lowest level is the physical-level 1081 interface (for example, RBT), and the media-level interface is based on Ethernet. Above these interfaces are the two data-level protocols that are supported by the NC-SI Specification: NC-SI Command Protocol 1082 and the Network Data Protocol (for example, ARP, IP, DHCP, and NetBIOS) associated with Pass-1083 through traffic for NCs. Both protocols are independent from binding to the underlying physical interface. 1084 This specification only defines the binding for NC-SI over RBT. 1085

1086 This document defines the necessary NC-SI command set and interface specification that allows the 1087 appropriate configuration of the Network Controller parameters and operation to enable network traffic to 1088 flow to and from external networks to the Management Controller for those devices that support it. As 1089 shown in Figure 5, the scope of the NC-SI Command Protocol is limited to the interface between the 1090

Network Controller and the Management Controller.

1049

1050

1051

1052

1053

1054 1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067 1068

1069

1070

1071

1072

1073

1074

1075

1076 1077

1078

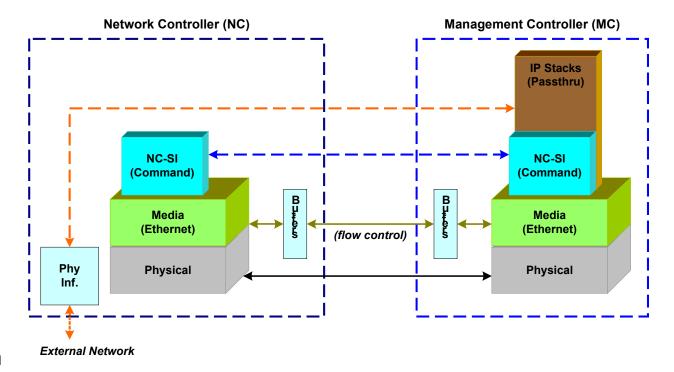


Figure 5 – NC-SI transport stack

5.5 Transport protocol

A simple transport protocol is used to track the reliable reception of command packets. The transport protocol is based upon a command/response paradigm and involves the use of unique Instance IDs (IIDs) in the packet headers to allow responses received to be matched to previously transmitted commands. The Management Controller is the generator of command packets sent to the Sideband Interface of one or more Network Controllers in the system, and it receives response packets from them. A response packet is expected to be received for every command packet successfully sent.

The transport protocol described here shall apply only to command and response packets sent between the Management Controller and the Network Controller.

5.6 Byte and bit ordering for transmission

Unless otherwise specified, the bytes for a multi-byte numeric field are transmitted most significant byte first and bits within a byte are transmitted most significant bit first.

6 Operational behaviors

1106

1107

1110

1111

1112

1113 1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130 1131

1132

1133 1134

1135

1136

6.1 Typical operational model

- 1108 This clause describes the typical system-level operation of the NC-SI components.
- 1109 The following tasks are associated with Management Controller use of the NC-SI:

• Initial configuration

When the NC-SI interface is first powered up, the Management Controller needs to discover and configure NC-SI devices as well as to enable pass-through operation. This task includes setting parameters such as MAC addresses, configuring Layer 2 filtering, setting Channel enables, and so on.

General Controller configuration and monitoring

The Management Controller may also configure and monitor aspects of Controller operation.

Pass-through

The Management Controller handles transmitting and receiving Pass-through packets using the NC-SI. Pass-through packets can be delivered to and received from the network through the NC-SI based on the Network Controller's NC-SI configuration.

Asynchronous event handling

In certain situations, a status change in the Network Controller, such as a Link State change, can generate an asynchronous event on the Sideband Interface. These event notifications are sent to the Management Controller where they are processed as appropriate.

Error handling

The Management Controller handles errors that could occur during operation or configuration. For example, a Network Controller might have an internal state change that causes it to enter a state in which it requires a level of reconfiguration (this condition is called the "Initial State," described in more detail in 6.1.4); or a data glitch on the NC-SI could have caused an NC-SI command to be dropped by the Network Controller, requiring the Management Controller to retry the command.

6.1.1 State definitions and defined states

Table 1 describes states related to whether and when the Network Controller is ready to handle NC-SI command packets, when it is allowed to transmit packets through the NC-SI interface, and when it has entered a state where it is expecting configuration by the Management Controller.

Table 1 - NC-SI operating state descriptions

State	Applies to	Description
Interface Power Down	Package	The NC-SI is in the power down state.
Interface Power Up	Package	The NC-SI is in the power up state, as defined in clause 10.
Package Selected (also referred to as the Selected state)	Package	A Selected package is allowed to turn on its electrical buffers and transmit through the NC-SI interface.
Package Deselected (also referred to as the Deselected state)	Package	A Deselected package is not allowed to turn on its electrical buffers and transmit through the NC-SI interface.

State	Applies to	Description
Hardware Arbitration Enabled	Package	When hardware arbitration is enabled, the package is allowed to transmit through the NC-SI interface only when it is Selected and has the TOKEN opcode.
Hardware Arbitration Disabled	Package	When hardware arbitration is disabled, the package is allowed to transmit through the NC-SI interface anytime that it is Selected, regardless of whether it has the TOKEN opcode.
Package Ready	Package	In the Package Ready state, the package is able to accept and respond to NC-SI commands for the package and be Selected.
Package Not Ready	Package	The Package Not Ready state is a transient state in which the package does not accept package-specific commands.
Channel Ready	Channel	In the Channel Ready state, a channel within the package is able to accept channel-specific NC-SI commands that are addressed to its Channel ID (Package ID + Internal Channel ID).
Channel Not Ready	Channel	The Channel Not Ready state is a transient state in which the channel does not accept channel-specific commands.
Initial State	Channel	In the Initial State, the channel is able to accept and respond to NC-SI commands, and one or more configuration settings for the channel need to be set or restored by the Management Controller (that is, the channel has not yet been initialized, or has encountered a condition where one or more settings have been lost and shall be restored). Refer to 6.1.4 for more information.
Channel Enabled	Channel	This is a sub-state of the Channel Ready state. When a channel is enabled, the channel is allowed to transmit unrequested packets (that is, packets that are not command responses — for example, AEN and Pass-through packets) through the NC-SI interface whenever the package is Selected.
Channel Disabled	Channel	This is a sub-state of the Channel Ready state. When a channel is disabled, the channel is not allowed to transmit unrequested packets (that is, packets that are not command responses — for example, AEN and Pass-through packets) through the NC-SI interface.

6.1.2 NC-SI RBT pre-operational states

- 1138 There are two states defined on RBT before it becomes operational:
- NC-SI Interface Power Down state

1137

1140

1141

11421143

1144

1145 1146

1149

1150

1151

- In this state, the NC-SI Physical interface and the associated receive and transmit buffers in all devices on the NC-SI RBT (that is, the NC-SI interfaces on the Network Controllers and Management Controller) are not powered up.
- NC-SI Power Up state
 - In this state, the NC-SI Physical interface and the associated receive and transmit buffers in all devices on the NC-SI RBT (that is, the Network Controller and Management Controller) are powered up.
- 1147 NOTE: NC transmit I/O buffers should not be enabled in this state. The Network Controller is expected to 1148 transition to the Initial State within T4 seconds after the Power Up state is entered.

6.1.3 Package Ready state

A Network Controller in the Package Ready state shall be able to respond to any NC-SI commands that are directed to the ID for the overall package (versus being directed to a particular channel within the

package). Package-specific commands are identified by a particular set of Channel ID values delivered in the command header (see clause 6.1.9).

6.1.4 Initial State

1154

1165

1166

1167

1168

11691170

1171

11721173

11741175

1176

1180

1181

1182

1183

1184

- The Initial State for a channel corresponds to a condition in which the Sideband Interface is powered up and is able to accept NC-SI commands, and the channel has one or more configuration settings that need
- to be set or restored by the Management Controller. Unless default configuration settings are explicitly
- defined in this specification, the default values are implementation specific. The MC should not make any
- assumptions on any configuration settings that are not defined in this specification. Because this state
- may be entered at any time, the Initial State shall be acknowledged with a Clear Initial State command for
- the Initial State to be exited. This requirement helps to ensure that the Management Controller does not
- 1162 continue operating the interface unaware that the NC-SI configuration had autonomously changed in the
- 1163 Network Controller.
- 1164 An NC-SI channel in the Initial State shall:
 - be able to respond to NC-SI commands that are directed to the Channel ID for the particular channel (see clause 6.1.9)
 - respond to all non-OEM NC-SI command packets that are directed to the channel or partitions on the channel with a Response Packet that contains a Response Code of "Command Failed" and a Reason Code of "Initialization Required"
 - place the channel into the Disabled state
 - set hardware arbitration (if supported) to "enabled" on Interface Power Up only; otherwise, the setting that was in effect before entry into the Initial State shall be preserved (that is, the hardware arbitration enable/disable configuration is preserved across entries into the Initial State)
 - set the enabled/disabled settings for the individual MAC and VLAN filters (typically set using the Set MAC Address, Set VLAN Filter, and Enable VLAN commands) to "disabled"
- 1177 NOTE It is recommended that global multicast and broadcast filters are also set to "disabled".
- reset all counters defined in the various channel and partition level statistics commands, and the Get NC-SI Pass-Through Statistics command to 0x0
 - disable the Channel Network TX setting and transmission of Pass-through packets onto the network
 - clear any record of prior command instances received upon entry into the Initial State (that is, assume that the first command received after entering the Initial State is a new command and not a retried command, regardless of any Instance ID that it may have received before entering the Initial State)
 - disable transmission of AENs and reset any enabled AENs
- 1187 Otherwise, there is no requirement that other NC-SI configuration settings be set, retained, or restored to
- 1188 particular values in the Initial State unless otherwise specified. Controller configuration settings that are
- identified as persistent and saved to NVRAM are one example of retained settings.
- The Initial State is a NC-SI configuration state and therefore places no requirements on the NC's network link state.
- 1192 6.1.5 NC-SI Initial State recovery
- 1193 As described in clause 6.1.4, a channel in the Initial State shall receive the Clear Initial State command
- before other commands can be executed. This requirement ensures that if the Initial State is entered

DSP0222

1195	asynchronously, the Management Controller is made aware that one or more NC-SI settings may have
1196	changed without its involvement and blocks the Management Controller from issuing additional
1197	commands under that condition. Until the channel receives the Clear Initial State command, the Network
1198	Controller shall respond to any other received command directed to the channel or partitions on the
1199	channel with a Command Failed response code and Interface Initialization Required reason code to
1200	indicate that the Clear Initial State command shall be sent. See response and reason code definitions in
1201	clause 8.2.5.2.

1202 1203

1204

1205

1206

1207

> If the Management Controller, at any time, receives the response indicating that the Clear Initial State command is expected, it should interpret this response to mean that default settings have been restored for the channel (per the Initial State specification), and that one or more package/channel settings need to be restored by the Management Controller.

6.1.6 State transition diagram

1208 Figure 6 illustrates the general relationship between the package- and channel-related states described in 1209 Table 1 and the actions that cause transitions between the states. Each bubble in Figure 6 represents a 1210 particular combination of states as defined in Table 1.

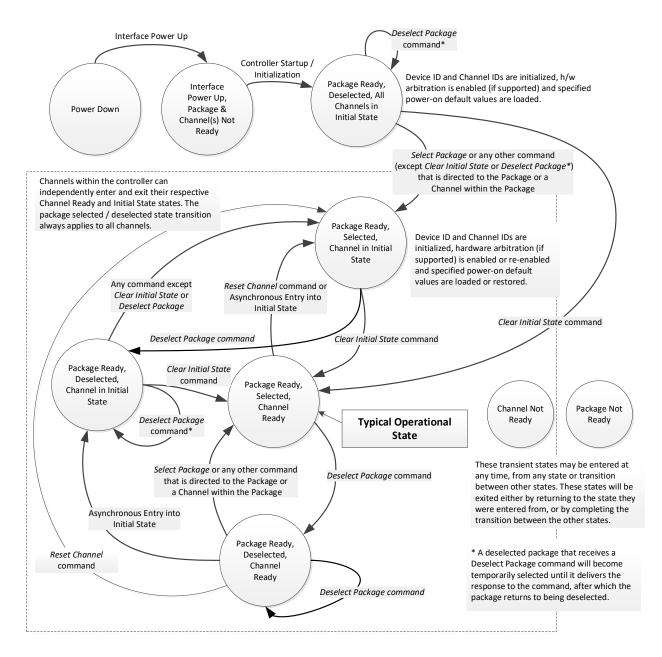
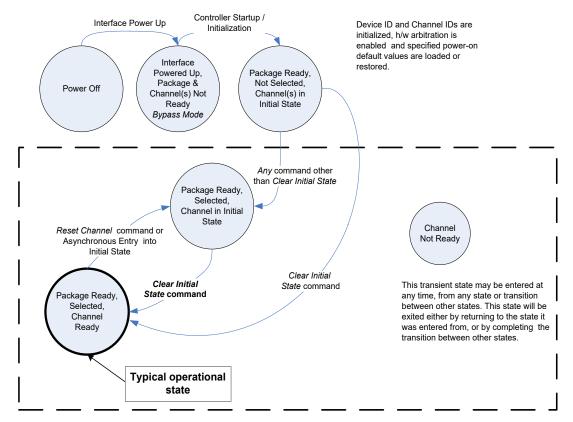


Figure 6 – NC-SI package/channel operational state diagram


1215

1216

1217

6.1.7 State diagram for NC-SI operation with hardware arbitration

Figure 7 shows NC-SI operation in the hardware arbitration mode of operation. This is a sub-set of the general NC-SI operational state diagram (Figure 6) and has been included to illustrate the simplified sequence of package selection when this optional capability is used.

Channels within the controller (package) can independently enter and exit their respective Channel States.

1218

1219

1220

1221

1222

1223

1224

1225

Figure 7 – NC-SI operational state diagram for hardware arbitration operation

While Select and Deselect package commands are not shown in Figure 7, these commands can be used with HW arbitration and will behave as specified in this specification.

Select and Deselect package commands can work together with HW arbitration. If HW arbitration is enabled, a package needs both the HW arbitration token and to be selected in order to transmit on the NC-SI RBT. If either the package is deselected, or the package does not have HW arbitration token, then the package is not allowed to transmit on the NC-SI RBT.

1226	6.1.8	Resets
------	-------	--------

1227 6.1.8.1 Asynchronous entry into Initial State

- 1228 An Asynchronous Reset event is defined as an event that results in a Channel asynchronously entering
- 1229 the Initial State. This event could occur as a consequence of powering up, a System Reset, a Driver
- 1230 Reset, an internal firmware error, loss of configuration errors, internal hardware errors, and so on.
- 1231 Additionally, it is recommended that any event in the NC that causes a total or partial loss of configuration
- should be interpreted as an Asynchronous Reset event
- 1233 Unless otherwise specified, NC-SI configuration settings beyond those required by the Initial State may or
- may not be preserved following asynchronous entry into the Initial State, depending on the Network
- 1235 Controller implementation.
- 1236 There is no explicit definition of a Reset for an entire package. However, it is possible that an
- 1237 Asynchronous Reset condition may cause an asynchronous entry into the Initial State for all Channels in
- 1238 a package simultaneously.

1239 6.1.8.2 Synchronous Reset

- 1240 A Synchronous Reset event on the NC-SI is defined as a Reset Channel command issued by a
- Management Controller to a Channel. Upon the receipt of this command, the Network Controller shall
- 1242 place the Channel into the Initial State.
- 1243 Unless otherwise specified, NC-SI configuration settings beyond those required by the Initial State may or
- 1244 may not be preserved following a Synchronous Reset, depending on the Network Controller
- 1245 implementation.

1246 **6.1.8.3 Other Resets**

1247 Resets that do not affect NC-SI operation are outside the scope of this specification.

1248 **6.1.9 Network Controller Channel ID**

- 1249 Each channel in the Network Controller shall be physically assigned a Network Controller Channel ID that
- 1250 will be used by the Management Controller to specify which Network Controller channel, of possibly
- 1251 many, it is trying to communicate. The Network Controller Channel ID shall be physically assignable
- 1252 (configured) at system-integration time based on the following specification.
- 1253 It is the system integrator's or system designer's responsibility to correctly assign and provide these
- 1254 identifier values in single- and multi-port Network Controller configurations, and to ensure that Channel
- 1255 IDs do not conflict between devices sharing a common NC-SI RBT interconnect.
- 1256 The Channel ID field is composed of two subfields, Package ID and Internal Channel ID, as described in
- 1257 Table 2.

1261

1262

1263 1264

1265

1266

1267

1268

1269

Table 2 - Channel ID format

Bits	Field Name	Description			
[75]	Package ID	The Package ID is required to be common across all channels within a single Network Controller that share a common NC-SI physical interconnect.			
		The system integrator will typically configure the Package IDs starting from 0 and increasing sequentially for each physical Network Controller.			
		The Network Controller shall allow the least significant two bits of this field to be configurable by the system integrator, with the most significant bit of this field = 0b. An implementation is allowed to have all 3 bits configurable.			
[40]	Internal Channel ID	The Network Controller shall support Internal Channel IDs that are numbered starting from 0 and increasing sequentially for each channel supported by the Network Controller that is accessible by the Management Controller through the NC-SI using NC-SI commands.			
		An implementation is allowed to support additional configuration options for the Internal Channel ID as long as the required numbering can be configured.			
		An Internal Channel ID value of <code>0x1F</code> applies to the entire Package.			

1259 Channel IDs shall be completely decoded. Aliasing between values is not allowed (that is, the Network Controller is not allowed to have multiple IDs select the same channel on a given Sideband Interface).

Once configured, the settings of the Package ID and Internal Channel ID values shall be retained in a non-volatile manner. That is, they shall be retained across power-downs of the Sideband Interface and shall not be required to be restored by the Management Controller for NC-SI operation. This specification does not define the mechanism for configuring or retaining the Package ID or the Internal Channel ID (if configurable). Some implementations may use pins on the Network Controller for configuring the IDs, other implementations may use non-volatile storage logic such as electrically erasable memory or FLASH, while others may use a combination of pins and non-volatile storage logic.

6.1.10 Configuration-related settings

6.1.10.1 Package-specific operation

- 1270 There are some NC-SI configuration settings that are package-specific:
- the enable/disable settings for hardware arbitration
- 1272

 NC-SI flow control
- 1273 Package-related AENs
- There may also be NC configuration settings that are controlled by NC-SI Commands addressed to the package. These commands specify this requirement in their command description.
- Hardware arbitration is enabled or disabled through a parameter that is delivered using the Select
 Package command. If hardware arbitration is enabled on all Network Controller packages on the NC-SI
 RBT, more than one package can be in the Selected state simultaneously. Otherwise, only one package
 is allowed to be in the Selected state at a time to prevent electrical buffer conflicts (buffer fights) that can
 occur from more than one package being allowed to drive the bus.
- NC-SI flow control is enabled or disabled using the Set NC-SI Flow Control command. The flow control setting applies to all channels in the package.
- 1283 Package-specific commands should only be allowed and executed when the Internal Channel ID field is set to 0x1F.

1285 There are some package-level AENs to allow the NC to alert the MC of controller-level events.

6.1.10.2 Channel-specific operation

1286

1290

1291

1292

1293

1287 Channel-specific commands should only be allowed to be executed when the Internal Channel ID field is 1288 set to a value other than 0x1F. Channel-specific commands with Invalid Channel IDs are not allowed 1289 (see clause 6.8.2.1).

Table 3 shows the major categories of configuration settings that control channel operation when a channel is in the Channel Ready state. Channels that are not operating in Pass-through mode may not support Pass-through-related settings.

Table 3 – Channel Ready state configuration settings

Setting/Configuration Category	Description
"Channel Enable" settings	The Enable Channel and Disable Channel commands are used to control whether the channel is allowed to asynchronously transmit unrequested packets (AEN and Pass-through packets) through the NC-SI interface whenever the package is Selected. Note that channels are always allowed to transmit responses to commands sent to the channel.
"Channel Configuration" settings	Version 1.2 adds a number of commands for configuration setting of channels and their partitions (if supported) See Table 19
Pass-through Transmit Enable settings	The Enable Channel Network TX command is used to enable the channel to transmit any Pass-through packets that it receives through the NC-SI onto the network, provided that the source MAC address in those packets matches the Network Controller settings. Correspondingly, the Disable Channel Network TX command is used to direct the controller not to transmit Pass-through packets that it receives onto the network.
AEN Enable settings	The AEN Enable command is used to enable and disable the generation of the different AENs supported by the Network Controller.
MAC Address Filter settings and control	The Set MAC Address, Enable Broadcast Filter, and Enable Global Multicast Filter commands are used to configure the filters for unicast, broadcast, and multicast addresses that the controller uses in conjunction with the VLAN Filter settings for filtering incoming Pass-through packets.
VLAN Filter settings and control	The Set VLAN Filter command is used to configure VLAN Filters that the controller uses in conjunction with the MAC Address Filters for filtering incoming Pass-through packets. The Enable VLAN and Disable VLAN commands are used to configure VLAN filtering modes and enable or disable whether VLAN filtering is used.

6.1.11 Transmitting Pass-through packets from the Management Controller

Packets not recognized as command packets (that is, packets without the NC-SI Ethertype) that are received on the Network Controller's NC-SI interface shall be assumed to be Pass-through packets provided that the source MAC Address matches one of the unicast MAC addresses settings (as configured by the Set MAC Address command) for the channel in the Network Controller, and will be forwarded for transmission to the corresponding external network interface if Channel Network TX is enabled.

6.1.12 Receiving Pass-through packets for the Management Controller

The Management Controller has control over and responsibility for configuring packet-filtering options, such as whether broadcast, multicast, or VLAN-tagged packets are accepted. Depending on the filter

1294

1295

1296 1297

1298

1299

1300

1301

1302

- 1304 configurations, after the channel has been enabled, any packet that the Network Controller receives for
- the Management Controller shall be forwarded to the Management Controller through the NC-SI
- 1306 interface.

1307 6.1.13 Pass-through operation in multiple medium implementations

- 1308 Pass-through operation is not restricted to certain physical interfaces, but a NC-SI channel shall support
- 1309 Pass-through on at most one physical interface at a time.

1310 **6.1.14 Startup sequence examples**

1311 **6.1.14.1 Overview**

- 1312 The following clauses show possible startup sequences that may be used by the Management Controller
- to start NC-SI operation. Depending upon the specific configuration of each system, there are many
- 1314 possible variations of startup sequences that may be used, and these examples are intended for
- 1315 reference only.

1316

1324

1325

1326

1327

1328 1329

1330 1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346 1347

1348

6.1.14.2 Typical non-hardware arbitration specific startup sequence

- 1317 The following sequence is provided as an example of one way a Management Controller can start up
- 1318 NC-SI operation. This sequence assumes that the Management Controller has no prior knowledge of how
- many Network Controllers are present on RBT, or what capabilities those controllers support. Note that
- this is not the only possible startup sequence. Alternative sequences can also be used to start up NC-SI
- operation. Some steps may be skipped if the Management Controller has prior knowledge of the Network
- 1322 Controller capabilities, such as whether Network Controllers are already connected and enabled for
- 1323 hardware arbitration.

1) Power up

The NC-SI is powered up (refer to clause 10.2.8 for the specification of this condition). The Network Controller packages are provided a Network Controller Power Up Ready Interval during which they can perform internal firmware startup and initialization to prepare their NC-SI to accept commands. The Management Controller first waits for the maximum Network Controller Power Up Ready Interval to expire (refer to Table 279). At this point, all the Network Controller packages and channels should be ready to accept commands through the NC-SI. (The Management Controller may also start sending commands before the Network Controller Power Up Ready Interval expires but will have to handle the case that Network Controller devices may be in a state in which they are unable to accept or respond to commands.)

2) Discover package

The Management Controller issues a Select Package command starting with the lowest Package ID (see clause 8.4.5 for more information). Because the Management Controller is assumed to have no prior knowledge of whether the Network Controller is enabled for hardware arbitration, the Select Package command is issued with the Hardware Arbitration parameter set to 'disable'.

If the Management Controller receives a response within the specified response time, it can record that it detected a package at that ID. If the Management Controller does not receive a response, it is recommended that the Management Controller retry sending the command. Three total tries are typical. (This same retry process should be used when sending all commands to the Network Controller and will be left out of the descriptions in the following steps.) If the retries fail, the Management Controller can assume that no Network Controller is at that Package ID and can immediately repeat this step 2) for the next Package ID in the sequence.

3) Discover and get capabilities for each channel in the package

1349 The Management Controller can now discover how many channels are supported in the 1350 Network Controller package and their capabilities. To do this, the Management Controller issues the Clear Initial State command starting from the lowest Internal Channel ID (which selects a 1351 given channel within a package). If it receives a response, the Management Controller can then 1352 use the Get Version ID command to determine NC-SI specification compatibility, and the Get 1353 1354 Capabilities command to collect information about the capabilities of the channel. The 1355 Management Controller can then repeat this step until the full number of internal channels has been discovered. (The Get Capabilities command includes a value that indicates the number of 1356 1357 channels supported within the given package.) 1358 NOTE The NC-SI Specification requires Network Controllers to be configurable to have their Internal 1359 Channel IDs be sequential starting from 0. If it is known that the Network Controller is configured this way, 1360 the Management Controller needs only to iterate sequentially starting from Internal Channel 1361 ID = 0 up to the number of channels reported in the first Get Capabilities response. The Management Controller should temporarily retain the information from the Get Capabilities 1362 1363 command, including the information that reports whether the overall package supports hardware arbitration. This information is used in later steps. 1364 1365 Repeat steps 2 and 3 for remaining packages

The Management Controller repeats steps 2) and 3) until it has gone through all the Package IDs.

IMPORTANT: Because hardware arbitration has not been enabled yet, the Management Controller shall issue a Deselect Package command to the present Package ID before issuing the Select Package command to the next Package ID. If hardware arbitration is not being used, only one package can be in the Selected state at a time. Otherwise, hardware electrical buffer conflicts (buffer fights) will occur between packages.

5) Initialize each channel in the package

Based on the number of packages and channels that were discovered, their capabilities, and the desired use of Pass-through communication, the Management Controller can initialize the settings for each channel. This process includes the following general steps for each package:

- a) Issue the Select Package command.
- b) For each channel in the package, depending on controller capabilities, perform the following actions. Refer to individual command descriptions for more information.
 - Use the Set MAC Address command to configure which unicast and multicast addresses are used for routing Pass-through packets to and from the Management Controller.
 - Use the Enable Broadcast Filter command to configure whether incoming broadcast Pass-through packets are accepted or rejected.
 - Use the Enable Global Multicast Filter command to configure how incoming multicast Pass-through packets are handled based on settings from the Set MAC Address command.
 - Use the Set VLAN Filter and Enable VLAN Filters commands to configure how incoming Pass-through packets with VLAN Tags are handled.
 - Use the Set NC-SI Flow Control command (if supported) to configure how Ethernet Pause Frames are used for flow control on RBT. Set NC-SI Flow Control is a package command and only needs to be issued once.
 - Use the AEN Enable command to configure what types of AEN packets the channel should send out on the NC-SI.

42

1366

1367

1368

1369

1370

1371 1372

1373

1374

1375

13761377

1378

13791380

1381 1382

1383

1384 1385

1386

13871388

1389 1390

1391

1392

1393

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1425

1426

1427

1428

1429

1430 1431

1432 1433

1434

1435

1436 1437

1438

1439

1440

- Use the Enable Channel Network TX command to configure whether the channel is
 enabled to deliver Pass-through packets from the NC-SI to the network (based on the
 MAC address settings) or is disabled from delivering any Pass-through packets to the
 network.
 - c) Issue the Deselect Package command.
 - 6) Start Pass-through packet and AEN operation on the channels

The channels should now have been initialized with the appropriate parameters for Pass-through packet reception and AEN operation. Pass-through operation can be started by issuing the Enable Channel command to each channel that is to be enabled for delivering Pass-through packets or generating AENs through the NC-SI interface.

NOTE: If hardware arbitration is not operational and it is necessary to switch operation over to another package, a Deselect Package command shall be issued to the presently selected package before a different package can be selected. Deselecting a package blocks all output from the package. Therefore, it is not necessary to issue Disable Channel commands before selecting another package. There is no restriction on enabling multiple channels within a package.

6.1.14.3 Hardware arbitration-specific startup sequence

- 1411 This clause applies when multiple NCs are used by the MC. This clause only applies to the NC-SI over
- 1412 RBT binding.
- 1413 The following is an example of the steps that a Management Controller may perform to start up NC-SI
- operation when Hardware Arbitration is specifically known to be used, present, and enabled on all
- 1415 Network Controllers. This example startup sequence assumes a high level of integration where the
- 1416 Management Controller knows the Network Controllers support and default to the use of Hardware
- 1417 Arbitration on startup but does not have prior knowledge of how many Network Controllers are present on
- 1418 RBT, or the full set of capabilities those controllers support, so discovery is still required.
- 1419 Although other startup examples may show a specific ordering of steps for the process of discovering,
- 1420 configuring and enabling channels, the Management Controller has almost total flexibility in choosing how
- these steps are performed once a channel in a package is discovered. In the end, it would be just as valid
- 1422 for a Management Controller to follow a breadth-first approach to discovery steps as it would be to follow
- 1423 a depth-first approach where each channel that is discovered is fully initialized and enabled before
- 1424 moving to the next.

1) Power up

No change from other startup scenarios.

2) Discovery

The process of discovery consists of identifying the number of packages that are available, the number of channels that are available in each package, and for each channel, the capabilities that are provided for Management Controller use. Because, in this startup scenario, the Management Controller knows Hardware Arbitration is used, it is not required to use the **Select Package** and **Deselect Package** commands for discovery but may elect to just use the **Clear Initial State** command for this purpose instead.

In this startup scenario, Packages and Channels are discovered by sending the *Clear Initial State* command starting with the lowest Package ID and Internal Channel ID, then waiting for, and recording, the response event as previously described. Internal channel IDs are required to be numbered sequentially starting with 0, so when the Management Controller does not receive a response to repeated attempts at discovery, it knows this means no additional channels exist in the current package. If this happens when the internal channel ID is 0, the Management Controller knows a package is not available at the current package ID, and it continues with the

next package ID in sequence. If the Management Controller receives a response to the *Clear Initial State* command, it records that the channel and package are available, and continues discovery.

During discovery, the Management Controller should interrogate the capabilities of each channel found to be available in each package by sending the **Get Capabilities** command appropriate package and Internal channel ID values. However, it does not matter whether this is done as the very next step in the discovery process or performed for each channel after all packages and channels have been discovered, just as long as the Management Controller does interrogate each channel.

3) Configure each channel and enable pass-through

Once the existence of all packages and channels, and the capabilities of each channel, have been discovered and recorded, the Management Controller shall initialize and enable each channel as needed for use. The details of these steps remain essentially the same as have been previously stated, except to note that there are no restrictions on how they are performed. What this means is that the MC may perform these steps in any order across the channels in each package as it sees fit. The MC may fully initialize and enable each channel in each package one at a time or perform the same step on each channel in sequence before moving on to the next, or in a different order. The specific order of steps is not dictated by this specification.

6.1.14.4 Summary of scheme for the MC without prior knowledge of hardware arbitration

The following scheme describes the case when the MC does not have a priori knowledge of the hardware arbitration support across multiple NCs.

1. For each available NC,

- a. The MC checks whether a device supports the HW arbitration, using "**Get Capabilities**" command (this implicitly selects the package).
- b. The MC issues "Deselect Package" for the NC (needed as at this stage we do not know whether all the devices support HW arbitration).
- 2. If (all NCs support HW arbitration and HW arbitration is used by all NCs), then

the MC assumes that HW arbitration is active because according to clause 6.2.4 "set hardware arbitration (if supported) to *enabled* on Interface Power Up only", and the MC can "Select" any number of packages at the same time.

Otherwise (at least one NC reports that HW arbitration is not supported, or at least one NC reports that HW arbitration is not used, or at least one NC cannot report its support level) then

HW arbitration is **not** active, and the MC can "Select" only single package at the any time.

The MC configures every NC to disable HW arbitration, using the "Select Package" command.

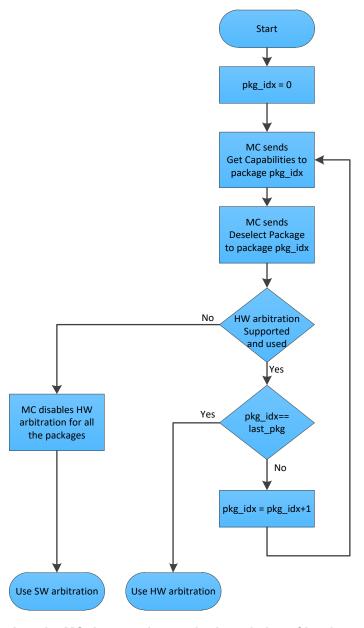


Figure 8 – MC steps when the MC does not have prior knowledge of hardware arbitration

6.2 NC-SI traffic types

1480 **6.2.1 Overview**

1479

1485

1486

1487

1488

1501

1502

1503

1504

1505

1506 1507

1508

1509

1510

1511 1512

1513

1514 1515

1516

1517 1518

1519

- Two types of traffic are defined by NC-SI, based on the network fabric type: Pass-through traffic and Control traffic.
- Pass-through traffic consists of packets that are transferred between the external network interface and the Management Controller using the Sideband Interface.
 - Control traffic consists of commands (requests) and responses that support the inventory, configuration and control of the Network Controller, the Sideband Interface and Pass-through operation of the Network Controller, and AENs that support reporting various events to the Management Controller.

1489 **6.2.2 Command protocol**

1490 **6.2.2.1 Overview**

- 1491 Commands are provided to allow a Management Controller to initialize, control, and regulate
- Management Controller packet flow across the sideband interface, configure channel filtering, and to
- interrogate the operational status of the Network Controller. As interface master, the Management
- 1494 Controller is the initiator of all commands, and the Network Controller responds to commands, but may
- 1495 also generated AENs if enabled.

1496 **6.2.2.2 Instance IDs**

The command protocol uses a packet field called the Instance ID (IID). IID numbers are 8-bit values that shall range from 0x01 to 0xFF. IIDs are used to uniquely identify instances of a command, to improve the robustness of matching responses to commands, and to differentiate between new and retried commands. The Network Controller that receives a command handles the IID in the following ways:

- It returns the IID value from the command in the corresponding response.
- If the IID is the same as the IID for the previous command, it recognizes the command as a 'retried' command rather than as a new instance of the command. It is expected that the 'retried' command contains the same command type value in the Control Packet Type field. The NC behavior when a 'retried' command type does not match the original command type is outside the scope of this specification.
- If a retried command is received, the Network Controller shall return the previous response. Depending on the command, the Network Controller can accomplish this either by holding the previous response data so that it can be returned, or, if re-executing the command has no side effects (that is, the command is idempotent), by re-executing the command operation and returning that response.
- If the command IID is the same as the IID for the previous command, and the Poll Indication is set, the NC recognizes the command as a 'polling' command rather than as a new instance of the command.
 - When polling, the MC is expected to use the command type value of the original command in the Control Packet Type field. If there was no command in progress, the NC shall fail the 'polling' command and respond with an error. When the NC fails the 'polling' command, the outcome of the original command is indeterminate and is outside the scope of this specification.

1524

1525 1526

1527

1528

1529

1530

1536

1537

15381539

1540

1550

- If a command with Poll Indication set is received and the original command has been completed, then the Network Controller shall return the response of the completed command.
 - If it is still processing the command, it shall return a "Delayed Response" reason code and optionally recommend a next polling time interval.
 - When an IID value is received that is different from the one for the previous command, the Network Controller executes the command as a new command.
 - When the NC-SI Channel first enters the Initial State, it shall clear any record of any prior requests. That is, it assumes that the first command after entering the Initial State is a new command and not a retried command, regardless of any IID that it may have received before entering the Initial State.

Thus, for single-threaded operation with idempotent commands, a responding Network Controller can simply execute the command and return the IID in the response that it received in the command. If it is necessary to not execute a retried command, the responding controller can use the IID to identify the retried command and return the response that was delivered for the original command.

- 1535 The Management Controller that generates a command handles the IID in the following ways:
 - The IID changes for each new instance of a command.
 - If a command needs to be retried, the Management Controller uses the same value for the IID that it used for the initial command.
 - The Management Controller can optionally elect to use the IID to provide additional confirmation that the response is being returned for a particular command.
- 1541 Because an AEN is not a response, an AEN always uses a value of 0x00 for its IID.
- 1542 NOTE: The Instance ID mechanism can be readily extended in the future to support multiple controllers and multiple 1543 outstanding commands. This extension would require having the responder track the IID on a per command and per 1544 requesting controller basis. For example, a retried command would be identified if the IID and command matched the 1545 IID and command for a prior command for the given originating controller's ID. That is, a match is made with the 1546 command, originating controller, and IID fields rather than on the IID field alone. A requester that generates multiple 1547 outstanding commands would correspondingly need to track responses based on both command and IID to match a 1548 given response with a given command. IIDs need to be unique for the number of different commands that can be 1549 concurrently outstanding.

6.2.2.3 Single-threaded operation

- The Network Controller is required to support NC-SI commands only in a single-threaded manner. That is, the Network Controller is required to support processing only one command at a time and is not required to accept additional commands until after it has sent the response to the previous one.
- Therefore, the Management Controller should issue NC-SI commands in a single-threaded manner. That is, the Management Controller should have only one command outstanding to a given Network Controller package at a time. Upon sending an NC-SI command packet, and before sending a subsequent command, the Management Controller should wait for the corresponding response packet to be received or a command timeout event to occur before attempting to send another command. For the full descriptions of command timeout, see clause 6.8.3.2.
- NOTE: While NC implementations are only required to support single-threaded operations, they may choose to support more than one outstanding command. The use of unique IIDs is essential to properly match multiple outstanding commands and responses in such implementations.

1563 **6.2.2.4 Responses**

- 1564 The Network Controller shall process and acknowledge each validly formatted command received at the
- 1565 NC-SI interface by formatting and sending a valid response packet to the Management Controller through
- 1566 the NC-SI interface.

1577

1578

1579

1580

1581 1582

1583

1584

1585

1586

1587

15881589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599 1600

1601

1602

1603

- To allow the Management Controller to match responses to commands, the Network Controller shall copy
- the IID number of the Command into the Instance ID field of the corresponding response packet.
- To allow for retransmission and error recovery, the Network Controller may re-execute the last command
- 1570 or maintain a copy of the response packet most recently transmitted to the Management Controller
- 1571 through its sideband interface. This "previous" response packet shall be updated every time a new
- response packet is transmitted to the Management Controller by replacing it with the one just sent.
- 1573 The Network Controller shall return a "Command Unsupported" response code with an "Unknown
- 1574 Command Type" reason code for any command (standard or OEM) that the Network Controller does not
- support or recognize. If a command cannot be executed due to the processing of others, the response
- 1576 code Command Unavailable shall be returned.

6.2.2.5 Response and post-response processing

Typically, a Network Controller completes a requested operation before sending the response. In some situations, however, it may be useful for the controller to be allowed to queue up the requested operation and send the response assuming that the operation will complete correctly (for example, when the controller is requested to change link configuration). The following provisions support this process:

- A Network Controller is allowed to send a response before performing the requested action if the command is expected to complete normally and all parameters that are required to be returned with the response are provided.
- Temporal ordering of requested operations shall be preserved. For example, if one command updates a configuration parameter value and a following command reads back that parameter, the operation requested first shall complete so that the following operation returns the updated parameter.
- Under typical operation of the Network Controller, responses should be delivered within the Normal Execution Interval (T5) (see Table 279).
- Unless otherwise specified, all requested operations shall complete within the Asynchronous Reset/Asynchronous Not Ready interval (T6) following the response.
- If the Network Controller channel determines that the requested operation or configuration change has not been completed correctly after sending the response, the channel shall enter the Initial State.
- If the command response is dependent on the execution of the command and the command response cannot be provided within Normal Execution Interval (T5), then a "Delayed Response" response code may be returned. In this case, the MC can poll the command later with the "Poll Indication" set to retrieve the response. The decision on when the MC polls again can be based on one of the following criteria:
 - A fixed delay. In this case a delay greater than T5 is recommended.
 - If provided, based on the "recommended next polling time" in the original response
 - If the AEN is enabled, based on reception of a "Delayed Response Ready AEN"
- 1604 When using delayed responses, the NC shall complete the command processing within T14 sec.

1605 6.2.2.6 NC-SI traffic ordering

- 1606 This specification does not require any ordering between AENs, NC-SI responses, and NC-SI Pass-
- 1607 through packets. Specific transport binding specifications may require ordering between AENs, NC-SI
- 1608 responses, and NC-SI Pass-through packets.

1609 **6.3 Link configuration and control**

1610 **6.3.1 Link Configuration**

- 1611 The Network Controller provides commands to allow the Management Controller to specify the
- auto-negotiation, link speed, duplex settings, FEC algorithm, link training, SerDes lane configuration, and
- so on to be used on the network interface. For more information, see clause 8.4.21.
- 1614 The Management Controller should make link configuration changes only when the host network driver is
- 1615 absent or non-operational.

1616 **6.3.2 Link Status**

- 1617 The Network Controller provides a Get Link Status command to allow the Management Controller to
- interrogate the configuration and operational status of the primary links. The Management Controller may
- issue the Get Link Status command regardless of OS operational status.

6.4 Frame filtering for Pass-through mode

1621 **6.4.1 Overview**

- 1622 The Network Controller provides the option of configuring various types of filtering mechanisms for the
- 1623 purpose of controlling the delivery of received Ethernet frames to the Management Controller. These
- 1624 options include VLAN Tag filter, L2 address filters, MAC address support, and limited frame filtering using
- L3, L4 protocol header fields. All frames that pass frame filtering are forwarded to the Management
- 1626 Controller over the Sideband Interface. Refer to RFC2373, RFC2461, and RFC3315 for IPv6-related
- 1627 definitions.

1620

1628 6.4.2 Multicast filtering

- 1629 The Network Controller may provide commands to allow the Management Controller to enable and
- disable global filtering of all multicast packets. The Network Controller may optionally provide one or more
- 1631 individual multicast filters, as well as DHCP v6, IPv6 Neighbor Advertisement, IPv6 Router Advertisement,
- 1632 IPv6 Neighbor Solicitation, IPv6 MLD, mDNSv4, mDNSv6 and LLDP filters.

1633 6.4.3 Broadcast filtering

- 1634 The Network Controller provides commands to allow the Management Controller to enable and disable
- forwarding of Broadcast and ARP packets. The Network Controller may optionally support selective
- 1636 forwarding of broadcast packets for specific protocols, such as DHCP (see RFC2131) and NetBIOS.

1637 **6.4.4 VLAN filtering**

- 1638 The Network Controller provides commands to allow the Management Controller to enable and disable
- 1639 VLAN filtering, configure one or more VLAN Filters, and to configure VLAN filtering modes.
- 1640 Figure 9 illustrates the flow of frame filtering. Italicized text in the figure is used to identify NC-SI
- 1641 command names.

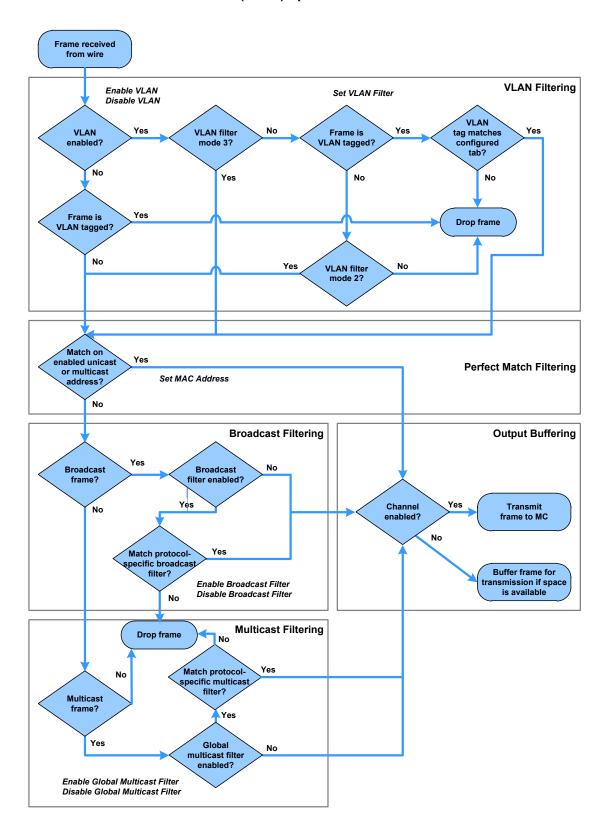


Figure 9 - NC-SI packet filtering flowchart

1644 **6.5 Output buffering behavior**

- There are times when the NC is not allowed to transmit Pass-through, AEN, or Control Packets onto the
- 1646 Sideband Interface.
- 1647 The NC should buffer Pass-through frames to be transmitted to the MC under any of the following
- 1648 conditions:
- The package is deselected.
- For a channel within a package while that channel is disabled.
- When the hardware arbitration is enabled, and the NC does not have the token to transmit frames to the MC.
- The NC may buffer AENs to the MC under any of the above conditions.
- 1654 Control Packets (responses) are buffered when hardware arbitration is enabled, and the NC does not
- have the token to transmit frames to the MC.
- Additionally, while an NC-SI channel is in the initial state, previously received Pass-through frames and
- 1657 AENs may or may not be buffered. This behavior is outside the scope of this specification.

1658 **6.6 NC-SI flow control**

- The Network Controller may provide commands to enable flow control on the RBT interface between the
- 1660 Network Controller and the Management Controller. The NC-SI flow control behavior follows the PAUSE
- 1661 frame behavior as defined in the IEEE 802.3. Flow control is configured using the Set NC-SI Flow
- 1662 command (see clause 8.4.41).
- 1663 When enabled for flow control, a channel may direct the package to generate and renew 802.3x (XOFF)
- 1664 PAUSE Frames for a maximum interval of T12 for a single congestion condition. If the congestion
- 1665 condition remains in place after a second T12 interval expires, the congested channel shall enter the
- 1666 Initial State and remove its XOFF request to the package. Note that some implementations may have
- shared buffering arrangements where all channels within the package become congested simultaneously.
- Also note that if channels become congested independently, the package may not immediately go into
- 1669 the XON state after T12 if other channels within the package are still requesting XOFF.

