

 1

Document Identifier: DSP0218 2

Date: 2021-02-11 3

Version: 1.1.0 4

Platform Level Data Model (PLDM) for Redfish 5

Device Enablement 6

Supersedes: 1.0.1 7

Document Class: Normative 8

Document Status: Published 9

Document Language: en-US 10

 11

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

2 Published Version 1.1.0

 12

Copyright Notice 13

Copyright © 2019, 2021 DMTF. All rights reserved. 14

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 15
management and interoperability. Members and non-members may reproduce DMTF specifications and 16
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 17
time, the particular version and release date should always be noted. 18

Implementation of certain elements of this standard or proposed standard may be subject to third party 19
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 20
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 21
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 22
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 23
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 24
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 25
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 26
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 27
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 28
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 29
implementing the standard from any and all claims of infringement by a patent owner for such 30
implementations. 31

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 32
such patent may relate to or impact implementations of DMTF standards, visit 33
http://www.dmtf.org/about/policies/disclosures.php. 34

This document’s normative language is English. Translation into other languages is permitted. 35

http://www.dmtf.org/about/policies/disclosures.php

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 3

CONTENTS 36

Foreword ... 9 37
Acknowledgments ... 9 38

Introduction.. 10 39
Document conventions .. 10 40

1 Scope .. 11 41

2 Normative references .. 11 42

3 Terms and definitions .. 13 43

4 Symbols and abbreviated terms .. 15 44

5 Conventions .. 16 45
5.1 Reserved and unassigned values ... 16 46
5.2 Byte ordering ... 16 47
5.3 PLDM for Redfish Device Enablement data types ... 16 48

5.3.1 varstring PLDM data type .. 17 49
5.3.2 schemaClass PLDM data type .. 17 50
5.3.3 nnint PLDM data type .. 18 51
5.3.4 bejEncoding PLDM data type .. 18 52
5.3.5 bejTuple PLDM data type .. 19 53
5.3.6 bejTupleS PLDM data type .. 19 54
5.3.7 bejTupleF PLDM data type .. 19 55
5.3.8 bejTupleL PLDM data type .. 20 56
5.3.9 bejTupleV PLDM data type .. 21 57
5.3.10 bejNull PLDM data type ... 21 58
5.3.11 bejInteger PLDM data type .. 21 59
5.3.12 bejEnum PLDM data type .. 22 60
5.3.13 bejString PLDM data type .. 22 61
5.3.14 bejReal PLDM data type .. 22 62
5.3.15 bejBoolean PLDM data type .. 23 63
5.3.16 bejBytestring PLDM data type ... 23 64
5.3.17 bejSet PLDM data type .. 24 65
5.3.18 bejArray PLDM data type ... 24 66
5.3.19 bejChoice data PLDM type .. 24 67
5.3.20 bejPropertyAnnotation PLDM data type .. 24 68
5.3.21 bejRegistryItem PLDM data type ... 25 69
5.3.22 bejResourceLink PLDM data type ... 26 70
5.3.23 bejResourceLinkExpansion PLDM data type .. 26 71
5.3.24 bejLocator PLDM data type ... 26 72
5.3.25 rdeOpID PLDM data type .. 27 73

6 PLDM for Redfish Device Enablement version ... 27 74

7 PLDM for Redfish Device Enablement overview .. 27 75
7.1 Redfish Provider architecture overview .. 28 76

7.1.1 Roles .. 28 77
7.2 Redfish Device Enablement concepts .. 29 78

7.2.1 RDE Device discovery and registration ... 29 79
7.2.2 Data instances of Redfish schemas: Resources ... 31 80
7.2.3 Dictionaries .. 34 81
7.2.4 Redfish Operation support ... 41 82
7.2.5 PLDM RDE Events .. 51 83
7.2.6 Task support .. 53 84

7.3 Type code ... 54 85
7.4 Transport protocol type supported .. 54 86
7.5 Error completion codes ... 54 87

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

4 Published Version 1.1.0

7.6 Timing specification .. 56 88

8 Binary Encoded JSON (BEJ) .. 57 89
8.1 BEJ design principles.. 57 90
8.2 SFLV tuples .. 57 91

8.2.1 Sequence number.. 58 92
8.2.2 Format .. 58 93
8.2.3 Length .. 58 94
8.2.4 Value .. 58 95

8.3 Deferred binding of data ... 59 96
8.4 BEJ encoding .. 61 97

8.4.1 Conversion of JSON data types to BEJ ... 61 98
8.4.2 Resource links ... 62 99
8.4.3 Registry items .. 62 100
8.4.4 Annotations .. 62 101
8.4.5 Choice encoding for properties that support multiple data types 64 102
8.4.6 Properties with invalid values .. 64 103
8.4.7 Properties missing from dictionaries .. 64 104

8.5 BEJ decoding .. 64 105
8.5.1 Conversion of BEJ data types to JSON ... 64 106
8.5.2 Annotations .. 66 107
8.5.3 Sequence numbers missing from dictionaries ... 66 108
8.5.4 Sequence numbers for read-only properties in modification Operations 66 109

8.6 Example encoding and decoding .. 67 110
8.6.1 Example dictionary... 67 111
8.6.2 Example encoding ... 69 112
8.6.3 Example decoding ... 73 113

8.7 BEJ locators .. 76 114

9 Operational behaviors ... 76 115
9.1 Initialization (MC perspective) ... 76 116

9.1.1 Sample initialization ladder diagram .. 77 117
9.1.2 Initialization workflow diagram ... 78 118

9.2 Operation/Task lifecycle.. 80 119
9.2.1 Example Operation command sequence diagrams ... 80 120
9.2.2 Operation/Task overview workflow diagrams (Operation perspective) 84 121
9.2.3 RDE Operation state machine (RDE Device perspective) .. 92 122

9.3 Event lifecycle ... 105 123

10 PLDM commands for Redfish Device Enablement ... 108 124

11 PLDM for Redfish Device Enablement – Discovery and schema commands 109 125
11.1 NegotiateRedfishParameters command (0x01) format .. 109 126
11.2 NegotiateMediumParameters command (0x02) format .. 111 127
11.3 GetSchemaDictionary command (0x03) format ... 112 128
11.4 GetSchemaURI command (0x04) format ... 113 129
11.5 GetResourceETag command (0x05) format ... 114 130
11.6 GetOEMCount command (0x06) format ... 115 131
11.7 GetOEMName command (0x07) format ... 116 132
11.8 GetRegistryCount command (0x08) format .. 116 133
11.9 GetRegistryDetails command (0x09) format... 117 134
11.10 SelectRegistryVersion command (0x0A) format ... 118 135
11.11 GetMessageRegistry command (0x0B) format .. 118 136
11.12 GetSchemaFile command (0x0C) format ... 119 137

12 PLDM for Redfish Device Enablement – RDE Operation and Task commands 120 138
12.1 RDEOperationInit command (0x10) format .. 120 139
12.2 SupplyCustomRequestParameters command (0x11) format ... 123 140
12.3 RetrieveCustomResponseParameters command (0x12) format .. 127 141
12.4 RDEOperationComplete command (0x13) format .. 128 142

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 5

12.5 RDEOperationStatus command (0x14) format ... 129 143
12.6 RDEOperationKill command (0x15) format .. 132 144
12.7 RDEOperationEnumerate command (0x16) format ... 132 145

13 PLDM for Redfish Device Enablement – Utility commands .. 134 146
13.1 RDEMultipartSend command (0x30) format ... 134 147
13.2 RDEMultipartReceive command (0x31) format .. 135 148

14 Additional Information .. 137 149
14.1 RDE Multipart transfers... 137 150

14.1.1 Flag usage for RDEMultipartSend ... 137 151
14.1.2 Flag usage for RDEMultipartReceive .. 138 152
14.1.3 RDE Multipart transfer examples ... 138 153

14.2 Implementation notes.. 140 154
14.2.1 Schema updates .. 140 155
14.2.2 Storage of dictionaries ... 140 156
14.2.3 Dictionaries for related schemas ... 140 157
14.2.4 [MC] HTTP/HTTPS POST Operations... 141 158
14.2.5 Consistency checking of read Operations ... 142 159
14.2.6 [MC] Placement of RDE Device resources in the outward-facing Redfish URI 160

hierarchy .. 142 161
14.2.7 LogEntry and LogEntryCollection resources ... 143 162
14.2.8 On-demand pagination .. 143 163
14.2.9 Considerations for Redfish clients ... 143 164
14.2.10 OriginOfCondition in Redfish events.. 144 165
14.2.11 [MC] Merging dictionaries with OEM extensions ... 144 166

 (normative) Change log ... 145 167

 168

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

6 Published Version 1.1.0

Figures 169

Figure 1 – RDE Roles ... 29 170

Figure 2 – Example linking of Redfish Resource and Redfish Entity Association PDRs 33 171

Figure 3 – Schema linking without Redfish entity association PDRs ... 34 172

Figure 4 – Dictionary binary format ... 38 173

Figure 5 – DummySimple schema .. 68 174

Figure 6 – DummySimple dictionary – binary form ... 69 175

Figure 7 – Example Initialization ladder diagram .. 78 176

Figure 8 – Typical RDE Device discovery and registration ... 80 177

Figure 9 – Simple read Operation ladder diagram .. 81 178

Figure 10 – Complex Read Operation ladder diagram ... 82 179

Figure 11 – Write Operation ladder diagram ... 83 180

Figure 12 – Write Operation with long-running Task ladder diagram ... 84 181

Figure 13 – RDE Operation lifecycle overview (holistic perspective) ... 88 182

Figure 14 – RDE Task lifecycle overview (holistic perspective) ... 91 183

Figure 15 – Operation lifecycle state machine (RDE Device perspective) ... 105 184

Figure 16 – Redfish event lifecycle overview .. 107 185

Figure 17 – RDEMultipartSend example .. 139 186

Figure 18 – RDEMultipartReceive example .. 140 187

 188

Tables 189

Table 1 – PLDM for Redfish Device Enablement data types and structures .. 16 190

Table 2 – varstring data structure ... 17 191

Table 3 – schemaClass enumeration ... 18 192

Table 4 – nnint encoding for BEJ .. 18 193

Table 5 – bejEncoding data structure ... 18 194

Table 6 – bejTuple encoding for BEJ .. 19 195

Table 7 – bejTupleS encoding for BEJ ... 19 196

Table 8 – bejTupleF encoding for BEJ .. 20 197

Table 9 – BEJ format codes (high nibble: data types) .. 20 198

Table 10 – bejTupleL encoding for BEJ .. 21 199

Table 11 – bejTupleV encoding for BEJ ... 21 200

Table 12 – bejNull value encoding for BEJ ... 21 201

Table 13 – bejInteger value encoding for BEJ .. 21 202

Table 14 – bejEnum value encoding for BEJ .. 22 203

Table 15 – bejString value encoding for BEJ .. 22 204

Table 16 – bejString special character escape sequences .. 22 205

Table 17 – bejReal value encoding for BEJ .. 23 206

Table 18 – bejReal value encoding example .. 23 207

Table 19 – bejBoolean value encoding for BEJ .. 23 208

Table 20 – bejBytestring value encoding for BEJ ... 23 209

Table 21 – bejSet value encoding for BEJ .. 24 210

Table 22 – bejArray value encoding for BEJ ... 24 211

Table 23 – bejChoice value encoding for BEJ .. 24 212

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 7

Table 24 – bejPropertyAnnotation value encoding for BEJ .. 25 213

Table 25 – bejPropertyAnnotation value encoding example .. 25 214

Table 26 – bejRegistryItem value encoding for BEJ ... 26 215

Table 27 – bejResourceLink value encoding for BEJ ... 26 216

Table 28 – bejResourceLinkExpansion value encoding for BEJ .. 26 217

Table 29 – bejLocator value encoding .. 26 218

Table 30 – rdeOpID data structure ... 27 219

Table 31 – Redfish dictionary binary format ... 36 220

Table 32 – Dictionary entry example for a property supporting multiple formats 39 221

Table 33 – Redfish Operations ... 41 222

Table 34 – Redfish operation headers .. 43 223

Table 35 – Redfish operation request query options .. 48 224

Table 36 – Query parameter support requirement ... 49 225

Table 37 – PLDM for Redfish Device Enablement completion codes .. 54 226

Table 38 – HTTP codes for standard PLDM completion codes.. 56 227

Table 39 – Timing specification... 56 228

Table 40 – Sequence number dictionary indication .. 58 229

Table 41 – JSON data types supported in BEJ .. 58 230

Table 42 – BEJ deferred binding substitution parameters .. 59 231

Table 43 – Message annotation related property BEJ locator encoding .. 63 232

Table 44 – DummySimple dictionary (tabular form) ... 68 233

Table 45 – Initialization Workflow ... 79 234

Table 46 – Operation lifecycle overview ... 85 235

Table 47 – Task lifecycle overview ... 89 236

Table 48 – Task lifecycle state machine ... 93 237

Table 49 – Event lifecycle overview .. 105 238

Table 50 – PLDM for Redfish Device Enablement command codes .. 108 239

Table 51 – NegotiateRedfishParameters command format .. 110 240

Table 52 – NegotiateMediumParameters command format ... 112 241

Table 53 – GetSchemaDictionary command format ... 113 242

Table 54 – GetSchemaURI command format ... 114 243

Table 55 – GetResourceETag command format .. 115 244

Table 56 – GetOEMCount command format .. 115 245

Table 57 – GetOEMName command format .. 116 246

Table 58 – GetRegistryCount command format ... 116 247

Table 59 – GetRegistryDetails command format .. 117 248

Table 60 – SelectRegistryVersion command format .. 118 249

Table 61 – GetMessageRegistry command format .. 118 250

Table 62 – GetSchemaFile command format ... 119 251

Table 63 – RDEOperationInit command format .. 121 252

Table 64 – SupplyCustomRequestParameters command format .. 124 253

Table 65 – RetrieveCustomResponseParameters command format ... 128 254

Table 66 – RDEOperationComplete command format ... 129 255

Table 67 – RDEOperationStatus command format .. 129 256

Table 68 – RDEOperationKill command format .. 132 257

Table 69 – RDEOperationEnumerate command format ... 133 258

Table 70 – RDEMultipartSend command format .. 134 259

Table 71 – RDEMultipartReceive command format ... 136 260

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

8 Published Version 1.1.0

 261

 262

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 9

Foreword 263

The Platform Level Data Model (PLDM) for Redfish Device Enablement (DSP0218) was prepared by the 264
PMCI (Platform Management Components Intercommunications) Working Group of the DMTF. 265

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 266
management and interoperability. For information about the DMTF, see http://www.dmtf.org. 267

Acknowledgments 268

The DMTF acknowledges the following individuals for their contributions to this document: 269

Editor: 270

• Bill Scherer – Hewlett Packard Enterprise 271

Contributors: 272

• Richelle Ahlvers – Broadcom Inc. 273

• Jeff Autor – Hewlett Packard Enterprise 274

• Patrick Caporale – Lenovo 275

• Mike Garrett – Hewlett Packard Enterprise 276

• Jeff Hilland – Hewlett Packard Enterprise 277

• Yuval Itkin –NVIDIA Corporation 278

• Ira Kalman – Intel 279

• Deepak Kodihalli – IBM 280

• Eliel Louzoun – Intel 281

• Ben Lytle – Hewlett Packard Enterprise 282

• Rob Mapes – Marvell 283

• Balaji Natrajan – Microchip Technology Inc. 284

• Edward Newman – Hewlett Packard Enterprise 285

• Zvika Perry Peleg – Cavium 286

• Scott Phuong – Cisco Systems, Inc. 287

• Jeffrey Plank – Microchip Technology Inc. 288

• Joey Rainville – Hewlett Packard Enterprise 289

• Patrick Schoeller – Hewlett Packard Enterprise 290

• Hemal Shah – Broadcom Inc. 291

• Bob Stevens – Dell Inc. 292

• Richard Thomaiyar – Intel 293

• Bill Vetter – Lenovo 294

• Ryan Weldon – Marvell 295

• Henry Yang – Marvell 296

http://www.dmtf.org/

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

10 Published Version 1.1.0

Introduction 297

The Platform Level Data Model (PLDM) for Redfish Device Enablement Specification defines messages 298
and data structures used for enabling PLDM-capable devices to participate in Redfish-based 299
management without needing to support either JavaScript Object Notation (JSON, used for operation 300
data payloads) or [Secure] Hypertext Transfer Protocol (HTTP/HTTPS, used to transport and configure 301
operations). This document specifies how to convert Redfish operations into a compact binary-encoded 302
JSON (BEJ) format transported over PLDM, including the encoding and decoding of JSON and the 303
manner in which HTTP/HTTPS headers and query options may be supported under PLDM. In this 304
specification, Redfish management functionality is divided between the three roles: the client, which 305
initiates management operations; the RDE Device, which ultimately services requests; and the 306
management controller (MC), which translates requests and serves as an intermediary between the client 307
and the RDE Device. 308

Document conventions 309

Clause naming conventions 310

While all clauses of this specification are relevant from the perspective of both MCs and RDE Devices, a 311
few clauses are primarily targeted at one or the other. This document uses the following naming 312
conventions for clauses: 313

• The titles of clauses that are primarily of interest to MCs are prefixed with “[MC]”. 314

• The titles of clauses that are primarily of interest to RDE Devices are prefixed with “[Dev]” 315

• Unless explicitly marked, the subclauses of a clause marked as being primarily of interest to 316
one role are also primarily of interest to that same role 317

• Clauses that are of primary interest to more than one role are not prefixed 318

NOTE This specification is designed such that clients have no need to be aware whether the RDE Device whose 319
data they are interacting with is supporting Redfish directly or through an MC proxy. 320

Typographical conventions 321

The following typographical conventions are used in this document: 322

• Document titles are marked in italics. 323

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 11

Platform Level Data Model (PLDM) for Redfish Device 324

Enablement 325

1 Scope 326

This specification defines messages and data structures used for enabling PLDM devices to participate in 327
Redfish-based management without needing to support either JavaScript Object Notation (JSON, used 328
for operation data payloads) or [Secure] Hypertext Transfer Protocol (HTTP/HTTPS, used to transport 329
and configure operations). This document specifies how to convert Redfish operations into a compact 330
binary-encoded JSON (BEJ) format transported over PLDM, including the encoding and decoding of 331
JSON and the manner in which HTTP/HTTPS headers and query options shall be supported under 332
PLDM. This document does not specify the resources (data models) for use with RDE Devices or any 333
details of handling the Redfish security model. Transferring firmware images is not intended to be within 334
the scope of this specification as this function is the primary scope of DSP0267, the PLDM for Firmware 335
Update specification. 336

In this specification, Redfish management functionality is divided between the three roles: the client, 337
which initiates management operations; the RDE Device, which ultimately services requests; and the 338
management controller (MC), which translates requests and serves as an intermediary between the client 339
and the RDE Device. Of these roles, the RDE Device and MC roles receive extensive treatment in this 340
specification; however, the client role is no different from standard Redfish. An implementer of this 341
specification is only required to support the features of one of the RDE Device or MC roles. In particular, 342
an RDE Device is not required to implement MC-specific features and vice versa. 343

This specification is not a system-level requirements document. The mandatory requirements stated in 344
this specification apply when a particular capability is implemented through PLDM messaging in a manner 345
that is conformant with this specification. This specification does not specify whether a given system is 346
required to implement that capability. For example, this specification does not specify whether a given 347
system shall support Redfish Device Enablement over PLDM. However, if a system does support Redfish 348
Device Enablement over PLDM or other functions described in this specification, the specification defines 349
the requirements to access and use those functions over PLDM. 350

Portions of this specification rely on information and definitions from other specifications, which are 351
identified in clause 2. Several of these references are particularly relevant: 352

• DMTF DSP0266, Redfish Scalable Platforms Management API Specification Redfish Scalable 353
Platforms Management API Specification, defines the main Redfish protocols. 354

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, provides definitions of 355
common terminology, conventions, and notations used across the different PLDM specifications 356
as well as the general operation of the PLDM messaging protocol and message format. 357

• DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes Specification, defines the 358
values that are used to represent different type codes defined for PLDM messages. 359

• DMTF DSP0248, Platform Level Data Model (PLDM) for Platform Monitoring and Control 360
Specification, defines the event and Redfish PDR data structures referenced in this 361
specification. 362

2 Normative references 363

The following referenced documents are indispensable for the application of this document. For dated or 364
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 365

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

12 Published Version 1.1.0

For references without a date or version, the latest published edition of the referenced document 366
(including any corrigenda or DMTF update versions) applies. Earlier versions may not provide sufficient 367
support for this specification. 368

DMTF DSP0222, Network Controller Sideband Interface (NC-SI) Specification 1.1, 369
https://www.dmtf.org/sites/default/files/standards/documents/DSP0222_1.1.pdf 370

DMTF DSP0236, MCTP Base Specification 1.2, 371
http://dmtf.org/sites/default/files/standards/documents/DSP0236_1.2.pdf 372

DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification 1.1, 373
http://dmtf.org/sites/default/files/standards/documents/DSP0240_1.1.pdf 374

DMTF DSP0241, Platform Level Data Model (PLDM) Over MCTP Binding Specification 1.0, 375
http://dmtf.org/sites/default/files/standards/documents/DSP0241_1.0.pdf 376

DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes Specification 1.3, 377
http://dmtf.org/sites/default/files/standards/documents/DSP0245_1.3.pdf 378

DMTF DSP0248, Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification 379
1.1, http://dmtf.org/sites/default/files/standards/documents/DSP0248_1.1.pdf 380

DMTF DSP0266, Redfish Scalable Platforms Management API Specification 1.6, 381
http://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.pdf 382

DMTF DSP0267, PLDM for Firmware Update Specification 1.0, 383
https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.0.pdf 384

DMTF DSP4004, DMTF Release Process 2.4, 385
http://dmtf.org/sites/default/files/standards/documents/DSP4004_2.4.pdf 386

ECMA International Standard ECMA-404, The JSON Data Interchange Syntax, http://www.ecma-387
international.org/publications/files/ECMA-ST/ECMA-404.pdf 388

IETF RFC2781, UTF-16, an encoding of ISO 10646, February 2000, 389
http://www.ietf.org/rfc/rfc2781.txt 390

IETF STD63, UTF-8, a transformation format of ISO 10646 http://www.ietf.org/rfc/std/std63.txt 391

IETF RFC4122, A Universally Unique Identifier (UUID) URN Namespace, July 2005, 392
http://www.ietf.org/rfc/rfc4122.txt 393

IETF RFC4646, Tags for Identifying Languages, September 2006, 394
http://www.ietf.org/rfc/rfc4646.txt 395

IETF RFC7231, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, 396
https://tools.ietf.org/html/rfc7231 397

IETF RFC 7232, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests, 398
http://www.ietf.org/rfc/rfc7232.txt 399

IETF RFC 7234, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Caching, 400
https://tools.ietf.org/rfc/rfc7234.txt 401

ISO 8859-1, Final Text of DIS 8859-1, 8-bit single-byte coded graphic character sets — Part 1: Latin 402
alphabet No.1, February 1998 403

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 404
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 405

https://www.dmtf.org/sites/default/files/standards/documents/DSP0222_1.1.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0236_1.2.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0240_1.1.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0241_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0245_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0248_1.1.1.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP4004_2.4.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/std/std63.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4646.txt
https://tools.ietf.org/html/rfc7231
http://www.ietf.org/rfc/rfc7232.txt
https://tools.ietf.org/rfc/rfc7234.txt
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 13

ITU-T X.690 (08/2015), Information technology – ASN.1 encoding rules: Specification of Basic Encoding 406
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), 407
http://handle.itu.int/11.1002/1000/12483 408

Open Data Protocol, https://www.oasis-open.org/standards#odatav4.0 409

3 Terms and definitions 410

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 411
are defined in this clause. 412

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), 413
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 414
in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, 415
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 416
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 417
alternatives shall be interpreted in their normal English meaning. 418

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as 419
described in ISO/IEC Directives, Part 2, Clause 6. 420

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 421
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 422
not contain normative content. Notes and examples are always informative elements. 423

Refer to DSP0240 for terms and definitions that are used across the PLDM specifications, DSP0248 for 424
terms and definitions used specifically for PLDM Monitoring and Control, and to DSP0266 for terms and 425
definitions specific to Redfish. For the purposes of this document, the following additional terms and 426
definitions apply. 427

3.1 428

Action 429

Any standard Redfish action defined in a standard Redfish Schema or any custom OEM action defined in 430
an OEM schema extension 431

3.2 432

Annotation 433

Any of several pieces of metadata contained within BEJ or JSON data. Rather than being defined as part 434
of the major schema, annotations are defined in a separate, global annotation schema. 435

3.3 436

Client 437

Any agent that communicates with a management controller to enable a user to manage Redfish-438
compliant systems and RDE Devices 439

3.4 440

Collection 441

A Redfish container holding an array of independent Redfish resource Members that in turn are typically 442
represented by a schema external to the one that contains the collection itself. 443

3.5 444

Device Component 445

A top-level entry point into the schema hierarchy presented by an RDE Device 446

https://www.oasis-open.org/standards%23odatav4.0

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

14 Published Version 1.1.0

3.6 447

Dictionary 448

A binary lookup table containing translation information that allows conversion between BEJ and JSON 449
formats of data for a given resource 450

3.7 451

Discovery 452

The process by which an MC determines that an RDE Device supports PLDM for Redfish Device 453
Enablement 454

3.8 455

Major Schema 456

The primary schema defining the format of a collection of data, usually a published standard Redfish 457
schema. 458

3.9 459

Member 460

Any of the independent resources contained within a collection 461

3.10 462

Metadata 463

Information that describes data of interest, such as its type format, length in bytes, or encoding method 464

3.11 465

OData 466

The Open Data protocol, a source of annotations in Redfish, as defined by OASIS. 467

3.12 468

OEM Extension 469

Any manufacturer-specific addition to major schema 470

3.13 471

Property 472

An individual datum contained within a Resource 473

3.14 474

RDE Device 475

Any PLDM terminus containing an RDE Provider that requires the intervention of an MC to receive 476
Redfish communications 477

3.15 478

RDE Provider 479

Any RDE Device that responds to RDE Operations. See also Redfish Provider. 480

3.16 481

RDE Operation 482

The sequence of PLDM messages and operations that represent a Redfish Operation being executed by 483
an MC and/or an RDE Device on behalf of a client. See also Redfish Operation. 484

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 15

3.17 485

Redfish Operation 486

Any Redfish operation transmitted via HTTP or HTTPS from a client to an MC for execution. See also 487
RDE Operation. 488

3.18 489

Redfish Provider 490

Any entity that responds to Redfish Operations. See also RDE Provider. 491

3.19 492

Registration 493

The process of enabling a compliant RDE Device with an MC to be an RDE Provider 494

3.20 495

Resource 496

A hierarchical set of data organized in the format specified in a Redfish Schema. 497

3.21 498

Schema 499

Any regular structure for organizing one or more fields of data in a hierarchical format 500

3.22 501

Task 502

Any Operation for which an RDE Device cannot complete execution in the time allotted to respond to the 503
PLDM triggering command message sent from the MC and for which the MC creates standard Redfish 504
Task and TaskMonitor objects 505

3.23 506

Triggering Command 507

The PLDM command that supplies the last bit of data needed for an RDE Device to begin execution of an 508
RDE Operation 509

3.24 510

Truncated 511

When applied to a dictionary, one that is limited to containing conversion information for properties 512
supported by an RDE Device 513

4 Symbols and abbreviated terms 514

Refer to DSP0240 for symbols and abbreviated terms that are used across the PLDM specifications. For 515
the purposes of this document, the following additional symbols and abbreviated terms apply. 516

4.1 517

BEJ 518

Binary Encoded JSON, a compressed binary format for encoding JSON data 519

4.2 520

JSON 521

JavaScript Object Notation 522

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

16 Published Version 1.1.0

4.3 523

RDE 524

Redfish Device Enablement 525

5 Conventions 526

Refer to DSP0240 for conventions, notations, and data types that are used across the PLDM 527
specifications. 528

5.1 Reserved and unassigned values 529

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other 530
numeric ranges are reserved for future definition by the DMTF. 531

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 532
(zero) and ignored when read. 533

5.2 Byte ordering 534

As with all PLDM specifications, unless otherwise specified, the byte ordering of multibyte numeric fields 535
or multibyte bit fields in this specification shall be "Little Endian": The lowest byte offset holds the least 536
significant byte and higher offsets hold the more significant bytes. 537

5.3 PLDM for Redfish Device Enablement data types 538

Table 1 lists additional abbreviations and descriptions for data types that are used in message field and 539
data structure definitions in this specification. 540

Table 1 – PLDM for Redfish Device Enablement data types and structures 541

Data Type Interpretation

varstring A multiformat text string per clause 5.3.1

schemaClass An enumeration of the various schemas associated with a collection of data, encoded per
clause 5.3.2

nnint A nonnegative integer encoded for BEJ per clause 5.3.3

bejEncoding JSON data encoded for BEJ per clause 5.3.4

bejTuple A BEJ tuple, encoded per clause 5.3.5

bejTupleS A BEJ Sequence Number tuple element, encoded per clause 5.3.6

bejTupleF A BEJ Format tuple element, encoded per clause 5.3.7

bejTupleL A BEJ Length tuple element, encoded per clause 5.3.8

bejTupleV A BEJ Value tuple element, encoded per clause 5.3.9

bejNull Null data encoded for BEJ per clause 5.3.10

bejInteger Integer data encoded for BEJ per clause 5.3.11

bejEnum Enumeration data encoded for BEJ per clause 5.3.12

bejString String data encoded for BEJ per clause 5.3.13

bejReal Real data encoded for BEJ per clause 5.3.14

bejBoolean Boolean data encoded for BEJ per clause 5.3.15

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 17

Data Type Interpretation

bejBytestring Bytestring data encoded for BEJ per clause 5.3.16

bejSet Set data encoded for BEJ per clause 5.3.17

bejArray Array data encoded for BEJ per clause 5.3.18

bejChoice Choice data encoded for BEJ per clause 5.3.19

bejPropertyAnnotati
on

Property Annotation encoded for BEJ per clause 5.3.20

bejRegistryItem A Redfish Registry Message encoded for BEJ per clause 5.3.21

bejResourceLink Resource Link data encoded for BEJ per clause 5.3.22

bejResourceLinkEx
pansion

Resource Link data expanded to include schema data encoded for BEJ per clause 5.3.23

bejLocator An intra-schema locator for Operation targeting; formatted per clause 5.3.24

rdeOpID An Operation identifier used to link together the various command messages that comprise
a single RDE Operation; formatted per clause 5.3.25

5.3.1 varstring PLDM data type 542

The varstring PLDM data type encapsulates a PLDM string that can be encoded in of any of several 543
formats. 544

Table 2 – varstring data structure 545

Type Description

enum8 stringFormat

Values: { UNKNOWN = 0, ASCII = 1, UTF-8 = 2, UTF-16 = 3, UTF-16LE = 4, UTF-16BE =
5 }

uint8 stringLengthBytes

Including null terminator

variable stringData

Must be null terminated

5.3.2 schemaClass PLDM data type 546

The schemaClass PLDM data type enumerates the different categories of schemas used in Redfish. RDE 547
uses 5 main classes of schemas: 548

• MAJOR: the main schema containing the data for a Redfish resource. This class covers the 549
vast majority of schemas for Redfish resources. 550

• EVENT: the standard DMTF-published event schema, for occurrences that clients may wish to 551
be notified about. 552

• ANNOTATION: the standard DMTF-published annotation schema that captures metadata about 553
a major schema or payload. This schemaClass shall not be used as the primary schema for 554
BEJ encodings as annotations are specially encoded alongside the primary schema. 555

• COLLECTION_MEMBER_TYPE: for resources that correspond to Redfish collections, this 556
class enables access to the major schema for members of that collection from the context of the 557
collection resource. (Unlike regular resources, collections in Redfish are unversioned and 558
contain multiple members.) This schemaClass shall not be used for BEJ encodings. 559

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

18 Published Version 1.1.0

• ERROR: the standard DMTF-published error schema that documents an extended error when a 560
Redfish operation cannot be completed. 561

• REGISTRY: A device-specific collection of Redfish registry messages used for errors and 562
events. This schemaClass shall not be used as the primary schema for BEJ encodings as 563
registry items are specially encoded alongside the primary schema via the bejRegistryItem type 564
(see 5.3.21). 565

Table 3 – schemaClass enumeration 566

Type Description

enum8 schemaType

Values: { MAJOR = 0, EVENT = 1, ANNOTATION = 2, COLLECTION_MEMBER_TYPE =
3, ERROR = 4, REGISTRY = 5 }

5.3.3 nnint PLDM data type 567

The nnint PLDM data type captures the BEJ encoding of nonnegative Integers via the following encoding: 568

The first byte shall consist of metadata for the number of bytes needed to encode the numeric value in 569
the remaining bytes. Subsequent bytes shall contain the encoded value in little-endian format. As 570
examples, the value 65 shall be encoded as 0x01 0x41; the value 130 shall be encoded as 0x01 0x82; 571
and the value 1337 shall be encoded as 0x02 0x39 0x05. 572

Table 4 – nnint encoding for BEJ 573

Type Description

uint8 Length (N) in bytes of data for the integer to be encoded

uint8 Integer data [0] (Least significant byte)

uint8 Integer data [1] (Second least significant byte)

… …

uint8 Integer data [N-1] (Most significant byte)

5.3.4 bejEncoding PLDM data type 574

The bejEncoding PLDM data type captures an overall hierarchical BEJ-encoded block of hierarchical 575
data. 576

Table 5 – bejEncoding data structure 577

Type Description

ver32 BEJ Version; shall be either 1.0.0 (0xF1F0F000) or 1.1.0 (0xF1F1F000) for this
specification. The actual version represented shall be at least as high as the minimum
version required to support any BEJ PLDM data types included in the encoding. All BEJ
PLDM data types are version 1.0 unless explicitly marked as requiring a higher version.

RDE devices shall not use a BEJ encoding version higher than that supported by the MC.
MCs shall not use a BEJ encoding version with an RDE Device higher than the version
supported by that device.

uint16 Reserved for BEJ flags

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 19

Type Description

schemaClass Defines the primary schema type for the data encoded in bejTuple below. Shall be one of
MAJOR, EVENT, or ERROR.

bejTuple The encoded tuple data, defined in clause 5.3.5

5.3.5 bejTuple PLDM data type 578

The bejTuple PLDM data type encapsulates all the data for a single piece of data encoded in BEJ format. 579

Table 6 – bejTuple encoding for BEJ 580

Type Description

bejTupleS Tuple element for the Sequence Number field, defined in clause 5.3.6 and described in
clause 8.2.1

bejTupleF Tuple element for the Format field, defined in clause 5.3.7 and described in clause 8.2.2

bejTupleL Tuple element for the Length field, defined in clause 5.3.8 and described in clause 8.2.3

bejTupleV Tuple element for the Value field, defined in clause 5.3.9 and described in clause 8.2.4

5.3.6 bejTupleS PLDM data type 581

The bejTupleS PLDM data type captures the Sequence Number BEJ tuple element described in clause 582
8.2.1. 583

Table 7 – bejTupleS encoding for BEJ 584

Type Description

nnint Sequence number indicating the specific data item contained within this tuple. The
sequence number is encoded as a nonnegative integer (nnint type) and is enhanced to
indicate the dictionary to which it refers. More specifically, the low-order bit of the encoded
integer is metadata used to select the dictionary within which the property encoded in the
tuple may be found, and shall be one of the following values:

 0b: Primary schema (including any OEM extensions) dictionary as was selected in the
outermost bejEncoding PLDM data type element containing this bejTupleS

 1b: Annotation schema dictionary

The remainder of the integer corresponds to the sequence number encoded in the
dictionary. Dictionary encodings do not include the dictionary selector flag bit.

5.3.7 bejTupleF PLDM data type 585

The bejTupleF PLDM data type captures the Format BEJ tuple element described in clause 8.2.2 586

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

20 Published Version 1.1.0

Table 8 – bejTupleF encoding for BEJ 587

Type Description

bitfield8 Format code; the high nibble represents the data type and the low nibble represents a
series of flag bits

[7:4] - principal data type; see Table 9 below for values

[3] - reserved flag. 1b indicates the flag is set

[2] - nullable_property flag ***. 1b indicates the flag is set

[1] - read_only_property_and_top_level_annotation flag **. 1b indicates the flag is set

 [0] - deferred_binding flag *. 1b indicates the flag is set

* The deferred_binding flag shall only be set in conjunction with BEJ String data and shall never be set 588
when encoding the format of a property inside a dictionary. See clause 8.3. 589

** The nullable property flag shall only be set when encoding the format of a property inside a dictionary. 590
See clause 7.2.3.2. 591

*** The read_only_property_and_top_level_annotation flag has distinct meanings when in or not in the 592
context of a dictionary. In a dictionary, it means that a property is read-only. See clause 7.2.3.2. In a BEJ 593
encoding, it marks a nested top-level annotation. See clause 8.4.4.1. Decoding context thus uniquely 594
determines the meaning of this flag bit. 595

Table 9 – BEJ format codes (high nibble: data types) 596

Code BEJ Type PLDM Type in Value Tuple Field *

0000b BEJ Set bejSet

0001b BEJ Array bejArray

0010b BEJ Null bejNull

0011b BEJ Integer bejInteger

0100b BEJ Enum bejEnum

0101b BEJ String bejString

0110b BEJ Real bejReal

0111b BEJ Boolean bejBoolean

1000b BEJ Bytestring bejBytestring

1001b BEJ Choice bejChoice

1010b BEJ Property Annotation bejPropertyAnnotation

1011b BEJ Registry Item bejRegistryItem

1100b –
1101b

Reserved n/a

1110b BEJ Resource Link bejResourceLink

1111b BEJ Resource Link Expansion bejResourceLinkExpansion

5.3.8 bejTupleL PLDM data type 597

The bejTupleL PLDM data type captures the Length BEJ tuple element described in clause 8.2.3. 598

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 21

Table 10 – bejTupleL encoding for BEJ 599

Type Description

nnint Length in bytes of value tuple field

5.3.9 bejTupleV PLDM data type 600

The bejTupleV PLDM data type captures the Value BEJ tuple element described in clause 8.2.4. 601

Table 11 – bejTupleV encoding for BEJ 602

Type Description

bejNull,
bejInteger,
bejEnum,
bejString,
bejReal,
bejBoolean,
bejBytestring,
bejSet,
bejArray,
bejChoice,
bejPropertyAnnotation,
bejResourceLink, or
bejResourceLinkExpansion

Value tuple element; exact type shall match that of the Format tuple
element contained within the same tuple per Table 9. For example, if a
tuple has 0011b (BEJ Integer) as the Format tuple element, then the data
encoded in the value tuple element will be of type bejInteger.