6.7 Asynchronous Event Notification

6.7.1 Overview

1670

- 1672 Asynchronous Event Notification (AEN) packets enable the Network Controller to deliver unsolicited
- 1673 notifications to the Management Controller when certain status changes that could impact interface
- operation occur in the Network Controller. Because the NC-SI is a small part of the larger Network
- 1675 Controller, its operation can be affected by a variety of events that occur in the Network Controller. These
- 1676 events include link status changes, OS driver loads and unloads, and chip resets. This feature defines a
- 1677 set of notification packets that operate outside of the established command-response mechanism.
- 1678 Control over the generation of the AEN packets is achieved by control bits in the AEN Enable command.
- 1679 Each type of notification is optional and can be independently enabled by the Management Controller.
- 1680 AENs are not acknowledged, and there is no protection against the possible loss of an AEN packet. Each
- defined event has its own AEN packet. Because the AEN packets are generated asynchronously by the
- 1682 Network Controller, they cannot implement some of the features of the other Control Packets. AEN
- packets leverage the general packet format of Control Packets.
- The originating Network Controller shall fill in the Channel ID (Ch. ID) field as defined in clause 6.1.9 in the AEN header to identify the source of notification.

- The IID field in an AEN shall be set to 0×00 to differentiate it from a response or command packet.
- The Network Controller shall copy the AEN MC ID field from the AEN Enable command into the MC ID field in every AEN sent to the Management Controller.

1690 6.7.2 AEN handling in multiple medium implementations

- Implementations that use NC-SI over physical interfaces other than RBT and enable Asynchronous Event Notifications (AEN) on those other media used for MCTP shall comply with the requirements in DSP0261.
- 1693 AENs that are enabled via RBT are specific to RBT-active operation and any AEN that is subsequently
- 1694 generated is only delivered over RBT and then only when RBT is active (maintained or restored
- 1695 operation).
- AEN generation is suppressed and not cached when the media on which it was enabled is not active.

1697 **6.8 Error handling**

1698 **6.8.1 Overview**

- This clause describes the error-handling methods that are supported over the NC-SI. Two types of error-handling methods are defined:
- 1701 Synchronous Error Handling
- Errors that trigger Asynchronous Entry into the Initial State
- 1703 Synchronous Error Handling occurs when an Error (non-zero) Response/Reason Code is received in
- 1704 response to a command issued by the Management Controller. For information about response and
- 1705 reason codes, see clause 8.2.4.1.
- 1706 Asynchronous Entry into the Initial State Error Handling occurs when the Network Controller
- 1707 asynchronously enters the Initial State because of an error condition that affects NC-SI configuration or a
- 1708 failure of a command that was already responded to. For more information, see clause 6.1.8.1.

1709 **6.8.2 Transport errors**

1710 **6.8.2.1 Dropped Control Packets**

- 1711 A Network Controller with an active interface shall drop Control Packets received on the NC-SI interface under the following conditions:
- 1713 The packet has an invalid Frame Check Sequence (FCS) value.
- Frame length does not meet <u>IEEE 802.3</u> requirements (except for OEM commands, where accepting larger packets may be allowed as a vendor-specific option).
- The packet checksum (if provided) is invalid.
- The NC-SI Channel ID value in the packet does not match the expected value.
- The Network Controller does not have resources available to accept the packet.
- The Network Controller receives a command packet with an incorrect header revision.
- Control Packets may also be dropped if an event that triggers Asynchronous Entry into the Initial State causes packets to be dropped during the transition..

1722 6.8.2.2 Pass-through packet errors

1723 Handling of Pass-through packet errors, other than logging statistics, is out of scope of this specification.

1724 **6.8.3 Missing responses**

1725 **6.8.3.1 Overview**

- There are typical scenarios in which the Management Controller does not receive the response to a command:
- The Network Controller dropped the command and thus never sent the response.
- The response was dropped by the Management Controller (for example, because of a CRC error in the response packet).
- The Network Controller is in the process of being reset or is disabled.
- The Management Controller can detect a missing response packet as the occurrence of an NC-SI command timeout event.

1734 **6.8.3.2 Command timeout**

- 1735 The Management Controller may detect missing responses by implementing a command timeout interval.
- 1736 The timeout value chosen by the Management Controller shall not be less than Normal Execution
- 1737 Interval, T5. Upon detecting a timeout condition, the Management Controller should not make
- assumptions on the state of the unacknowledged command (for example, the command was dropped, or
- the response was dropped), but should retransmit (retry) the previous command using the same IID it
- 1740 used in the initial command.
- 1741 The Management Controller should try a command at least three times before assuming an error
- 1742 condition in the Network Controller.
- 1743 It is possible that a Network Controller could send a response to the original command at the same time a
- 1744 retried command is being delivered. Under this condition, the Management Controller could get more than
- one response to the same command. Thus, the Management Controller should be capable of determining
- 1746 that it has received a second instance of a previous response packet. Dropped commands may be
- 1747 detected by the Management Controller as a timeout event waiting for the response.

1748 6.8.3.3 Handling dropped commands or missing responses

- 1749 To recover from dropped commands or missing responses, the Management Controller can retransmit
- the unacknowledged command packet using the same IID that it used for the initial command.
- 1751 The Network Controller shall be capable of reprocessing retransmitted (retried) commands without error
- 1752 or undesirable side effects. The Network Controller can determine that the command has been
- 1753 retransmitted by verifying that the IID is unchanged from the previous command.

1754 **6.8.4 Detecting Pass-through traffic interruption**

- 1755 The Network Controller might asynchronously enter the Initial State because of a reset or other event. In
- this case, the Network Controller stops transmitting Pass-through traffic on the RXD lines. Similarly, Pass-
- 1757 through traffic sent to the Network Controller may be dropped. If the Management Controller is not in the
- 1758 state of sending or receiving Pass-through traffic, it may not notice this condition. Thus, the Management
- 1759 Controller should periodically issue a command to the Network Controller to test whether the Network
- 1760 Controller has entered the Initial State. How often this testing should be done is a choice of the
- 1761 Management Controller.

1762 6.9 Support for additional network fabrics

1763 **6.9.1 FC support**

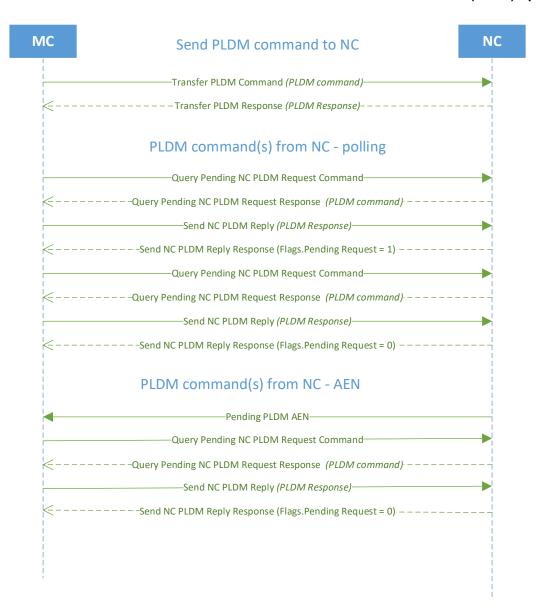
- 1764 NCs that support Fibre Channel connectivity can be inventoried, configured, and monitored. Fibre
- 1765 Channel-specific link speed, link status, boot configuration and statistics commands are provided. Fibre
- 1766 Channel over Ethernet (FCoE) support is also defined for Ethernet NCs that support it.

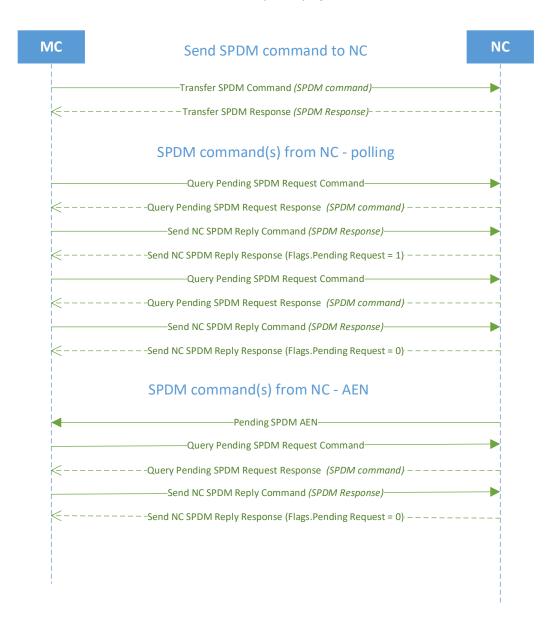
1767 **6.9.2 InfiniBand Support**

- NCs that support InfiniBand connectivity can be inventoried, configured, and monitored. InfiniBand-
- specific link speed, link status and statistics commands and Pass-through mode support are provided.

1770 **6.10 PLDM and SPDM transport**

- NC-SI over RBT can be used to transport SPDM or PLDM messages. This transport supports the following modes:
- MC sends PLDM and/or SPDM commands to the NC.
- MC polls the NC for PLDM and/or SPDM commands originating at the NC.
- The NC indicates through an AEN that a PLDM/SPDM command is available for retrieval.
- 1776 The following commands are used to implement an RBT binding for these messages:


Table 4 – Commands for RBT binding


Command Description	PLDM Commands over RBT	SPDM Commands over RBT
Send command from MC	PLDM	SPDM
Poll for NC command	Query Pending NC PLDM Request	Query Pending SPDM Request
Respond to NC command	Send NC PLDM Reply	Send NC SPDM Reply

1778

1777

1779 The PLDM and SPDM command flows are described in the UML diagrams below.

1784

1785

1794

1795 1796

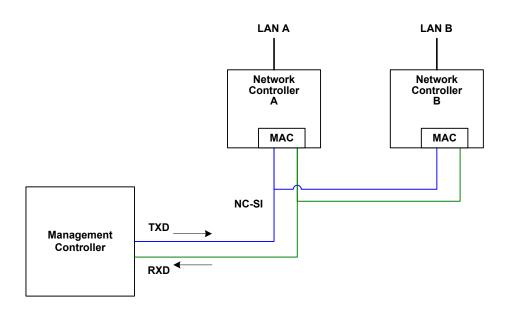
1797

1798

Arbitration in configurations with multiple Network Controller packages

7.1 Overview

1786 This clause applies to NC-SI over RBT only.


1787 More than one Network Controller package on a RBT interface can be enabled for transmitting packets to the Management Controller. This specification defines two mechanisms to accomplish Network Controller 1788 package arbitration operations. One mechanism uses software commands provided by the Network 1789 Controller for the Management Controller to control whose turn it is to transmit traffic. The other 1790 mechanism uses hardware arbitration to share the single RBT bus. Implementations are required to 1791 1792

support command-based Device Selection operation; the hardware arbitration method is typically desired

1793 but is optional.

7.2 Multi-controller RBT

Figure 10 is a simplified block diagram of the Sideband Interface being used in a multi-drop configuration. The RMII (upon which NC-SI RBT is based) was originally designed for use as a point-to-point interconnect. Accordingly, only one party can transmit data onto the bus at any given time. There is no arbitration protocol intrinsic in the RMII specification to support managing multiple transmitters.

1799

1800

1801

1802

1803

1804

1805

1806

1807

Figure 10 - Basic multi-drop block diagram

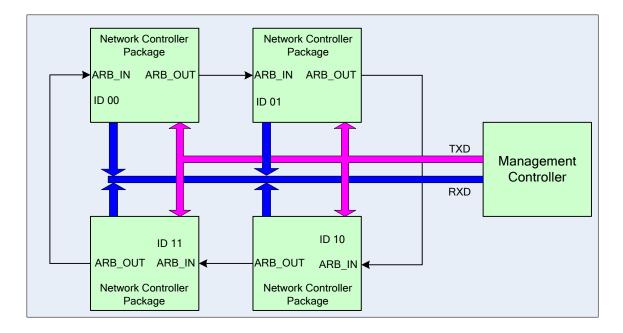
However, it is possible for multiple Network Controllers on the interface to be able to simultaneously receive traffic from the Management Controller that is being transmitted on the RBT TXD lines. The Network Controllers can receive commands from the Management Controller without having to arbitrate for the bus. This facilitates the Management Controller in delivering commands for setup and configuration of arbitration.

Arbitration allows multiple Network Controller packages that are attached to the interface to be enabled to share the RXD lines to deliver packets to the Management Controller.

- 1808 This operation is summarized as follows:
 - Only one Network Controller at a time can transmit packets on the RXD lines of the interface.
- Network Controllers can accept commands for configuring and controlling arbitration for the
 RXD lines.

7.3 Hardware arbitration

- To prevent two or more NC-SI packages from transmitting at the same time, a hardware-based arbitration
- scheme was devised to allow only one Network Controller package to drive the RX lines of the shared
- interface at any given time. This scheme uses a mechanism of passing messages (opcodes) between
- 1816 Network Controller packages to coordinate when a controller is allowed to transmit through the RBT
- 1817 interface.


1809

1812

1818

7.3.1 General

- 1819 Three conceptual modes of hardware arbitration exist: arbitration master assignment, normal operation,
- 1820 and bypass. After a package is initialized and has its Channel IDs assigned, it enters the arbitration
- 1821 master assignment mode. This mode assigns one package the role of an Arbitration Master
- 1822 (ARB_Master) that is responsible for initially generating a TOKEN opcode that is required for the normal
- 1823 operating mode. In the normal operating mode, the TOKEN opcode is passed from one package to the
- 1824 next in the ring. The package is allowed to use the shared RXD signals and transmit if the package has
- received the TOKEN opcode and has a packet to send.
- 1826 Bypass mode allows hardware arbitration opcodes to pass through a Network Controller package before
- it is initialized. Bypass mode shall be in effect while hardware arbitration is disabled. Bypass mode shall
- 1828 be exited, and arbitration master assignment mode shall be entered when the hardware arbitration
- 1829 becomes enabled or re-enabled.
- 1830 Hardware-based arbitration requires two additional pins (ARB_IN and ARB_OUT) on the Network
- 1831 Controller. The ARB OUT pin of one package is connected to the ARB IN pin of the next package to
- 1832 form a ring configuration, as illustrated in Figure 11. The timing requirements for hardware arbitration are
- 1833 designed to accommodate a maximum of four Network Controller packages. If the implementation
- 1834 consists of a single Network Controller package, the ARB OUT pin may be connected to the ARB IN pin
- on the same package, or may be left disconnected, in which case hardware arbitration should be disabled
- 1836 by using the Select Package command. This specification optionally supports reporting of Hardware
- 1837 arbitration implementation status and hardware arbitration status using the **Get Capabilities** command.

1840

1841

1842 1843

1844

1845

1846

1847

1848

1850

1851

1852

1853

Figure 11 – Multiple Network Controllers in a ring format

Each Network Controller package sends out pulses on the ARB_OUT pin to create a series of symbols that form opcodes (commands) between Network Controllers. Each pulse is one clock wide and synchronized to REF_CLK. The hardware arbitration data bits follow the same timing specifications used for the TXD and RXD data bits (see clause 10.2.7). The pulses are di-bit encoded to ensure that symbols are correctly decoded. The symbols have the values shown in Table 5.

While clause 7.3.2.1 allows for opcode to be truncated, it is recommended that the transmission of current opcode on ARB_OUT be completed if the HW arbitration mode is changed in the middle of an opcode transfer (or in the middle of a symbol).

1849 Table 5 – Hardware arbitration di-bit encoding

Symbol Name	Encoded Value
Esync	11b
E _{zero}	00Ъ
Eone	01b
Illegal symbol	10b

7.3.2 Hardware arbitration opcodes

The hardware-based arbitration feature has five defined opcodes: IDLE, TOKEN, FLUSH, XON, and XOFF. Each opcode starts with an E_{sync} symbol and is followed by either E_{one} or E_{zero} symbols. The legal opcodes are listed in Table 6.

1855

1859

1861

1862

1863

1864 1865

1866

1867

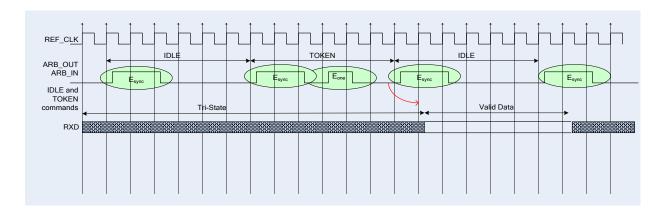
1868

Table 6 – Hardware arbitration opcode format

Opcode	Format	
IDLE	Esync Ezero (110000b)	
TOKEN	Esync Eone Ezero (110100b)	
FLUSH	Esync Eone Eone Ezero E(Package_ID[2:0]) Ezero (11010100xxxxxx00b)	
XOFF	Esync Ezero Eone Ezero Ezero (110001000000b)	
XON	Esync Ezero Eone Eone Ezero E(Package_ID[2:0]) Ezero (1100010100uuuuuu00b)	

7.3.2.1 Detecting truncated opcodes

A truncated opcode is detected when the number of clocks between E_{sync}s is less than the number of bits required for the opcode. Note that any additional bits clocked in after a legitimate opcode is detected do not indicate an error condition and are ignored until the next E_{sync}.


7.3.2.2 Handling truncated or illegal opcodes

1860 When a Network Controller receives a truncated or illegal opcode, it should discard it.

7.3.2.3 Relationship of opcodes processing and driving the RX data lines

A Network Controller package shall take no more than T9 REF_CLK times after receiving the last bit of the opcode to decode the incoming opcode and start generating the outgoing opcode. This time limit allows for decoding and processing of the incoming opcode under the condition that an outgoing opcode transmission is already in progress.

A package that has received a TOKEN and has packet data to transmit shall turn on its buffer and begin transmitting the packet data within T11 REF_CLK times of receiving the TOKEN, as illustrated in Figure 12. The package shall disable the RXD buffers before the last clock of the transmitted TOKEN.

1869 1870

1871 Figure 12 – Opcode to RXD relationship

1872 **7.3.3 Opcode operations**

1873 **7.3.3.1 TOKEN opcode**

- When a TOKEN opcode is received, the Network Controller package may drive the RXD signals to send
- 1875 only one of the following items: a Pass-through packet, a command response, or an AEN. One IEEE
- 1876 802.3 PAUSE frame (XON or XOFF) may also be sent either before or after one of the previous packets,
- 1877 or on its own. While the Network Controller package is transmitting the data on the RXD signals of the
- 1878 interface, it shall generate IDLE opcodes on its ARB OUT pin. Once a package completes its
- 1879 transmission, if any, it shall generate and send the TOKEN on its ARB OUT pin.

1880 **7.3.3.2 IDLE opcode**

- 1881 A package that has no other opcode to send shall continuously generate IDLE opcodes. Typically, a
- 1882 received IDLE opcode indicates that the TOKEN is currently at another package in the ring. This opcode
- is also used in the ARB_Master assignment process (for details, see clause 7.3.5). An Idle opcode
- typically will also be generated when the package is transmitting on RBT

1885 **7.3.3.3 FLUSH opcode**

- 1886 A FLUSH opcode is used to establish an Arbitration Master for the ring when the package enters the
- 1887 Package Ready state or when the TOKEN is not received within the specified timeout, T8. This opcode is
- 1888 further explained in clause 7.3.5.
- 1889 If the package receives a FLUSH opcode while it is in the middle of transmitting a packet onto NC-SI, it
- shall generate IDLE opcodes until the transmission is complete and then process the FLUSH opcode as
- 1891 described.

1892 7.3.3.4 Flow Control opcodes

- The XON and XOFF opcodes are used to manage the generation of <u>IEEE 802.3</u> PAUSE frames on the
- 1894 RBT interface. If the Network Controller supports flow control and flow control is enabled, the XOFF and
- XON opcodes behave as described in this clause. If the Network Controller does not support flow control
- 1896 or if flow control is not enabled, the Network Controller shall pass the opcodes to the next package.
- 1897 There may be a configuration where some NCs support flow control and others do not. In this
- 1898 configuration, an NC sending an XOFF opcode may see the XOFF packet emission delayed by two or
- more full size Pass-through packets, one for each package not supporting XOFF when it gets the token,
- and one for the next package supporting XOFF before sending the XOFF packet. The NC is not required
- 1901 to provide buffering to prevent packet loss in this configuration. No drop behavior should be expected by
- an MC only if all NCs have flow control enabled.
- 1903 NOTE: There is a maximum amount of time that the Network Controller is allowed to maintain a PAUSE. For more
- 1904 information, see clause 8.4.41.

1905 **7.3.3.4.1 XOFF opcode**

1908

A Network Controller package that becomes congested while receiving packets from the NC-SI shall perform the following actions:

- If it does not have a TOKEN, it sends the XOFF opcode to the next package.
- 1909 NOTE: If it has the TOKEN and has not previously sent an XOFF frame for this instance of congestion, it shall send a single XOFF frame (PAUSE frame with a pause time of <code>0xFFFF</code>) and will not generate an XOFF opcode.
- A package may also regenerate an XOFF frame or opcode if it is still congested and determines
 that the present PAUSE frame is about to expire.

- 1914 When a package on the ring receives an XOFF opcode, it shall perform one of the following actions: 1915 If it does not have a TOKEN opcode, it passes the XOFF opcode to the next package in the 1916 ring. 1917 If it has the TOKEN, it shall send an XOFF frame (PAUSE frame with a pause time of 0xFFFF) 1918 and will not regenerate the XOFF opcode. If it receives another XOFF opcode while sending the 1919 XOFF frame or a regular network packet, it discards the received XOFF opcode. 1920 7.3.3.4.2 XON opcode 1921 XON frames (PAUSE frame with a pause time of 0x0000) are used to signal to the Management 1922 Controller that the Network Controller packages are no longer congested and that normal traffic flow can 1923 resume. XON opcodes are used between the packages to coordinate XON frame generation. The package ID is included in this opcode to provide a mechanism to verify that every package is not 1924 1925 congested before sending an XON frame to the Management Controller. The XON opcode behaves as follows: 1926 1927 When a package is no longer congested, it generates an XON opcode with its own Package ID. This puts the package into the 'waiting for its own XON' state. 1928 1929 A package that receives the XON opcode takes one of the following actions: If it is congested, it replaces the received XON opcode with the IDLE opcode. This action 1930 1931 causes the XON opcode to be discarded. Eventually, the congested package generates its 1932 own XON opcode when it exits the congested state. 1933 If the package is not congested and is not waiting for the XON opcode with own Package ID, it forwards the received XON opcode to the next package in the ring. 1934 1935 If the received XON opcode contains the package's own Package ID, the opcode should 1936 be discarded. 1937 If the package is not congested and is waiting for its own XON opcode, it performs one of 1938 the following actions: 1939 If it receives an XON opcode with a Package ID that is higher than its own, it replaces 1940 the XON opcode with its own Package ID. If it receives an XON opcode with a Package ID lower than its own, it passes that 1941 XON opcode to the next package and it exits the 'waiting for its own XON' state. 1942 If it receives an XON opcode with the Package ID equal to its own, it sends an XON 1943 1944 frame on the NC-SI when it receives the TOKEN opcode and exits the 'waiting for its 1945 own XON' state. 1946 NOTE: More than one XON opcode with the same Package ID can be received while 1947 waiting for the TOKEN and while sending the XON frame. These additional XON 1948 opcodes should be discarded. 1949 If a package originates an XON opcode but receives an XOFF opcode, it terminates its XON request so that it does not output an XON frame when it receives the TOKEN. 1950
 - A package that generated an XON opcode may receive its own XON opcode back while it has the TOKEN opcode. In this case, it may send a regular packet (Pass-through, command response, or AEN) to the Management Controller (if it has one to send), an XON frame, or both.

NOTE: This behavior is not likely to occur because the Management Controller will be in the

Pause state at this point.

1951

1952

1953

1954

1955

1956 **7.3.4 Bypass mode**

- 1957 When the Network Controller package is in bypass mode, data received on the ARB_IN pin is redirected
- 1958 to the ARB_OUT pin within the specified clock delay. This way, arbitration can continue between other
- 1959 devices in the ring.
- 1960 A package in bypass mode shall take no more than T10 REF_CLK times to forward data from the
- 1961 ARB IN pin to the ARB OUT pin. The transition in and out of bypass mode may result in a truncated
- 1962 opcode.

1965

1967

1968

1969

1970

1971

1972

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

- 1963 A Network Controller package enters bypass mode immediately upon power up and transitions out of this
- mode after the Network Controller completes its startup/initialization sequence.

7.3.5 Hardware arbitration startup

- 1966 Hardware arbitration startup works as follows:
 - 1) All the packages shall be in bypass mode within Tpwrz seconds of NC-SI power up.
 - 2) As each package is initialized, it shall continuously generate FLUSH opcodes with its own Package ID.
 - 3) The package then participates in the ARB_MSTR assignment process described in the following clause.

7.3.6 ARB MSTR assignment

- 1973 ARB MSTR assignment works as follows:
 - 1) When a package receives a FLUSH opcode with a Package ID numerically smaller than its own, it shall forward on the received FLUSH opcode. If the received FLUSH opcode's Package ID is numerically larger than the local Package ID, the package shall continue to send its FLUSH opcode with its own Package ID. When a package receives a FLUSH opcode with its own Package ID, it becomes the master of the ring (ARB MSTR).
 - 2) The ARB MSTR shall then send out IDLE opcodes until it receives an IDLE opcode.
 - 3) Upon receiving the IDLE opcode, the ARB_MSTR shall be considered to be in possession of the TOKEN opcode (see clause 7.3.3.1).
 - 4) If the package receives a FLUSH opcode while it is in the middle of transmitting a packet onto NC-SI, it shall generate IDLE opcodes until the transmission is complete and then process the FLUSH opcode as described.

7.3.7 Token timeout mechanism

- 1986 Each Network Controller package that supports hardware-based arbitration control shall implement a
- 1987 timeout mechanism in case the TOKEN opcode is not received. When a package has a packet to send, it
- 1988 starts its timer. If it does not receive a TOKEN prior to the TOKEN timeout, the package shall send a
- 1989 FLUSH opcode. This restarts the arbitration process.
- 1990 The timer may be programmable depending on the number of packages in the ring. The timeout value is
- 1991 designed to accommodate up to four packages, each sending the largest packet (1536 bytes) plus
- 1992 possible XON or XOFF frame transmission and opcode processing time. The timeout shall be no fewer
- 1993 than T8 cycles of the REF CLK.

7.3.8 Timing considerations

The ARB_OUT and ARB_IN pins shall follow the timing specifications outlined in clause 10.

To improve the efficiency of the multi-drop NC-SI, TOKEN opcode generation may overlap the Inter Packet Gap (IPG) defined by the IEEE 802.3 specification, as shown in Figure 13. The TOKEN opcode shall be sent no earlier than the last T13 REF_CLK cycles of the IPG.

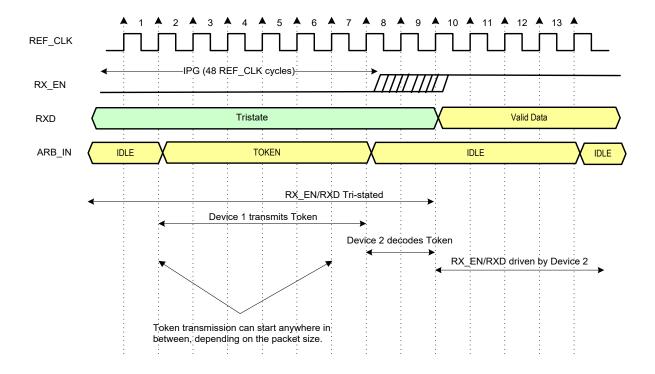


Figure 13 – Example TOKEN to transmit relationship

1999 2000

1994

1995

1996

1997

1998

2002

2003

2004

2005

7.3.9 Example hardware arbitration state machine

The state machine diagram shown in Figure 14 is provided as a guideline to help illustrate the startup process and opcode operations described in the preceding clauses.

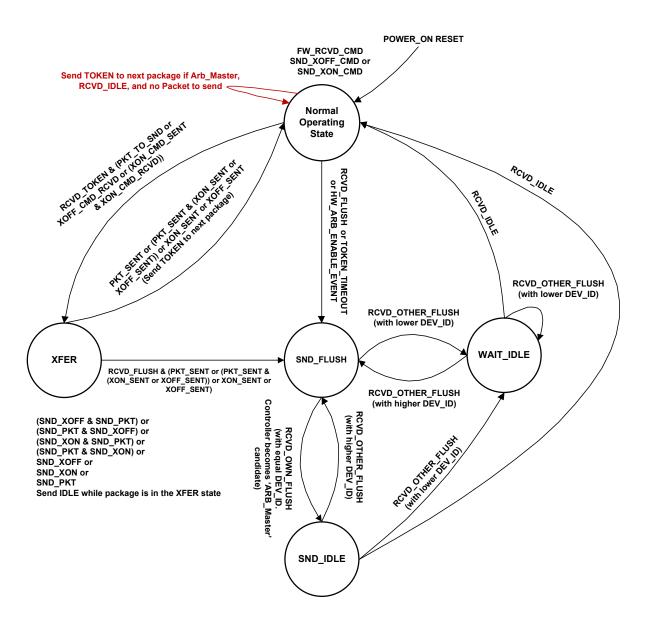


Figure 14 - Hardware arbitration state machine

2006 The states and events shown in Figure 14 are described in Table 7 and Table 8, respectively.

Table 7 – Hardware arbitration states

State	Action			
Normal Operating State	This state is the normal operating state for hardware arbitration. The following actions happen in this state:			
	 FW_RCVD_CMD: Forward received command. As opcodes are received and acted upon, the resulting opcode is sent to the next package. For example, the TOKEN opcode is received, and no packet data is available to send, so the TOKEN opcode is sent to the next package in the ring. 			
	 SND_XOFF_CMD: Send the XOFF opcode to the next package. This action happens when the specific conditions are met as described in clause 7.3.3. 			
	 SND_XON_CMD: Send the XON opcode to the next package. This action happens when the specific conditions are met as described in clause 7.3.3. 			
	If the Network Controller is ARB_Master, it generates the TOKEN opcode upon receiving an IDLE opcode at the end of the FLUSH process.			
	The RXD lines will be in a high-impedance condition in this state.			
XFER	In this state, data is sent on the RXD lines. This data will be a Pass-through packet, response packet, XON (Pause Off) packet, XOFF (Pause On) packet, or AEN. (An XON or XOFF packet can be sent in addition to a Pass-through packet, response packet, or AEN.) IDLE opcodes are sent to the next package while the device is in the XFER state.			
	The following actions happen in this state:			
	SND_XON: Transmit an XON frame (Pause Off) to the Management Controller.			
	SND_XOFF: Transmit an XOFF frame (Pause On) to the Management Controller.			
	 SND_PKT: Transmit a Pass-through packet, response packet, or AEN to the Management Controller. 			
	The TOKEN opcode is sent to the next package upon completion of the transfer.			
SND_FLUSH	This state is the entry point for determining the ARB_Master among the packages. In this state, the FLUSH opcode is continuously sent. This state is exited upon receiving a FLUSH opcode that has a DEV_ID that is equal to or lower than the package's own DEV_ID.			
SND_IDLE	This is the final state for determining the ARB_Master, entered when a device's own FLUSH opcode is received. In this state, the IDLE opcode is continuously sent.			
WAIT_IDLE	This state is entered when a FLUSH command is received from another package with a lower Device ID. When an IDLE opcode is received, the ARB_Master has been determined and the device transitions to the Normal Operating State.			

2009

2010

2011

2012

2013 2014

2015

Table 8 - Hardware arbitration events

Event	Description
RCVD_TOKEN	A TOKEN opcode was received, or the arbitration was just completed and won by this package.
RCVD_IDLE	An IDLE opcode was received.
XOFF_SENT	The Pause On frame was sent on the RXD interface.
XON_SENT	The Pause Off frame was sent on the RXD interface.
PKT_TO_SND	The Network Controller package has a Pass-through packet, command response packet, XON (Pause Off) frame, XOFF (Pause On) frame, or AEN to send.
XON_CMD_RCVD	A package received an XON opcode with its own Package ID.
XOFF_CMD_RCVD	An XOFF opcode was received.
XON_CMD_SENT	A package sent an XON opcode with its own Package ID.
RCVD_FLUSH	A FLUSH opcode was received.
TOKEN_TIMEOUT	The timeout limit expired while waiting for a TOKEN opcode.
HW_ARB_ENABLE_EVENT	This event begins ARB_MSTR assignment. This event occurs just after the Network Controller package initializes or when hardware arbitration is reenabled through the Select Package command.
RCVD_OTHER_FLUSH	A package received a FLUSH opcode with a Package ID other than its own.
RCVD_OWN_FLUSH	A package received a FLUSH opcode with a Package ID equal to its own.

7.4 Command-based arbitration

If hardware arbitration is not being used, the **Select Package** and **Deselect Package** commands shall be used to control which Network Controller package can transmit on the RXD lines. Because only one Network Controller package is allowed to transmit on the RXD lines, the Management Controller shall only have one package in the selected state at any given time. For more information, see clauses 8.4.5 and 8.4.7.

8 Packet definitions

8.1 NC-SI packet encapsulation

The RBT interface is an Ethernet interface adhering to the standard <u>IEEE 802.3</u> Ethernet frame format.

2019 Whether or not the Network Controller accepts runt packets is unspecified.

As shown in Figure 15, this L2, or data link layer, frame format encapsulates all NC-SI packets, including

2021 Pass-through, command, and response packets, as the L2 frame payload data by adding a 14-byte

2022 header to the front of the data and appending a 4-byte Frame Check Sequence (FCS) to the end.

2023 NC-SI Control Packets shall not include any VLAN tags. NC-SI Pass-through packets may include an

2024 802.1Q VLAN tag.

2016

2017

2025

2026

2027

2028

20292030

2032

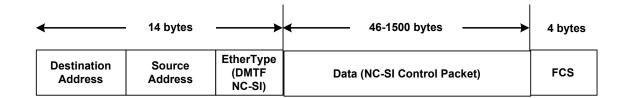


Figure 15 - Ethernet frame encapsulation of NC-SI packet data without VLAN tag

8.1.1 Ethernet frame header

The Management Controller shall format the 14-byte Ethernet frame header so that when it is received, it shall be formatted in the big-endian byte order shown in Table 9.

Channels shall accept Pass-through packets that meet the IEEE 802.3 frame requirements.

2031 Table 9 – Ethernet Header Format

	Bits				
Bytes	3124	2316	1508	0700	
0003	DA ₅ = 0xFF	DA ₄ = 0xFF	DA ₃ = 0xFF	DA ₂ = 0xFF	
0407	DA ₁ = 0xFF	DA ₀ = 0xFF	SA ₅	SA ₄	
0811	SA ₃	SA ₂	SA ₁	SA ₀	
1213	Ethertype = 0x881	F8 (DMTF NC-SI)			

8.1.1.1 Destination Address (DA)

2033 Bytes 0–5 of the header represent bytes 5–0 of the Ethernet Destination Address field of an L2 header.

The channel is not assigned a specific MAC address and the contents of this field are not interpreted as a MAC address by the Management Controller or the Network Controller. However, the DA field in all NC-SI Control Packets shall be set to the broadcast address (FF:FF:FF:FF:FF) for consistency.

- 2037 If the Network Controller receives a Control Packet with a Destination Address other than
- 2038 FF: FF: FF: FF: FF; FF, the Network Controller may elect to accept the packet, drop it, or return a
- 2039 response packet with an error response/reason code.

2040 **8.1.1.2 Source Address (SA)**

- 2041 Bytes 6–11 of the header represent bytes 5–0 of the Ethernet Source MAC Address field of the Ethernet
- 2042 header. The contents of this field may be set to any value. The Network Controller should use
- 2043 FF: FF: FF: FF: FF as the source address for NC-SI Control Packets that it generates.

2044 **8.1.1.3 Ethertype**

- The final two bytes of the header, bytes 12..13, represent bytes 1..0 of the Ethertype field of the Ethernet
- 2046 header. For NC-SI Control Packets, this field shall be set to a fixed value of 0x88F8 as assigned to NC-SI
- 2047 by the IEEE. This value allows NC-SI Control Packets to be differentiated from other packets in the
- 2048 overall packet stream.

2049

2052

2053

2058 2059

2060

2061

2062

2063

2064

2065

2066

2069

2073

8.1.2 Frame Check Sequence

- 2050 The Frame Check Sequence (FCS) shall be added at the end of the frame to provide detection of
- 2051 corruption of the frame. Any frame with an invalid FCS shall be discarded.

8.1.3 Data length

NC-SI Commands, Responses, and AENs do not carry any VLAN tag. NC-SI Commands, Responses and AENs shall have a payload data length between 46 and 1500 octets (bytes). This complies with the 802.3 specification. This means that the length of Ethernet frame shown in Figure 15 is between 64 octets (for a payload of 46 octets) and 1518 octets (for a payload with 1500 octets).

Pass-through packets also follow the 802.3 specification. The maximum payload size is 1500 octets; the minimum payload size shall be 42 octets when 802.1Q (VLAN) tag is present and 46 octets when the 802.1Q tag is not present. The Layer-2 Ethernet frame for an 802.1Q tagged frame shall be between 64 octets (for a payload of 42 octets) and 1522 octets (for a payload with 1500 octets). For Pass-through packets that are not 802.1Q tagged, the minimum Layer-2 Ethernet frame size is 64 octets (for a payload of 46 octets) and the maximum Layer-2 Ethernet frame size is 1518 octets (for a payload with 1500 octets).

8.2 Control Packet data structure

Each NC-SI Control Packet is made up of a 16-byte packet header and a payload section whose length is specific to the packet type.

8.2.1 Control Packet header

The 16-byte Control Packet header is used in command, response, and AEN packets, and contains data values intended to allow the packet to be identified, validated, and processed. The packet header is in

big-endian byte order, as shown in Table 10.

Table 10 -	Control	Packet header	format

	Bits				
Bytes	3124 2316 1508 0700				
0003	MC ID	Header Revision	Reserved IID		IID
0407	Control Packet	Ch. ID	Flags	Payload Length	

	Bits					
Bytes	3124 2316 1508 0700					
	Type					
0811	Reserved					
1215	Reserved					

2074 8.2.1.1 Management Controller ID

In Control Packets, this 1-byte field identifies the Management Controller issuing the packet. For this version of the specification, Management Controllers should set this field to 0x00 (zero). This implies that only one management controller is supported for accessing the NC via NC-SI at any given time, Network Controllers responding to command packets should copy the Management Controller ID field from the command packet header into the response packet header. For AEN packets, this field should be copied from the parameter that was set using the AEN Enable command.

8.2.1.2 Header revision

2081

2084

2089

2095

2102

This 1-byte field identifies the version of the Control Packet header in use by the sender. For this version of the specification, the header revision is 0x01.

8.2.1.3 Instance ID (IID)

This 1-byte field contains the IID of the command and associated response. The Network Controller can use it to differentiate retried commands from new instances of commands. The Management Controller can use this value to match a received response to the previously sent command. For more information, see clause 6.2.2.2.

8.2.1.4 Control Packet type

This 1-byte field contains the Identifier that is used to identify specific commands and responses, and to differentiate AENs from responses. Each NC-SI command is assigned a unique 7-bit command type value in the range $0 \times 00..0 \times 60$. The proper response type for each command type is formed by setting the most significant bit (bit 7) in the original 1-byte command value. This allows for a one-to-one correspondence between 96 unique response types and 96 unique command types.

8.2.1.5 Channel ID

- This 1-byte field contains the Network Controller Channel Identifier. The Management Controller shall set this value to specify the package and internal channel ID for which the command is intended.
- In a multi-drop configuration, all commands are received by all NC-SI Network Controllers present in the configuration. The Channel ID is used by each receiving Network Controller to determine if it is the intended recipient of the command. In Responses and AENs, this field carries the Channel ID I from which the response or AEN was issued.

8.2.1.6 Payload length

This 12-bit field contains the length, in bytes, of any payload data present in the command or response frame following the NC-SI packet header. This value does not include the length of the NC-SI Control Packet Header, the checksum value, or any padding that might be present.

2106 **8.2.1.7 Flags**

- Bit 0: Poll Indication: If this bit is set, it indicates that this command instance is polling on a previously sent command that was responded with a "Delayed Response" response code. This bit is relevant only for
- 2109 commands and not for responses or AENs.
- 2110 Bits 3:1: Reserved

2113

2117

2126

2127

2128

2129

2130

2131

2132

2133

2111 **8.2.1.8 Reserved**

2112 These fields are reserved for future use and should be written as zeros and ignored when read.

8.2.2 Control Packet payload

The NC-SI packet payload may contain zero or more defined data values depending on whether the packet is a command or response packet, and on the specific type. The NC-SI packet payload is always formatted in big-endian byte order, as shown in Table 11.

Table 11 – Generic example of Control Packet payload

	Bits					
Bytes	3124	2316	1508	0700		
0003	Data0₃	Data0 ₂	Data0₁	Data0₀		
0407	Data1 ₇	Data1 ₆	Data1₅	Data1 ₄		
0811	Data1₃	Data1 ₂	Data1₁	Data1 ₀		
	DataN-1 ₄	DataN-1 ₃	DataN-1 ₂	DataN-1₁		
	DataN-1 ₀	Payload Pad (as required)				
	Checksum					
	Ethernet Packet Pad (as required)					

2118 **8.2.2.1 Data**

- As shown in Table 11, the bytes following the NC-SI packet header may contain payload data fields of varying sizes, and which may be aligned or require padding. In the case where data is defined in the payload, all data-field byte layouts (Data0–Data1) shall use big-endian byte ordering with the most significant byte of the field in the lowest addressed byte position (that is, coming first).
- 2123 **8.2.2.2 Payload pad**
- 2124 If the payload is present and does not end on a 32-bit boundary, one to three padding bytes equal to 0×00 shall be present to align the checksum field to a 32-bit boundary.

8.2.2.3 Checksum

This 4-byte field contains the 32-bit checksum compensation value that may be included in each command and response packet by the sender of the packet. When it is implemented, the checksum compensation shall be computed as the 2's complement of the checksum, which shall be computed as the 32-bit unsigned sum of the NC-SI packet header and NC-SI packet payload interpreted as a series of 16-bit unsigned integer values. A packet receiver supporting packet checksum verification shall use the checksum compensation value to verify packet data integrity by computing the 32-bit checksum described above, adding to it the checksum compensation value from the packet, and verifying that the result is 0.

- Verification of non-zero NC-SI packet checksum values is optional. An implementation may elect to generate the checksums and may elect to verify checksums that it receives. The checksum field is generated and handled according to the following rules:
 - A checksum field value of all zeros specifies that a header checksum is not being provided for the NC-SI Control Packet, and that the checksum field value shall be ignored when processing the packet.
 - If the originator of an NC-SI Control Packet is not generating a checksum, the originator shall use a value of all zeros for the header checksum field.
 - If a non-zero checksum field is generated for an NC-SI Control Packet, that header checksum field value shall be calculated using the specified algorithm.
 - All receivers of NC-SI Control Packets shall accept packets with all zeros as the checksum value (provided that other fields and the CRC are correct).
 - The receiver of an NC-SI Control Packet may reject (silently discard) a packet that has an incorrect non-zero checksum.
 - The receiver of an NC-SI Control Packet may ignore any non-zero checksums that it receives and accept the packet, even if the checksum value is incorrect (that is, an implementation is not required to verify the checksum field).
 - A controller that generates checksums is not required to verify checksums that it receives.
- A controller that verifies checksums is not required to generate checksums for NC-SI Control Packets that it originates.

8.2.2.4 Ethernet packet pad

- 2155 Per IEEE 802.3, all Ethernet frames shall be at least 64 bytes in length, from the DA through and
- 2156 including FCS. For NC-SI packets, this requirement applies to the Ethernet header and payload, which
- 2157 includes the NC-SI Control Packet header and payload. Most NC-SI Control Packets are less than the
- 2158 minimum Ethernet frame payload size of 46 bytes in length and require padding to comply with
- 2159 IEEE 802.3.

2137

21382139

2140

21412142

2143

2144

2145

2146 2147

2148

2149 2150

2151

2154

2160

2162

2170

8.2.3 Command packet payload

2161 Command packets have no common fixed payload format.

8.2.4 Response packet payload

- 2163 Unlike command packets that do not necessarily contain payload data, all response packets carry at least
- 2164 a 4-byte payload. This default payload carries the response codes and reason codes (described in clause
- 2165 8.2.4.1) that provide status on the outcome of processing the originating command packet and is present
- in all response packet payload definitions.
- 2167 The default payload occupies bytes 00..03 of the response packet payload, with any additional
- 2168 response-packet-specific payload defined to follow starting on the next word. All response packet payload
- 2169 fields are defined with big-endian byte ordering, as shown in Table 12.

Table 12 – Generic example of Response packet payload format

	Bits				
Bytes	3124	2316	1508	0700	
0003	Response Code		Reason Code		

2173

2174 2175

2176

2185

2186

21872188

2189

 DataN-1₄	DataN-1₃	DataN-1 ₂	DataN-1₁		
 DataN-1₀	Word Pad (as required)				
 Checksum					
 Ethernet Packet Pad (as required)					

2171 8.2.4.1 Response Packet in case of Delayed Response Code

If a response includes a "Delayed Response" Code, then the response does not contain the payload of the original response, The Delayed Response shall contain a payload of a single word (uint16) including the recommended next polling time in milliseconds. If no polling time estimate is available, then the recommended next polling time shall be set to 0×0000 .

Table 13 - Generic example of Delayed Response packet payload

	Bits					
Bytes	3124	2316	1508	0700		
0003	Response Code = 0x0004 Reason Code = 0x0000					
0407	Reserved Next Polling time			ling time		
0811	Checksum					
		Ethernet Packet	Pad (as required)			

2177 8.2.5 Response codes and reason codes

2178 **8.2.5.1 General**

2179 Response codes and reason codes are status values that are returned in the responses to NC-SI
2180 commands. The response code values provide a general categorization of the status being returned. The
2181 reason code values provide additional detail related to a particular response code.

2182 Response codes and reason codes are divided into numeric ranges that distinguish whether the values 2183 represent standard codes that are defined in this specification or are vendor/OEM-specific values that are 2184 defined by the vendor of the controller.

The response code is a 2-byte field where values from 0×00 through $0 \times 7F$ are reserved for definition by this specification. Values from 0×80 through $0 \times FF$ are vendor/OEM-specific codes that are defined by the vendor of the controller.

The reason code is a 2-byte field. The ranges of values are defined in Table 14.

Table 14 – Reason code ranges

MS-byte	LS-byte	Description
	0x00-0x7F	Standard generic reason codes
00h		This range of values for the lower byte is used for reason codes that are not specific to a particular command but can be used as reason codes in responses for any command. The values in this range are reserved for definition by this specification.

MS-byte	LS-byte	Description
	0x80-0xFF	Vendor/OEM generic reason codes
		This range of values for the lower byte is used for reason codes that are not specific to a particular command but can be used as reason codes in responses for any command. Values in this range are defined by the vendor of the controller.
Command Number NOTE: This means that Command	0x00-0x7F	Standard command-specific reason codes This range of values for the lower byte is used for reason codes that are specific to a particular command. The upper byte holds the value of the command for which the reason code is defined. The values in this range are reserved for definition by this specification.
Number 00 cannot have any command- specific reason codes.	0x80-0xFF	Vendor/OEM command-specific reason codes This range of values for the lower byte is used for reason codes that are specific to a particular command. The upper byte holds the value of the command for which the reason code is defined. Values in this range are defined by the vendor of the controller.