5.3.10 bejNull PLDM data type 603

The length tuple value for bejNull data shall be zero. 604

Table 12 – bejNull value encoding for BEJ 605

Type Description

(none) No fields

5.3.11 bejInteger PLDM data type 606

Integer data shall be encoded as the shortest sequence of bytes (little endian) that represent the value in 607
twos complement encoding. This implies that if the value is positive and the high bit (0x80) of the MSB in 608
an unsigned representation would be set, the unsigned value will be prefixed with a new null (0x00) MSB 609
to mark the value as explicitly positive. 610

Table 13 – bejInteger value encoding for BEJ 611

Type Description

uint8 Data [0] (Least significant byte of twos complement encoding of integer)

uint8 Data [1] (Second least significant byte of twos complement encoding of integer)

… …

uint8 Data [N-1] (Most significant byte of twos complement encoding of integer)

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

22 Published Version 1.1.0

5.3.12 bejEnum PLDM data type 612

Table 14 – bejEnum value encoding for BEJ 613

Type Description

nnint Integer value of the sequence number for the enumeration option selected

5.3.13 bejString PLDM data type 614

All BEJ strings shall be UTF-8 encoded and null-terminated. 615

Table 15 – bejString value encoding for BEJ 616

Type Description

uint8 Data [0] (First character of string data)

uint8 Data [1] (Second character of string data)

… …

uint8 Data [N-1] (Last character of string data)

uint8 Null terminator 0x00

The special characters that require escaping in JSON format shall also be escaped in bejString 617
encodings, using the backslash character (‘\’): 618

Table 16 – bejString special character escape sequences 619

Character Escape sequence

Double quote \”

Backslash \\

Forward slash \/

Backspace \b

Form feed \f

Line feed \n

Carriage return \r

NOTE Missing escape characters will likely cause JSON text to be malformed. RDE Devices and MCs should 620
validate correctness of BEJ String data to avoid this occurrence. 621

5.3.14 bejReal PLDM data type 622

BEJ encoding for whole, fract, and exp that represent the base 10 encoding whole.fract × 10exp. 623

NOTE There is no need to express special values (positive infinity, negative infinity, NaN, negative zero) because 624
these cannot be expressed in JSON. 625

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 23

Table 17 – bejReal value encoding for BEJ 626

Type Description

nnint Length of whole

bejInteger whole (includes sign for the overall real number)

nnint Leading zero count for fract

nnint fract

nnint Length of exp

bejInteger exp (includes sign for the exponent)

In order to distinguish between the cases where the exponent is zero and the exponent is omitted 627
entirely, an omitted exponent shall be encoded with a length of zero bytes; the exponent of zero shall be 628
encoded with a single byte (of value zero). (These cases are numerically identical but visually distinct in 629
standard text-based JSON encoding.) 630

As an example, Table 18 shows the encoding of the JSON number “1.0005e+10”: 631

Table 18 – bejReal value encoding example 632

Type Bytes Description

nnint 0x01 0x01 Length of whole (1 byte)

bejInteger 0x01 whole (1)

nnint 0x01 0x03 leading zero count for fract (3)

nnint 0x01 0x05 fract (5)

nnint 0x01 0x01 Length of exp (1)

bejInteger 0x0A Exp (10)

5.3.15 bejBoolean PLDM data type 633

The bejBoolean PLDM data type captures boolean data. 634

Table 19 – bejBoolean value encoding for BEJ 635

Type Description

uint8 Boolean value { 0x00 = logical false, all other = logical true }

5.3.16 bejBytestring PLDM data type 636

The bejBytestring PLDM data type captures a generic ordered sequence of bytes. As binary data and not 637
a true string type, no null terminator should be applied. 638

Table 20 – bejBytestring value encoding for BEJ 639

Type Description

uint8 Data [0] (First byte of string data)

uint8 Data [1] (Second byte of string data)

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

24 Published Version 1.1.0

Type Description

… …

uint8 Data [N-1] (Last byte of string data)

5.3.17 bejSet PLDM data type 640

The bejSet PLDM data type captures a JSON Object that in turn gathers a series of properties that may 641
be of disparate types. 642

Table 21 – bejSet value encoding for BEJ 643

Type Description

nnint Count of set elements

bejTuple First set element

bejTuple Second set element

… …

bejTuple Nth set element (N = Count)

5.3.18 bejArray PLDM data type 644

The bejArray PLDM data type captures a JSON Array that in turn gathers an ordered sequence of 645
properties all of a common type. 646

Table 22 – bejArray value encoding for BEJ 647

Type Description

nnint Count of array elements

bejTuple First array element

bejTuple Second array element

… …

bejTuple Nth array element (N = Count)

5.3.19 bejChoice data PLDM type 648

The bejChoice PLDM data type captures JSON data encoded when it can be of multiple formats. 649
Inserting the bejChoice PLDM type alerts a decoding process that multiformat data is coming up in the 650
BEJ datastream. 651

Table 23 – bejChoice value encoding for BEJ 652

Type Description

bejTuple Selected option

5.3.20 bejPropertyAnnotation PLDM data type 653

The bejPropertyAnnotation PLDM data type captures the encoding of a property annotation in the form 654
property@annotationtype.annotationname. When the bejTupleF format code is set to 655

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 25

bejPropertyAnnotation, the sequence number bejTupleS in the outer bejTuple shall be for the annotated 656
property. The value bejTupleV of the outer bejTuple shall be as follows: 657

Table 24 – bejPropertyAnnotation value encoding for BEJ 658

Type Description

bejTupleS Sequence number for annotation property name, including the schema selector bit to mark
this as being from the annotation dictionary, as defined in clause 5.3.6

bejTupleF Format for annotation data applying to the property indicated by the sequence number
above, as defined in clause 5.3.7. Implementers should be aware that this format need not
match the format for the annotated property.

bejTupleL Length in bytes of data in the bejTupleV field following, as defined in clause 5.3.8

bejTupleV Annotation data applying to the property indicated by the sequence number above, as
defined in clause 5.3.9

As an example, Table 25 shows the encoding of the annotation: 659

“Status@Redfish.RequiredOnCreate” : false 660

Table 25 – bejPropertyAnnotation value encoding example 661

Type Bytes Description

bejTupleS 0x01 0x12 Sequence number for “Status” in the current schema, The low-order bit
is clear to show that this sequence number is not from the annotation
dictionary.

Note The actual sequence number provided here is for illustrative
purposes only and may not reflect the current number for
“Status” in any particular dictionary

bejTupleF 0x0A BEJ Property Annotation

bejTupleL 0x01 0x06 Length of the annotation data. The remaining entries in this table
correspond to the bejTupleV entry, which in this case is the Boolean
RequiredOnCreate data.

Note; The remaining rows shown in this example are collectively the bejTupleV field for the first tuple above.

bejTupleS 0x01 0x27 Sequence number for “Redfish.RequiredOnCreate”, The low-order bit
is set to mark this sequence number as being from the annotation
dictionary.

Note The actual sequence number provided here is for illustrative
purposes only and may not reflect the current number for
“Redfish.RequiredOnCreate”

bejTupleF 0x01 BEJ boolean

bejTupleL 0x01 0x01 Length of the annotation value: one byte

bejTupleV 0x00 False

5.3.21 bejRegistryItem PLDM data type 662

The bejRegistryItem PLDM data type represents a registry message item, referenced in another schema 663
such as event, error, or message. The bejRegistryItem PLDM data type requires BEJ version 1.1.0 (see 664
clause 5.3.4). 665

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

26 Published Version 1.1.0

Table 26 – bejRegistryItem value encoding for BEJ 666

Type Description

bejTupleS The sequence number for a message item from the registry dictionary.

This sequence number shall be interpreted as from the registry dictionary, NOT from the
primary schema for the enclosing bejEncoding

5.3.22 bejResourceLink PLDM data type 667

The bejResourceLink PLDM data type represents the URI that links to another Redfish Resource, 668
specified via a resource ID for the target Redfish Resource PDR. When the bejTupleF format code is set 669
to BEJ Resource Link in BEJ-encoded data, the four bejTupleF flag bits shall each be 0b. 670

Table 27 – bejResourceLink value encoding for BEJ 671

Type Description

nnint ResourceID of Redfish Resource PDR for linked schema

5.3.23 bejResourceLinkExpansion PLDM data type 672

The bejResourceLinkExpansion PLDM data type captures a link to another Redfish Resource, such as a 673
related Redfish resource, that is expanded inline in response to a $expand Redfish request query 674
parameter (see clause 7.2.4.3.3). When the bejTupleF format code is set to BEJ Resource Link 675
Expansion in BEJ-encoded data, the bejTupleF flag bits must not be set. 676

Table 28 – bejResourceLinkExpansion value encoding for BEJ 677

Type Description

nnint ResourceID of Redfish Resource PDR for linked schema

bejEncoding BEJ data for expanded resource

5.3.24 bejLocator PLDM data type 678

The use of BEJ locators is detailed in clause 8.7. All sequence numbers within a BEJ locator shall 679
reference the same schema dictionary. As each of the sequence numbers is of potentially different length, 680
reading a sequence number in a BEJ locator must be done by first reading all previous sequence 681
numbers in the locator. As is standard for BEJ sequence number assignment, if sequence number M 682
corresponds to an array, sequence number M + 1 (if present) will correspond to a zero-based index within 683
the array. 684

Table 29 – bejLocator value encoding 685

Type Description

nnint LengthBytes

Total length in bytes of the N sequence numbers comprising this locator

bejTupleS Sequence number [0]

bejTupleS Sequence number [1]

bejTupleS Sequence number [2]

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 27

Type Description

… …

bejTupleS Sequence number [N - 1]

5.3.25 rdeOpID PLDM data type 686

The rdeOpID PLDM data type is an Operation identifier that can is used to link together the various 687
command messages that comprise a single RDE Operation. 688

Table 30 – rdeOpID data structure 689

Type Description

uint16 OperationIdentifier

Numeric identifier for the Operation. Operation identifiers with the most significant bit set
(1b) are reserved for use by the MC when it instantiates Operations. Operation identifiers
with the most significant bit clear (0b) are reserved for use by the RDE Device when it
instantiates Operations in response to commands from other protocols that it chooses to
make visible via RDE. The value 0x0000 is reserved to indicate no Operation.

6 PLDM for Redfish Device Enablement version 690

The version of this Platform Level Data Model (PLDM) for Redfish Device Enablement Specification shall 691
be 1.1.0 (major version number 1, minor version number 1, update version number 0, and no alpha 692
version). 693

In response to the GetPLDMVersion command described in DSP0240, the reported version for Type 6 694
(PLDM for Redfish Device Enablement, this specification) shall be encoded as 0xF1F1F000. 695

7 PLDM for Redfish Device Enablement overview 696

This specification describes the operation and format of request messages (also referred to as 697
commands) and response messages for performing Redfish management of RDE Devices contained 698
within a platform management subsystem. These messages are designed to be delivered using PLDM 699
messaging. 700

Traditionally, management has been affected via myriad proprietary approaches for limited classes of 701
devices. These disparate solutions differ in feature sets and APIs, creating implementation and 702
integration issues for the management controller, which ends up needing custom code to support each 703
one separately. This consumes resources both for development of the custom code and for memory in 704
the management controller to support it. Redfish simplifies matters by enabling a single approach to 705
management for all RDE Devices. 706

Implementing the Redfish protocol as defined by DSP0266 is a big challenge when passing requests to 707
and from devices such as network adapters that have highly limited processing capabilities and memory 708
space. Redfish’s messages are prohibitively large because they are encoded for human readability in 709
HTTP/HTTPS using JavaScript Object Notation (JSON). This specification details a compressed 710
encoding of Redfish payloads that is suitable for such devices. It further identifies a common method to 711
use PLDM to communicate these messages between a management controller and the devices that host 712
the data the operations target. The functionality of providing a complete Redfish service is distributed 713
across components that function in different roles; this is discussed in more detail in clause 7.1.1. 714

The basic format for PLDM messages is defined in DSP0240. The specific format for carrying PLDM 715
messages over a particular transport or medium is given in companion documents to the base 716

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

28 Published Version 1.1.0

specification. For example, DSP0241 defines how PLDM messages are formatted and sent using MCTP 717
as the transport. Similarly, DSP0222 defines how PLDM messages are formatted and sent using NC-SI 718
and RBT as the transport. The payloads for PLDM messages are application specific. The Platform Level 719
Data Model (PLDM) for Redfish Device Enablement specification defines PLDM message payloads that 720
support the following items and capabilities: 721

• Binary Encoded JSON (BEJ) 722

– Simplified compact binary format for communicating Redfish JSON data payloads 723

– Captures essential schema information into a compact binary dictionary so that it does not need 724
to be transferred as part of message payloads 725

– Defined locators allow for selection of a specific object or property inside the schema’s data 726
hierarchy to perform an operation 727

– Encoders and decoders account for the unordered nature of BEJ and JSON properties 728

• RDE Device Registration for Redfish 729

– A mechanism to determine the schemas the RDE Device supports, including OEM custom 730
extensions 731

– A mechanism to determine parameters for limitations on the types of communication the RDE 732
Device can perform, the number of outstanding operations it can support, and other 733
management parameters 734

• Messaging Support for Redfish Operations via BEJ 735

– Read, Update, Post, Create, Delete Operations 736

– Asynchrony support for Operations that spawn long-running Tasks 737

– Notification Events for completion of long-running Tasks and for other RDE Device-specific 738
happenings1 739

– Advanced operations such as pagination and ETag support 740

7.1 Redfish Provider architecture overview 741

In PLDM for Redfish Device Enablement, standard Redfish messages are generated by a Redfish client 742
through interactions with a user or a script, and communicated via JavaScript Object Notation (JSON) 743
over HTTP or HTTPS to a management controller (MC). The MC encodes the message into a binary 744
format (BEJ) and sends it over PLDM to an appropriate RDE Device for servicing. The RDE Device 745
processes the message and returns the response back over PLDM to the MC, again in binary format. 746
Next, the MC decodes the response and constructs a standard Redfish response in JSON over HTTP or 747
HTTPS for delivery back to the client. 748

7.1.1 Roles 749

RDE divides the processing of Redfish Operations into three roles as depicted in Figure 1. 750

1 The format for the data contained within Events is defined in DSP0248. The way that events are used is
defined in this specification.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 29

Client

Server

Management
Controller (MC)

Redfish over HTTP/HTTPS

RDE Device

PLDM
for RDE

 751

Figure 1 – RDE Roles 752

The Client is a standard Redfish client, and needs no modifications to support operations on the data for 753
a device using the messages defined in this specification. 754

The MC functions as a proxy Redfish Provider for the RDE Device. In order to perform this role, the MC 755
discovers and registers the RDE Device by interrogating its schema support and building a representation 756
of the RDE Device’s management topology. After this is done, the MC is responsible for receiving Redfish 757
messages from the client, identifying the RDE Device that supplies the data relevant to the request, 758
encoding any payloads into the binary BEJ format, and delivering them to the RDE Device via PLDM. 759
Finally, the MC is responsible for interacting with the RDE Device as needed to get the response to the 760
Redfish message, translating any relevant bits from BEJ back to the JSON format used by Redfish, and 761
returning the result back to the client. The MC may also act as a client to manage RDE Devices; for this 762
purpose, the MC may communicate directly with the RDE Device using BEJ payloads and the PLDM for 763
Redfish Device Enablement commands detailed in this specification. 764

The RDE Device is an RDE Provider. To perform this role, the RDE Device must define a management 765
topology for the resources that organize the data it provides and communicate it to the MC during the 766
discovery and registration process. The RDE Device is also responsible for receiving Redfish messages 767
encoded in the binary BEJ format over PLDM and sending appropriate responses back to the MC; these 768
messages can correspond to a variety of operations including reads, writes, and schema-defined actions. 769

7.2 Redfish Device Enablement concepts 770

This specification relies on several key concepts, detailed in the subsequent clauses. 771

7.2.1 RDE Device discovery and registration 772

The processes by which an RDE Device becomes known to the MC and thus visible to clients are known 773
as Discovery and Registration. Discovery consists of the MC becoming aware of an RDE Device and 774
recognizing that it supports Redfish management. Registration consists of the MC interrogating specific 775
details of the RDE Device’s Redfish capabilities and then making it visible to external clients. An example 776
ladder diagram and a typical workflow for the discovery and registration process may be found in clause 777
9.1. 778

7.2.1.1 RDE Device discovery 779

The first step of the discovery process begins when the MC detects the presence of a PLDM capable 780
device on a particular medium. The technique by which the MC determines that a device supports PLDM 781

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

30 Published Version 1.1.0

is outside the scope of this specification; details of this process may be found in the PLDM base 782
specification (DSP0240). Similarly, the technique by which the MC may determine that a device found on 783
one medium is the same device it has previously found on another medium is outside the scope of this 784
specification. 785

After the MC knows that a device supports PLDM, the next step is to determine whether the device 786
supports appropriate versions of required PLDM Types. For this purpose, the MC should use the base 787
PLDM GetPLDMTypes command. In order to advertise support for PLDM for Redfish Device Enablement, 788
a device shall respond to the GetPLDMTypes request with a response indicating that it supports both 789
PLDM for Platform Monitoring and Control (type 2, DSP0248) and PLDM for Redfish Device Enablement 790
(type 6, this specification). If it does, the MC will recognize the device as an RDE Device. 791

Next, the MC may use the base PLDM GetPLDMCommands command once for each of the Monitoring 792
and Control and Redfish Device Enablement PLDM Types to verify that the RDE Device supports the 793
required commands. The required commands for each PLDM Type are listed in Table 50. As with the 794
GetPLDMTypes command, use of this command is optional if the MC has some other technique to 795
understand which commands the RDE Device supports. At this point, RDE Device discovery at the PLDM 796
level is complete. 797

Once the MC has discovered the RDE Device, it invokes the NegotiateRedfishParameters command 798
(clause 11.1) to negotiate baseline details for the RDE Device. This step is mandatory unless the MC has 799
previously issued the NegotiateRedfishParameters command to the RDE Device on a different medium. 800
Baseline Redfish parameters include the following: 801

• The RDE Device’s RDE Provider name 802

• The RDE Device’s support for concurrency. This is the number of Operations the RDE Device 803
can support simultaneously 804

• RDE feature support 805

The final step in discovery is for the MC to invoke the NegotiateMediumParameters command (clause 806
11.2) in order to negotiate communication details for the RDE Device. The MC invokes this command on 807
each medium it plans to communicate with the RDE Device on as it discovers the RDE Device on that 808
medium. Medium details include the following: 809

The size of data that can be sent in a single message on the medium 810

7.2.1.2 RDE Device registration 811

In the registration process, the MC interrogates the RDE Device about the hierarchy of Redfish resources 812
it supports in order to act as a proxy, transparently mirroring them to external clients. The MC may skip 813
registration of the RDE Device if the PDR/Dictionary signature retrieved via the 814
NegotiateRedfishParameters command matches one previously retrieved and the MC still has the PDRs 815
and dictionaries cached. 816

In PLDM for Redfish Device Enablement, each
2
 Redfish resource is uniquely identified by a Resource 817

Identifier that maps from the identifier to a collection of schemas that define the data for it. The identifiers 818
in turn are collected together into Redfish Resource PDRs; resources that share a common set of 819
schemas and are linked to from a common parent (such as sibling collections members) are enumerated 820
within the same PDR. Data for secondary schemas such as annotations or the message registry is linked 821
together with the major schema in the PDR structure. The resources link together to form a management 822
topology of one or more trees called device components; each resource corresponds to a node in one (or 823
more) of these trees. 824

2 The LogEntryCollection and LogEntry resources are an exception to this; see clause 14.2.7 for a description of

special handling for them.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 31

The first step in performing the registration is for the MC to collect an inventory of the PDRs supported by 825
the RDE Device. There are three main PDRs of potential interest here: Redfish Resource PDRs, that 826
represent an instance of data provided by the RDE Device; Redfish Entity Association PDRs, that 827
represent the logical linking of data; and Redfish Action PDRs that represent special functions the RDE 828
Device supports. While every RDE Device must support at least one resource and thus at least one 829
Redfish Resource PDR, Redfish Action PDRs are only required if the device supports schema-defined 830
actions and Redfish Entity Association PDRs are only required under limited circumstances detailed in 831
clause 7.2.2. The MC shall collect this information by first calling the PLDM Monitoring and Control 832
GetPDRRepositoryInfo command to determine the total number of PDRs the RDE Device supports. It 833
shall then use the PLDM Monitoring and Control GetPDR command to retrieve details for each PDR from 834
the RDE Device. 835

As it retrieves the PDR information, the MC should build an internal representation of the data hierarchy 836
for the RDE Device, using parent links from the Redfish Resource PDRs and association links from the 837
Redfish Entity Association PDRs to define the management topology trees for the RDE Device. 838

After the MC has built up a representation of the RDE Device’s management topology, the next step is to 839
understand the organization of data for each of the tree nodes in this topology. To this end, the MC 840
should first check the schema name and version indicated in each Redfish Resource PDR to understand 841
what the RDE Device supports. For any of these schemas, the MC may optionally retrieve a binary 842
dictionary containing information that will allow it to translate back and forth between BEJ and JSON 843
formats. It may do this by invoking the GetSchemaDictionary (clause 11.2) command with the ResourceID 844
contained in the corresponding Redfish Resource PDR. 845

NOTE While the MC may typically be expected to retrieve Redfish PDRs and dictionaries when it first registers an 846
RDE Device, there is no requirement that implementations do so. In particular, some implementations may determine 847
that one or more dictionaries supported by an RDE Device are already supported by other dictionaries the MC has 848
stored. In such a case, downloading them anew would be an unnecessary expenditure of resources. 849

After the MC has all the schema information it needs to support the RDE Device’s management topology, 850
it can then offer (by proxy) the RDE Device’s data up to external clients. These clients will not know that 851
the MC is interpreting on behalf of an RDE Device; from the client perspective, it will appear that the client 852
is accessing the RDE Device’s data directly. 853

7.2.2 Data instances of Redfish schemas: Resources 854

In the Redfish model, data is collected together into logical groupings, called resources, via formal 855
schemas. One RDE Device might support multiple such collections, and for each schema, might have 856
multiple instances of the resource. For example, a RAID disk controller could have an instance of a disk 857
resource (containing the data corresponding to the Redfish disk schema) for each of the disks in its RAID 858
set. 859

Each resource is represented in this specification by a resource identifier contained within a Redfish 860
Resource PDR (defined in DSP0248). OEM extensions to Redfish resources are considered to be part of 861
the same resource (despite being based on a different schema) and thus do not require distinct Redfish 862
Resource PDRs. 863

Each RDE Device is responsible for identifying a management topology for the resources it supports and 864
reflecting these topology links in the Redfish Resource and Redfish Entity Association PDRs presented to 865
the MC. This topology takes the form of a directed graph rooted at one or more nodes called device 866
components. Each device component shall proffer a single Redfish Resource PDR as the logical root of 867
its own portion of the management topology within the RDE Device. 868

Links between resources can be modeled in three different ways. Direct subordinate linkage, such as 869
physical enclosure or being a component in a ComputerSystem, may be represented by setting the 870
ContainingResourceID field of the Redfish Resource PDR to the Resource ID for the parent resource. In 871
Redfish terminology, this relation is used to show subordinate resources. The parent field for the logical 872
root of a device component is set to EXTERNAL, 0x0000. 873

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

32 Published Version 1.1.0

Logical links between resources can also be modeled. In cases where a resource and the resource to 874
which it is related are both contained within an RDE Device, these links are handled implicitly by filling in 875
the Links section of the Redfish resource when data for the resource is retrieved from the RDE Device. 876

Alternatively, logical links between resources may be represented by creating instances of Redfish Entity 877
Association PDRs (defined in DSP0248) to capture these links. In Redfish terminology, this relation is 878
used to show related resources. For example, as shown in Figure 2, the drives in a RAID subsystem are 879
subordinate to the storage controller that manages them, but are also linked to the standard Chassis 880
object. A Redfish Entity Association PDR shall only be used when a resource meets all three of the 881
following criteria: 882

1) The resource is contained within the RDE Device. If it is not, it does not need to be part of the 883
RDE Device’s management topology model. 884

2) The resource is subordinate to another resource contained within the RDE Device. If it is not, 885
the resource can be linked directly to the resource outside the RDE Device by setting its parent 886
field to EXTERNAL. 887

3) The resource needs to be linked to another resource outside the RDE Device. 888

7.2.2.1 Alignment of resources 889

While determining how to lay out the Redfish Resource PDRs for an RDE Device may seem to be a 890
daunting task at first glance, it is actually relatively straightforward. By examining the Links section of the 891
various schemas that the RDE Device needs to support, one will see that the tree hierarchy for them is 892
already defined. Simply put, then, the RDE Device manufacturer will set up one PDR per resource or 893
group of sibling resources that share the same schema definitions and reflect the same parentage trees 894
for the PDRs as is already present for the resources in their corresponding Redfish schema definitions. 895

NOTE For collections, the RDE Device shall offer one PDR for the collection as a whole and one PDR for each set of 896
sibling entries within the collection. This is necessary to enable the MC to use the correct dictionary when encoding 897
data for a Create operation applied to an empty collection. 898

7.2.2.2 Example linking of PDRs within RDE Devices 899

This clause presents examples of the way an RDE Device can link Redfish Resource PDRs together to 900
present its data for management. 901

The example in Figure 2 models a simple rack-mounted server with local RAID storage. In this example, 902
we see a Redfish Resource PDR offering an instance of the standard Redfish Storage resource, with 903
ResourceID 123. This PDR has ContainingResourceID (abbreviated ContainingRID in the figure) set to 904
EXTERNAL as the RDE Device should be subordinate to the Storage Collection under ComputerSystem. 905

NOTE It is up to the MC to make final determinations as to where resources should be added within the Redfish 906
hierarchy. While general guidance may be found in clause 14.2.6, the technique by which MCs may ultimately make 907
such decisions is out of scope for this specification. 908

The StorageController has two Redfish Resource PDRs that list it as their container: one that offers data 909
in the VolumeCollection resource and one that offer data for four Disk resources. Finally, the PDR that 910
offers VolumeCollection resource is marked as the container for a Redfish Resource PDR that offers data 911
for the Volume resource. 912

The connections discussed so far are all direct parent linkages in the Redfish Resource PDRs because 913
the links they represent are the direct subordinate resource links from the standard Redfish storage 914
model. However, the Redfish storage model also includes notations that drives are related to (contained 915
within) a volume and that drives are related to (present inside) a chassis. These resource relations can be 916
modeled using Redfish Entity Association PDRs if the MC is managing the links. Alternatively, they can 917
be implicitly managed by the RDE Device. In this case, the RDE Device will expose the links itself by 918
filling in a Links section of the relevant resource data with references to the linked resources. While the 919

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 33

RDE Device could in theory provide a Redfish Entity Association PDR for this case, it serves no purpose 920
for the MC. 921

In general, a Redfish Entity association PDR should be used when a resource is subordinate to another 922
resource within the RDE Device but must also be linked to from another resource external to the RDE 923
Device. 924

In the example in Figure 2, the relation between the drives and the outside Chassis resource is 925
promulgated with a Redfish Entity Association PDR. This PDR lists the four drives as the four 926
ContainingResourceIDs for the association, marking them to be contained within the chassis. The 927
ContainingResourceID for this relation contains the value EXTERNAL, to show that the drives are visible 928
outside the resource hierarchy maintained by the RDE Device. By contrast, the linkage between the 929
drives and the Volume resource is implicitly maintained by the RDE Device. This is shown in the figure via 930
the dashed arrows. 931

Finally, each of the drives supports a Sanitize operation. This is shown by instantiating a Redfish Action 932
PDR naming the Sanitize action and linking it to each of the drives. 933

As an alternative to the PDR layout of Figure 2, the RDE Device exposes its own chassis resource 934
(labeled as Resource ID 890) rather than having the drives be part of an external chassis. The PDR for 935
this chassis resource shows ContainingResourceID EXTERNAL to demonstrate that it belongs in the 936
system chassis collection resource. With this modification, the links between the chassis resource and the 937
drives can be managed internally by the RDE Device and hence no Redfish Entity Association PDR is 938
necessary. 939

ContainingRID = 345

MajorSchemaName =
Volume

ResourceID = 567

ContainingRID = 123

MajorSchemaName =
VolumeCollection

ResourceID = 345

ContainingRID = EXTERNAL

MajorSchemaName =
Storage

ResourceID = 123

External Storage Collection

Redfish Entity Association PDR

ContainingRID = EXTERNAL

ContainedRID = 600

ContainedRID = 601

ContainedRID = 602

ContainedRID = 603

External Chassis Resource Redfish Action PDR

ActionName = “Sanitize”

RelatedResourceID = 600

RelatedResourceID = 601

RelatedResourceID = 602

RelatedResourceID = 603

ContainingRID = 123

MajorSchemaName =
Drive

ResourceID = 600

AdditionalResourceID = 601

AdditionalResourceID = 602

AdditionalResourceID = 603

 940

Figure 2 – Example linking of Redfish Resource and Redfish Entity Association PDRs 941

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

34 Published Version 1.1.0

External Chassis Collection

ContainingRID = 345

MajorSchemaName =
Volume

ResourceID = 567

ContainingRID = 123

MajorSchemaName =
VolumeCollection

ResourceID = 345

ContainingRID = EXTERNAL

MajorSchemaName =
Storage

ResourceID = 123

External Storage Collection

ContainingRID = EXTERNAL

ResourceID = 890

MajorSchemaName = Chassis

Redfish Action PDR

ActionName = “Sanitize”

RelatedResourceID = 600

RelatedResourceID = 601

RelatedResourceID = 602

RelatedResourceID = 603

ContainingRID = 123

MajorSchemaName =
Drive

ResourceID = 600

AdditionalResourceID = 601

AdditionalResourceID = 602

AdditionalResourceID = 603

 942

 Figure 3 – Schema linking without Redfish entity association PDRs 943

7.2.3 Dictionaries 944

In standard Redfish, data is encoded in JSON. In this specification, data is encoded in Binary Encoded 945
JSON (BEJ) as defined in clause 8. In order to translate between the two encodings, the MC uses a 946
schema lookup table that captures key metadata for fields contained within the schema. The dictionary is 947
necessary because some of the JSON tokens are omitted from the BEJ encoding in order to achieve a 948
level of compactness necessary for efficient processing by RDE Devices with limited memory and 949
computational resources. In particular, the names of properties and the string values of enumerations are 950
skipped in the BEJ encoding. 951

Each Redfish resource PDR can reference up to four classes of dictionaries for the schemas it can use
3
: 952

• Standard Redfish data schema (aka the major schema) 953

• Standard Redfish Event schema 954

• Standard Redfish Annotation schema 955

• Standard Redfish Error schema 956

Major and Event Dictionaries may be augmented to contain OEM extension data as defined in the 957
Redfish base specification, DSP0266. 958

Event, Error, and Annotation Dictionaries shall be common to all resources that an RDE Device provides. 959

Dictionaries for standard Redfish schemas are published on the DMTF Redfish website at 960
http://redfish.dmtf.org/dictionaries. Naturally, these dictionaries do not include OEM extensions. RDE 961
Devices may support their resources either with the standard dictionaries or with custom dictionaries that 962

3 The COLLECTION_MEMBER_TYPE schema class from clause 5.3.2 is not represented in the PDR. It can be

retrieved on demand by the MC from the RDE Device via the GetSchemaDictionary command of clause 11.3.

http://redfish.dmtf.org/dictionaries

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 35

may include OEM extensions, and that may also be truncated to contain only entries for properties 963
supported by the RDE Device. 964

7.2.3.1 Canonizing a schema into a dictionary 965

In Redfish schemas, the order of properties is indeterminate and properties are identified by name 966
identifiers that are of unbounded length. While this is beneficial from a human readability perspective, 967
from a strict information-theoretical point of view, using long strings for this purpose is grossly inefficient: a 968
numeric value of Log2(nChildren) bits ought to be sufficient. To make this work in practice, we impose a 969
canonical ordering that assigns each property or enumeration value a numeric sequence number. 970
Sequence numbers shall be assigned according to the following rules: 971

1) The children properties (properties immediately contained within other properties such as sets 972
or arrays) shall collectively receive an independent set of sequence numbers ranging from zero 973
to N – 1, where N is the number of children. Sequence numbers for properties that do not share 974
a common parent are not related in any way. 975

2) For the initial revision of a Redfish schema (usually v1.0), sequence numbers shall be assigned 976
according to a strict alphabetical ordering of the property names from the schema. 977

3) In order to preserve backward compatibility with earlier versions of schemas, for subsequent 978
revisions of Redfish schemas, the sequence numbers for child properties added in that revision 979
shall be assigned sequence numbers N to N + A – 1, where N is the number of sequence 980
numbers assigned in the previous revision and A is the number of properties added in the 981
present revision. (In other words, we append to the existing set and use sequence numbers 982
beginning with the next one available.) The new sequence numbers shall be assigned 983
according to a strict alphabetical ordering of their names from the schema. 984

4) In the event that a property is deleted from a schema, its sequence number shall not be reused; 985
the sequence number for the deleted property shall forever remain allocated to that property. 986

5) As with properties, the values of an enumeration shall collectively receive an independent set of 987
sequence numbers ranging from zero to N – 1, where N is the number of enumeration values. 988
Sequence numbers for enumeration values not belonging to the same enumeration are not 989
related in any way. 990

6) For the initial version of a Redfish schema, sequence numbers for enumeration values shall be 991
assigned according to a strict alphabetical ordering of the enumeration values from the schema. 992

7) In order to preserve backward compatibility with earlier versions of schemas, for subsequent 993
revisions of Redfish schemas, the sequence numbers for enumeration values added in that 994
revision shall be assigned sequence numbers N to N + A – 1, where N is the number of 995
sequence numbers assigned in the previous revision and A is the number of enumeration 996
values added in the present revision. The new sequence numbers shall be assigned according 997
to a strict alphabetical ordering of their value strings from the schema. 998

8) In the event that an enumeration value is deleted from a schema, its sequence number shall not 999
be reused; the sequence number for the deleted enumeration value shall forever remain 1000
allocated to that enumeration value. 1001

After the sequence numbers for properties and enumeration values are assigned, they shall be 1002
collected together with other information from the Redfish and OEMs schema to build a dictionary in 1003
the format detailed in clause 7.2.3.2. For every Redfish Resource PDR the RDE Device offers, it shall 1004
maintain a dictionary that it can send to the MC on demand in response to a GetSchemaDictionary 1005
command (clause 11.2). 1006

NOTE Rules 2 and 3 above imply that schema child properties may not be in strict alphabetical order. For example, 1007
suppose a property node in a schema started with child fields “red”, “orange”, and “yellow” in version 1.0. Because 1008
this is the initial version, the fields would be alphabetized: “orange” would get sequence number 0; “red”, 1; and 1009
“yellow” would get 2. If version 1.1 of the schema were to add “blue” and “green”, they would be assigned sequence 1010

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

36 Published Version 1.1.0

numbers 3 and 4 respectively (because that is the alphabetical ordering of the new properties). The initial three 1011
properties retain their original sequence numbers. 1012

For all custom dictionaries, including all truncated dictionaries, the sequence numbers listed for 1013
standard Redfish schema properties supported by the RDE Device shall match the sequence 1014
numbers for those same properties from the standard dictionary. This allows MCs to potentially 1015
merge related dictionaries from RDE Devices that share a common class. 1016

Sequence numbers for array elements shall be assigned to match the zero-based index of the array 1017
element. 1018

NOTE The ordering rules provided in this clause apply to dictionaries only. In particular, data encoded in either JSON 1019
or BEJ format is by definition unordered. 1020

7.2.3.2 Dictionary binary format 1021

The binary format of dictionaries shall be as follows. All integer fields are stored little endian: 1022

Table 31 – Redfish dictionary binary format 1023

Type Dictionary Data

uint8 VersionTag

Dictionary format version tag: 0x00 for DSP0218 v1.0.0

bitfield8 DictionaryFlags

Flags for this dictionary:

[7:1] - reserved for future use

[0] - truncation_flag; if 1b, the dictionary is truncated and provides entries for a subset of the
 full Redfish schema

uint16 EntryCount

Number N of entries contained in this dictionary

uint32 SchemaVersion

Version of the Redfish schema encapsulated in this dictionary, in standard PLDM format.
0xFFFFFFFF for an unversioned schema. The version of the schema may be read from the
filename of the schema file.

uint32 DictionarySize

Size in bytes of the dictionary binary file. This value can be used as a safeguard to compare the
various offsets given in subsequent fields against: buffer overruns can be avoided by validating
that the offsets remain within the binary dictionary space.

bejTupleF Format [0]

Entry 0 property format. The read_only_property_and_top_level_annotation flag in the bejTupleF
structure shall be set if the property is annotated as read only in the Redfish schema. The
nullable_property in the bejTupleF structure shall be set if the property is annotated as nullable in
the Redfish schema.

uint16 SequenceNumber [0]

Entry 0 property sequence number

uint16 ChildPointerOffset [0]

Entry 0 property child pointer offset in bytes from the beginning of the dictionary. Shall be 0x0000 if
Format [0] is not one of {BEJ Set, BEJ Array, BEJ Enum and BEJ Choice} or in cases where a set
or array contains no children elements.

uint16 ChildCount [0]

Entry 0 child count; shall be 0x0000 if Format [0] is not one of {BEJ Set, BEJ Array, BEJ Enum}.
For a BEJ Array, the child count shall be expressed as 1.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 37

Type Dictionary Data

uint8 NameLength [0]

Entry 0 property/enumeration value name string length. Name length, including null terminator,
shall be a maximum of 255 characters. Shall be 0x00 for an anonymous format option of a BEJ
Choice-formatted property or for anonymous array entries.

uint16 NameOffset [0]

Entry 0 property name string offset in bytes from the beginning of the dictionary. Shall be 0x0000
for an anonymous format option of a BEJ Choice-formatted property or for anonymous array
entries.