8.2.5.2 Response code and reason code values

The standard response code values are defined in Table 15, and the standard reason code values are defined in Table 16. Command-specific values, if any, are defined in the clauses that describe the response data for the command. Unless otherwise specified, the standard reason codes may be used in combination with any response code. There are scenarios where multiple combinations of response and reason code values are valid. Unless otherwise specified, an implementation may return any valid combination of response and reason code values for the condition.

Table 15 – Standard response code values

Value	Description	Comment
0x0000	Command Completed	Returned for a successful command completion. When this response code is returned, the reason code shall be 0×0000 as described in Table 16
0x0001	Command Failed	Returned to report that a valid command could not be processed or failed to complete correctly
0x0002	Command Unavailable	Returned to report that a command is temporarily unavailable for execution because the controller is in a transient state, busy condition, or in need of external intervention.
0x0003	Command Unsupported	Returned to report that a command is not supported by the implementation. The reason code "Unknown / Unsupported Command Type should be returned along with this response code for all unsupported commands.
0x0004	Delayed Response	Returned to report that the command was accepted, and the NC started to handle it, but it cannot respond within T5 seconds with a final answer.
		When this response code is provided, the reason code shall be 0x0000.
0x8000-0xFFFF	Vendor/OEM-specific	Response codes defined by the vendor of the controller

2190

2191

2192

2193

2194 2195

2196

Table 16 - Standard Reason Code Values

Value	Description	Comment
0x0000	No Error/No Reason Code	When used with the Command Completed response code, indicates that the command completed normally. Otherwise this value indicates that no additional reason code information is being provided.
0x0001	Interface Initialization Required	Returned for all commands except Select/Deselect Package commands when the channel is in the Initial State, until the channel receives a Clear Initial State command
0x0002	Parameter Is Invalid, Unsupported, or Out-of- Range	Returned when a received parameter value is outside of the acceptable values for that parameter
0x0003	Channel Not Ready	Returned when the channel is in a transient state in which it is unable to process commands normally
0x0004	Package Not Ready	Returned when the package and channels within the package are in a transient state in which normal command processing cannot be done
0x0005	Invalid payload length	Returned when the payload length in the command is incorrect for the given command
0x0006	Information not available	Returned when the channel is unable to provide response data to a valid supported command.
0x0007	Intervention Required	May be returned for all commands, except for Select and Deselect Package, when the Package is not ready and requires intervention to restore its operational state. When this code is returned, the NC does not check if the command is otherwise valid and the defined response is not returned.
0x0008	Link Command Failed- Hardware Access Error	Returned when PHY R/W access fails on Link commands
0x0009	Command Timeout	Command execution has exceeded the allocated T5 time
0x000A	Secondary Device Not Powered	A device that communicates with the NC is not powered up and cannot respond to the request
0x000B-0x7FFE	Reserved	
0x7FFF	Unknown / Unsupported Command Type	Returned when the command type is unknown or unsupported. This reason code shall only be used when the response code is 0x0003 (Command Unsupported) as described in Table 15.
0x8000-0xFFFF	OEM Reason Code	Vendor-specific reason code defined by the vendor of the controller

8.2.6 AEN packet format

2199

2200

2201

2202

2203

22042205

AEN packets shall follow the general packet format of Control Packets, with the IID field set to 0 because, by definition, the Management Controller does not send a response packet to acknowledge an AEN packet. The Control Packet Type field shall have the value <code>0xff</code>. The originating Network Controller shall fill in the Channel ID (Ch. ID) field with its own ID to identify itself as the source of notification. The AEN Type field contains the identifier of what condition caused the generation of the AEN packet.

Table 17 represents the AEN packet format to be used for AENs defined in this specification.

Table 17 – AEN packet format

	Bits					
Bytes	3124	2316	1508	0700		
0003	MC ID = 0x0	0x01	Reserved	IID = 0x0		
0407	Control Packet Type = 0xFF	Originating Ch. ID	Reserved	Payload Length		
0811		Reserved				
1215	Reserved					
1619	Reserved AEN Type					

Table 18 represents the AEN type ranges to be used for AENs defined in this specification.

2208

Table 18 – AEN Type Ranges

Value	AEN Type Allocation
0x00x6F	Specification-defined AENs see clause 8.4.134; all others are Reserved
0x700x7F	Transport-specific AENs
0x800xFF	OEM-specific AENs

8.2.7 Single OEM AEN packet format

OEM AEN packets shall conform to the format shown in Table 19 below for NCs that only support AENs using a single OEM identifier including NCs that implement spec version 1.1 and lower.

2212

2209

2210

2211

Table 19 - OEM AEN packet format

	Bits					
Bytes	3124	2316	1508	0700		
0003	MC ID = 0x0	0x01	Reserved	IID = 0x0		
0407	Control Packet Type = 0xFF	Originating Ch. ID	Reserved	Payload Length		
0811		Reserved				
1215		Rese	erved			
1619	Reserved AEN Type					
2023	OPTIONAL AEN Data					
2427		Chec	ksum			

2213 8.2.8 Multiple OEMs AEN packet format

OEM AEN packets shall conform to the format shown in Table 20 below for NCs that support multiple OEM AENs and implement the Query and Set OEM AEN command.

2228

2229

2230

2231

Table 20 - Multiple OEMs AEN packet format

	Bits					
Bytes	3124	2316	1508		0700	
0003	MC ID = 0x0	0x01	Reserved		IID = 0x0	
0407	Control Packet Type = 0xFF	Originating Ch. ID	Reserved	F	Payload Length	
0811	Reserved					
1215		Rese	erved			
1619	Rese	erved	Multi field		AEN Type	
	Manufacturer ID (IANA)					
2023	OPTIONAL AEN Data					
2427		Chec	ksum			

2217 8.2.8.1 Multi field

2218 This field has a value of 0x01 to indicate the AEN contains a Manufacturer ID (IANA).

8.3 Control Packet type definitions

Command packet types are in the range of 0x00 to 0x7F. Table 21 describes each command, its corresponding response, and the type value for each. Table 21 includes commands addressed to either a package or a channel. The commands addressed to a package are highlighted with gray background. PLDM and OEM-specific commands carried over NC-SI may be package specific or channel specific or both. The NC-SI over RBT binding specific commands are specifically called out in the table. The rest of the commands are general and apply to all NC-SI transport bindings.

Mandatory (M), Optional (O), and Conditional (C) refer to command support requirements for the Network Controller.

Ethernet (E), Fibre Channel (FC) and InfiniBand (IB) columns under the Fabric Implementation heading refer to the specific requirements of the NC implementing the network fabric type configured on the channel.

Table 21 – Command and Response types

Control Command Packet Name		Description	Response Packet	Fabric Implementation		
Туре			Туре	Е	FC	IB
0x00	Clear Initial State	Used by the Management Controller to acknowledge that the Network Controller is in the Initial State	0x80	М	M	М
0x01	Select Package	Used to explicitly select a controller package to transmit packets through the NC-SI interface	0x81	М	M	М

Control Packet	Command Name	Description	Response Packet	lmp	Fabric lementat	ion
Туре			Туре	Е	FC	IB
0x02	Deselect Package	Used to explicitly instruct the controller package to stop transmitting packets through the NC-SI interface	0x82	М	М	M
0x03	Enable Channel	Used to enable the NC-SI channel and to cause the forwarding of bidirectional Management Controller packets to start	0x83	М	М	М
0x04	Disable Channel	Used to disable the NC-SI channel and to cause the forwarding of bidirectional Management Controller packets to cease	0x84	М	М	М
0x05	Reset Channel	Used to synchronously put the Network Controller back to the Initial State	0x85	М	М	М
0x06	Enable Channel Network TX	Used to explicitly enable the channel to transmit Pass-through packets onto the network	0x86	M	N/A	С
0x07	Disable Channel Network TX	Used to explicitly disable the channel from transmitting Pass-through packets onto the network	0x87	M	N/A	С
0x08	AEN Enable	Used to control generating AENs	0x88	С	С	С
0x09	Set Link	Used during OS absence to force link settings, or to return to auto-negotiation mode	0x89	М	N/A	С
0x0A	Get Link Status	Used to get current link status information	0x8A	М	N/A	С
0x0B	Set VLAN Filter	Used to program VLAN IDs for VLAN filtering	0x8B	М	N/A	С
0x0C	Enable VLAN	Used to enable VLAN filtering of Management Controller RX packets	0x8C	М	N/A	С
0x0D	Disable VLAN	Used to disable VLAN filtering	0x8D	М	N/A	С
0x0E	Set MAC Address	Used to configure and enable unicast and multicast MAC address filters	0x8E	М	N/A	С

Control Packet	Command Name	• • • • • • • • • • • • • • • • • • •		Fabric Implementation			
Туре			Туре	Е	FC	IB	
0x10	Enable Broadcast Filter	Used to enable selective broadcast packet filtering	0x90	M	N/A	С	
0x11	Disable Broadcast Filter	Used to disable all broadcast packet filtering, and to enable the forwarding of all broadcast packets	0x91	M	N/A	С	
0x12	Enable Global Multicast Filter	Used to enable selective multicast packet filtering	0x92	С	N/A	С	
0x13	Disable Global Multicast Filter	Used to disable all multicast packet filtering, and to enable forwarding of all multicast packets	0x93	С	N/A	С	
0x14	Set NC-SI Flow Control	Used to configure IEEE 802.3 flow control on RBT (RBT specific)	0x94	0	N/A	0	
0x15	Get Version ID	Used to get controller-related version information	0x95	M	М	М	
0x16	Get Capabilities	Used to get optional functions supported by the NC-SI	0x96	M	М	М	
0x17	Get Parameters	Used to get configuration parameter values currently in effect on the controller	0x97	М	М	М	
0x18	Get Controller Packet Statistics	Used to get current packet statistics for the Ethernet Controller	0x98	0	N/A	N/A	
0x19	Get NC-SI Statistics	Used to request the packet statistics specific to the NC-SI	0x99	0	0	0	
0x1A	Get NC-SI Pass- through Statistics	Used to request NC-SI Pass- through packet statistics	0x9A	0	N/A	0	
0x1B	Get Package Status	Used to get current status of the package.	0x9B	0	0	О	
0x25	Get NC Capabilities and Settings	Used to request device configuration information and capabilities	0xA5	0	0	0	
0x26	Set NC Configuration	Used to configure device interfaces	0xA6	0	0	0	
0x27	Get PF	Used to request Function	0xA7	0	0	0	

Control Packet	Command Name	Description	Response Packet	lmp	Fabric lementat	ion
Туре			Туре	Е	FC	IB
	Assignment	assignment information				
0x28	Set PF Assignment	Used to configure and enable Functions	0xA8	0	0	0
0x29	Get Channel Configuration	Used to request Channel configuration information	0xA9	0	0	0
0x2A	Set Channel Configuration	Used to configure operational characteristics of the Channel	0xAA	0	0	0
0x2B	Get Partition Configuration	Used to request partition configuration information	0xAB	0	0	0
0x2C	Set Partition Configuration	Used to configure partition operational characteristics	0xAC	0	0	0
0x2D	Get Boot Config	Used to request boot protocol configuration information	0xAD	0	0	0
0x2E	Set Boot Config	Used to configure boot protocol attributes	0xAE	0	0	0
0x2F	Get Partition Statistics	Used to request network link statistics for the partition	0xAF	0	0	0
0x30	Set Module Management Data	Used to configure management data of module	0xB0	0	0	0
0x31	Get FC Link Status	Used to request link and trunk status and speed for Fibre Channel ports	0xB1	N/A	М	N/A
0x32	Get Module Management Data	Used to retrieve management and inventory data of module	0xB2	0	0	0
0x33	Set Pass-through Mode Control	Used to enable/disable pass- through data paths of the NC	0xB3	0	0	Ο
0x34	Get Pass-through Mode Control	Used to retrieve states of pass- through data paths of the NC	0xB4	0	0	0
0x35	Get VF Allocation	Used to retrieve allocated VFs for PFs	0xB5	0	0	0
0x36	Set VF Allocation	Used to allocate VFs across PFs	0xB6	0	0	0
0x38	Get InfiniBand Link Status	Used to request link status for InfiniBand ports	0xB8	N/A	N/A	М
0x39	Get InfiniBand	Used to request port level	0xB9	N/A	N/A	М

Control Packet	Command Name	Description	Response Packet	lmp	Fabric lementat	ion
Type			Туре	Е	FC	IB
	Statistics	statistics for InfiniBand ports				
0x47	Settings Commit	Used to request the commit of certain settings to NVRAM	0xC7	0	0	0
0x48	Get ASIC Temperature	Used to request current NC ASIC and other external device temperatures from the NC	0xC8	0	0	0
0x49	Get Ambient Temperature	Used to request the current ambient temperature from the NC adapter	0xC9	0	0	Ο
0x4A	Get Transceiver Temperature	Used to request the current optical module temperature and thresholds	0xCA	0	0	0
0x4B	Thermal Shutdown Control	Used to control and query the state of the thermal-based self-shutdown feature	0xCB	С	С	С
0X4C	Transmit Data to	Used by the MC to transfer a block of data to the NC	0xCC	0	0	0
0X4D	Retrieve Data from NC	Used by the MC to transfer a block of data from the NC	0xCD	0	0	0
0x4E	Get Inventory Information	Used by the MC to get inventory data from the NC	0xCE	0	0	0
0x50	OEM Command	Used to request vendor-specific data	0xD0	0	0	0
0x51- 0x60	Reserved for Transport Protocol Oriented Commands	Used to define transport protocol-oriented commands (e.g., PLDM over NC-SI/RBT)	0xD1- 0xE0	0	0	0
0x51	PLDM	Used by the MC to transfer a PLDM command (response) to (from) the NC (RBT specific)	0xD1	0	0	0
0x52	Get Package UUID	Returns a universally unique identifier (UUID) for the package	0xD2	0	0	0
		See MCTP <u>DSP0261</u> for full definition				
		This command may be used on any transport				

Control Packet	Command Name	Description Response Fabric Packet Implementar				ion
Туре		Туре		E	FC	IB
0x54	Get Supported Media	See MCTP <u>DSP0261</u> for full definition This command may be used on any transport	0xD4	0	0	0
0x55	Transport- specific AEN Enable	See MCTP <u>DSP0261</u> for full definition	0xD5	0	0	0
0x56	Query Pending NC PLDM Request	Used by the MC to see if the NC has any pending PLDM requests to be retrieved (RBT specific)	has any pending PLDM requests		0	0
0x57	Send NC PLDM Reply	Used by the MC to provide a response to a previous SPDM request by the NC (RBT specific)		0	0	0
0x58	Get MC MAC Address	Used by the MC to retrieve MAC addresses provisioned for its use	0xD8	0	N/A	0
		This command may be used on any transport				
0x60	SPDM	Used by the MC to transfer a SPDM command (response) to (from) the NC (RBT specific)	0xE0	0	0	0
0x61	Query Pending NC SPDM Request	Used by the MC to see if the NC has any pending SPDM command to be retrieved (RBT specific)		0	0	0
0x62	Send NC SPDM Reply	Used by the MC to respond to a previously read SPDM command from the NC (RBT specific)		0	0	0

8.4 Command and response packet formats

- 2233 This clause describes the format for each of the NC-SI commands and corresponding responses.
- 2234 The corresponding response packet format shall be mandatory when a given command is supported.

8.4.1 NC-SI command frame format

Table 22 illustrates the NC-SI frame format that shall be accepted by the Network Controller.

2232

2240

Table 22 – Example of complete minimum-sized NC-SI command packet

	Bits	Bits				
Bytes	3124		2316	1508	0700	
0003	0xff		0xff	0xff	0xFF	
0407	Oxff		Oxff	0xXX	0xXX	
0811	0xXX		0xXX	0xXX	0xXX	
1215		0x8	8F8	MC ID	Header Revision	
1619	Reserved		IID	Command Type	Ch. ID	
2023	Reserved	l	Payload Length	Rese	erved	
2427		Rese	erved	Reserved		
2831		Rese	erved	Checksum (32)		
3235	Cł	necksı	um (10)	Pad		
3639			Pa	ad		
4043			Pa	ad		
4447		Pad				
4851		Pad				
5255	Pad					
5659		Pad				
6063			FC	CS		

2238 8.4.2 NC-SI response packet format

Table 23 illustrates the NC-SI response packet format that shall be transmitted by the Network Controller.

Table 23 – Example of complete minimum-sized NC-SI response packet

	Bits					
Bytes	3124		2316	1508	0700	
0003	0xFF		0xFF	0xFF	0xFF	
0407	0xFF		0xFF	0xFF	0xFF	
0811	0xFF		0xff	Oxff	0xff	
1215		0x88F8		MC ID	Header Revision	
1619	Reserve	b	IID	Response Type	Ch. ID	
2023	Reserved	ı	Payload Length	Reserved		
2427		Rese	erved	Reserved		
2831		Rese	erved	Response Code		
3235		Reaso	n Code	Checksum (32)		
3639	Checksum (10)			Pad		
4043		Pad				
4447			Pa	ad		

4851	Pad
5255	Pad
5659	Pad
6063	FCS

2241 8.4.3 Clear Initial State command (0x00)

2242

2243

2244

2245

2246

2247

2254

2255

2256

2257

2258

The Clear Initial State command provides the mechanism for the Management Controller to acknowledge that it considers a channel to be in the Initial State (typically because the Management Controller received an "Interface Initialization Required" reason code) and to direct the Network Controller to start accepting commands for initializing or recovering the NC-SI operation. When in the Initial State, the Network Controller shall return the "Interface Initialization Required" reason code for all channel commands until it receives the Clear Initial State command.

2248 If the channel is in the Initial State when it receives the Clear Initial State command, the command shall 2249 cause the Network Controller to stop returning the "Interface Initialization Required" reason code. The 2250 channel shall also treat any subsequently received instance ID numbers as IDs for new command 2251 instances, not retries.

2252 If the channel is not in the Initial State when it receives this command, it shall treat any subsequently received instance ID numbers as IDs for new command instances, not retries.

Table 24 illustrates the packet format of the Clear Initial State command.

Table 24 – Clear Initial State command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI Control Packet Header			
1619	Checksum				
2045	Pad				

8.4.4 Clear Initial State response (0x80)

Currently no command-specific reason code is identified for this response (see Table 25).

Table 25 – Clear Initial State response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control Packet Header		
1619	Respons	se Code	Reaso	n Code
2023	Checksum			
2445	Pad			

2259	8.4.5	Select Package	command	(0x01))
------	-------	----------------	---------	--------	---

- 2260 A package is considered to be "selected" when its NC-SI output buffers are allowed to transmit packets
- 2261 through the NC-SI interface. Conversely, a package is "deselected" when it is not allowed to transmit
- 2262 packets through the NC-SI interface.
- 2263 The Select Package command provides a way for a Management Controller to explicitly take a package
- out of the deselected state and to control whether hardware arbitration is enabled for the package.
- 2265 (Similarly, the Deselect Package command allows a Management Controller to explicitly deselect a
- 2266 package.)
- 2267 The NC-SI package in the Network Controller shall also become selected if the package receives any NC-
- 2268 SI command (other than Deselect Package) that is directed to the package or to a channel within the
- 2269 package.
- 2270 The Select Package command is addressed to the package, rather than to a channel (that is, the
- 2271 command is sent with a Channel ID where the Package ID subfield matches the ID of the intended
- package and the Internal Channel ID subfield is set to 0x1F).
- 2273 More than one package can be in the selected state simultaneously if hardware arbitration is used
- 2274 between the selected packages and is active. The hardware arbitration logic ensures that buffer conflicts
- 2275 will not occur between selected packages.
- 2276 If hardware arbitration is not active or is not used for a given package, only one package shall be selected
- 2277 at a time. To switch between packages, the Deselect Package command is used by the Management
- 2278 Controller to put the presently selected package into the deselected state before another package is
- 2279 selected.
- 2280 A package shall stay in the selected state until it receives a Deselect Package command unless an
- 2281 internal condition causes all internal channels to enter the Initial State.
- 2282 A package that is not using hardware arbitration may leave its output buffers enabled for the time that it is
- selected, or it may place its output buffers into the high-impedance state between transmitting packets
- 2284 through the NC-SI interface. (Temporarily placing the output buffers into the high-impedance state is not
- 2285 the same as entering the deselected state.)
- 2286 For Type A integrated controllers: Because the RBT bus buffers are separately controlled, a separate
- 2287 Select Package command needs to be sent to each Package ID in the controller that is to be enabled to
- 2288 transmit through the NC-SI interface. If the internal packages do not support hardware arbitration, only
- one package shall be selected at a time; otherwise, a bus conflict will occur.
- 2290 For Type S single channel, and Types B and C integrated controllers: A single set of RBT bus buffers
- 2291 exists for the package. Sending a Select Package command selects the entire package and enables all
- 2292 channels within the package to transmit through the NC-SI interface. (Whether a particular channel in a
- 2293 selected package starts transmitting Pass-through and AEN packets depends on whether that channel
- was enabled or disabled using the Enable or Disable Channel commands and whether the package may
- 2295 have had packets queued up for transmission.)
- 2296 Implementation Note: The features control settings are only configurable via this command and are not
- altered by 'implicit' selection as described in clause 6.1.14.4.
- Table 26 illustrates the packet format of the Select Package command.
- 2299 Table 27 illustrates the disable byte for hardware arbitration.

Table 26 - Select Package command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Reserved Features Co			Features Control
2023	Checksum			
2445		Pa	ad	

2301

2302

2303

2305

2306

2307 2308

Table 27 - Features Control byte

Bits	Description
	0b = Hardware arbitration between packages is enabled.
0	1b = Disable hardware arbitration. Disabling hardware arbitration causes the package's arbitration logic to enter or remain in bypass mode.
	In the case that the Network Controller does not support hardware arbitration, this bit is ignored; the Network Controller shall not return an error if the Select Package command can otherwise be successfully processed.
	Delayed Response Enable:
1	0b = NC is not allowed to use the "Delayed Response" response code (default)
	1b = NC is allowed to use the "Delayed Response" response code
72	Reserved

8.4.6 Select Package response (0x81)

2304 Currently no command-specific reason code is identified for this response (see Table 28).

Table 28 – Select package response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code		Reaso	n Code
2023	Checksum			
2445		Pa	ad	

8.4.7 Deselect Package command (0x02)

The Deselect Package command directs the controller package to stop transmitting packets through the NC-SI interface and to place the output buffers for the package into the high-impedance state.

The Deselect Package command is addressed to the package, rather than to a particular channel (that is, the command is sent with a Channel ID where the Package ID subfield matches the ID of the intended package and the Internal Channel ID subfield is set to 0x1F).

2331

- 2312 The controller package enters the deselected state after it has transmitted the response to the Deselect
- 2313 Package command and placed its buffers into the high-impedance state. The controller shall place its
- 2314 outputs into the high-impedance state within the Package Deselect to Hi-Z Interval (T1). (This interval
- 2315 gives the controller being deselected time to turn off its electrical output buffers after sending the
- 2316 response to the Deselect Package command.)
- 2317 If hardware arbitration is not supported or used, the Management Controller should wait for the Package
- 2318 Deselect to Hi-Z Interval (T1) to expire before selecting another controller.
- 2319 For Type A integrated controllers: Because the bus buffers are separately controlled, putting the overall
- 2320 controller package into the high-impedance state requires sending separate Deselect Package
- 2321 commands to each Package ID in the overall package.
- 2322 For Type S single channel, and Types B and C integrated controllers: A single set of bus buffers exists for
- 2323 the package. Sending a Deselect Package command deselects the entire NC-SI package and prevents
- 2324 all channels within the package from transmitting through the NC-SI interface.
- Table 29 illustrates the packet format of the Deselect Package command.

2326 Table 29 – Deselect Package command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Checksum			
2045		Pa	ad	

8.4.8 Deselect Package response (0x82)

- The Network Controller shall always put the package into the deselected state after sending a Deselect Package Response.
- 2330 No command-specific reason code is identified for this response (see Table 30).

Table 30 – Deselect Package response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445		Pa	ad	

8.4.9 Enable Channel command (0×03)

2332

2335

2336

2337

2338

2339

2340

2348

2354

2355

The Enable Channel command shall enable the Network Controller to allow transmission of Pass-through 2333 and AEN packets to the Management Controller through the NC-SI. 2334

Table 31 illustrates the packet format of the Enable Channel command.

Table 31 – Enable Channel command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Checksum			
2045		Pad		

8.4.10 Enable Channel response (0x83)

No command-specific reason code is identified for this response (see Table 32).

Table 32 - Enable Channel response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Respons	se Code	Reaso	n Code
2023	Checksum			
2445		Pa	ad	

8.4.11 Disable Channel command (0×0.4)

2341 The Disable Channel command allows the Management Controller to disable the flow of packets, including Pass-through and AEN, to the Management Controller. 2342

2343 A Network Controller implementation is not required to flush pending packets from its RX Queues when a channel becomes disabled. If queuing is subsequently disabled for a channel, it is possible that a number 2344 of packets from the disabled channel could still be pending in the RX Queues. These packets may 2345

continue to be transmitted through the NC-SI interface until the RX Queues are emptied of those packets. 2346 2347 The Management Controller should be aware that it may receive a number of packets from the channel

before receiving the response to the Disable Channel command.

2349 The 1-bit Allow Link Down (ALD) field can be used by the Management Controller to indicate that the link corresponding to the specified channel is not required after the channel is disabled. The Network 2350

Controller is allowed to take down the external network physical link if no other functionality (for example. 2351 2352

host OS or WoL [Wake-on-LAN]) is active.

- 2353 Possible values for the 1-bit ALD field are as follows:
 - 0b = Keep link up (establish and/or keep a link established) while channel is disabled
 - 1b = Allow link to be taken down while channel is disabled
- 2356 Table 33 illustrates the packet format of the Disable Channel command.

2361

2362

2363

2364

2365

2366

2367

23682369

2370

2372

Table 33 - Disable Channel command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Reserved			ALD	
2023	Checksum				
2445		Pad			

NOTE: It is currently unspecified whether this command will cause the Network Controller to cease the passing through of traffic from the Management Controller to the network, or if this can only be done using the Disable Channel Network TX command.

8.4.12 Disable Channel response (0x84)

No command-specific reason code is identified for this response (see Table 34).

Table 34 – Disable Channel response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445		Pa	ad	

8.4.13 Reset Channel command (0x05)

The Reset Channel command allows the Management Controller to put the channel into the Initial State. Packet transmission is not required to stop until the Reset Channel response has been sent. Thus, the Management Controller should be aware that it may receive a number of packets from the channel before receiving the response to the Reset Channel command.

Table 35 illustrates the packet format of the Reset Channel command.

Table 35 – Reset Channel command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Reserved				
2023	Checksum				
2445		Pad			

2371 **8.4.14 Reset Channel response (0x85)**

Currently no command-specific reason code is identified for this response (see Table 36).

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2386

2387

2388

2389

2390

Table 36 - Reset Channel response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445		Pa	ad	

8.4.15 Enable Channel Network TX command (0x06)

The Enable Channel Network TX command shall enable the channel to transmit Pass-through packets onto the network. After network transmission is enabled, this setting shall remain enabled until a Disable Channel Network TX command is received, or the channel enters the Initial State.

The intention of this command is to control which Network Controller ports are allowed to transmit to the external network. The Network Controller compares the source MAC address in outgoing Pass-through packets to the unicast MAC address(es) configured using the Set MAC Address command. If a match exists, the packet is transmitted to the network.

Table 37 illustrates the packet format of the Enable Channel Network TX command.

Table 37 – Enable Channel Network TX command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Checksum				
2045		Pad			

2384 8.4.16 Enable Channel Network TX response (0x86)

2385 No command-specific reason code is identified for this response (see Table 38).

Table 38 – Enable Channel Network TX response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Response Code Reason Code			n Code	
2023	Checksum				
2445		Pa	ad		

8.4.17 Disable Channel Network TX command (0x07)

The Disable Channel Network TX command disables the channel from transmitting Pass-through packets onto the network. After network transmission is disabled, it shall remain disabled until an Enable Channel Network TX command is received.

2396

2397

2398

2391 Table 39 illustrates the packet format of the Disable Channel Network TX command.

2392 Table 39 – Disable Channel Network TX command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Checksum				
2023		Pad			

8.4.18 Disable Channel Network TX response (0x87)

The NC-SI shall, in the absence of a checksum error or identifier mismatch, always accept the Disable Channel Network TX command and send a response.

Currently no command-specific reason code is identified for this response (see Table 40).

Table 40 – Disable Channel Network TX response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Response Code Reason Code			n Code	
2023	Checksum				
2445		Pa	Pad		

8.4.19 AEN Enable command (0x08)

Network Controller implementations shall support this command on the condition that the Network
Controller generates one or more standard AENs. The AEN Enable command enables and disables the
different standard AENs supported by the Network Controller. The Network Controller shall copy the AEN
MC ID field from the AEN Enable command into the MC ID field in every subsequent AEN sent to the
Management Controller.

The AEN Enable command is defined as both a package level command and a channel command. This means the command can be either addressed to the package (that is, the command is sent with the Internal Channel ID set to 0x1F) for configuring package level AENs or addressed to a specific channel in the package to configure AENs on that channel.

For more information on AEN, see clauses 8.5 ("AEN packet formats") and 8.2.1.1 ("Management Controller ID").

2410 Control of transport-specific AENs is outside the scope of this specification and should be defined by the 2411 transport binding specifications.

Table 41 illustrates the packet format of the AEN Enable command.

2413 Table 41 – AEN Enable command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Reserved AEN MC ID			AEN MC ID
2023	AEN Control			
2427	Checksum			
2845	Pad			

The AEN Control field has the format shown in Table 42.

2415 Table 42 – Format of AEN control

Bit Position	Field Description	Value Description
0	Link Status Change AEN	0b = Disable Link Status Change AEN
	control	1b = Enable Link Status Change AEN
1	Configuration Required AEN	0b = Disable Configuration Required AEN
	control	1b = Enable Configuration Required AEN
2	Host NC Driver Status	0b = Disable Host NC Driver Status Change AEN
	Change AEN control	1b = Enable Host NC Driver Status Change AEN
3	Delayed Response Ready	0b = Disable Delayed Response Ready AEN
	AEN control	1b = Enable Delayed Response Ready AEN
4	InfiniBand Link Status Change AEN control	0b = Disable IB Link Status Change AEN
		1b = Enable IB Link Status Change AEN
5	Fibre Channel Link Status Change AEN control	0b = Disable FC Link Status Change AEN
		1b = Enable FC Link Status Change AEN
6	Transceiver Event AEN Control	0b = Disable Transceiver Event AEN
		1b = Enable Transceiver Event AEN
7	Request Data Transfer AEN	0b = Disable Request Data Transfer AEN
	control	1b = Enable Request Data Transfer AEN
8	Partition Link Status Change	0b = Disable Partition Link Status Change AEN
	AEN control	1b = Enable Partition Link Status Change AEN
9	Thermal Shutdown Event	0b = Disable Thermal Shutdown Event AEN
	AEN control	1b = Enable Thermal Shutdown Event AEN
1510	Reserved	Reserved
3116	OEM-specific AEN control	OEM-specific control

8.4.20 AEN Enable response (0x88)

Currently no command-specific reason code is identified for this response (see Table 43). If the MC attempts to set an AEN type that is not supported, the NC shall reject the entire command even if it also includes valid AENs and respond with the "Command Failed" response and "Parameter Is Invalid…" reason codes.

2421

2416

Table 43 – AEN Enable response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445		Pa	ad	

2422 8.4.21 Set Link command (0x09)

The Set Link command may be used by the Management Controller to configure the external network interface associated with the channel by using the provided settings. Upon receiving this command, while the host NC driver is not operational, the channel shall attempt to set the link to the configuration specified by the parameters. Upon successful completion of this command, link settings specified in the command should be used by the network controller as long as the host NC driver does not overwrite the link settings.

In the absence of an operational host NC driver, the NC should attempt to make the requested link state change even if it requires the NC to drop the current link. The channel shall send a response packet to the Management Controller within the required response time. However, this specification does not specify the amount of time the requested link state changes may take to complete.

The actual link settings are controlled by the host NC driver when it is operational. When the host NC driver is operational, link settings specified by the MC using the Set Link command may be overwritten by the host NC driver. The link settings are not restored by the NC if the host NC driver becomes non-operational.

Table 44 illustrates the packet format of the Set Link command.

2438

2439

2440

2441

2442

2437

2429

2430

2431

2432

Table 44 - Set Link command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Link Settings				
2023	OEM Link Settings				
2427	Checksum				
2845	Pad				

Table 45 and Table 46 describe the Set Link bit definitions. Refer to IEEE 802.3 for definitions of Auto Negotiation, Duplex Setting, Pause Capability, and Asymmetric Pause Capability. The Error correction, Auto Negotiation, Duplex, Modulation Scheme, Parallel Detect, Pause Capability, Asymmetric Pause Capability, and Energy Efficient Ethernet bits shall be ignored for the link that is not Ethernet link.

Table 45 – Set Link bit definitions

Bit Position	Field Description	Value Description
00	Auto Negotiation If Auto Negotiation is not used, only one combination of single link speed, protocol and FEC settings is allowed to be configured, otherwise a Command Failed response code and Parameter Is Invalid, Unsupported, or Out-of-Range reason code shall be returned.	1b = enable 0b = disable
0107	Link Speed Selection	Bit 01: 1b = enable 10 Mbps
	More than one speed can be selected when Auto Negotiation is set to 'enable'. If Auto	Bit 02: 1b = enable 100 Mbps
	Negotiation is not used, the channel attempts to force the link to the specified setting (in this	Bit 03: 1b = enable 1000 Mbps (1 Gbps)
	case, if the setting is not supported or if	Bit 04: 1b = enable 10 Gbps
	multiple speeds are enabled, a Command Failed response code and Parameter Is Invalid, Unsupported, or Out-of-Range reason	Bit 05: 1b = enable 20 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0)
	code shall be returned). If multiple settings are enabled, a Command Failed response	Bit 06: 1b = enable 25 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0)
	code and Set Link Speed Conflict reason code shall be returned)	Bit 07: 1b = enable 40 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0)
0809	NOTE Additional link speeds are defined below. Duplex Setting	Bit 08: 1b = enable half-duplex
0000	(separate duplex setting bits)	Bit 09: 1b = enable full-duplex
	More than one duplex setting can be selected when Auto Negotiation is set to 'enable'. If Auto Negotiation is not used, the channel attempts to force the link to the specified setting (in this case, if the setting is not supported or if multiple settings are enabled, a Command Failed response code and Parameter Is Invalid, Unsupported, or Out-of-Range reason code shall be returned."	
10	Pause Capability	1b = disable
	If Auto Negotiation is not used, the channel should apply pause settings assuming the partner supports the same capability.	0b = enable
11	Asymmetric Pause Capability	1b = enable
	If Auto Negotiation is not used, the channel should apply asymmetric pause settings assuming the partner supports the same capability.	0 b = disable
12	OEM Link Settings Field Valid (see Table 46)	1b = enable 0b = disable
1319	Additional Link Speeds (see Link Speed Selection)	Bit 13: 1b = enable 50 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0)
		Bit 14: 1b = enable 100 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0)
		Bit 15: 1b = enable 2.5 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0)

Bit Position	Field Description	Value Description
		Bit 16: 1b = enable 5 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0)
		Bit 17: 1b = enable 200 Gbps (optional for NC-SI 1.2, Reserved for NC-SI 1.1/1.0)
		Bit 18: 1b = enable 400 Gbps (optional for NC-SI 1.2, Reserved for NC-SI 1.1/1.0)
		Bit 19: 1b = enable 800 Gbps (optional for NC-SI 1.2, Reserved for NC-SI 1.1/1.0)
2021	Reserved	
2223	Modulation Scheme	Bit 22: 1b = NRZ (optional for NC-SI 1.2, Reserved for NC-SI 1.1/1.0)
		Bit 23: 1b = PAM-4 (optional for NC-SI 1.2, Reserved for NC-SI 1.1/1.0)
		Bit 23-22 Values:
		00 – Use default
		01 – Enable NRZ
		10 – Enable PAM-4
		11 – Enable NRZ and PAM-4
2427	Forward Error Correction (FEC) Algorithm	Bit 24: 1b = BASE-R FEC (Firecode) (optional for NC-SI 1.2, Reserved for NC-SI 1.1/1.0)
		Bit 25: 1b = RS-FEC (Reed Solomon) (optional for NC-SI 1.2, Reserved for NC-SI 1.1/1.0)
		Bit 2627 Reserved
		If all bits are set to 0, then no FEC algorithm shall be selected
28	Energy Efficient Ethernet (EEE)	1b = enable 0b = disable
29	Link Training (LT)	1b = enable 0b = disable
30	Parallel Detect	1b = enable
	An auto-negotiation link partner's mechanism to establish links with non-negotiation, fixed-speed linked partners.	0ხ = disable
31	Reserved	0

Table 46 – OEM Set Link bit definitions

Bit Position	Field Description	Value Description
0031	OEM Link Settings	Vendor specified

2445 **8.4.22 Set Link Response (0x89)**

2450

2451

2453

2454

2455

2456

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Set Link command and send a response (see Table 47). In the presence of an operational Host NC driver, the NC should not attempt to make link state changes and should send a response with reason code 0x1 (Set Link Host OS/ Driver Conflict).

If the Auto Negotiation field is set, the NC should ignore Link Speed Selection and Duplex Setting fields that are not supported by the NC.

2452 Table 47 – Set Link response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			
2023	Checksum			
2445		Pa	ad	

Table 48 describes the reason codes that are specific to the Set Link command. Returning the following command-specific codes is recommended, conditional upon Network Controller support for the related capabilities.

Table 48 - Set Link command-specific reason codes

Value	Description	Comment
0x0901	Set Link Host OS/ Driver Conflict	Returned when the Set Link command is received when the Host NC driver is operational
0x0902	Set Link Media Conflict	Returned when Set Link command parameters conflict with the media type (for example, Fiber Media)
0x0903	Set Link Parameter Conflict	Returned when Set Link parameters conflict with each other (for example, 1000 Mbps HD with copper media)
0x0904	Set Link Power Mode Conflict	Returned when Set Link parameters conflict with current low-power levels by exceeding capability
0x0905	Set Link Speed Conflict	Returned when Set Link parameters attempt to force more than one speed at the same time when Auto Negotiation is disabled
0x0906	Link Command Failed-Hardware Access Error	Returned when PHY R/W access fails to complete normally while executing the Set Link or Get Link Status command
0x0907	Set Link SerDes Conflict	Returned when Set Link parameters attempt to force an unsupported SerDes configuration
0x0908	Set Link FEC Conflict	Returned when Set Link parameters attempt to force an unsupported FEC algorithm
0x0909	Set Link EEE Conflict	Returned when Set Link parameters attempt to force an unsupported EEE configuration

2459

2460

2462

2463

2464

Value	Description	Comment
0x090A	Set Link LT Conflict	Returned when Set Link parameters attempt to force an unsupported link training configuration
0x090B	Set Link Parallel Detection Conflict	Returned when Set Link parameters attempt to force an unsupported parallel detection configuration

2457 **8.4.23 Get Link Status command (0x0A)**

The Get Link Status command allows the Management Controller to query the channel for potential link status and error conditions (see Table 49).

Table 49 – Get Link Status command packet format

	Bits				
Bytes	3124 2316 1508 0700				
0015	NC-SI Control Packet Header				
1619	Checksum				
2045		Pa	ad		

2461 8.4.24 Get Link Status response (0x8A)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get Link Status command and send a response (see Table 50).

Table 50 - Get Link Status response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control	Packet Header	
1619	Response Code Reason Code			n Code
2023	Link Status			
2427	Other Indications			
2831	OEM Link Status			
3235	Checksum			
3645	Pad			

Table 51 describes the Link Status bit definitions.

Table 51 – Link Status field bit definitions

Bit Position	Field Description	Value Description
00	Link Flag	0b = Link is down 1b = Link is up (including Low Power Idle state in EEE)
		This field is mandatory.
0401	Speed and duplex	Ox0 = Auto-negotiate not complete [per IEEE 802.3], or SerDes Flag = 1b, or no Highest Common Denominator (HCD) from the following options (0x1 through 0xF) was found. Ox1 = 10BASE-T half-duplex Ox2 = 10BASE-T full-duplex Ox3 = 100BASE-TX half-duplex Ox4 = 100BASE-TX half-duplex Ox5 = 100BASE-TX full-duplex Ox6 = 1000BASE-T half-duplex Ox7 = 1000BASE-T full-duplex Ox8 = 10G-BASE-T support or 10 Gbps Ox9 = 20 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxA = 25 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxB = 40 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxC = 50 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxD = 100 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxE = 2.5 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxE = 2.5 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxE = 100 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxE = 2.5 Gbps (optional for NC-SI 1.1, Reserved for NC-SI 1.0) OxF = Use values defined in Extended Speed and Duplex field starting at bit 24 (optional for NC-SI 1.1, Reserved for NC-SI 1.0) When SerDes Flag = 0b, the value may reflect forced link setting. NOTE For physical medium and/or speed/duplex not listed above, the closest speed and duplex option can be reported by the NC. This field does not infer any media type information.
05	Auto Negotiate Flag	1b = Auto-negotiation is enabled. This field always returns 0b if auto-negotiation is not supported or is not enabled or when the link is not an Ethernet link.
		This field is mandatory if supported by the controller.
06	Auto Negotiate Complete	1b = Auto-negotiation has completed.
		This includes if auto-negotiation was completed using Parallel Detection. Always returns 0b if auto-negotiation is not supported or is not enabled or when the link is not an Ethernet link. This field is mandatory if the Auto Negotiate Flag is supported.
07	Parallel Detection Flag	1b = Link partner did not support auto-negotiation and parallel detection was used to get link. This field contains 0b if Parallel Detection was not used to obtain link or when the link is not an Ethernet link.
08	Reserved	None

Bit Position	Field Description	Value Description
09	Link Partner Advertised	1b = Link Partner is 1000BASE-T full-duplex capable.
	Speed and Duplex 1000TFD	Valid only for Ethernet Link and when:
		SerDes Flag = 0b
		Auto-Negotiate Flag = 1b
		Auto-Negotiate Complete = 1b
		This field is mandatory.
10	Link Partner Advertised	1b = Link Partner is 1000BASE-T half-duplex capable.
	Speed and Duplex 1000THD	Valid only for Ethernet Link and when:
		SerDes Flag = 0b
		Auto-Negotiate Flag = 1b
		Auto-Negotiate Complete = 1b
		This field is mandatory.
11	Link Partner Advertised	1b = Link Partner is 100BASE-T4 capable.
	Speed 100T4	Valid only for Ethernet Link and when:
		SerDes Flag = 0b
		Auto-Negotiate Flag = 1b
		Auto-Negotiate Complete = 1b
		This field is mandatory.
12		1b = Link Partner is 100BASE-TX full-duplex capable.
	Speed and Duplex 100TXFD	Valid only for Ethernet Link and when:
		SerDes Flag = 0b
		Auto-Negotiate Flag = 1b
		Auto-Negotiate Complete = 1b
		This field is mandatory.
13	Link Partner Advertised	1b = Link Partner is 100BASE-TX half-duplex capable.
	Speed and Duplex 100TXHD	Valid only for Ethernet Link and when:
		SerDes Flag = 0b
		Auto-Negotiate Flag = 1b
		Auto-Negotiate Complete = 1b
		This field is mandatory.
14	Link Partner Advertised	1b = Link Partner is 10BASE-T full-duplex capable.
	Speed and Duplex 10TFD	Valid only for Ethernet Link and when:
		SerDes Flag = 0b
		Auto-Negotiate Flag = 1b
		Auto-Negotiate Complete = 1b
		This field is mandatory.

Bit Position	Field Description	Value Description
15	Link Partner Advertised	1b = Link Partner is 10BASE-T half-duplex capable.
	Speed and Duplex 10THD	Valid only for Ethernet Link and when:
		SerDes Flag = 0b
		Auto-Negotiate Flag = 1b
		Auto-Negotiate Complete = 1b
		This field is mandatory.
16	TX Flow Control Flag	0b = Transmission of Pause frames by the NC onto the external network interface is disabled or this is non-Ethernet link.
		1b = Transmission of Pause frames by the NC onto the external network interface is enabled.
		This field is mandatory.
17	RX Flow Control Flag	0b = Reception of Pause frames by the NC from the external network interface is disabled or this is non-Ethernet link.
		1b = Reception of Pause frames by the NC from the external network interface is enabled.
		This field is mandatory.
1918	Link Partner Advertised Flow Control	00b = Link partner is not pause capable or this is non-Ethernet link.
		01b = Link partner supports symmetric pause.
		10b = Link partner supports asymmetric pause toward link partner.
		11b = Link partner supports both symmetric and asymmetric pause.
		Valid when:
		SerDes Flag = 0b
		Auto-Negotiate = 1b
		Auto-Negotiate Complete = 1b
		This field is mandatory.
20	SerDes Link	SerDes status (See 4.22.)
		0b = SerDes is not used or used to connect to an external PHY 1b = SerDes is used as a direct attach interface
		This field is mandatory.
21	OEM Link Speed Valid	0b = OEM link settings are invalid. 1b = OEM link settings are valid.
2322	Modulation Scheme	00b = Reserved or this is non-Ethernet link
		01b = NRZ is used.
		10b = PAM-4 is used.
		11b = Reserved
		NOTE: This field is optional for NC-SI 1.2, reserved for NC-SI 1.1/1.0.

Bit Position	Field Description	Value Description
3124	Extended Speed and	Optional for NC-SI 1.2/1.1, Reserved for NC-SI 1.0
	duplex	0×0 = Auto-negotiation not complete [per <u>IEEE 802.3</u>], or
		SerDes Flag = 1b, or
		no highest common denominator speed from the
		following options ($0x01$ through $0x0F$) was found.
		0x01 = 10BASE-T half-duplex
		0x02 = 10BASE-T full-duplex
		0x03 = 100BASE-TX half-duplex
		0x04 = 100BASE-T4
		0x05 = 100BASE-TX full-duplex
		0x06 = 1000BASE-T half-duplex
		0x07 = 1000BASE-T full-duplex
		0x08 = 10G-BASE-T support or 10 Gbps
		0x09 = 20 Gbps
		0x0A = 25 Gbps
		0x0B = 40 Gbps
		0x0C = 50 Gbps
		0x0D = 100 Gbps
		0x0E = 2.5 Gbps
		0x0F = 5 Gbps
		$0 \times 10 = 1$ Gbps (for non Base-T)
		0x11 = 200 Gbps
		0x12 = 400 Gbps
		0x13 = 800 Gbps
		0x14-0xFF = Reserved
		When SerDes Flag = 0b, the value may reflect forced link setting.
		NOTE: For the physical medium and/or speed/duplex not listed above, the closest speed and duplex option can be reported by the NC. This field does not infer any media type information.