… …

bejTupleF Format [N – 1]

Entry (N – 1) property format. The read_only_property_and_top_level_annotation flag in the
bejTupleF structure shall be set if the property is annotated as read only in the Redfish schema.
The nullable_property in the bejTupleF structure shall be set if the property is annotated as nullable
in the Redfish schema.

uint16 SequenceNumber [N – 1]

Entry (N – 1) property sequence number

uint16 ChildPointerOffset [N – 1]

Entry (N – 1) property child pointer offset in bytes from the beginning of the dictionary. Shall be
0x0000 if Format [N – 1] is not one of {BEJ Set, BEJ Array, BEJ Enum and BEJ Choice}.

uint16 ChildCount [N – 1]

Entry (N – 1) child count; shall be 0x0000 if Format [N] is not one of {BEJ Set, BEJ Array, BEJ
Enum}. For a BEJ Array, the child count shall be expressed as 1.

uint8 NameLength [N – 1]

Entry (N – 1) property/enumeration value name string length. Name length, including null
terminator, shall be a maximum of 255 characters. Shall be 0x00 for an anonymous format option
of a BEJ Choice-formatted property or for anonymous array entries.

uint16 NameOffset [N – 1]

Entry (N – 1) property name string offset in bytes from the beginning of the dictionary. Shall be
0x0000 for an anonymous format option of a BEJ Choice-formatted property or for anonymous
array entries.

strUTF-8 Name [0]

Entry 0 property name string (not present for children nodes of BEJ Choice format properties or
anonymous array entries)

…

strUTF-8 Name [N – 1]

Entry (N – 1) property name string (not present for children nodes of BEJ Choice format properties
or anonymous array entries)

uint8 CopyrightLength

Dictionary copyright statement string length. Copyright, including null terminator, shall be a
maximum of 255 characters. May be 0x00 in which case the Copyright field below shall be
omitted.

strUTF-8 Copyright

Copyright statement for the dictionary. Shall be omitted if CopyrightLength is 0.

Intuitively, the dictionary binary format may be thought of as a header (orange) followed by an array of 1024
entry data (blue) followed by a table of the strings (green) naming the properties and enumeration values 1025
for the entries. Figure 4 displays this data in graphical format: 1026

 1027

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

38 Published Version 1.1.0

 Byte offset

DWORD +0 +1 +2 +3

00 VersionTag 0x00 DictionaryFlags EntryCount1 EntryCount2

01 SchemaVersion1 SchemaVersion2 SchemaVersion3 SchemaVersion4

02 DictionarySize1 DictionarySize2 DictionarySize3 DictionarySize4

03 Format[0] SequenceNumber[0]2 SequenceNumber[
0]1

ChildPointerOffset[0]2

04 ChildPointerOffset
[0]1

ChildCount[0]2 ChildCount[0]1 NameLength[0]

05 NameOffset[0]2 NameOffset[0]1 … …

06 … … … …

… Format[N-1] SequenceNumber[N-1]2 SequenceNumber[
N-1]1

ChildPointerOffset[N-1]2

… ChildPointerOffset
[N-1]1

ChildCount[N-1]2 ChildCount[N-1]1 NameLength[N-1]

… NameOffset[N-1]2 NameOffset[N-1]1 Name[0]1 * Name[0]2 *

… Name[0]3 * … Name[0]terminator * …

… … … … …

… Name[N-1]1 * Name[N-1]2 * Name[N-1]3 * …

… Name[N-1]terminator * CopyrightLength Copyright1 …

… Copyrightterminator

Figure 4 – Dictionary binary format 1028

* Name strings will not be present in the dictionary for anonymous format options of BEJ Choice-1029
formatted properties or for anonymous array entries. 1030

7.2.3.2.1 Hierarchical organization of entries 1031

Within this binary format, the entries shall be sorted into clusters representing a breadth-first traversal of 1032
the hierarchy presented by a schema. Each cluster shall in turn consist of all the sibling nodes contained 1033
within a common parent, sorted by sequence number per the rules defined in clause 7.2.3 above. An 1034
example of this organization may be found in clause 8.6.1. 1035

NOTE While not mandatory, it is acceptable that multiple dictionary entries may point to a common complex subtype 1036
to allow reuse of that information and reduce the overall size of the dictionary. For example, Resource.status is 1037
commonly used multiple times within the same schema, so having a single offset for it can trim some length from the 1038
dictionary. 1039

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 39

7.2.3.3 Properties that support multiple formats 1040

For properties that support multiple formats, the dictionary shall contain an entry linking the property 1041
name string to the BEJ Choice format. This choice entry shall in turn link to a series of anonymous child 1042
entries (name offset = 0x0000) that are of the various data formats supported by the property. For 1043
example, if a TCP/IP hostname property supports both string (“www.dmtf.org”) and numeric (the 32-bit 1044
equivalent of 72.47.235.184) values, the dictionary might contain rows such as the following: 1045

Table 32 – Dictionary entry example for a property supporting multiple formats 1046

Row Sequence
Number

Format Name Child
Pointer

… … … … …

15 0 choice “hostname” 18

… … … … …

18 0 string null null

19 1 integer null null

… … … … …

NOTE Following the rules for sequence number assignment (see clause 7.2.3.1), each cluster of properties 1047
contained within a given set and each cluster of enumeration values are numbered separately. Hence sequence 1048
numbers may be repeated within a dictionary. 1049

An exception to this rule is that properties that support null and exactly one other data format shall be 1050
collapsed into a single entry in the dictionary listing only the non-null data format. The nullable_property 1051
bit in the bejTupleF value of the format entry in the dictionary shall be set to 1b in this case. This case is 1052
common in the standard Redfish schemas, where most properties are nullable. This is flagged with the 1053
“nullable” keyword in the CSDL schemas, but in the JSON schemas, it manifests as the supported type 1054
list for the property consisting of NULL and either a solitary second type or a collection of strings that form 1055
an enumeration. 1056

7.2.3.4 Annotation dictionary format 1057

Standard Redfish annotations are derived from three sources: the Redfish, odata, and message 1058
schemas. The annotations that can be part of a JSON payload are collected together into the redfish-1059
payload-annotations.vX.Y.Z.json schema file. This clause details special notes that apply to building the 1060
annotation dictionary: 1061

• The dictionary entries for properties in the annotation dictionary shall include the entire name of 1062
the annotation, beginning with the ‘@’ sign and including both the annotation source (one of 1063
redfish, message, or odata) and the annotation’s name itself. For example, the dictionary Name 1064
field for the @odata.id property shall be an offset to the string “@odata.id”. 1065

• The dictionary entries for patternProperties in the annotation dictionary shall be stripped of the 1066
wildcard patterns before the ‘@’ sign and of the trailing ‘$’ sign but shall otherwise be treated 1067
identically to standard properties. For example, the dictionary Name field for the "^([a-zA-Z_][a-1068
zA-Z0-9_]*)?@Message.ExtendedInfo$" patternProperty shall be an offset to the string 1069
“@Message.ExtendedInfo”. 1070

• In accordance with the rules presented in clause 7.2.3, the top-level entries for annotations 1071
(those containing the names of the annotations themselves) shall be sorted alphabetically 1072
together for the initial version of the schema’s dictionary, and shall be appended to the list with 1073

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

40 Published Version 1.1.0

each schema revision. Stated explicitly, the annotations from the properties and 1074
patternProperties shall be comingled together within the entries for each revision of the 1075
dictionary. 1076

• Dictionary entries for children properties of annotations, such as the anonymous string value 1077
array entries for @Redfish.AllowableValues shall be structured and formatted per the rules 1078
presented in clause 7.2.3. 1079

7.2.3.5 Registry dictionary format 1080

Redfish messages are used in multiple places, including annotations, events, and errors. The actual 1081
message data may be retrieved from any of the various message registries including standard Redfish 1082
and OEM registries. These messages are referred to by name as the value of a string field in hosting 1083
schemas, so names such as “NetworkDevice.1.0.LinkFlapDetected” appear in BEJ-encoded JSON data 1084
for previous versions of this specification. To reduce the size of such encodings, RDE version 1.1 1085
introduces the notion of a Registry dictionary that can be referenced via the bejRegistryItem encoding 1086
format. Replacing the message name with a sequence number in the Registry dictionary achieves a 1087
reduction in encoded data for messages. This clause details special notes that apply to building the 1088
registry dictionary: 1089

• The registry dictionary shall consist of a top-layer set named “registry” 1090

– Entries within the set shall be named for each of the registry items supported by the RDE 1091
Device. The full odata name for these entries shall be incorporated in the dictionary, and 1092
they shall be sorted lexicographically. 1093

– The type of the registry items shall be bejString, and they shall be flagged as read-only. 1094

• Both full and truncated registry dictionaries are permitted. 1095

• MCs shall not attempt to merge registry dictionaries from different devices or dictionaries 1096
retrieved from the same device at different times. 1097

• If using the DMTF dictionary builder tool (see clause 7.2.3.7), see the tool documentation for 1098
information on how to build the registry dictionary for a device. 1099

• Schema entries that correspond to registry items shall be encoded in dictionaries as being of 1100
type bejString, not bejRegistryItem. This ensures backward compatibility with earlier versions of 1101
the RDE specification 1102

7.2.3.6 Links between schemas 1103

Links in Redfish schemas, identifiable as entries with Odata type odata.id, shall be represented in 1104
dictionaries as entries with format = bejString. As described in clause 8.4.2, runtime encoding of Odata 1105
links may be performed via any of bejString (with deferred bindings), bejResourceLink, or (for expansion) 1106
bejResourceLinkExpansion. This is a special case wherein a valid encoding may differ from the type 1107
specified in the dictionary. 1108

7.2.3.7 Building dictionaries 1109

Available online at https://github.com/DMTF/RDE-Dictionary, the RDE dictionary builder automates the 1110
process of building an RDE dictionary from CSDL formatted schemas. 1111

It supports standard Redfish schemas, standalone OEM schemas, and OEM extensions to standard 1112
Redfish schemas and can build full or truncated dictionaries. For more information about installation, 1113
usage and examples of using the dictionary builder, refer to the README.md file at the above URL. 1114

https://github.com/DMTF/RDE-Dictionary

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 41

7.2.4 Redfish Operation support 1115

Redfish Operations are sent from a client to a Redfish Provider that is able to process them and respond 1116
appropriately. These operations are encoded in JSON and transported via either the HTTP or the HTTPS 1117
protocol. 1118

In this specification, the MC is the Redfish Provider to which the client sends operations. However, rather 1119
than responding directly, the MC is a proxy that conveys these operations to the RDE Devices that 1120
maintain the data and can provide responses to client requests. The proxied operations (that are 1121
transmitted to the RDE Device as RDE Operations) are encoded in BEJ (clause 8) and transported via 1122
PLDM. The MC, in its role as proxy Redfish Provider for the RDE Devices, translates the JSON/HTTP(S) 1123
requests from the client into BEJ/PLDM for the RDE Device, and then translates the BEJ/PLDM response 1124
from the RDE Device into a JSON/HTTP(S) response for the client. 1125

7.2.4.1 Primary Operations 1126

There are seven primary Redfish Operations. These are summarized in Table 33. 1127

Table 33 – Redfish Operations 1128

Operation Verb Description

Read GET Retrieve data values for all properties contained within a resource.

Update PATCH Write updates to properties within a resource. May be to the entire
resource, to a subtree rooted at any point within the resource, or to a
leaf node.

Replace PUT Write replacements for all properties within a resource.

Create POST Append a new set of child data to a collection (array).

Delete DELETE Remove a set of child data from a collection.

Action POST Invoke a schema-defined Redfish action.

Head HEAD Retrieve just headers for the data contained in a schema.

The only Redfish Operation that is required to be supported in RDE is Read; however, it is expected that 1129
implementations will support Update as well. Create and Delete are conditionally required for RDE 1130
Devices that contain collections; Action is conditionally required for RDE Devices that support Redfish 1131
schema-defined actions. The Head and Replace Redfish Operations are strictly optional. 1132

7.2.4.1.1 HTTP/HTTPS and Redfish 1133

A full discussion of the HTTP/HTTPS protocol is beyond the scope of this specification; however, a 1134
minimalist overview of key concepts relevant to Redfish Device Enablement follows. Readers are directed 1135
to DSP0266 for more detailed information on the usage of HTTP and HTTPS with Redfish and to 1136
standard documentation for more general information on the HTTP/HTTPS protocols themselves. 1137

7.2.4.1.1.1 Redfish Operation requests 1138

Every Redfish request has a target URI to which it should be applied; this URI is the target of the 1139
HTTP/HTTPS verb listed in Table 33. The URI may consist of several parts of interest for purposes of this 1140
specification: a prefix that points to the RDE Device being managed, a subpath within the RDE Device 1141
management topology, a specific resource selection preceded by an octothorp character (#), and one or 1142
more query options preceded by a question mark (?) character. 1143

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

42 Published Version 1.1.0

Many, but not all, Redfish requests have a JSON payload associated with them. For example, a POST 1144
operation to create a new child element in a collection would normally contain a JSON payload for the 1145
data being supplied for that new child element. 1146

Finally, every Redfish HTTP/HTTPS request will contain a series of headers, each of which modifies it in 1147
some fashion. 1148

7.2.4.1.1.2 Redfish Operation responses 1149

The response to a Redfish HTTP/HTTPS request will also contain several elements. First, the response 1150
will contain a status code that represents the result of the operation. Like for requests, DSP0266 defines 1151
several response headers that may need to be supplied in conjunction with a Redfish response. Finally, a 1152
JSON payload may be present such as in the case of a read operation. 1153

7.2.4.1.1.3 Generic handling of Redfish Operations 1154

Generically, to handle processing of a Redfish HTTP/HTTPS request, the MC will typically implement the 1155
following steps. This overview ignores error conditions, timeouts, and long-lived Tasks. A much more 1156
detailed treatment may be found in clause 9. 1157

1) Parse the prefix of the supplied URI to pinpoint the RDE Device that the operation targets. 1158

2) Parse the RDE Device portion of the URI to identify the specific place in the RDE Device’s 1159
management topology targeted by the operation. 1160

3) Identify the Redfish Resource PDR that represents that portion of the data. 1161

4) Using the HTTP/HTTPS verb and other request information, determine the type of Redfish 1162
operation that the client is trying to perform. 1163

5) Translate any request headers (clause 7.2.4.2) and query options (clause 7.2.4.3) into 1164
parameters to the corresponding PLDM request message(s). 1165

6) Translate the JSON payload, if present, into a corresponding BEJ (clause 8) payload for the 1166
request, using a dictionary appropriate for the target Redfish Resource PDR. 1167

7) Send the PLDM for Redfish Device Enablement RDEOperationInit command (clause 12.1) to 1168
begin the Operation. 1169

8) Send any BEJ payload to the RDE Device via one or more PLDM for Redfish Device 1170
Enablement RDEMultipartSend commands (clause 13.1) unless it was small enough to be 1171
inlined in the RDEOperationInit command. 1172

9) Send any request parameters to the RDE Device via the PLDM for Redfish Device Enablement 1173
SupplyCustomRequestParameters command (clause 12.2). 1174

10) If there was a payload but no request parameters, send the RDEOperationStatus command 1175
(clause 12.5). 1176

11) Retrieve and decode any BEJ-encoded JSON data for any Operation response payloads via 1177
one or more PLDM for Redfish Device Enablement RDEMultipartReceive commands (clause 1178
13.2). 1179

12) Retrieve any response parameters via the PLDM for Redfish Device Enablement 1180
RetrieveCustomResponseHeaders command (clause 12.3). 1181

13) Send the PLDM for Redfish Device Enablement RDEOperationComplete command (clause 1182
12.4) to inform the RDE Device that it may discard any data structures associated with the 1183
Task. 1184

14) Translate the BEJ response payload, if present, into JSON format for return to the client, using 1185
an appropriate dictionary. 1186

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 43

15) Prepare and send the final response to the client, adding the various HTTP/HTTPS response 1187
headers (clause 7.2.4.2) appropriate to the type of Redfish operation that was just performed. 1188

7.2.4.2 Redfish operation headers 1189

Several HTTP/HTTPS transport layer headers modify Redfish operations when translated in the context 1190
of RDE Operations. These are summarized in Table 34. Implementation notes for how the MC and RDE 1191
Device shall support some of these modifiers – when attached to Redfish operations – may be found in 1192
the indicated subsections. For headers not listed here, the implementation is outside the scope of this 1193
specification; implementers shall refer to DSP0266 and standard HTTP/HTTPS documentation for more 1194
information on processing these headers. 1195

Table 34 – Redfish operation headers 1196

Header Clause Where Used Description

 Request Headers

If-Match 7.2.4.2.1 Request If-Match shall be supported on PUT and PATCH requests for
resources for which the RDE Device returns ETags, to ensure
clients are updating the resource from a known state.

If-None-Match 7.2.4.2.2 Request If this HTTP header is present, the RDE Device will only return
the requested resource if the current ETag of that resource
does not match the ETag sent in this header. If the ETag
specified in this header matches the resource’s current ETag,
the status code returned from the GET will be 304.

Custom HTTP/
HTTPS Headers

7.2.4.2.3 Request and
Response

Non-standard headers used for custom purposes.

Response Headers

ETag 7.2.4.2.4 Response An identifier for a specific version of a resource, often a
message digest.

Link 7.2.4.2.5 Response Link headers shall be returned as described in the clause on
Link Headers in DSP0266.

Location 7.2.4.2.6 Response Indicates a URI that can be used to request a representation
of the resource. Shall be returned if a new resource was
created.

Cache-Control 7.2.4.2.7 Response This header shall be supported and is meant to indicate
whether a response can be cached or not

Response Headers (continued)

Allow 7.2.4.2.8 Response Shall be returned with a 405 (Method Not Allowed) response
to indicate the valid methods for the specified Request URI.
Should be returned with any GET or HEAD operation to
indicate the other allowable operations for this resource.

Retry-After 7.2.4.2.9 Response Used to inform a client how long to wait before requesting the
Task information again.

7.2.4.2.1 If-Match request header 1197

The MC shall support the If-Match header when applied to Redfish HTTP/HTTPS PUT and PATCH 1198
operations; support for other Redfish operations is optional. 1199

The parameter for this header is an ETag. 1200

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

44 Published Version 1.1.0

In order to support this header, the MC shall convey the supplied ETag to the RDE Device via the 1201
ETag[0] field of the PLDM SupplyCustomRequestParameters command (clause 12.2) request message 1202
and supply the value ETAG_IF_MATCH for the ETagOperation field of the same message. For this 1203
header, the MC shall supply the value 1 for the ETagCount field of the request message. 1204

When the RDE Device receives an ETAG_IF_MATCH within the ETagOperation field in the 1205
SupplyCustomRequestParameters command, it shall verify that the ETag matches the current state of the 1206
targeted schema data instance before proceeding with the RDE Operation. In the event of a mismatch, it 1207
shall respond to the SupplyCustomRequestParameters command with completion code 1208
ERROR_ETAG_MATCH. 1209

In the event that both an If-Match and If-None-Match request header are supplied by the client, the MC 1210
shall respond with HTTP status code 400 – Bad Request – to the client and stop processing the request. 1211
The MC shall not send such a malformed request to the RDE Device. 1212

7.2.4.2.2 If-None-Match request header 1213

The MC may optionally support the If-None-Match header when applied to Redfish HTTP/HTTPS GET 1214
and HEAD operations. 1215

The parameter for this header is a comma-separated list of ETags. 1216

In order to support this header, the MC shall convey the supplied ETag(s) to the RDE Device via the 1217
ETag[i] fields of the PLDM SupplyCustomRequestParameters command (clause 12.2) request message 1218
and supply the value ETAG_IF_NONE_MATCH for the ETagOperation field of the same message. For 1219
this header, the MC shall supply the value N for the ETagCount field of the request message where N is 1220
the number of entries in the comma-separated list. 1221

When the RDE Device receives an ETAG_IF_NONE_MATCH within the ETagOperation field in the 1222
SupplyCustomRequestParameters command, it shall verify that none of the supplied ETags matches the 1223
current state of the targeted schema data instance before proceeding with the RDE Operation. In the 1224
event of a match, it shall respond to the SupplyCustomRequestParameters command with completion 1225
code ERROR_ETAG_MATCH. 1226

In the event that both an If-Match and If-None-Match request header are supplied by the client, the MC 1227
shall respond with HTTP status code 400 – Bad Request – to the client and stop processing the request. 1228
The MC shall not send such a malformed request to the RDE Device. 1229

7.2.4.2.3 Custom HTTP headers 1230

The MC shall support custom headers when applied to any Redfish HTTP/HTTPS operation. For 1231
purposes of this specification, an RDE custom header shall be considered as one with a prefix “PLDM-1232
RDE-“ and for which no standard handling is described either in this specification or in DSP0266. All 1233
discussion of custom headers in this specification shall be restricted to HTTP/HTTPS custom headers of 1234
this form. 1235

The parameters for custom headers will vary by actual header type. 1236

In order to support RDE custom headers, the MC shall bundle them (including the PLDM-RDE prefix) into 1237
the request message for an invocation of the SupplyCustomRequestParameters command (clause 12.2). 1238
To do so, the MC shall set the HeaderCount request parameter to the number of custom request 1239
parameters. For each RDE custom request parameter n, the MC shall set HeaderName[n] and 1240
HeaderParameter[n] to the name and value of the request parameter, respectively. Custom headers other 1241
than those prefixed “PLDM-RDE-“ shall not be supplied to RDE Devices in this manner. 1242

When the RDE Device receives RDE custom request parameters, it may perform any custom handling for 1243
the parameter. If it does not support a specific RDE custom request parameter received, the RDE Device 1244
shall respond with the ERROR_UNRECOGNIZED_CUSTOM_HEADER completion code. 1245

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 45

Similarly, when the RDE Device has custom response parameters to send back to a client, it shall set the 1246
HaveCustomResponseParameters flag in the OperationExecutionFlags response field of the 1247
RDEOperationInit, SupplyCustomRequestParameters, or RDEOperationStatus command to ask the MC 1248
to retrieve these parameters. Then, in response to the RetrieveCustomResponseParameters command 1249
(clause 12.3), the RDE Device shall set the ResponseHeaderCount field to the number of custom 1250
response headers it wants to send back to the client. For each custom response parameter n, the RDE 1251
Device shall set HeaderName[n] and HeaderParameter[n] to the name and value of the response 1252
parameter, respectively. 1253

Following completion of the main Operation, the MC shall check the HaveCustomResponseParameters 1254
flag in the OperationExecutionFlags response field to see if the RDE Device is supplying custom 1255
response headers (which should have an X-PLDM-RDE prefix). If the flag is set (with value 1b), the MC 1256
shall use the RetrieveCustomResponseParameters command (clause 12.3) to recover them from the 1257
RDE Device. The MC shall then append the recovered headers to the Redfish Operation response. 1258

7.2.4.2.3.1 PLDM-RDE-Expand-Type 1259

The MC may optionally support use of the PLDM-RDE-Expand-Type header when it receives a Redfish 1260
HTTP/HTTPS GET operation with the $expand query option (see clause 7.2.4.3.3) to convey the 1261
expansion type parameter to the RDE Device. 1262

The parameter for this header is the type of expansion to be used in the expansion, one of 1263
EXPAND_DOT (“.”), EXPAND_TILDE (“~”), or EXPAND_STAR (“*”) and shall match the parameter given 1264
as the value of the $expand query option. If this header is not supplied to the RDE Device, expansion 1265
shall default to type EXPAND_DOT. If no expansion type is supplied to the $expand query option, the MC 1266
may either send this header with the default type (EXPAND_DOT) or omit it. 1267

7.2.4.2.4 ETag response header 1268

The MC shall provide an ETag header in response to every Redfish HTTP/HTTPS GET or HEAD 1269
operation. 1270

The parameter for this header is an ETag. 1271

In order to support this header, the RDE Device shall generate a digest of the schema data instance after 1272
each modification to the data in accordance with RFC 7232. When the MC begins a GET or HEAD 1273
operation to the RDE Device via a PLDM RDEOperationInit command (clause 12.1), the RDE Device 1274
shall populate the ETag field in the response message to the command where the RDE Operation has 1275
completed (one of RDEOperationInit, SupplyCustomRequestParameters, or RDEOperationStatus) with 1276
this digest. 1277

When it receives an ETag field in the response message for a completed RDE Operation, the MC shall 1278
then populate this header with the digest it receives. 1279

7.2.4.2.5 Link response header 1280

The MC shall provide one or more Link headers in response to every Redfish HTTP/HTTPS GET and 1281
HEAD operation as described in DSP0266. 1282

The parameter for this header is a URI. 1283

This header has three forms as described in DSP0266; all three shall be supported by MCs. The handling 1284
for these three forms is detailed in the next three clauses. 1285

No special action is needed on the part of an RDE Device to support any form of the link response 1286
header. 1287

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

46 Published Version 1.1.0

7.2.4.2.5.1 Schema form 1288

The MC shall provide a link header with “rel=describedby” to provide a schema link for the data that is or 1289
would be returned in response to a Redfish HTTP/HTTPS GET or HEAD operation. The MC may obtain 1290
this link in any of several manners: 1291

• An @odata.context annotation in read data may contain the schema reference. 1292

• The MC may have the schema reference cached. 1293

• The MC may retrieve the schema reference directly from the PDR encapsulating the instance of 1294
the schema data by invoking the PLDM GetSchemaURI command (clause 11.4). 1295

An example of a schema form link header is as follows; readers are referred to DSP0266 for more detail: 1296

Link: </redfish/v1/JsonSchemas/ManagerAccount.v1_0_2.json>; rel=describedby 1297

7.2.4.2.5.2 Annotation form 1298

The MC should provide a link header to provide an annotation link for the data that is or would be 1299
returned in response to a Redfish HTTP/HTTPS GET or HEAD operation. The MC may obtain this link in 1300
any of several manners: 1301

• The MC may inspect annotations to determine whether @odata or @Redfish annotations are 1302
used. 1303

• The MC may retrieve the schema reference directly from the PDR encapsulating the instance of 1304
the schema data by invoking the PLDM GetSchemaURI command (clause 11.4) 1305

An example of an annotation form link header is as follows; readers are referred to DSP0266 for more 1306
detail: 1307

 Link: <http://redfish.dmtf.org/schemas/Settings.json> 1308

7.2.4.2.5.3 Passthrough form 1309

The MC shall translate link annotations returned from the RDE Device in response to a Redfish 1310
HTTP/HTTPS GET operation into link headers. In this form, the MC shall also include the schema path to 1311
the link. 1312

An example of a passthrough form link header is as follows; readers are referred to DSP0266 for more 1313
detail: 1314

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role 1315

7.2.4.2.6 Location response header 1316

The MC shall provide a Location header in response to every Redfish HTTP/HTTPS POST that effects a 1317
successful create operation. The MC shall also provide a Location header in response to every Redfish 1318
Operation that spawns a long-running Task when executed as an RDE Operation. 1319

The parameter for this header is a URI. 1320

In order to support this header for completed create operations, the RDE Device shall populate the 1321
NewResourceID response parameter in the response message for the 1322
RetrieveCustomResponseParameters command (clause 12.3) with the Resource ID of the newly created 1323
collection element. Upon receipt, the MC shall combine this resource ID with the topology information 1324
contained in the Redfish Resource PDRs for the targeted PDR up through the device component root to 1325
create a local URI portion that it shall then combine with its external management URI for the RDE Device 1326
to build a complete URI for the newly added collection element. The MC shall then populate this header 1327
with the resulting URI. 1328

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 47

In order to support this header for Redfish Operations that spawn long-running Tasks when executed as 1329
RDE Operations, the MC shall generate a TaskMonitor URL for the Operation and populate the Location 1330
header with the generated URL. See clause 7.2.6 for more details. 1331

7.2.4.2.7 Cache-Control response header 1332

The MC shall provide a Cache-Control header in response to every Redfish HTTP/HTTPS GET or HEAD 1333
operation. 1334

In order to support this header for HTTP/HTTPS GET operations, the RDE Device shall mark the 1335
CacheAllowed flag in the OperationExecutionFlags field of the response message for the triggering 1336
command for the read or head Operation with an indication of the caching status of data read. 1337

When the MC reads the CacheAllowed flag in the OperationExecutionFlags field of the response 1338
message for a completed RDE Operation, it shall populate the Cache-Control response header with an 1339
appropriate value. Specifically, if the RDE Device indicates that the data is cacheable, the MC shall 1340
interpret this as equivalent to the value “public” as defined in RFC 7234; otherwise, the MC shall interpret 1341
this as equivalent to the value “no-store” as defined in RFC 7234. 1342

7.2.4.2.8 Allow response header 1343

The MC shall provide an Allow header in response to every Redfish HTTP/HTTPS operation that is 1344
rejected by the RDE Device specifically for the reason of being a disallowed operation, giving the 1345
ERROR_NOT_ALLOWED completion code (clause 7.5). The MC shall additionally provide an Allow 1346
response header in response to every GET (or HEAD, if supported) Redfish operation. 1347

In order to support this header, when the RDE Device responds to an RDE command with 1348
ERROR_NOT_ALLOWED, or in response to a GET or HEAD Redfish operation, it shall populate the 1349
PermissionFlags field of its response message with an indication of the operations that are permitted. 1350

When the MC reads the PermissionFlags field of the response message for a completed RDE Operation, 1351
the MC shall populate this header with the supplied information. 1352

7.2.4.2.9 Retry-After response header 1353

The MC shall provide a Retry-After header in response to every non-HEAD Redfish Operation that when 1354
conveyed to the RDE Device results in any transient failure (ERROR_NOT_READY; see clause 7.5). 1355

The parameter for this header is the length of time in seconds the client should wait before retrying the 1356
request. 1357

When the RDE Device needs to defer an RDE Operation, it shall return ERROR_NOT_READY in 1358
response to the RDEOperationInit command that begins the Operation. The RDE Device must now 1359
choose whether to supply a specific deferral timeframe or to use the default deferral timeframe. To specify 1360
a specific deferral timeframe, the RDE Device shall also set the HaveCustomResponseParameters flag in 1361
the OperationExecutionFlags response field of the RDEOperationInit command to inform the MC that it 1362
should retrieve deferral information. Then, if it did set the HaveCustomResponseParameters flag, in 1363
response to the RetrieveCustomResponseParameters command (clause 12.3), the RDE Device shall set 1364
the DeferralTimeframe and DeferralUnits parameters appropriately to indicate how long it is requesting 1365
the client to wait before resubmitting the request. 1366

As an alternative to specifying a deferral timeframe via the response message for 1367
RetrieveCustomResponseParameters, the RDE Device may skip setting the 1368
HaveCustomResponseParameters flag in the OperationExecutionFlags response field of the 1369
RDEOperationInit command to request that the MC supply a default deferral timeframe on its behalf. 1370

When it receives the response to the RDEOperationInit command, the MC shall check the 1371
HaveCustomResponseParameters flag in the OperationExecutionFlags response field to see if the RDE 1372

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

48 Published Version 1.1.0

Device has an extended response. If the flag is set (with value 1b), the MC shall use the 1373
RetrieveCustomResponseParameters command (clause 12.3) to recover the deferral timeframe from the 1374
DeferralTimeframe and DeferralUnits fields of the response message. If the flag was not set, or if the RDE 1375
Device supplied an unknown deferral timeframe (0xFF), the MC shall use a default value of 5 seconds. It 1376
shall then populate this header with the deferral value. 1377

Both the MC and RDE Device shall be prepared for possibility that the client may retry the operation 1378
before this deferral timeframe elapses: Operations can be re-initiated by impatient end users. 1379

7.2.4.3 Redfish Operation request query options 1380

In addition to HTTP/HTTPS headers, the standard Redfish management protocol defines several query 1381
options that a client may specify in a URI to narrow the request in Redfish GET Operations. For any query 1382
option not listed here, the MC may support it in a fashion as described in DSP0266. 1383

Table 35 – Redfish operation request query options 1384

Query
Option

Clause Description Example

$skip 0 Integer indicating the number of Members in
the Resource Collection to skip before
retrieving the first resource.

http://resourcecollection?$sk

ip=5

$top 7.2.4.3.2 Integer indicating the number of Members to
include in the response.

http://resourcecollection?$to

p=30

$expand 7.2.4.3.3 Expand schema links, gluing data together
into a single response.

Collection:

 Collection by name
 * = all links

 . = all but those in Links

http://resourcecollection?$ex

pand=collection($levels=4)

$levels 7.2.4.3.4 Qualifier on $expand; number of links to
expand out

http://resourcecollection?$ex

pand=collection($levels=4)

$select 7.2.4.3.5 Top-level or a qualifier on $expand; says to
return just the specified properties

http://resourcecollection?

$select=FirstName,LastName

http://resourcecollection$exp

and=collection($select=FirstN

ame,LastName;$levels=4)

excerpt 7.2.4.3.6 Returns a subset of the resource's properties
that match the defined Excerpt schema
annotation.

http://resource?excerpt

$filter n/a Limit results of a READ operation to a subset
of the resource collection's members based on
a $filter expression that follows the OData-
Protocol Specification.

n/a: $filter is not supported in this
specification

only n/a Applies to resource collections. If the target
resource collection contains exactly one
member, clients can use this query parameter
to return that member's resource.

n/a: only is not supported in this
specification

Support requirements for query parameters are described in Table 36. 1385

http://resourcecollection/?$skip=5
http://resourcecollection/?$skip=5
http://resourcecollection/?$top=30
http://resourcecollection/?$top=30
http://resourcecollection/?$expand=collection($levels=4)
http://resourcecollection/?$expand=collection($levels=4)
http://resourcecollection$expand=collection($select=firstname,lastname;$levels=4)/
http://resourcecollection$expand=collection($select=firstname,lastname;$levels=4)/
http://resourcecollection$expand=collection($select=firstname,lastname;$levels=4)/

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 49

Table 36 – Query parameter support requirement 1386

Query Option RDE Device MC

$skip Optional Should support

$top Optional Should support

$expand Optional Should support

$levels Optional May support

$select Optional May support

$filter Should not support May support

7.2.4.3.1 $skip query option 1387

The MC should support $skip query options when provided as part of a target URI for a Redfish 1388
HTTP/HTTPS GET operation. 1389

The parameter for this query option is an integer representing the number of members of a resource 1390
collection to skip over. See DSP0266 for more details on the usage of $skip. 1391

To support this query option, the MC shall supply the $skip parameter in the CollectionSkip field of the 1392
SupplyCustomRequestParameters (clause 12.2) request message. In the event that this query option is 1393
not supplied as part of the target URI for an HTTP/HTTPS GET operation, the MC shall supply a value of 1394
zero in this field if it otherwise needs to supply extended request parameters; it shall not send the 1395
SupplyCustomRequestParameters just to supply a value of zero for the CollectionSkip field. 1396

When processing an RDE read Operation for a resource collection, the RDE Device shall check the 1397
CollectionSkip parameter from the SupplyCustomRequestParameters request message to determine the 1398
number of members to skip over in its response, per DSP0266. In the event that the MC did not indicate 1399
the presence of extended request parameters, the RDE Device shall interpret this as a CollectionSkip 1400
value of zero. If the parameter for $skip equals the number of elements in the collection, the RDE Device 1401
shall return an empty list. If the parameter for $skip exceeds the number of elements in the collection, the 1402
RDE Device shall return ERROR_OPERATION_FAILED and, in accordance with the Redfish standard 1403
DSP0266 respond with an annotation specifying that the value is invalid (see 1404
QueryParameterOutOfRange in the Redfish base message registry). 1405

7.2.4.3.2 $top query option 1406

The MC should support $top query options when provided as part of the target URI for a Redfish 1407
HTTP/HTTPS GET operation. 1408

The parameter for this query option is an integer representing the number of members of a resource 1409
collection to return. See DSP0266 for more details on the usage of $top. If the parameter for $top 1410
exceeds the remaining number of members in a resource collection, the number returned shall be 1411
truncated to those remaining. For a $top value of zero, the response shall consist of an empty list. 1412

To support this query option, the MC shall supply the $top parameter in the CollectionTop field of the 1413
SupplyCustomRequestParameters (clause 12.2) request message. In the event that this query option is 1414
not supplied as part of the target URI for an HTTP/HTTPS GET operation, the MC shall supply a value of 1415
0xFFFF in this field; it shall not send the SupplyCustomRequestParameters just to supply a value of 1416
unlimited for the CollectionTop field. 1417

When processing an RDE read Operation for a resource collection, the RDE Device shall check the 1418
CollectionTop parameter from the SupplyCustomRequestParameters request message to determine the 1419
number of members to respond with, per DSP0266. The RDE Device shall interpret a value of 0xFFFF as 1420
indicating that there is no limit to the number of members it should return for the referenced resource 1421

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

50 Published Version 1.1.0

collection. In the event that the MC did not indicate the presence of extended request parameters, the 1422
RDE Device shall interpret this as a CollectionTop value of unlimited. 1423

7.2.4.3.3 $expand query option 1424

The MC should support $expand query options when provided as part of the target URI for a Redfish 1425
HTTP/HTTPS GET operation. 1426

The parameter for this query option is a string representing the links (Navigation properties) to expand in 1427
place, “gluing together” the results of multiple reads into a single JSON response payload. This parameter 1428
may be an absolute string specifying the exact link to be expanded, or it may be any of three wildcards. 1429
The first wildcard, an asterisk (*), means that all links should be expanded. The second wildcard, a dot (.), 1430
means that subordinate links (those that are directly referenced i.e., not in the Links Property section of 1431
the resource) should be expanded. The third wildcard, a tilde (~), means that dependent links (those that 1432
are not directly referenced i.e., in the Links Property section of the resource) should be expanded. See 1433
DSP0266 for more details on the usage of $expand. 1434

To support an expansion type wildcard received from the Redfish Client, the MC should send the PLDM-1435
RDE-Expand-Type custom header described in clause 7.2.4.2.3.1 to the RDE Device via the 1436
SupplyCustomRequestParameters command of clause 12.2. 1437

If the $levels query option qualifier is not present in conjunction with the $expand query option, the MC 1438
shall treat this as equivalent to $levels=1. 1439

To support the $expand query option, the RDE Device should concatenate linked resource data into the 1440
BEJ data it returns for an RDE read Operation, using the bejResourceLinkExpansion PLDM data type 1441
described in Clause 5.3.23. 1442

7.2.4.3.4 $levels query option qualifier 1443

The MC should support the $levels qualifier to the $expand query option when provided as part of the 1444
target URI for a Redfish HTTP/HTTPS GET operation or when provided implicitly by having $expand 1445
provided as part of a Redfish HTTP/HTTPS GET operation without having the $levels query option 1446
qualifier supplied. 1447

The parameter for this query option is an integer representing the number of schema links to expand into. 1448
If no $level qualifier is present, the MC shall interpret this as equivalent to $levels=1. 1449

To support this parameter, the MC can select between two choices: passing it on to the RDE Device or 1450
supporting it itself. The method by which this choice is made is implementation-specific and out of scope 1451
for this specification. If the RDE Device indicates that it cannot support $levels expansion by setting the 1452
expand_support bit to zero in the DeviceCapabilitiesFlags in the response message to the 1453
NegotiateRedfishParameters command (clause 11.1), or if the expansion type is not “All Links” (see 1454
clause 7.2.4.3.3), the MC shall not select passing it to the RDE Device. 1455

If the MC chooses to pass this query option to the RDE Device, it shall transmit the supplied value to the 1456
RDE Device via the SupplyCustomRequestParameters command in the LinkExpand parameter. 1457

If the MC chooses to handle this query option itself, it shall recursively issue reads to “expand out” data 1458
for links embedded in data it reads. Such links may be identified during the BEJ decode process as tuples 1459
with a format of bejResourceLink (clause 5.3.21). The corresponding value of the node represents the 1460
Resource ID for the Redfish Resource PDR representing the data to embed within the structure of data 1461
already read. The $levels qualifier dictates the depth of recursion for this process. 1462

When the RDE Device receives a LinkExpand value of greater than zero in extended request parameters 1463
as part of an RDE read operation, it shall “expand out” all resource links (as defined in DSP0266) to the 1464
indicated depth by encoding them as bejResourceLinkExpansions in the response BEJ data for the 1465
command. If the RDE Device previously did not set the expand_support flag in the 1466

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 51

DeviceCapabilitiesFlags field of the NegotiateRedfishParameters command, it may instead ignore the 1467
value (treating it as zero). 1468

Implementers should refer to DSP0266 for more details and caveats to be applied when expanding links 1469
with $levels > 1. 1470

7.2.4.3.5 $select query option qualifier 1471

The MC may support $select as a qualifier to the $expand query option or as a standalone query option, 1472
provided in either case as part of the target URI for a Redfish HTTP/HTTPS GET operation. 1473

The parameter for this query option is a string containing a comma-separated list of properties to be 1474
retrieved from the GET operation; the caller is asking that all other properties be suppressed. See 1475
DSP0266 for more details on the usage of $select. 1476

If it supports this parameter, the MC should perform the GET operation normally up to the point of 1477
retrieving BEJ-formatted data from the RDE Device. When decoding the BEJ data, however, the MC 1478
should silently discard any property not part of the $select list. 1479

No action is needed on the part of an RDE Device to support this query option. 1480

7.2.4.3.6 Excerpt query option 1481

The MC may support the excerpt query option when provided as part of a target URI for a Redfish 1482
HTTP/HTTPS GET operation. There is no parameter for this command. 1483

To support this parameter, the MC shall set the excerpt_flag in the OperationFlags field of the 1484
RDEOperationInit request command. Thereafter, no special treatment is required on the part of the MC. 1485

When the RDE Device is flagged that the client requested an excerpt, it may support the request by 1486
restricting properties returned in the read to those flagged with the excerpt schema annotation. If the 1487
schema does not contain any such flagged properties, or if the RDE Device does not support the excerpt 1488
query option, it shall return the complete resource. 1489

Further details of the excerpt query option may be found in DSP0266. 1490

7.2.4.4 HTTP/HTTPS status codes 1491

The MC shall comply with DSP0266 in all matters pertaining to the HTTP/HTTPS status codes returned 1492
for Redfish GET, PATCH, PUT, POST, DELETE, and HEAD operations. Typical status codes for 1493
operational errors may be found in clause 7.5. 1494

7.2.4.5 Multihosting and Operations 1495

A single RDE Device may find that it is attached to multiple MCs. This can introduce complications from 1496
concurrency if conflicting Operations are issued and requires an RDE Device to decide whether an 1497
Operation should be visible to an MC other than the one that issued it. Support for multiple MCs is out of 1498
scope for this specification. In particular, the behavior of the RDE Device in the face of concurrent 1499
commands from multiple MCs is undefined. 1500

7.2.5 PLDM RDE Events 1501

An Event is an abstract representation of any happening that transpires in the context of the RDE Device, 1502
particularly one that is outside of the normal command request/response sequence. A Redfish Message 1503
Event consists of JSON data that includes elements such as the index of a standardized text string and a 1504
collection of parameters that provide clarification of the specifics of the Event that has transpired. The full 1505
schema for Events may be found in the standard Redfish Message schema; additionally, OEM extensions 1506
to this schema are possible. 1507

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

52 Published Version 1.1.0

In this specification, a second class of events, Task Executed Events, allow RDE Devices to report that a 1508
Task has finished executing and that the MC should retrieve Operation results. The data for these events 1509
includes elements such as the Operation identifier and the resource with which the Operation is 1510
associated. 1511

As with any other PLDM eventing, the RDE Device advertises that it supports Events by listing support for 1512
the PLDM for Platform Monitoring and Control SetEventReceiver command (see DSP0248). The MC, for 1513
its part, may then select between two methods by which it will know that Events are available. If the MC 1514
configured the RDE Device to use asynchronous events through the SetEventReceiver command, the 1515
RDE Device shall use the PLDM for Platform Monitoring and Control PlatformEventMessage command 1516
(see DSP0248) to inform the MC by sending the Event directly. Otherwise, the RDE Device can be 1517
configured to polling mode using the same SetEventReceiver command. The MC uses the PLDM for 1518
Platform Monitoring and Control PollForPlatformEventMessage command (see DSP0248) for this 1519
purpose. The selection of any polling interval is determined by the MC and is outside the scope of this 1520
specification. 1521

Whether retrieved synchronously or asynchronously, once the MC gets the Event, it may process it. 1522
Redfish Message Events are packaged using the redfishMessageEvent eventClass; Task Executed 1523
Events are packaged using the redfishTaskExecutedEvent eventClass (see DSP0248 for both 1524
eventClasses). 1525

Handling of Task Executed Events is described with Tasks in clause 7.2.6. For Redfish Message Events, 1526
the MC may decode the BEJ-formatted payload of Event data using the appropriate Event schema 1527
dictionary specific to the PDR from which the message was sent. 1528

For a more detailed view of the Event lifecycle, see clause 9.3. 1529

NOTE Events are optional in standard Redfish; however, support for Task Executed Events is mandatory in this 1530
specification if the RDE Device supports asynchronous execution for long-running Operations. 1531

7.2.5.1 [MC] Event subscriptions 1532

In Redfish, a client may request to be notified whenever a Redfish Event occurs. Per DSP0266, to do so, 1533
the client uses a Redfish CREATE operation to add a record to the EventSubscription collection. This 1534
record in turn contains information on the various Event types that the client wishes to receive Events for. 1535
To unsubscribe, the client uses a Redfish DELETE operation to remove its record. Among other 1536
properties, the EventSubscription record contains a URI to which the Event should be forwarded. MCs 1537
that support Events shall support at least one Redfish event subscription. 1538

Event types are global across all schemas; there is no provision at this time (DSP0266 v1.6) in Redfish 1539
for a client to subscribe to just one schema at a time. Further, there is generally no capacity for an RDE 1540
Device to send an HTTP/HTTPS record directly to an external recipient. Events are optional in Redfish; 1541
however, if the MC chooses to provide Event subscription support, it must comply with the following 1542
requirements: 1543

• The MC shall provide full support for the EventSubscription collection as a Redfish Provider per 1544
DSP0266. 1545

• When it receives an Event subscription request (in the form of a Redfish CREATE operation on 1546
the EventSubscription collection), the MC shall parse the EventTypes array property of the 1547
request to identify the type or types of Events the client is interested in receiving 1548

• When the MC receives a Redfish Message Event from an RDE Device, it shall check the 1549
EventType of the Event received against the desired EventTypes for each active client. For 1550
each match, the MC shall forward the Event (translating any @Message.ExtendedInfo 1551
annotations, of course, from BEJ to JSON) to the client as a standard Redfish Provider for the 1552
Event service. 1553

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 53

7.2.6 Task support 1554

In PLDM for Redfish Device Enablement, every Redfish HTTP/HTTPS operation is effected as an RDE 1555
Operation. Most Operations, once sent to the RDE Device for execution, may be executed quickly and 1556
the results sent directly in the response message to the request message that triggered them. 1557

It may however transpire that in order for an RDE Device to complete an Operation, it requires more time 1558
than the available window within which the RDE Device is required to send a response. In this case, the 1559
RDE Device has two possible paths to follow. If the current number of extant Tasks is less than the RDE 1560
Device/MC capability intersection (as determined from the call to NegotiateRedfishParameters; see 1561
clause 11.1), the RDE Device shall mark the Operation as a long-running Task and execute it 1562
asynchronously. Otherwise, the RDE Device shall return ERROR_CANNOT_CREATE_OPERATION in 1563
its response message to indicate that no new Task slots are available (see clause 7.5). 1564

While the internal data structures used by an RDE Device to manage an Operation are outside the scope 1565
of this specification, they should include at a minimum the rdeOpID assigned (usually by the MC) when 1566
the Operation was first created. This allows the MC to reference the Task in subsequent commands to kill 1567
it (RDEOperationKill, clause 12.6) or query its status (RDEOperationStatus, clause 12.5). 1568

For its part, the MC shall provide full support for the Task collection as a Redfish Provider per DSP0266. 1569
When the MC finds that an Operation has spawned a Task, it shall perform the following steps in order to 1570
comply with the requirements of DSP0266: 1571

1) The MC shall instantiate a new TaskMonitor URL and a new member of the Task collection. The 1572
TaskMonitor URL should incorporate or reference (such as via a lookup table) the following data so 1573
that it can map from the TaskMonitor URL back to the correct Redfish resource – and thus the 1574
correct dictionary – for providing status query updates: 1575

a) The ResourceID for the resource to which the RDE Operation was targeted 1576

b) The rdeOpID for the Operation itself 1577

2) The MC shall return response code 202, Accepted, to the client and include the Location response 1578
header populated with the TaskMonitor URL. 1579

3) In response to a subsequent Redfish GET Operation applied to the TaskMonitor URL or to the Task 1580
collection member, the MC shall invoke the RDEOperationStatus (see clause 12.5) command to 1581
obtain the latest status for the Operation and communicate it to the client in accordance with 1582
DSP0266. If the GET was applied to a TaskMonitor URL and the Operation has been completed, the 1583
MC shall supply the completed results to the client. 1584

a) If the result of the RDEOperationStatus command was that the Operation has finished 1585
execution, the MC shall delete both the TaskMonitor URL and the Task collection member 1586
associated with the Operation. 1587

4) In response to a Redfish DELETE Operation applied to the TaskMonitor URL or to the Task 1588
collection member, the MC shall attempt to abort the associated Operation via the RDEOperationKill 1589
(see clause 12.6) command. It shall then remove both the TaskMonitor URL and the Task collection 1590
member. 1591

5) If the RDE Operation finishes before the client polls the TaskMonitor URL, the MC may collect and 1592
store the results of the Operation. 1593

a) In accordance with DSP0266, the MC should retain Operation results until the client retrieves 1594
them. It may refuse to accept further Operations until previous results have been claimed. 1595

b) If the client attempts to collect Operation results after the MC has discarded them, the MC shall 1596
respond with an error HTTP status code as defined in DSP0266. 1597

When the RDE Device finishes execution of a Task, it generates a Task Executed Event to inform the MC 1598
of this status change. The MC can then retrieve the results (via RDEOperationStatus) and eventually 1599

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

54 Published Version 1.1.0

forward them to the client. To mark the Task as complete and allow the RDE Device to discard any 1600
internal data structures used to manage the Task, the MC shall call RDEOperationComplete (clause 1601
12.4). 1602

For a more detailed overview of the Operation/Task lifecycle from the MC’s perspective, see clause 1603
7.2.4.1.1.3. A detailed flowchart of the Operation/Task lifecycle may be found in clause 9.2.1.4, and a 1604
finite state machine for the Task lifecycle (from the RDE Device’s perspective) may be found in clause 1605
9.2.3. 1606

7.3 Type code 1607

Refer to DSP0245 for a list of PLDM Type Codes in use. This specification uses the PLDM Type Code 1608
000110b as defined in DSP0245. 1609

7.4 Transport protocol type supported 1610

PLDM can support bindings over multiple interfaces; refer to DSP0245 for the complete list. All transport 1611
protocol types can be supported for the commands defined in Table 50. 1612

7.5 Error completion codes 1613

Table 37 lists PLDM completion codes for Redfish Device Enablement. The usage of individual error 1614
completion codes is defined within each of the PLDM command clauses. When communicating results 1615
back to the client, implementations should provide HTTP error codes as described below. 1616

Table 37 – PLDM for Redfish Device Enablement completion codes 1617

Value Name Description HTTP Error
Code

Various PLDM_BASE_CODES Refer to DSP0240 for a full list of
PLDM Base Code Completion
values that are supported.

See below.

128 (0x80) ERROR_BAD_CHECKSUM A transfer failed due to a bad
checksum and should be restarted.

MC should retry
transfer. If retry
fails, 500 Internal
Server Error

129 (0x81) ERROR_CANNOT_CREATE_OPERATI
ON

An Operation-based command
failed because the RDE Device
could not instantiate another
Operation at this time.

500 Internal
Server Error

130 (0x82) ERROR_NOT_ALLOWED The client and/or MC is not allowed
to perform the requested Operation.

405 Method Not
Allowed

131 (0x83) ERROR_WRONG_LOCATION_TYPE A Create, Delete, or Action
Operation attempted against a
location that does not correspond to
the right type.

405 Method Not
Allowed

132 (0x84) ERROR_OPERATION_ABANDONED An Operation-based command
other than completion was
attempted with an Operation that
has timed out waiting for the MC to
progress it in the Operation
lifecycle.

410 Gone

133 (0x85) ERROR_OPERATION_UNKILLABLE An attempt was made to kill an
Operation that has already finished
execution or that cannot be aborted.

409 Conflict

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 55

Value Name Description HTTP Error
Code

134 (0x86) ERROR_OPERATION_EXISTS An Operation initialization was
attempted with an rdeOpID that is
currently active.

N/A – MC retries
with a new
rdeOpID

135 (0x87) ERROR_OPERATION_FAILED An Operation-based command
other than completion was
attempted with an Operation that
has encountered an error in the
Operation lifecycle.

400 Bad
Request

136 (0x88) ERROR_UNEXPECTED A command was sent out of
context, such as sending
SupplyCustomRequestParameters
when Operation initialization flags
did not indicate that the Operation
requires them

500 Internal
Server Error

138 (0x89) ERROR_UNSUPPORTED An attempt was made to initialize an
operation not supported by the RDE
Device, to write to a property that
the RDE Device does not support,
or a command was issued
containing a text string in a format
that the recipient cannot interpret.

400 Bad
Request

144 (0x90) ERROR_UNRECOGNIZED_CUSTOM_
HEADER

The RDE Device received a custom
X-PLDM-RDE header (via
SupplyCustomRequestParameters)
that it does not support

412 Precondition
Failed

145 (0x91) ERROR_ETAG_MATCH The RDE Device received one or
more ETags that did not match an
If-Match or If-None-Match request
header

412,
Precondition
Failed (If-Match)
or 304, not
modified (If-
None-Match)

146 (0x92) ERROR_NO_SUCH_RESOURCE An Operation command was
invoked with a resource ID that
does not exist

404, Not Found

147 (0x93) ETAG_CALCULATION_ONGOING Calculating the ETag in response to
the GetResourceETag command is
taking too long to provide an
immediate response

N/A – MC retries
with the same
command later

HTTP Error codes returned when Operations complete with standard PLDM completion codes should be 1618
as follows: 1619

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

56 Published Version 1.1.0

Table 38 – HTTP codes for standard PLDM completion codes 1620

Name Description HTTP Error
Code

SUCCESS Normal success 200 Success,

202 Accepted
for an
Operation that
spawned a
Task, or 204
No Content for
an Action that
has no
response

ERROR
Generic error

400 Bad
Request

ERROR_INVALID_DATA
Invalid data or a bad parameter value

500 Internal
Server Error

ERROR_INVALID_LENGTH
Incorrectly formatted request method

500 Internal
Server Error

ERROR_NOT_READY
Device transiently busy

503 Service
Unavailable

ERROR_UNSUPPORTED_PLDM_CMD
Command not supported

501 Not
Implemented

ERROR_INVALID_PLDM_TYPE
Not a supported PLDM type

501 Not
Implemented

7.6 Timing specification 1621

Table 39 below defines timing values that are specific to this document. The table below defines the 1622
timing parameters defined for the PLDM Redfish Specification. In addition, all timing parameters listed in 1623
DSP0240 for command timeouts, command response times, and number of retries shall also be followed. 1624

Table 39 – Timing specification 1625

Timing
specification

Symbol Min Max Description

PLDM Base Timing PNx

PTx

(see
DSP0240)

(See
DSP0240)

(See
DSP0240)

Refer to DSP0240 for the details on these
timing values.

Operation/Transfer
abandonment

Tabandon 120
seconds

none Time between when the RDE Device is
ready to advance an Operation through
the Operation lifecycle and when the MC
must have initiated the next step. If the
MC fails to do so, the RDE Device may
consider the Operation as abandoned.

Also used in follow up to a
GetSchemaDictionary command to mark
the time between when the MC receives
one chunk of dictionary data and when it
must request the next chunk. If the MC
fails to do so, the RDE Device may
consider the transfer as abandoned.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 57

8 Binary Encoded JSON (BEJ) 1626

This clause defines a binary encoding of Redfish JSON data that will be used for communicating with 1627
RDE Devices. At its core, BEJ is a self-describing binary format for hierarchical data that is designed to 1628
be straightforward for both encoding and decoding. Unlike in ASN.1, BEJ uses no contextual encodings; 1629
everything is explicit and direct. While this requires the insertion of a bit more metadata into BEJ encoded 1630
data, the tradeoff benefit is that no lookahead is required in the decoding process. The result is a 1631
significantly streamlined representation that fits in a very small memory footprint suitable for modern 1632
embedded processors. 1633

8.1 BEJ design principles 1634

The core design principles for BEJ are focused around it being a compact binary representation of JSON 1635
that is easy for low-power embedded processors to encode, decode, and manipulate. This is important 1636
because these ASICs typically have highly limited memory and power budgets; they must be able to 1637
process data quickly and efficiently. Naturally, it must be possible to fully reconstruct a textual JSON 1638
message from its BEJ encoding. 1639

The following design principles guided the development of BEJ: 1640

1) It must be possible to support full expressive range of JSON. 1641

2) The encoding should be binary and compact, with as much of the encoding as possible 1642
dedicated to the JSON data elements. The amount of space afforded to metadata that conveys 1643
elements such as type format and hierarchy information should be carefully limited. 1644

3) There is no need to support multiple encoding techniques for one type of data; there is therefore 1645
no need to distinguish which encoding technique is in use. 1646

4) Schema information – such as the names of data items – does not need to be encoded into BEJ 1647
because the recipient can use a prior knowledge of the data organization to determine semantic 1648
information about the encoded data. In contrast to JSON, which is unordered, BEJ must adopt 1649
an explicit ordering for its data to support this goal. 1650

5) The need for contextual awareness should be minimized in the encoding and decoding process. 1651
Supporting context requires extra lookup tables (read: more memory) and delays processing 1652
time. Everything should be immediately present and directly decodable. Giving up a few bytes 1653
of compactness in support of this goal is a worthwhile tradeoff. 1654

8.2 SFLV tuples 1655

Each piece of JSON data is encoded as a tuple of PLDM type bejTuple and consists of the following: 1656

1) Sequence number: the index within the canonical schema at the current hierarchy level for the 1657
datum. For collections and arrays, the sequence number is the 0-based array index of the 1658
current element. 1659

2) Format: the type of data that is encoded. 1660

3) Length: the length in bytes of the data. 1661

4) Value: the actual data, encoded in a format-specific manner. 1662

These tuple elements collectively describe a single piece of JSON data; each piece of JSON data is 1663
described by a separate tuple. Requirements for each tuple element are detailed in the following clauses. 1664

SFLV tuples are represented by elements of the bejTuple PLDM type defined in clause 5.3.5. 1665

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

58 Published Version 1.1.0

8.2.1 Sequence number 1666

The Sequence Number tuple field serves as a stand-in for the JSON property name assigned to the data 1667
element the tuple encodes. Sequence numbers align to name strings contained within the dictionary for a 1668
given schema. Sequence numbers are represented by elements of the bejTupleS PLDM type defined in 1669
clause 5.3.6. 1670

The low-order bit of a sequence number shall indicate the dictionary to which it belongs according to the 1671
following table: 1672

Table 40 – Sequence number dictionary indication 1673

Bit Pattern Dictionary

0b Main Schema Dictionary (as was defined in the
bejEncoding PLDM object for this tuple)

1b Annotation Dictionary

8.2.2 Format 1674

The Format tuple field specifies the kind of data element that the tuple is representing. 1675

Formats are represented by elements of the bejTupleF PLDM type defined in clause 5.3.7. 1676

8.2.3 Length 1677

The Length tuple field details the length in bytes of the contents of the Value tuple field. 1678

Lengths are represented by elements of the bejTupleL PLDM type defined in clause 5.3.8. 1679

8.2.4 Value 1680

The Value tuple field contains an encoding of the actual data value for the JSON element described by 1681
this tuple. The format of the value tuple field is variable but follows directly from the format code in the 1682
Format tuple field. 1683

The following JSON data types are supported in BEJ: 1684

Table 41 – JSON data types supported in BEJ 1685

BEJ Type JSON Type Description

Null null An empty data type

Integer number A whole number: any element of JSON type number that contains neither a
decimal point nor an exponent

Enum enum An enumeration of permissible values in string format

String string A null-terminated UTF-8 text string

Real number A non-whole number: any element of JSON type number that contains at
least one of a decimal point or an exponent

Boolean boolean Logical true/false

Bytestring string (of base-
64 encoded
data)

Binary data

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 59

BEJ Type JSON Type Description

Set No named
type; data
enclosed in { }

A named collection of data elements that may have differing types

Array No named
type; data
enclosed in []

A named collection of zero or more copies of data elements of a common
type

Choice special The ability of a named data element to be of multiple types

Property
Annotation

special An annotation targeted to a specific property, in the format
property@annotation

Unrecognized special Used to perform a pass-through encoding of a data element for which the
name cannot be found in a dictionary for the corresponding schema

Schema Link special Used to capture JSON references to external schemas

Expanded
Schema Link

special Used to expand data from a linked external schema

If the deferred_binding flag (see the bejTupleF PLDM type definition in clause 5.3.7) is set, the string 1686
encoded in the value tuple element contains substitution macros that the MC is to supply on behalf of the 1687
RDE Device when populating a message to send back to the client. See clause 8.3 for more details. 1688

Values are represented by elements of the bejTupleV PLDM type defined in clause 5.3.9. 1689

8.3 Deferred binding of data 1690

The data returned to a client from a Redfish operation typically contains annotation metadata that specify 1691
URIs and other bits of information that are assigned by the MC when it performs RDE Device discovery 1692
and registration. In practice, the only way for an RDE Device to know the values for these annotations 1693
would be for it to somehow query the MC about them. Instead, we define substitution macros that the 1694
RDE Device may use to ask the MC to supply these bits of information on its behalf. RDE Devices shall 1695
not invoke substitution macros for information that they know and can provide themselves. 1696

All substitution macros are bracketed with the percent sign (%) character. While it would in theory be 1697
possible for the MC to check every string it decodes for the presence of this escape character, in practice 1698
that would be an inefficient waste of MC processing time. Instead, the RDE Device shall flag any string 1699
containing substitution macros with the deferred binding bit set to inform the MC of their presence; the 1700
MC shall only perform macro substitution if the deferred binding bit is set. The MC shall support the 1701
deferred bindings listed in Table 42. 1702

Table 42 – BEJ deferred binding substitution parameters 1703

Macro Data to be substituted Example substitutions

%% A single % character %

%L<resource-ID> The MC-assigned URI of an RDE
Provider defined resource (specified by a
resource ID within the target PDR), or
/invalid.PDR<resource-ID> if
unrecognized resource ID

/invalid.PDR123

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

60 Published Version 1.1.0

Macro Data to be substituted Example substitutions

%P<resource-
ID>.PAGE<pagination-offset>

The MC-assigned URI of an RDE
Provider defined resource (specified by a
resource ID within the target PDR) with a
given numerical pagination offset, or
/invalid.PDR<resource-
ID>.PAGE<pagination-offset> if
unrecognized resource ID or pagination
offset < 1

/invalid.PDR101.PAGE-1

%PD The MC-assigned URI for an MC-
managed PCIeDevice.PCIeDevice
correlating to this RDE Device, or
/invalid.PCIeDevice if one cannot be
identified.

If the RDE Device manages its own
PCIeDevice.PCIeDevice resource, it shall
use the %L binding when referring to it,

/invalid.PCIeDevice

%PF<function-info> The MC-assigned URI for an MC-
managed PCIeFunction.PCIeFunction
correlating to the RDE Device’s function
matching function-info, or
/invalid.PCIeFunction.<function-info> if
one cannot be identified.

Function-info shall be a string of lower-
case hexadecimal digits corresponding to
the PCIe function number for the function.

If the RDE Device manages its own
PCIeFunction.PCIeFunction resource, it
shall use the %L binding when referring
to it,

/invalid.PCIeFunction.nonhexdigits

/redfish/v1/chassis/1/PCIeDevices/
NIC/PCIeFunctions/1

%PI The MC-assigned URI for an MC-
managed PCIeDevice.PCIeInteface
correlating to this RDE Device, or
/invalid.PCIeInteface if one cannot be
identified.

If the RDE Device manages its own
PCIeDevice.PCIeInteface resource, it
shall use the %L binding when referring
to it

/invalid.PCIeInterface

%S The MC-assigned link to the
ComputerSystem resource within which
the RDE Device is located

/redfish/v1/Systems/437XR1138R2

%C The MC-assigned link to the Chassis
resource within which the RDE Device is
located

/redfish/v1/Chassis/1U

%M The metadata URL for the service /redfish/v1/$metadata

%T<resource-ID>.<n> The MC-assigned target URI for the nth
Action from the Redfish Action PDR or
PDRs linked to a resource within a
Redfish Resource PDR, or
“/invalid.<resource-ID>.<n>” if no such
action exists

/redfish/v1/Systems/437XR1138R2/
Storage/1/Actions/Storage.SetEncr
yptionKey

/invalid.123.6

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 61

Macro Data to be substituted Example substitutions

%I<resource-ID> The MC-assigned instance identifier for
the collection element representing an
RDE Device (specified by the resource ID
of the target PDR), or “invalid” if the PDR
does not correspond to a resource
immediately contained within a collection
managed by the MC

437XR1138R2

invalid

%U The UEFI Device Path assigned to the
RDE Device by the MC and/or BIOS

PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,
0x0)/Scsi(0xA, 0x0)

%. Terminates a previous substitution. Shall
be used only in the event that numeric
data immediately follows a %T, %P, or
%L macro

n/a

Any other character preceded
by a % character

None – the MC shall pass the sequence
exactly as found

%p

%X

8.4 BEJ encoding 1704

This clause presents implementation considerations for the BEJ encoding process. For standard resource 1705
encoding (as opposed to annotations), the BEJ conversion dictionary is built to encode the same 1706
hierarchical data format as the schema itself. Implementations should therefore track their context inside 1707
the dictionary in parallel with tracking their location in the data to be encoded. While not mandatory, a 1708
recursive implementation will prove in most cases to be the easiest approach to realize this tracking. 1709

Like with JSON encodings of data, there is no defined ordering for properties in BEJ data; encoders are 1710
therefore free to encode properties in any order. 1711

8.4.1 Conversion of JSON data types to BEJ 1712

Recognition of JSON data types enables them to be encoded properly. In Redfish, every property is 1713
encoded in the format “property_name” : property_value. Whitespace between syntactic elements is 1714
ignored in JSON encodings. 1715

8.4.1.1 JSON objects 1716

A JSON object consists of an opening curly brace (‘{‘), zero or more comma-separated properties, and 1717
then a closing curly brace (‘}’). JSON objects shall be encoded as BEJ sets with the properties inside the 1718
curly braces encoded recursively as the value tuple contents of the BEJ set. Following the precedent 1719
established in JSON, the properties contained within a JSON object may be encoded in BEJ in any order. 1720
In particular, the encoding order for a collection of properties is not required to match their respective 1721
sequence numbers. 1722

8.4.1.2 JSON arrays 1723

A JSON array consists of an opening square brace (‘[‘), zero or more comma-separated JSON values all 1724
of a common data type (typically objects in Redfish), and then a closing square brace. JSON arrays shall 1725
be encoded as BEJ arrays with the data inside the square braces encoded recursively as instances of the 1726
value tuple contents of the BEJ array. The immediate contents of a JSON array shall be encoded in order 1727
corresponding to their array indices. 1728

The sequence numbers for BEJ array immediate child elements shall match the zero-based array index 1729
of the children. These sequence numbers are not represented in the dictionary; it is the responsibility of a 1730
BEJ encoder/decoder to understand that this is how array data instances are handled. 1731

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

62 Published Version 1.1.0

8.4.1.3 JSON numbers 1732

In JSON, there is no distinction between integer and real data; both are collected together as the number 1733
type. For BEJ, numeric data shall be encoded as a BEJ integer if it contains neither a decimal point nor 1734
an exponentiation marker (‘e’ or ‘E’) and as a BEJ real otherwise. 1735

8.4.1.4 JSON strings 1736

When converting JSON strings to BEJ format, a null terminator shall be appended to the string. 1737

8.4.1.5 JSON Boolean 1738

In JSON, Boolean data consists of one of the two sentinels “true” or “false”. These sentinels shall be 1739
encoded as BEJ Boolean data with an appropriate value field. 1740

8.4.1.6 JSON null 1741

In JSON, null data consists of the sentinel “null”. This sentinel shall be encoded as BEJ Null data only if 1742
the datatype for the property in the schema is null. For a nullable property (identified via the third tag bit 1743
from the dictionary entry or by the schema), null data shall be encoded as its standard type (from the 1744
dictionary) with length zero and no value tuple element. 1745

8.4.2 Resource links 1746

Most Redfish schemas contain links to other schemas within their properties, formatted as @odata.id 1747
annotations. When encoding these links in BEJ, the URI may be encoded as any of bejString, 1748
bejResourceLink, or bejResourceLinkExpansion. If encoded as a bejString, deferred binding substitutions 1749
may be employed as needed to complete the reference. 1750

8.4.3 Registry items 1751

Redfish messages contain items from collated collections called registries. When encoding Redfish 1752
message registries in BEJ, the string may be encoded as either bejString or bejRegistryItem. 1753

8.4.4 Annotations 1754

Redfish annotations may be recognized as properties with a name string containing the “at” sign (‘@’). 1755
Several annotations are defined in Redfish, including some that are mandatory for inclusion with any 1756
Redfish GET Operation. The RDE Device is responsible for ensuring that these mandatory annotations 1757
are included in the results of an RDE read Operation. 1758

Annotations in Redfish have two forms: 1759

• Standalone form annotations have the form “@annotation_class.annotation_name” : 1760
annotation_value. 1761

– Example: “@odata.id”: “/redfish/v1/Systems/1/” 1762

– Standalone annotations shall be encoded with the BEJ data type listed in the annotation 1763
dictionary in the row matching the annotation name string 1764

• Property annotation form annotations have the form 1765
“property@annotation_class.annotation_name” : annotation_value. 1766

– Example: “ResetType@Redfish.AllowableValues” : [“On”, “PushPowerButton”] 1767

– Property annotation form annotations shall be encoded with the BEJ Property Annotation 1768
data type; the annotation value shall be encoded as a dependent child of the annotation 1769
entry. See clause 5.3.20. 1770

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 63

NOTE Unlike major schema resource properties, annotations have a flat namespace from which sequence numbers 1771
are drawn. To identify the sequence number for an annotation, an encoder should start at the root of the annotation 1772
dictionary and then find the string matching the annotation name (including the ‘@’ sign and the annotation source) 1773
within this set. In particular, the sequence number for an annotation is independent of the current encoding context. 1774

Special handling is required when the RDE Device sends a message annotation to the MC. The related 1775
properties property inside the annotation’s data structure is formatted as an array of strings, but the RDE 1776
Device has only sequence numbers to work with: the RDE Device may not be able to supply the property 1777
name for the sequence number. If the RDE Device knows the name of the related property that is 1778
relevant for the message annotation, it may supply the name directly as an array element. Otherwise, it 1779
shall encode into the array element a BEJ locator by concatenating the following string components: 1780

Table 43 – Message annotation related property BEJ locator encoding 1781

Description

Delimiter

Shall be ‘:’

ComponentCount

The number N of sequence numbers in the fields below, stringified

Delimiter

Shall be ‘:’

Locator Component [0]

Sequence number [0], stringified

Delimiter

Shall be ‘:’

Locator Component [1]

Sequence number [1], stringified

Delimiter

Shall be ‘:’

Locator Component [2]

Sequence number [2], stringified

Delimiter

Shall be ‘:’

…

Delimiter

Shall be ‘:’

Locator Component [N – 1]

Sequence number [N – 1], stringified

8.4.4.1 Nested annotations 1782

The data format for an annotation may be a simple property such as a string or an integer, but it may also 1783
be a compound property such as a set. In this latter case it is further possible that the set can itself 1784
contain an annotation. To distinguish the case where the sequence number for annotation data refers 1785
anew to a top-level annotation instead of to a property within the set for an annotation, the format byte of 1786
the BEJ tuple for that annotation shall have the read_only_property_and_top_level_annotation bit set to 1787
1b. 1788

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

64 Published Version 1.1.0

8.4.5 Choice encoding for properties that support multiple data types 1789

If the encoder finds a property that is listed in the dictionary as being of type BEJ choice, it shall encode 1790
the property with type bejChoice in the BEJ format tuple element. The actual value and selected data type 1791
shall be encoded as a dependent child of the tuple containing the bejChoice element. See clauses 5.3.19 1792
and 7.2.3.3. 1793

8.4.6 Properties with invalid values 1794

If the MC is encoding an update request from a client that includes a property value that does not match a 1795
required data type according to the dictionary it is translating from, the MC shall in accordance with the 1796
Redfish standard DSP0266 respond to the client with HTTP status code 400 and a 1797
@Message.ExtendedInfo annotation specifying the property with the value format error (see 1798
PropertyValueFormatError, PropertyValueTypeError in the Redfish base message registry). Similarly, if 1799
the value supplied for a property such as an enumeration does not match any required values, the MC 1800
shall in accordance with the Redfish standard DSP0266 respond to the client with HTTP status code 400 1801
and a @Message.ExtendedInfo annotation specifying the property with a value not in the accepted list 1802
(see PropertyValueNotInList in the Redfish base message registry). 1803

8.4.7 Properties missing from dictionaries 1804

When encoding JSON data, an encoder may find that the name of a property does not correspond to a 1805
string found in the dictionary. If the encoder is the RDE Device, this should never happen as the RDE 1806
Device is responsible for the dictionary. This situation therefore represents a non-compliant RDE 1807
implementation. 1808

If the MC finds that a property does not correspond to a string found in the dictionary from an RDE 1809
Device, it should in accordance with the Redfish standard DSP0266 respond to the client with HTTP 1810
status code 200 or 400 and an annotation specifying the property as unsupported (see PropertyUnknown 1811
in the Redfish base message registry). The MC may continue to process the client request. 1812

8.5 BEJ decoding 1813

This clause presents implementation considerations for the BEJ decoding process. 1814

Properties in BEJ data may be encoded in any order. Decoders must therefore be prepared to accept 1815
data in whatever order it was encoded. 1816

8.5.1 Conversion of BEJ data types to JSON 1817

When decoding from BEJ to JSON, the following rules shall be followed. In each of the following, 1818
“property_name” shall be taken to mean the name of the property or annotation as decoded from the 1819
relevant dictionary. For all data types, if the length tuple field is zero, the data shall be decoded as 1820
follows: 1821

 “property_name” : null 1822

When multiple properties appear sequentially within a set, they shall be delimited with commas. 1823

8.5.1.1 BEJ Set 1824

A BEJ Set shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) replaced as 1825
indicated: 1826

“property_name” : { ‹set dependent children decoded individually as a comma-separated list› } 1827

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 65

8.5.1.2 BEJ Array 1828

A BEJ Array shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) replaced 1829
as indicated: 1830

“property_name” : [‹array dependent children decoded individually as a comma-separated list›] 1831

8.5.1.3 BEJ Integer and BEJ Real 1832

BEJ Integers and BEJ Reals shall be decoded to the following format, with the text inside angle brackets 1833
(‘‹’, ’›’) replaced as indicated: 1834

“property_name” : “‹decoded numeric value›” 1835

8.5.1.4 BEJ String 1836

BEJ Strings shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) replaced 1837
as indicated. When converting BEJ strings to JSON format, the null terminator shall be dropped as JSON 1838
string encodings do not include null terminators. 1839

“property_name” : “‹decoded string value›” 1840

8.5.1.5 BEJ Boolean 1841

BEJ Booleans shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) 1842
replaced as indicated (note that the “true” and “false” sentinels are not encased in quote marks): 1843

“property_name” : ‹true or false, depending on the decoded value› 1844

8.5.1.6 BEJ Null 1845

BEJ Null shall be decoded to the following format: 1846

“property_name” : null 1847

8.5.1.7 BEJ Resource Link 1848

A BEJ Resource Link shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) 1849
replaced as indicated. 1850

“property_name” : “‹URI for the resource corresponding the Redfish Resource PDR with the 1851
supplied ResourceID›” 1852

MCs shall be aware that either a BEJ Resource Link or a BEJ Resource Link Expansion may be encoded 1853
for a dictionary entry that lists its type as BEJ Resource Link. 1854

8.5.1.8 BEJ Resource Link expansion 1855

A BEJ Resource Link Expansion shall be decoded to the following format, with the text inside angle 1856
brackets (‘‹’, ’›’) replaced as indicated. 1857

‹full resource data for the Redfish Resource PDR corresponding to the supplied ResourceID› 1858