Table 52 describes the Other Indications field bit definitions.

2469 Table 52 – Other Indications field bit definitions

Bits	Description	Values
00 Host NC Driver Status Indication		0b = The Network Controller driver for the host external network interface associated with this channel is not operational (not running), unknown, or not supported.
		1b = The Network Controller driver for the host external network interface associated with this channel (or when partitioned, at least one partition driver) is being reported as operational (running).
		This bit always returns 0b if the Host NC Driver Status Indication is not supported.
01	Energy Efficient	1b = enabled
Ethernet (EEE)		0ხ = disabled or this is non-Ethernet link

Bits	Description	Values	
02	Link Training (LT)	1b = enabled	
		0b = disabled or this is non-Ethernet link	
03	Parallel Detect	1b = enabled	
		0b = disabled or this is non-Ethernet link	
04	OEM Link Status Field	1b = enabled	
		0ხ = disabled	
0531	Reserved		

2470 Table 53 describes the OEM Link Status field bit definitions.

2471 Table 53 – OEM Link Status field bit definitions (optional)

Bits	Description	Values
0031	OEM Link Status	OEM specific

2472 Table 54 describes the reason code that is specific to the Get Link Status command.

Table 54 – Get Link Status command-specific reason code

Value	Description	Comment
0x0A06	Link Command Failed- Hardware Access Error	Returned when PHY R/W access fails to complete normally while executing the Set Link or Get Link Status command

2474 **8.4.25 Set VLAN Filter command (0x0B)**

- The Set VLAN Filter command is used by the Management Controller to program one or more VLAN IDs that are used for VLAN filtering.
- 2477 Incoming packets that match both a VLAN ID filter and a MAC address filter are forwarded to the
- 2478 Management Controller. Other packets may be dropped based on the VLAN filtering mode per the Enable
- 2479 VLAN command.

- 2480 The quantity of each filter type that is supported by the channel can be discovered by means of the Get
- 2481 Capabilities command. Up to 15 filters can be supported per channel. A Network Controller
- implementation shall support at least one VLAN filter per channel.
- 2483 To configure a VLAN filter, the Management Controller issues a Set VLAN Filter command with the Filter
- 2484 Selector field indicating which filter is to be configured, the VLAN ID field set to the VLAN TAG values to
- 2485 be used by the filter, and the Enable field set to either enable or disable the selected filter.
- 2486 The VLAN-related fields are specified per IEEE 802.1q. When VLAN Tagging is used, the packet includes
- 2487 a Tag Protocol Identifier (TPID) field and VLAN Tag fields, as shown in Table 55.

Table 55 - IEEE 802.1q VLAN Fields

Field	Size	Description
TPI	2 bytes	Tag Protocol Identifier
		= 8100h
VLAN TAG – user priority	3 bits	User Priority (typical value = 000b)
VLAN TAG – CFI	1 bit	Canonical Format Indicator = 0b
VLAN TAG – VLAN ID	12 bits	Zeros = no VLAN

When checking VLAN field values, the Network Controller shall match against the enabled VLAN Tag
Filter values that were configured with the S0065t VLAN Filter command. The Network Controller shall
also match on the TPI value of 8100h, as specified by IEEE 802.1q. Matching against the User
Priority/CFI bits is optional. An implementation may elect to ignore the setting of those fields.

Table 56 illustrates the packet format of the Set VLAN Filter command.

2494

2493

Table 56 - Set VLAN Filter command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Reserved		User Priority/CFI	VLAN ID	
2023	Reserved		Filter Selector	Reserved	Е
2427	Checksum				
2845		Pa	ad		

Table 57 provides possible settings for the Filter Selector field. Table 58 provides possible settings for the Enable (E) field.

2497

Table 57 – Possible Settings for Filter Selector field (8-bit field)

Value	Description
1	Settings for VLAN filter number 1
2	Settings for VLAN filter number 2
N	Settings for VLAN filter number N

Table 58 – Possible Settings for Enable (E) field (1-bit field)

Value	Description
0b	Disable this VLAN filter
1b	Enable this VLAN filter

2499 **8.4.26 Set VLAN Filter response (0x8B)**

2500 2501

2502

2505

2508

2510

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Set VLAN Filter command and send a response (see Table 59).

Table 59 – Set VLAN Filter response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445	Pad			

Table 60 describes the reason code that is specific to the Set VLAN Filter command.

2504 Table 60 – Set VLAN Filter command-specific reason code

Value	Description	Comment
0x0B07	VLAN Tag Is Invalid	Returned when the VLAN ID is invalid (VLAN ID = 0)

8.4.27 Enable VLAN command (0x0C)

The Enable VLAN command may be used by the Management Controller to enable the channel to accept VLAN-tagged packets from the network for NC-SI Pass-through operation (see Table 61).

Table 61 – Enable VLAN command packet format

	Bits			
Bytes	3124 2316 1508 0700			
0015	NC-SI Control Packet Header			
1619	Reserved Mode #			Mode #
2023	Checksum			
2445	Pad			

2509 Table 62 describes the modes for the Enable VLAN command.

Table 62 – VLAN Enable modes

Mode	#	O/M	Description
Reserved	0x00	N/A	Reserved
VLAN only	0x01	М	Only VLAN-tagged packets that match the enabled VLAN Filter settings (and also match the MAC Address Filtering configuration) are accepted. Non-VLAN-tagged packets are not accepted.

VLAN + non-VLAN	0x02	0	VLAN-tagged packets that match the enabled VLAN Filter settings (and also match the MAC Address Filtering configuration) are accepted.
			Non-VLAN-tagged packets (that also match the MAC Address Filtering configuration) are also accepted.
Any VLAN + non-VLAN	0x03	0	Any VLAN-tagged packets that also match the MAC Address Filtering configuration are accepted, regardless of the VLAN Filter settings.
			Non-VLAN-tagged packets (that also match the MAC Address Filtering configuration) are also accepted.
Reserved	0x04	N/A	Reserved
	- 0xFF		

2511 **8.4.28 Enable VLAN response (0x8C)**

- The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Enable VLAN command and send a response.
- 2514 Currently no command-specific reason code is identified for this response (see Table 63).

2515

Table 63 - Enable VLAN response packet format

	Bits				
Bytes	3124 2316 1508 0700				
0015	NC-SI Control Packet Header				
1619	Response Code Reason Code			n Code	
2023	Checksum				
2445	Pad				

2516 **8.4.29 Disable VLAN command (0x0D)**

- The Disable VLAN command may be used by the Management Controller to disable VLAN filtering. In the disabled state, only non-VLAN-tagged packets (that also match the MAC Address Filtering configuration) are accepted. VLAN-tagged packets are not accepted.
- Table 64 illustrates the packet format of the Disable VLAN command.

2521

Table 64 – Disable VLAN command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Checksum			
2045	Pad			

2522 8.4.30 Disable VLAN response (0x8D)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Disable VLAN command and send a response.

2525 Currently no command-specific reason code is identified for this response (see Table 65).

2526 Table 65 – Disable VLAN response packet format

	Bits			
Bytes	3124 2316 1508 0700			
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445	Pad			

8.4.31 Set MAC Address command (0x0E)

The Set MAC Address command is used by the Management Controller to program the channel's unicast or multicast MAC address filters.

The channel supports one or more "perfect match" MAC address filters that are used to selectively forward inbound frames to the Management Controller. Assuming that a packet passes any VLAN filtering that may be active, it will be forwarded to the Management Controller if its 48-bit destination MAC address exactly matches an active MAC address filter.

2534 MAC address filters may be configured as unicast or multicast addresses, depending on the capability of the channel. The channel may implement three distinct types of filter:

- Unicast filters support exact matching on 48-bit unicast MAC addresses (AT = 0x0 only).
- Multicast filters support exact matching on 48-bit multicast MAC addresses (AT = 0x1 only).
- **Mixed filters** support matching on both unicast and multicast MAC addresses. (AT = 0x0 or AT = 0x1)

The number of each type of filter that is supported by the channel can be discovered by means of the Get Capabilities command. The channel shall support at least one unicast address filter or one mixed filter, so that at least one unicast MAC address filter may be configured on the channel. Support for any combination of unicast, multicast, or mixed filters beyond this basic requirement is vendor specific. The total number of all filters shall be less than or equal to 8.

To configure an address filter, the Management Controller issues a Set MAC Address command with the Address Type field indicating the type of address to be programmed (unicast or multicast) and the MAC Address Num field indicating the specific filter to be programmed.

Filters are addressed using a 1-based index ordered over the unicast, multicast, and mixed filters reported by means of the Get Capabilities command. For example, if the interface reports four unicast filters, two multicast filters, and two mixed filters, then MAC Address numbers 1 through 4 refer to the interface's unicast filters, 5 and 6 refer to the multicast filters, and 7 and 8 refer to the mixed filters.

Similarly, if the interface reports two unicast filters, no multicast filters, and six mixed filters, then MAC address numbers 1 and 2 refer to the unicast filters, and 3 through 8 refer to the mixed filters.

2527

2536

2537

2538

2539

2540

2541 2542

2543

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

The filter type of the filter to be programmed (unicast, multicast, or mixed) shall be compatible with the
Address Type being programmed. For example, programming a mixed filter to a unicast address is
allowed, but programming a multicast filter to a unicast address is an error.

The Enable field determines whether the indicated filter is to be enabled or disabled. When a filter is programmed to be enabled, the filter is loaded with the 48-bit MAC address in the MAC Address field of the command, and the channel enables forwarding of frames that match the configured address. If the specified filter was already enabled, it is updated with the new address provided.

When a filter is programmed to be disabled, the contents of the MAC Address field are ignored. Any previous MAC address programmed in the filter is discarded and the channel no longer uses this filter in its packet-forwarding function.

Only unicast MAC addresses, specified with AT set to 0x0, should be used in source MAC address checking and for determining the NC-SI channel for Pass-through transmit traffic.

Table 66 illustrates the packet format of the Set MAC Address command.

Table 66 – Set MAC Address command packet format

	Bits					
Bytes	3124 2316 1508 07)	
0015		NC-SI Control	Packet Header			
1619	MAC Address byte 5					;
2023	MAC Address byte 1	MAC Address byte 0	MAC Address Num	АТ	Rsvd	Е
2427	Checksum					
2845	Pad					
NOTE AT = Address	Type, E = Enable.					

Table 67 provides possible settings for the MAC Address Number field. Table 68 provides possible settings for the Address Type (AT) field. Table 69 provides possible settings for the Enable (E) field.

Table 67 – Possible settings for MAC Address Number (8-bit field)

Value	Description
0x01	Configure MAC address filter number 1
0x02	Configure MAC address filter number 2
N	Configure MAC address filter number N

Table 68 – Possible settings for Address Type (3-bit field)

Value	Description
0x0	Unicast MAC address
0x1	Multicast MAC address
0x2-0x7	Reserved

Table 69 – Possible settings for Enable Field (1-bit field)

Value	Description
0b	Disable this MAC address filter
1b	Enable this MAC address filter

8.4.32 Set MAC Address response (0x8E) 2573

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Set MAC Address command and send a response (see Table 70).

2576

2574

2575

Table 70 - Set MAC Address response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code		Reason Code	
2023	Checksum			
2445	Pad			

2577 Table 71 describes the reason code that is specific to the Set MAC Address command.

2578

2579

2581

2585

2586 2587

Table 71 - Set MAC Address command-specific reason code

Value	Description	Comment
0x0E08	MAC Address Is Zero	Returned when the Set MAC Address command is received with the MAC address set to 0

8.4.33 Enable Broadcast Filter command (0x10)

2580 The Enable Broadcast Filter command allows the Management Controller to control the forwarding of broadcast frames to the Management Controller. The channel, upon receiving and processing this command, shall filter all received broadcast frames based on the broadcast packet filtering settings 2582 specified in the payload. If no broadcast packet types are specified for forwarding, all broadcast packets 2583 shall be filtered out. 2584

The Broadcast Packet Filter Settings field is used to specify those protocol-specific broadcast filters that should be activated. The channel indicates which broadcast filters it supports in the Broadcast Filter Capabilities field of the Get Capabilities Response frame defined in clause 8.4.46.

2588 Table 72 illustrates the packet format of the Enable Broadcast Filter command.

Table 72 – Enable Broadcast Filter command packet format

	Bits				
Bytes	3124 2316 1508 0700				
0015	NC-SI Control Packet Header				
1619	Broadcast Packet Filter Settings				
2023	Checksum				
2445		Pa	ad		

Table 73 describes the Broadcast Packet Filter Settings field bit definitions.

Table 73 – Broadcast Packet Filter Settings field

Bit Position	Field Description	Value Description
0	ARP Packets	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.
		For the purposes of this specification, an ARP broadcast packet is defined to be any packet that meets all of the following requirements:
		 The destination MAC address field is set to the layer 2 broadcast address (FF:FF:FF:FF:FF).
		• The Ethertype field set to 0x0806.
		This field is mandatory.
1	DHCP Client Packets	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.
		For the purposes of this filter, a DHCP client broadcast packet is defined to be any packet that meets all of the following requirements:
		 The destination MAC address field is set to the layer 2 broadcast address (FF:FF:FF:FF:FF).
		 The Ethertype field is set to 0x0800 (IPv4).
		 The IP header's Protocol field is set to 17 (UDP).
		 The UDP destination port number is set to 68.
		This field is optional. If unsupported, broadcast DHCP client packets will be blocked when broadcast filtering is enabled. The value shall be set to 0 if unsupported.

Bit Position	Field Description	Value Description	
2	DHCP Server Packets	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.	
		For the purposes of this filter, a DHCP server broadcast packet is defined to be any packet that meets all of the following requirements:	
		 The destination MAC address field is set to the layer 2 broadcas address (FF:FF:FF:FF:FF:FF). 	
		 The Ethertype field is set to 0x0800 (IPv4). 	
		 The IP header's Protocol field is set to 17 (UDP). 	
		 The UDP destination port number is set to 67. 	
		This field is optional. If unsupported, broadcast DHCP packets will be blocked when broadcast filtering is enabled. The value shall be set to 0b if unsupported.	
3	NetBIOS Packets	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.	
		For the purposes of this filter, NetBIOS broadcast packets are defined to be any packet that meets all of the following requirements:	
		 The destination MAC address field is set to the layer 2 broadcast address (FF:FF:FF:FF:FF). 	
		 The Ethertype field is set to 0x0800 (IPv4). 	
		 The IP header's Protocol field is set to 17 (UDP). 	
		 The UDP destination port number is set to 137 for NetBIOS Name Service or 138 for NetBIOS Datagram Service, per the assignment of IANA well-known ports. 	
		This field is optional. If unsupported, broadcast NetBIOS packets will be blocked when broadcast filtering is enabled. The value shall be set to 0b if unsupported.	
431	Reserved	None	

8.4.34 Enable Broadcast Filter response (0x90)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Enable Broadcast Filter command and send a response.

Currently no command-specific reason code is identified for this response (see Table 74).

Table 74 - Enable Broadcast Filter response packet format

	Bits					
Bytes	3124 2316 1508 0700					
0015	NC-SI Control Packet Header					
1619	Response Code Reason Code					
2023	Checksum					
2445		Pa	ad			

2592

2593 2594

2595

2601

2602

2603

2606

2607

2608

8.4.35 Disable Broadcast Filter command (0x11)

The Disable Broadcast Filter command may be used by the Management Controller to disable the broadcast filter feature and enable the reception of all broadcast frames. Upon processing this command, the channel shall discontinue the filtering of received broadcast frames.

Table 75 illustrates the packet format of the Disable Broadcast Filter command.

Table 75 – Disable Broadcast Filter command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Checksum				
2045		Pa	ad		

8.4.36 Disable Broadcast Filter response (0x91)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Disable Broadcast Filter command and send a response.

Currently no command-specific reason code is identified for this response (see Table 76).

Table 76 – Disable Broadcast Filter response packet format

	Bits					
Bytes	3124 2316 1508 0700					
0015	NC-SI Control Packet Header					
1619	Response Code Reason Code					
2023	Checksum					
2445		Pa	ad			

8.4.37 Enable Global Multicast Filter command (0x12)

The Enable Global Multicast Filter command is used to activate global filtering of multicast frames with optional filtering of specific multicast protocols. Upon receiving and processing this command, the channel shall only deliver multicast frames that match specific multicast MAC addresses enabled for Pass-through using this command or the Set MAC Address command.

The Multicast Packet Filter Settings field is used to specify optional, protocol-specific multicast filters that should be activated. The channel indicates which optional multicast filters it supports in the Multicast Filter Capabilities field of the Get Capabilities Response frame defined in clause 8.4.46. The Management Controller should not set bits in the Multicast Packet Filter Settings field that are not indicated as supported in the Multicast Filter Capabilities field.

Neighbor Solicitation messages are sent to a Solicited Node multicast address that is derived from the target node's IPv6 address. This command may be used to enable forwarding of solicited node multicasts.

The IPv6 neighbor solicitation filter, as defined in this command, may not be supported by the Network Controller. In this case, the Management Controller may configure a multicast or mixed MAC address

filter for the specific Solicited Node multicast address using the Set MAC Address command to enable forwarding of Solicited Node multicasts.

This command shall be implemented if the channel implementation supports accepting all multicast addresses. An implementation that does not support accepting all multicast addresses shall not implement these commands. Pass-through packets with multicast addresses can still be accepted depending on multicast address filter support provided by the Set MAC Address command. Multicast filter entries that are set to be enabled in the Set MAC Address command are accepted; all others are rejected. Table 77 illustrates the packet format of the Enable Global Multicast Filter command. Unsupported fields should be treated as reserved fields unless otherwise specified.

Table 77 – Enable Global Multicast Filter command packet format

	Bits					
Bytes	3124 2316 1508 0700					
0015	NC-SI Control Packet Header					
1619	Multicast Packet Filter Settings					
2023	Checksum					
2445		Pad				

Table 78 describes the bit definitions for the Multicast Packet Filter Settings field.

Table 78 – Bit Definitions for Multicast Packet Filter Settings field

Bit Position	Field Description	Value Description
0	IPv6 Neighbor Advertisement	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.
		For the purposes of this specification, an IPv6 Neighbor Advertisement multicast packet is defined to be any packet that meets all of the following requirements:
		The destination MAC address field is set to a layer 2 multicast address of the form 33:33:00:00:00:01. This address corresponds to the all-nodes multicast address (FF02::1).
		The Ethertype field is set to 0x86DD (IPv6).
		The IPv6 header's Next Header field is set to 58 (ICMPv6).
		The ICMPv6 header's Message Type field is set to the following value: 136 – Neighbor Advertisement.
		This field is optional.

2625

2626

2627

2628

2629 2630

2631

2632

2633

Bit Position	Field Description	Value Description
1	IPv6 Router Advertisement	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.
		For the purposes of this specification, an IPv6 Router Advertisement multicast packet is defined to be any packet that meets all of the following requirements:
		The destination MAC address field is set to a layer 2 multicast address of the form 33:33:00:00:00:01. This corresponds to the all-nodes multicast address (FF02::1).
		The Ethertype field is set to 0x86DD (IPv6).
		The IPv6 header's Next Header field is set to 58 (ICMPv6).
		The ICMPv6 header's Message Type field is set to 134.
		This field is optional.
2	DHCPv6 relay and server multicast	 1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.
		For the purposes of this filter, a DHCPv6 multicast packet is defined to be any packet that meets all of the following requirements:
		The destination MAC address field is set to the layer 2 multicast address 33:33:00:01:00:02 or 33:33:00:01:00:03. These correspond to the IPv6 multicast addresses FF02::1:2 (AII_DHCP_Relay_Agents_and_Servers) and FF05::1:3 (AII_DHCP_Servers).
		The Ethertype field is set to 0x86DD (IPv6).
		The IPv6 header's Next Header field is set to 17 (UDP).
		The UDP destination port number is set to 547.
		This field is optional.
3	DHCPv6 multicasts from server to clients	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.
	listening on well- known UDP ports	For the purposes of this filter, a DHCPv6 multicast packet is defined to be any packet that meets all of the following requirements:
		The destination MAC address field is set to the layer 2 multicast address 33:33:00:01:00:02. These correspond to the IPv6 multicast addresses FF02::1:2 (AII_DHCP_Relay_Agents_and_Servers).
		The Ethertype field is set to 0x86DD (IPv6).
		The IPv6 header's Next Header field is set to 17 (UDP).
		The UDP destination port number is set to 546.
		This field is optional.

Bit Position	Field Description	Value Description
4	IPv6 MLD	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.
		For the purposes of this specification, an IPv6 MLD packet is defined to be any packet that meets all of the following requirements:
		The destination MAC address field is set to a layer 2 multicast address of the form 33:33:00:00:00:01. This address corresponds to the All_Nodes (FF02::1) multicast address.
		The Ethertype field is set to 0x86DD (IPv6).
		The IPv6 header's Next Header field is set to 58 (ICMPv6).
		 The ICMPv6 header's Message Type field is set to one of the following values: 130 (Multicast Listener Query), 131 (Multicast Listener Report), 132 (Multicast Listener Done)
		This field is optional.
5	IPv6 Neighbor Solicitation	1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type.
		For the purposes of this specification, an IPv6 MLD packet is defined to be any packet that meets all of the following requirements:
		 The destination MAC address field is set to a layer 2 multicast address of the form 33:33:FF:XX:XX:XX. This address corresponds to the Solicited Note multicast address where the last three bytes of the destination MAC address are ignored for this filter.
		The Ethertype field is set to 0x86DD (IPv6).
		The IPv6 header's Next Header field is set to 58 (ICMPv6).
		 The ICMPv6 header's Message Type field is set to one of the following values: 135
		This field is optional.
		Implementation Note: Enabling of this filter results in receiving all IPv6 neighbor solicitation traffic on this channel. If IPv6 neighbor solicitation traffic for a specific multicast address is of interest, then it is recommended that the MC uses a multicast address filter (configured for the multicast address using the Set MAC Address command) instead of this filter.

to be any packet that meets all of the following requirements: The destination MAC address field is set to a layer 2 multicast address of the form 01:80:C2:00:00:00, or 01:80:C2:00:00:03, or 01:80:C2:00:00:0E. The Ethertype field is set to 0x88CC. This field is optional.	Bit Position	Field Description	Value Description
to be any packet that meets all of the following requirements: The destination MAC address field is set to a layer 2 multicast address of the form 01:80:C2:00:00:00; 00 corrul;80:C2:00:00:00;00;00. The Ethertype field is set to 0x88CC. This field is optional. Implementation Note: Enabling of this filter results in receiving a copy of all LLDP traffic on this channel. If LLDP traffic for a specific LLDP multicast address is of interest, then it is recommended that the MC uses a multicast address filter (configured for the multicast address using the Set MAC Address command) instead of this filter. The intent of this filter is to allow the MC to snoop the received LLDP frame by the port, not to achieve ownership of any contained protocols. The intent of this packet type to the Management Controller. Ob = Filter out this packet type to the Management Controller. Ob = Filter out this packet type to the Management Controller. Ob = Filter out that meets all the following requirements: The destination MAC address field is set to a layer 2 multicast address of the form 01:00:5E:00:00:FB. The Ethertype field is set to 0x0800. The IPv4 address is 224.0.0.251. The IPv4 header's Protocol field is set to 17 (UDP). The UDP destination port number is set to 5353. This field is optional. Implementation of this packet type to the Management Controller. Ob = Filter out this packet type to the Management Controller. Ob = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:	6	LLDP	
address of the form 01:80:C2:00:00:00, or 01:80:C2:00:00:00. or 01:80:C2:00:00:03, or 01:80:C2:00:00:00. The Ethertype field is set to 0x88cc. This field is optional. Implementation Note: Enabling of this filter results in receiving a copy of all LLDP traffic on this channel. If LLDP traffic for a specific LLDP multicast address is of interest, then it is recommended that the MC uses a multicast address filter (configured for the multicast address using the Set MAC Address command) instead of this filter. The intent of this filter is to allow the MC to snoop the received LLDP frame by the port, not to achieve ownership of any contained protocols. The intent of this packet type to the Management Controller. 0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv4 packet is defined to be any packet that meets all the following requirements: The destination MAC address field is set to a layer 2 multicast address of the form 01:00:5E:00:00:FB. The Ethertype field is set to 0x0800. The IPv4 address is 224.0.0.251. The IPv4 header's Protocol field is set to 17 (UDP). The UDP destination port number is set to 5353. This field is optional. 8 mDNSv6 Ib = Forward this packet type to the Management Controller. 0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:			For the purposes of this specification, a LLDP packet is defined to be any packet that meets all of the following requirements:
This field is optional. Implementation Note: Enabling of this filter results in receiving a copy of all LLDP traffic on this channel. If LLDP traffic for a specific LLDP multicast address is of interest, then it is recommended that the MC uses a multicast address filter (configured for the multicast address using the Set MAC Address command) instead of this filter. The intent of this filter is to allow the MC to snoop the received LLDP frame by the port, not to achieve ownership of any contained protocols. 7 mDNSv4 mDNSv6 mDNSv6			address of the form 01:80:C2:00:00.00, or
Implementation Note: Enabling of this filter results in receiving a copy of all LLDP traffic on this channel. If LLDP traffic for a specific LLDP multicast address is of interest, then it is recommended that the MC uses a multicast address filter (configured for the multicast address using the Set MAC Address command) instead of this filter. The intent of this filter is to allow the MC to snoop the received LLDP frame by the port, not to achieve ownership of any contained protocols. 7			The Ethertype field is set to 0x88cc.
copy of all LLDP traffic on this channel. If LLDP traffic for a specific LLDP multicast address is of interest, then it is recommended that the MC uses a multicast address filter (configured for the multicast address using the Set MAC Address command) instead of this filter. The intent of this filter is to allow the MC to snoop the received LLDP frame by the port, not to achieve ownership of any contained protocols. 7 mDNSv4			This field is optional.
LLDP frame by the port, not to achieve ownership of any contained protocols. 7			specific LLDP multicast address is of interest, then it is recommended that the MC uses a multicast address filter (configured for the multicast address using the Set MAC
Db = Filter out this packet type. For the purposes of this specification, a mDNS/IPv4 packet is defined to be any packet that meets all the following requirements: The destination MAC address field is set to a layer 2 multicast address of the form 01:00:5E:00:00:FB. The Ethertype field is set to 0x0800. The IPv4 address is 224.0.0.251. The IPv4 header's Protocol field is set to 17 (UDP). The UDP destination port number is set to 5353. This field is optional. 8 mDNSv6 Db = Forward this packet type to the Management Controller. Ob = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:			LLDP frame by the port, not to achieve ownership of any
defined to be any packet that meets all the following requirements: The destination MAC address field is set to a layer 2 multicast address of the form 01:00:5E:00:00:FB. The Ethertype field is set to 0x0800. The IPv4 address is 224.0.0.251. The IPv4 header's Protocol field is set to 17 (UDP). The UDP destination port number is set to 5353. This field is optional. 8 mDNSv6 1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:	7	mDNSv4	
address of the form 01:00:5E:00:00:FB. The Ethertype field is set to 0x0800. The IPv4 address is 224.0.0.251. The IPv4 header's Protocol field is set to 17 (UDP). The UDP destination port number is set to 5353. This field is optional. 8 mDNSv6 1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:			defined to be any packet that meets all the following
The IPv4 address is 224.0.0.251. The IPv4 header's Protocol field is set to 17 (UDP). The UDP destination port number is set to 5353. This field is optional. 1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:			
The IPv4 header's Protocol field is set to 17 (UDP). The UDP destination port number is set to 5353. This field is optional. 1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:			The Ethertype field is set to 0x0800.
The UDP destination port number is set to 5353. This field is optional. 8			The IPv4 address is 224.0.0.251.
This field is optional. 1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:			The IPv4 header's Protocol field is set to 17 (UDP).
mDNSv6 1b = Forward this packet type to the Management Controller. 0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:			The UDP destination port number is set to 5353.
0b = Filter out this packet type. For the purposes of this specification, a mDNS/IPv6 packet is defined to be any packet that meets all the following requirements:			This field is optional.
defined to be any packet that meets all the following requirements:	8	mDNSv6	
The destination MAC address field is set to a layer 2 multicast			defined to be any packet that meets all the following
address of the form 33:33:00:00:00:FB. This corresponds to the All Nodes IPv6 multicast address, FF02::FB.			address of the form 33:33:00:00:00:FB. This corresponds
The Ethertype field is set to 0x086DD.			The Ethertype field is set to 0x086DD.
The IPv6 header's Next Header field is set to 17 (UDP).			The IPv6 header's Next Header field is set to 17 (UDP).
The UDP destination port number is set to 5353.			The UDP destination port number is set to 5353.
This field is optional.			This field is optional.
319 Reserved None	319	Reserved	None

8.4.38 Enable Global Multicast Filter response (0x92)

2635

2638

2639

2640

2641

2642

26432644

2645

2646

2647

2648

26492650

2651

2652

2653

2654

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Enable Global Multicast Filter command and send a response.

Currently no command-specific reason code is identified for this response (see Table 79).

Table 79 – Enable Global Multicast Filter response packet format

	Bits					
Bytes	3124 2316 1508 0700					
0015	NC-SI Control Packet Header					
1619	Response Code Reason Code					
2023	Checksum					
2445		Pa	ad			

8.4.39 Disable Global Multicast Filter command (0x13)

The Disable Global Multicast Filter command is used to disable global filtering of multicast frames. Upon receiving and processing this command, and regardless of the current state of multicast filtering, the channel shall forward all multicast frames to the Management Controller.

This command shall be implemented on the condition that the channel implementation supports accepting all multicast addresses. An implementation that does not support accepting all multicast addresses shall not implement these commands. Pass-through packets with multicast addresses can still be accepted depending on multicast address filter support provided by the Set MAC Address command. Packets with destination addresses matching multicast filter entries that are set to enabled in the Set MAC Address command are accepted; all others are rejected.

Table 80 illustrates the packet format of the Disable Global Multicast Filter command.

Table 80 – Disable Global Multicast Filter command packet format

	Bits			
Bytes	3124 2316 1508 0700			
0015	NC-SI Control Packet Header			
1619	Checksum			
2045		Pa	ad	

8.4.40 Disable Global Multicast Filter response (0x93)

In the absence of any errors, the channel shall process and respond to the Disable Global Multicast Filter command by sending the response packet shown in Table 81.

2655 Currently no command-specific reason code is identified for this response.

2668

Table 81 - Disable Global Multicast Filter response packet format

	Bits			
Bytes	3124 2316 1508 0700			
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445		Pa	ad	

2657 8.4.41 Set NC-SI Flow Control command (0x14)

The Set NC-SI Flow Control command allows the Management Controller to configure <u>IEEE 802.3</u> pause packet flow control on the NC-SI RBT.

The Set NC-SI Flow Control command is addressed to the package, rather than to a particular channel (that is, the command is sent with a Channel ID where the Package ID subfield matches the ID of the intended package and the Internal Channel ID subfield is set to 0x1F).

The setting of <u>IEEE 802.3</u> Pause packet flow control on RBT is independent from any arbitration scheme, if any is used.

2665 Table 82 illustrates the packet format of the Set NC-SI Flow Control command.

2666 Table 82 – Set NC-SI Flow Control command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Reserved Flow Control Enable			Flow Control Enable
2023	Checksum			
2445	Pad			

Table 83 describes the values for the Flow Control Enable field.

Table 83 – Values for the Flow Control Enable field (8-bit field)

Value	Description	
0x0	Disables NC-SI flow control	
0x1	Enables Network Controller to Management Controller flow control frames (Network Controller generates flow control frames)	
	This field is optional.	
0x2	Enables Management Controller to Network Controller flow control frames (Network Controller accepts flow control frames)	
	This field is optional.	
0x3	Enables bi-directional flow control frames	
	This field is optional.	

Value	Description
0x40xFF	Reserved

2669 8.4.42 Set NC-SI Flow Control response (0x94)

2670

2671

2672

2674

2675

2676

2677

2679

2681

2682

2683

The package shall, in the absence of a checksum error or identifier mismatch, always accept the Set NC-SI Flow Control command and send a response (see Table 84).

Table 84 – Set NC-SI Flow Control response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445		Pa	ad	

2673 Table 85 describes the reason code that is specific to the Set NC-SI Flow Control command.

Table 85 – Set NC-SI Flow Control command-specific reason code

Value	Description	Comment
0x1409	Independent transmit and receive enable/disable control is not supported	Returned when the implementation requires that both transmit and receive flow control be enabled and disabled simultaneously

8.4.43 Get Version ID command (0x15)

The Get Version ID command may be used by the Management Controller to request the channel to provide the controller and firmware type and version strings listed in the response payload description.

Table 86 illustrates the packet format of the Get Version ID command.

Table 86 – Get Version ID command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Checksum			
2045	Pad			

2680 **8.4.44 Get Version ID Response (0x95)**

The channel shall, in the absence of an error, always accept the Get Version ID command and send the response packet shown in Table 87. Currently no command-specific reason code is identified for this response.

NOTE: When multiple Physical Functions are enabled on the channel, the PCI ID that is returned shall be that of the lowest numbered Function on the channel.

2686

2687

2688

2689

26902691

2692

2693

2694

2695

2696

26972698

2699

Table 87 - Get Version ID response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI Control	Packet Header		
1619	Respon	se Code	Reaso	n Code	
2023		NC-SI	Version		
2023	Major	Minor	Update	Alpha1	
2427	Reserved	reserved	reserved	Alpha2	
2831	Firmware Name String (11-08)				
3235	Firmware Name String (07-04)				
3639	Firmware Name String (03-00)				
	Firmware Version				
4043	MS-byte (3)	Byte (2)	Byte (1)	LS-byte (0)	
4447	PCI DID PCI VID			VID	
4851	PCI SSID		PCI	SVID	
5255	Manufacturer ID (IANA)				
5659		Chec	ksum		

8.4.44.1 NC-SI Version encoding

The NC-SI Version field holds the version number of the NC-SI specification with which the controller is compatible. The version field shall be encoded as follows:

- The 'major', 'minor', and 'update' bytes are BCD-encoded, and each byte holds two BCD digits.
- The 'alpha' byte holds an optional alphanumeric character extension that is encoded using the ISO/IEC 8859-1 Character Set.
- The semantics of these fields follow the semantics specified in <u>DSP4014</u>.
- The value 0x00 in the Alpha1 or Alpha2 fields means that the corresponding alpha field is not used. The Alpha1 field shall be used first.
- The value 0xF in the most-significant nibble of a BCD-encoded value indicates that the most-significant nibble should be ignored and the overall field treated as a single digit value.
- A value of 0xFF in the update field indicates that the entire field is not present. 0xFF is not allowed as a value for the major or minor fields.

```
2700 EXAMPLE: Version 3.7.10a \rightarrow 0xF3F7106100 

2701 Version 10.01.7 \rightarrow 0x1001F70000 

2702 Version 3.1 \rightarrow 0xF3F1FF0000 

2703 Version 1.0a \rightarrow 0xF1F0FF4100 

2704 Version 1.0ab \rightarrow 0xF1F0FF4142 (Alpha1 = 0x41, Alpha2 = 0x42) 

2705
```

- 2706 NC-SI implementations that follow this particular specification shall return the following version
- information in the response.
- 2708 The Major field shall be set to 0xF1 to indicate compatibility with Version 1.0 of the NC-SI specification.
- 2709 The Minor field shall be set to 0xF2 to indicate compatibility with Version 1.2 of the NC-SI specification.
- 2710 The Update field shall be set to 0xF0 to indicate compatibility with Version 1.2.0 of the NC-SI
- 2711 specification.
- 2712 The Alpha1 field shall be set to 0x00.
- 2713 The Alpha2 field shall be set to 0x00.
- 2714 The reported NC-SI version using the encoding shall be: 0xF1F2F00000 (1.2.0).

2715 8.4.44.2 Firmware Name encoding

- 2716 The Firmware Name String shall be encoded using the ISO/IEC 8859-1 Character Set. Strings are left-
- 2717 justified where the leftmost character of the string occupies the most-significant byte position of the
- 2718 Firmware Name String field, and characters are populated starting from that byte position. The string is
- 2719 null terminated if the string is smaller than the field size. That is, the delimiter value, 0x00, follows the last
- character of the string if the string occupies fewer bytes than the size of the field allows. A delimiter is not
- 2721 required if the string occupies the full size of the field. Bytes following the delimiter (if any) should be
- ignored and can be any value.

2723 8.4.44.3 Firmware Version encoding

- 2724 To facilitate a common way of representing and displaying firmware version numbers across different
- vendors, each byte is hexadecimal encoded where each byte in the field holds two hexadecimal digits.
- 2726 The Firmware Version field shall be encoded as follows. The bytes are collected into a single 32-bit field
- where each byte represents a different 'point number' of the overall version. The selection of values that
- 2728 represent a particular version of firmware is specific to the Network Controller vendor.
- 2729 Software displaying these numbers should not suppress leading zeros, which should help avoid user
- 2730 confusion in interpreting the numbers. For example, consider the two values 0×0.5 and 0×3.1 .
- Numerically, the byte 0x31 is greater that 0x05, but if leading zeros were incorrectly suppressed, the two
- 2732 displayed values would be ".5" and ".31", respectively, and a user would generally interpret 0.5 as
- 2733 representing a greater value than 0.31 instead of 0.05 being smaller than 0.31. Similarly, if leading zeros
- were incorrectly suppressed, the value 0×01 and 0×10 would be displayed as 0.1 and 0.10, which could
- 2735 potentially be misinterpreted as representing the same version instead of 0.01 and 0.10 versions.
- 2736 EXAMPLE: 0x00030217 → Version 00.03.02.17
- 2737 $0 \times 010100 \text{A0} \rightarrow \text{Version } 01.01.00. \text{A0}$

2738 8.4.44.4 PCI ID fields

- 2739 These fields (PCI DID, PCI VID, PCI SSID, PCI SVID) hold the PCI ID information for the Network
- 2740 Controller when the Network Controller incorporates a PCI or PCI Express™ interface that provides a
- 2741 host network interface connection that is shared with the NC-SI connection to the network.
- 2742 If this field is not used, the values shall all be set to zeros (0000h). Otherwise, the fields shall hold the
- 2743 PCI ID information for the host interface as defined by the version of the PCI/PCI Express™ specification
- to which the device's interface was designed.
- 2745 If multiple partitions are enabled on the channel, the values should represent the PCI ID of the lowest
- Function number assigned to the channel by the Set PF Assignment command (0x28).

2750

2755

2756

2757

2758

2759

2760

2761

2762

2763

8.4.44.5 Manufacturer ID (IANA) field

The Manufacturer ID holds the <u>IANA Enterprise Number</u> for the manufacturer of the Network Controller as a 32-bit binary number. If the field is unused, the value shall be set to <code>0xfffffffff</code>.

8.4.45 Get Capabilities command (0x16)

The Get Capabilities command is used to discover additional optional functions supported by the channel, such as the number of unicast/multicast addresses supported, the amount of buffering in bytes available for packets bound for the Management Controller, and so on.

Table 88 illustrates the packet format for the Get Capabilities command.

Table 88 - Get Capabilities command packet format

	Bits			
Bytes	3124 2316 1508 0700			
0015	NC-SI Control Packet Header			
1619	Checksum			
2045		Pa	ad	

8.4.46 Get Capabilities response (0x96)

In the absence of any errors, the channel shall process and respond to the Get Capabilities Command and send the response packet shown in Table 89. Currently no command-specific reason code is identified for this response.

Table 89 - Get Capabilities response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control	Packet Header	
1619	Respon	se Code	Reaso	n Code
2023		Capabilit	ies Flags	
2427	Broadcast Packet Filter Capabilities			
2831	Multicast Packet Filter Capabilities			
3235	Buffering Capability			
3639		AEN Contr	rol Support	
4043	VLAN Filter Count	Mixed Filter Count	Multicast Filter Count	Unicast Filter Count
4447	Reserved		VLAN Mode Support	Channel Count
4851		Chec	ksum	

8.4.46.1 Capabilities Flags field

The Capabilities Flags field indicates which optional features of this specification the channel supports, as described in Table 90.

Table 90 - Capabilities Flags bit definitions

Bit Position	Field Description	Value Description	
0	Hardware Arbitration Capability	 0b = Hardware arbitration capability is not supported by the package. 1b = Hardware arbitration capability is supported by the package. 	
1	Host NC Driver Status	0b = Host NC Driver Indication status is not supported. 1b = Host NC Driver Indication status is supported. See Table 52 for the definition of Host NC Driver Indication Status.	
2	Network Controller to Management Controller Flow Control Support	 0b = Network Controller to Management Controller flow control is not supported. 1b = Network Controller to Management Controller flow control is supported. 	
3	Management Controller to Network Controller Flow Control Support	 0b = Management Controller to Network Controller flow control is not supported. 1b = Management Controller to Network Controller flow control is supported. 	
4	All multicast addresses support	The channel cannot accept all multicast addresses. The channel does not support enable/disable global multicast commands. 1b = The channel can accept all multicast addresses. The channel supports enable/disable global multicast commands.	
65	Hardware Arbitration Implementation Status	 00b = Unknown 01b = Hardware arbitration capability is not implemented for the package on the given system. 10b = Hardware arbitration capability is implemented for the package on the given system. 11b = Reserved. 	
7	Thermal shutdown Implementation Status	The thermal self-shutdown capability is not supported by the channel (package). The thermal self-shutdown capability is supported by the channel (package).	
8	Delayed Response Support	0b = Delayed response operation and signaling is not supported by the channel (package). 1b = Delayed response operation and signaling is supported by the channel (package).	
931	Reserved	Reserved	

8.4.46.2 Broadcast Packet Filter Capabilities field

The Broadcast Packet Filter Capabilities field defines the optional broadcast packet filtering capabilities that the channel supports. The bit definitions for this field correspond directly with the bit definitions for the Broadcast Packet Filter Settings field defined for the Enable Broadcast Filter command in Table 73. A bit set to 1 indicates that the channel supports the filter associated with that bit position; otherwise, the channel does not support that filter.

2765

2766

2767

2768

2769

2771 8.4.46.3 Multicast Packet Filter Capabilities field

- 2772 The Multicast Packet Filter Capabilities field defines the optional multicast packet filtering capabilities that
- the channel supports. The bit definitions for this field correspond directly with the bit definitions for the
- 2774 Multicast Packet Filter Settings field defined for the Enable Global Multicast Filter command in Table 78.
- A bit set to 1 indicates that the channel supports the filter associated with that bit position; otherwise, the
- 2776 channel does not support that filter.

8.4.46.4 Buffering Capability field

- 2778 The Buffering Capability field defines the amount of buffering in bytes that the channel provides for
- 2779 inbound packets destined for the Management Controller. The Management Controller may make use of
- 2780 this value in software-based Device Selection implementations to determine the relative time for which a
- specific channel may be disabled before it is likely to start dropping packets. A value of 0 indicates that
- the amount of buffering is unspecified.

2783 8.4.46.5 AEN Control Support field

- 2784 The AEN Control Support field indicates various standard AENs supported by the implementation. The
- 2785 format of the field is shown in Table 42.

2786 8.4.46.6 VLAN Filter Count field

- 2787 The VLAN Filter Count field indicates the number of VLAN filters, up to 15, that the channel supports, as
- 2788 defined by the Set VLAN Filter command.

2789 8.4.46.7 Mixed, Multicast, and Unicast Filter Count fields

- 2790 The Mixed Filter Count field indicates the number of mixed address filters that the channel supports. A
- 2791 mixed address filter can be used to filter on specific unicast or multicast MAC addresses.
- 2792 The Multicast Filter Count field indicates the number of multicast MAC address filters that the channel
- 2793 supports.
- 2794 The Unicast Filter Count field indicates the number of unicast MAC address filters that the channel
- 2795 supports.

2799

2802

- 2796 The channel is required to support at least one unicast or mixed filter, such that at least one unicast MAC
- 2797 address can be configured on the interface. The total number of unicast, multicast, and mixed filters shall
- 2798 not exceed 8.

8.4.46.8 VLAN Mode Support field

2800 The VLAN Mode Support field indicates various modes supported by the implementation. The format of

2801 field is defined in Table 91.

Table 91 - VLAN Mode Support bit definitions

Bit Position	Field Description	Value Description
0	VLAN only	1 = VLAN shall be supported in the implementation.
1	VLAN + non-VLAN	0 = Filtering 'VLAN + non-VLAN' traffic is not supported in the implementation.
		1 = Filtering 'VLAN + non-VLAN' traffic is supported in the implementation.

Bit Position	Field Description	Value Description
2	Any VLAN + non-VLAN	0 = Filtering 'Any VLAN + non-VLAN' traffic is not supported in the implementation.
		1 = Filtering 'Any VLAN + non-VLAN' traffic is supported in the implementation.
37	Reserved	0

8.4.46.9 Channel Count field

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2820

2821

2822

2823

2824 2825

2826 2827

2828

The Channel Count field indicates the number of channels supported by the Network Controller.

8.4.47 Get Parameters command (0x17)

The Get Parameters command can be used by the Management Controller to request that the channel send the Management Controller a copy of all of the currently stored parameter settings that have been put into effect by the Management Controller, plus "other" Host/Channel parameter values that may be added to the Get Parameters Response Payload.

Table 92 illustrates the packet format for the Get Parameters command.

Table 92 – Get Parameters command packet format

	Bits					
Bytes	3124 2316 1508 0700					
0015	NC-SI Control Packet Header					
1619	Checksum					
2045			Pad			

8.4.48 Get Parameters response (0x97)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get
Parameters command and send a response. As shown in Table 93, each parameter shall return the value
that was set by the Management Controller. If the parameter is not supported, 0 is returned. Currently no
command-specific reason code is identified for this response.

The payload length of this response packet will vary according to how many MAC address filters or VLAN filters the channel supports. All supported MAC addresses are returned at the end of the packet, without any intervening padding between MAC addresses.

MAC addresses are returned in the following order: unicast filtered addresses first, followed by multicast filtered addresses, followed by mixed filtered addresses, with the number of each corresponding to those reported through the Get Capabilities command. For example, if the interface reports four unicast filters, two multicast filters, and two mixed filters, then MAC addresses 1 through 4 are those currently configured through the interface's unicast filters, MAC addresses 5 and 6 are those configured through the multicast filters, and 7 and 8 are those configured through the mixed filters. Similarly, if the interface reports two unicast filters, no multicast filters, and six mixed filters, then MAC addresses 1 and 2 are those currently configured through the unicast filters, and 3 through 8 are those configured through the mixed filters.