NOTE property_name is not included in the decoded JSON output in this case. 1859

If the supplied ResourceID is zero and the parent resource is a collection, the MC shall use the 1860
COLLECTION_MEMBER_TYPE schema dictionary obtained from the collection resource (rather than 1861
trying to use a dictionary from the members) to decode resource data. 1862

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

66 Published Version 1.1.0

MCs shall be aware that either a BEJ Resource Link or a BEJ Resource Link Expansion may be encoded 1863
for a dictionary entry that lists its type as BEJ Resource Link. 1864

8.5.2 Annotations 1865

This clause documents the approach for decoding the two types of Redfish annotations to JSON text. 1866

8.5.2.1 Standalone annotations 1867

Standalone annotations (data from decoded from the annotation dictionary) shall be decoded to the 1868
following format, with the bit inside angle brackets (‘‹’, ’›’) replaced as indicated: 1869

“@annotation_class.annotation_name” : “‹decoded annotation value›” 1870

8.5.2.2 BEJ property annotations 1871

BEJ Property Annotations shall be decoded to the following format, with the bit inside angle brackets (‘‹’, 1872
’›’) replaced as indicated: 1873

“property_name@annotation_class.annotation_name” : “‹decoded annotation value from the 1874
annotation’s dependent child node›” 1875

8.5.2.3 [MC] Related Properties in message annotations 1876

When a message annotation is sent from the RDE Device to the MC, the related properties field of 1877
message annotations requires special handling in RDE. Specifically, the array element string values are 1878
BEJ locators to individual properties, may be encoded as a colon-delimited string (see clause 8.4.3). 1879
When decoding, the MC shall check the first character of the supplied string. If it is a colon (:), the MC 1880
shall extract the individual sequence numbers for the BEJ locator, and then use them to identify the 1881
property name to send back to the client for the annotation. If the first character of the supplied string is 1882
not a colon, the MC shall return the supplied string unmodified. 1883

8.5.3 Sequence numbers missing from dictionaries 1884

It may transpire that when decoding BEJ data, a decoder finds a sequence number not in its dictionary. 1885
The handling of this case differs between the RDE Device and the MC. 1886

If the RDE Device finds an unrecognized sequence number as part of the payload for a put, patch, or 1887
create operation, the RDE Device shall in accordance with the Redfish standard DSP0266 respond with 1888
an annotation specifying the sequence number as an unsupported property (see PropertyUnknown in the 1889
Redfish base message registry). The RDE Device may continue to decode the remainder of the payload 1890
and perform the requested Operation upon the portion it understands. 1891

If the MC finds an unrecognized sequence number as part of the response payload for a get or action 1892
Operation, or as part of a @Message.ExtendedInfo annotation response for any other Operation, it shall 1893
treat this as a failure on the part of the RDE Device and respond to the client with HTTP status code 500, 1894
Internal Server Error. 1895

8.5.4 Sequence numbers for read-only properties in modification Operations 1896

If the RDE Device is performing a modification operation (create, put, patch, or some actions), and it finds 1897
a sequence number corresponding to a property that is read-only, the RDE Device should in accordance 1898
with the Redfish standard DSP0266 respond with an annotation specifying the sequence number as a 1899
non-updateable property (see PropertyNotWritable in the Redfish base message registry). The RDE 1900
Device may continue to decode and update with the remainder of the payload. 1901

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 67

8.6 Example encoding and decoding 1902

The following examples demonstrate the BEJ encoding and decoding processes. For illustrative 1903
purposes, we show the data collected in an XML form that happens to align with the schema; however, 1904
there is no requirement that data be stored in this form. Indeed, it is very unlikely that any RDE Device 1905
would do so. 1906

The examples in this clause use the example dictionary from clause 8.6.1. 1907

8.6.1 Example dictionary 1908

The example dictionary is based on the DummySimple JSON schema presented in Figure 5: 1909
{ 1910
 "$ref": "#/definitions/DummySimple", 1911
 "$schema": "http://json-schema.org/draft-04/schema#", 1912
 "copyright": "Copyright 2018 DMTF. For 1913
 the full DMTF copyright policy, see http://www.dmtf.org/about/policies/copyright", 1914
 "definitions": { 1915
 "LinkStatus": { 1916
 "enum": [1917
 "NoLink", 1918
 "LinkDown", 1919
 "LinkUp" 1920
], 1921
 "type": "string" 1922
 }, 1923
 "DummySimple" : { 1924
 "additionalProperties": false, 1925
 "description": "The DummySimple schema represents a very simple schema used to 1926
 demonstrate the BEJ dictionary format.", 1927
 "longDescription": "This resource shall not be used except for illustrative 1928
 purposes. It does not correspond to any real hardware or software.", 1929
 "patternProperties": { 1930
 "^([a-zA-Z_][a-zA-Z0-9_]*)?@(odata|Redfish|Message|Privileges)\\.[a-zA-Z_][a-zA-1931
Z0-9_.]+$": { 1932
 "description": "This property shall specify a valid odata or Redfish 1933
 property.", 1934
 "type": [1935
 "array", 1936
 "boolean", 1937
 "number", 1938
 "null", 1939
 "object", 1940
 "string" 1941
] 1942
 } 1943
 }, 1944
 "properties": { 1945
 "@odata.context": { 1946
 "$ref": 1947
 "http://redfish.dmtf.org/schemas/v1/odata.v4_0_1.json#/definitions/context" 1948
 }, 1949
 "@odata.id": { 1950
 "$ref": 1951
 "http://redfish.dmtf.org/schemas/v1/odata.v4_0_1.json#/definitions/id" 1952
 }, 1953
 "@odata.type": { 1954
 "$ref": 1955
 "http://redfish.dmtf.org/schemas/v1/odata.v4_0_1.json#/definitions/type" 1956
 }, 1957
 "ChildArrayProperty": { 1958
 "items": { 1959
 "additionalProperties": false, 1960
 "type": "object", 1961
 "properties": { 1962
 "LinkStatus": { 1963
 "anyOf": [1964

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

68 Published Version 1.1.0

 { 1965
 "$ref": "#/definitions/LinkStatus" 1966
 }, 1967
 { 1968
 "type": "null" 1969
 } 1970
], 1971
 "readOnly": true 1972
 }, 1973
 "AnotherBoolean": { 1974
 "type": "boolean" 1975
 } 1976
 } 1977
 }, 1978
 "type": "array" 1979
 } 1980
 }, 1981
 "SampleIntegerProperty": { 1982
 "type": "integer" 1983
 }, 1984
 "Id": { 1985
 "type": "string", 1986
 "readOnly": true 1987
 }, 1988
 "SampleEnabledProperty": { 1989
 "type": "boolean" 1990
 } 1991
 } 1992
 }, 1993
 "title": "#DummySimple.v1_0_0.DummySimple" 1994
} 1995

Figure 5 – DummySimple schema 1996

NOTE This is not a published DMTF Redfish schema. 1997

In tabular form, the dictionary for DummySimple appears as shown in Table 44: 1998

Table 44 – DummySimple dictionary (tabular form) 1999

Row Sequence
Number

Format Name Child
Pointer

Child
Count

0 0 set DummySimple 1 4

1 0 array ChildArrayProperty 5 1

2 1 string Id null 0

3 2 boolean SampleEnabledProperty null 0

4 3 integer SampleIntegerProperty null 0

5 0 set null (anonymous array
elements)

6 2

6 0 boolean AnotherBoolean null 0

7 1 enum LinkStatus 8 3

8 0 string LinkDown null 0

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 69

Row Sequence
Number

Format Name Child
Pointer

Child
Count

9 1 string LinkUp null 0

10 2 string NoLink null 0

Finally, in binary form, the dictionary appears as shown in Figure 6. (Colors in this example match those used in 2000
Figure 4.) 2001

 2002
0x00 0x00 0x0B 0x00 0x00 0xF0 0xF0 0xF1 2003
0x12 0x01 0x00 0x00 0x00 0x00 0x00 0x16 2004
0x00 0x04 0x00 0x0C 0x7A 0x00 0x14 0x00 2005
0x00 0x3E 0x00 0x01 0x00 0x13 0x86 0x00 2006
0x56 0x01 0x00 0x00 0x00 0x00 0x00 0x03 2007
0x99 0x00 0x74 0x02 0x00 0x00 0x00 0x00 2008
0x00 0x16 0x9C 0x00 0x34 0x03 0x00 0x00 2009
0x00 0x00 0x00 0x16 0xB2 0x00 0x00 0x00 2010
0x00 0x48 0x00 0x02 0x00 0x00 0x00 0x00 2011
0x74 0x00 0x00 0x00 0x00 0x00 0x00 0x0F 2012
0xC8 0x00 0x46 0x01 0x00 0x5C 0x00 0x03 2013
0x00 0x0B 0xD7 0x00 0x50 0x00 0x00 0x00 2014
0x00 0x00 0x00 0x09 0xE2 0x00 0x50 0x01 2015
0x00 0x00 0x00 0x00 0x00 0x07 0xEB 0x00 2016
0x50 0x02 0x00 0x00 0x00 0x00 0x00 0x07 2017
0xF2 0x00 0x44 0x75 0x6D 0x6D 0x79 0x53 2018
0x69 0x6D 0x70 0x6C 0x65 0x00 0x43 0x68 2019
0x69 0x6C 0x64 0x41 0x72 0x72 0x61 0x79 2020
0x50 0x72 0x6F 0x70 0x65 0x72 0x74 0x79 2021
0x00 0x49 0x64 0x00 0x53 0x61 0x6D 0x70 2022
0x6C 0x65 0x45 0x6E 0x61 0x62 0x6C 0x65 2023
0x64 0x50 0x72 0x6F 0x70 0x65 0x72 0x74 2024
0x79 0x00 0x53 0x61 0x6D 0x70 0x6C 0x65 2025
0x49 0x6E 0x74 0x65 0x67 0x65 0x72 0x50 2026
0x72 0x6F 0x70 0x65 0x72 0x74 0x79 0x00 2027
0x41 0x6E 0x6F 0x74 0x68 0x65 0x72 0x42 2028
0x6F 0x6F 0x6C 0x65 0x61 0x6E 0x00 0x4C 2029
0x69 0x6E 0x6B 0x53 0x74 0x61 0x74 0x75 2030
0x73 0x00 0x4C 0x69 0x6E 0x6B 0x44 0x6F 2031
0x77 0x6E 0x00 0x4C 0x69 0x6E 0x6B 0x55 2032
0x70 0x00 0x4E 0x6F 0x4C 0x69 0x6E 0x6B 2033
0x00 0x18 0x43 0x6F 0x70 0x79 0x72 0x69 2034
0x67 0x68 0x74 0x20 0x28 0x63 0x29 0x20 2035
0x32 0x30 0x31 0x38 0x20 0x44 0x4D 0x54 2036
0x46 0x00 2037

Figure 6 – DummySimple dictionary – binary form 2038

8.6.2 Example encoding 2039

For this example, we start with the following data (shown here in an XML representation). 2040

NOTE The names assigned to array elements are fictitious and inserted for illustrative purposes only. Also, the 2041
encoding sequence presented here is only one possible approach; any sequence that generates the same result is 2042
acceptable. The value of the @odata.id annotation shown here is a deferred binding (see clause 8.3) that assumes 2043
the DummySimple resource corresponds to a Redfish Resource PDR with resource ID 10. Finally, for illustrative 2044
purposes we omit here the header bytes contained within the bejEncoding type that are not part of the bejTuple 2045
PLDM type. 2046
 2047

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

70 Published Version 1.1.0

 2048
<Item name=”DummySimple” type=”set”> 2049
 <Item name=”@odata.id” type=”string” value=”%L10”> 2050
 <Item name=”ChildArrayProperty” type=”array”> 2051
 <Item name=”array element 0”> 2052
 <Item name=”AnotherBoolean” type=”boolean” value=”true”/> 2053
 <Item name=”LinkStatus” type=”enum” enumtype=”String”> 2054
 <Enumeration value=”NoLink”/> 2055
 </Item> 2056
 </Item> 2057
 <Item name=”array element 1”> 2058
 <Item name=”LinkStatus” type=”enum” enumtype=”String”> 2059
 <Enumeration value=”LinkDown”/> 2060
 </Item> 2061
 </Item> 2062
 </Item> 2063
 <Item name=”Id” type=”string” value=”Dummy ID”/> 2064
 <Item name=”SampleIntegerProperty” type=”number” value=”12”/> 2065
</Item> 2066

The first step of the encoding process is to insert sequence numbers, which can be retrieved from the 2067
relevant dictionary. (For purposes of this example, we are assuming that the @odata.id annotation is 2068
sequence number 16 in the annotation dictionary.) Sequence numbers for array elements correspond to 2069
their zero-based index within the array. 2070

<Item name=”DummySimple” type=”set” seqno=”major/0”> 2071
 <Item name=”@odata.id” type=”string” value=”%L10” seqno=”annotation/16”> 2072
 <Item name=”ChildArrayProperty” type=”array” seqno=”major/0”> 2073
 <Item name=”array element 0” seqno=”major/0”> 2074
 <Item name=”AnotherBoolean” type=”boolean” value=”true” seqno=”major/0”/> 2075
 <Item name=”LinkStatus” type=”enum” enumtype=”String” seqno=”major/1”> 2076
 <Enumeration value=”NoLink” seqno=”major/2”/> 2077
 </Item> 2078
 </Item> 2079
 <Item name=”array element 1” seqno=”major/1”> 2080
 <Item name=”LinkStatus” type=”enum” enumtype=”String” seqno=”major/1”> 2081
 <Enumeration value=”LinkDown” seqno=”major/0”/> 2082
 </Item> 2083
 </Item> 2084
 </Item> 2085
 <Item name=”Id” type=”string” value=”Dummy ID” seqno=”major/1”/> 2086
 <Item name=”SampleIntegerProperty” type=”integer” value=”12” seqno=”major/3”/> 2087
</Item> 2088

After the sequence numbers are fully characterized, they can be encoded. We encode which dictionary 2089
these sequence numbers came by shifting them left one bit to insert 0b (major dictionary) or 1b 2090
(annotation dictionary) as the low order bit per clause 8.2.1. As the sequence numbers are now assigned, 2091
names of properties and enumeration values are no longer needed: 2092
 2093
 2094

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 71

<Item type=”set” seqno=”0”> 2095
 <Item seqno=”33” type=”string” value=”%L10” seqno=”annotation/16”> 2096
 <Item type=”array” seqno=”0”> 2097
 <Item seqno=”0”> 2098
 <Item type=”boolean” value=”true” seqno=”0”/> 2099
 <Item type=”enum” enumtype=”String” seqno=”2”> 2100
 <Enumeration seqno=”4”/> 2101
 </Item> 2102
 </Item> 2103
 <Item seqno=”2”> 2104
 <Item type=”enum” enumtype=”String” seqno=”2”> 2105
 <Enumeration seqno=”0”/> 2106
 </Item> 2107
 </Item> 2108
 </Item> 2109
 <Item type=”string” value=”Dummy ID” seqno=”2”/> 2110
 <Item type=”integer” value=”12” seqno=”6”/> 2111
</Item> 2112

The next step is to convert everything into BEJ SFLV Tuples. Per clause 5.3.12, the value of an 2113
enumeration is the sequence number for the selected option. 2114
 2115

{0x01 0x00, set, [length placeholder], value={count=3, 2116
 {0x01 0x21, string, [length placeholder], value=”%L10”} 2117
 {0x01 0x00, array, [length placeholder], value={count=2, 2118
 {0x01 0x00, set, [length placeholder], value={count=2, 2119
 {0x01 0x00, boolean, [length placeholder], value=true} 2120
 {0x01 0x02, enum, [length placeholder], value=2} 2121
 }} 2122
 {0x01 0x02, set, [length placeholder], value={count=1, 2123
 {0x01 0x02, enum, [length placeholder], value=0} 2124
 }} 2125
 }} 2126
 {0x01 0x02, string, [length placeholder], value=”Dummy ID”} 2127
 {0x01 0x06, integer, [length placeholder], value=12} 2128
}} 2129

We now encode the formats and the leaf nodes, following Table 9. For sets and arrays, the value 2130
encoding count prefix is a nonnegative Integer; we can encode that now as well per Table 4. Note the null 2131
terminator for the string. The encoded sequence numbers for enumeration values do not need a 2132
dictionary selector inserted as the LSB as the dictionary was already indicated with the sequence number 2133
for the enumeration itself in the format tuple field. The @odata.id annotation string value contains a 2134
deferred binding, so we set that bit in the format tuple field. 2135
 2136

{0x01 0x00, 0x00, [length placeholder], {0x01 0x04, 2137
 {0x01 0x21, 0x51, [length placeholder], 0x25 0x4C 0x31 0x30} 2138
 {0x01 0x00, 0x10, [length placeholder], {0x01 0x02, 2139
 {0x01 0x00, 0x00, [length placeholder], {0x01 0x02, 2140
 {0x01 0x00, 0x70, [length placeholder], 0xFF} 2141
 {0x01 0x02, 0x40, [length placeholder], 0x01 0x02} 2142
 }} 2143
 {0x01 0x02, 0x00, [length placeholder], {0x01 0x01, 2144
 {0x01 0x02, 0x40, [length placeholder], 0x01 0x00} 2145
 }} 2146
 }} 2147
 {0x01 0x02, 0x50, [length placeholder], 2148
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2149
 {0x01 0x06, 0x30, [length placeholder], 0x0C} 2150
}} 2151

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

72 Published Version 1.1.0

All that remains is to fill in the length values. We begin at the leaves: 2152
 2153

{0x01 0x00, 0x00, [length placeholder], {0x01 0x04, 2154
 {0x01 0x21, 0x51, 0x01 0x04, 0x25 0x4C 0x31 0x30} 2155
 {0x01 0x00, 0x10, [length placeholder], {0x01 0x02, 2156
 {0x01 0x00, 0x00, [length placeholder], {0x01 0x02, 2157
 {0x01 0x00, 0x70, 0x01 0x01, 0xFF} 2158
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x02} 2159
 }} 2160
 {0x01 0x02, 0x00, [length placeholder], {0x01 0x01, 2161
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x00} 2162
 }} 2163
 }} 2164
 {0x01 0x02, 0x50, 0x01 0x09, 2165
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2166
 {0x01 0x06, 0x30, 0x01 0x01, 0x0C} 2167
}} 2168

We then work our way from the leaves towards the outermost enclosing tuples. First, the array element 2169
sets: 2170
 2171

{0x01 0x00, 0x00, [length placeholder], {0x01 0x04, 2172
 {0x01 0x21, 0x51, 0x01 0x04, 0x25 0x4C 0x31 0x30} 2173
 {0x01 0x00, 0x10, [length placeholder], {0x01 0x02, 2174
 {0x00, 0x00, 0x01 0x0F, {0x01 0x02, 2175
 {0x01 0x00, 0x07, 0x01 0x01, 0xFF} 2176
 {0x01 0x20, 0x04, 0x01 0x02, 0x01 0x02} 2177
 }} 2178
 {0x01 0x02, 0x00, 0x01 0x09, {0x01 0x01, 2179
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x00} 2180
 }} 2181
 }} 2182
 {0x01 0x02, 0x50, 0x01 0x09, 2183
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2184
 {0x01 0x06, 0x30, 0x01 0x01, 0x0C} 2185
}} 2186

Next, the array itself: 2187
 2188

{0x01 0x00, 0x00, [length placeholder], {0x01 0x04, 2189
 {0x01 0x21, 0x51, 0x01 0x04, 0x25 0x4C 0x31 0x30} 2190
 {0x01 0x00, 0x10, 0x01 0x24, {0x01 0x02, 2191
 {0x01 0x00, 0x00, 0x01 0x0F, {0x01 0x02, 2192
 {0x01 0x00, 0x70, 0x01 0x01, 0xFF} 2193
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x02} 2194
 }} 2195
 {0x01 0x02, 0x00, 0x01 0x09, {0x01 0x01, 2196
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x00} 2197
 }} 2198
 }} 2199
 {0x01 0x02, 0x50, 0x01 0x09, 2200
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2201
 {0x01 0x06, 0x30, 0x01 0x01, 0x0C} 2202
}} 2203

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 73

Finally, the outermost set: 2204
 2205

{0x01 0x00, 0x00, 0x01 0x48, {0x01 0x04, 2206
 {0x01 0x21, 0x51, 0x01 0x04, 0x25 0x4C 0x31 0x30} 2207
 {0x01 0x00, 0x10, 0x01 0x24, {0x01 0x02, 2208
 {0x01 0x00, 0x00, 0x01 0x0F, {0x01 0x02, 2209
 {0x01 0x00, 0x70, 0x01 0x01, 0xFF} 2210
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x02} 2211
 }} 2212
 {0x01 0x02, 0x00, 0x01 0x09, {0x01 0x01, 2213
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x00} 2214
 }} 2215
 }} 2216
 {0x01 0x02, 0x50, 0x01 0x09, 2217
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2218
 {0x01 0x06, 0x30, 0x01 0x01, 0x0C} 2219
}} 2220

The encoded bytes may now be read off, and the inner encoding is complete: 2221
 2222

0x01 0x00 0x00 0x01 : 0x48 0x01 0x04 0x01 2223
0x21 0x51 0x01 0x04 : 0x25 0x4C 0x31 0x30 2224
0x01 0x00 0x10 0x01 : 0x24 0x01 0x02 0x01 2225
0x00 0x00 0x01 0x0F : 0x01 0x02 0x01 0x00 2226
0x70 0x01 0x01 0xFF : 0x01 0x02 0x40 0x01 2227
0x02 0x01 0x02 0x01 : 0x02 0x00 0x01 0x09 2228
0x01 0x01 0x01 0x02 : 0x40 0x01 0x02 0x01 2229
0x00 0x01 0x02 0x50 : 0x01 0x09 0x44 0x75 2230
0x6D 0x6D 0x79 0x20 : 0x49 0x44 0x00 0x01 2231
0x06 0x30 0x01 0x01 : 0x0C 2232

8.6.3 Example decoding 2233

The decoding process is largely the inverse of the encoding process. For this example, we start with the 2234
final encoded data from clause 8.6.1: 2235
 2236

0x01 0x00 0x00 0x01 : 0x48 0x01 0x04 0x01 2237
0x21 0x51 0x01 0x04 : 0x25 0x4C 0x31 0x30 2238
0x01 0x00 0x10 0x01 : 0x24 0x01 0x02 0x01 2239
0x00 0x00 0x01 0x0F : 0x01 0x02 0x01 0x00 2240
0x70 0x01 0x01 0xFF : 0x01 0x02 0x40 0x01 2241
0x02 0x01 0x02 0x01 : 0x02 0x00 0x01 0x09 2242
0x01 0x01 0x01 0x02 : 0x40 0x01 0x02 0x01 2243
0x00 0x01 0x02 0x50 : 0x01 0x09 0x44 0x75 2244
0x6D 0x6D 0x79 0x20 : 0x49 0x44 0x00 0x01 2245
0x06 0x30 0x01 0x01 : 0x0C 2246

The first step of the decoding process is to map the byte data to {SFLV} tuples, using the length bytes and 2247
set/array counts to identify tuple boundaries: 2248
 2249
 2250

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

74 Published Version 1.1.0

 2251
{S=0x01 0x00, F=0x00, L=0x01 0x3F, V={0x01 0x04, 2252
 {S=0x01 0x21, F=0x51, L=0x01 0x04, V=0x25 0x4C 0x31 0x30} 2253
 {S=0x01 0x00, F=0x10, L=0x01 0x24, V={0x01 0x02, 2254
 {S=0x01 0x00, F=0x00, L=0x01 0x0F, V={0x01 0x02, 2255
 {S=0x01 0x00, F=0x70, L=0x01 0x01, V=0xFF} 2256
 {S=0x01 0x02, F=0x40, L=0x01 0x02, V=0x01 0x02} 2257
 }} 2258
 {S=0x01 0x02, F=0x00, L=0x01 0x09, V={0x01 0x01, 2259
 {S=0x01 0x02, F=0x40, L=0x01 0x02, V=0x01 0x00} 2260
 }} 2261
 }} 2262
 {S=0x01 0x02, F=0x50, L=0x01 0x09, 2263
 V=0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2264
 {0x01 S=0x06, F=0x30, L=0x01 0x01, V=0x0C} 2265
}} 2266

After the tuple boundaries are understood, the length and count data are no longer needed: 2267
 2268

{S=0x01 0x00, F=0x00, V={ 2269
 {S=0x01 0x21, F=0x51, V=0x25 0x4C 0x31 0x30} 2270
 {S=0x01 0x00, F=0x10, V={ 2271
 {S=0x01 0x00, F=0x00, V={ 2272
 {S=0x01 0x00, F=0x70, V=0xFF} 2273
 {S=0x01 0x02, F=0x40, V=0x01 0x02} 2274
 }} 2275
 {S=0x01 0x02, F=0x00, V={ 2276
 {S=0x01 0x02, F=0x40, V=0x01 0x00} 2277
 }} 2278
 }} 2279
 {S=0x01 0x02, F=0x50, V=0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2280
 {S=0x01 0x06, F=0x30, V=0x0C} 2281
}} 2282

The next step is to decode format tuple bytes using Table 9. This will tell us how to decode the value 2283
data: 2284
 2285

{S=0x01 0x00, set, V={ 2286
 {S=0x01 0x21, string with deferred binding, V=0x25 0x4C 0x31 0x30} 2287
 {S=0x01 0x00, array, V={ 2288
 {S=0x01 0x00, set, V={ 2289
 {S=0x01 0x00, boolean, V=0xFF} 2290
 {S=0x01 0x02, enum, V=0x01 0x02} 2291
 }} 2292
 {S=0x01 0x02, set, V={ 2293
 {S=0x01 0x02, enum, V=0x01 0x00} 2294
 }} 2295
 }} 2296
 {S=0x01 0x02, string, V=0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2297
 {S=0x01 0x06, integer, V=0x0C} 2298
}} 2299

We now decode value data. The deferred binding for the @odata.id property can now be processed, 2300
translating from “%L10” to “/redfish/v1/systems/1/DummySimples/1”, an instance in a collection of 2301
resources of type DummySimple: 2302
 2303
 2304

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 75

 2305
{S=0x01 0x00, set, { 2306
 {S=0x01 0x21, string, “/redfish/v1/systems/1/DummySimples/1”} 2307
 {S=0x01 0x00, array, { 2308
 {S=0x01 0x00, set, { 2309
 {S=0x01 0x00, boolean, true} 2310
 {S=0x01 0x02, enum, <value 2>} 2311
 }} 2312
 {S=0x01 0x02, set, { 2313
 {S=0x01 0x02, enum, <value 0>} 2314
 }} 2315
 }} 2316
 {S=0x01 0x02, string, “Dummy ID”} 2317
 {S=0x01 0x06, integer, 12} 2318
}} 2319

Next, we decode the sequence numbers to identify which dictionary they select: 2320

 2321
{S=major/0, set, { 2322
 {S=annotation/16, string, “/redfish/v1/systems/1/DummySimples/1”} 2323
 {S=major/0, array, { 2324
 {S=major/0, set, { 2325
 {S=major/0, boolean, true} 2326
 {S=major/1, enum, <value 2>} 2327
 }} 2328
 {S=major/1, set, { 2329
 {S=major/1, enum, <value 0>} 2330
 }} 2331
 }} 2332
 {S=major/1, string, “Dummy ID”} 2333
 {S=major/3, integer, 12} 2334
}} 2335

Next, we use the selected dictionary to replace decoded sequence numbers with the strings they 2336
represent: 2337
 2338

{“DummySimple”, set, { 2339
 {“@odata.id”, string, “/redfish/v1/systems/1/DummySimples/1”} 2340
 {“ChildArrayProperty”, array, { 2341
 {<Array element 0>, set, { 2342
 {“AnotherBoolean”, boolean, true} 2343
 {“LinkStatus”, enum, “NoLink”} 2344
 }} 2345
 {<Array element 1>, set, { 2346
 {“LinkStatus”, enum, “LinkDown”} 2347
 }} 2348
 }} 2349
 {“Id”, string, “Dummy ID”} 2350
 {“SampleIntegerProperty”, integer, 12} 2351
}} 2352

We can now write out the decoded BEJ data in JSON format if desired (an MC will need to do this to 2353
forward an RDE Device’s response to a client, but an RDE Device may not need this step): 2354
 2355
 2356

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

76 Published Version 1.1.0

 2357
{ 2358
 “DummySimple” : { 2359
 “@odata.id” : “/redfish/v1/systems/1/DummySimples/1”, 2360
 “ChildArrayProperty” : [2361
 { 2362
 “AnotherBoolean” : true, 2363
 “LinkStatus” : “NoLink” 2364
 }, 2365
 { 2366
 “LinkStatus” : “LinkDown” 2367
 } 2368
], 2369
 “Id” : “Dummy ID”, 2370
 “SampleIntegerProperty” : 12 2371
 } 2372
} 2373

8.7 BEJ locators 2374

A BEJ locator represents a particular location within a resource at which some operation is to take place. 2375
The locator itself consists of a list of sequence numbers for the series of nodes representing the traversal 2376
from the root of the schema tree down to the point of interest. The list of schema nodes is concatenated 2377
together to form the locator. A locator with no sequence numbers targets the root of the schema. 2378

NOTE The sequence numbers are absolute as they are relative to the schema, not to the subset of the schema for 2379
which the RDE Device supports data. This enables a locator to be unambiguous. 2380

As an example, consider a locator, encoded for the example dictionary of clause 8.6.1: 2381

0x01 0x08 0x01 0x00 0x01 0x00 0x01 0x06 0x01 0x02 2382

Decoding this locator, begins with decoding the length in bytes of the locator. In this case, the first two 2383
bytes specify that the remainder of the locator is 8 bytes long. The next step is to decode the bejTupleS-2384
formatted sequence numbers. The low-order bit of each sequence number references the schema to 2385
which it refers; in this case, the pattern 0b indicates the major schema. Decoding produces the following 2386
list: 2387

0, 0, 3, 1 2388

Now, referring to the dictionary enables identification of the target location. Remember that all indices are 2389
zero-based: 2390

• The first zero points to DummySimple 2391

• The second zero points to the first child of DummySimple, or ChildArrayProperty 2392

• The three points to the fourth element in the ChildArrayProperty array, an anonymous instance 2393
of the array type (array instances are not reflected in the dictionary, but are implicitly the 2394
immediate children of any array) 2395

• The one points to the second child inside the ChildArray element type, or LinkStatus 2396

9 Operational behaviors 2397

This clause describes the operational behavior for initialization, Operations/Tasks, and Events. 2398

9.1 Initialization (MC perspective) 2399

The following clauses present initialization of RDE Devices with MCs. 2400

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 77

9.1.1 Sample initialization ladder diagram 2401

Figure 7 presents the ladder diagram for an example initialization sequence. 2402

Once the MC detects the RDE Device, it begins the discovery process by invoking the 2403
NegotiateRedfishParameters command to determine the concurrency and feature support for the RDE 2404
Device. It then uses the NegotiateMediumParameters command to determine the maximum message 2405
size that the MC and the RDE Device can both support. This finishes the RDE discovery process. 2406

After discovery comes the RDE registration process. It consists of two parts, PDR retrieval and dictionary 2407
retrieval. To retrieve the RDE PDRs, the MC utilizes the PLDM for Platform Monitoring and Control 2408

FindPDR command to locate PDRs that are specific to RDE4. For each such PDR located, the MC then 2409
retrieves it via one or more message sequences in the PLDM for Platform Monitoring and Control 2410
GetPDR command. 2411

After all the PDRs are retrieved, the next step is to retrieve dictionaries. For each Redfish Resource PDR 2412
that the MC retrieved, it retrieves the relevant dictionaries via a standardized process in which it first 2413
executes the GetSchemaDictionary command to obtain a transfer handle for the dictionary. It then uses 2414
the transfer handle with the RDEMultipartReceive command to retrieve the corresponding dictionary. 2415

Multiple initialization variants are possible; for example, it is conceivable that retrieval of some or all 2416
dictionaries could be postponed until such time as the MC needs to translate BEJ and/or JSON code for 2417
the relevant schema. Further, the MC may be able to determine that one or more of the dictionaries it has 2418
already retrieved is adequate to support a PDR and thus skip retrieving that dictionary anew. Finally, if the 2419
DeviceConfigurationSignature from the NegotiateRedfishParameters command matches the one for data 2420
that the MC has already cached for the RDE Device, it may skip the retrieval altogether. 2421

4 Note: FindPDR is an optional command. If the RDE Device does not support it, the MC may achieve equivalent

functionality by using GetPDR to transfer of each PDR one at a time, discarding any that are not RDE PDRs.

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

78 Published Version 1.1.0

MC
RDE

Device

NegotiateRedfishParameters(MCConcurrencySupport, MCFeatureSupport)

NegotiateMediumParameters(MCMaximumTransferChunkSizeBytes)

SUCCESS[DeviceConncurrencySupport, DeviceCapabilitiesFlags, DeviceFeatureSupport,
DeviceConfigurationSignature, DeviceProviderName]

SUCCESS[DeviceMaximumTransferChunkSizeBytes]

D
ictio

n
a

ry R
etrie

va
l

GetSchemaDictionary(ResourceID, RequestedSchemaClass = [MAJOR | ANNOTATION | ...])

SUCCESS[DictionaryFormat=0x00, TransferHandler=X]

RDEMultipartReceive(DataTransferHandle=X, OperationID = 0x0000000,
TransferOperation=XFER_FIRST_PART)

SUCCESS[TransferFlag=START, NextDataTransferHandle, Data]

. . .

P
D

R
 R

etrie
val

FindPDR(findHandle=[0x0000_0000 or nextFindHandle from previous cmd response],
PDRType=[Redfish Resource PDR])

SUCCESS[nextFindHandle, nextDataTransferHandle=X, transferFlag,
responseCount, responseData]

GetPDR(dataTransferHandle=X, transferOperationFlag=GetNextPart)

SUCCESS[nextDataTransferHandle=X', transferFlag,
responseCount, responseData]

. . .

 2422

Figure 7 – Example Initialization ladder diagram 2423

9.1.2 Initialization workflow diagram 2424

Table 45 details the information presented visually in Figure 8. 2425

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 79

Table 45 – Initialization Workflow 2426

Step Description Condition Next Step

1 – DISCOVERY The MC discovers the presence of the
RDE Device through either a medium-
specific or other out-of-band
mechanism

None 2

2 – NEG_REDFISH The MC issues the
NegotiateRedfishParameters command
to the device in order to learn basic
information about it

Successful command completion 3

3 – NEG_MEDIUM The MC issues the
NegotiateMediumParameters
command to the RDE Device to learn
how the RDE Device intends to behave
with this medium

Successful command completion 4

4 –NEED_PDR /
DICTIONARY_
CHECK

The MC may already have dictionaries
and PDRs for the RDE Device cached,
such as if this is not the first medium
the RDE Device has been discovered
on. The MC may choose not to retrieve
a fresh copy if the
DeviceConfigurationSignature

from the NegotiateRedfishParameters
command’s response message
matches what was previously received.

MC does not need to retrieve
PDRs or dictionaries for this RDE
Device

6

Otherwise 5

5 –
RETRIEVE_PDR /
DICTIONARY

The MC retrieves PDRs and/or
dictionaries from the RDE Device

Retrieval complete 6

6 –
INIT_COMPLETE

The MC has finished discovery and
registration for this device

None None

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

80 Published Version 1.1.0

RDE Device
Discovered on

Medium

Negotiate
Redfish

Parameters

1

2

MC Needs
RDE PDRs and/or

Dictionaries?

4

No

Retrieve RDE
PDRs and/or
Dictionaries

5

Yes

Initialization
complete for
this medium

6

Negotiate
Medium

Parameters

3

Discovery

Registration

 2427

Figure 8 – Typical RDE Device discovery and registration 2428

9.2 Operation/Task lifecycle 2429

The following clauses present the Task lifecycle from two perspectives, first from an Operation-centric 2430
viewpoint and then from the RDE Device perspective. MC and RDE Device implementations of RDE shall 2431
comply with the sequences presented here. 2432

9.2.1 Example Operation command sequence diagrams 2433

This clause presents request/response messaging sequences for common Operations. 2434

9.2.1.1 Simple read Operation ladder diagram 2435

Figure 9 presents the ladder diagram for a simple read Operation. The Operation begins when the 2436
Redfish client sends a GET request over an HTTP connection to the MC. The MC decodes the URI 2437
targeted by the GET operation to pin it down to a specific resource and PDR and sends the 2438
RDEOperationInit command to the RDE Device that owns the PDR, with OperationType set to READ. 2439
The RDE Device now has everything it needs for the Operation, so it performs a BEJ encoding of the 2440
schema data for the requested resource and sends it as an inline payload back to the MC. Sending inline 2441
is possible in this case because the read data is small enough to not cause the response message to 2442
exceed the maximum transfer size that was previously negotiated in the NegotiateMediumParameters 2443
command. The MC in turn has all of the results for the Operation, so it sends RDEOperationComplete to 2444
finalize the Operation. The RDE Device can now throw away the BEJ encoded read result, so it does so 2445

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 81

and responds to the MC with success. Finally, the MC uses the dictionary it previously retrieved from the 2446
RDE Device to decode the BEJ payload for the read command into JSON data and the MC sends the 2447
JSON data back to the client. 2448

Redfish
Client

MC
RDE

Device

HTTP/GET(header)

RDEOperationInit(ResourceID = X, OperationID = Y, OperationType = READ,
OperationFlags = 0)

SUCCESS, response_data

INACTIVE

INACTIVE
(Device can free buffers)

INACTIVE

COMPLETED
RDEOperationComplete(ResourceID = X, OperationID = Y)

Decode BEJ

SUCCESS[OperationStatus = FINISHED, CompletionPercentage = 100,
OperationExecutionFlags = have_result_payload,

ResultTransferFlag = 0x00, ETag = E, ResponsePayloadLength > 0, BEJ_data]

SUCCESS

Encode BEJ

 2449

Figure 9 – Simple read Operation ladder diagram 2450

9.2.1.2 Complex read Operation diagram 2451

Figure 10 presents the ladder diagram for a more complex read Operation. As with the simple read case, 2452
the Operation begins when the Redfish client sends a GET request over an HTTP connection to the MC. 2453
The MC again decodes the URI targeted by the GET operation to pin it down to a specific resource and 2454
PDR and sends the RDEOperationInit command to the RDE Device that owns the PDR, with 2455
OperationType set to READ. In this case, however, the OperationFlags that the MC sent with the 2456
RDEOperationInit command indicate that there are supplemental parameters to be sent to the RDE 2457
Device, so the RDE Device must wait for these before beginning work on the Operation. The MC sends 2458
these supplemental parameters to the RDE Device via the SupplyCustomRequestParameters command. 2459

At this point, the RDE Device has everything it needs for the Operation, so just as before, the RDE 2460
Device performs a BEJ encoding of the schema data for the requested resource. As opposed to the 2461
previous example, in this case the BEJ-encoded payload is too large to fit within the response message, 2462
so the RDE Device instead supplied a transfer handle that the MC can use to retrieve the BEJ payload 2463
separately. The MC, seeing this, performs a series of RDEMultipartReceive commands to retrieve the 2464
payload. Once it is all transferred, the MC has everything it needs. Whether it needed to retrieve a 2465
dictionary or it already had one, the MC now sends the RDEOperationComplete command to finalize the 2466
Operation and allow the RDE Device to throw away the BEJ encoded read result. If the MC needs a 2467
dictionary to decode the BEJ payload, it may retrieve one via the GetSchemaDictionary command 2468
followed by one or more RDEMultipartReceive commands to retrieve the binary dictionary data. 2469
(Normally, the MC would have retrieved the dictionary during initialization; however, if the MC has limited 2470
storage space to cache dictionaries, it may have been forced to evict it.) Finally, the MC uses the 2471
dictionary to decode the BEJ payload for the read command into JSON data and then the MC sends the 2472
JSON data back to the client. 2473
 2474

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

82 Published Version 1.1.0

 2475

Redfish
Client

MC
RDE

Device

HTTP/GET(header)

RDEOperationInit(ResourceID = X, OperationID = Y, OperationType = READ,
OperationFlags = contains_custom_request_parameters)

SUCCESS

RDEMultipartReceive(DataTransferHandle=Z, OperationID=0x01, TransferOperation=FIRST_PART)

SUCCESS [TransferFlag = END, NextDataTransferFlag = 0x0, data]

SupplyCustomRequestParameters(ResourceID = X, OperationID = Y, Header_data)

SUCCESS, response_data

INACTIVE

NEEDING
PAYLOAD

INACTIVE
(Device can free buffers)

GetSchemaDictionary(ResourceID, schemaClass=MAJOR)

SUCCESS[TransferHandle = A]

INACTIVE

NEED
INPUT

HAVE
RESULTS

COMPLETED
RDEOperationComplete(ResourceID = X, OperationID = Y)

GetSchemaDictionary(ResourceID, schemaClass = MAJOR)

RDEMultipartReceive(DataTransferHandle = A, OperationID = 0x0000,
TransferOperation = FIRST_PART)

SUCCESS [TransferFlag = END, NextDataTransferFlag = 0x0, data]

Decode BEJ

Optional, not needed if
MC already has the

Dictionary

SUCCESS[OperationStatus = FINISHED, CompletionPercentage = 100,
OperationExecutionFlags = have_result_payload,

ResultTransferFlag = Z, ETag = E, ResponsePayloadLength = 0]

SUCCESS

...