Table 93 - Get Parameters response packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015		NC-SI Control	Packet Header			
1619	Respon	se Code	Reaso	n Code		
2023	MAC Address Count	Rese	erved	MAC Address Flags		
2427	VLAN Tag Count	Reserved	VLAN T	ag Flags		
2831		Link S	ettings			
3235		Broadcast Packet Filter Settings				
3639		Configuration Flags				
4043	VLAN Mode	N Mode Flow Control Reserved				
4447		AEN (Control			
4851	MAC Address 1 byte 5	MAC Address 1 byte 4	MAC Address 1 MAC Address 3 byte 2			
5255ª	MAC Address 1 byte 1	MAC Address 1 byte 0	MAC Address 2 MAC Address byte 5 byte 4			
5659	MAC Address 2 byte 3	MAC Address 2 byte 2	MAC Address 2 byte 1	MAC Address 2 byte 0		
	VLAN Tag 1 VLAN Tag 2			Tag 2		
variable						
	Pad (if needed)					
		Checksum				
^a Variable fields can s	start at this byte offset.					

2830 Table 94 lists the parameters for which values are returned in this response packet.

2831 Table 94 – Get Parameters data definition

Parameter Field Name	Description
MAC Address Count	The number of MAC addresses supported by the channel
MAC Address Flags	The enable/disable state for each supported MAC address See Table 95.
VLAN Tag Count	The number of VLAN Tags supported by the channel
VLAN Tag Flags	The enable/disable state for each supported VLAN Tag See Table 96.
Link Settings	The 32-bit Link Settings value as defined in the Set Link command. See Table 45.
Broadcast Packet Filter Settings	The current 32-bit Broadcast Packet Filter Settings value
Configuration Flags	See Table 97.

Parameter Field Name	Description
VLAN Mode	See Table 62.
Flow Control Enable	See Table 83.
AEN Control	See Table 42.
MAC Address 18	The current contents of up to eight 6-byte MAC address filter values.
VLAN Tag 115	The current contents of up to 15 16-bit VLAN Tag filter values

2832 The format of the MAC Address Flags field is defined in Table 95.

2833 Table 95 – MAC Address Flags bit definitions

Bit Position	Field Description	Value Description
0	MAC address 1 status	0b = Default or unsupported or disabled 1b = Enabled
1	MAC address 2 status, or Reserved	0b = Default or unsupported or disabled 1b = Enabled
2	MAC address 3 status, or Reserved	0b = Default or unsupported or disabled 1b = Enabled
7	MAC address 8 status, or Reserved	0b = Default or unsupported or disabled 1b = Enabled

The format of the VLAN Tag Flags field is defined in Table 96.

Table 96 – VLAN Tag Flags bit definitions

Bit Position	Field Description	Value Description
0	VLAN Tag 1 status	0b = Default or unsupported or disabled 1b = Enabled
1	VLAN Tag 2 status, or Reserved	0b = Default or unsupported or disabled 1b = Enabled
2	VLAN Tag 3 status, or Reserved	0b = Default or unsupported or disabled 1b = Enabled
14	VLAN Tag 15 status, or Reserved	0b = Default or unsupported or disabled 1b = Enabled

2836 The format of the Configuration Flags field is defined in Table 97.

2838

2839

2840

2841

2842

2843

2844

Table 97 - Configuration Flags bit definitions

Bit Position	Field Description	Value Description
0	Broadcast Packet Filter status	0b = Disabled 1b = Enabled
1	Channel Enabled	0b = Disabled 1b = Enabled
2	Channel Network TX Enabled	0b = Disabled 1b = Enabled
3	Global Multicast Packet Filter Status	0b = Disabled 1b = Enabled
431	Reserved	Reserved

8.4.49 Get Controller Packet Statistics command (0x18)

The Get Controller Packet Statistics command may be used by the Management Controller to request a copy of the aggregated Ethernet packet statistics that the channel maintains for its external interface to the LAN network. The statistics are an aggregation of statistics for both the host side traffic and the NC-SI Pass-through traffic.

Table 98 - Get Controller Packet Statistics command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Checksum			
2045		Pa	ad	

8.4.50 Get Controller Packet Statistics response (0x98)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get Controller Packet Statistics command and send the response packet shown in Table 99.

Table 99 – Get Controller Packet Statistics response packet format

	Bits					
Bytes	3124 2316 1508 0700					
0015	NC-SI Control Packet Header					
1619	Response Code Reason Code			on Code		
2023	Counters Cleared from Last Read (MS Bits)					
2427	Counters Cleared from Last Read (LS Bits)					
2835		Total I	Bytes Re	ceived		
3643		Total B	∕tes Trar	nsmitted		
4451		Total Unica	st Packe	ts Received		
5259		Total Multica	st Packe	ets Received		
6067		Total Broado	ast Pack	ets Received		
6875		Total Unicas	Packets	Transmitted		
7683		Total Multicas	t Packet	s Transmitted		
8491		Total Broadca	st Packe	ts Transmitted		
9295		FCS	Receive	Errors		
9699		Alig	nment E	rors		
100103		False Carrier Detections				
104107	Runt Packets Received					
108111	Jabber Packets Received					
112115	Pause XON Frames Received					
116119	Pause XOFF Frames Received					
120123		Pause XON	Frames	Transmitted		
124127	Pause XOFF Frames Transmitted					
128131	Single Collision Transmit Frames					
132135		Multiple Colli	sion Trai	nsmit Frames		
136139		Late C	ollision F	rames		
140143	Excessive Collision Frames					
144147	Control Frames Received For version 1.2, this counter may include Priority flow control packets					
148151	64-Byte Frames Received					
152155	65–127 Byte Frames Received					
156159	128–255 Byte Frames Received					
160163	256–511 Byte Frames Received					
164167	512–1023 Byte Frames Received					
168171	1024–1522 Byte Frames Received					
172175		1523–9022 E	yte Fran	nes Received		

	Bits				
Bytes	3124	2316	1508	0700	
176179		64-Byte Frame	es Transmitted		
180183		65–127 Byte Fra	mes Transmitted		
184187		128–255 Byte Fra	ames Transmitted		
188191		256–511 Byte Frames Transmitted			
192195	512–1023 Byte Frames Transmitted				
196199	1024–1522 Byte Frames Transmitted				
200203	1523–9022 Byte Frames Transmitted				
204211	Valid Bytes Received				
212215	Error Runt Packets Received				
216219	Error Jabber Packets Received				
220223		Chec	ksum		

Table 100 - Get Controller Packet Statistics counters

Counter Number	Name	Meaning
0	Total Bytes Received	Counts the number of bytes received
1	Total Bytes Transmitted	Counts the number of bytes transmitted
2	Total Unicast Packets Received	Counts the number of good (FCS valid) packets received that passed L2 filtering by a specific MAC address
3	Total Multicast Packets Received	Counts the number of good (FCS valid) multicast packets received
4	Total Broadcast Packets Received	Counts the number of good (FCS valid) broadcast packets received
5	Total Unicast Packets Transmitted	Counts the number of good (FCS valid) packets transmitted that passed L2 filtering by a specific MAC address
6	Total Multicast Packets Transmitted	Counts the number of good (FCS valid) multicast packets transmitted
7	Total Broadcast Packets Transmitted	Counts the number of good (FCS valid) broadcast packets transmitted
8	FCS Receive Errors	Counts the number of receive packets with FCS errors
9	Alignment Errors	Counts the number of receive packets with alignment errors
10	False Carrier Detections	Counts the false carrier errors reported by the PHY
11	Runt Packets Received	Counts the number of received frames that passed address filtering, were less than minimum size (64 bytes from <destination address=""> through <fcs>, inclusively), and had a valid FCS</fcs></destination>

Counter		
Number	Name	Meaning
12	Jabber Packets Received	Counts the number of received frames that passed address filtering, were greater than the maximum size, and had a valid FCS
13	Pause XON Frames Received	Counts the number of XON packets received from the network
14	Pause XOFF Frames Received	Counts the number of XOFF packets received from the network
15	Pause XOFF Frames Transmitted	Counts the number of XON packets transmitted to the network
16	Pause XOFF Frames Transmitted	Counts the number of XOFF packets transmitted to the network
17	Single Collision Transmit Frames	Counts the number of times that a successfully transmitted packet encountered a single collision
18	Multiple Collision Transmit Frames	Counts the number of times that a transmitted packet encountered more than one collision but fewer than 16
19	Late Collision Frames	Counts the number of collisions that occurred after one slot time (defined by IEEE 802.3)
20	Excessive Collision Frames	Counts the number of times that 16 or more collisions occurred on a single transmit packet
21	Control Frames Received	Counts the number of MAC control frames received that are <i>not</i> XON or XOFF flow control frames
22	64 Byte Frames Received	Counts the number of good packets received that are exactly 64 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
23	65–127 Byte Frames Received	Counts the number of good packets received that are 65–127 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
24	128–255 Byte Frames Received	Counts the number of good packets received that are 128–255 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
25	256–511 Byte Frames Received	Counts the number of good packets received that are 256–511 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
26	512–1023 Byte Frames Received	Counts the number of good packets received that are 512–1023 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
27	1024–1522 Byte Frames Received	Counts the number of good packets received that are 1024–1522 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
28	1523–9022 Byte Frames Received	Counts the number of received frames that passed address filtering and were greater than 1523 bytes in length
29	64 Byte Frames Transmitted	Counts the number of good packets transmitted that are exactly 64 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>

2854

2855

2856

2857

2858

2859 2860

2861

2862

2863

2864

2865

Counter Number	Name	Meaning
30	65–127 Byte Frames Transmitted	Counts the number of good packets transmitted that are 65–127 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
31	128–255 Byte Frames Transmitted	Counts the number of good packets transmitted that are 128–255 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
32	256–511 Byte Frames Transmitted	Counts the number of good packets transmitted that are 256–511 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
33	512–1023 Byte Frames Transmitted	Counts the number of good packets transmitted that are 512–1023 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
34	1024–1522 Byte Frames Transmitted	Counts the number of good packets transmitted that are 1024–1522 bytes (from <destination address=""> through <fcs>, inclusively) in length</fcs></destination>
35	1523–9022 Byte Frames Transmitted	Counts the number of transmitted frames that passed address filtering and were greater than 1523 in length
36	Valid Bytes Received	Counts the bytes received in all packets that did not manifest any type of error
37	Error Runt Packets Received	Counts the number of invalid frames that were less than the minimum size (64 bytes from <destination address=""> through <fcs>, inclusively)</fcs></destination>
38	Error Jabber Packets Received	Counts Jabber packets, which are defined as packets that exceed the programmed MTU size and have a bad FCS value

The Network Controller shall also indicate in the Counters Cleared from Last Read fields whether the corresponding field has been cleared by means other than NC-SI (possibly by the host) since it was last read by means of the NC-SI. Counting shall resume from 0 after a counter has been cleared. The Counters Cleared from Last Read field's format is shown in Table 101.

Currently no command-specific reason code is identified for this response.

Table 101 – Counters Cleared from Last Read Fields format

Field	Bits	Mapped to Counter Numbers
MS Bits	06	3238
	731	Reserved
LS Bits	031	031

Implementation Note: The Get Controller Packet Statistics response contains the following counters related to flow

control: Pause XON Frames Received, Pause XOFF Frames Received, Pause XON Frames Transmitted, and Pause XOFF Frames Transmitted. An implementation can optionally include

Priority-Based Flow Control (PFC) packets in these counters.

8.4.51 Get NC-SI Statistics command (0x19)

In addition to the packet statistics accumulated on the LAN network interface, the channel separately accumulates a variety of NC-SI specific packet statistics for the channel. The Get NC-SI Statistics

command may be used by the Management Controller to request that the channel send a copy of all current NC-SI packet statistic values for the channel. The implementation may or may not include statistics for commands that are directed to the package.

Table 102 illustrates the packet format of the Get NC-SI Statistics command.

Table 102 – Get NC-SI Statistics command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Checksum			
2045	Pad			

2871 8.4.52 Get NC-SI Statistics response (0x99)

2869

2870

2872

2873

2874

2875

2876

2877

2878 2879

2880

In the absence of any error, the channel shall process and respond to the Get NC-SI Statistics command by sending the response packet and payload shown in Table 103.

Table 103 – Get NC-SI Statistics response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control	Packet Header	
1619	Respons	se Code	Reason	n Code
2023	NC-SI Commands Received			
2427	NC-SI Control Packets Dropped			
2831	NC-SI Command Type Errors			
3235	NC-SI Command Checksum Errors			
3639	NC-SI Receive Packets			
4043	NC-SI Transmit Packets			
4447	AENs Sent			
4851		Chec	ksum	

The Get NC-SI Statistics Response frame contains a set of statistics counters that monitor the NC-SI traffic in the Network Controller. Counters that are supported shall be reset to 0×0 when entering the Initial State and after being read. Implementation of the counters shown in Table 104 is optional. The Network Controller shall return any unsupported counter with a value of $0 \times \text{FFFFFFFF}$. Counters may wraparound or stop if they reach $0 \times \text{FFFFFFFF}$. It is vendor-specific how NC-SI commands that are sent to the package ID are included in the NC-SI statistics.

Currently no command-specific reason code is identified for this response.

2882

2883

2884

2885

2886

2887

2881

Table 104 - Get NC-SI Statistics counters

Counter Number	Name	Meaning
1	NC-SI Commands Received	For packets that are not dropped, this field returns the number of NC-SI Control Packets received and identified as NC-SI commands.
2	NC-SI Control Packets Dropped	Counts the number of NC-SI Control Packets that were received and dropped (Packets with correct FCS and Ethertype, but are dropped for one of the other reasons listed in clause 6.8.2.1). NC-SI Control Packets that were dropped because the channel ID was not valid may not be included in this statistics counter.
3	NC-SI Unsupported Commands Received	Counts the number of NC-SI command packets that were received but are not supported. (Network controller responded to the command with a Command Unsupported response code).
4	NC-SI Command Checksum Errors	Counts the number of NC-SI Control Packets that were received but dropped because of an invalid checksum (if checksum is provided and checksum validation is supported by the channel)
5	NC-SI Receive Packets	Counts the total number of NC-SI Control Packets received. This count is the sum of NC-SI Commands Received and NC-SI Control Packets Dropped.
6	NC-SI Transmit Packets	Counts the total number of NC-SI Control Packets transmitted to the Management Controller. This count is the sum of NC-SI responses sent and AENs sent.
7	AENs Sent	Counts the total number of AEN packets transmitted to the Management Controller

8.4.53 Get NC-SI Pass-through Statistics command (0x1A)

The Get NC-SI Pass-through Statistics command may be used by the Management Controller to request that the channel send a copy of all current NC-SI Pass-through packet statistic values.

Table 105 illustrates the packet format of the Get NC-SI Pass-through Statistics command.

Table 105 – Get NC-SI Pass-through Statistics command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Checksum			
2045		Pa	ad	

8.4.54 Get NC-SI Pass-through Statistics response (0x9A)

In the absence of any error, the channel shall process and respond to the Get NC-SI Pass-through Statistics command by sending the response packet and payload shown in Table 106.

Table 106 – Get NC-SI Pass-through Statistics response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI Control	Packet Header		
1619	Respons	se Code	Reaso	n Code	
2027			Received on NC-SI Inte er to Network Controlle		
2831		Pass-through TX Packets Dropped			
3235	Pass-through TX Packet Channel State Errors				
3639	Pass-through TX Packet Undersized Errors				
4043	Pass-through TX Packet Oversized Errors				
4447	Pass-through RX Packets Received on LAN Interface				
4851	Total Pass-through RX Packets Dropped				
5255	Pass-through RX Packet Channel State Errors				
5659	Pass-through RX Packet Undersized Errors				
6063	Pass-through RX Packet Oversized Errors				
6467		Chec	ksum		

Table 107 – Get NC-SI Pass-through Statistics counters

Counter Number	Name	Meaning
1	Total Pass-through TX Packets Received (Management Controller to Channel)	Counts the number of Pass-through packets forwarded by the channel to the LAN
2	Total Pass-through TX Packets Dropped (Management Controller to Channel)	Counts the number of Pass-through packets from the Management Controller that were dropped by the Network Controller
3	Pass-through TX Packet Channel State Errors (Management Controller to Channel)	Counts the number of egress management packets (Management Controller to Network Controller) that were dropped because the channel was in the disabled state when the packet was received

2888

2889 2890

2891

2892

2893

2894

2895

2896 2897

Counter Number	Name	Meaning
4	Pass-through TX Packet Undersized Errors (Management Controller to Channel)	Counts the number of Pass-through packets from the Management Controller that were undersized (under 64 bytes, including FCS)
5	Pass-through TX Packet Oversized Errors (Management Controller to Channel)	Counts the number of Pass-through packets from the Management Controller that were oversized (over 1522 bytes, including FCS)
6	Total Pass-through RX Packets Received on the LAN Interface (LAN to Channel)	Counts the number of Pass-through packets that were received on the LAN interface of the channel. This counter does not necessarily count the number of packets that were transmitted to the Management Controller, because some of the packets might have been dropped due to RX queue overflow.
7	Total Pass-through RX Packets Dropped (LAN to Channel)	Counts the number of Pass-through packets that were received on the LAN interface of the channel but were dropped and not transmitted to the Management Controller
8	Pass-through RX Packet Channel State Errors (LAN to Channel)	Counts the number of ingress management packets (channel to Management Controller) that were dropped because the channel was in the disabled state when the packet was received. The NC may also count packets that were dropped because the package was in the deselected state.
9	Pass-through RX Packet Undersized Errors (LAN to Channel)	Counts the number of Pass-through packets from the LAN that were undersized (under 64 bytes, including FCS)
10	Pass-through RX Packet Oversized Errors (LAN to Channel)	Counts the number of Pass-through packets from the LAN that were oversized (over 1522 bytes, including FCS)

Currently no command-specific reason code is identified for this response.

8.4.55 Get Package Status command (0x1B)

The Get Package Status command provides a way for a Management Controller to explicitly query the status of a package. The Get Package Status command is addressed to the package, rather than to a particular channel (that is, the command is sent with a Channel ID where the Package ID subfield matches the ID of the intended package, and the Internal Channel ID subfield is set to 0x1F).

Table 108 illustrates the packet format of the Get Package Status command.

Table 108 – Get Package Status packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
2023	Checksum			
2445		Pa	ad	

2899

2900

2901

2902

2903

2904

2905

2907 8.4.56 Get Package Status response (0x9B)

2908 2909

2910

2911

2912

2913

2917

In the absence of any errors, the package shall process and respond to the Get Package Status Command and send the response packet shown in Table 109.

Currently no command-specific reason code is identified for this response.

Table 109 – Get Package Status response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Response Code Reason Code				
2023	Package Status				
2427	Checksum				
2845		Pa	ad		

Table 110 - Package Status field bit definitions

	Table 110 - 1 decage offices field bit definitions				
Bit Position	Field Description	Value Description			
0	Hardware Arbitration Status	0b = Hardware arbitration is non-operational (inactive) or unsupported.			
		NOTE: This means that hardware arbitration tokens are not flowing through this NC.			
		1b = Hardware arbitration is supported, active, and implemented for the package on the given system.			
1	Delayed Response	0b = Delayed Response handling is disabled.			
	Status	1b = Delayed Response handling is enabled.			
31 2	Reserved	Reserved			

8.4.57 Get NC Capabilities and Settings command (0x25)

The Get NC Capabilities and Settings command is sent only as a package command. It is used to discover the supported architectural and currently configured (active) parameters of the NC.

2916 Table 111 illustrates the packet format for the Get NC Capabilities and Settings command.

Table 111 - Get NC Capabilities and Settings command packet format

	Bits				
Bytes	3124 2316 1508 0700				
0015	NC-SI Control Packet Header				
1619	Checksum				
2045		Pa	ad		

2922

8.4.58 Get NC Capabilities and Settings response (0xA5)

In the absence of any errors, the package shall process and respond to the Get NC Capabilities and Settings Command and send the response packet shown in Table 112.

2921 Currently no command-specific reason code is identified for this response.

Table 112 - Get NC Capabilities and Settings response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI Control	Packet Header		
1619	Response Code Reason Code				
2023	Max Ports	Enabled Ports	Max PCle Endpoints	Enabled PCIe Endpoints	
2427	Max PFs	Max PFs Enabled PFs Max VFs			
2831	Fabrics Enabled Fabrics Other Capabilities				
3235	Checksum				
3645	Pad				

2923 8.4.58.1 Max Ports field

The Max Ports field indicates the maximum number of network ports that can be supported by the implementation (uint8).

2926 **8.4.58.2 Enabled Ports field**

The Enabled Ports field indicates the current number of network ports that are currently configured (uint8).

2929 8.4.58.3 Max PCle Endpoints field

The Max PCIe Endpoints field indicates the maximum number of PCIe Endpoints that can be supported by the implementation (uint8).

2932 8.4.58.4 Enabled PCIe Endpoints field

The Enabled PCIe Endpoints field indicates the current number of PCIe Endpoints that are currently configured (uint8).

2935 8.4.58.5 Max PFs field

2938

The Max PFs field indicates the maximum number of PCIe Physical Functions that can be supported by the implementation (uint8).

8.4.58.6 Enabled PFs field

The Enabled PFs field indicates the current number of PCle Physical Functions that are currently configured (uint8).

2941 8.4.58.7 Max VFs field

The Max VFs field indicates the maximum number of PCle Virtual Functions that can be supported by the implementation (uint8).

8.4.58.8 Fabrics field

2944

2945

2947

2949

2950

2953

The Fabrics field indicates the network fabrics that can be supported by the implementation.

2946 Table 113 – Fabrics field bit definitions

Bit Position	Field Description	Value Description
0	Ethernet	0b0 = Ethernet Fabric is not supported
		0b1 = Ethernet Fabric is supported
1	Fibre Channel	0b0 = Fibre Channel Fabric is not supported
		0b1 = Fibre Channel Fabric is supported
2	InfiniBand	0b0 = InfiniBand Fabric is not supported
		0b1 = InfiniBand Fabric is supported
37	Reserved	Reserved

8.4.58.9 Enabled Fabrics field

2948 The Enabled Fabrics field indicates the currently configured fabrics.

Table 114 – Enabled Fabrics field bit definitions

Bit Position	Field Description	Value Description
0	Ethernet	0b0 = Ethernet Fabric is not enabled
		0b1 = Ethernet Fabric is enabled
1	Fibre Channel	0b0 = Fibre Channel Fabric is not enabled
		0b1 = Fibre Channel Fabric is enabled
2	InfiniBand	0b0 = InfiniBand Fabric is not enabled
		0b1 = InfiniBand Fabric is enabled
37	Reserved	Reserved

8.4.58.10 Other Capabilities field

The Other Capabilities field indicates which features of this specification the NC supports, as described in Table 115.

Table 115 - Capabilities Flags bit definitions

Bit Position	Field Description	Value Description
0	VF allocation	0b = The Max VFs field is interpreted as per port 1b = The Max VFs field is interpreted as per device
1	Enabled Ports	0b = The number of Enabled Ports is fixed
		1b = The number of Enabled Ports is programmable

2956

2957

2958

2959 2960

2961

Bit Position	Field Description	Value Description
2	Enabled PCle	0b = The number of Enabled PCle Endpoints is fixed
	Endpoints	1b = The number of Enabled PCIe Endpoints is programmable
3	Enabled PFs	0b = The number of Enabled PFs is fixed
		1b = The number of Enabled PFs is programmable
48	Max Data Transfer Size Exp	This value advertises the maximum value of data transfer length for the chunked data transfer. This field represents the 2s exponent of the maximum data transfer size.
		0x0 = Chunk Data Transfer is not supported.
		0x1 = Reserved.
		0x2 = Max Data Transfer Length supported is 4 (22) Bytes.
		0x8 = Max Data Transfer Length supported is 256 (28) Bytes.
		0x17 = Max Data Transfer Length supported is 8M (2^23) Bytes.
		0x1F = Max Data Transfer Length supported is 2G (2^31) Bytes.
915	Reserved	Reserved

2954 8.4.59 Set NC Configuration command (0x26)

The Set NC Configuration command allows the Management Controller to configure the number of active Physical functions and PCIe (host) and network interfaces, where allowed (generally if the reported max value of the respective entity is greater than one). The values (programmed or fixed) are used in the PF Assignment command where the associations are made between the physical ports, partitions and host buses. If the implementation or controller architecture does not allow any configuration of these parameters, this command shall not be implemented.

The values configured by this command are held by the NC and only take effect at the next PCIe reset.

The Set NC Configuration command is addressed to the package, rather than to a channel (that is, the command is sent with a Channel ID where the Package ID subfield matches the ID of the intended package and the Internal Channel ID subfield is set to 0x1F).

Table 116 illustrates the packet format of the Set NC Configuration command.

2966 Table 116 – Set NC Configuration command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Enable Ports	Enable PCIe Endpoints	Enable PFs	Reserved	
2023	Checksum				
2445	Pad				

2967 **8.4.59.1 Enable Ports field**

2965

2969

2977

2978

2979

2980

2968 The Enable Ports field (uint8) indicates the number of network ports to be enabled at the next PCIe reset.

8.4.59.2 Enable PCIe Endpoints field

The Enable PCIe Endpoints field (uint8) indicates the number of PCIe Endpoints to be enabled at the next PCIe reset. In some implementation architectures this is not settable by NC-SI; in those cases this field becomes read-only and the value is ignored. PCIe Endpoint 0 shall be used if the Controller is configured for single bus operation.

2974 8.4.59.3 Enable PFs field

The Enable PFs field (uint8) indicates the number of PCle Physical Functions to be enabled at the next PCle reset.

8.4.60 Set NC Configuration response (0xA6)

The package shall, in the absence of a checksum error or identifier mismatch, always accept the Set NC Configuration command and send a response (see Table 117).

Table 117 – Set NC Configuration response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Response Code Reason Code				
2023	Checksum				
2445	Pad				

2981 8.4.61 Get PF Assignment command (0x27)

The Get PF Assignment command is a Package command that allows the Management controller to receive the list of PCI Physical Functions (partitions) currently assigned to channels in the package, their enablement state and conditionally what PCIe Endpoint they are assigned to if the NC supports multiple host interfaces.

2986 See the Set PF Assignment command description for additional information.

2987 Table 118 illustrates the packet format of the Get PF Assignment Command.

2988

Table 118 – Get PF Assignment Command Packet Format

	Bits						
Bytes	3124	2316	1508	0700			
0015	NC-SI Header						
1619	Checksum						
2045		Pa	ad	Pad			

8.4.62 Get PF Assignment Response (0xA7)

In the absence of any errors, the channel shall process and respond to the Get PF Assignment Command and send the response packet shown in the table below.

NOTE: Braces {} denote fields that depend on device capabilities.

2993

2994

2995

2996

2997

2998

2999

3000

2992

2989

Table 119 - Get PF Assignment Response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI	Header		
1619	Respons	se Code	Reason	n Code	
2023		Channel 0 Function	Assignment bitmap		
2427	{Channel 1 Function Assignment bitmap}				
	{Channel c-1 Function Assignment bitmap}				
	Function - Port Association				
	Function Enablement bitmap				
	{PCle Endpoint 0 Function Assignment bitmap}				
	{PCIe Endpoint 1 Function Assignment bitmap}				
	{P(Cle Endpoint <i>b</i> -1 Fund	tion Assignment bitma	ap}	
		Chec	ksum		
	Pad				

8.4.62.1 Channel Function Assignment bitmap fields

The number of Channel Function Assignment bitmaps returned in the response is equal to 'c', the number returned in the Enabled Ports field of Get NC Capabilities and Settings Response. The Channel Function Assignment bitmaps are 32-bit fields in which each bit position corresponds to a PCIe physical function in the NC on the specified channel. If a physical function is assigned to a channel, even if the physical function is not currently enabled, the value of the corresponding bit in the channel's bitmap shall be set to 1b; otherwise, the value shall be set to 0b.

3002

3003

3004

3005

3006

3007

3008

3009

3010 3011

3012

Table 120 - Channel Function Assignment bitmap field

Bit Position	Field Description	Value Description
0	F0 status	0b = F0 is not assigned to the channel. 1b = F0 is assigned to the channel.
1	F1 status	0b = F1 is not assigned to the channel. 1b = F1 is assigned to the channel.
31	F31 status	0b = F31 is not assigned to the channel. 1b = F31 is assigned to the channel

8.4.62.2 Function Port Association bitmap field

The Function Port Association bitmap_is a 32-bit field in which each bit position corresponds to a physical function in the device.

Table 121 - Function Port Association bitmap field

Bit Position	Field Description	Value Description
0	F0 association	0b = F0 is fixed to the specified channel. 1b = F0 may be assigned to any channel.
1	F1 association	0b = F1 is fixed to the specified channel. 1b = F1 may be assigned to any channel.
31	F31 association	0b = F31 is fixed to the specified channel. 1b = F31 may be assigned to any channel.

8.4.62.3 Function Enablement bitmap field

The Function Assignment bitmap is a 32-bit field in which each bit position corresponds to a physical function in the NC. The number of functions shown as enabled in this field shall be equal to the value of Enabled PFs field in the Get NC Capabilities and Settings command. A function may be assigned to a PCIe Endpoint and be enabled and not be assigned to a channel in some implementations (i.e., a non-networking function).

Table 122 - Function Enablement bitmap field

Bit Position	Field Description	Value Description
0	F0 status	0b = F0 is not enabled
		1b = F0 is enabled
1	F1 status	0ხ = F1 is not enabled.
		1b = F1 is enabled.

3014

3015

3016

3017 3018

3019

3020

3021

3028

3029

3030

3031

3033

3034

3035 3036

3037 3038

3039

Bit Position	Field Description	Value Description
31	F31 status	0b = F31 is not enabled.
		1b = F31 is enabled

8.4.62.4 PCle Endpoint Assignment bitmap field

The number of PCIe Endpoint Assignment bitmaps returned in the response is equal to 'b', the number returned in the Enabled PCIe Endpoints field of Get NC Capabilities and Settings response. The PCIe Endpoint b Assignment bitmaps are 32-bit fields in which each bit position corresponds to a physical function in the NC on the specified host bus. If the physical function is assigned to an PCIe Endpoint, even if the physical function is not currently enabled, the value of the corresponding bit shall be set to 1b, otherwise the value shall be set to 0b.

Table 123 - PCle Endpoint Assignment bitmap field

Bit Position	Field Description	Value Description
0	F0 status	0b = F0 is not assigned on the specified PCle Endpoint. 1b = F0 is assigned on the specified PCle Endpoint.
1	F1 status	0b = F1 is not assigned on the specified PCle Endpoint. 1b = F1 is assigned on the specified PCle Endpoint.
31	F31 status	0b = F31 is not assigned on the specified PCle Endpoint. 1b = F31 is assigned on the specified PCle Endpoint

8.4.62.5 Calculation of Partition ID

When multiple functions are assigned to a channel, they are addressed by a value called the Partition ID.
The Partition ID is created by taking the set of Functions that are assigned to a channel and assigning
each an index value starting with the lowest numbered Function. A Function assigned to a channel has a
Partition ID even if it is not enabled. Partition numbering starts at 0. For example, if F2 and F6 are
assigned to channel 3, but only F2 is enabled, then F2 has Partition ID = 0 and F6 has Partition ID = 1 on
that channel.

8.4.63 Set PF Assignment command (0x28)

The Set PF Assignment command is a Package command that allows the Management controller to enable, disable, and assign PCle Physical Functions (partitions) in the controller to the channels, and, if applicable, to different PCl Endpoints in multi-home or multi-host configurations.

The format of the command payload is dependent on the numbers of Physical Functions, Channels and PCI Endpoints supported by the controller:

- The number of Function Assignments bitmap fields shall be determined by the value (c) of the Enabled Ports field of Get NC Capabilities and Settings Response
- 2) The number of Physical Functions allowed to be configured in the Function Assignment and Enablement bitmap fields shall be determined by the value of the Enabled PFs field in the Get NC Capabilities and Settings command response. Assignment in all bitmaps starts at bit 0 and continues sequentially for the number of Functions supported. To support various

implementation architectures, the definition of assignment/enablement rules is beyond the scope of this specification.

3) If the value (b) of the Enabled PCIe Endpoints field of the Get NC Capabilities and Settings response is greater than 1, the Controller shall also include that number of PCIe Endpoint Function Assignment bitmaps in the command. Controllers that do not support multiple PCIe interfaces shall not implement PCIe Endpoint Host Function Assignment bitmap fields.

The values configured by this command are held by the controller and only take effect at the next PCle reset. The configuration is persistent unless changed by another Set PF Assignment command or other mechanism.

Table 124 illustrates the packet format of the Set PF Assignment Command.

NOTE: Braces {} denote fields that depend on device capabilities.

Table 124 – Set PF Assignment Command packet format

	Bits			
<u>Bytes</u>	<u>3124</u>	2316	1508	0700
<u>0015</u>	NC-SI Header			
<u>1619</u>	Channel 0 Function Assignment bitmap			
	{Channel 1 Function Assignment bitmap}			
	{Channel c-1 Function Assignment bitmap}			
	Function Enablement bitmap			
	{PCIe Endpoint 0 Function Assignment bitmap}			
	{PCIe Endpoint 1 Function Assignment bitmap}			
	{PCle Endpoint <i>b</i> -1 Function Assignment bitmap}			
	Checksum			
	Pad			

8.4.63.1 Channel Function Assignment bitmap field

The Channel Function Assignment bitmap is a 32-bit field in which each bit position corresponds to a physical function in the device. If the physical function is assigned to the channel, even if the physical function is not currently enabled, the corresponding bit value shall be set to 1b. This allows for a partition ID to be assigned and partition commands to be sent to the function even if it is not enabled.

Table 125 – Channel Function Assignment bitmap field

Bit Position	Field Description	Value Description
0	F0 status	0b = F0 is not assigned on the channel. 1b = F0 is assigned on the channel.
1	F1 status	0b = F1 is not assigned on the channel. 1b = F1 is assigned on the channel.

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3059

3060

3062

3063

3064

3065

3066

3067

3068

Bit Position	Field Description	Value Description
31	F31 status	0b = F31 is not assigned on the channel.
		1b = F31 is assigned on the channel

8.4.63.2 Function Enablement bitmap field

The Function Assignment bitmap is a 32-bit field in which each bit position corresponds to a physical function in the device.

3061 Table 126 – Function Enablement bitmap field

Bit Position	Field Description	Value Description
0	F0 status	0b = F0 is not enabled on the specified channel.1b = F0 is enabled on the specified channel.
1	F1 status	0b = F1 is not enabled on the specified channel. 1b = F1 is enabled on the specified channel.
31	F31 status	0b = F31 is not enabled on the specified channel. 1b = F31 is enabled on the specified channel

8.4.63.3 PCle Endpoint Assignment bitmap field

The PCIe Endpoint Assignment bitmap is a 32-bit field in which each bit position corresponds to a physical function in the device.

Table 127 - PCle Endpoint Assignment bitmap field

Bit Position	Field Description	Value Description
0	F0 status	0b = F0 is not assigned on the specified PCle Endpoint. 1b = F0 is assigned on the specified PCle Endpoint.
1	F1 status	0b = F1 is not assigned on the specified PCle Endpoint. 1b = F1 is assigned on the specified PCle Endpoint.
31	F31 status	0b = F31 is not assigned on the specified PCle Endpoint. 1b = F31 is assigned on the specified PCle Endpoint

8.4.64 Set PF Assignment Response (0xA8)

In the absence of any errors, the channel shall process and respond to the Set PF Assignment Command and send the response packet shown in Table 128.

3070

3074

3075

3076

3077

3078 3079

3080

Table 128 - Set PF Assignment Response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Response Code Reason Code			
2427	Checksum			
3639	Pad			

8.4.65 Get Channel Configuration command (0x29)

The Get Channel Configuration command is used to discover the currently configured settings of the channel, including the fabric type, the implemented media type, the number of enabled partitions, if any, and their bandwidth allocation settings where applicable.

Table 129 illustrates the packet format for the Get Channel Configuration command.

Table 129 – Get Channel Configuration command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Checksum			
2045	Pad			

8.4.66 Get Channel Configuration response (0xA9)

In the absence of any errors, the channel shall process and respond to the Get Channel Configuration Command and send the response packet shown in Table 130.

Currently no command-specific reason code is identified for this response.

Table 130 - Get Channel Configuration response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control	Packet Header	
1619	Response Code Reason Code			n Code
2023	Fabric Type	Media Type	Max MTU	
2427	Reserved		Reserved	Num Enabled Partitions
2831	P1 Max TX BW	P1 Min TX BW	P2 Max TX BW	P2 Min TX BW
	Checksum			
	Pad			

8.4.66.1 Fabric Type field

The Fabric Type field indicates which personality types are currently enabled on the channel, as described in Table 131.

3084

3081

3082

3083

Table 131 - Fabric Type definitions

Value	Fabric Type	Value Description	
1	Ethernet Mode	Ethernet operation is enabled	
2	Fibre Channel Mode	Fibre Channel operation is enabled	
3	InfiniBand Mode	InfiniBand operation is enabled	
All others	Reserved	Reserved	

3085 **8.4.66.2 Media Type field**

The Media Type field indicates the physical interface type used on the port implementation and if that port supports one or more than one NC-SI channels (for example, some designs may support up to 4 independent ports in a QSFP interface), as described in Table 132.

NOTE: An implementation that implements a SFF cage interface into which a RJ-45 transceiver is plugged shall return 'SFF cage' as the media type.

3091

3092

3095

3100

3089

3090

Table 132 - Media Type bit definitions

Bit Position	Field Description	Value Description	
0	Backplane	0b = The media does not have a backplane interface	
		1b = The media has a backplane interface	
1	Base-T (RJ-45 style)	0ხ = The media does not have a Base-T interface	
		1b = The media has a Base-T (RJ-45 style) interface	
2	SFF cage	0b = The media does not have an SFF-style interface	
		1b = The media has an SFF-style interface	
36	Reserved	Reserved	
7	Shared Interface	0b = The media is dedicated to one NC-SI channel	
		1b = The media is shared between multiple channels	

8.4.66.3 Max MTU field

The Max MTU field is used to report the maximum allowed MTU size (Bytes) when the port is configured for Ethernet.

8.4.66.4 Num Enabled Partitions

The Num Enabled Partitions field indicates the number of Functions that have been assigned to the channel/port. This field is used only to provide the number of partitions present in the bandwidth fields. If the Num Enabled Partitions is an odd number, then the last two bytes before the Checksum field shall be reserved and set to 0.

8.4.66.5 P(n) Max TX BW Fields

These fields contain the Maximum TX bandwidth allocation of the nth enabled partition expressed in % of the physical port link speed.

8.4.66.6 P(n) Min TX BW Fields

3103

3106

3110

3111

3113

3114

3115

3116

3117

3120

These fields contain the Minimum TX bandwidth allocation of the nth enabled partition expressed in % of the physical port link speed.

8.4.67 Set Channel Configuration command (0x2A)

The Set Channel Configuration command allows the Management Controller to configure characteristics of the channel. The TX Bandwidth fields must be set for each enabled partition, but their values may be overridden during operation by other configuration methods (outside of the scope of this specification)'

Table 133 illustrates the packet format of the Set Channel Configuration command.

Table 133 – Set Channel Configuration command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Fabric Type	ype Num Partitions Max MTU		
2023	P1 Max TX BW	P1 Min TX BW	P2 Max TX BW P2 Min TX BW	
	Checksum			
	Pad			

3112 **8.4.67.1 Fabric Type field**

The Fabric Type field indicates the personality type to be enabled on the channel, as described in Table 134. The contents of this field may be ignored if the channel only supports one fabric type. The Fabric type is a channel property shared by all partitions assigned to the channel.

Table 134 - Fabric Type definitions

Value	Fabric Type	Value Description	
1	Ethernet Mode	Enable Ethernet operation	
2	Fibre Channel Mode	Enable Fibre Channel operation	
3	InfiniBand Mode	Enable InfiniBand operation	
all others	Reserved	Reserved	

8.4.67.2 Max MTU field

The Max MTU field is used to configure the maximum allowed MTU size (Bytes) when the port is configured for Ethernet or InfiniBand.

8.4.67.3 Num Partitions

The Num Partitions field indicates the number of Functions that have been assigned to the channel/port in the Set PF Assignment command. This field is used only to provide the number of partitions present in the bandwidth fields and does not have the ability to change the number of assigned partitions on the channel. Each assigned partition must be allocated min and max TX bandwidth values when enabled.

3136

3144

3147

- The initial value is generally expected to be one partition enabled per port and if modified, the new value should persist across system boot and power cycles.
- 3127 If the Num Partitions is an odd number, then the last two bytes before the Checksum field shall be 3128 reserved and set to 0.

8.4.67.4 P(n) Max TX BW fields

- These fields contain the Maximum TX bandwidth allocation of the nth enabled partition expressed in % of the physical port link speed. Oversubscription of partition maximum bandwidth is allowed. The field value
- 3132 is an integer ranging from 0 to 100₁₀.
- 3133 The initial value is generally expected to be 100% per partition, allowing each enabled partition full use of
- 3134 the channel bandwidth if no other partition has traffic. If modified, the new value should persist across
- 3135 system boot and power cycles.

8.4.67.5 P(n) Min TX BW field

- 3137 These fields contain the Minimum TX bandwidth allocation of the nth enabled partition expressed in % of
- 3138 the physical port link speed. This is interpreted as committed bandwidth to the partition and as such the
- 3139 Min TX BW fields of all enabled partitions on the port must sum to 100%. The field value is an integer
- 3140 ranging from 0 to 100_{10} .
- 3141 The initial value is generally expected to be equal weighting among all enabled partitions, allowing each
- 3142 enabled partition equal use of the channel bandwidth. If modified, the new value should persist across
- 3143 system boot and power cycles.

8.4.68 Set Channel Configuration response (0xAA)

The package shall, in the absence of a checksum error or identifier mismatch, always accept the Set

3146 Channel Configuration command and send a response (see Table 135).

Table 135 – Set Channel Configuration response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445	Pad			

8.4.69 Get Partition Configuration command (0x2B)

The Get Partition Configuration command is used to discover additional optional functions supported by the channel, such as the number of unicast/multicast addresses supported.

Table 136 illustrates the packet format for the Get Partition Configuration command.

Table 136 – Get Partition Configuration command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Partition ID	Partition ID Reserved		
2023	Checksum			
2445	Pad			

8.4.69.1 Partition ID field

3148

3151

3152

3153

3154

3155

3159

3160

The Partition ID field is the identifier for the function on the channel as defined in clause 8.4.62.5.

8.4.70 Get Partition Configuration response (0xAB)

In the absence of any errors, the channel shall process and respond to the Get Partition Configuration Command and send the response packet shown in Table 137.

3158 Currently no command-specific reason code is identified for this response.

Table 137 – Get Partition Configuration response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code		n Code	
2023	Personality Cfg	Personality Spt	Configuration Flags	
2427	Max TX BW	Min TX BW	Rese	erved
2831	PCI DID		PCI VID	
3235	PCI SSID		PCI SVID	
3639	PCIe Endpoint#	PCIe Bus #	PCIe Device #	PCIe Function #
4043	Reserved Address Count		Address TLVs	
	Checksum			

8.4.70.1 Personality Cfg field

The Personality Configured field indicates which personality type(s) are currently enabled on the partition, as described in Table 138.

3163 NOTE: Some implementations may support multiple personalities being simultaneously enabled.

3166

3167

Table 138 - Personality Cfg bit definitions

Bit Position	Field Description	Value Description
0	Ethernet Status	0b = Ethernet operation is not enabled
		1b = Ethernet operation is enabled
1	Fibre Channel Status	0b = Fibre Channel operation is not enabled
		1b = Fibre Channel operation is enabled
2	Fibre Channel over	0b = Fibre Channel over Ethernet operation is not enabled
	Ethernet Status	1b = Fibre Channel over Ethernet operation is enabled
3	InfiniBand Status	0b = InfiniBand operation is not enabled
		1b = InfiniBand operation is enabled
4	iSCSI Offload Status	0b = iSCSI Offload operation is not enabled
		1b = iSCSI Offload operation is enabled
5	RDMA Status	0b = RDMA operation is not enabled
		1b = RDMA operation is enabled
6	NVMe	0b = NVMe operation is not enabled
		1b = NVMe operation is enabled
7	Reserved	Reserved

3165 8.4.70.2 Personality Spt field

The Personality Supported field indicates which personality types the partition supports, as described in Table 139.

3168 Table 139 – Personality Spt bit definitions

Bit Position	Field Description	Value Description
0	Ethernet Support	0b = Ethernet operation is not supported
		1b = Ethernet operation is supported
1	Fibre Channel Support	0b = Fibre Channel operation is not supported
		1b = Fibre Channel operation is supported
2	Fibre Channel over	0b = Fibre Channel over Ethernet operation isn't supported
	Ethernet Support	1b = Fibre Channel over Ethernet operation is supported
3	InfiniBand Support	0b = InfiniBand operation is not supported
		1b = InfiniBand operation is supported
4	iSCSI Offload Support	0b = iSCSI Offload operation is not supported
		1b = iSCSI Offload operation is supported
5	RDMA Support	0b = RDMA operation is not supported
		1b = RDMA operation is supported
6	NVMe	0ხ = NVMe Offload operation is not supported
		1b = NVMe Offload operation is supported
7	Reserved	Reserved

8.4.70.3 Configuration Flags field

The Configuration Flags field indicates which optional features of this specification the channel supports, as described in Table 140.

3172 **Table 140 – Configuration Flags bit definitions**

Bit Position	Field Description	Value Description
0	Host Driver Status	 0b = When reporting is supported, a Host driver is not present on the partition 1b = When reporting is supported, a Host driver is present on the partition
1	Host Driver Status Reporting	0b = Host Driver status reporting is not supported. 1b = Host Driver status reporting (bit 0) is supported.
23	Partition Link Status	 00b = When reporting is supported, Partition Link is down 01b = When reporting is supported, Partition Link is forced up 10b = When reporting is supported, Partition Link follows Channel Link 11b = Reserved
4	Partition Link Status Reporting	0b = Partition Link Status reporting is not supported. 1b = Partition Link Status reporting (bit 2) is supported.
5	Boot Status	0b = The partition is not configured for boot.1b = The partition is configured for boot.
6	Bootable	0b = The partition does not support boot 1b = The partition supports boot and reporting
731	Reserved	Reserved

3173

3174

3177

3182

3184

3169

3170

3171

8.4.70.4 Max TX BW field

This field contains the Maximum TX bandwidth allocation of the partition expressed in % of the physical port link speed. The % value ranges from 0 to 100₁₀ represented as an integer.

8.4.70.5 Min TX BW field

This field contains the Minimum TX bandwidth allocation of the partition expressed in % of the physical port link speed. This is interpreted as committed bandwidth to the partition and as such the Min TX BW fields of all enabled partitions on the port must sum to 100%. The % value ranges from 0 to 100₁₀ represented as an integer.

8.4.70.6 PCI DID

3183 The current PCI Device ID of the Partition.

8.4.70.7 PCI VID

3185 The current PCI Vendor ID of the Partition.

3186 8.4.70.8	PCI SSID
----------------------	----------

3187 The current PCI Subsystem ID of the Partition.

3188 **8.4.70.9 PCI SVID**

3190

3192

3200

3205

3207

3208

3209

3189 The current PCI Subvendor ID of the Partition.

8.4.70.10 PCle Endpoint

3191 The identifier indicating which PCIe Endpoint on the NC the partition is associated with.

8.4.70.11 PCle Bus

The assigned primary PCIe Bus number assigned to the partition in the host system's bus enumeration process. If PCIe Device number is set to 0xFE, then PCIe Bus number field shall be ignored.

3195 **8.4.70.12 PCIe Device #**

The assigned PCIe Device number assigned to the partition except in the cases of ARI mode operation when it shall contain the value of <code>0xFF</code>. If the PCIe Device number is set to <code>0xFE</code>, then PCIe Bus #, PCIe Device #, and PCIe Function # fields shall be ignored and the partition shall be considered a partition with an unassigned routing ID (Bus, Device, Function number or Bus, Function number).

8.4.70.13 PCIe Function

The assigned PCIe Function number assigned to the partition in the host system's bus enumeration process. If the PCIe Device number is set to any value between 0x00 to 0x1f, then the PCIe function number shall be a value between 0x00 to 0x07. If PCIe Device number is set to 0xFE, then PCIe Function number field shall be ignored.

8.4.70.14 Address Count field

3206 This field indicates the number of permanent and virtual addresses reported by the partition.

8.4.70.15 Address TLVs

These TLVs show the permanently programmed and current addresses being used by the partition.

Table 141 – Address Type-Length-Value Field Bit Definitions

Bit Position	Field Description	Value Description
70	Address Type	The following type encodings shall be used to indicate the address values that are permanently assigned to the partition. The response shall include all types whether or not that mode of operation is active, or the partition is enabled:
		0x0 = Reserved
		0x1 = Ethernet MAC
		0x2 = iSCSI Offload (Ethernet MAC)
		0x3 = Fibre Channel World Wide Node Name
		0x4 = Fibre Channel World Wide Port Name
		0x5 = FCoE-FIP MAC

Bit Position	Field Description	Value Description
		0x6 = InfiniBand Node GUID
		0x7 = InfiniBand Port GUID
		0x8 = InfiniBand VPort/LID
		The following type encodings shall be used to indicate all address values that are currently in use by the partition based on configured mode of operation. These may be the permanently assigned address or a programmatically assigned address.
		0xF1 = Ethernet MAC
		0xF2 = iSCSI Offload (Ethernet MAC)
		0xF3 = Fibre Channel World Wide Node Name
		0xF4 = Fibre Channel World Wide Port Name
		0xF5 = FCoE-FIP MAC
		0xF6 = InfiniBand Node GUID
		0xF7 = InfiniBand Port GUID
		0xF8 = InfiniBand VPort/LID
		all others = Reserved
158	Address Length	The length indicates the number of bytes used in the address
	Address	Address Length number of bytes of the Address

8.4.71 Set Partition Configuration command (0x2C)

- The Set Partition Configuration command allows the Management Controller to configure various settings of the partition including virtual addresses, VF allocation and other parameters.
- The Set Partition Configuration command is addressed to the channel with the Partition ID field set to the index/ordinal of the target PF on the channel.
- The partition's personality configuration may be made persistent if written to the NVRAM via the Settings Commit command. These settings take effect at the next PCIe Reset.

3210

3220

3221

3222 3223

3224

3217 Table 142 illustrates the packet format of the Set Partition Configuration command.

3218 Table 142 – Set Partition Configuration command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Partition ID Personality Cfg Reserved			
2023	Partition Link Control	Reserved	Address Count	Address TLV
2427	Checksum			
2845	Pad			

8.4.71.1 Personality Cfg field

The Personality Configuration field indicates which personality type(s) shall be enabled on the partition, as described in Table 143. Any attempt to enable a personality not shown as supported in clause 8.4.70.2 shall be cause the command to fail with Parameter Is Invalid reason code. In some implementations it may be appropriate to select more than one personality at a time, for instance Ethernet and RDMA.

Table 143 - Personality Cfg bit definitions

Bit Position	Field Description	Value Description
0	Ethernet Status	0b = Disable Ethernet operation
		1b = Enable Ethernet operation
1	Fibre Channel Status	0ხ = Disable Fibre Channel operation
		1b = Enable Fibre Channel operation
2	Fibre Channel over	0ხ = Disable Fibre Channel over Ethernet operation
	Ethernet Status	1b = Enable Fibre Channel over Ethernet operation
3	InfiniBand Status	0ხ = Disable InfiniBand operation
		1b = Enable InfiniBand operation
4	iSCSI Offload Status	0b = Disable iSCSI Offload operation
		1b = Enable iSCSI Offload operation
5	RDMA Status	0b = Disable RDMA operation
		1b = Enable RDMA operation
6	NVMe	0ხ = Disable NVMe operation
		1b = Enable NVMe operation
7	Reserved	Reserved

3226

3227

8.4.71.2 Partition Link Control

Table 144 describes the values for the Partition Link Control field.

3229

3228

Table 144 – Values for the Partition Link Control field (8-bit field)

Value	Description
0x0	Partition Link is down
0x1	Partition Link is forced up
0x2	Partition Link follows Channel link state
0x30xFF	Reserved

8.4.71.3 Address Count field

The Address Count field contains the number of partition virtual addresses to be configured as specified in the Address TLV field.

8.4.71.4 Address TLV

3234

3233

3230

Table 145 - Address Type-Length field bit definitions

Bit Position	Field Description	Value Description
70	Address Type	Addresses specified herein override the permanent or factory-programmed network address to be used by the partition based on configured mode of operation. To return to using the permanent address, supply either an address of

3236

3237

3238

3239

3247

Bit Position	Field Description	Value Description
		0 or the permanent address in this field or remove power from the NC.
		:
		0xF1 = Ethernet MAC
		0xF2 = iSCSI Offload (Ethernet MAC)
		0xF3 = Fibre Channel World Wide Node Name
		0xF4 = Fibre Channel World Wide Port Name
		0xF5 = FCoE-FIP MAC
		0xF6 = InfiniBand Node GUID
		0xF7 = InfiniBand Port GUID
		0xF8 = InfiniBand VPort/LID
		All others = Reserved
158	Address Length	The length indicates the number of bytes used in the address

8.4.72 Set Partition Configuration response (0xAC)

The package shall, in the absence of a checksum error or identifier mismatch, always accept the Set Partition Configuration command and send a response (see Table 146).

Table 146 – Set Partition Configuration response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2023	Checksum			
2445		Pa	ad	

8.4.73 Get Boot Config Command (0x2D)

The Get Boot Config Command allows the Management Controller to query for the Boot Initiator settings of a given Boot Protocol type configured on the channel/PF/partition and stored in the NVRAM of the controller.

3243 If the command is sent to a destination that exists but that does not support the specified Boot Protocol 3244 type, the command execution shall fail with a reason code indicating a Parameter Is Invalid, Unsupported, 3245 or Out-of-Range.

Table 147 illustrates the packet format of the Get Boot Config command.

Table 147 – Get Boot Config command packet

Bits

Bytes	3124	2316	1508	0700
0015		NC-SI	Header	
1619	Partition ID	Reserved	Reserved	Protocol Type
2023	Checksum			
2445	Pad			

8.4.73.1 Protocol Type field

The Protocol Type field specifies the boot protocol for which configuration data is requested.

3250

3248

3249

Table 148 - Protocol Type field

Bit Position	Field Description	Value Description
70	Boot Protocol Type	0x0 = PXE
		0x1 = iSCSI
		0x2 = FCoE
		0x3 = FC
		0x4 = NVMeoFC
		0x5-0xFF = Reserved

3251

3252

3254

3255

3256

3257

3258

3259

8.4.74 Get Boot Config Response (0xAD)

3253 The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get Boot Config command and send a response.

The Get Boot Config Response frame contains the currently stored settings for the specified Boot Protocol type contained in the controller's NVRAM that the channel/PF/partition will use in a boot operation done locally by the adapter. Settings that the Controller supports but does not have a value for (e.g., have no initial or current value) should be included in the Response and have a length of 0.

All string values specified in this command shall be in the unterminated ASCII string format.

3260 Table 149 illustrates the packet format of the Get Boot Config Response.

3261

Table 149 – Get Boot Config Response packet

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Header		
1619	Respon	se Code	Reason Code	
2023	Reserved		Protocol Type	Number of TLVs
24	Type-Length Field #1		Value F	ield #1
	Type-Length Field #2		Value F	ield #2

	Bits			
Bytes	3124	2316	1508	0700
	Checksum			

8.4.74.1 Protocol Type field

The Protocol Type field specifies the boot protocol for which boot attributes are being returned.

3264

3262

3263

Table 150 - Protocol Type field

Bit Position	Field Description	Value Description
70	Boot Protocol Type	0x0 = PXE
		0x1 = iSCSI
		0x2 = FCoE
		0x3 = FC
		0x4 = NVMeoFC
		0x5-0xFE = Reserved
		0xFF = Unknown protocol type

3265

32663267

8.4.74.2 Boot Protocol Type-Length-Value fields

The set of boot attributes (one of the following 4 tables) that correspond to the specified Protocol Type in the Command are returned as TLVs in the Response.

3269

3268

Table 151 - PXE Boot Protocol Type-Length field

Bit Position	Field Description	Value Description
70	Attribute Name/Type	0x0 = VLAN ID (uint16)
		0x1 = VLAN enable (bool8)
		0x2-0xFF = Reserved
158	Length	
	Attribute Value	Value data

3270

Table 152 – Get FC Boot Protocol Type-Length field

Bit Position	Field Description	Value Description
70	Attribute Name/Type	0x0 = FCInitiatorBootSelection (uint8)
		0x1 = FirstFCTargetWWPN (string)
		0x2 = FirstFCTargetLUN (uint64)
		0x3 = SecondFCTargetWWPN (string)
		0x4 = SecondFCTargetLUN (uint64)
		0x5 = ThirdFCTargetWWPN (string)
		0x6 = ThirdFCTargetLUN (uint64)
		0x7 = FourthFCTargetWWPN (string)
		0x8 = FourthFCTargetLUN (uint64)
		0x9 = FifthFCTargetWWPN (string)
		0xA = FifthFCTargetLUN (uint64)
		0xB = SixthFCTargetWWPN (string)
		0xC = SixthFCTargetLUN (uint64)
		0xD = SeventhFCTargetWWPN (string)
		0xE = SeventhFCTargetLUN (uint64)
		0xF = EighthFCTargetWWPN (string)
		0x10 = EighthFCTargetLUN (uint64)
		0x11-0xff = Reserved
158	Length	
	Attribute Value	Value data

3272

3273

Table 153 – FCoE Boot Protocol Type-Length field

Bit Position	Field Description	Value Description
70	Attribute Name/Type	0x0 = FCoEInitiatorBootSelection
		0x1 = FirstFCoEWWPNTarget (string)
		0x2 = FirstFCoEBootTargetLUN (uint64)
		0x3 = FirstFCoEFCFVLANID (uint16)
		0x4 = FCoETgTBoot (bool8)
		0x5-0xF = Reserved
158	Length	
	Attribute Value	Value data

Table 154 – iSCSI Boot Protocol Type-Length field

Bit Position	Field Description	Value Description
70	Attribute Name/Type	0x0 = IscsilnitiatorIPAddrType (uint8)
		0x1 = IscsilnitiatorAddr (string)
		0x2 = IscsilnitiatorName (string)
		0x3 = IscsilnitiatorSubnet (string)
		0x4 = IscsilnitiatorSubnetPrefix (string)
		0x5 = IscsilnitiatorGateway (string)
		0x6 = IscsilnitiatorFirstDNS (string)
		0x7 = IscsiInitiatorSecondDNS (string)
		0x10 = ConnectFirstTgt (bool8)
		0x10 = Connecti listing (bools) 0x11 = FirstTgtlpAddress (string)
		0x12 = FirstTgtTcpPort (uint16)
		0x13 = FirstTgtBootLun (uint64)
		0x14 = FirstTgtlscsiName (string)
		0x15 = FirstTgtChapld (string)
		0x16 = FirstTgtChapPwd (string)
		0x17 = FirstTgtVLANEnable (bool8)
		0x18 = FirstTgtVLAN (uint16)
		0x20 = ConnectSecondTat (heal9)
		0x20 = ConnectSecondTgt (bool8) 0x21 = SecondTgtlpAddress (string)
		0x21 = SecondTgtTcpPort (uint16)
		0x23 = SecondTgtBootLun (uint64)
		0x24 = SecondTgtlscsiName (string)
		0x25 = SecondTgtChapId (string)
		0x26 = SecondTgtChapPwd (string)
		0x27 = SecondTgtVLANEnable (bool8)
		0x28 = SecondTgtVLAN (uint16)
		, ,
		All others = Reserved
158	Length	
	Attribute Value	Value data

Table 155 - NVMeoFC Boot Protocol Type-Length field

Bit Position	Field Description	Value Description
70	Attribute Name/Type	0x0 = FirstNVMeTargetNQN (string)
		0x1 = FirstNVMeTargetWWN (string)
		0x2 = FirstNVMeTargetWWPN (string)
		0x3 = FirstNVMeTgtConn (bool8)
		0x4 = FirstNVMeTgtCntlrID (uint32)
		0x5 = FirstNVMeTgtNSID (uint32)
		0x6-0x7 = Reserved
		0x8 = SecondNVMeTargetNQN (string)
		0x9 = SecondNVMeTargetWWN (string)
		0xA = SecondNVMeTargetWWPN (string)
		0xB = SecondNVMeTgtConn (bool8)
		0xC = SecondNVMeTgtCntlrID (uint32)
		0xD = SecondNVMeTgtNSID (uint32)
		0xE-0xF = Reserved
		0x10 = ThirdNVMeTargetNQN (string)
		0x11 = ThirdNVMeTargetWWN (string)
		0x12 = ThirdNVMeTargetWWPN (string)
		0x13 = ThirdNVMeTgtConn (bool8)
		0x14 = ThirdNVMeTgtCntlrID (uint32)
		0x15 = ThirdNVMeTgtNSID (uint32)
		0x16-0x17 = Reserved
		0x18 = FourthNVMeTargetNQN (string)
		0x19 = FourthNVMeTargetWWN (string)
		0x1A = FourthNVMeTargetWWPN (string)
		0x1B = FourthNVMeTgtConn (bool8)
		0x1C = FourthNVMeTgtCntlrID (uint32)
		0x1D = FourthNVMeTgtNSID (uint32)
		0x1E-0x1F = Reserved
		0x20 = FifthNVMeTargetNQN (string)
		0x21 = FifthNVMeTargetWWN (string)
		0x22 = FifthNVMeTargetWWPN (string)

Bit Position	Field Description	Value Description
		0x23 = FifthNVMeTgtConn (bool8)
		0x24 = FifthNVMeTgtCntlrID (uint32)
		0x25 = FifthNVMeTgtNSID (uint32)
		0x26-0x27 = Reserved
		0x28 = SixthNVMeTargetNQN (string)
		0x29 = SixthNVMeTargetWWN (string)
		0x2A = SixthNVMeTargetWWPN (string)
		0x2B = SixthNVMeTgtConn (bool8)
		0x2C = SixthNVMeTgtCntlrID (uint32)
		0x2D = SixthNVMeTgtNSID (uint32)
		0x2E-0x2F = Reserved
		0x30 = SeventhNVMeTargetNQN (string)
		0x31 = SeventhNVMeTargetWWN (string)
		0x32 = SeventhNVMeTargetWWPN (string)
		0x33 = SeventhNVMeTgtConn (bool8)
		0x34 = SeventhNVMeTgtCntlrID (uint32)
		0x35 = SeventhNVMeTgtNSID (uint32)
		0x36-0x37 = Reserved
		0x38 = EighthNVMeTargetNQN (string)
		0x39 = EighthNVMeTargetWWN (string)
		0x3A = EighthNVMeTargetWWPN (string)
		0x3B = EighthNVMeTgtConn (bool8)
		0x3C = EighthNVMeTgtCntlrID (uint32)
		0x3D = EighthNVMeTgtNSID (uint32)
		0x3E-0xFF = Reserved
158	Length	
	Attribute Value	Value data

3277 8.4.75 Set Boot Config command (0x2E)

- The Set Boot Config command allows the Management Controller to send to the channel/PF/partition the Boot settings to be used by the channel/PF/partition in conducting boot operations of the specified type.
- The Network Controller shall apply the attribute values in the order received in this command (e.g., TLV1 before TLV2, etc.) so that any dependency relationships are maintained.
- 3282 See the Get Boot Config Command for the definition of the **command** fields.

- 3283 All string values specified in this command shall be in unterminated ASCII string format.
- 3284 A NC that does not support or is not in partitioning mode shall have the Partition ID field programmed as 0×00 .
- 3286 A TLV length value of 0 indicates the clearing of the current value of the attribute to null or no value.
- 3287 A maximum of 32 TLVs may be sent in any one instance of the Set Boot Config command.

If the command is sent to a destination that exists but that does not support the specified Boot Protocol type, the command execution shall fail with a reason code of Parameter Is Invalid, Unsupported, or Out-of-Range.

Table 156 – Set Boot Config command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Partition ID		Protocol Type	Number of TLVs
24	Type-Length Field #1.		Value Field #1.	
	Type-Length Field #2		Value F	Field #2
	Checksum			
		Pa	ad	

8.4.76 Set Boot Config Response (0xAE)

- The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Set Boot Config command and send a response.
- Only if all the TLVs are accepted without error then the Command Completed/No Error response/reason code shall be returned with the TLV Error Reporting field set to all 0's.
- If the command is sent to a destination that exists but that does not support the specified Boot Protocol type, the command response shall return the Parameter Is Invalid, Unsupported, or Out-of-Range reason code.
- 3300 If there are errors in any of the TLVs included in the Set command, the entire command is deemed to fail, 3301 and no configuration changes are to be made by the controller. The TLV Error Reporting field shall be 3302 used to provide individual status reporting on the TLVs received.

3291

3292

Table 157 - Set Boot Config Response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Response Code Reason Code			n Code
2023	TLV Error Reporting			
2831	Checksum			
3245		Pa	ad	

8.4.76.1 TLV Error Reporting field

The TLV Error Reporting field is a bitmap indicating which TLVs in the incoming Set command were processed without error, and which were not. The bit order corresponds to the order of TLVs in the incoming Set command as shown. There is a 1:1 correspondence between incoming TLVs and the active bits in this field. If fewer than 32 TLVs are transmitted, the bits corresponding to the unsent TLVs shall be set to 0.

3310

3311

3304

3305

3306

3307

3308 3309

Table 158 – TLV Error Reporting field

Bit Position	Field Description	Value Description
0	TLV #1 status	0b = No error detected in TLV #1 or TLV #1 is not present
		1b = Error detected in TLV #1
31	TLV #32 status	0b = No error detected in TLV #32 or TLV #32 is not present
		1b = Error detected in TLV #32

8.4.77 Get Partition Statistics command (0x2F)

- The Get Partition Statistics command is used to retrieve network statistics relevant to the partition from the NC. For example, the MC should only request Ethernet statistics from a partition configured for Ethernet operation. The defined responses are customized for each personality type.
- Implementation of this command is conditional and is required only for NCs that support partitioning.

 Implementation of each response type is conditional based on the NC supporting the specified type of operation on the partition.
- As the intent of the command is to retrieve live statistics from enabled partitions, if the command is sent to a Partition ID that doesn't exist in the current configuration or if the Stats type does not match the configured personality of the partition, the command shall fail with the Parameter is Invalid reason code.

3325

Table 159 – Get Partition Statistics command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Partition ID Reserved Stats Type			Stats Type
2023	Checksum			
2445		Pa	ad	

3326 **8.4.77.1 Stats Type field**

The Stats Type field is the identifier for the type of statistics to be queried.

3328

3329

3330

3331

3332

3327

Table 160 - Stats Type Field

Bit Position	Field Description	Value Description
70	Stats Type	0x01 = Ethernet
		0x02 = iSCSI
		0x04 = FCoE
		0x08 = RDMA
		0x10 = IB
		0x20 = FC
		All others = Reserved

8.4.78 Get Partition Statistics response for Ethernet (0xAF)

In the absence of any errors, the channel shall process and respond to the Get Partition Statistics Command and send the response packet shown below when the Stats Type indicates Ethernet.

Currently no command-specific reason code is identified for this response.

3333 Table 161 – Get Partition Statistics (Ethernet) response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control Packet Header		
1619	Response Code Reason Code			n Code
2023	Stats Type	Counter Sizes	Counters Cleared	
2427	Total Bytes Received (upper)			
2831	Total Bytes Received (lower)			
3235	Total Bytes Transmitted (upper)			
3639	Total Bytes Transmitted (lower)			
4043	Total Unicast Packets Received			
4447		Total Multicast P	ackets Received	

	Bits				
Bytes	3124	2316	1508	0700	
4851		Total Broadcast F	Packets Received		
5255		Total Unicast Packets Transmitted			
5659		Total Multicast Pa	ckets Transmitted		
6063		Total Broadcast Pa	ackets Transmitted		
6467		Total Unicast Bytes	s Received (upper)		
6871		Total Unicast Byte	s Received (lower)		
7275		Total Multicast Bytes Received (upper)			
7679	Total Multicast Bytes Received (lower)				
8083	Total Broadcast Bytes Received (upper)				
8487	Total Broadcast Bytes Received (lower)				
8891	Total Unicast Bytes Transmitted (upper)				
9295		Total Unicast Bytes Transmitted (lower)			
9699	Total Multicast Bytes Transmitted (upper)				
100103	Total Multicast Bytes Transmitted (lower)				
104107	Total Broadcast Bytes Transmitted (upper)				
108111	Total Broadcast Bytes Transmitted (lower)				
112115		Chec	ksum		

8.4.78.1 Counter Sizes field

3334

3335

3336

3337

The NC shall indicate in the Counter Sizes field whether the implementation uses 32-bit counters or 64-bit counters in those counter fields above that are defined as 64-bit.

Table 162 - Counter Sizes field format

Bit Position	Field Description	Value Description
0	Total Bytes Received	0b = 32-bit
		1b = 64-bit
1	Total Bytes Transmitted	0b = 32-bit
		1b = 64-bit
2	Total Unicast Bytes	0b = 32-bit
	Received	1b = 64-bit
3	Total Multicast Bytes	0b = 32-bit
	Received	1b = 64-bit
4	Total Broadcast Bytes	0b = 32-bit
	Received	1b = 64-bit
5	Total Unicast Bytes	0 b = 32-bit
	Transmitted	1b = 64-bit
6	Total Multicast Bytes	0 b = 32-bit
	Transmitted	1b = 64-bit

Bit Position	Field Description	Value Description
7	Total Broadcast Bytes	0b = 32-bit
	Transmitted	1b = 64-bit

8.4.78.2 Counters Cleared from Last Read field

3338

3339

3340

3341

The NC shall indicate in the Counters Cleared from Last Read field whether the corresponding fields have been cleared since they were last read over NC-SI.

Table 163 – Counters Cleared from Last Read field format

Bit Position	Field Description	Value Description
0	Total Bytes Received	0ხ = Not Cleared
		1b = Cleared
1	Total Bytes Transmitted	0b = Not Cleared
		1b = Cleared
2	Total Unicast Packets	0b = Not Cleared
	Received	1b = Cleared
3	Total Multicast Packets	0b = Not Cleared
	Received	1b = Cleared
4	Total Broadcast	0b = Not Cleared
	Packets Received	1b = Cleared
5	Total Unicast Packets	0b = Not Cleared
	Transmitted	1b = Cleared
6	Total Multicast Packets	0b = Not Cleared
	Transmitted	1b = Cleared
7	Total Broadcast	0b = Not Cleared
	Packets Transmitted	1b = Cleared
8	Total Unicast Bytes	0b = Not Cleared
	Received	1b = Cleared
9	Total Multicast Bytes	0b = Not Cleared
	Received	1b = Cleared
10	Total Broadcast Bytes	0b = Not Cleared
	Received	1b = Cleared
11	Total Unicast Bytes	0b = Not Cleared
	Transmitted	1b = Cleared
12	Total Multicast Bytes	0b = Not Cleared
	Transmitted	1b = Cleared
13	Total Broadcast Bytes	0b = Not Cleared
	Transmitted	1b = Cleared
1514	Reserved	

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

8.4.79 Get Partition Statistics response for FCoE (0xAF)

In the absence of any errors, the channel shall process and respond to the Get Partition Statistics Command and send the response packet shown below when the Stats Type indicates FCoE.

Currently no command-specific reason code is identified for this response.

Table 164 – Get Partition Statistics (FCoE) response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Respons	se Code	Reason	n Code
2023	Stats Type	Counter Sizes	Counters	Cleared
2427	Total FCoE Bytes Received (upper)			
	Total FCoE Bytes Received (lower)			
	Total FCoE Bytes Transmitted (upper)			
	Total FCoE Bytes Transmitted (lower)			
	Total FCoE Packets Received (upper)			
	Total FCoE Packets Received (lower)			
	Total FCoE Packets Transmitted (upper)			
		Total FCoE Packets Transmitted (lower)		
		Chec	ksum	

8.4.79.1 Counter Sizes field

The NC shall indicate in the Counter Sizes field whether the implementation uses 32-bit counters or 64-bit counters in those counter fields above that are defined as 64-bit.

Table 165 - Counter Sizes field format

Bit Position	Field Description	Value Description
0	Total FCoE Bytes Received	0b = 32-bit 1b = 64-bit
1	Total FCoE Bytes Transmitted	0b = 32-bit 1b = 64-bit
2	Total FCoE Packets Received	0b = 32-bit 1b = 64-bit
3	Total FCoE Packets Received	0b = 32-bit 1b = 64-bit
47	Reserved	Reserved

8.4.79.2 Counters Cleared from Last Read

The NC shall indicate in the Counters Cleared from Last Read field whether the corresponding fields have been cleared since they were last read over NC-SI.

3355

3356

3357

3358

3359

3360

3361

3362

Table 166 - Counters Cleared from Last Read field format

Bit Position	Field Description	Value Description
0	Total FCoE Bytes Received	0b = Not Cleared 1b = Cleared
1	Total FCoE Packets Transmitted	0b = Not Cleared 1b = Cleared
2	Total FCoE Packets Received	0b = Not Cleared 1b = Cleared
3	Total FCoE Packets Transmitted	0b = Not Cleared 1b = Cleared
154	Reserved	Reserved

8.4.80 Get Partition Statistics response for iSCSI (0xAF)

In the absence of any errors, the channel shall process and respond to the Get Partition Statistics Command and send the response packet shown below when the Stats Type indicates iSCSI.

Currently no command-specific reason code is identified for this response.

Table 167 - Get Partition Statistics (iSCSI) response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control	Packet Header	
1619	Respons	se Code	Reason	n Code
2023	Stats Type	Counter Sizes	Counters	Cleared
2427		Total iSCSI Offload Bytes Received (upper)		
	Total iSCSI Offload Bytes Received (lower)			
	Total iSCSI Offload Bytes Transmitted (upper)			
	Total iSCSI Offload Bytes Transmitted (lower)			
	Total iSCSI Offload PDUs Received (upper)			
	Total iSCSI Offload PDUs Received (lower)			
	Total iSCSI Offload PDUs Transmitted (upper)			
	Total iSCSI Offload PDUs Transmitted (lower)			
		Chec	ksum	

8.4.80.1 Counter Sizes field

The NC shall indicate in the Counter Sizes field whether the implementation uses 32-bit counters or 64-bit counters in those counter fields above that are defined as 64-bit.

3365

3366

3367

3368

3369

3370

Table 168 - Counter Sizes field format

Bit Position	Field Description	Value Description
0	Total iSCSI Offload Bytes Received	0b = 32-bit 1b = 64-bit
1	Total iSCSI Offload Bytes Transmitted	0b = 32-bit 1b = 64-bit
2	Total iSCSI Offload PDUs Received	0b = 32-bit 1b = 64-bit
3	Total iSCSI Offload PDUs Transmitted	0b = 32-bit 1b = 64-bit
47	Reserved	Reserved

8.4.80.2 Counters Cleared from Last Read

The NC shall indicate in the Counters Cleared from Last Read field whether the corresponding fields have been cleared since they were last read over NC-SI.

Table 169 - Counters Cleared from Last Read field format

Bit Position	Field Description	Value Description
0	Total iSCSI Offload Bytes Received	0b = Not Cleared 1b = Cleared
1	Total iSCSI Offload Bytes Transmitted	0b = Not Cleared 1b = Cleared
2	Total iSCSI Offload PDUs Received	0b = Not Cleared 1b = Cleared
3	Total iSCSI Offload PDUs Transmitted	0b = Not Cleared 1b = Cleared
154	Reserved	Reserved

8.4.81 Get Partition Statistics response for InfiniBand (0xAF)

In the absence of any errors, the channel shall process and respond to the Get Partition Statistics Command and send the response packet shown below when the Stats Type indicates InfiniBand.

3371 Currently no command-specific reason code is identified for this response.

3372

3375

3376

Table 170 - Get Partition Statistics (IB) response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control	Packet Header	
1619	Respon	se Code	Reaso	n Code
2023	Stats Type	Counter Sizes	Counters	s Cleared
2427		Total Unicast Packe	ets Received (upper)	
2831		Total Unicast Packe	ets Received (lower)	
3235		Total Multicast Pack	ets Received (upper)	
3639		Total Multicast Pack	ets Received (lower)	
4043		Total Unicast Packets	s Transmitted (upper)	
4447		Total Unicast Packets Transmitted (lower)		
4851	Total Multicast Packets Transmitted (upper)			
5255	Total Multicast Packets Transmitted (lower)			
5659	Total Unicast Bytes Received (upper)			
6063	Total Unicast Bytes Received (lower)			
6467	Total Multicast Bytes Received (upper)			
6871	Total Multicast Bytes Received (lower)			
7275	Total Unicast Bytes Transmitted (upper)			
7679	Total Unicast Bytes Transmitted (lower)			
8083	Total Multicast Bytes Transmitted (upper)			
8487	Total Multicast Bytes Transmitted (lower)			
8891		Chec	ksum	

8.4.81.1 Counter Sizes field

The NC shall indicate in the Counter Sizes field whether the implementation uses 32-bit counters or 64-bit counters in those counter fields above that are defined as 64-bit.

Table 171 – Counter Sizes field format

Bit Position	Field Description	Value Description
0	Total Unicast Packets Received	0b = 32-bit 1b = 64-bit
1	Total Unicast Packets Transmitted	0b = 32-bit 1b = 64-bit
2	Total Multicast Packets Received	0b = 32-bit 1b = 64-bit
3	Total Multicast Packets Transmitted	0b = 32-bit 1b = 64-bit

3378

3379

3380

3381

Bit Position	Field Description	Value Description
4	Total Unicast Bytes	0 b = 32-bit
	Received	1b = 64-bit
5	Total Unicast Bytes	0b = 32-bit
	Transmitted	1b = 64-bit
6	Total Multicast Bytes	0b = 32-bit
	Received	1b = 64-bit
7	Total Broadcast Bytes	0b = 32-bit
	Transmitted	1b = 64-bit

8.4.81.2 Counters Cleared from Last Read

The NC shall indicate in the Counters Cleared from Last Read field whether the corresponding fields have been cleared since they were last read over NC-SI.

Table 172 - Counters Cleared from Last Read field format

Bit Position	Field Description	Value Description
0	Total Unicast Packets	0b = Not Cleared
	Received	1b = Cleared
1	Total Multicast Packets	0b = Not Cleared
	Received	1b = Cleared
2	Total Unicast Packets	0b = Not Cleared
	Transmitted	1b = Cleared
3	Total Multicast Packets Transmitted	0b = Not Cleared
		1b = Cleared
4	Total Unicast Bytes Received	0 b = Not Cleared
		1b = Cleared
5	Total Multicast Bytes Received	0 b = Not Cleared
		1b = Cleared
6	Total Unicast Bytes Transmitted	0ხ = Not Cleared
		1b = Cleared
7	Total Multicast Bytes Transmitted	0b = Not Cleared
		1b = Cleared
158	Reserved	

8.4.82 Get Partition Statistics response for RDMA (0xAF)

In the absence of any errors, the channel shall process and respond to the Get Partition Statistics
Command and send the response packet shown below when the Stats Type indicates RDMA.

3384 Currently no command-specific reason code is identified for this response.

Table 173 - Get Partition Statistics (RDMA) response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI Control	Packet Header	
1619	Respon	se Code	Reason	n Code
2023	Stats Type	Counter Sizes	Counters	Cleared
2427		Total RDMA Bytes	Received (upper)	
2831		Total RDMA Bytes	Received (lower)	
3235		Total RDMA Bytes	Transmitted (upper)	
3639		Total RDMA Bytes	Transmitted (lower)	
4043	Total RDMA Packets Received (upper)			
4447	Total RDMA Packets Received (lower)			
4851		Total RDMA Packets	Transmitted (upper)	
5255	Total RDMA Packets Transmitted (lower)			
5659	Total Read Request Packets Transmitted (upper)			
6063	Total Read Request Packets Transmitted (lower)			
6467	Total Send Packets Transmitted (upper)			
6871	Total Send Packets Transmitted (lower)			
7275	Total Write Packets Transmitted (upper)			
7679	Total Write Packets Transmitted (lower)			
8083		Chec	ksum	

3386 **8.4.82.1 Counter Sizes**

3387

3388

The NC shall indicate in the Counter Sizes field whether the implementation uses 32-bit counters or 64-bit counters in those counter fields above that are defined as 64-bit.

3389 Table 174 – Counter Sizes field format

Bit Position	Field Description	Value Description
0	Total RDMA Bytes Received	0 b = 32-bit
	Received	1b = 64-bit
1	Total RDMA Bytes	0b = 32-bit
	Transmitted	1b = 64-bit
2	Total RDMA Packets	0b = 32-bit
	Received	1b = 64-bit
3	Total RDMA Packets	0b = 32-bit
	Transmitted	1b = 64-bit
4	Total Read Request	0b = 32-bit
	Packets Transmitted	1b = 64-bit

3391

3392

3393

3394

3395

3396

3397

3398

3399

Bit Position	Field Description	Value Description
5	Total Send Packets Transmitted	0b = 32-bit 1b = 64-bit
6	Total Write Packets Transmitted	0b = 32-bit 1b = 64-bit
7	Reserved	

8.4.82.2 Counters Cleared from Last Read

The NC shall indicate in the Counters Cleared from Last Read field whether the corresponding fields have been cleared since they were last read over NC-SI.

Table 175 - Counters Cleared from Last Read field format

Bit Position	Field Description	Value Description
0	Total RDMA Bytes Received	0b = Not Cleared 1b = Cleared
1	Total RDMA Bytes	0b = Not Cleared
	Transmitted	1b = Cleared
2	Total RDMA Packets	0b = Not Cleared
	Received	1b = Cleared
3	Total RDMA Packets	0ხ = Not Cleared
	Transmitted	1b = Cleared
4	Total Read Request	0b = Not Cleared
	Packets Transmitted	1b = Cleared
5	Total Send Packets	0ხ = Not Cleared
	Transmitted	1b = Cleared
6	Total Write Packets	0b = Not Cleared
Transmitted	Transmitted	1b = Cleared
157	Reserved	

8.4.83 Get Partition Statistics Response for Fibre Channel (0xAF)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get Partition Statistics command and send a response when the Stats Type indicates FC.

Table 176 illustrates the packet format of the Get FC Statistics Response. Note that all counters for FC statistics are 32-bit counters.

Table 176 - Get Partition Statistics (FC) Response packet

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Response Code		Reason	n Code
2023	Stats Type	Reserved	Counters Cleared from Last Read	

	Bits			
Bytes	3124	2316	1508	0700
2427	Total FC Frames Received			
2831	Total FC Frames Transmitted			
3235	Receive KB Count			
3639	Transmit KB Count			
4043	FC Sequences Received			
4447	FC Sequences Transmitted			
4851	Link Failures			
5255	Loss of Signal			
5659	Invalid CRCs			
6063	Checksum			

8.4.83.1 Counters Cleared from Last Read field

The FC Controller shall also indicate in the Counters Cleared from Last Read field whether the corresponding fields has been cleared since it was last read via NC-SI. The Counters Cleared from Last Read fields should have the format shown in Table 177.

Table 177 - Counters Cleared from Last Read field format

Bit Position	Field Description	Value Description
0	Total FC Frames Received	0b = Not Cleared
		1b = Cleared
1	Total FC Frames Transmitted	0b = Not Cleared
		1b = Cleared
2	Receive KB Count	0b = Not Cleared
		1b = Cleared
3	Transmit KB Count	0b = Not Cleared
		1b = Cleared
4	FC Sequences Received	0ხ = Not Cleared
		1b = Cleared
5	FC Sequences Transmitted	0ხ = Not Cleared
		1b = Cleared
6	Link Failures	იხ = Not Cleared
		1b = Cleared
7	Loss of Signal	იხ = Not Cleared
		1b = Cleared
8	Invalid CRCs	0b = Not Cleared
		1b = Cleared
159	Reserved	

3400

3401

3402

3403

3404

8.4.83.2 FC Statistics Counter definitions

3406 Table 178 – FC Statistics

Name	Meaning
Total FC Frames Received	Counts the number of FC frames received by the port
Total FC Frames Transmitted	Counts the number of FC frames transmitted by the port
Receive KB Count	Counts the number of kilobytes transmitted by the port
Transmit KB Count	Counts the number of kilobytes transmitted by the port
FC Sequences Received	Counts the number of FC sequences received by the port
FC Sequences Transmitted	Counts the number of FC sequences transmitted by the port
Link Failures	Counts the number of times the link has failed.
Loss of Signal	Counts the number of times the signal was lost.
Invalid CRCs	Counts the number of CRC errors detected.

3407 8.4.84 Set Module Management Data command (0x30)

- 3408 Set Module Management Data command is used to write management data to modules plugged into the 3409 NC. Set Module Management Data is defined as a channel command (that is, the command is sent with a 3410 valid Package ID and a valid Internal Channel ID) addressed to a particular module plugged into the port 3411 corresponding to the channel.
- 3412 The writing of management data to the module is implementation dependent.
- 3413 A two-byte Type identifier is used to specify the bank and page index of the target data to be returned.
- The previous SFF-type specifications do not use the term 'bank', instead they use upper- and lower-page
- 3415 terminology.

3419

- For this command, the lower page is considered Bank 0 and the upper page Bank 1. Some devices only support one bank and therefore will only respond with data with the bank index set to 0x00.
- Table 179 illustrates the packet format for the Set Module Management Data command.

Table 179 – Set Module Management Data command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Requested Bank	Requested Page	Offset	Length
20N-1	Management Data			
NN+3	Checksum			
	Pad (if N ≤ 38)			

3420 8.4.84.1 Requested Bank field

- The Requested Bank field is the value of the bank where the management data is being requested to be written.
- 3423 8.4.84.2 Requested Page field
- The Requested Page field is the value of the page where the management data is being requested to be written.
- 3426 8.4.84.3 Offset field
- This field shall be set to the offset within the targeted bank of the targeted page where the management data is written.
- 3429 8.4.84.4 Length field
- This field shall be set to the length of the management data included in the payload. The Length shall be in bytes and multiple of 4. The length shall be less than or equal to 128.
- 3432 8.4.84.5 Management Data field
- 3433 The management data that is requested to be written.

3445

3446

3447 3448

3449 3450 3451

3452

3453

3454 3455

3456

3457 3458 3459

3460

3461

3462

8.4.85 Set Module Management Data response (0xB0)

- In the absence of any errors, the NC shall process and respond to the Set Module Management Data Command and send the response packet shown in Table 180.
- 3437 Currently no command-specific reason code is identified for this response.
- 3438 If there is no module installed or module is not present, then the NC shall return response/reason codes
- 3439 Command Unavailable/Information not available.
- The NC shall fail this command and return response and reason codes as Command Unsupported and Unknown/Unsupported Command Type respectively for backplane and RJ-45 implementations.
- 3442 If the Requested Bank or Page number does not exist, then the NC should return the Command Failed response code and should return reason code Parameter Is Invalid, Unsupported, or Out-of-Range. 3444

If the module is resetting or powering up, then the NC shall return the Command Failed response code and should return reason code Information not available.

If the module is powered down, then the NC shall return the Command Failed response code and should return reason code Secondary Device Not Powered.

If the location at which the management data is being requested to be written is not writable, then the NC should return the Command Failed response code and should return reason code No Reason Code or Parameter Is Invalid, Unsupported, or Out-of-Range.

If the module cannot write the management data in the allocated time, then the NC shall return response/reason code either Command Failed/Command Timeout or Delayed Response/Command Timeout.

It is highly recommended that the MC that plans to use this command enables Delayed Response feature.

Table 180 – Set Module Management Data response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code		Reaso	n Code
2023	Checksum			
2445	Pad			

8.4.86 Get FC Link Status command (0x31)

- The Get FC Link Status command allows the Management Controller to query the channel for potential link status and error conditions (see Table 181).
- Implementation of this command is conditional and is required only for controllers supporting native Fibre Channel.

3467	Implementation Note:
3468 3469	Some controllers may include a port trunking (bonding) capability in which one (or more) channels will map to multiple physical ports. FC trunking (bonding) is based on the following rules:
3470	FC controllers provide a maximum of 4 physical ports
3471	All ports are configured to the same speed
3472	 If trunking is enabled, all ports become involved in a bond, no standalone ports remain
3473	Ports may bond in pairs or all together
3474	 Dual port controllers bond Ports 1&2 and present one channel to the MC
3475 3476 3477	 Quad port controllers bond Ports (1&2) [trunk 1] and {3&4} [trunk2] or {1&2&3&4} and presentwo or one channel(s) respectively

3479

3480 3481

3482

3487

Table 181 – Get FC Link Status command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Reserved	Reserved	Reserved	Reserved
2023	Checksum			
2445		Pad		

8.4.87 Get FC Link Status Response (0xB1)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get FC Link Status command and send a response (see Table 182).

Table 182 – Get FC Link Status Response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI	Header		
1619	Respon	se Code	Reaso	son Code	
2023	Num FC Ports FC Trunk Status		FC Link Status	Trunk Speeds	
2427	Channel 1 Link Speed Channel 2 Link Speed Channel 3 Link Speed Speed Speed Speed				
2831	Checksum				
3245		Pa	ad		

3483 **8.4.87.1 Num FC Ports field**

3484 This is an integer value that specifies the total number of physical ports on the Package.

3485 8.4.87.2 FC Trunk Status field

3486 This field indicates if the physical port is a member of a FC trunk.

Table 183 - FC Trunk Status field bit definitions

Bit Position	Field Description	Value Description
0	Port 1 Trunk Flag	0b = Physical Port 1 Is not a member of a trunk 1b = Physical Port 1 Is a member of a trunk
1	Port 2 Trunk Flag	0b = Physical Port 2 Is not a member of a trunk 1b = Physical Port 2 Is a member of a trunk
2	Port 3 Trunk Flag	0b = Physical Port 3 Is not a member of a trunk 1b = Physical Port 3 Is a member of a trunk
3	Port 4 Trunk Flag	0b = Physical Port 4 Is not a member of a trunk 1b = Physical Port 4 Is a member of a trunk

Bit Position	Field Description	Value Description
74	Reserved	None

3488 **8.4.87.3 FC Link Status field**

3489

3491

Table 184 describes the FC Link Status field bit definitions.

3490 Table 184 – FC Link Status field bit definitions

Bit Position	Field Description	Value Description
0	Port 1 Link Flag	0b = Physical Port 1 Link is down 1b = Physical Port 1 Link is up
1	Port 2 Link Flag	0b = Physical Port 2 Link is down 1b = Physical Port 2 Link is up
2	Port 3 Link Flag	0b = Physical Port 3 Link is down 1b = Physical Port 3 Link is up
3	Port 4 Link Flag	0b = Physical Port 4 Link is down 1b = Physical Port 4 Link is up
75	Reserved	None

8.4.87.4 Trunk Speeds field

3492 The percentage of the configured trunk speed that is currently available represented as an integer.

Table 185 describes the Trunk Speeds field.

3494 Table 185 – Trunk Speeds field

Bit Position	Field Description	Value Description
30	Trunk 1 Percentage Speed	Percentage of the Trunk 1 configured link speed that is available expressed as hex value. Not applicable if no Trunks are configured.
		0×0 = 0 %
		0x1 = 25%
		0x2 = 50%
		0x3 = 75%
		0x4 = 100%
		0x5-0xf = Reserved

3496

3497

3498

3499

3500 3501

3502 3503

3504

Bit Position	Field Description	Value Description
74	Trunk 2 Percentage Speed	Percentage of the Trunk 2 configured link speed that is available (expressed as hex value. Not applicable if two Trunks are not configured
		0x0 = 0 %
		0x1 = 25%
		0x2 = 50%
		0x3 = 75 %
		0x4 = 100%
		0x5-0xf = Reserved

8.4.87.5 Channel Link Speed field

The Channel Link Speed field provides a link speed based on NC-SI Channel configuration. Up to 4 Channel link speed fields are supported. If the number of FC ports is equal to the number of reported NC-SI channels, then trunking is not active, and the reported speed is the speed of the channel on the port. In two- or four-port trunking modes, the number of FC ports will be twice or four times the number of reported NC-SI channels and the reported configured link speed is the sum of the individual link speeds in the trunk. If one or more of the member links goes down the reported link speed will not change, but the FC Link Status and Trunk Speed fields will provide the indication that the trunk is not operating at its stated speed.

Table 186 describes the Channel Link Speed field bit definitions.

3505 Table 186 - Channel Link Speed field

Bit Position	Field Description	Value Description
30	Link Speed	0x0 = No link speed established
		0x1 = FC2
		0x2 = FC4
		0x3 = FC8
		0x4 = FC16
		0x5 = FC32
		0x6 = FC64
		0x7 = FC128
		0x8 = FC256
		0x9-0xf = Reserved
74	Reserved	None

8.4.88 Get Module Management Data command (0x32)

The Get Module Management Data command is used to retrieve 128-byte blocks of management and inventory data stored in the passive copper cable or optical transceiver module associated with the channel. Different standards and specifications exist (e.g., +SFF and CMIS) in the industry for this management data, but they share common data access methods allowing this command to successfully operate with the known variety of module interface specifications.

A two-byte Type identifier is used to specify the bank and page index of the target data to be returned.

The older SFF-type specifications do not use the term 'bank', instead they use upper and lower page terminology. For this command the lower page is considered Bank 0 and the upper page Bank 1. Some devices only support 1 bank and therefore will only respond with data with the bank index set to 0x00.

The lower 128 bytes of page 00h typically contains more important time-critical data. The upper 128 bytes of page 00h contains static inventory information. The implementation may read and cache the upper 128 bytes once upon power on or module insertion to expedite processing of requests for page 00h data.