...

Encode BEJ

 2476

 Figure 10 – Complex Read Operation ladder diagram 2477

9.2.1.3 Write (update) Operation ladder diagram 2478

Figure 11 presents the ladder diagram for a write Operation. As with the read cases, the Operation begins 2479
when the Redfish client sends a request over an HTTP connection to the MC, in this case, an UPDATE. 2480
Once again, the MC decodes the URI targeted by the UPDATE Operation to pin it down to a specific 2481
resource and PDR. Before it can send the RDEOperationInit command to the RDE Device that owns the 2482
PDR, the MC must perform a BEJ encoding of the JSON payload it received from the Redfish client. If the 2483
BEJ encoded payload were small enough to fit within the maximum transfer chunk, the MC could inline it 2484
with the RDEOperationInit command; however, in this example, that is not the case. The MC therefore 2485
sends RDEOperationInit with the OperationType set to UPDATE and a nonzero transfer handle. Seeing 2486
this, the RDE Device knows to expect a larger payload via RDEMultipartSend. 2487

The MC uses the RDEMultipartSend command to transfer the encoded payload to the RDE Device in one 2488
or more chunks. The contains_request_parameters Operation flag is not set, so the RDE Device will not 2489
expect supplemental parameters as part of this Operation. Having everything it needs to execute, the 2490
RDE Device moves to the TRIGGERED state. The MC now sends the RDEOperationStatus command to 2491
the RDE Device to have it execute the Operation. (In practice, the RDE Device is allowed to begin 2492
executing the Operation as soon as it has received the request payload, so it may choose not to wait for 2493
the RDEOperationStatus command to do so.) The RDE Device executes the Operation and sends the 2494

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 83

results to the MC as the response to the RDEOperationStatus command. As before, the MC finalizes the 2495
Operation via RDEOperationComplete and then sends the results back to the client. 2496

Redfish
Client

MC
RDE

Device

HTTP/UPDATE
(header, JSON payload)

RDEOperationInit(ResourceID = X, OperationID = Y, OperationType = UPDATE,
OperationFlags = contains_request_payload),

SendDataTransferHandle = Z, RequestPayloadLength = 0

SUCCESS

RDEOperationStatus(ResourceID = X, OperationID = Y, Header_data)

SUCCESS

INACTIVE

NEEDING
PAYLOAD

INACTIVE
(Device can free buffers)

INACTIVE

NEED
INPUT

COMPLETED
RDEOperationComplete(ResourceID = X, OperationID = Y)

SUCCESS[OperationStatus = FINISHED, CompletionPercentage = 100,
OperationExecutionFlags = 0,

ResultTransferHandle = 0, ResponsePayloadLength = 0]

SUCCESS

...
RDEMultipartSend(DataTransferHandle = Z, NextDataTransferHandle = Z'

OperationID = Y, TransferFlag = START, data)

SUCCESS [TransferOperation = XFER_COMPLETE]

Encode BEJ

Decode BEJ TRIGGERED

 2497

Figure 11 – Write Operation ladder diagram 2498

9.2.1.4 Write (update) with Long-running Task Operation Ladder Diagram 2499

 2500

Figure 12 presents the ladder diagram for a write Operation that spawns a long-running Task. As with the 2501
previous case, the Operation begins when the Redfish client sends an UPDATE request over an HTTP 2502
connection to the MC, and the MC decodes the URI targeted by the UPDATE Operation to pin it down to 2503
a specific resource and PDR. Before it can send the RDEOperationInit command to the RDE Device that 2504
owns the PDR, the MC must perform a BEJ encoding of the JSON payload it received from the Redfish 2505
client. Unlike the previous example, the BEJ encoded payload here is small enough to fit in the maximum 2506
transfer chunk, so the MC inlines it into the RDEOperationInit request command. Again, the 2507
contains_request_parameters Operation flag is not set, so the RDE Device will not expect supplemental 2508
parameters as part of this Operation. 2509

When the RDE Device receives the RDEOperationInit request command, it has everything it needs to 2510
begin work on the Operation. In this case, the RDE Device determines that performing the write will take 2511
longer than PT1, so the RDE Device spawns a long-running Task to process the write asynchronously 2512
and sends TaskSpawned in the OperationExecutionFlags to inform the MC. 2513

When it discovers that the RDE Device spawned a long-running Task, the MC adds a member to the 2514
Task collection it maintains and synthesizes a TaskMonitor URI to send back to the client in a location 2515
response header. At this point, the client can issue an HTTP GET to retrieve a status update on the Task; 2516
when it does so, the MC sends RDEOperationStatus to the RDE Device to get the status update and 2517
sends it back to the client as the result of the GET operation. 2518

At some point, the asynchronous Task finishes executing. When this happens, the RDE Device issues a 2519
PlatformEventMessage to send a TaskCompletion event to the MC. (This presupposes that the RDE 2520

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

84 Published Version 1.1.0

Device and the MC both support asynchronous eventing. Were this not the case, the RDE Device would 2521
still generate the TaskCompletion event, but would wait for the MC to invoke the 2522
PollForPlatformEventMessage command to report the event.) Regardless of which way the MC gets the 2523
event, it then sends the RDEOperationStatus command one last time in order to retrieve the final results 2524
from the Operation. The next time the client performs a GET on the TaskMonitor, the MC can send back 2525
the final results of the Operation. Finally, the MC finalizes the Operation via RDEOperationComplete at 2526
which point the MC can delete the Task collection member and the TaskMonitor URI and the RDE Device 2527
can free up any buffers associated with the Operation and/or Task. 2528

 2529

Redfish
Client

MC
RDE

Device

HTTP/UPDATE
(header, JSON payload)

RDEOperationInit(ResourceID=X, OperationID=Y, OperationType=UPDATE,
OperationFlags=contains_request_payload),

SendDataTransferHandle = 0, RequestPayloadLength > 0

SUCCESS [OperationStatus=RUNNING, CompletionPercentage=0,
CompletionTimeSeconds=XX, OperationExecutionFlags=TaskSpawned,

ReponsePayloadLength=0]

RDEOperationStatus(ResourceID=X, OperationID=Y)

SUCCESS
[HttpResponse=202,

Location=TaskMonitorURI]

INACTIVE

LONG
RUNNING

RDEOperationComplete(ResourceID=X, OperationID=Y)

SUCCESS[OperationStatus=RUNNING, CompletionPercentage> 0,
OperationExecutionFlags=TaskSpawned,

ResponsePayloadLength=0]

SUCCESS

...
LONG

RUNNING

PlatformEventMessage(TID=A, eventClass=redfishTaskExecutedEvent,
ResourceID=X, OperationID=Y)

RDEOperationStatus(ResourceID=X, OperationID=Y)

SUCCESS[OperationStatus=Completed, CompletionPercentage=100,
ResponsePayloadLength> 0, response_payload]

SUCCESS INACTIVE
(Device can free buffers)

HTTP/GET TaskMonitorURI

SUCCESS
[HttpResponse=202,
Body=TaskResource]

HTTP/GET TaskMonitorURI

SUCCESS
[HttpResponse=200,

Body=TaskResult]

COMPLETED

MC can delete
TaskMonitor

and Task resources

Encode BEJ

Decode BEJ

 2530

Figure 12 – Write Operation with long-running Task ladder diagram 2531

9.2.2 Operation/Task overview workflow diagrams (Operation perspective) 2532

This clause describes the operating behavior for MCs and RDE Devices over the lifecycle of Operations 2533
from an Operation-centric perspective. The workflow diagrams are split between simpler, short-lived 2534
Operations and those that spawn a Task to be processed asynchronously. These workflow diagrams are 2535
intended to capture the standard flow for the execution of most Operations, but do not cover every 2536
possible error condition. For full precision, refer to clause 9.2.3. 2537

9.2.2.1 Operation overview workflow diagram 2538

Table 46 details the information presented visually in Figure 13. 2539

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 85

Table 46 – Operation lifecycle overview 2540

Step Description Condition Next Step

1 – START The lifecycle of an Operation begins
when the MC receives an
HTTP/HTTPS operation from the
client

For any Redfish Read
(HTTP/HTTPS GET) operations

2

For any other operation 3

2 – GET_DIGEST For Read operations, the MC may
use the GetResourceETag
command to record a digest
snapshot. If the RDE Device
advertised that it is capable of
reading a resource atomically in the
NegotiateRedfishParameters
command (see clause 11.1), the MC
may skip this step if the read does
not span multiple resources (such as
through the $expand request
header)

Unconditional 3

3 – INITIALIZE_OP The MC checks the HTTP/HTTPS
operation to see if it contains JSON
payload data to be transferred to the
RDE Device. If so, it performs a BEJ
encoding of this data. It then uses
the RDEOperationInit command to
begin the Operation with the RDE
Device

Unconditional 4

4 –
SEND_PAYLOAD_
CHK

If the RDE Operation contains BEJ
payload data, it needs to be sent to
the RDE Device. The payload data
may be inlined in the
RDEOperationInit request message
if the resulting message fits within
the negotiated transfer chunk limit.

If the Operation contains a non-
inlined payload (that did not fit in the
RDEOperationInit request message)

5

Otherwise 6

5 –
SEND_PAYLOAD

The MC uses the RDEMultipartSend
command to send BEJ-encoded
payload data to the RDE Device

The last chunk of payload data has
been sent

6

More data remains to be sent 5

6 –
SEND_PARAMS_C
HK

If the RDE Operation contains
uncommon request parameters or
headers that need to be transferred
to the RDE Device, they need to be
sent to the RDE Device.

If the Operation contains
supplemental request parameters

7

Otherwise 8

7 –
SEND_PARAMS

The MC uses the
SupplyCustomRequestParameters
command to submit the
supplemental request parameters to
the RDE Device

Unconditional 8

8 – TRIGGERED The RDE Device begins executing
the Operation as soon as it has all
the information it needs for it

Unconditional 9

9 –
COMPLETION_CH
K

The RDE Device must respond to
the triggering command (that
provided the last bit of information
needed to execute the Operation or
a follow-up call to

If the RDE Device is able to
complete the Operation “quickly”

11

Otherwise 10

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

86 Published Version 1.1.0

Step Description Condition Next Step

RDEOperationStatus if the last data
was sent via RDEMultipartSend)
within PT1 time. If it can complete
the Operation within that timeframe,
it does not need to spawn a Task to
run the Operation asynchronously.

10 – LONG_RUN If the RDE Device was not able to
complete the Operation quickly
enough it spawns a Task to execute
asynchronously. See Figure 14 for
details of the Task sublifecycle.

Once the Task finishes executing 11

11 –
RCV_PAYLOAD_C
HK

If the Operation contains a response
payload, the RDE Device encodes it
in BEJ format. If the response
payload is small enough to inline
and have the response message fit
within the negotiated maximum
transfer chunk, the RDE Device
appends it to the response message
of:

• RDEOperationInit, if this
was the triggering
command

• SupplyCustomRequestPar
ameters, if this was the
triggering command

• The first
RDEOperationStatus after
a triggering
RDEMultipartSend
command, if the Operation
could be completed
“quickly”

• The first
RDEOperationStatus after
asynchronous Task
execution finishes,
otherwise

If there is no payload or if the
payload is small enough to be
inlined into the response message of
the appropriate command

13

Otherwise 12

12 –
RCV_PAYLOAD

The MC uses the
RDEMultipartReceive command to
retrieve the BEJ-encoded payload
from the RDE Device

The last chunk of payload data has
been sent

13

More data remains to be sent 12

13 –
RCV_PARAMS_CH
K

The MC checks to see if the
Operation result contains
supplemental response parameters

If the Operation contains response
parameters

14

Otherwise 15

14 – RCV_PARAMS The MC uses the
RetrieveCustomResponseParamete
rs command to obtain the
supplemental response parameters.

NOTE The transfer of a non-inlined
response payload and

supplemental response

parameters may be performed
in either order. For simplicity,
the flow shown assumes that a

Unconditional 15

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 87

Step Description Condition Next Step

response payload would be
transferred before

supplemental response

parameters; however, the
opposite assumption could be
made by swapping the
positions of blocks 11/12 with
blocks 13/14 in the figure.

15 – COMPLETE The MC sends the
RDEOperationComplete command
to finalize the Operation

n/a n/a

16 – CMP_DIGEST If the Operation was a read and the
MC collected an ETag in step 2, the
MC compares the response ETag
with the one it collected in step 2 to
check for a consistency violation. If it
finds one, it may retry the operation
or give up. The MC may skip the
consistency check (treat it as
successful without checking) if the
RDE Device advertised that is has
the capability to read a resource
atomically in its response to the
NegotiateRedfishParameters
command (see clause 11.1).

Read operation and mismatched
ETags and retry count not exceeded

2

Not a read, no ETag collected, the
ETags match, or retry count
exceeded

n/a: Done

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

88 Published Version 1.1.0

Operation
Initialization

Record ETag

All Others

Contains Non-
inlined Send Data?

YesMultipart
Send

More Data
No

Operation
Triggered

Send Complete

Completed
Immediately?

No

Yes

Contains Non-
inlined Response

Data?
Yes

Multipart
Receive

More Data

No

Read Operation,
 ETag Mismatch,
Retry count not

exceeded

Execution Complete

Operation
Complete

Read Operation

Spawn
Task

Receive Complete

Supply
Parameters

Contains
Parameters

No

Yes

Start

Yes

Contains
Parameters?

Receive
Parameters

Yes No

1 2

3

45

6

87

910

1112

13
16

14

15

Done

No

 2541

Figure 13 – RDE Operation lifecycle overview (holistic perspective) 2542

9.2.2.2 Task overview workflow diagram 2543

Table 47 details the information presented visually in Figure 14. 2544

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 89

Table 47 – Task lifecycle overview 2545

Current Step Description Condition Next Step

1 – TRIGGERED The sublifecycle of a Task begins
when the RDE Device receives all
the data it needs to perform an
Operation. (This corresponds to
Step 8 in Table 46.)

Unconditional 2

2 –
COMPLETION_CHK

The RDE Device must respond to
the triggering command (that
provided the last bit of information
needed to execute the Operation)
within PT1 time. If it cannot
complete the Operation within that
timeframe, it spawns a Task to run
the Operation asynchronously.

If the RDE Device is able to
complete the Operation quickly (not
a Task)

17

Otherwise 3

3 – LONG_RUN The RDE Device runs the Task
asynchronously

Unconditional 5

4 – REQ_STATUS The MC may issue an
RDEOperationStatus command at
any time to the RDE Device.

If issued 5

5 –STATUS_CHK The RDE Device must be ready to
respond to an RDEOperationStatus
command while running a Task
asynchronously

Status request received 6

No status request received 8

6 –
PROCESS_STATU
S

The RDE Device sends a response
to the RDEOperationStatus
command to provide a status update

Unconditional 3

7 – REQ_KILL The MC may issue an
RDEOperationKill command at any
time to the RDE Device

Unconditional 8

8 –KILL_CHK The RDE Device must be ready to
respond to an RDEOperationKill
command while running a Task
asynchronously

Kill request received 9

No kill request received 10

9 – PROCESS_KILL If the RDE Device receives a kill
request, it may or may not be able to
abort the Task. This is an RDE
Device-specific decision about
whether the Task has crossed a
critical boundary and must be
completed

RDE Device cannot stop the Task 10

RDE Device can stop the Task 11

10 –
ASYNC_EXECUTE_
FINISHED_CHK

The RDE Device should eventually
complete the Task

If the Task has been completed 12

If the Task has not been completed 3

11 –
PERFORM_ABORT

The RDE Device aborts the Task in
response to a request from the MC

Unconditional 17

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

90 Published Version 1.1.0

Current Step Description Condition Next Step

12 –
COMPLETION_EVE
NT

After the Task is complete, the RDE
Device generates a Task
Completion Event

Unconditional 13

13 – ASYNC_CHK The mechanism by which the Task
completion Event reaches the MC
depends on how the MC configured
the RDE Device for Events via the
PLDM for Platform Monitoring and
Control SetEventReceiver command

Asynchronous Events 14

Polled Events 15

14 – PEM_POLL The MC uses the
PollForPlatformEventMessage
command to check for Events and
finds the Task Completion Event

Unconditional 16

15 – PEM_SEND The RDE Devices sends the Task
Completion Event to the MC
asynchronously via the
PlatformEventMessage command

Unconditional 16

16 –
GET_TASK_FOLLO
WUP

After receiving the Task completion
Event, the MC uses the
RDEOperationStatus command to
retrieve the outcome of the Task’s
execution

Unconditional 17

17 – TASK_DONE The MC checks the response
message to the
RDEOperationStatus command to
see if there is a response payload
(This corresponds to Step 11 in
Table 46.)

See Step 11 in Table 48 See Step 11
in Table 48

 2546

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 91

Operation
Triggered

Completed
Immediately?

No
Task Spawned,

Running
Asynchronously

Task
Completion

Event

MC Retrieves
Task Completion

Event

Operation
Status

Request?

No

Yes Provide Status
update

Operation
Completed?

No

Received
Operation Kill

Request?

Yes Can RDE Device
Stop Operation?

RDE Device
Kills Operation

Yes

(To 11 in Operation
Workflow)

Yes

No

Yes

1

2
3

5 6

8 9

11

12

Operation
Status Query

Operation Kill
Request

4

7

Async Support?

13

Platform Event
Message

MC Polls for
Events

Yes

No

14 15

16

17

10

 2547

Figure 14 – RDE Task lifecycle overview (holistic perspective) 2548

 2549

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

92 Published Version 1.1.0

9.2.3 RDE Operation state machine (RDE Device perspective) 2550

The following clauses describe the operating behavior for the lifecycle of Operations and Tasks from an 2551
RDE Device-centric perspective. Table 48 details the information presented visually in Figure 15. The 2552
states presented in this state machine are not (collectively) the total state for the RDE Device, but rather 2553
the state for the Operation. The total state for the RDE Device would involve separate instances of the 2554
Task/Operation state machine replicated once for each of the concurrent Operations that the RDE Device 2555
and the MC negotiated to support at registration time. 2556

9.2.3.1 State definitions 2557

The following states shall be implemented by the RDE Device for each Operation it is supporting: 2558

• INACTIVE 2559

– INACTIVE is the default Operation state in which the RDE Device shall start after 2560
initialization. In this state, the RDE Device is not processing an Operation as it has not 2561
received an RDEOperationInit command from the MC. 2562

• NEED_INPUT 2563

– After receiving the RDEOperationInit command, the RDE Device moves to this state if it is 2564
expecting additional Operation-specific parameters or a payload that was not inlined in the 2565
RDEOperationInit command. 2566

• TRIGGERED 2567

– Once the RDE Device receives everything it needs to execute an Operation, it begins 2568
executing it immediately. If the triggering command – the command that supplied the last 2569
bit of data needed to execute the Operation – was RDEOperationInit or 2570
SupplyCustomRequestParameters, the response message to the triggering command 2571
reflects the initial results for the Operation. However, if the triggering command was a 2572
RDEMultipartSend, initial results are deferred until the MC invokes the 2573
RDEOperationStatus command. This state captures the case where the Operation was 2574
triggered by a RDEMultipartSend and the MC has not yet sent an RDEOperationStatus 2575
command to get initial results. In this state, the RDE Device may execute the Operation; 2576
alternatively, it may wait to receive RDEOperationStatus to begin execution. 2577

• TASK_RUNNING 2578

– If the RDE Device cannot complete the Operation within the timeframe needed for the 2579
response to the command that triggered it, the RDE Device spawns a Task in which to 2580
execute the Operation asynchronously. 2581

• HAVE_RESULTS 2582

– When execution of the Operation produces a response parameters or a response payload 2583
that does not fit in the response message for the command that triggered the Operation (or 2584
detected its completion, if a Task was spawned or if there was a payload but no custom 2585
request parameters), the RDE Device remains in this state until the MC has collected all of 2586
these results. 2587

• COMPLETED 2588

– The RDE Device has completed processing of the Operation and awaits acknowledgment 2589
from the MC that it has received all Operation response data. This acknowledgment is 2590
done by the MC issuing the RDEOperationComplete command. When the RDE Device 2591
receives this command, it may discard any internal records or state it has maintained for 2592
the Operation. 2593

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 93

• FAILED 2594

– The MC has explicitly killed the Operation or an error prevented execution of the 2595
Operation. 2596

• ABANDONED 2597

– If MC fails to progress the Operation through this state machine, the RDE Device may 2598
abort the Operation and mark it as abandoned. 2599

9.2.3.2 Operation lifecycle state machine 2600

Figure 15 illustrates the state transitions the RDE Device shall implement. Each bubble represents a 2601
particular state as defined in the previous clause. Upon initialization, system reboot, or an RDE Device 2602
reset the RDE Device shall enter the INACTIVE state. 2603

 Table 48 – Task lifecycle state machine 2604

Current State Trigger Response Next State

0 - INACTIVE RDEOperationInit

- RDE Device not ready

- RDE Device does not wish
to specify a deferral
timeframe

ERROR_NOT_READY,
HaveCustomResponseParameter
s bit in OperationExecutionFlags
not set

INACTIVE

RDEOperationInit

- RDE Device not ready

- RDE Device does wish to
specify a deferral
timeframe

ERROR_NOT_READY,
HaveCustomResponseParameter
s bit in OperationExecutionFlags
set

HAVE_RESULTS

RDEOperationInit,
SupplyCustomRequestParameters,
RDEOperationStatus,
RDEOperationKill, or
RDEOperationComplete

- Resource ID does not
correspond to any active
Operation

ERROR_NO_SUCH_RESOURCE INACTIVE

RDEOperationInit, wrong resource
type for POST Operation in request
(e.g., Action sent to a collection)

ERROR_WRONG_LOCATION_T
YPE

INACTIVE

RDEOperationInit, RDE Device
does not allow the requested
Operation

ERROR_NOT_ALLOWED INACTIVE

RDEOperationInit, RDE Device
does not support the requested
Operation

ERROR_UNSUPPORTED INACTIVE

RDEOperationInit, Operation ID has
MSBit clear (indicating that the MC
is attempting to initiate an Operation
with an ID reserved for the RDE
Device)

ERROR_INVALID_DATA INACTIVE

RDEOperationInit, request contains
any other error

Various, depending on the specific
error encountered

INACTIVE

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

94 Published Version 1.1.0

Current State Trigger Response Next State

RDEOperationStatus

OPERATION_INACTIVE INACTIVE

RDEOperationInit;

- valid request

- Operation Flags indicate
request non-inlined
payload or parameters to
be sent from MC to RDE
Device

Success NEED_INPUT

RDEOperationInit;

- valid request

- Operation Flags indicate
no request payload to be
sent from MC to RDE
Device (or request payload
inlined in RDEOperationInit
request message)

- request flags indicate no
supplemental parameters
needed

- RDE Device cannot
complete Operation within
PT1

Success TASK_RUNNING

RDEOperationInit;

- valid request

- Operation Flags indicate
no request payload to be
sent from MC to RDE
Device (or request payload
inlined in RDEOperationInit
request message)

- request flags indicate no
supplemental parameters
needed

- RDE Device completes
Operation within PT1

- response flags indicate
response parameters or a
non-inlined response
payload to be retrieved
from RDE Device

Success HAVE_RESULTS

RDEOperationInit;

- valid request

- Operation Flags indicate
no request payload to be
sent from MC to RDE
Device (or request payload

Success COMPLETED

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 95

Current State Trigger Response Next State

inlined in RDEOperationInit
request message)

- request flags indicate no
supplemental parameters
needed

- RDE Device completes
Operation within PT1

- no payload to be retrieved
from RDE Device or
response payload fits
within response message
such that total response
message size is within
negotiated maximum
transfer chunk

- no response parameters

RDEOperationKill (any combination
of flags)

ERROR_UNEXPECTED INACTIVE

Any other Operation command ERROR INACTIVE

1- NEED_INPUT

RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

NEED_INPUT

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
NEED_INPUT

RDEOperationInit request flags
indicated supplemental parameters
and or payload data to be sent;
Tabandon timeout waiting for
RDEMultipartSend/SupplyCustomR
equestParameterscommand

None ABANDONED

RDEOperationKill;

- neither run_to_completion
nor discard_record flag set

Success FAILED

RDEOperationKill;

- run_to_completion flag not
set

- discard_record flag set

Success INACTIVE

RDEOperationKill;

- run_to_completion flag set

- discard_record flag not set

ERROR_INVALID_DATA NEED_INPUT

RDEOperationKill;

- both run_to_completion
and discard_record flags
both set

ERROR_UNEXPECTED (can’t run
to completion without further input
from MC, so the request is
contradictory)

NEED_INPUT

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

96 Published Version 1.1.0

Current State Trigger Response Next State

RDEOperationStatus OPERATION_NEED_INPUT NEED_INPUT

RDEMultipartSend;

- data inlined or Operation
flags indicate no payload
data

ERROR_UNEXPECTED NEED_INPUT

RDEMultipartSend;

- transfer error

Error specific to type of transfer
failure encountered

NEED_INPUT
(MC may retry
send or use
RDEOperationKill
to abort
Operation)

RDEMultipartSend;

- more data to be sent from
the MC to the RDE Device
after this chunk

Success NEED_INPUT

RDEMultipartSend;

- no more data to be sent
from the MC to the RDE
Device after this chunk

- RDEOperationInit request
flags indicated
supplemental parameters
needed

- params not yet sent

Success NEED_INPUT

RDEMultipartSend;

- no more data to be sent
after this chunk

- RDEOperationInit request
flags indicated
supplemental parameters
not needed or parameters
already sent

Success TRIGGERED

RDEMultipartSend;

- data already transferred

ERROR_UNEXPECTED NEED_INPUT

SupplyCustomRequestParameters;

- Operation includes
unsupported ETag
operation or query option

ERROR_UNSUPPORTED FAILED

SupplyCustomRequestParameters;

- Operation flags indicated
supplemental parameters
not needed or payload
data remaining to be sent

ERROR_UNEXPECTED NEED_INPUT

SupplyCustomRequestParameters;

- no payload data remaining
to be sent

- ETagOperation is
ETAG_IF_MATCH and no
ETag matches or
ETagOperation is

ERROR_ETAG_MATCH FAILED

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 97

Current State Trigger Response Next State

ETAG_IF_NONE_MATCH
and an ETAG matches

SupplyCustomRequestParameters;

- request contains
unsupported RDE custom
header

ERROR_UNRECOGNIZED_CUS
TOM_HEADER

FAILED

SupplyCustomRequestParameters;

- no payload data remaining
to be sent

- Error occurs in processing
of Operation

Error specific to type of failure
encountered

FAILED

SupplyCustomRequestParameters;

- no payload data remaining
to be sent

- RDE Device cannot
complete Operation within
PT1

Success LONG_RUNNING

SupplyCustomRequestParameters;

- no payload data remaining
to be sent

- RDE Device completes
Operation within PT1

- response flags indicate
response parameters or a
non-inlined response
payload to be retrieved
from RDE Device

Success HAVE_RESULTS

SupplyCustomRequestParameters;

- no payload data remaining
to be sent

- RDE Device completes
Operation within PT1

- no payload to be retrieved
from RDE Device or
response payload fits
within response message
such that total response
message size is within
negotiated maximum
transfer chunk

- no response parameters

Success COMPLETED

RDEMultipartReceive,
RDEOperationComplete

ERROR_UNEXPECTED NEED_INPUT

Any other Operation command ERROR NEED_INPUT

2 - TRIGGERED RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

TRIGGERED

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether

The new
Operation is
tracked in a
separate copy of
the state

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

98 Published Version 1.1.0

Current State Trigger Response Next State

the RDE Device has another slot
to execute an Operation

machine; this
Operation
remains in
TRIGGERED

Tabandon timeout waiting for
RDEOperationStatus command

None ABANDONED

RDEOperationStatus; error occurs
in processing of Operation

Error specific to type of failure
encountered

FAILED

RDEOperationKill

- discard_results flag set

- any other flag set

ERROR_INVALID_DATA TRIGGERED

RDEOperationKill

- discard_results flag set

- no other flag set

ERROR_UNEXPECTED TRIGGERED

RDEOperationKill

- run_to_completion flag set

- discard_record flag not set

ERROR_INVALID_DATA TRIGGERED

RDEOperationKill;

- Operation executing;
Operation can be killed

- neither run_to_completion
nor discard_record flag set

Success FAILED

RDEOperationKill

- Operation executing

- Operation can be killed

- run_to_completion flag not
set

- discard_record flag set

Success INACTIVE

RDEOperationKill

- Operation executing

- Operation can be killed

- both run_to_completion
and discard_record flags
set

ERROR_UNEXPECTED (can’t run
to completion without further input
from MC to move it to
TASK_RUNNING, so the request
is contradictory)

TRIGGERED

RDEOperationKill

- Operation executing

- Operation cannot be killed
or Operation execution
finished

- any combination of
run_to_completion and
discard_record flags set

ERROR_OPERATION_UNKILLAB
LE

TRIGGERED

RDEOperationStatus;

- RDE Device cannot
complete Operation within
PT1

OPERATION_TASK_RUNNING TASK_RUNNING

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 99

Current State Trigger Response Next State

RDEOperationStatus;

- RDE Device completes
Operation within PT1

- payload to be retrieved
from RDE Device or
response parameters
present

Success HAVE_RESULTS

RDEOperationStatus;

- RDE Device completes
Operation within PT1

- no payload or payload fits
within response message
such that total response
message size is within
negotiated maximum
transfer chunk

- no response parameters

Success COMPLETED

RDEMultipartSend,
RDEMultipartReceive,
SupplyCustomRequestParameters,
RetrieveCustomResponseParamete
rs, RDEOperationComplete

ERROR_UNEXECTED TRIGGERED

Any other Operation command ERROR TRIGGERED

3 -
TASK_RUNNING

RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

TASK_RUNNING

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
TASK_RUNNING

Error occurs in processing of
Operation

None FAILED

RDEOperationKill

- discard_results flag set

- any other flag set

ERROR_INVALID_DATA TASK_RUNNING

RDEOperationKill

- discard_results flag set

- no other flag set

ERROR_UNEXPECTED TASK_RUNNING

RDEOperationKill

- run_to_completion flag set

- discard_record flag not set

ERROR_INVALID_DATA TASK_RUNNING

RDEOperationKill;

- Operation can be aborted

- neither run_to_completion
nor discard_record flag set

Success FAILED

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

100 Published Version 1.1.0

Current State Trigger Response Next State

RDEOperationKill

- Operation executing

- Operation can be killed

- run_to_completion flag not
set

- discard_record flag set

Success INACTIVE

RDEOperationKill

- Operation executing

- Operation can be killed

- both run_to_completion
and discard_record flags
set

Success TASK_RUNNING

RDEOperationKill;

- Operation cannot be
aborted or has finished
execution

- any combination of
run_to_completion and
discard_record flags set

ERROR_OPERATION_UNKILLAB
LE

TASK RUNNING

Execution finishes;

- Operation not killed

Generate Task Completion Event
(only once per Operation). Send
to MC via PlatformEventMessage
if MC configured the RDE Device
to use asynchronous Events via
SetEventReceiver; otherwise, MC
will retrieve Event via
PollForPlatformEventMessage.
See Event lifecycle in clause 9.3
for further details

TASK_RUNNING

Execution finishes;

- Operation killed

None INACTIVE

Execution finished;

- Task Completion Event
received by MC;

- Tabandon timeout waiting for
RDEOperationStatus
command

None ABANDONED

RDEOperationStatus;

- execution not yet finished

OPERATION_TASK_RUNNING TASK RUNNING

RDEOperationStatus;

- execution finished

- payload to be retrieved
from RDE Device or
response parameters
present

OPERATION_HAVE_RESULTS HAVE_RESULTS

RDEOperationStatus;

- execution finished

- no payload or payload fits
in response message such

OPERATION_COMPLETED COMPLETED

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 101

Current State Trigger Response Next State

that total response
message size is within
negotiated maximum
transfer chunk

- no response parameters

RDEMultipartSend,
RDEMultipartReceive,
RDEOperationComplete

ERROR_UNEXPECTED TASK_RUNNING

Any other Operation command ERROR TASK_RUNNING

4 -
HAVE_RESULT
S

RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

HAVE_RESULTS

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
HAVE_RESULTS

RDEOperationKill

- discard_results flag set

- any other flag set

ERROR_INVALID_DATA HAVE_RESULTS

RDEOperationKill

- discard_results flag set

- no other flag set

SUCCESS INACTIVE

RDEOperationKill

- run_to_completion flag set

- discard_record flag not set

ERROR_INVALID_DATA HAVE_RESULTS

RDEOperationKill;

- any other combination of
run_to_completion and
discard_record flags set

ERROR_OPERATION_UNKILLAB
LE

HAVE_RESULTS

RDEOperationStatus OPERATION_HAVE_RESULTS HAVE_RESULTS

RDEMultipartReceive;

- MC aborts transfer

Do not send data; Success;
Prepare to restart transfer with
next RDEMultipartReceive
command

HAVE_RESULTS

RDEMultipartReceive;

- transfer error

Error specific to type of transfer
failure encountered

HAVE_RESULTS
(MC may retry
receive or
abandon
Operation)

RDEMultipartReceive;

- more data to transfer from
the RDE Device to the MC
after this chunk

Send data; Success HAVE_RESULTS

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

102 Published Version 1.1.0

Current State Trigger Response Next State

RDEMultipartReceive;

- no more data to transfer
from the RDE Device to
the MC after this chunk

- response parameters to
send

Send data; Success HAVE_RESULTS

RDEMultipartReceive;

- no more data to transfer
from the RDE Device to
the MC after this chunk

- no response parameters
present

Send data; Success COMPLETED

Tabandon timeout waiting for
RDEMultipartReceive and/or
RetrieveCustomResponseParamete
rs commands (depending on type of
results still to be retrieved)

None ABANDONED

ReceiveCustomResponseParamete
rs

- RDE Device was not ready
when RDEOperationInit
command was sent and
wished to specify a deferral
timeframe

Deferral Timeframe; Success FAILED

ReceiveCustomResponseParamete
rs

- response payload data not
yet transferred

Success HAVE_RESULTS

ReceiveCustomResponseParamete
rs

- response payload data
partially transferred

ERROR_UNEXPECTED HAVE_RESULTS

ReceiveCustomResponseParamete
rs

- no response payload or all
response payload data
transferred

Success COMPLETED

Any other Operation or transfer
command

Error HAVE_RESULTS

5 - COMPLETED RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

COMPLETED

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
COMPLETED

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 103

Current State Trigger Response Next State

RDEOperationKill

- discard_results flag set

- any other flag set

ERROR_INVALID_DATA COMPLETED

RDEOperationKill

- discard_results flag set

- no other flag set

ERROR_UNEXPECTED COMPLETED

RDEOperationKill

- run_to_completion flag set

- discard_record flag not set

ERROR_INVALID_DATA COMPLETED

RDEOperationKill;

- any other combination of
run_to_completion and
discard_record flags set

ERROR_OPERATION_UNKILLAB
LE

COMPLETED

RDEOperationStatus OPERATION_COMPLETED COMPLETED

RDEOperationComplete Success INACTIVE

Any other Operation command Error COMPLETED

6 - FAILED RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS
Operation

FAILED

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
FAILED

RDEOperationKill

- discard_results flag set

- any other flag set

ERROR_INVALID_DATA FAILED

RDEOperationKill

- discard_results flag set

- no other flag set

ERROR_UNEXPECTED FAILED

RDEOperationKill

- run_to_completion flag set

- discard_record flag not set

ERROR_INVALID_DATA FAILED

RDEOperationKill

- any other combination of
run_to_completion and
discard_record flags set

ERROR_OPERATION_FAILED FAILED

RDEOperationStatus OPERATION_FAILED FAILED

RDEOperationComplete Success INACTIVE

Any other Operation command ERROR_OPERATION_FAILED FAILED

7 - ABANDONED RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS
Operation

ABANDONED

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

104 Published Version 1.1.0

Current State Trigger Response Next State

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
ABANDONED

RDEOperationKill

- discard_results flag set

- any other flag set

ERROR_INVALID_DATA ABANDONED

RDEOperationKill

- discard_results flag set

- no other flag set

ERROR_UNEXPECTED ABANDONED

RDEOperationKill

- run_to_completion flag set

- discard_record flag not set

ERROR_INVALID_DATA ABANDONED

RDEOperationKill;

- any other combination of
run_to_completion and
discard_record flags set

ERROR_OPERATION_ABANDO
NED

ABANDONED

RDEOperationStatus OPERATION_ABANDONED ABANDONED

RDEOperationComplete Success INACTIVE

Any other Operation command ERROR_OPERATION_ABANDO
NED

ABANDONED

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 105

0 - Inactive

2 - Triggered

7 - Abandoned 6 - Failed

1 - Need
Input

4- Have
Results

RDEMultipartReceive or
RetrieveCustomResponseParameters,
no more results pending

3 - Task
Running

5 - Completed

RDEOperationInit,
noninlined payload

or params

Inputs supplied,
Operation finished,

results available

RDEMultipartSend,
last chunk,

no params or params sent Inputs supplied,
Task spawned

()

()

RDEOperationComplete

RDEOperationComplete

Any of
{1,2,3,4}

MC fails to
advance

Operation

RDEOperationComplete

RDEMultipartSend or
SupplyCustomRequestParameters;

more input pending

RDEMultipartReceive or
RetrieveCustomResponseParameters;
more results pending

RDEOperationStatus,
noninlined payload
or response params

Inputs supplied,
Operation finished,

no or inlined payload,
no response params

RDEOperationInit,
no or inlined payload,

no params,
result payload or params

RDEOperationInit,
no or inlined payload,

no params,
no or inlined payload,

no params

RDEOperationStatus,
Operation finished,

no or inlined payload,
no response params

(): RDEOperationStatus,

Task spawned

RDEOperationStatus,
Operation finished,

no or inlined payload,
no response params

(): RDEOperationStatus,

Operation finished,
non-inlined payload
or response params

RDEOperationInit,
no or inlined payload,

no params,
Task spawned

Any of
{1,2,3,4}

Error occurs while
executing Operation

Operation finished; previously killed
with run_to_completion

RDEOperationKill,
discard_results bit set

 2605

Figure 15 – Operation lifecycle state machine (RDE Device perspective) 2606

9.3 Event lifecycle 2607

Table 49 describes the operating behavior for MCs and RDE Devices over the lifecycle of Events 2608
depicted visually in Figure 16. This sequence applies to both Task completion Events and schema-based 2609
Events. MC and RDE Device implementations of RDE shall comply with the sequences presented here. 2610

Table 49 – Event lifecycle overview 2611

Current State Description Condition Next Step

1 – OCCURS The lifecycle of an Event begins when the Event
occurs.