For a given module, the NC shall support reading of all mandatory pages defined by the transceiver's
Management Data specification. The reading of optional and Vendor-defined pages and any writing of
pages is implementation dependent.

3523 3524

3525

3526

3527

3528

3530

3506

3507

3508

3509

3510

3511

Table 136 illustrates the packet format for the Get Module Management Data command.

Table 187 – Get Module Management Data command packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Requested Bank	Requested Page	Reserved	Flags
2023	Checksum			
2445		Pa	ad	

8.4.88.1 Requested Bank field

The Requested Bank field is the value of the bank data being requested.

8.4.88.2 Requested Page field

3529 The Requested Page field is the value of the page data being requested.

8.4.88.3 Flags field

3531 Table 188 – Flag field bit definitions

Bit Position	Field Description	Value Description
0	Page Upper Flag	0b = Requesting lower page data 1b = Requesting upper page data
71	Reserved	None

8.4.89 Get Module Management Data response (0xB2)

- In the absence of any errors, the NC shall process and respond to the Get Module Management Data Command and send the response packet shown in Table 137.
- 3535 Currently no command-specific reason code is identified for this response.
- If there is no module installed or module is not present, then the NC shall return response/reason codes Command Unavailable/Information not available.
- If the Requested Bank or Page number does not exist, then the NC should return the Command Failed response code with the reason code Parameter Out-of-Range.
- The NC shall return the Command Failed response code with the following reason codes for the conditions below:
- 3542

3543

3544 3545

3546

3551

3552

3555

3559

- If the module is resetting or powering up, then the NC shall return reason code Information not available.
- If the module is powered down, then the NC shall return reason code Secondary Device Not Powered.
- If the module cannot respond with data in the allocated time, then the NC shall either return Command Timeout or Delayed Response as supported by the implementation.
- The NC shall fail this command and return response and reason codes as Command Failed and Information not available respectively for backplane and RJ-45 implementations.

Table 189 – Get Module Management Data response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Respons	Response Code		Reason Code	
2023	Max Bank	Max Page	Bank Number	Page Number	
2427	Data ₀ Data ₁				
4851	Checksum				

8.4.89.1 Max Bank field

The Max Bank field contains the value of the highest Bank number supported for the requested page of the module. If the module type does not support Banks, the field shall be set to 0×00 .

8.4.89.2 Max Page field

The Max Page field contains the value of the highest Page number in the current Bank supported by the module. If the NC has not or cannot determine the highest Page number, then the value of 0xFF shall be returned.

8.4.89.3 Bank Number field

3560 The Bank Number field contains the value of the Bank number requested by the command.

8.4.89.4 Page Number field

3562 The Page Number field contains the value of the Page number requested by the command.

8.4.89.5 Module Type Decode

3564 <u>SFF-8024</u> provides a mapping of module types, their identifiers reported in codes and the Management 3565 Interface Specification they comply with.

Table 190 - Module Type definitions

Identifier	Form Factor	Management Interface Specification
0x02	Module soldered to PCB	<u>SFF-8472</u>
0x03	SFP/SFP+ / SFP28 and later	<u>SFF-8472</u>
0x0D	QSFP+	<u>SFF-8436</u>
0x11	QSFP+ / QSFP28 and later	<u>SFF-8636</u> or <u>CMIS</u>
0x18	QSFP-DD / QSFP- DD800	CMIS
0x1E	QSFP+ or later	CMIS
0x19	OSFP	CMIS
0x1A	SFP-DD	SFP-DD Management Interface Specification
0x1B	DSFP	DSFP
0x17	MicroQSFP	<u>SFF-8436</u>
	Reserved	Reserved

8.4.90 Set Pass-through Mode Control Command (0x33)

The Set Pass-through Mode Control command allows the Management controller to enable and disable specified data paths for Pass-through data on the channel when supported by the NC.

Implementation of this command is conditional depending on the type of device and its feature set. For non-Ethernet devices, this command would only be implemented if some type of Pass-thru is supported. For Ethernet NCs, support of either Host-BMC Pass-through or embedded CPU-BMC Pass-through functionality mandates the implementation of this command. Network-BMC Pass-through is traditional NC-SI Pass-through (required in NC-SI), whereas Host-BMC Pass-through is defined to be a network path between the Host and the BMC via the NC-SI Interface. Embedded CPU-BMC Pass-through is defined as a network path that is defined between the BMC and a compute engine or other entity on the network adapter. Further definition of these interfaces is beyond the scope of this specification.

The Host-BMC Pass-through, Network-BMC Pass-through and embedded CPU-BMC Pass-through controls specified in this command act as masks in conjunction with the existing Enable Channel and Enable Channel TX commands. The existing Pass-through MAC address and filtering control methods are simply extended to all defined data paths when configured. No additional filters or MACs are provided.

Table 191 illustrates the packet format for the Set Pass-through Mode Control Command.

3584

3583

Table 191 - Set Pass-through Mode Control Command

	Bits			
Bytes	3124	2316	1508	0700
0015		NC-SI	Header	
1619	Reserved	Reserved	Pass-through Type	Reserved
2023	Checksum			
2445		Pa	ad	

8.4.90.1 Pass-through Type Field

The Pass-through Type field indicates which Pass-through data path is to be enabled or disabled as described in Table 192.

3588

3589

3590

3591 3592

3594

3595

3596

3597

3585

3586

3587

Table 192 - Pass-through Type definitions

Bit	Field Description	Value Description
0	Network-BMC Pass- through traffic	0b = Disallowed 1b = Allowed (default)
1	Host-BMC Pass- through traffic	0b = Disallowed (default) 1b = Allowed
2	Embedded CPU-BMC Pass-through traffic	0b = Disallowed (default) 1b = Allowed
73	Reserved	0b

8.4.91 Set Pass-through Mode Control Response (0xB3)

In the absence of any errors, the channel shall process and respond to the Set Pass-through Mode Control command and send the response packet shown in Table 193 – Set Pass-through Mode Control Response Packet.

3593

Table 193 – Set Pass-through Mode Control Response Packet

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Response Code Reason Code			n Code
2831	Checksum			
3245	Pad			

8.4.92 Get Pass-through Mode Command (0x34)

The Get Pass-through Mode command allows the Management controller to query the Network Controller for the current state of the Pass-through data paths supported by the channel. Implementation of this command is required if the Set Pass-through Mode Control command is implemented.

Table 194 illustrates the packet format for the Get Pass-through Mode Control command.

Table 194 – Get Pass-through Mode Command Packet

	Bits			
Bytes	3124 2316 1508 0700			
0015	NC-SI Header			
1619	Checksum			
2045		Pa	ad	

8.4.93 Get Pass-through Mode Response (0xB4)

In the absence of any errors, the channel shall process and respond to the Get Pass-through Mode Control command and send the response packet shown in Table 195.

Table 195 – Get Pass-through Mode Response Packet

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Response Code		Reason Code	
2023	Reserved	Reserved	Pass-through Mode Status	Pass-through Mode Capability
2427	Checksum			
2845		Pa	ad	

8.4.93.1 Pass-through Mode Status Field

The Pass-through Mode Status field indicates which Pass-through data path(s) are currently allowed.

Table 196 - Pass-through Type definitions

Bit	Field Description	Value Description
0	Network-BMC Pass- through traffic	0b = Currently Disallowed 1b = Currently Allowed
1	Host-BMC Pass- through traffic	0b = Currently Disallowed 1b = Currently Allowed
2	Embedded CPU -BMC Pass-through traffic	0b = Currently Disallowed 1b = Currently Allowed
73	Reserved	Ob

8.4.93.2 Pass-through Mode Capability Field

The Pass-through Mode Capability field indicates which Pass-through Mode data path(s) are supported by the implementation.

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3611

Table 197 - Pass-through Type definitions

Bit	Field Description	Value Description
0	Network-BMC Pass- through traffic	0b = Not Supported 1b = Supported
1	Host-BMC Pass- through traffic	0b = Not Supported 1b = Supported
2	Embedded CPU-BMC Pass-through traffic	0b = Not Supported 1b = Supported
73	Reserved	0b

8.4.94 Get VF Allocation command (0x35)

The Get VF Allocation command is a Package command that allows the Management controller to receive the current number of PCIe Virtual Functions being advertised by each Physical Function in PCIe Configuration Space.,

3615 See the Set VF Allocation command description for additional information.

Table 198 illustrates the packet format of the Get VF Allocation Command.

3617 Table 198 – Get VF Allocation Command Packet Format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Checksum			
2045		Pa	ad	

3618 8.4.95 Get VF Allocation Response (0xB5)

In the absence of any errors, the package shall process and respond to the Get VF Allocation command and send the response packet shown in the table below.

Table 199 – Get VF Allocation Response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Response Code Reason Code			n Code
2023	Function 0 Num VFs	Function 1 Num VFs	Function 2 Num VFs	Function 3 Num VFs
2427	Function 4 Num VFs			
	Checksum			
		Pa	ad	

8.4.95.1 Function Num VFs field

Field entries contain the number of VFs that each Physical Function is advertising in Configuration Space.

3624

3622

3623

Table 200 - Function Num VFs Fields

Field Description	Value Description
Function 0 Num VFs	Number of VFs currently being advertised by Function 0
Function 1 Num VFs	Number of VFs currently being advertised by Function 1

3625 8.4.96 Set VF Allocation command (0x36)

The Set VF Allocation command is a Package command that allows the Management controller to configure the number of PCIe Virtual Functions to be advertised in PCIe Configuration Space by each of the Physical Functions in the NC. The total number of Virtual Functions the NC supports is returned in the Get NC Capabilities and Settings response and the sum of the VFs configured by this command shall not exceed that total value.

The values configured by this command are held by the controller and only take effect at the next PCIe reset. The configuration is persistent unless changed by another Set VF Allocation command or other mechanism.

Table 201 illustrates the packet format of the Set VF Allocation Command.

3636

3637

3639

3640

3641

3642

3643

Table 201 - Set VF Allocation Command packet format

	Bits			
<u>Bytes</u>	<u>3124</u>	2316	1508	0700
<u>0015</u>	NC-SI Header			
<u>1619</u>	Function 0 Num VFs	Function 1 Num VFs	Function 2 Num VFs	Function 3 Num VFs
<u></u>	Function 4 Num VFs			
	Checksum			
		Pa	ad	

8.4.96.1 Function Num VFs field

Field entries contain the number of VFs that each Physical Function is advertising in Configuration Space

3638 Table 202 – Function Num VFs Fields

Field Description	Value Description
Function 0 Num VFs Number of VFs to be advertised by Function 0	
Function 1 Num VFs	Number of VFs to be advertised by Function 1
Function N Num VFs	Number of VFs to be advertised by Function N

8.4.97 Set VF Allocation Response (0xB6)

In the absence of any errors, the channel shall process and respond to the Set VF Allocation Command and send the response packet shown in Table 203.

Table 203 - Set VF Allocation Response packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Header					
1619	Response Code Reason Code					
2427	Checksum					
3639		Pa	ad			

8.4.98 Get InfiniBand Link Status command (0x38)

The Get InfiniBand Link Status command allows the Management Controller to query the channel for the IB link status. In addition to the generic Get Link Status command, this command provides IB specific link status.

3647 Implementation of this command is conditional and is required only for controllers supporting InfiniBand.

Table 204 illustrates the packet format of the InfiniBand Link Status command.

Table 204 - Get InfiniBand Link Status command

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Checksum				
2045	Pad				

8.4.99 Get InfiniBand Link Status Response (0xB8)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get InfiniBand Link Status command and send a response.

The Get InfiniBand Link Status Response frame reports IB link width, logical and physical link states, and the supported and the configured link speed of the port.

Table 205 illustrates the packet format of the Get InfiniBand Link Status Response.

3656

3655

3650

3651

3652

Table 205 - Get InfiniBand Link Status Response packet

	Bits					
Bytes	3124	2316	1508	07.	.00	
0015		NC-SI I	Header			
1619	Respon	se Code	Reaso	n Code		
2831	IB Link Active Width	IB Link Supported Width	Link Type	Phys State	Logical Port State	
3235	Reserved IB Link Active Speed Reserved Speed IB Link Support Speed					
3639	Checksum					
4045		Pa	ad			

3657

Table 206 - InfiniBand Link Status definitions

Name	Direction	Description
IB Link Active Width	TX	When Link Type is InfiniBand and physical link is up, this field reflects the active link width. Otherwise, this field returns 0b.
		Bit 0 – 1b = 1X link width
		Bit 1 – 1b = 2X link width
		Bit 2 – 1b = 4X link width
		Bit 3 – 1b = 8X link width
		Bits 7:4 Reserved

Name	Direction	Description
IB Link Supported Width	RX	When Link Type is InfiniBand, this field reflects the supported link widths. When Link Type is Ethernet, this field returns 0.
		Bit 0 – 1b = 1X link width is supported
		Bit 1 – 1b = 2X link width is supported
		Bit 2 – 1b = 4X link width is supported
		Bit 3 – 1b = 8X link width is supported
		Bits 7:4 Reserved
Link Type	TX	Reflects the configured link type.
		Bit 0 – 0b = Ethernet
		1b = InfiniBand
		Bits 7:1 Reserved
Phys State	RX	The physical link state as specified in IB spec (PortInfoPortPhysicalState)
		0x0 = Used when Link Type is Ethernet
		0x1 = Sleep
		0x2 = Polling
		0x3 = Disabled
		0x4 = PortConfigurationTraining
		0x5 = LinkUp
		0x6 = LinkErrorRecovery
		0x7 = PhyTest
Logical Port State	TX	The logical port state of the physical port as specified in IB spec (PortInfo.PortState)
		0x0: Used when Link Type is Ethernet
		0x1: Down
		0x2: Init
		0x3: Arm
		0x4: Active

Name	Direction	Description
IB Link Active Speed	TX	When Link Type is InfiniBand and the physical link is up, this field reflects the active link speed. Otherwise this field returns $0x00$.
		Bit 0 – 1b = SDR
		Bit 1 – 1b = DDR
		Bit 2 – 1b = QDR
		Bit 3 – 1b = FDR10
		Bit 4 – 1b = FDR
		Bit 5 – 1b = EDR
		Bit 6 – 1b = HDR
		Bit 7 – 1b = NDR
IB Link Supported Speed	RX	When Link Type is InfiniBand, this field reflects the supported link speeds. When Link Type is Ethernet this field returns 0x00.
		Bit 0 – 1b = SDR
		Bit 1 – 1b = DDR
		Bit 2 – 1b = QDR
		Bit 3 – 1b = FDR10
		Bit 4 – 1b = FDR
		Bit 5 – 1b = EDR
		Bit 6 – 1b = HDR
		Bit 7 – 1b = NDR

8.4.100 Get InfiniBand Statistics command (0x39)

The Get IB Statistics command allows the Management Controller to query the channel for the IB Statistics.

Implementation of this command is conditional and is required only for controllers supporting InfiniBand.

Table 207 illustrates the packet format of the Get IB Statistics Command.

Table 207 – Get InfiniBand Statistics Command

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Checksum				
2045	Pad				

3665

3659

3662

3672

3673

8.4.101 Get InfiniBand Statistics Response (0xB9)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get IB Statistics command and send a response.

The Get IB Statistics Response frame reports a set of IB statistics from the channel. A value of 0xFFFFFFFF shall be used for any unsupported counter.

3671 All counters shall be reset on Controller resets or power-cycles only.

Table 208 illustrates the packet format of the Get IB Statistics Response.

Table 208 - Get InfiniBand Statistics Response packet

	Bits					
Bytes	3124 2316 1508 0700					
0015		NC-SI	Header			
1619	Respons	se Code	Reaso	n Code		
2023		PortXn	nitData			
2427		PortRo	cvData			
2831		PortXr	mitPkts			
3235		PortRo	cvPkts			
3639		PortXmitWait				
4043	PortXmitDiscard					
4447	SymbolErrorCounter					
4851		LinkErrorRec	overyCounter			
5255		LinkDown	edCounter			
5659	PortRcvErrors					
6063	PortRcvRemotePhysicalErrors					
6467	PortRcvSwitchRelayErrors					
6871	LocalLinkIntegrityErrors					
7275	ExcessiveBufferOverrun					
7679		VL15Dropped				
8083		Checksu	um (32)			

3674

Table 209 - InfiniBand Statistics Counter definitions

Name	Direction	Description
PortXmitData	TX	Total number of data octets, divided by 4 (lanes), transmitted on all VLs.
PortRcvData	RX	Total number of data octets, divided by 4 (lanes), received on all VLs.
PortXmitPkts	TX	Total number of packets transmitted on all VLs from this port. This may include packets with errors.
PortRcvPkts	RX	Total number of packets (this may include packets containing Errors.

Name	Direction	Description
PortXmitWait	TX	Number of ticks during which the port had data to transmit but no data was sent during the entire tick (either because of insufficient credits or because of lack of arbitration).
PortXmitDiscard	TX	Total number of outbound packets discarded by the port because the port is down or congested.
SymbolErrorCounter	RX	Total number of minor link errors detected on one or more physical lanes.
LinkErrorRecoveryCounter	RX	Total number of times the Port Training state machine has successfully completed the link error recovery process.
LinkDownedCounter	RX	Total number of times the Port Training state machine has failed the link error recovery process and downed the link.
PortRcvErrors	RX	Total number of packets containing an error that were received on the port.
PortRcvRemotePhysicalErrors	RX	Total number of packets marked with the EBP delimiter received on the port.
PortRcvSwitchRelayErrors	RX	Total number of packets received on the port that were discarded because they could not be forwarded by the switch relay.
LocalLinkIntegrityErrors	RX	Number of times that the count of local physical errors exceeded the threshold specified by LocalPhyErrors.
ExcessiveBufferOverrun	RX	Number of times that OverrunErrors consecutive flow control update periods occurred, each having at least one overrun error.
VL15Dropped	RX	Number of incoming VL15 packets dropped due to resource limitations (e.g., lack of buffers) of the port.

8.4.102 Settings Commit command (0x47)

The Settings Commit command is a package command used by the Management Controller to indicate that those previously programmed settings defined as persistent must now be written to non-volatile storage. It also indicates that any previously programmed individual settings that have dependencies on other settings (e.g., partition bandwidth) have been fully programmed and can be finalized and/or validated. Only those settings in commands that returned successful response/reason codes will be written to non-volatile storage.

The MC can only be assured that the settings have been persisted when this commit command has a successful completion. It is highly likely that execution of this command will result in a Delayed Response. The MC should assume that all the settings that were sent but not committed are lost on losses of power, various types of resets as defined by the NC, return to initial states of any affected channel, etc. and must be resent after the interruption. The MC is ultimately responsible for ensuring its configuration settings have been properly received by the NC, therefore it is recommended that the MC monitor settings as appropriate.

3691

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

Table 210 illustrates the packet format of the Settings Commit command.

3690 Table 210 – Settings Commit command packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Control Packet Header					
1619	Checksum					
2045	Pad					

8.4.103 Settings Commit response (0xC7)

The package shall, in the absence of an error, always accept the Settings Commit command and send the response packet shown in Table 211.

Currently no command-specific reason code is identified for this response.

Table 211 – Settings Commit response packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Control Packet Header					
1619	Response Code Reason Code					
2023	Checksum					
2445		Pa	ad			

8.4.104 Get ASIC Temperature (0x48)

The Get ASIC Temperature command allows the Management controller to query for temperature values from the Controller's on-chip thermal sensor(s).

The Get ASIC Temperature command is defined as a package level command. This means the command shall be addressed to the package (that is, the command is sent with the Internal Channel ID set to $0 \times 1 F$).

The internal temperature of the controller is returned in the response of this command. If the controller has multiple internal temperature sensors, the highest measured temperature with respect to its threshold shall be returned.

3706 Table 212 illustrates the packet format of the Get ASIC Temperature Command.

Table 212 – Get ASIC Temperature Command packet

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Header					
1619	Reserved					
2023	Checksum					
2445	Pad					

8.4.105 Get ASIC Temperature Response (0xC8)

The package shall, in the absence of a checksum error or identifier mismatch, always accept the Get ASIC Temperature Command and send a response.

Table 213 illustrates the packet format of the Get ASIC Temperature Response.

3712

3708

Table 213 – Get ASIC Temperature Response packet

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Header					
1619	Response Code Reason Code			n Code		
2023	Maximum temperature Current temperature			mperature		
2427	Checksum					
2845		Pa	ad			

3713 **8.4.105.1 Maximum Temperature Value**

This value is the maximum T-Diode temperature limit in degrees Celsius at which the controller can operate at full load for its rated service lifetime. The value should be derated to take measurement tolerance into account. The value shall be reported as a signed 16-bit integer.

8.4.105.2 Current Temperature Value

This value is the highest current real-time temperature of the ASIC sensors in degrees Celsius. The value shall be reported as a signed 16-bit integer.

8.4.106 Get Ambient Temperature (0x49)

The Get Ambient Temperature command allows the Management controller to query for temperature values from ambient temperature sensor(s) attached to the Controller.

3723 The Get Ambient Temperature command is defined as a package command.

Table 214 illustrates the packet format of the Get Ambient Temperature command.

3724 3725

3717

Table 214 – Get Ambient Temperature command packet

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Header					
1619	Reserved					
2023	Checksum					
2445		Pad				

8.4.107 Get Ambient Temperature Response (0xC9)

The Package shall, in the absence of a checksum error or identifier mismatch, always accept the Get Ambient Temperature Command and send a response.

Table 215 illustrates the packet format of the Get Ambient Temperature Response.

3731

3732

3733

3734 3735

3736 3737

3738

3739

3740

3741

3742

3743

3744

3730

3727

Table 215 – Get Ambient Temperature Response packet

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Respons	se Code	Reason	n Code	
2023	Temperature3 value	Temperature2 Value	Temperature1 Value	Number of sensors	
2427	Checksum				
2845		Pad			

8.4.107.1 Temperature1, Temperature2, Temperature3 Values

Each temperature value (up to 3 values as specified by the Number of sensors field) is the real time ambient temperature reported in degrees Celsius. If Number of sensors is set to 0, then all three temperature values are invalid and shall be ignored. If the Number of sensors is set to 1, then Temperature 2 and Temperature 3 are invalid and shall be ignored. If Number of sensors is set to 2, then Temperature 3 is invalid and shall be ignored. If Number of sensors is set to 3 or more, then Temperature1, Temperature2, and Temperature3 are valid. Each valid temperature value shall be reported as a signed 8-bit integer. It is possible that the ambient temperature value may exceed the bounds of the 8-bit signed integer. When the value exceeds either the upper or lower bound that can be represented by the signed 8-bit integer, then the value reported shall be one of the matching bound.

8.4.108 Get Transceiver Temperature (0x4A)

The Get Transceiver Temperature command allows the Management controller to query for the real time temperature value and thresholds of the (optical) transceiver attached to the channel.

Table 216 illustrates the packet format of the Get Transceiver Temperature Command.

3747

Table 216 – Get Transceiver Temperature Command Packet

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Header					
1619	Reserved					
2023	Checksum					
2445	Pad					

8.4.109 Get Transceiver Temperature Response (0xCA)

The channel shall, in the absence of a checksum error or identifier mismatch, always accept the Get Transceiver Temperature command and send a response.

The Get Transceiver Temperature Response frame contains the current temperature of the attached module and the high side temperature thresholds.

Definitions and interpretation of the data fields in the response are defined in the relevant SFF or MSA specification (e.g., <u>SFF-8472</u>, <u>SFF-8436</u>, <u>SFF-8636</u>, <u>CMIS</u> 4.0, 5.x, etc.) for the transceiver. 16-bit values are encoded as one contiguous entity with the most significant bit in bit 15 (or 31) and least significant bit in bit 0 (or 16) in the response packet. The Controller is not expected to modify the data read from the transceiver.

In cases where the transceiver supports more than one channel, each channel shall provide a response when queried.

The reason code Information not available shall be used if the transceiver is not present, does not provide temperature data or if the command is issued before the transceiver has not yet achieved power up state.

Table 217 illustrates the packet format of the Get Transceiver Temperature Response.

3763

3764

3765

3766

3767

3768 3769

3770

3771

Table 217 - Get Transceiver Temperature Response packet

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Header					
1619	Respons	se Code	Reason	n Code		
2023	Temp High Ala	arm Threshold	Temp High Wa	rning Threshold		
2427	Temperature Value		Rese	erved		
2831	Checksum					

8.4.110 Thermal Shutdown Control Command (0x4B)

The Thermal Shutdown Control command allows the Management controller to query for the state of or alternatively set or reset the enablement state of the NC's thermal self-shutdown feature. Thermal shutdown is used for damage avoidance when the NC temperature becomes too high. NCs shall indicate the implementation state of this feature in the Get Capabilities response (0×96) Capabilties Flag field bit 7 and implement this command/response only when the feature is present.

The Thermal Shutdown Control command is defined as a package-level command and is sent with the Internal Channel ID set to 0x1F.

Table 218 illustrates the packet format of the Thermal Shutdown Control Command.

3773 Table 218 – Thermal Shutdown Control Command packet

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Header					
1619	Reserved Operation					
2023	Checksum					
2445	Pad					

3774 **8.4.110.1 Operation Field**

3775

3776

3778

The value specified in this field defines the operation required for the NC's shutdown feature. The NC shall support the query operation. The Enable/Disable operations are optional.

3777 Table 219 – Operation field definitions

Value	Description	Value Description
0	Disable	Thermal self-shutdown shall be disabled on the device
1	Enable	Thermal self-shutdown shall be enabled on the device
2	Query	The currently configured shutdown setting shall be returned
others	Reserved	None

8.4.111 Thermal Shutdown Control Response (0xCB)

The package shall, in the absence of a checksum error or identifier mismatch, always accept the Thermal Shutdown Control Command and send a response.

The Operating State status provided in the response shall be confirming the state after the execution of the command. If the Config Control state is set to Read-only, any command to enable or disable the feature shall fail with the Parameter Is Invalid reason code. The other fields shall be included in the response with their current setting.

3785 Table 220 illustrates the packet format of the Thermal Shutdown Control Response.

3786

Table 220 - Thermal Shutdown Control Response packet

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Respon	se Code	Reaso	n Code	
2023	Reserved Reserved Status Shutdown temperature				
2427	Checksum				
2845		Pa	ad		

8.4.111.1 Shutdown Temperature Value

This value is the unsigned integer temperature value in degrees Celsius at which the NC will shut itself down when reached.

8.4.111.2 Status Field

The value returned in this field is the enablement status of the shutdown feature.

3792

3793

3794

3795

3796

3797

3798 3799

3800

3801

3802

3803 3804

3805

3806

3807

3787

3788

3789

3790

3791

Table 221 - Status field bit definitions

Bit	Description	Value Description
0	Operating State	0b = Thermal self-shutdown is disabled on the device
		1b = Thermal self-shutdown is enabled on the device
1	Enable/Disable Support	0b = Enable/Disable operations for thermal shutdown are not supported
		1b = Enable/Disable operations for thermal shutdown are supported
Others	Reserved	None

8.4.112 Transmit Data to NC command (0x4C)

The Transmit Data to NC command is a package command that allows the MC to transfer an opaque block of data to the NC. The transfer can be initiated by the MC itself or in response to the reception of the Request Data Transfer AEN. In the latter case, the Total Length of Transfer and Data Handle fields (if provided) should be populated from the AEN fields. If the requested Data Handle is not supported, then the Abort opcode shall be used. Blocks of data that exceed the data space available in one NC-SI frame will be broken down into multiple transfers that comply with NC-SI RBT frame size. When multiple transfers are used:

- Transmission ordering shall be maintained.
- All chunks shall be an integer multiple of 32 bits, (i.e., double-word aligned), except for the last which may include padding to make it double-word aligned.
- If the NC detects a transfer error it may request a retransmission of the active chunk, but no other chunks.
- Any processing of the block of data will start only after the successful reception of all transmitted chunks.

3815

3816

3817

3818

3819

3820

3824

The MC and the NC both have the ability to abort the transfer at any time during the transfer by use of the proper opcode or reason code respectively. If the NC loses transfer context due to being reset or other event, or if it detects an out of order chunk number being specified in the command, it shall abort the transfer. Any data transfer that is aborted is deemed to have failed and cannot be resumed. The MC may attempt to repeat the transfer as a new transfer sequence.

3813 Only one active transfer sequence (transmit or receive) is supported at a given time.

Table 222 illustrates the packet format of the Transmit Data to NC command.

Table 222 – Transmit Data to NC command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI Control	Packet Header		
1619	Reserved Opcode				
2023	Offset				
2427	Data Handle/Chunk Number				
	Chunk or Part of Data				
	Checksum				
	Pad				

8.4.112.1 Opcode field

Table 223 – Opcode field format

Value	Description	Value Description
0x1	Initial Chunk	First block of data in the transfer
0x2	Middle Chunk	Intermediate block of data in the transfer
0x4	Final Chunk	Last block of data in the transfer
0x5	Initial and Final Chunk	First and last block of data in the transfer
0x8	Abort Transfer	Terminate the transfer
Others	Reserved	

8.4.112.2 Offset

Offset of the current transfer within the larger data block.

8.4.112.3 Data Handle/Chunk number

For the first chunk being transferred (Initial Chunk Opcode), this is an identifier (Data Handle) of the block of data being transferred. For subsequent chunk transfers it is a sequentially incrementing count for the chunk being transferred (equal to 2 for the second chunk transfer, 3 for the third, etc.).

8.4.113 Transmit Data to NC response (0xCC)

The package shall, in the absence of a checksum error or identifier mismatch, always accept the Transmit Data to NC command and send a response.

Table 224 illustrates the packet format of the Transmit Data to NC command response.

There are command-specific reason codes identified for this response (see Table 225).

Table 224 – Transmit Data to NC response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Response Code Reason Code				
2023	Checksum				
2445	Pad				

Table 225 – Transmit Data to NC command-specific reason codes

Value	Description	Comment
0x4C01	Abort Transfer	Returned when the NC is terminating the transfer for unspecified reason
0x4C02	Invalid Data Handle	Specified Data Handle is invalid or not supported
0x4C03	Sequence count error	The Chunk Number received is not consecutive with the previous number received. Also results in an aborted transfer.
0x4C04	Insufficient Storage	NC cannot process or store a data

8.4.114 Receive Data from NC command (0x4D)

The Receive Data from NC command is a package command that allows the MC to receive an opaque block of data from the NC. Blocks of data that exceed the data space available in one NC-SI frame will be broken down into multiple transfers that comply with NC-SI RBT frame size. When multiple transfers are used:

- Reception ordering shall be maintained.
- All chunks shall be an integer multiple of 32 bits, (i.e., double-word aligned), except for the last which may include padding to make it double-word aligned.
- If the MC detects a transfer error it may request a retransmission of the active chunk, but no other.
- Any processing of the block of data will start only after the successful reception of all transmitted chunks.

The MC and the NC both have the ability to abort the transfer at any time during the transfer by use of the proper opcode or reason code respectively. If the NC loses transfer context due to being reset or other event, or if it detects an out of order chunk number being specified in the command, it shall abort the transfer. Any data transfer that is aborted is deemed to have failed and cannot be resumed. The MC may attempt to repeat the transfer as a new transfer sequence.

- 3848 Only one active transfer sequence (transmit or receive) should be supported at a given time.
- 3849 Table 226 illustrates the packet format of the Receive Data from NC command.

3828

3829

3830

3831

3832

3833 3834

3835

3836

3837

3838 3839

3840 3841

3842

3843

3844 3845

3846

Table 226 - Receive Data from NC command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Reserved Opcode			Opcode	
2023	Offset				
24.27	Data Handle/Chunk Number				
2831	Checksum				
3245	Pad				

3851 **8.4.114.1 Opcode field**

3852

3853

3854

3855

3856

3857

3858

3859 3860

Table 227 – Opcode field format

Value	Description	Value Description
0	Initial Chunk	Request for the first chunk of the transfer to be returned
1	Reserved	
2	Next Chunk	Request for the next chunk of the transfer to be returned
3	Abort Transfer	Termination of transfer by MC
Others	Reserved	

8.4.114.2 Offset field

Offset of the current transfer within the larger data block. For a given data transfer, the value of this field shall be the same for all NC-SI commands of the data transfer.

8.4.114.3 Data Handle/Chunk number field

For the first chunk being requested (Initial Chunk Opcode), this is an identifier (Data Handle) of the block of data being requested. For subsequent chunk transfers it is a sequentially incrementing count for the chunk being transferred (equal to 2 for the second chunk transfer, 3 for the third, etc.).

Table 228: Data Handle Values

3861

Value	Description	Comment
0x00000000-0xFFFEFFF	Vendor Defined	Implementation specific
0xFFFF0000	Core dump	Data Handle used to retrieve core dump
0xFFFF0001	Crash dump	Data Handle used to retrieve crash dump
0xFFFF0002-0xFFFFFFF	DMTF Reserved	Reserved for the future use by the DMTF

8.4.115 Receive Data from NC response (0xCD)

The package shall, in the absence of a checksum error or identifier mismatch, always accept the Receive Data from NC command and send a response.

Table 229 illustrates the packet format of the Receive Data from NC command response.

Table 229 – Receive Data from NC response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI Control Packet Header			
1619	Response Code Reason Code				
2023	Reserved			Opcode	
	Data				
	Checksum				
		Pad (if needed)			

3868

3863

3864

3865

3866

3867

8.4.115.1 Opcode field

3870

3869

Table 230 - Opcode field format

Value	Description	Value Description
0x1	Initial Chunk	First block of data in the transfer
0x2	Middle Chunk	Intermediate block of data in the transfer
0x4	Final Chunk	Last block of data in the transfer
0x5	Initial and Final Chunk	First and last block of data in the transfer
0x8	Abort Transfer	Terminate the transfer
Others	Reserved	

3871

3872

Table 231 – Receive Data from NC command-specific reason codes

Value	Description	Comment
0x4D01	Abort Transfer	NC cannot proceed with transfer
0x4D02	Invalid Handle Value	Data Handle is invalid or not supported
0x4D03	Sequence count error	Chunk Number requested is not consecutive with the previous number transmitted

3877

3878

3879

3883

3884

3885

8.4.116 Get Inventory Information command (0x4E)

The Get Inventory Information command may be used by the Management Controller to query the Network Controller for defined inventory information about the NC.

This command is defined as a package command.

Table 232 illustrates the packet format of the Inventory Information command.

Table 232 – Get Inventory Information command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Checksum				
2045	Pad				

8.4.117 Get Inventory Information response (0xCE)

The package shall, in the absence of an error, always accept the Get Inventory Information command and send the response packet shown in Table 233. The value fields are defined as non-terminated ASCII strings except for the Manufacturing Timestamp which is timestamp104 as defined in DSP0240.

Currently no command-specific reason code is identified for this response.

Table 233 – Get Inventory Information response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Control Packet Header			
1619	Response Code Reason Code			n Code
2035	Number of TLVs	Type-Length Field #1		Value Field #1
	Checksum			
		Pa	ad	

8.4.117.1 Inventory Information Type-Length-Value fields

3886 The Type definitions for the inventory elements are defined below.

3887

Table 234 - Inventory Information Type-Length field

Bit Position	Field Description	Value Description	
70	Attribute Name/Type	0x0 = Manufacturer	
		0x1 = Product / Model	
		0x2 = Version	
		0x3 = Part Number	
		0x4 = Serial Number	
		0x5 = Manufacturing Timestamp104	
		0x6-0x7F = Reserved	
		0x80-0xAF = Reserved for Manufacturer Use	
		0xB0-0xFF = Reserved for OEM use	
158	Length	Length in bytes of the field	

3888 **8.4.118 OEM command (0x50)**

The OEM command may be used by the Management Controller to request that the channel provide vendor-specific information. The <u>Vendor Enterprise Number</u> is the unique MIB/SNMP Private Enterprise number assigned by IANA per organization. Vendors are free to define their own internal data structures in the vendor data fields.

Table 235 illustrates the packet format of the OEM command.

3894

3889

3890

3891

3892

Table 235 - OEM command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Manufacturer ID (IANA)				
	Vendor-Data				
20	checksum vali	NOTE: The optional checksum is unspecified for the OEM command. OEMs supporting checksum validation for NC-SI commands may include the checksum in the OEM specific payload for the command and response.			

3900

3901

3907

3910

8.4.119 **OEM response** (0xD0)

The channel shall return the "Unknown Command Type" reason code for any unrecognized enterprise number, using the packet format shown in Table 236. If the command is valid, the response, if any, is allowed to be vendor specific. The 0x8000 range is recommended for vendor-specific code.

Table 236 illustrates the packet format of the OEM command response.

Table 236 – OEM response packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Control Packet Header					
1619	Response Code Reason Code					
2023	Manufacturer ID (IANA)					
24	Return Data (Optional)					

8.4.120 PLDM Request (0x51)

The PLDM Request Packet may be used by the Management Controller to send PLDM commands over NC-SI/RBT. This command may be targeted at the entire package or a specific channel. It is expected that the MC will use PLDM Request command 0x51 to query the supported PLDM commands, before using Query Pending NC PLDM Request command.

3906 Table 237 illustrates the packet format of the PLDM Request Packet over NC-SI/RBT.

Table 237 – PLDM Request packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Control Packet Header					
1619	PLDM Message Common Fields					
20	PLDM Message Payload (zero or more bytes) + Payload Pad)					
	Checksum					
	Pad					

Refer to the PLDM Base specification (DSP0240) for details on the PLDM messaging control and discovery commands.

8.4.121 PLDM Response (0xD1)

The PLDM Response Packet may be used by the Network Controller to send PLDM responses over NC-SI/RBT. The package shall, in the absence of a checksum error or identifier mismatch, always accept the PLDM Request Command and send a response.

Table 238 illustrates the packet format of the PLDM command response.

Table 238 - PLDM Response packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015		NC-SI Control Packet Header				
1619	Response Code Reason Code					
2023	PLDM Message Common Fields PLDM Completion Code					
24	PLDM Message Payload (zero or more bytes) + Payload Pad					
	Checksum					
		Ethernet F	Packet Pad			

3916 Refer to the PLDM Base specification (DSP0240) for details on the PLDM Response Messages.

Note that the NC-SI PLDM Response (0xD1) response/reason codes are only used to report the support, success, or failure of the PLDM Request command (0x51) at the NC-SI over RBT messaging layer. The PLDM Completion Code is used for determining the success or failure of the encapsulated PLDM Commands at the PLDM messaging layer.

8.4.122 Get Package UUID command (0x52)

The Get Package UUID command may be used by the Management Controller to query Universally Unique Identifier (UUID), also referred to as a globally unique ID (GUID), of the Network Controller over NC-SI/RBT. This command is targeted at the package. This command can be used by the MC to correlate endpoints used on different NC-SI transports (e.g., RBT, MCTP).

Table 239 illustrates the packet format of the Get Package UUID Command over NC-SI/RBT.

3927

3928

3929

3930

3931

3932

3926

3921

Table 239 - Get Package UUID command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Control Packet Header				
1619	Checksum				
2045	Pad				

8.4.123 Get Package UUID response (0xD2)

The package shall, in the absence of an error, always accept the Get Package UUID command and send the response packet shown in Table 240. Currently no command-specific reason code is identified for this response.

Table 240 - Get Package UUID response packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Control Packet Header					
1619	Response Code Reason Code					
2035	UUID bytes 1:16, respectively					
3639	Checksum					
4045		Pa	ad			

The individual fields within the UUID are stored most-significant byte (MSB) first per the convention described in RFC4122. RFC4122 specifies four different versions of UUID formats and generation algorithms suitable for use for a UUID. These are version 1 (0001b) "time based", and three "name-based" versions: version 3 (0011b) "MD5 hash", version 4 (0100b) "Pseudo-random", and version 5 "SHA1 hash". The version 1 format is recommended, however versions 3, 4, or 5 formats are also allowed to be used. See Table 241 for the UUID format version 1.

Table 241 – UUID Format

Field	UUID Byte	MSB
time low	1	MSB
	2	
	3	
	4	
time mid	5	MSB
	6	
time high and version	7	MSB
	8	
clock seq and reserved	9	MSB
	10	
node	11	MSB
	12	
	13	
	14	
	15	
	16	

8.4.124 Query and Set OEM AEN command (0x54)

The command Query and Set OEM AEN is used by the Management controller when sets of different OEM AENs, identified by the OEM's IANA value, are simultaneously supported by a NC. It allows the MC to query the channel or package for the active OEM AEN set as well as the other OEM AEN sets that are supported. The MC can then configure a particular IANA as the active one for subsequent issues of the AEN Enable command.

3947 Implementation of this command is optional for those NCs that support only one set of OEM AENs

Implementation of this command is required when the NC has implemented multiple sets of OEM AENs and allows the MC to select a set that is different than the default

The NC may allow AENs from multiple sets to be simultaneously enabled through the successive uses of this command and AEN Enable

The NC shall interpret a null IANA in the received command as a request for the list of OEM AEN sets and shall not change the active set.

The Query and Set OEM AEN command is defined as a channel or a package command.

Table 242 illustrates the packet format of Query and Set OEM AEN command.

Table 242 – Query and Set OEM AEN command packet

	Bits					
Bytes	3124	2316	1508	0700		
0015	NC-SI Header					
1619	IANA Field					
2023	Checksum					
2445		Pa	ad			

3957 8.4.125 Query and Set OEM AEN Response (0xD4)

The Channel shall, in the absence of a checksum error or identifier mismatch, always accept the Query and Set OEM AEN Command and send a response.

For each supported OEM IANA, #1 through #n, three fields are required: the identifying IANA field, and the 16-bit Enabled AENs and Supported AENs fields that correspond 1:1 to bits 31..16 in the AEN Control Field of the AEN Enable command.

Table 243 illustrates the packet format of the Query and Set OEM AEN Response.

Table 243 – Query and Set OEM AEN Response packet

	Bits					
Bytes	3124	2316	1508	0700		
0015		NC-SI I	Header			
1619	Respons	se Code	Reaso	n Code		
2023	Reserved	Reserved	Reserved	# of IANAs		
2427	Configured IANA					
2831		IANA	\ # 1			
3235	IANA # 1 Enabled AENs IANA # 1 Supported AENs					
	IANA # 2					
	Checksum					
		Pa	ad			

3954

3955

3956

3960

3961 3962

3963

3977

3985

3986

3965 8.4.125.1# of IANAs field

3966 An integer value representing the number of OEM AEN sets supported by the NC.

8.4.125.2 Configured IANA field

The IANA representing the currently enabled OEM AEN set for configuration by subsequent Enable OEM AEN commands. If a valid IANA was sent in the command, the response shall confirm the change to that IANA set. If the sent IANA was not valid, the previously configured IANA set shall remain active.

3971 8.4.125.3 IANA #n field

The identifier for the nth OEM AEN set supported by the NC.

3973 **8.4.125.4 IANA #n Enabled AENs field**

3974 A bitmap showing the currently enabled AENs from the IANA #n's set of supported AENs.

3975 **8.4.125.5 IANA #n Supported AENs field**

3976 A bitmap showing the supported OEM AENs in the IANA #n's AEN set.

8.4.126 Transport-specific AEN Enable command (0x55)

Network Controller implementations shall support this command on the condition that the Network
Controller generates one or more RBT-specific AENs defined in this specification or other NC-SI bindings
such as <u>DSP0261</u>. The AEN Enable command enables and disables the different transport specific AENs
supported by the Network Controller. The Network Controller shall copy the AEN MC ID field from the
AEN Enable command into the MC ID field in every subsequent AEN sent to the Management Controller
as defined in AEN Enable command.

3984 Table 244 illustrates the packet format of the Enable Transport-specific AENs command.

Table 244 – Transport-specific AEN Enable command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Reserved Transport-specific AENs enable				
2023	Checksum				
2445	Pad				

Table 245 - Transport-specific AEN enable field format

Bit Position	Field Name	Value Description	
0	Medium Change AEN	0ხ = Disable Medium Change AEN	
	Control (0x70)	1b = Enable Medium Change AEN	
		Relevant only for NC-SI/MCTP	
1	Pending PLDM	0b = Disable Pending PLDM Request AEN	
	Request AEN (0x71)	1b = Enable Pending PLDM Request AEN	

		Relevant only for PLDM over NC-SI control over RBT
2	Pending SPDM	0ხ = Disable Pending SPDM Request AEN
	Request AEN (0x72)	1b = Enable Pending SPDM Request AEN
		Relevant only for SPDM over NC-SI control over RBT
315	Reserved	Reserved

8.4.127 Transport-specific AENs Enable Response (0xD5)

In the absence of any error, the package shall process and respond to the Transport-specific AEN Enable command by sending the response packet and payload shown in Table 246.

3987

3988

3992

3993

3994

3995

3996

4002

4003

4004

4006

Table 246 – Transport-specific AEN Enable Response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Checksum				
	Pad				

8.4.128 Query Pending NC PLDM Request (0x56)

The Query Pending NC PLDM Request may be used by the Management Controller to read the status of pending PLDM commands which the NC needs to send to the MC. Only one PLDM request can be handled by a Pending PLDM Request instance. When multiple requests are pending in the NC, each will be handled independently and the order at which requests are provided to the MC is decided by the NC.

Implementations using PLDM over RBT, where the NC has to send PLDM commands to the MC, shall support this command.

3999 Table 247 illustrates the packet format of the Query Pending NC PLDM Request command.

4000 Table 247 – Query Pending NC PLDM Request packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Checksum			
2045	Pad			

4001 8.4.129 Query Pending NC PLDM Request Response (0xD6)

In the event there are no pending requests, the command shall execute successfully and return with no PLDM payload. Currently no command-specific reason code is identified for this response (see Table 248).

Table 248 illustrates the packet format of the Query Pending NC PLDM Request Response.

Table 248 – Query Pending NC PLDM Request Response Packet Format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Response Code		Reason	eason Code	
20	PLDM Message Common Fields PLDM Message Payload		PLDM Message Payload		
	PLDM Message Payload + Payload Pad (zero or more bytes)				
	Checksum				
	Pad				

4007 Table 249 – Query Pending NC PLDM Request Response parameters

Name	Meaning	
PLDM Message Common fields	Optional, included only when there is a pending request	
PLDM Message Payload	Optional, included only when there is a pending request	

4008 8.4.130 Send NC PLDM Reply (0x57)

4009

4010

4011

4012

4014

4018

4019

The Reply Pending PLDM command may be used by the Management Controller to provide the PLDM command response to previously read PLDM command from the NC that requires a response (Rq = 1, D = 0 in PLDM Message Common Fields). The response to this command further provides indication to the MC regarding additional pending PLDM NC commands.

Table 250 illustrates the packet format of the Send NC PLDM Reply command.