Unconditional 2

2 – RECORD The RDE Device creates an Event record. Unconditional 3

3 – ASYNC_CHK The MC used the SetEventReceiver command to
configure the RDE Device either to use
asynchronous Events or to be polled for Events.

Asynchronous Events 6

Polling 4

4 – EVT_POLL The MC polls for Events using the
PollForPlatformEventMessage command and
discovers the Event.

Unconditional 5

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

106 Published Version 1.1.0

Current State Description Condition Next Step

5 – DISC_PREV If the PollForPlatformEventMessage command
request message reflected a previous Event to
be acknowledged, the RDE Device discards the
record for that previous Event.

Unconditional 8

6 – EVT_SEND The RDE Device issues a
PlatformEventMessage command to the MC to
notify it of the Event.

MC acknowledges the Event 7

MC does not acknowledge
the Event and retry count
(PN1, see DSP0240) not
exceeded

6

MC does not acknowledge
the Event and retry count
exceeded

7

7 – DISC_RCRD The RDE Device discards its Event record. Unconditional 8

8 – MORE_CHK Are there more Events (in the asynchronous
case) or there was an Event to acknowledge (in
the synchronous case)?

Yes 3

No 9

9 – DONE Event processing is complete. n/a -

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 107

Event
Happens

RDE Device
Creates Event

Record

RDE Device
Discards Event

Record

1

2

RDE Device
Sends
Event

6
MC does not acknowledge;
retry count not exceeded

Asynchrony
Supported?

3
Yes

MC Polls for
Event

4

No

MC acks or
retry count
exceeded

7

More Events?

8

Yes

Done

9

No

RDE Device
Discards
Previous

Event Record

5

 2612

Figure 16 – Redfish event lifecycle overview 2613

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

108 Published Version 1.1.0

10 PLDM commands for Redfish Device Enablement 2614

This clause provides the list of command codes that are used by MCs and RDE Devices that implement 2615
PLDM Redfish Device Enablement as defined in this specification. The command codes for the PLDM 2616
messages are given in Table 50. RDE Devices and MCs shall implement all commands where the entry 2617
in the “Command Requirement for RDE Device” or “Command Requirement for MC”, respectively, is 2618
listed as Mandatory. RDE Devices and MCs may optionally implement any commands where the entry in 2619
the “Command Requirement for RDE Device” or “Command Requirement for MC”, respectively, is listed 2620
as Optional. 2621

Table 50 – PLDM for Redfish Device Enablement command codes 2622

Command Command

Code

Command
Requirement

for RDE Device

Command
Requirement

for MC

Command
Requestor
(Initiator)

Reference

Discovery and Schema Management Commands

NegotiateRedfishParameters 0x01 Mandatory Mandatory MC See 11.1

NegotiateMediumParameters 0x02 Mandatory Mandatory MC See 11.2

GetSchemaDictionary 0x03 Mandatory Mandatory MC See 11.3

GetSchemaURI 0x04 Mandatory Mandatory MC See 11.4

GetResourceETag 0x05 Mandatory Mandatory MC See 11.5

GetOEMCount 0x06 Optional Optional MC See 11.6

GetOEMName 0x07 Optional Optional MC See 11.7

GetRegistryCount 0x08 Optional Optional MC See 11.8

GetRegistryDetails 0x09 Optional Optional MC See 11.9

SelectRegistryVersion 0x0A Optional Optional MC See 11.10

GetMessageRegistry 0x0B Optional Optional MC See 11.11

GetSchemaFile 0x0C Optional Optional MC See 11.12

Reserved 0x0D-0x0F

RDE Operation and Task Commands

RDEOperationInit 0x10 Mandatory Mandatory MC See 12.1

SupplyCustomRequestParameters 0x11 Mandatory Mandatory MC See 12.2

RetrieveCustomResponseParamet
ers

0x12 Conditional4 Mandatory MC See 12.3

RDEOperationComplete 0x13 Mandatory Mandatory MC See 12.4

RDEOperationStatus 0x14 Mandatory Mandatory MC See 12.5

RDEOperationKill 0x15 Optional Optional MC See 12.6

RDEOperationEnumerate 0x16 Mandatory Optional MC See 12.7

Reserved 0x17-0x2F

Multipart Transfer Commands

RDEMultipartSend 0x30 Conditional1 Conditional1 MC See 13.1

RDEMultipartReceive 0x31 Mandatory Mandatory MC See 13.2

Reserved 0x32-0x3F

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 109

Command Command

Code

Command
Requirement

for RDE Device

Command
Requirement

for MC

Command
Requestor
(Initiator)

Reference

Reserved For Future Use

Reserved 0x40-0xFF

Referenced PLDM Base Commands (PLDM Type 0)

NegotiateTransferSize See DSP0240 Conditional1 Conditional1 MC See
DSP0240

MultipartSend See DSP0240 Conditional1 Conditional1 MC See
DSP0240

MultipartReceive See DSP0240 Conditional1 Conditional1 MC See
DSP0240

Referenced PLDM for Monitoring and Control Commands (PLDM Type 2)

GetPDRRepositoryInfo See DSP0248 Mandatory Mandatory MC See
DSP0248

GetPDR See DSP0248 Mandatory Mandatory MC See
DSP0248

SetEventReceiver See DSP0248 Conditional2 Conditional2 MC See
DSP0248

PlatformEventMessage See DSP0248 Optional3 Conditional3 RDE
Device

See
DSP0248

PollForPlatformEventMessage See DSP0248 Optional2 Conditional3 MC See
DSP0248

Notes: 2623

1) Either RDEMultipartSend or PLDM common MultipartSend is required if the RDE Device intends to 2624
support write Operations. RDE versions of bulk transfer commands shall be used if either the RDE 2625
Device or the MC does not support PLDM common versions; if both the RDE Device and the MC 2626
advertise support for PLDM common versions of bulk transfer commands (via the PLDM Base 2627
NegotiateTransferSize command), the RDE versions shall not be used. 2628

2) SetEventReceiver is mandatory if the RDE Device intends to support asynchronous messaging for 2629
Events via PlatformEventMessage. 2630

3) RDE Devices and MCs must support either PlatformEventMessage or 2631
PollForPlatformEventMessage in order to enable Event support. 2632

4) SupplyCustomResponseParameter is required if the RDE Device ever sets the 2633
HaveCustomResponseParameters flag in the OperationExecutionFlags field of the response 2634
message for a triggering command. 2635

11 PLDM for Redfish Device Enablement – Discovery and schema 2636

commands 2637

This clause describes the commands that are used by RDE Devices and MCs that implement the 2638
discovery and schema management commands defined in this specification. The command codes for the 2639
PLDM messages are given in Table 50. 2640

11.1 NegotiateRedfishParameters command (0x01) format 2641

This command enables the MC to negotiate general Redfish parameters with an RDE Device. The MC 2642
shall send this command to the RDE Device prior to any other RDE command. An RDE Device that 2643

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

110 Published Version 1.1.0

supports multiple mediums shall provide the same response to this command independent of the medium 2644
on which this command was issued. 2645

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2646
respond with data formatted per the Response Data section. For a non-SUCCESS CompletionCode, only 2647
the CompletionCode field of the Response Data shall be returned. 2648

Table 51 – NegotiateRedfishParameters command format 2649

Type Request data

uint8 MCConcurrencySupport

The maximum number of concurrent outstanding Operations the MC can support for this RDE
Device. Must be > 0; a value of 1 indicates no support for concurrency. A value of 255 (0xFF) shall
be interpreted to indicate that no such limit exists. Upon completion of this command, the RDE
Device shall not initiate an Operation if MCConcurrencySupport (or DeviceConcurrencySupport
whichever is lower) Operations are already active.

bitfield16 MCFeatureSupport

Operations and functionality supported by the MC; for each, 1b indicates supported, 0b not:

[15:9] - reserved

[8] - BEJ v1.1 encoding and decoding supported; 1b = yes

[7] - events_supported; 1b = yes. Must be 1b if MC supports Redfish Events or Long-running
 Tasks.

[6] - action_supported; 1b = yes

[5] - replace_supported; 1b = yes

[4] - update_supported; 1b = yes

[3] - delete_supported; 1b = yes

[2] - create_supported; 1b = yes

[1] - read_supported; 1b = yes. All MCs that implement PLDM for Redfish Device Enablement
 shall support read Operations

[0] - head_supported; 1b = yes

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES }

uint8 DeviceConcurrencySupport

The maximum number of concurrent outstanding Operations the RDE Device can support. Must be
> 0; a value of 1 indicates no support for concurrency. A value of 255 (0xFF) shall be interpreted to
indicate that no such limit exists. Regardless of the RDE Device’s level of support for concurrency, it
shall not initiate an Operation if a limit indicated by MCConcurrencySupport has already been
reached.

bitfield8 DeviceCapabilitiesFlags

Capabilities for this RDE Device; for each, 1b indicates the RDE Device has the capability, 0b not:

[7:3] - reserved

[2] - bej_1_1_support: the RDE Device supported encoding and decoding BEJ version 1.1

[1] - expand_support: the RDE Device can process a $expand request query parameter
(expressed via the LinkExpand field of the SupplyCustomRequestParameters
command)

[0] - atomic_resource_read: the RDE Device can respond to a read of an entire resource
atomically, guaranteeing consistency of the read

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 111

Type Response data (continued)

bitfield16 DeviceFeatureSupport

Operations and functionality supported by this RDE Device; for each, 1b indicates supported, 0b
not:

[15:8] - reserved

[7] - events_supported; 1b = yes. Must be 1b if RDE Device supports Redfish Events or Long-
 running Tasks. Shall match PLDM Event support indicated via support for PLDM for
 Platform Monitoring and Control (DSP0248) SetEventReceiver command

[6] - action_supported; 1b = yes

[5] - replace_supported; 1b = yes

[4] - update_supported; 1b = yes

[3] - delete_supported; 1b = yes

[2] - create_supported; 1b = yes

[1] - read_supported; 1b = yes. All RDE Devices shall support read Operations

[0] - head_supported; 1b = yes

uint32 DeviceConfigurationSignature

A signature (such as a CRC-32) calculated across all RDE PDRs and dictionaries that the RDE
Device supports. This calculation should be performed as if all of the RDE PDRs and dictionaries
were concatenated together into a single block of memory. The RDE Device may order the RDE
PDRs and dictionaries in any sequence it chooses; however, it should be consistent in this ordering
across invocations of the NegotiateRedfishParameters command. The RDE Device may use any
method to generate the signature so long as it guarantees that a change to one or more RDE PDRs
and/or dictionaries will not result in the same signature being generated.

The RDE Device may generate the signature in any manner it sees fit; however, the signature
generated for any given set of PDRs and dictionaries shall match any previous signature generated
for the same set of PDRs and dictionaries. If a nonzero result from an RDE Device signature
matches the result from a previous invocation of this command, the MC may generally assume that
any RDE PDRs and/or dictionaries it has stored for the RDE Device remain unchanged and can be
reused. However, MCs must be aware that any hashing algorithm risks a false positive match in
result between hashes of two distinct sets of data. To mitigate this risk, MCs should utilize a
secondary check, such as comparing the updateTime field in the PLDM for Platform Monitoring and
Control GetPDRRepositoryInfo command response message to that from when PDRs were
previously retrieved.

varstring DeviceProviderName

An informal name for the RDE Device

11.2 NegotiateMediumParameters command (0x02) format 2650

This command enables the MC to negotiate medium-specific parameters with an RDE Device. The MC 2651
should invoke this command on each communication medium (e.g., RBT, SMBus, PCIe VDM) on which it 2652
intends to interface with the RDE Device. The MC shall send this command over the transport for a 2653
particular medium to negotiate parameters for that medium. When the RDE Device receives a request 2654
with data formatted per the Request Data section below, it shall respond with data formatted per the 2655
Response Data section. For a non-SUCCESS CompletionCode, only the CompletionCode field of the 2656
Response Data shall be returned. 2657

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

112 Published Version 1.1.0

Table 52 – NegotiateMediumParameters command format 2658

Type Request data

uint32 MCMaximumTransferChunkSizeBytes

An indication of the maximum amount of data the MC can support for a single message transfer.
This value represents the size of the PLDM header and PLDM payload; medium specific header
information shall not be included in this calculation. For cases of larger messages, a protocol-
specific multipart transfer shall be utilized.

All MC implementations shall support a transfer size of at least 64 bytes.

NOTE For MCTP-based mediums, this is relative to the message size, not the packet size.

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES }

If the MC reports a maximum transfer size of less than 64 bytes, the RDE Device shall respond with
completion code ERROR_INVALID_DATA.

uint32 DeviceMaximumTransferChunkSizeBytes

The maximum number of bytes that the RDE Device can support in a chunk for a single message
transfer. This value represents the size of the PLDM header and PLDM payload; medium specific
header information shall not be included in this calculation. If this value is greater than
MCMaximumTransferChunkSizeBytes, the RDE Device shall “throttle down” to using the smaller
value. If this value is smaller, the MC shall not attempt a transfer exceeding it.

All RDE Device implementations shall support a transfer size of at least 64 bytes.

NOTE For MCTP-based mediums, this is relative to the message size, not the packet size.

11.3 GetSchemaDictionary command (0x03) format 2659

This command enables the MC to retrieve a dictionary (full or truncated; see clause 7.2.3) associated with 2660
a Redfish Resource PDR. After invoking the GetSchemaDictionary command, the MC shall, upon receipt 2661
of a successful completion code and a valid read transfer handle, invoke one or more 2662
RDEMultipartReceive commands (clause 13.2) to transfer data for the dictionary from the RDE Device. 2663
The MC shall only have one dictionary, schema, or message registry retrieval in process from a given 2664
RDE Device at any time. In the event that the MC begins a dictionary, schema, or message registry 2665
retrieval when a previous retrieval has not yet completed (i.e., more chunks of dictionary or schema data 2666
remain to be retrieved), the previous retrieval is implicitly aborted and the RDE Device may discard any 2667
data associated with the transfer. 2668

MCs are discouraged from invoking the GetSchemaDictionary command in the middle of processing an 2669
RDE Operation (excluding when it is running asynchronously as a long-running task). Instead, whenever 2670
possible, they should run the Operation back to the INACTIVE state and only then retrieve dictionaries 2671
needed to finalize processing of Operation results. (Ideally, these dictionaries would have been cached 2672
before the Operation was initialized.) Neither the GetSchemaDictionary command nor any 2673
RDEMultipartReceive commands used to retrieve a dictionary shall be construed as resetting the 2674
abandonment timer (Tabandon, see clause 7.6). 2675

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2676
respond with data formatted per the Response Data section if it supports the command. For a non-2677
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2678

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 113

Table 53 – GetSchemaDictionary command format 2679

Type Request data

uint32 ResourceID

The ResourceID of any resource in the Redfish Resource PDR from which to retrieve the
dictionary. A ResourceID of 0xFFFF FFFF may be supplied to retrieve dictionaries common to all
RDE Device resources (such as the event or annotation dictionary) without referring to an
individual resource.

schemaClass RequestedSchemaClass

The class of schema being requested

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_UNSUPPORTED, ERROR_NO_SUCH_RESOURCE
}

If the RDE Device does not support a schema of the type requested, it shall return
CompletionCode ERROR_UNSUPPORTED. If the supplied Resource ID does not correspond
to a collection, but the RequestedSchemaClass is COLLECTION_MEMBER_TYPE, the RDE
Device shall return ERROR_INVALID_DATA.

uint8 DictionaryFormat

The format of the dictionary as specified in the dictionary’s VersionTag, defined in clause 7.2.3.2.

uint32 TransferHandle

A data transfer handle that the MC shall use to retrieve the dictionary data via one or more
RDEMultipartReceive commands (see clause 13.2). In conjunction with a non-failed
CompletionCode, the RDE Device shall return a valid transfer handle.

11.4 GetSchemaURI command (0x04) format 2680

This command enables the MC to retrieve the formal URI for one of the RDE Device’s schemas. 2681

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2682
respond with data formatted per the Response Data section if it supports the command. For a non-2683
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2684

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

114 Published Version 1.1.0

Table 54 – GetSchemaURI command format 2685

Type Request data

uint32 ResourceID

The ResourceID of a resource in a Redfish Resource PDR from which to retrieve the URI. A
ResourceID of 0xFFFF FFFF may be supplied to retrieve URIs for schemas common to all RDE
Device resources (such as for the annotation schema) without referring to an individual resource.

schemaClass RequestedSchemaClass

The class of schema being requested

uint8 OEMExtensionNumber

Shall be zero for a standard DMTF-published schema, or the one-based OEM extension to a
standard schema

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_UNSUPPORTED, ERROR_NO_SUCH_RESOURCE
}

For an out-of-range OEMExtensionNumber, the RDE Device shall return
ERROR_INVALID_DATA. If the RDE Device does not support a schema of the type requested, it
shall return CompletionCode ERROR_UNSUPPORTED.

uint8 StringFragmentCount

The number of fragments N into which the URI string is broken; shall be greater than zero. The
MC shall concatenate these together to reassemble the final string.

varstring SchemaURI [0]

URI string fragment for the schema. The reassembled string shall be the canonical URI for the
JSON Schema used by the RDE Device.

… …

varstring SchemaURI [N - 1]

URI string fragment for the schema. The reassembled string shall be the canonical URI for the
JSON Schema used by the RDE Device.

11.5 GetResourceETag command (0x05) format 2686

This command enables the MC to retrieve a hashed summary of the data contained immediately within a 2687
resource, including all OEM extensions to it, or of all data within an RDE Device. The retrieved ETag shall 2688
reflect the underlying data as specified in the Redfish specification (DSP0266). 2689

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2690
respond with data formatted per the Response Data section if it supports the command. For a non-2691
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2692

In the event that the RDE Device cannot provide a response to this command within the PT1 time period 2693
(defined in DSP0240), the RDE Device may provide completion code ETAG_CALCULATION_ONGOING 2694
and continue the process of generating the ETag. The MC may then poll for the completed ETag by 2695
repeating the same GetResourceETag command that it gave that previously yielded this result. The RDE 2696
Device in turn shall signal whether it has completed the calculation by responding with a completion code 2697
of either SUCCESS (the calculation is done) or ETAG_CALCULATION_ONGOING (otherwise). It is 2698
recommended that the MC delay for an integer multiple of PT1 between retry attempts. 2699

Following an invocation of this command that results in a completion code of 2700
ETAG_CALCULATION_ONGOING, any other RDE command, including an invocation of 2701
GetResourceETag with a different request message, shall be interpreted by the RDE Device as implicitly 2702

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 115

canceling the pending GetResourceETag command and cause it to stop generating the ETag. The RDE 2703
Device shall then proceed to respond to the newly arrived command normally. 2704

NOTE ETags provided via this command are not escaped for inclusion in JSON data. MCs should be aware that 2705
performing a raw comparison of an ETag retrieved from this command with one received as part of BEJ-encoded 2706
JSON data will result in a mismatch as the ETag format requires characters that must be escaped in JSON data. 2707

Table 55 – GetResourceETag command format 2708

Type Request data

uint32 ResourceID

The ResourceID of a resource in the the Redfish Resource PDR for the instance from which to get
an ETag digest; or 0xFFFF FFFF to get a global digest of all resource-based data within the RDE
Device

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_NO_SUCH_RESOURCE,
ETAG_CALCULATION_ONGOING }

varstring ETag

The RFC7232-compliant ETag string data; the string text format shall be UTF-8. Either a strong or a
weak etag may be returned.

This field shall be omitted if the CompletionCode is not SUCCESS.

11.6 GetOEMCount command (0x06) format 2709

This command enables the MC to retrieve the number of OEM extensions for a schema. 2710

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2711
respond with data formatted per the Response Data section if it supports the command. For a non-2712
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2713

Table 56 – GetOEMCount command format 2714

Type Request data

uint32 ResourceID

The ResourceID of the resource in the Redfish Resource PDR from which to retrieve the OEM
count. A ResourceID of 0xFFFF FFFF may be supplied to retrieve OEM counts for schemas
common to all RDE Device resources (such as the event dictionary) without referring to an
individual resource.

schemaCla
ss

RequestedSchemaClass

The class of schema being requested.

NOTE Redfish does not allow OEM extensions to Annotation and Registry schemas.

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_NO_SUCH_RESOURCE }

uint8 OEMCount

The number of OEM extensions associated with the schema. For schema classes that do not
support OEM extensions this value shall be zero.

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

116 Published Version 1.1.0

11.7 GetOEMName command (0x07) format 2715

This command enables the MC to retrieve information about the name associated with an OEM extension 2716
to a schema (including schemas for which OEM information is available in a Redfish Resource PDR). 2717

RDE Devices shall enumerate OEM extensions in lexicographic order. 2718

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2719
respond with data formatted per the Response Data section if it supports the command. For a non-2720
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2721

Table 57 – GetOEMName command format 2722

Type Request data

uint32 ResourceID

The ResourceID of any resource in the Redfish Resource PDR from which to retrieve an OEM
name. A ResourceID of 0xFFFF FFFF may be supplied to retrieve OEM names for extensions to
schemas common to all RDE Device resources (such as the event dictionary) without referring to an
individual resource.

schemaCla
ss

RequestedSchemaClass

The class of schema being requested

uint8 OEMIndex

The zero-based index of the OEM extension about which information is to be retrieved. The total
number of OEM extensions supported by an RDE Device for a given schema may be retrieved via
the GetOEMCount command; the index supplied here should be less than that count.

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_NO_SUCH_RESOURCE }

A response code of ERROR_INVALID_DATA shall be used to indicate when the supplied index
does not exist in the schema or when the schema class does not support OEM schemas.

varstring OEMName

The OEM name associated with the extension

11.8 GetRegistryCount command (0x08) format 2723

This command enables the MC to retrieve the number of message registries supported by an RDE 2724
Device. 2725

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2726
respond with data formatted per the Response Data section if it supports the command. For a non-2727
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2728

Table 58 – GetRegistryCount command format 2729

Type Request data

-- None

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 117

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES }

uint8 RegistryCount

The number of registries supported by the Device

11.9 GetRegistryDetails command (0x09) format 2730

This command enables the MC to retrieve information about a message registry an RDE Device supports. 2731

RDE Devices shall enumerate message registries in lexicographic order and return message registry 2732
versions in reverse numeric order (most recent versions listed first). The RDE Device shall truncate the 2733
list and decrease the count as needed to ensure that the response message fits within the negotiated 2734
message size, thereby omitting mention of support for older versions. 2735

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2736
respond with data formatted per the Response Data section if it supports the command. For a non-2737
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2738

Table 59 – GetRegistryDetails command format 2739

Type Request data

uint8 RegistryIndex

The zero-based index of the message registry about which information is to be retrieved. The total
number of registries supported by an RDE Device may be retrieved via the GetRegistryCount
command; the index supplied here should not exceed that count.

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES }

ERROR_INVALID_DATA: The supplied index does not correspond to a supported registry

varstring RegistryPrefix

The Redfish prefix (name without version information) associated with the registry

varstring RegistryURI

URI at which the registry schema is published

uint8[2] RegistryLanguage

Language in which the registry is published, as an ISO 639-1 two-letter code

uint8 VersionCount

The number N of registry versions the RDE Device supports for this registry

ver32 Version [0]

First (newest) version of the registry supported

… …

ver32 Version [N - 1]

Last (oldest) version of the registry supported

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

118 Published Version 1.1.0

11.10 SelectRegistryVersion command (0x0A) format 2740

This command enables the MC to specify the version of a supported Redfish message registry that the 2741
RDE device should use. By default, the RDE Device shall utilize the latest version of the registry that it 2742
supports. 2743

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2744
respond with data formatted per the Response Data section if it supports the command. 2745

Table 60 – SelectRegistryVersion command format 2746

Type Request data

uint8 RegistryIndex

The zero-based index of the message registry for which the registry is to be selected. The total
number of registries supported by an RDE Device may be retrieved via the GetRegistryCount
command; the index supplied here should be less than that count.

ver32 RegistryVersion

Version of the registry to be used

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES }

ERROR_INVALID_DATA: The supplied index does not correspond to a supported registry or the
supplied version is not supported

11.11 GetMessageRegistry command (0x0B) format 2747

This command enables the MC to retrieve the formal JSON registry for a Redfish message registry 2748
supported by the RDE device. After invoking the GetMessageRegistry command, the MC shall, upon 2749
receipt of a successful completion code and a valid read transfer handle, invoke one or more 2750
RDEMultipartReceive commands (clause 13.2) to transfer data for the registry from the RDE Device. The 2751
MC shall only have one dictionary, schema, or message registry retrieval in process from a given RDE 2752
Device at any time. In the event that the MC begins a dictionary, schema, or message registry retrieval 2753
when a previous retrieval has not yet completed (i.e., more chunks of dictionary or schema data remain to 2754
be retrieved), the previous retrieval is implicitly aborted and the RDE Device may discard any data 2755
associated with the transfer. 2756

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2757
respond with data formatted per the Response Data section if it supports the command. For a non-2758
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2759

Table 61 – GetMessageRegistry command format 2760

Type Request data

uint8 RegistryIndex

The zero-based index of the message registry to be retrieved. The total number of registries
supported by an RDE Device may be retrieved via the GetRegistryCount command; the index
supplied here should not exceed that count.

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES }

ERROR_INVALID_DATA: The supplied index does not correspond to a supported registry

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 119

Type Response data (continued)

uint8 SchemaFormat

Bitwise OR of two values:

Text format: { RAW_UTF8 = 0; GZIP_UTF8 = 1 }

Schema format: { JSON = 0x10; CSDL = 0x20; YAML = 0x30 }

In most cases, a message registry would be supplied as a GZIP’d UTF-8 JSON document, the
value supplied would be 0x10.

uint32 TransferHandle

A data transfer handle that the MC shall use to retrieve the registry data via one or more
RDEMultipartReceive commands (see clause 13.2). In conjunction with a non-failed
CompletionCode, the RDE Device shall return a valid transfer handle.

11.12 GetSchemaFile command (0x0C) format 2761

This command enables the MC to retrieve the formal schema for a Redfish resource supported by the 2762
RDE device. After invoking the GetSchemaFile command, the MC shall, upon receipt of a successful 2763
completion code and a valid read transfer handle, invoke one or more RDEMultipartReceive commands 2764
(clause 13.2) to transfer data for the schema from the RDE Device. The MC shall only have one 2765
dictionary, schema, or message registry retrieval in process from a given RDE Device at any time. In the 2766
event that the MC begins a dictionary, schema, or message registry retrieval when a previous retrieval 2767
has not yet completed (i.e., more chunks of dictionary or schema data remain to be retrieved), the 2768
previous retrieval is implicitly aborted and the RDE Device may discard any data associated with the 2769
transfer. MCs should reference the version and signature of schemas, as documented in Redfish 2770
Resource PDRs, wherever possible to avoid duplicate download of schema files. 2771

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2772
respond with data formatted per the Response Data section if it supports the command. For a non-2773
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2774

Table 62 – GetSchemaFile command format 2775

Type Request data

uint32 ResourceID

The ResourceID of a Redfish Resource PDR from which to retrieve the schema for an associated
resource. A ResourceID of 0xFFFF FFFF may be supplied to retrieve a schema common to all
RDE Device resources (such as the event or annotation dictionary) without referring to an
individual resource.

schemaClass RequestedSchemaClass

The class of schema being requested

uint8 OEMOffset

The offset for an OEM extension schema (see 11.6).

A value of 0xFF shall be interpreted as requesting the base (standard) schema, including for
schemas that do not support OEM extensions.

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

120 Published Version 1.1.0

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_NO_SUCH_RESOURCE }

ERROR_INVALID_DATA: The supplied OEMOffset is not valid

uint8 SchemaFormat

Bitwise OR of two values:

Text format: { RAW_UTF8 = 0; GZIP_UTF8 = 1 }

Schema format: { JSON = 0x10; CSDL = 0x20; YAML = 0x30 }

For example, for a CSDL (XML) format schema supplied as GZIP’d UTF-8 text, the value
supplied would be 0x21.

uint32 TransferHandle

A data transfer handle that the MC shall use to retrieve the registry data via one or more
RDEMultipartReceive commands (see clause 13.2). In conjunction with a non-failed
CompletionCode, the RDE Device shall return a valid transfer handle.

12 PLDM for Redfish Device Enablement – RDE Operation and Task 2776

commands 2777

This clause describes the Task commands that are used by RDE Devices and MCs that implement 2778
Redfish Device Enablement as defined in this specification. The command numbers for the PLDM 2779
messages are given in Table 50. 2780

12.1 RDEOperationInit command (0x10) format 2781

This command enables the MC to initiate a Redfish Operation with an RDE Device on behalf of a client. 2782
After invoking the RDEOperationInit command, the MC may, upon receipt of a successful completion 2783
code, invoke one or more RDEMultipartSend commands (clause 13.1) to transfer payload data of type 2784
bejEncoding to the RDE Device. The MC shall only use RDEMultipartSend to transfer the payload data if 2785
that data cannot fit in the request message of the RDEOperationInit command. After any payload has 2786
been transferred, the MC may invoke the SupplyCustomRequestParameters command if additional 2787
parameters are required. See clause 9 for more details on the Operation lifecycle. 2788

After the RDE Device receives the RDEOperationInit command, if flags are not set to indicate that it 2789
should expect either payload data or custom request parameters, the RDE Device is triggered and shall 2790
begin execution of the Operation. Similarly, if the flags are set to expect a payload but not parameters, 2791
and the payload is contained inline in the request message, the RDE Device is implicitly triggered and 2792
shall begin execution of the Operation. 2793

If triggered, the RDE Device shall respond with results if it is able to complete the Operation within the 2794
time period required for a response to this message. If there is a response payload that fits within the 2795
ResponsePayload field while maintaining a message size compatible with the negotiated maximum chunk 2796
size (see NegotiateMediumParameters, clause 11.2), the RDE Device shall include it within this 2797
response. Only if including a response payload would cause the message to exceed the negotiated chunk 2798
size may the RDE Device flag it for transfer via RDEMultipartReceive. 2799

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2800
respond with data formatted per the Response Data section. Even with a non-SUCCESS 2801
CompletionCode, all fields of the Response Data shall be returned. 2802

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 121

Table 63 – RDEOperationInit command format 2803

Type Request data

uint32 ResourceID

The resourceID of a resource in the Redfish Resource PDR for the data that is the target of this
operation

rdeOpID OperationID

Identification number for this Operation; must match the one used for all commands relating to this
Operation.

NOTE Operation IDs with the most significant bit cleared are reserved for use by the RDE
Device; it is an error for the MC to supply such an ID.

enum8 OperationType

The type of Redfish Operation being performed.

values: { OPERATION_HEAD = 0; OPERATION_READ = 1; OPERATION_CREATE = 2;
OPERATION_DELETE = 3; OPERATION_UPDATE = 4; OPERATION_REPLACE = 5;
OPERATION_ACTION = 6 }

bitfield8 OperationFlags

Flags associated with this Operation:

[7:4] - reserved for future use

[3] - excerpt_flag; if 1b, the RDE Device should perform an excerpt read (see 7.2.4.3.6)

[2] - contains_custom_request_parameters; if 1b, the RDE Device should expect to receive a
SupplyCustomRequestParameters command request before it may trigger the
Operation

[1] - contains_request_payload; if 0b, the Operation does not require data to be sent

[0] - locator_valid; if 0b, the locator in the OperationLocator field shall be ignored

uint32 SendDataTransferHandle

Handle to be used with the first RDEMultipartSend command transferring BEJ formatted data for
the operation. If no data is to be sent for this operation or if the request payload fits entirely within
this request message, then it shall be zero (0x00000000) (see the RequestPayloadLength and
RequestPayload fields below).

uint8 OperationLocatorLength

Length in bytes of the OperationLocator for this Operation. This field shall be zero (0x00) if the
locator_valid bit in the OperationFlags field above is set to 0b or if the OperationType field above
is not one of OPERATION_UPDATE and OPERATION_ACTION.

uint32 RequestPayloadLength

Length in bytes of the request payload in this message. This value shall be zero (0x00000000)
under either of the following conditions:

• There is no request payload as indicated by contains_request_payload bit of the
OperationFlags parameter above

• The entire payload cannot fit within this message, subject to the maximum transfer chunk
size as determined at registration time via the NegotiateMediumParameters command

bejLocator OperationLocator

BEJ locator indicating where the new Operation is to take place within the resource specified in
ResourceID. May not be supported for all Operations. This field shall be omitted if the
OperationLocatorLength field above is set to zero.

null or
bejEncoding

RequestPayload

The request payload. The format of this parameter shall be null (consisting of zero bytes) if the
RequestPayloadLength above is zero; it shall be bejEncoding otherwise.

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

122 Published Version 1.1.0

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_CANNOT_CREATE_OPERATION,
ERROR_NOT_ALLOWED, ERROR_WRONG_LOCATION_TYPE,
ERROR_OPERATION_EXISTS, ERROR_UNSUPPORTED, ERROR_NO_SUCH_RESOURCE }

Response codes ERROR_CANNOT_CREATE_OPERATION, ERROR_NOT_ALLOWED,
ERROR_WRONG_LOCATION_TYPE, ERROR_OPERATION_EXISTS,
ERROR_UNSUPPORTED, and ERROR_NO_SUCH_RESOURCE shall be interpreted to
represent an operational failure, not a command failure.

enum8 OperationStatus

values: { OPERATION_INACTIVE = 0; OPERATION_NEEDS_INPUT = 1;
OPERATION_TRIGGERED= 2; OPERATION_RUNNING = 3; OPERATION_HAVE_RESULTS =
4; OPERATION_COMPLETED = 5, OPERATION_FAILED = 6, OPERATION_ABANDONED = 7 }

uint8 CompletionPercentage

0..100: percentage complete; 101-253: reserved for future use; 254: not supported or otherwise
unable to estimate (but a valid Operation) 255: invalid Operation

This value shall be zero if the Operation has not yet been triggered or if the Operation has failed.

uint32 CompletionTimeSeconds

An estimate of the number of seconds remaining before the Operation is completed, or 0xFFFF
FFFF if such an estimate cannot be provided.

This value shall be 0xFFFF FFFF if the Operation has not yet been triggered or if the Operation
has failed.

bitfield8 OperationExecutionFlags

 [7:4] - Reserved

[3] - CacheAllowed – 1b = yes; shall be 0b for Operations other than read, head. Shall be 0b
unless Operation has finished. Referring to RFC 7234, a value of yes shall be considered
as equivalent to Cache-Control response header value “public” and a value of no shall be
considered as equivalent to Cache-Control response header value “no-store”. Other
cache directives are not supported. The decision of whether to allow caching of data is up
to the RDE Device. Typically, static data is allowed to be cached unless, for example, it
represents sensitive data such as login credentials; data that changes over time is
generally not marked as cacheable.