Table 250 - Send NC PLDM Reply packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	PLDM Message Common Fields PLDM Completion Code			PLDM Completion Code
20	PLDM Message Payload (zero or more bytes) + Payload Pad			
	Checksum			
	Pad			

4015 8.4.131 Send NC PLDM Reply Response (0xD7)

4016 Currently no command-specific reason code is identified for this response.

4017 Table 251 illustrates the packet format of the Send NC PLDM Reply command.

Table 251 – Send NC PLDM Reply Response packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	NC-SI Header			
1619	Response Code		Reason Code	
2023	Reserved		Flags	
2427	Checksum			
2845	Pad			

Table 252 - Reply NC PLDM Response parameters

Name	Meaning
Flags bit 0 – Pending request	0b – No additional pending PLDM command from NC to MC

4028

4029

4030

4031 4032

4033

	1b − The NC has additional pending PLDM command to the MC
Flags bits 7:1 – Reserved	Reserved, always return 0.

4020 8.4.132 Get MC MAC Address command (0x58)

A network controller may provision MAC addresses for Out-Of-Band (OOB) management traffic. These
MAC addresses are not visible to the host(s). Get MC MAC Address is used to discover MAC addresses
provisioned on the network controller for the MC. Get MC MAC Address is a channel-specific command.
For multiport devices, it is expected that the MC queries provisioned MC MAC Addresses on each
channel individually.

Table 253 illustrates the packet format of the Get MC Address Command.

4027 Table 253 – Get MC MAC Address command packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Checksum				
2045	Pad				

8.4.133 Get MC MAC Address response (0xD8)

In the response of Get MC MAC Address command, the network controller provides the information about the provisioned MAC address(es) for the MC on that channel. The NC shall, in the absence of an error, always accept the Get MC MAC Address command and send the response packet shown in Table 254. Currently no command-specific reason code is identified for this response.

Table 254 – Get MC MAC Address response packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Response Code Reason Code				
2023	Address Count	Reserved			
	Addr 1 Byte 5 Addr 1 Byte 4 Addr 1 Byte 3 Addr 1				
Variable	Addr 1 Byte 1	Addr 1 Byte 0	Addr 2 Byte 5	Addr 2 Byte 4	
			Pad (if r	needed)	

4034 8.4.133.1 Address Count

4035 This field shall be set to the number of MC MAC addresses provisioned on the channel.

4036 **8.4.133.2 Reserved**

This field shall be set to 0 by the network controller and shall be ignored by the management controller.

4038 8.4.133.3 Addr I Byte j

This field shall be set to the value of j^{th} byte $(1 \le j \le 6)$ of i^{th} provisioned MC MAC address.

4040 **8.4.133.4 Pad**

- If the number of MC MAC addresses is an odd number, then 2 bytes of the Pad field shall be present at the end of the payload to align the payload on a 32-bit boundary. If present, each byte of the Pad field
- 4043 shall be set to 0×00 .
- 4044 If the number of MC MAC addresses is an even number, then 0 bytes of Pad shall be present.

4045 **8.4.134 SPDM command (0x60)**

- The SPDM command is used by the Management controller in RBT implementations to encapsulate and send a SPDM payload as defined in <u>DSP0274</u> to the NC or alternately receive an encapsulated SPDM payload from the NC.
- The SPDM payload must be smaller than the maximum NC-SI payload allowed over RBT. Payloads that exceed the RBT limits shall use SPDM's native multi-part transfer mechanism. Polling mode shall be used to transfer each part of a multi-part transfer from the NC.
- The command response may be a long running command due to the nature of some SPDM tasks.
- 4053 The SPDM command is defined as a package command.
- This command and response are not supported on NC-SI over MCTP.
- 4055 Table 255 illustrates the packet format of SPDM command.

4056 Table 255 – SPDM command packet

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	SPDM Version Request Code Param 1 Param 2				
20	SPDM Message Payload				
	Checksum				
	Pad				

4057 **8.4.135 SPDM Response (0xE0)**

- The Package shall, in the absence of a checksum error or identifier mismatch, always accept the SPDM Command and send a response.
- 4060 Table 256 illustrates the packet format of the SPDM Response.

4072

4077

Table 256 - SPDM Response packet

	Bits				
Bytes	3124	2316	1508	0700	
0015		NC-SI I	Header		
1619	Response Code Reason Code				
2023	SPDM Version	Completion Code	Param 1	Param 2	
24	SPDM Response Payload				
	Checksum				
		Pad			

4062 8.4.136 Query Pending NC SPDM Request (0x61)

The Query Pending NC SPDM Request may be used by the Management Controller in RBT implementations to read the status of pending SPDM requests which the NC needs to send to the MC.
Only one SPDM request can be handled by a Pending SPDM Request instance. When multiple requests are pending in the NC, each will be handled independently and the order at which requests are provided to the MC is decided by the NC.

- 4068 The Query Pending NC SPDM command is defined as a package command.
- This command and response are not supported on NC-SI over MCTP.
- 4070 Table 257 illustrates the packet format of the Query Pending NC SPDM Request command.

4071 Table 257 – Query Pending NC SPDM Request packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Checksum				
2045	Pad				

8.4.137 Query Pending NC SPDM Request Response (0xE1)

In the event there are no pending requests, the command shall execute successfully and return with no SPDM payload. Currently no command-specific reason code is identified for this response (see Table 248).

4076 Table 258 illustrates the packet format of the Query Pending NC SPDM Request Response.

Table 258 – Query Pending NC SPDM Request Response Packet Format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	Response Code Reason Code				
20	SPDM Version	SPDM Version Request Code Param 1 Param 2			

	Bits				
Bytes	3124	2316	1508	0700	
	SPDM Message Payload + Payload Pad (zero or more bytes)				
	Checksum				
	Pad				

Table 259 – Query Pending NC SPDM Request Response parameters

Name	Comment
SPDM Version	Optional, included only when there is a pending request
Request Code	Optional, included only when there is a pending request
Param1	Optional, included only when there is a pending request
Param2	Optional, included only when there is a pending request
SPDM Message Payload	Optional, included only when there is a pending request

4079 8.4.138 Send NC SPDM Reply (0x62)

4078

The Reply Pending SPDM command may be used by the Management Controller to provide the SPDM command response to previously read SPDM command from the NC. The response to this command further provides indication to the MC regarding additional pending SPDM NC commands.

4083 Table 260 illustrates the packet format of the Send NC SPDM Reply command.

4084 Table 260 – Send NC SPDM Reply packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	NC-SI Header				
1619	SPDM Version Completion Code Param 1 Param 2				
20	SPDM Message Payload (zero or more bytes) + Payload Pad				
	Checksum				
	Pad				

4085 8.4.139 Send NC SPDM Reply Response (0xE2)

4086 Currently no command-specific reason code is identified for this response.

4087 Table 261 illustrates the packet format of the Send NC SPDM Reply command.

Table 261 – Send NC SPDM Reply Response packet format

	Bits					
Bytes	3124 2316 1508 0700					
0015	NC-SI Header					
1619	Response Code Reason Code					

	Bits				
Bytes	3124	2316	1508	0700	
2023	Reserved Flags				
2427	Checksum				
2845		P	ad		

Table 262 - Reply NC SPDM Response parameters

Name	Meaning
Flags bit 0 – Pending request	0b − No additional pending SPDM command from NC to MC
	1b – The NC has additional pending SPDM command to the MC
Flags bits 7:1 Reserved	Reserved, always return 0.

4090 8.5 AEN packet formats

This clause defines the formats for the different types of AEN packets. For a list of the AEN types, see Table 18.

8.5.1 Link Status Change AEN

The Link Status Change AEN indicates to the Management Controller any changes in the channel's external Ethernet interface link status.

This AEN should be sent if any change occurred in the link status (that is, the actual link mode was changed). The Link Status and OEM Link Status fields reproduce the bit definitions defined in the Get Link Status Response Packet (see Table 51).

4099 Table 263 illustrates the packet format of the Link Status Change AEN.

4100

4101

4105

4106

4093

Table 263 - Link Status Change AEN packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	AEN Header			
1619	Reserved AEN Type = 0x00			
2023	Link Status			
24.27	OEM Link Status			
2831	Checksum			

8.5.2 Configuration Required AEN

The Configuration Required AEN indicates to the Management Controller that the channel is transitioning into the Initial State. (This AEN is not sent if the channel enters the Initial State because of a Reset Channel command.)

NOTE: This AEN may not be generated in some situations in which the channel goes into the Initial State. For example, some types of hardware resets may not accommodate generating the AEN.

Table 264 illustrates the packet format of the Configuration Required AEN.

Table 264 – Configuration Required AEN packet format

	Bits			
Bytes	3124 2316 1508 0700			
0015	AEN Header			
1619	Reserved AEN Type = 0x01			
2023		Checksum		

8.5.3 Host Network Controller Driver Status Change AEN

This AEN indicates a change of the Host Network Controller Driver Status. Table 265 illustrates the packet format of the AEN.

4108

4115

4123

Table 265 – Host Network Controller Driver Status Change AEN packet format

	Bits			
Bytes	3124 2316 1508 0700			
0015	AEN Header			
1619	Reserved AEN Type = 0x02			
2023	Host Network Controller Driver Status			
2427		Chec	ksum	

4114 The Host Network Controller Driver Status field has the format shown in Table 266.

Table 266 – Host Network Controller Driver Status format

Bit Position	Name	Description
0	Host Network Controller Driver Status	0b = The Network Controller driver for the host external network interface associated with this channel is not operational (not running).
		1b = The Network Controller driver for the host external network interface associated with this channel is being reported as operational (running).
131	Reserved	Reserved

4116 8.5.4 Delayed Response Ready AEN

This AEN indicates the response to a delayed command is ready. Table 267 illustrates the packet format of the AEN.

4119 NOTE: This AEN does not deliver the delayed command response, it must be retrieved separately.

4120 Table 267 – Delayed Response Ready AEN packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	AEN Header			
1619	Reserved AEN Type = 0x03			AEN Type = 0x03
2023	Original Original Padding Command Type Command IID			ding
2427	Checksum			

The Original Command Type includes the Control Packet Type field of the completed command and the Original Command IID includes the IID field of the original command.

8.5.5 InfiniBand Link Status Change AEN

The InfiniBand Link Status Change AEN indicates to the Management Controller any changes in the channel's external InfiniBand interface link status.

This AEN should be sent if any change occurred in the IB link status (that is, the actual link mode was changed). The InfiniBand Link Status Change AEN specific fields reproduce the bit definitions defined in

the Get IB Link Status Response Packet (see Table 206).

Table 273 illustrates the packet format of the InfiniBand Link Status Change AEN.

Table 268 – InfiniBand Link Status Change AEN packet format

	Bits				
Bytes	3124	2316	1508	0700	
0015	AEN Header				
1619	Reserved AEN Type = 0x04			e = 0x04	
2023	IB Link Active Width	IB Link Supported Width	Link Type	Phys State	Logical Port State
24.27	Reserved IB Link Active Speed Reserved Speed IB Link Supported Speed				
2831	Checksum				

4131 8.5.6 Fibre Channel Link Status Change AEN

The Fibre Channel Link Status Change AEN indicates to the Management Controller any changes in the channel's external Fibre Channel interface link status including when trunked.

This AEN should be sent if any change occurred in the FC link status (that is, the actual link mode was changed). The Fibre Channel Link Status Change AEN specific fields reproduce the bit definitions defined in the Get FC Link Status Response Packet (see Table 182).

4137 Table 279 illustrates the packet format of the FC Link Status Change AEN.

Table 269 – Fibre Channel Link Status Change AEN packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	AEN Header			
1619	Reserved AEN Type = 0x05			AEN Type = 0x05
2023	Num FC Ports FC Trunk Status FC Link Status			Trunk Speeds
24.27	Channel 1 Link Speed Channel 2 Link Speed Channel 3 Link Speed Channel 4 Link Speed Speed			
2831	Checksum			

8.5.7 Transceiver Event AEN

This indicates to the Management Controller that a change in presence status or a thermal threshold in the SFF-compliant Transceiver attached to the channel has occurred.

Since some SFF cages have multiple TX and RX lanes, it is possible that multiple NC-SI channels are

handled by a single transceiver module or copper cable assembly. In this case, subscribing to

Transceiver Event AEN on one channel enables reporting of AENs for all such channels that are enabled

for AENs. The NC shall send the Transceiver Event AEN on all affected channels that are enabled for

4146 AENs if one or more alerts are triggered.

In the case of FC port trunking (bonding), the 1:1 relationship of NC-SI channel to transceiver is lost and multiple transceivers will handle the aggregated traffic. When operating in the trunking mode, an

4130

4138

enablement of this AEN on one channel will cover all transceivers that are members of the trunk. In this case, AENs can be generated individually for each member in the trunk by using the SFF Cage number field to identify the transceiver generating the AEN.

4152 Table 270 illustrates the packet format of the AEN.

4153 Table 270 – Transceiver Event AEN packet format

	Bits			
Bytes	3124	2316	1508	0700
0015	AEN Header			
1619	Reserved	Transceiver Presence	SFF Cage Number	AEN Type = 0x06
2023	Transceiver Event List			
2427	Reserved			
2831		Chec	ksum	

4154 8.5.7.1 SFF Cage Number field

4158

SFF cage numbers are assigned to SFF cages in the implementation based on the NC-SI channel they are associated with (when not trunked) offset by one. Thus, the SFF cage associated with NC-SI channel 0 is #1, channel 1 has cage 2, etc.

8.5.7.2 Transceiver Event List field

The Transceiver Event List field has the format shown in Table 271.

4160 Table 271 – Transceiver Event List format

Bit Position	Name	Description
0	Low Temp Warning	0b = no alert
		1b = The Transceiver's low temperature warning threshold has been exceeded
1	High Temp Warning	0b = no alert
		1b = The Transceiver's high temperature warning threshold has been exceeded
2	Low Temp Alarm	0b = no alert
		1b = The Transceiver's low temperature alarm threshold has been exceeded
3	High Temp Alarm	0b = no alert
		1b = The Transceiver's high temperature alarm threshold has been exceeded
4	Low Voltage Warning	0b = no alert
		1b = The Transceiver's low voltage warning threshold has been exceeded
5	High Voltage Warning	0 b = no alert
		1b = The Transceiver's high voltage warning

Bit Position	Name	Description
		threshold has been exceeded
6	Low Voltage Alarm	0b = no alert
		1b = The Transceiver's low voltage alarm threshold has been exceeded
7	High Voltage Alarm	0b = no alert
		1b = The Transceiver's high voltage alarm threshold has been exceeded
158	8 x RX Power Levels	0b = no alert
		1b = The Transceiver's RX Power alarm threshold has been exceeded. Isb is lane 1 thru msb is lane8
2316	8 x TX Power Levels	0b = no alert
		1b = The Transceiver's TX Power alarm threshold has been exceeded. Isb is lane 1 thru msb is lane8
3124	8 x TX Bias Levels	0b = no alert
		1b = The Transceiver's TX Bias Current alarm threshold has been exceeded. Isb is lane 1 thru msb is lane8

4161 8.5.7.3 Transceiver Presence field

4162 Table 272 – Transceiver Presence format

Bit Position	Name	Description
0	Transceiver Presence Change	0b = No change in presence detected
		1b = The Transceiver was either removed or inserted. The insertion event reporting shall occur only after the Transceiver has completed its initialization stage
71	Reserved	

4163 8.5.8 Request Data Transfer AEN

This AEN indicates to the Management Controller that the NC is requesting the MC initiate a transfer of an opaque data package from the NC to the MC. It is sent using an Internal Channel ID value of 0x1F to indicate a package-level operation.

4169

4175

4176

4167 Table 273 illustrates the packet format of the AEN.

Table 273 – Request Data Transfer AEN packet format

	Bits					
Bytes	3124	2316	1508	0700		
0015	AEN Header					
1619	Reserved AEN Type = 0x0					
2023	Total Length of Transfer (Bytes)					
	Data Handle					
2427		Checksum				

8.5.9 Partition Link Status Change AEN

The Partition Link Status Change AEN indicates to the Management Controller any change in the internal link status of any partition on the channel. This AEN is only valid when the NC supports partitioning and it is enabled.

This AEN should be sent if any change occurred in the internal link status of any enabled partition on the channel.

Table 274 illustrates the packet format of the Partition Link Status Change AEN.

Table 274 - Partition Link Status Change AEN packet format

	Bits							
Bytes	3124	2316	1508	0700				
0015		AEN Header						
1619		Reserved AEN Type = 0x08						
2023	Reserved Partition Map Link Status							
24.27	Checksum							

4177

4178 **Table 275 – Partition Map Field**

Bit	Description
0	0b = Partition 1 on channel link state has not changed
0	1b = Partition 1 on channel link state has changed
4	0b = Partition 2 on channel link state has not changed
1	1b = Partition 2 on channel link state has changed
7	0b = Partition 8 on channel link state has not changed
	1b = Partition 8 on channel link state has changed

Table 276 - Partition Link Status

Bit	Description
0	იხ = Partition 1 on channel link is down
0	1b = Partition 1 on channel link is up
1	0b = Partition 2 on channel link is down
	1b = Partition 2 on channel link is up
7	0b = Partition 8 on channel link is down
	1b = Partition 8 on channel link is up

4180 8.5.10 Thermal Shutdown Event AEN

4181 The Thermal Shutdown Event AEN indicates to the Management Controller that NC device shutdown is 4182 imminent due to the defined thermal threshold being reached. It is sent using an Internal Channel ID 4183 value of 0x1F to indicate a package-level operation.

Table 277 illustrates the packet format of the Thermal Shutdown Event AEN.

4185

4186

4184

Table 277 – Thermal Shutdown Event AEN packet format

	Bits						
Bytes	3124	2316	1508	0700			
0015		AEN Header					
1619	Reserved AEN Type = 0x09						
2023		Chec	ksum				

8.5.11 Pending PLDM Request AEN

The Pending PLDM Request AEN is an RBT-specific AEN used to alert the MC that there is a pending 4187 PLDM request for the MC in the NC. This AEN allows for the MC to poll for pending PLDM request on the 4188 4189

NC at a lower rate. It is sent using an Internal Channel ID value of 0x1F to indicate a package-level

operation. 4190

4191 As a transport-specific AEN, this AEN is enabled using the transport-specific AEN enable command and 4192

is controlled by bit 1 in Transport Specific AEN's enable field.

4193 This AEN should be sent if there is a new pending PLDM request that is available in the NC designated to

4194 the MC, which was not reported to the MC through Send NC PLDM Reply Response (0xD7). A Pending

4195 PLDM Request AEN should not be sent from the time the NC recognizes an incoming Query Pending

4196 NC PLDM Request (0x56) until the NC sends Send NC PLDM Reply Response (0xD7) for the PLDM

4197 request.

4199

Table 278 - Pending PLDM Request AEN format

	Bits						
Bytes	3124	2316	1508	0700			
0015		NC-SI Header					
1619		Reserved AEN Type = 0x71					
2023	Checksum						
2445		Pa	ad				

8.5.12 Pending SPDM Request AEN

The Pending SPDM Request AEN is an RBT-specific AEN used to alert the MC that there is a pending SPDM command request for the MC in the NC. It is sent using an Internal Channel ID value of 0x1F to indicate a package-level operation.

As a transport-specific AEN, this AEN is enabled using the transport-specific AEN enable command and is controlled by bit 2 in Transport Specific AEN's enable field.

This AEN should be sent if there is a new pending SPDM request that is generated in the NC designated for the MC, which was not reported to the MC through Send NC SPDM Reply Response (0xE2). A

Pending SPDM Request AEN should not be sent from the time the NC recognizes an incoming Query Pending NC SPDM Request (0x61) until the NC sends Send NC SPDM Reply Response (0xE2) for the SPDM request.

4210

Table 278 - Pending SPDM Request AEN format

	Bits						
Bytes	3124	2316	1508	0700			
0015		NC-SI Header					
1619	Reserved AEN Type = 0x72						
2023	Checksum						
2445		Pa	ad				

4211

9 Packet-based and opcode timing

4213

4214

4215

4216

4217

Table 279 presents the timing specifications for a variety of packet-to-electrical-buffer interactions, interpacket timings, and opcode processing requirements. The following timing parameters shall apply to NC-SI over RBT binding defined in this specification.

Table 279 - NC-SI packet-based and opcode timing parameters

Name	Symbol	Value	Description
Package Deselect to Hi-Z Interval	T1	200 µs, max	Maximum time interval from when a Network Controller completes transmitting the response to a Deselect Package command to when the Network Controller outputs are in the high-impedance state
			Measured from the rising edge of the first clock that follows the last bit of the packet to when the output is in the high-impedance state as defined in clause 10
Package Output to Data	T2	2 clocks, min	Minimum time interval after powering up the output drivers before a Network Controller starts transmitting a packet through the NC-SI interface Measured from the rising edge of the first clock of the packet
Network Controller Power Up Ready Interval	T4	2 s, max	Time interval from when the NC-SI on a Network Controller is powered up to when the Network Controller is able to respond to commands over the NC-SI
			Measured from when V _{ref} becomes available
Normal Execution Interval	T5	50 ms, max	Maximum time interval from when a controller receives a command to when it delivers a response to that command, unless otherwise specified
			Measured from the rising edge of the first clock following the last bit of the command packet to the rising edge of the clock for the first bit of the response packet
Asynchronous Reset Interval	Т6	2 s, max	Interval during which a controller may not recognize or respond to commands or handle Pass-through traffic due to an Asynchronous Reset event. See clause 6.1.8
			For a Management Controller, this means that a Network Controller could become unresponsive for up to T6 seconds if an Asynchronous Reset event occurs. This is not an error condition. The Management Controller retry behavior should be designed to accommodate this possibility.
Synchronous Reset Interval	Т7	2 s, max	Interval during which a controller may not recognize or respond to commands or handle Pass-through traffic due to a Synchronous Reset event. See clause 6.1.8
			Measured from the rising edge of the first clock following the last bit of the Reset Channel response packet
Token Timeout	Т8	32,000 REF_CLK min	Number of REF_CLKs before timing out while waiting for a TOKEN to be received

Name	Symbol	Value	Description
Opcode Processing	Т9	32 REF_CLK max	Number of REF_CLKs after receiving an opcode on ARB_IN to decode the opcode and generate the next opcode on ARB_OUT
			Measured from the falling edge of the last bit of the opcode received on ARB_IN to the rising edge of the next opcode on ARB_OUT
Opcode Bypass Delay	T10	32 REF_CLK max	Number of REF_CLK delays between a bit received on ARB_IN and the corresponding bit passed on to ARB_OUT while in Bypass Mode
			Measured from the falling edge of the last bit of the opcode received on ARB_IN to the rising edge of the next opcode on ARB_OUT
TOKEN to RXD	T11	T2 min, 32 REF_CLK max	Number of REF_CLKs after receiving TOKEN to when packet data is driven onto the RXD lines
			Measured from the falling edge of the last bit of the opcode received on ARB_IN to the rising edge of the first clock of the next packet on RXD
Max XOFF Renewal Interval	T12	50,331,648 REF_CLK max	Maximum time period (3 XOFF Frame timer cycles) during which a channel within a package is allowed to request and renew a single XOFF condition after requesting the initial XOFF
IPG to TOKEN Opcode Overlap	T13	6 REF_CLK max	Maximum number of REF_CLKs that the beginning of TOKEN transmission can precede the end of the Inter Packet Gap. For more information, see clause 7.3.8.
Delayed Execution Interval	T14	4 s, max	Maximum time interval from when a controller receives a command to when it delivers a response to that command, including all responses with "Delayed Response" code
			Measured from the rising edge of the first clock following the last bit of the command packet to the rising edge of the clock for "Delayed Response Ready" AEN if enabled or to the moment the NC is internally ready with a response for a polling command.

NOTE: If hardware arbitration is in effect, the hardware arbitration output buffer enable/disable timing specifications take precedence.

10 RBT Electrical specification

This clause provides background information about the NC-SI RBT specification, describes the RBT topology, and defines the electrical, timing, signal behavior, and power-up characteristics for the RBT physical interface.

10.1 Topologies

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

The electrical specification defines the RBT electrical characteristics for one management processor and one to four Network Controller packages in a bussed "multi-drop" arrangement. The actual number of devices that can be supported may differ based on the trace characteristics and routing used to interconnect devices in an implementation.

Figure 16 shows an example topology.

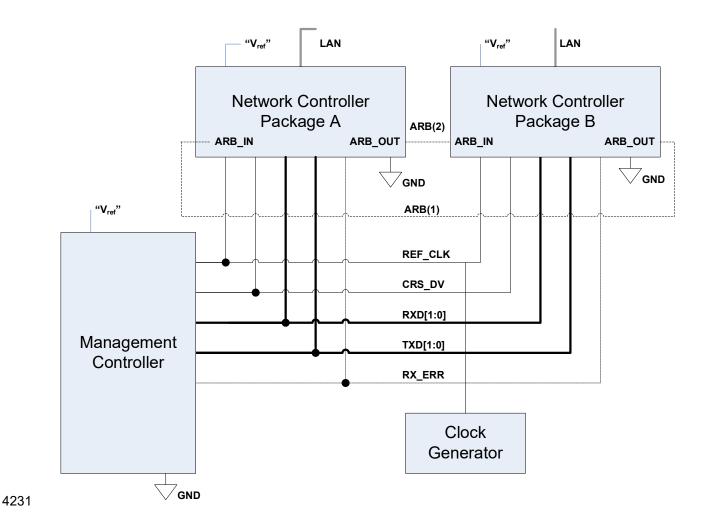


Figure 16 – Example NC-SI RBT signal interconnect topology

4233	10.2 Electrical and signal characteristics and requirements
4234 4235	This clause defines the electrical, timing, signal behavior, and power-up characteristics for the NC-SI RB physical interface.
4236	10.2.1 Companion specifications
4237 4238 4239	Implementations of the physical interface and signaling for RBT shall meet the specifications in RMII and IEEE 802.3 , except where those requirements differ or are extended with specifications provided in this document, in which case the specifications in this document shall take precedence.
4240	10.2.2 Full-duplex operation
4241	RBT is specified only for full-duplex operation. Half-duplex operation is not covered by this specification.
4242	10.2.3 Signals
4243	Table 280 lists the signals that make up the RBT physical interface.
4244 4245 4246	Unless otherwise specified, the high level of a RBT signal corresponds to its asserted state, and the low level represents the de-asserted state. For data bits, the high level represents a binary '1' and the low level a binary '0'.

Table 280 - Physical RBT signals

Signal Name	Direction (with respect to the Network Controller)	Direction (with respect to the Management Controller MAC)	Use	Mandatory or Optional
REF_CLK [a]	Input	Input	Clock reference for receive, transmit, and control interface	М
CRS_DV [b]	Output	Input	Carrier Sense/Receive Data Valid	М
RXD[1:0]	Output	Input	Receive data	М
TX_EN	Input	Output	Transmit enable	М
TXD[1:0]	Input	Output	Transmit data	М
RX_ER	Output	Input	Receive error	0
ARB_IN	Input ^[c]	N/A	Network Controller hardware arbitration Input	O [c]
ARB_OUT	Output [c]	N/A	Network Controller hardware arbitration Output	O [c]

A device can provide an additional option to allow it to be configured as the source of REF_CLK, in which case the device is not required to provide a separate REF_CLK input line, but it can use REF_CLK input pin as an output. The selected configuration shall be in effect at NC power up and remain in effect while the NC is powered up.

In the <u>RMII Specification</u>, the MII Carrier Sense signal, CRS, was combined with RX_DV to form the CRS_DV signal. When RBT is using its specified full-duplex operation, the CRS aspect of the signal is not required; therefore, the signal shall provide only the functionality of RX_DV as defined in <u>IEEE 802.3</u>. (This is equivalent to the CRS_DV signal states in <u>RMII Specification</u> when a carrier is constantly present.) The Carrier Sense aspect of the CRS_DV signal is not typically applicable to RBT because it does not typically detect an actual carrier (unlike an actual PHY). However, the Network Controller should emulate a carrier-present status on CRS_DV per <u>IEEE 802.3</u> in order to support Management Controller MACs that may require a carrier-present status for operation.

If hardware arbitration is implemented, the Network Controller package shall provide both ARB_IN and ARB_OUT connections. In some implementations, ARB_IN may be required to be tied to a logic high or low level if it is not used.

10.2.4 High-impedance control

- Shared RBT operation requires Network Controller devices to be able to set their outputs (RXD[1:0],
- 4251 CRS_DV, and, if implemented, RX_ER) into a high-impedance state either upon receipt of a command
- 4252 being received, or, if hardware-based arbitration is enabled as a result of hardware-based arbitration. A
- 4253 pull-down resistor should be provided on high impedance signals to prevent them from floating when not
- 4254 driven.

4249

4260

- Network Controllers shall leave their RBT outputs in the high-impedance state on interface power up and
- shall not drive them until the package is selected. For additional information about Network Controller
- 4257 packages, see 8.4.5.
- For RBT output signals in this specification, unless otherwise specified, the high-impedance state is
- 4259 defined as the state in which the signal leakage meets the I_z specification provided in 10.2.5.

10.2.5 Hardware Implementations

- 4261 A variety of shared RBT hardware implementations are possible, in such cases the designer must take
- 4262 care to ensure the HW arbitration loop is maintained when used, even if some RBT devices are not
- 4263 present. Pull resistors are recommended to be place on the system board side of any connector for add-
- 4264 in RBT cards so that a proper resistance for the high impedance signals can be maintained.

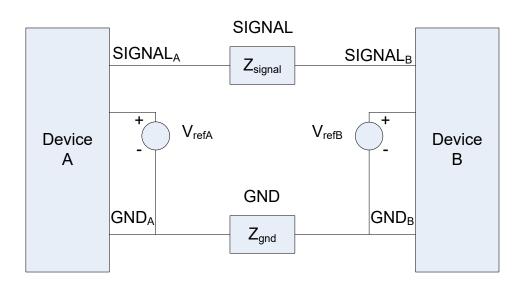
4267

4270

4271

4272 4273

4274


4275

10.2.6 DC characteristics

4266 This clause defines the DC characteristics of the RBT physical interface.

10.2.6.1 Signal levels

- 4268 CMOS 3.3 V signal levels are used for this specification.
- 4269 The following characteristics apply to DC signals:
 - Unless otherwise specified, DC signal levels and V_{ref} are measured relative to Ground (GND) at the respective device providing the interface, as shown in Figure 17.
 - Input specifications refer to the signals that a device shall accept for its input signals, as measured at the device.
 - Output specifications refer to signal specifications that a device shall emit for its output signals, as measured at the device.

4276

4277 Figure 17 – DC measurements

4278 Table 281 provides DC specifications.

' '

4279

4282

4285

4289

Table 281 - DC specifications

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
IO reference voltage	V _{ref} [a]		3.0	3.3	3.6	V
Signal voltage range	V _{abs}		-0.300		3.765	V
Input low voltage	Vil				0.8	V
Input high voltage	Vih		2.0			V
Input high current	l _{ih}	V _{in} = V _{ref} = V _{ref} ,max	0		200	μA
Input low current	lii	V _{in} = 0 V	-20		0	μA
Output low voltage	Vol	I _{ol} = 4 mA, V _{ref} = min	0		400	mV
Output high voltage	Voh	I _{oh} = -4 mA, V _{ref} = min	2.4		V _{ref}	V
Clock midpoint reference level	V _{ckm}				1.4	V
Leakage current for output signals in high-impedance state	lz	$0 \leq V_{in} \leq V_{ref}$ at $V_{ref} = V_{ref}$,max	-20		20	μA

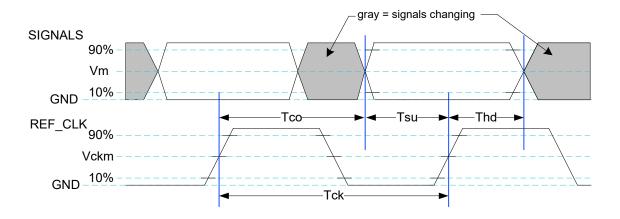
 V_{ref} = Bus high reference level (typically the NC-SI logic supply voltage). This parameter replaces the term supply voltage because actual devices may have internal mechanisms that determine the operating reference for RBT that are different from the devices' overall power supply inputs.

 V_{ref} is a reference point that is used for measuring parameters (such as overshoot and undershoot) and for determining limits on signal levels that are generated by a device. To facilitate system implementations, a device shall provide a mechanism (for example, a power supply pin, internal programmable reference, or reference level pin) to allow V_{ref} to be set to within 20 mV of any point in the specified V_{ref} range. This approach enables a system integrator to establish an interoperable V_{ref} level for devices on RBT.

4280 10.2.7 AC characteristics

This clause defines the AC characteristics of the RBT physical interface.

10.2.7.1 Rise and fall time measurement


4283 Rise and fall time are measured between points that cross 10% and 90% of V_{ref} (see Table 281). The 4284 middle points (50% of V_{ref}) are marked as V_{ckm} and V_m for clock and data, respectively.

10.2.7.2 REF CLK measuring points

In Figure 18, REF_CLK duty cycle measurements are made from V_{ckm} to V_{ckm}. Clock skew T_{skew} is measured from V_{ckm} to V_{ckm} of two RBT devices and represents the maximum clock skew between any two devices in the system.

10.2.7.3 Data, control, and status signal measuring points

In Figure 18, all timing measurements are made between V_{ckm} and V_m . T_{co} is measured with a capacitive load between 10 pF and 50 pF. Propagation delay T_{prop} is measured from V_m on the transmitter to V_m on the receiver.

4294

Figure 18 – AC measurements

4295 Table 282 provides AC specifications.

4296

Table 282 - AC specifications

Parameter	Symbol	Minimum	Typical	Maximum	Units
REF_CLK Frequency			50	50+100 ppm	MHz
REF_CLK Duty Cycle		35		65	%
Clock-to-out [a] (10 pF \leq cload \leq 50 pF)	Тсо	2.5		12.5	ns
Skew between clocks	T _{skew}			1.5	ns
TXD[1:0], TX_EN, RXD[1:0], CRS_DV, RX_ER, and ARB_IN data setup to REF_CLK rising edge	T _{su}	3			ns
TXD[1:0], TX_EN, RXD[1:0], CRS_DV, RX_ER, and ARB_OUT data hold from REF_CLK rising edge	T_{hd}	1			ns
Signal Rise/Fall Time	T _r /T _f	0.5		6	ns
REF_CLK Rise/Fall Time	T _{ckr} /T _{ckf}	0.5		3.5	ns
Interface Power-Up High-Impedance Interval	T _{pwrz}	2			μs
Power Up Transient Interval (recommendation)	T _{pwrt}			100	ns
Power Up Transient Level (recommendation)	V _{pwrt}	-200		200	mV
REF_CLK Startup Interval	T _{clkstrt}			100	ms

4297

4298

10.2.7.4 Timing calculation (informative)

10.2.7.4.1 Setup time calculation

$$T_{su} \leq T_{clk} - \left(T_{skew} + T_{co} + T_{prop}\right)$$

4300 10.2.7.4.2 Hold time calculation

$$T_{hd} \leq T_{co} - T_{skew} + T_{prop}$$

4302

4303

4304

4305

4306

10.2.7.5 Overshoot specification

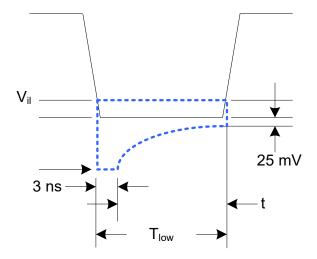
Devices shall accept signal overshoot within the ranges specified in Figure 19, measured at the device, without malfunctioning.



Figure 19 - Overshoot measurement

4307 The signal may overshoot up to the specified V_{max} for the first 3 ns following the transition above V_{ih}. 4308

Following that interval is an exponential decay envelope equal to the following:


4309
$$V_{ref} + V_{os} * e^{-[-K * ([t - 3 ns]/T_d)]}$$

- 4310 Where, for t = 3 to 10 ns:
- 4311 t = 0 corresponds to the leading crossing of V_{ih} , going high.
- 4312 V_{ref} is the bus high reference voltage (see 10.2.5).
- 4313 V_{abs},max is the maximum allowed signal voltage level (see 10.2.5).
- $V_{os} = V_{max} V_{ref}$ 4314
- $K = I_n(25 \text{ mV/V}_{os})$ 4315
- 4316 $T_d = 7 \text{ ns}$
- 4317 For t > 10 ns, the V_{ref} + 25 mV limit holds flat until the conclusion of T_{high} .

4318 10.2.7.6 Undershoot specification

4319 Devices are required to accept signal undershoot within the ranges specified in Figure 20, measured at

4320 the device, without malfunctioning.

4322

4332

4337

4340

4341

4342

4343

4344

Figure 20 - Undershoot measurement

The signal is allowed to undershoot up to the specified V_{abs},min for the first 3 ns following the transition above V_{ii}. Following that interval is an exponential envelope equal to the following:

- $*([t-3 ns]/T_d)]$
- 4326 Where, for t = 3 to 10 ns:
- t = 0 corresponds to the leading crossing of V_{ii} , going low.
- 4328 V_{abs},min is the minimum allowed signal voltage level (see 10.2.5).
- 4329 $K = I_n(25 \text{ mV/V}_{os})$
- 4330 $T_d = 7 \text{ ns}$
- 4331 For t > 7 ns, the GND 25 mV limit holds flat until the conclusion of T_{low}.

10.2.8 Interface power-up

- 4333 To prevent signals from back-powering unpowered devices, it is necessary to specify a time interval
- during which signals are not to be driven until devices sharing the interface have had time to power up.
- 4335 To facilitate system implementation, the start of this interval shall be synchronized by an external signal
- 4336 across devices.

10.2.8.1 Power-up control mechanisms

The device that provides the interface shall provide one or more of the following mechanisms to enable the system integrator to synchronize interface power-up among devices on the interface:

• Device power supply pin

The device has a power supply pin that the system integrator can use to control power-up of the interface. The device shall hold its outputs in a high-impedance state (current $< I_z$) for at least T_{pwrz} seconds after the power supply has initially reached its operating level (where the power supply operating level is specified by the device manufacturer).

• Device reset pin or another similar signal

The device has a reset pin or other signal that the system integrator can use to control the power-up of the interface. This signal shall be able to be driven asserted during interface power-up and de-asserted afterward. The device shall hold its outputs in a high-impedance state (current $< I_z$) for at least T_{pwrz} seconds after the signal has been de-asserted, other than as described in clause 10.2.8.2. It is highly recommended that a single signal be used; however, an implementation is allowed to use a combination of signals if required. Logic levels for the signals are as specified by the device manufacturer.

REF_CLK detection

The device can elect to detect the presence of an active REF_CLK and use that for determining whether NC-SI power up has occurred. It is recommended that the device should count at least 100 clocks and continue to hold its outputs in a high-impedance state (current $< I_z$) for at least T_{pwrz} seconds more (Informational: 100 clocks at 50 MHz is 2 us).

10.2.8.2 Power-up transients

- It is possible that a device may briefly drive its outputs while the interface or device is first receiving power, due to ramping of the power supply and design of its I/O buffers. It is recommended that devices be designed so that such transients, if present, are less than V_{pwrt} and last for no more than T_{pwrt}.
- 4362 **10.2.9 REF_CLK startup**
- REF_CLK shall start up, run, and meet all associated AC and DC specifications within T_{clkstrt} seconds of interface power up.

4365 10.3 RBT Implementation guidance

- This specification does not define implementation requirements due to the wide variation in architectures, devices and materials used. Following good engineering practices are a key part of a successful NC-SI RBT implementation:
- Care must be taken in placement and layout
- Do a complete signal integrity analysis including determining what, if any, termination is required
- 4371Minimize stubs
- 4372
 Have uniform clock trace lengths
- Minimize noise on high-impedance signals

4346

4347

4348

4349

4350 4351

4352

4353

4354

4355

4356 4357

	DSP0222	Network Controller Sideband Interface (NC-SI) Specification
4375		ANNEX A
4376		(normative)
4377		
4378		Extending the model
4379	This annex explains how t	ne model can be extended to include vendor-specific content.
4380	Commands extension	n
4381 4382	A Network Controller vend described in clause 8.4.11	or can implement extensions and expose them using OEM commands, as 8.
4383	Design consideration	ns
4384	This clause describes cert	ain design considerations for vendors of Management Controllers.
4385	PHY support	
4386 4387 4388 4389	interface in such a manner would enable the vendor's	It of this specification, a Management Controller vendor can design the RBT that it could also be configured for use with a conventional RMII PHY. This controller to also be used in applications where a direct, non-shared network preferred for manageability.
4390	Multiple Management	Controllers support
4391 4392 4393 4394 4395 4396 4397 4398 4399	and other output lines into Management Controller or their devices to support poshares the bus to enable fundere more than one Man vendor elects to make suc	irement for Management Controllers to be able to put their TXD output lines a high-impedance state, because the present definition assumes only one the bus. However, component vendors can provide such control capabilities in assible future system topologies where more than one Management Controller unctions such as Management Controller fail-over or to enable topologies agement Controller can participate in NC-SI communications on the bus. If a h provision, it is recommended that the TXD line and the remaining output lines amically switched between a high-impedance state and re-enabled under

4401			ANNEX B
4402			(informative)
4403			
4404			Relationship to RMII Specification
4405	Differe	nce	s with the <i>RMII Specification</i>
4406 4407			list presents key differences and clarifications between the <i>NC-SI Specification</i> and e <u>RMII Specification</u> . (Section numbers refer to the <u>RMII Specification</u> .)
4408 4409 4410	•	spe	neral: Where specifications from <u>IEEE 802.3</u> apply, this specification uses the version cified in clause 2 (Normative references), rather than the earlier IEEE 802.3u version that is exerced by <u>RMII</u> .
4411	•	Sec	tion 1.0:
4412 4413		_	The NC-SI Specification requires 100 Mbps support, but it does not specify a required minimum. (10 Mbps support is not required by NC-SI.)
4414		_	Item 4. (Signals may or may not be considered to be TTL. NC-SI is not 5-V tolerant.)
4415	•	Sec	tion 2.0:
4416 4417		_	Comment: NC-SI chip-to-chip includes considerations for multi-drop and allows for non-PCB implementations and connectors (that is, not strictly point-to-point).
4418	•	Sec	tion 3.0:
4419 4420		-	Note/Advisory: The NC-SI clock is provided externally. An implementation can have REF_CLK provided by one of the devices on the bus or by a separate device.
4421	•	Sec	tion 5.0:
4422		_	For NC-SI, the term PHY is replaced by Network Controller.
4423	•	Tab	le 1:
4424 4425		-	The information in Table 1 in the <u>RMII Specification</u> is superseded by tables in this specification.
4426	•	Sec	tion 5.1, paragraph 2:
4427 4428		-	The NC-SI Specification allows 100 ppm. This supersedes the <u>RMII Specification</u> , which allows 50 ppm.
4429	•	Sec	tion 5.1, paragraph 3:
4430 4431		-	The NC-SI inherits the same requirements. The NC-SI MTU is required only to support Ethernet MTU with VLAN, as defined in the IEEE 802.3 version listed in clause 2
4432		_	Section 5.1 paragraph 4:
4433 4434 4435 4436 4437 4438 4439		_	The <u>RMII Specification</u> states: "During a false carrier event, CRS_DV shall remain asserted for the duration of carrier activity." This statement is not applicable to full-duplex operation of the NC-SI. CRS_DV from the Network Controller is used only as a data valid (DV) signal. Because the Carrier Sense aspect of CRS_DV is not used for full-duplex operation of the NC-SI, the Network Controller would not generate false carrier events for the NC-SI. However, it is recommended that the MAC in the Management Controller be able to correctly detect and handle these patterns if they occur, as this would be part of enabling
4440			the Management Controller MAC to also be able to work with an RMII PHY.

- 4441 Section 5.2:
- The NC-SI does not specify a 10 Mbps mode. The Carrier Sense aspect of CRS_DV is not used for full-duplex operation of NC-SI.
- 4444 Section 5.3.1:

4446

4447

4448

4450

4452

4453 4454

4456

4458

4459

4461

4462

4463 4464

4466

4467

4469

4471

4472

4473

4475

- While the NC-SI does not specify Carrier Sense usage of CRS_DV, it is recommended that
 a Management Controller allow for CRS_DV toggling, in which CRS_DV toggles at 1/2
 clock frequency, and that Management Controller MACs tolerate this and realign bit
 boundaries correctly in order to be able to work with an RMII PHY also.
- 4449 Section 5.3.2:
 - There is no 10 Mbps mode specified for the NC-SI RBT interface.
- 4451 Section 5.3.3:
 - Generally, there is no expectation that the Network Controller will generate these error conditions for the NC-SI; however, the MAC in the Management Controller should be able to correctly detect and handle these patterns if they occur.
- 4455 Section 5.3.3:
 - The NC-SI does not specify or require support for RMII Registers.
- 4457 Section 5.5.2:
 - Ignore (N/A) text regarding 10 Mbps mode. RBT does not specify or require interface operation in 10 Mbps mode.
- 4460 Section 5.6:
 - The Network Controller will not generate collision patterns for the specified full-duplex operation of the NC-SI; however, the MAC in the Management Controller should be able to detect and handle these patterns if they occur in order to be able to work with an RMII PHY also.
- 4465 Section 5.7:
 - NC-SI RBT uses the <u>IEEE 802.3</u> version listed in clause 2 instead of 802.3u as a reference.
- 4468 Section 5.8:
 - Loopback operation is not specified for the NC-SI RBT interface.
- 4470 Section 7.0:
 - The NC-SI RBT electrical specifications (clause 10) take precedence. (For example, section 7.4.1 in the <u>RMII Specification</u> for capacitance is superseded by *NC-SI Specification* 25 pF and 50 pF target specifications.)
- 4474 Section 8.0:
 - NC-SI RBT uses the <u>IEEE 802.3</u> version listed in clause 2 (Normative references) as a reference, instead of 802.3u.

4477	ANNEX C
4478	(informative)
4479	
4480	Change log

Version	Date	Description
1.0.0	2009-07-21	DMTF Standard release
1.0.1	2013-01-24	DMTF Standard release
1.1.0	2015-09-23	DMTF Standard release
1.1.1	2021-04-13	Updated to comply with ISO guidelines
1.2.0b	2019-08-19	DMTF Work in Progress release
1.2.0WIP80	2021-08-25	DMTF Work in Progress release
1.2WIP90	2022-06-03	DMTF Work in Progress release
1.2.0WIP95	2022-09-01	DMTF Work in Progress release
1.2.0WIP99	2023-06-02	DMTF Work in Progress release
1.2.0	TBD	DMTF Standard release

4482	Bibliography
4483 4484	IANA, Internet Assigned Numbers Authority (https://www.iana.org/). A body that manages and organizes numbers associated with various Internet protocols.
4485 4486	DMTF DSP4014, DMTF Process for Working Bodies 2.2, August 2015 https://www.dmtf.org/sites/default/files/standards/documents/DSP4014 2.2.0.pdf