 To process the CacheAllowed flag, the MC shall behave as described in clause 7.2.4.2.7

[2] - HaveResultPayload – 1b = yes. Shall be 0b if Operation has not finished

[1] - HaveCustomResponseParameters – 1b = yes. Shall be 0b if Operation has not finished

[0] - TaskSpawned – 1b = yes

For a failed Operation, this field shall be 0b for all flags other than HaveResultPayload, which may
be 1b if a @Message.ExtendedInfo annotation is available to explain the result.

uint32 ResultTransferHandle

A data transfer handle that the MC may use to retrieve a larger response payload via one or more
RDEMultipartReceive commands (see clause 13.2). The RDE Device shall return a transfer
handle of 0xFFFFFFFF if Operation execution has not finished or if the Operation has not yet been
triggered. In the event of a failed Operation, or if the data fits entirely within the payload of this
command response, or if there is no data to retrieve, the RDE Device shall return a null transfer
handle, 0x00000000.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 123

Type Response data (continued)

bitfield8 PermissionFlags

Indicates the access level (types of Operations; see Table 33) granted to the resource targeted by
the Operation.

[7: 6] - reserved for future use

[5] - head access; 1b = access allowed

[4] - delete access; 1b = access allowed

[3] - create access; 1b = access allowed

[2] - replace access; 1b = access allowed

[1] - update access; 1b = access allowed

[0] - read access; 1b = access allowed

Additional notes on processing PermissionFlags may be found in clause 7.2.4.2.8.

uint32 ResponsePayloadLength

Length in bytes of the response payload in this message. This value shall be zero under any of
the following conditions:

• The Operation has not yet been triggered.

• The Operation status is not completed or failed, as indicated by the OperationStatus
parameter above. For a failed Operation, a @Message.ExtendedInfo annotation may be
supplied in the response payload.

• There is no response payload as indicated by Bit 2 of the OperationExecutionFlags
parameter above.

• The entire payload cannot fit within this message, subject to the maximum transfer chunk
size as determined at registration time via the NegotiateMediumParameters command.

varstring ETag

String data for an ETag digest of the target resource; the string text format shall be UTF-8. The
ETag shall be skipped (a string consisting of just the null terminator returned in this field) for any of
the following actions: Action, Delete, Replace, and Update. The ETag shall also be skipped (a
string consisting of just the null terminator returned in this field) if execution of the Operation has
failed or not yet finished.

Additional notes on processing ETags may be found in clause 7.2.4.2.4.

NOTE ETags provided via this field are not escaped for inclusion in JSON data as they are
primarily intended to be used for the ETag HTML header. MCs should be aware that
performing a raw comparison of an ETag retrieved from this command with one
received as part of BEJ-encoded JSON data will result in a mismatch as the ETag
format requires characters that must be escaped in JSON data.

null or
bejEncoding

ResponsePayload

The response payload. The format of this parameter shall be null (consisting of zero bytes) if the
ResponsePayloadLength above is zero; it shall be bejEncoding otherwise.

12.2 SupplyCustomRequestParameters command (0x11) format 2804

This command enables the MC to send custom HTTP/HTTPS X- headers and other uncommon request 2805
parameters to an RDE Device to be applied to an Operation if the client’s HTTP operation contains any 2806
such parameters. The MC must not use this command to submit any headers for which a standard 2807
handling is defined in either this specification or DSP0266. If the client’s HTTP operation does not contain 2808
the parameters conveyed in this command, the MC shall not send this command as part of its processing 2809
of the Operation. 2810

The MC shall only invoke this command in the event that at least one custom header or uncommon 2811
request parameter needs to be transferred to the RDE Device. When sent, the 2812

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

124 Published Version 1.1.0

SupplyCustomRequestParameters command shall be invoked after the MC sends the 2813
RDEOperationInit command. 2814

After the RDE Device receives the SupplyCustomRequestParameters command, if flags from the original 2815
RDEOperationInit command (see clause 12.1) were not set to indicate that it should expect payload data 2816
or if the RDE Device has already received payload data, the RDE Device shall consider itself triggered 2817
and begin execution of the Operation. 2818

If triggered, the RDE Device shall respond with results if it is able to complete the Operation within the 2819
time period required for a response to this message. If there is a response payload that fits within the 2820
ResponsePayload field while maintaining a message size compatible with the negotiated maximum chunk 2821
size (see clause 11.2), the RDE Device shall include it within this response. Only if including a response 2822
payload would cause the message to exceed the negotiated chunk size may the RDE Device flag it for 2823
transfer via RDEMultipartReceive. 2824

The size of the request message is limited to the negotiated maximum chunk size (see clause 11.2). If the 2825
client supplied sufficiently many custom request headers and/or ETags that the request message would 2826
exceed this negotiated size, the MC shall abort the request and perform the following steps: 2827

1) Use the RDEOperationKill (see clause 12.6) and then RDEOperationComplete (see clause 2828
12.4) commands to abort and finalize the Operation if it had already been initiated via 2829
RDEOperationInit (see clause 12.1). 2830

2) Return to the client HTTP/HTTPS error code 431, Request Header Fields Too Large. 2831

3) Cease processing of the client request. 2832

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2833
respond with data formatted per the Response Data section. Even with a non-SUCCESS 2834
CompletionCode, all fields of the Response Data shall be returned. 2835

Table 64 – SupplyCustomRequestParameters command format 2836

Type Request data

uint32 ResourceID

The resourceID of a resource in the Redfish Resource PDR for the instance to which custom
headers should be supplied

rdeOpID OperationID

Identification number for this Operation; must match the one used for all commands relating to this
Operation.

uint16 LinkExpand

The value of a $levels qualifier to a $expand query option if supplied as part of an HTTP/HTTPS
GET operation. The MC shall supply a value of zero if the query option was not supplied. This
integer indicates the number of levels of links to expand when reading data from a resource. The
MC shall supply a value of zero if the $expand query option was not supplied. See DSP0266 for
more details.

This value should be ignored by the RDE Device if it did not set expand_support in the
DeviceCapabilitiesFlags response parameter to the NegotiateRedfishParameters command.

To process the LinkExpand parameters, the MC and RDE Device shall behave as described in
clause 7.2.4.3.3. In particular, when supporting this command, an RDE Device shall encode pages
expanded into with the bejResourceLinkExpansion format specification.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 125

Type Request data (continued)

uint16 CollectionSkip

The value of a $skip query option if supplied as part of an HTTP/HTTPS GET operation. The MC
shall supply a value of zero if the $skip query option was not supplied. This integer indicates the
number of Members in a resource collection to skip before retrieving the first resource. See
DSP0266 for more details.

Additional notes on processing hte $skip query option may be found in clause 7.2.4.3.1.

uint16 CollectionTop

The value of a $top query option if supplied as part of an HTTP/HTTPS GET operation. The MC
shall supply a value of 0xFFFF (to be treated by the RDE Device as unlimited) if the query option
was not supplied. This indicates the number of Members of a resource collection to include in a
response. See DSP0266 for more details.

Additional notes on processing the $top query option may be found in clause 7.2.4.3.2.

uint16 PaginationOffset

The page offset for paginated response data that the RDE Device supplied in conjunction with an
@odata.nextlink annotation and decoded from a pagination URI. Shall be 0 if no pagination has
taken place. See clause 14.2.8 for more details on RDE Device-selected dynamic pagination.

Additional notes on pagination may be found in clause 14.2.8.

enum8 ETagOperation

To process an ETagOperation, the RDE Device shall respond as described in clauses 7.2.4.2.1
and 7.2.4.2.2.

values: { ETAG_IGNORE = 0; ETAG_IF_MATCH = 1; ETAG_IF_NONE_MATCH = 2 }

uint8 ETagCount

Number of ETags supplied in this message; should be zero if ETagOperation above is
ETAG_IGNORE and nonzero otherwise.

varstring ETag [0]

String data for first ETag, if ETagCount > 0. This string shall be UTF-8 format.

Additional notes on processing ETags may be found in clause 7.2.4.2.4.

… Additional ETags

uint8 HeaderCount

The number of RDE custom headers being supplied in this operation.

Additional notes on processing RDE custom headers may be found in clause 7.2.4.2.3.

varstring HeaderName [0]

The name of the header, including the PLDM-RDE- prefix

varstring HeaderParameter [0]

The parameter or parameters associated with the header. The MC may preprocess these – though
any such preprocessing is outside the scope of this specification – or convey them exactly as
received.

… …

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_ OPERATION_ABANDONED, ERROR_
OPERATION_FAILED, ERROR_UNSUPPORTED, ERROR_UNEXPECTED,
ERROR_UNRECOGNIZED_CUSTOM_HEADER, ERROR_ETAG_MATCH,
ERROR_NO_SUCH_RESOURCE }

Response codes ERROR_UNSUPPORTED and ERROR_UNRECOGNIZED_CUSTOM_HEADER
shall be used to indicate that an unsupported request parameter was sent. These responses
represent an Operational failure, not a command failure.

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

126 Published Version 1.1.0

Type Response data (continued)

enum8 OperationStatus

values: { OPERATION_INACTIVE = 0; OPERATION_NEEDS_INPUT = 1;
OPERATION_TRIGGERED= 2; OPERATION_RUNNING = 3; OPERATION_HAVE_RESULTS =
4; OPERATION_COMPLETED = 5, OPERATION_FAILED = 6, OPERATION_ABANDONED = 7 }

uint8 CompletionPercentage

0..100: percentage complete; 101-253: reserved for future use; 254: not supported or otherwise
unable to estimate (but a valid Operation) 255: invalid Operation

This value shall be zero if the Operation has not yet been triggered or if the Operation has failed.

uint32 CompletionTimeSeconds

An estimate of the number of seconds remaining before the Operation is completed, or 0xFFFF
FFFF if such an estimate cannot be provided.

This value shall be 0xFFFF FFFF if the Operation has not yet been triggered or if the Operation
has failed.

bitfield8 OperationExecutionFlags

[7:4] - Reserved

[3] - CacheAllowed – 1b = yes; shall be 0b for Operations other than read, head. Shall be 0b
unless Operation has finished. Referring to RFC 7234, a value of yes shall be considered
as equivalent to Cache-Control response header value “public” and a value of no shall be
considered as equivalent to Cache-Control response header value “no-store”. Other
cache directives are not supported. The decision of whether to allow caching of data is up
to the RDE Device. Typically, static data is allowed to be cached unless, for example, it
represents sensitive data such as login credentials; data that changes over time is
generally not marked as cacheable

 To process the CacheAllowed flag, the MC shall behave as described in clause 7.2.4.2.7

[2] - HaveResultPayload – 1b = yes. Shall be 0b if Operation has not finished

[1] - HaveCustomResponseParameters – 1b = yes. Shall be 0b if Operation has not finished

[0] - TaskSpawned – 1b = yes

For a failed Operation, this field shall be 0b for all flags other than HaveResultPayload, which may
be 1b if a @Message.ExtendedInfo annotation is available to explain the result.

uint32 ResultTransferHandle

A data transfer handle that the MC may use to retrieve a larger response payload via one or more
RDEMultipartReceive commands (see clause 13.2). The RDE Device shall return a transfer
handle of 0xFFFFFFFF if Operation execution has not finished or if the Operation has not yet been
triggered. In the event of a failed Operation, or if the data fits entirely within the payload of this
command response, or if there is no data to retrieve, the RDE Device shall return a null transfer
handle, 0x00000000.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 127

Type Response data (continued)

bitfield8 PermissionFlags

Indicates the access level (types of Operations; see Table 33) granted to the resource targeted by
the Operation.

[7:6] - reserved for future use

[5] - head access; 1b = access allowed

[4] - delete access; 1b = access allowed

[3] - create access; 1b = access allowed

[2] - replace access; 1b = access allowed

[1] - update access; 1b = access allowed

[0] - read access; 1b = access allowed

The MC and RDE Device shall process PermissionFlags as described in clause 7.2.4.2.8.NOTE:
The bit mapping for the PermissionFlags field was changed in version 1.0.1 of this specification to
match that from the RDEOperationInit command, thereby making the entire response message
identical for both of these commands.

uint32 ResponsePayloadLength

Length in bytes of the response payload in this message. This value shall be zero under any of
the following conditions:

• The Operation has not yet been triggered

• The Operation status is not completed or failed, as indicated by the OperationStatus
parameter above. For a failed Operation, a @Message.ExtendedInfo annotation may be
supplied in the response payload.

• There is no response payload as indicated by Bit 2 of the OperationExecutionFlags
parameter above

• The entire payload cannot fit within this message, subject to the maximum transfer chunk
size as determined at registration time via the NegotiateMediumParameters command

varstring ETag

String data for an ETag digest of the target resource; the string text format shall be UTF-8. The
ETag may be skipped (an empty string returned in this field) for any of the following actions:
Action, Delete, Replace, and Update. The ETag shall also be skipped (an empty string returned in
this field) if execution of the Operation has not yet finished.

This field supports the ETag Response header. Additional notes on processing ETags may be
found in clause 7.2.4.2.4.

NOTE ETags provided via this field are not escaped for inclusion in JSON data as they are
primarily intended to be used for the ETag HTML header. MCs should be aware that
performing a raw comparison of an ETag retrieved from this command with one
received as part of BEJ-encoded JSON data will result in a mismatch as the ETag
format requires characters that must be escaped in JSON data.

null or
bejEncoding

ResponsePayload

The response payload. The format of this parameter shall be null (consisting of zero bytes) if the
ResponsePayloadLength above is zero; it shall be bejEncoding otherwise.

12.3 RetrieveCustomResponseParameters command (0x12) format 2837

This command enables the MC to retrieve custom HTTP/HTTPS headers or other uncommon response 2838
parameters from an RDE Device to be forwarded to the client that initiated a Redfish operation. The MC 2839
shall only invoke this command when the HaveCustomResponseParameters flag in the response 2840
message for a triggered RDE command indicates that it is needed. 2841

The RDE Device shall not supply more response headers than would allow the response message to fit in 2842
the negotiated maximum transfer chunk size (see clause 11.2). 2843

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

128 Published Version 1.1.0

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2844
respond with data formatted per the Response Data section. For a non-SUCCESS CompletionCode, only 2845
the CompletionCode field of the Response Data shall be returned. 2846

Table 65 – RetrieveCustomResponseParameters command format 2847

Type Request data

uint32 ResourceID

The resourceID of a resource in the Redfish Resource PDR for the instance from which custom
headers should be reported

rdeOpID OperationID

Identification number for this Operation; must match the one used for all commands relating to this
Operation

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED, ERROR_UNEXPECTED, ERROR_NO_SUCH_RESOURCE }

uint32 DeferralTimeframe

The expected length of time in seconds before the RDE Device will be able to respond to a request
to start an Operation, or 0xFF if unknown. The MC shall ignore this field except when the completion
code of the previous RDEOperationInit was ERROR_NOT_READY.

This field supports the Retry-After response header. Additional notes on processing the Retry-After
response header may be found in clause 7.2.4.2.9.

uint32 NewResourceID

Resource ID for a newly created collection entry; this value shall be 0 and ignored if the Operation is
not a Redfish Create or if the Operation has failed or not yet completed.

This field supports the Location Response header. Additional notes on processing the Location
response header may be found in clause 7.2.4.2.6.

uint8 ResponseHeaderCount

Number of custom response headers contained in the remainder of this message

varstring HeaderName [0]

The name of the header, including the X- prefix

This field shall be omitted if ResponseHeaderCount above is zero

varstring HeaderParameter [0]

The parameter or parameters associated with the header. The MC may preprocess these – though
any such preprocessing is outside the scope of this specification – or convey them exactly as
received

This field shall be omitted if ResponseHeaderCount above is zero

… …

12.4 RDEOperationComplete command (0x13) format 2848

This command enables the MC to inform an RDE Device that it considers an Operation to be complete, 2849
including failed and abandoned Operations. The RDE Device in turn may discard any internal records for 2850
the Operation. 2851

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2852
respond with data formatted per the Response Data section. 2853

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 129

Table 66 – RDEOperationComplete command format 2854

Type Request data

uint32 ResourceID

The resourceID of a resource in the Redfish Resource PDR to which the Task’s operation was
targeted

rdeOpID OperationID

Identification number for this Operation; must match the one used for all commands relating to this
Operation

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_UNEXPECTED, ERROR_NO_SUCH_RESOURCE }

12.5 RDEOperationStatus command (0x14) format 2855

This command enables the MC to query an RDE Device for the status of an Operation. It is additionally 2856
used to collect the initial response when an RDE Operation is triggered by a RDEMultipartSend command 2857
or after a Task finishes asynchronous execution. 2858

When providing result data for an Operation that has finished executing, if there is a response payload 2859
that fits within the ResponsePayload field while maintaining a message size compatible with the 2860
negotiated maximum chunk size (see NegotiateMediumParameters, clause 11.2), the RDE Device shall 2861
include it within this response. Only if including a response payload would cause the message to exceed 2862
the negotiated chunk size may the RDE Device flag it for transfer via RDEMultipartReceive. 2863

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2864
respond with data formatted per the Response Data section. Even with a non-SUCCESS 2865
CompletionCode, all fields of the Response Data shall be returned. 2866

Table 67 – RDEOperationStatus command format 2867

Type Request data

uint32 ResourceID

The resourceID of a resource in the Redfish Resource PDR to which the Task’s operation was
targeted

rdeOpID OperationID

Identification number for this Operation; must match the one used for all commands relating to this
Operation

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

130 Published Version 1.1.0

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_UNSUPPORTED, ERROR_ETAG_MATCH,
ERROR_UNRECOGNIZED_CUSTOM_HEADER }

The completion code for RDEOperationStatus shall be one of the following:

SUCCESS: An RDE Operation was referenced in the OperationID request field and it is not in the
failed state. The actual current status of the RDE Operation is returned in the OperationStatus
field. If the OperationID does not correspond to an active Operation, the state shall be reported as
OPERATION_INACTIVE.

ERROR_UNSUPPORTED, ERROR_ETAG_MATCH,
ERROR_UNRECOGNIZED_CUSTOM_HEADER: An RDE Operation in the FAILED state was
referenced in the OperationID request field, and the Operation failed with the specified status
code. OperationStatus shall be OPERATION_FAILED in this case. These responses indicate a
failure in the RDE Operation, not a failure in the RDEOperationStatus command.

enum8 OperationStatus

values: { OPERATION_INACTIVE = 0; OPERATION_NEEDS_INPUT = 1;
OPERATION_TRIGGERED= 2; OPERATION_RUNNING = 3; OPERATION_HAVE_RESULTS =
4; OPERATION_COMPLETED = 5, OPERATION_FAILED = 6, OPERATION_ABANDONED = 7 }

uint8 CompletionPercentage

0..100: percentage complete; 101-253: reserved for future use; 254: not supported or otherwise
unable to estimate (but a valid Operation) 255: invalid Operation

This value shall be zero if the Operation has not yet been triggered or if the Operation has failed.

uint32 CompletionTimeSeconds

An estimate of the number of seconds remaining before the Operation is completed, or 0xFFFF
FFFF if such an estimate cannot be provided.

This value shall be 0xFFFF FFFF if the Operation has not yet been triggered or if the Operation
has failed.

bitfield8 OperationExecutionFlags

[7:4] - Reserved

[3] - CacheAllowed – 1b = yes; shall be 0b for Operations other than read, head. Shall be 0b
unless Operation has finished. Referring to RFC 7234, a value of yes shall be considered
as equivalent to Cache-Control response header value “public” and a value of no shall be
considered as equivalent to Cache-Control response header value “no-store”. Other
cache directives are not supported. The decision of whether to allow caching of data is up
to the RDE Device. Typically, static data is allowed to be cached unless, for example, it
represents sensitive data such as login credentials; data that changes over time is
generally not marked as cacheable

 To process the CacheAllowed flag, the MC shall behave as described in clause 7.2.4.2.7

[2] - HaveResultPayload – 1b = yes. Shall be 0b if Operation has not finished

[1] - HaveCustomResponseParameters – 1b = yes. Shall be 0b if Operation has not finished

[0] - TaskSpawned – 1b = yes

For a failed Operation, this field shall be 0b for all flags other than HaveResultPayload, which may
be 1b if a @Message.ExtendedInfo annotation is available to explain the result.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 131

Type Response data (continued)

uint32 ResultTransferHandle

A data transfer handle that the MC may use to retrieve a larger response payload via one or more
RDEMultipartReceive commands (see clause 13.2). The RDE Device shall return a transfer
handle of 0xFFFFFFFF if Operation execution has not finished or if the Operation has not yet been
triggered. In the event of a failed Operation, or if the data fits entirely within the payload of this
command response, or if there is no data to retrieve, the RDE Device shall return a null transfer
handle, 0x00000000.

In the event that data transfer for this Operation is currently in progress (at least one chunk has
been transferred but the final chunk has not yet been transferred, and a timeout has not occurred
awaiting the request for the next chunk), the RDE Device shall return the transfer handle that was
most recently returned in the response message for a RDEMultipartSend or RDEMultipartReceive
command.

bitfield8 PermissionFlags

Indicates the access level (types of Operations; see Table 33) granted to the resource targeted by
the Operation.

[7:6] - reserved for future use

[5] - head access; 1b = access allowed

[4] - delete access; 1b = access allowed

[3] - create access; 1b = access allowed

[2] - replace access; 1b = access allowed

[1] - update access; 1b = access allowed

[0] - read access; 1b = access allowed

This field supports the Allow header. Additional notes on processing the Allow header may be
found in clause 7.2.4.2.8

NOTE The bit mapping for the PermissionFlags field was changed in version 1.0.1 of this
specification to match that from the RDEOperationInit command, thereby making the
entire response message identical for both of these commands.

uint32 ResponsePayloadLength

Length in bytes of the response payload in this message. This value shall be zero under any of
the following conditions:

• The Operation has not yet been triggered

• The Operation status is not completed or failed, as indicated by the OperationStatus
parameter above. For a failed Operation, a @Message.ExtendedInfo annotation may be
supplied in the response payload.

• There is no response payload as indicated by Bit 2 of the OperationExecutionFlags
parameter above

• The entire payload cannot fit within this message, subject to the maximum transfer chunk
size as determined at registration time via the NegotiateMediumParameters command

varstring ETag

String data for an ETag digest of the target resource; the string text format shall be UTF-8. The
ETag may be skipped (an empty string returned in this field) for any of the following actions:
Action, Delete, Replace, and Update. The ETag shall also be skipped (an empty string returned in
this field) if execution of the Operation has not yet finished.

Additional notes on processing ETags may be found in clause 7.2.4.2.4.

NOTE ETags provided via this field are not escaped for inclusion in JSON data as they are
primarily intended to be used for the ETag HTML header. MCs should be aware that
performing a raw comparison of an ETag retrieved from this command with one
received as part of BEJ-encoded JSON data will result in a mismatch as the ETag
format requires characters that must be escaped in JSON data.

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

132 Published Version 1.1.0

Type Response data (continued)

null or
bejEncoding

ResponsePayload

The response payload. The format of this parameter shall be null (consisting of zero bytes) if the
ResponsePayloadLength above is zero; it shall be bejEncoding otherwise.

12.6 RDEOperationKill command (0x15) format 2868

This command enables the MC to request that an RDE Device terminate an Operation. The RDE Device 2869
shall kill the Operation if the Operation can be killed; however, the MC must be aware that not all 2870
Operations can be terminated. 2871

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2872
respond with data formatted per the Response Data section if it supports the command. 2873

Table 68 – RDEOperationKill command format 2874

Type Request data

uint32 ResourceID

The resourceID of a resource in the Redfish Resource PDR to which the Task’s operation was
targeted

rdeOpID OperationID

Identification number for this Operation; must match the one used for all commands relating to this
Operation

bitfield8 KillFlags

Flags for killing the Operation:

[7:3] - reserved for future use

[2] - discard_results; if 1b and the RDE Device is in the HAVE_RESULTS state for this
Operation, the results of the Operation shall be discarded and the Operation state set to
Inactive. The MC shall not set the discard_results bit in conjunction with any other bits in
the KillFlags. In the event that the MC violates this restriction, the RDE Device shall
respond with completion code ERROR_INVALID_DATA and stop processing the request.

 [1] - run_to_completion; if 1b, the Operation should be run to completion but no further
response should be sent to the MC. The MC shall not set the run_to_completion bit without
also setting the discard_record bit. In the event that the MC violates this restriction, the
RDE Device shall respond with completion code ERROR_INVALID_DATA and stop
processing the request.

[0] - discard_record; if 1b and the kill command returns success, the RDE Device shall discard
internal records associated with this Operation as soon as it is killed; the RDE Device
should not expect the MC to call RedfishOperationComplete for this Operation. If the
Operation has spawned a Task, the RDE Device shall not create an Event when execution
is finished.

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED, ERROR_OPERATION_UNKILLABLE,
ERROR_NO_SUCH_RESOURCE, ERROR_UNEXPECTED }

12.7 RDEOperationEnumerate command (0x16) format 2875

This command enables the MC to request that an RDE Device enumerate all Operations that are 2876
currently active (not in state INACTIVE in the Operation lifecycle state machine of clause 9.2.3.2). It is 2877

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 133

expected that the MC will typically use this command during its initialization to discover any Operations 2878
that spawned Tasks that were active through a shutdown. 2879

NOTE When instantiating Operations, the RDE Device shall not create a new Operation if including the total data for 2880
all Operations would cause the response message for this command to exceed the negotiated maximum transfer 2881
chunk size (see clause 11.2) for any of the mediums on which the MC has communicated with the RDE Device. 2882

If the RDE Device accepts operations from protocols other than Redfish, it should make them visible as 2883
RDE Operations while they are active by enumerating them in response to this command. 2884

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2885
respond with data formatted per the Response Data section if it supports the command. For a non-2886
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2887

Table 69 – RDEOperationEnumerate command format 2888

Type Request data

n/a This request contains no parameters

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES }

uint16 OperationCount

The number of active Operations N described in the remainder of this message

uint32 ResourceID [0]

The resource ID of the Redfish Resource PDR to which the Operation was targeted. Shall be
omitted if OperationCount is zero

rdeOpID OperationID [0]

Operation identifier assigned for the Operation when the MC initialized the Operation via the
RDEOperationInit command or when the RDE Device chose to make an external Operation visible
via RDE.

This field shall be omitted if OperationCount above is zero

enum8 OperationType [0]

The type of Operation. Shall be omitted if OperationCount is zero

values: { OPERATION_HEAD = 0; OPERATION_READ = 1; OPERATION_CREATE = 2;
OPERATION_DELETE = 3; OPERATION_UPDATE = 4; OPERATION_REPLACE = 5;
OPERATION_ACTION = 6 }

This field shall be omitted if OperationCount above is zero

… …

uint32 ResourceID [N - 1]

The resource ID of the Redfish Resource PDR to which the Operation was targeted

rdeOpID OperationID [N - 1]

Operation identifier assigned for the Operation when the MC initialized the Operation via the
RDEOperationInit command or when the RDE Device chose to make an external Operation visible
via RDE

enum8 OperationType [N - 1]

The type of Operation

values: { OPERATION_HEAD = 0; OPERATION_READ = 1; OPERATION_CREATE = 2;
OPERATION_DELETE = 3; OPERATION_UPDATE = 4; OPERATION_REPLACE = 5;
OPERATION_ACTION = 6 }

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

134 Published Version 1.1.0

13 PLDM for Redfish Device Enablement – Utility commands 2889

13.1 RDEMultipartSend command (0x30) format 2890

This command enables the MC to send a large volume of data to an RDE Device. In the event of a data 2891
checksum error, the MC may reissue the first RDEMultipartSend command with the initial data transfer 2892
handle; the RDE Device shall recognize this to mean that the transfer failed and respond as if this were 2893
the first transfer attempt. If the MC chooses not to restart the transfer, or in any other error occurs, the MC 2894
should abandon the transfer. In the latter case, if the transfer is part of an Operation, the MC shall 2895
explicitly abort and then finalize the Operation via the RDEOperationKill and RDEOperationComplete 2896
commands (see clauses 12.6 and 12.4). 2897

Similarly, in the event of transient transfer errors for individual chunks of the data, the MC may retry those 2898
chunks by reissuing the RDEMultipartSend command corresponding to those chunks provided it has not 2899
yet issued a RDEMultipartSend command for a subsequent chunk. When the RDE Device receives a 2900
request with data formatted per the Request Data section below, it shall respond with data formatted per 2901
the Response Data section. For a non-SUCCESS CompletionCode, only the CompletionCode field of the 2902
Response Data shall be returned. 2903

NOTE In versions of this specification prior to v1.1.0, this command was named MultipartSend. 2904

Table 70 – RDEMultipartSend command format 2905

Type Request data

uint32 DataTransferHandle

A handle to uniquely identify the chunk of data to be sent. If TransferFlag below is START or
START_AND_END, this must match the SendDataTransferHandle that was supplied by the RDE
Device in the response to RDEOperationInit.

The DataTransferHandle supplied shall be either the initial handle to begin or restart a transfer or
the NextDataTransferHandle as specified in the previous chunk.

rdeOpID OperationID

Identification number for this Operation; must match the one previously used for all commands
relating to this Operation; 0x0000 if this transfer is not part of an Operation.

enum8 TransferFlag

An indication of current progress within the transfer. The value START_AND_END indicates that the
entire transfer consists of a single chunk.

value: { START = 0, MIDDLE = 1, END = 2, START_AND_END = 3 }

uint32 NextDataTransferHandle

The handle for the next chunk of data for this transfer; zero (0x00000000) if no further data.

uint32 DataLengthBytes

The length in bytes N of data being sent in this chunk, including both the Data and
DataIntegrityChecksum (if present) fields. This value and the data bytes associated with it shall not
cause this request message to exceed the negotiated maximum transfer chunk size (clause 11.2).

uint8 Data [0]

The first byte of the current chunk of data. Shall be omitted if only the DataIntegrityChecksum is
present.

… …

uint8 Data [N-1]

The last byte of the current chunk of data. Shall be omitted if only the DataIntegrityChecksum is
present.

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 135

Type Request data (continued)

uint32 DataIntegrityChecksum

32-bit CRC for the entirety of data (all parts concatenated together, excluding this checksum). Shall
be omitted for non-final chunks (TransferFlag ≠ END or START_AND_END) in the transfer. The
DataIntegrityChecksum shall not be split across multiple chunks. If appending the
DataIntegrityChecksum would cause this request message to exceed the negotiated maximum
transfer chunk size (clause 11.2), the DataIntegrityChecksum shall be sent as the only data in
another chunk.

For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11
+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the
integrity checksum computation. The CRC computation involves processing a byte at a time with the
least significant bit first.

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED, ERROR_UNEXPECTED, ERROR_BAD_CHECKSUM }

If the DataTransferHandle does not correspond to a valid chunk, the RDE Device shall return
CompletionCode ERROR_INVALID_DATA.

enum8 TransferOperation

The follow-up action that the RDE Device is requesting of the MC:

• XFER_FIRST_PART: resend the initial chunk (restarting the transmission, such as if the
checksum of data received did not match the DataIntegrityChecksum in the final chunk)

• XFER_NEXT_PART: send the next chunk of data

• XFER_ABORT: stop the transmission and do not retry. The MC shall proceed as if the
transmission is permanently failed in this case

• XFER_COMPLETE: no further follow-up needed, the transmission completed normally

value: { XFER_FIRST_PART = 0, XFER_NEXT_PART = 1, XFER_ABORT = 2,
XFER_COMPLETE = 3 }

13.2 RDEMultipartReceive command (0x31) format 2906

This command enables the MC to receive a large volume of data from an RDE Device. In the event of a 2907
data checksum error, the MC may reissue the first RDEMultipartReceive command with the initial data 2908
transfer handle; the RDE Device shall recognize this to mean that the transfer failed and respond as if this 2909
were the first transfer attempt. If the MC chooses not to restart the transfer, or in any other error occurs, 2910
the MC should abandon the transfer. In the latter case, if the transfer is part of an Operation, the MC shall 2911
explicitly abort and finalize the Operation via the RDEOperationKill and then RDEOperationComplete 2912
commands (see clauses 12.6 and 12.4). 2913

Similarly, in the event of transient transfer errors for individual chunks of the data, the MC may retry those 2914
chunks by reissuing the RDEMultipartReceive command corresponding to those chunks provided it has 2915
not yet issued a RDEMultipartReceive command for a subsequent chunk. 2916

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2917
respond with data formatted per the Response Data section if it supports the command. For a non-2918
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2919

NOTE In versions of this specification prior to v1.1.0, this command was named MultipartReceive. 2920

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

136 Published Version 1.1.0

Table 71 – RDEMultipartReceive command format 2921

Type Request data

uint32 DataTransferHandle

A handle to uniquely identify the chunk of data to be retrieved. If TransferOperation below is
XFER_FIRST_PART and the OperationID below is zero, this must match the TransferHandle
supplied by the RDE Device in the response to the GetSchemaDictionary, GetMessageRegistry, or
GetSchemaFile command. If TransferOperation below is XFER_FIRST_PART and the OperationID
below is nonzero, this must match the SendDataTransferHandle that was supplied by the RDE
Device in the response to RDEOperationInit. If TransferOperation below is XFER_NEXT_PART, this
must match the NextDataHandle supplied by the RDE Device with the previous chunk.

The DataTransferHandle supplied shall be either the initial handle to begin or restart a transfer or
the NextDataTransferHandle supplied with the previous chunk.

rdeOpID OperationID

Identification number for this Operation; must match the one previously used for all commands
relating to this Operation; 0x0000 if this transfer is not part of an Operation

enum8 TransferOperation

The portion of data requested for the transfer:

• XFER_FIRST_PART: The MC is asking the transfer to begin or to restart from the
beginning

• XFER_NEXT_PART: The MC is asking for the next portion of the transfer

• XFER_ABORT: The MC is requesting that the transfer be discarded. The RDE Device may
discard any internal data structures it is maintaining for the transfer

value: { XFER_FIRST_PART = 0, XFER_NEXT_PART = 1, XFER_ABORT = 2 }

Type Response data

enum8 CompletionCode

value: { PLDM_BASE_CODES, ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED, ERROR_UNEXPECTED, ERROR_BAD_CHECKSUM }

If the DataTransferHandle does not correspond to a valid chunk, the RDE Device shall return
CompletionCode ERROR_INVALID_DATA.

If the transfer is aborted, the RDE Device shall acknowledge this status by returning SUCCESS.

enum8 TransferFlag

value: { START = 0, MIDDLE = 1, END = 2, START_AND_END = 3 }

This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

uint32 NextDataTransferHandle

The handle for the next chunk of data for this transfer; zero (0x00000000) if no further data

This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

uint32 DataLengthBytes

The length in bytes N of data being sent in this chunk, including both the Data and
DataIntegrityChecksum (if present) fields. This value and the data bytes associated with it shall not
cause this response message to exceed the negotiated maximum transfer chunk size (clause 11.2).

This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

uint8 Data [0]

The first byte of current chunk of data. Shall be omitted if only the DataIntegrityChecksum is
present.

This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

… …

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 137

Type Response data (continued)

uint8 Data [N-1]

The last byte of the current chunk of data. Shall be omitted if only the DataIntegrityChecksum is
present.

This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

uint32 DataIntegrityChecksum

32-bit CRC for the entire block of data (all parts concatenated together, excluding this checksum).
Shall be omitted for non-final chunks (TransferFlag ≠ END or START_AND_END) in the transfer or
for aborted transfers. The DataIntegrityChecksum shall not be split across multiple chunks. If
appending the DataIntegrityChecksum would cause this response message to exceed the
negotiated maximum transfer chunk size (clause 11.2), the DataIntegrityChecksum shall be sent as
the only data in another chunk.

For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11
+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the
integrity checksum computation. The CRC computation involves processing a byte at a time with the
least significant bit first.

14 Additional Information 2922

14.1 RDE Multipart transfers 2923

The various commands defined in clauses 10 and 12 support bulk transfers via the RDEMultipartSend 2924
and RDEMultipartReceive commands defined in clause 13. The RDEMultipartSend and 2925
RDEMultipartReceive commands use flags and data transfer handles to perform multipart transfers. A 2926
data transfer handle uniquely identifies the next part of the transfer. The data transfer handle values are 2927
implementation specific. For example, an implementation can use memory addresses or sequence 2928
numbers as data transfer handles. 2929

NOTE If both the RDE Device and the MC support use of PLDM common multipart transfers, those versions of the 2930
commands shall be used in lieu of the RDE versions. The following notes apply: 2931

• All transfers shall consist of a single portion, beginning at offset zero and transferring the entire buffer 2932

• The TransferContext field, which is defined in DSP0240 to be protocol specific, shall be supplied with the 2933
OperationID that would have been used with an RDE version of a multipart transfer 2934

• Handling of aborted transfers, which is defined in DSP0240 to be protocol specific, shall follow the notes 2935
provided within this specification for multipart transfers. 2936

14.1.1 Flag usage for RDEMultipartSend 2937

The following list shows some requirements for using TransferOperationFlag, TransferFlag, and 2938
DataTransferHandle in RDEMultipartSend data transfers: 2939

• To prepare a large data send for use in an RDE command, a DataTransferHandle shall be sent 2940
by the MC in the request message of the RDEOperationInit command. 2941

• To reflect a data transfer (re)initiated with a RDEMultipartSend command, the 2942
TransferOperation shall be set to XFER_FIRST_PART in the response message. 2943

• For transferring a part after the first part of data, the TransferOperation shall be set to 2944
XFER_NEXT_PART and the DataTransferHandle shall be set to the NextDataTransferHandle 2945
that was obtained in the request for the previous RDEMultipartSend command for this data 2946
transfer. 2947

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

138 Published Version 1.1.0

• The TransferFlag specified in the request for a RDEMultipartSend command has the following 2948
meanings: 2949

– START, which is the first part of the data transfer 2950

– MIDDLE, which is neither the first nor the last part of the data transfer 2951

– END, which is the last part of the data transfer 2952

– START_AND_END, which is the first and the last part of the data transfer. In this case, the 2953
transfer consists of a single chunk 2954

• For a RDEMultipartSend, the requester shall consider a data transfer complete when it receives 2955
a success CompletionCode in the response to a request in which the TransferFlag was set to 2956
End or StartAndEnd. 2957

14.1.2 Flag usage for RDEMultipartReceive 2958

The following list shows some requirements for using TransferOperationFlag, TransferFlag, and 2959
DataTransferHandle in RDEMultipartReceive data transfers: 2960

• To prepare a large data transfer receive for use in an RDE command, a DataTransferHandle 2961
shall be sent by the RDE Device in the response message to the RDEOperationInit, 2962
SupplyCustomRequestParameters, or RDEOperationStatus command after an Operation has 2963
finished execution and results are ready for pick-up. 2964

• To initiate a data transfer with a RDEMultipartReceive command, the TransferOperation shall 2965
be set to XFER_FIRST_PART in the request message. 2966

• For transferring a part after the first part of data, the TransferOperation shall be set to 2967
XFER_NEXT_PART and the DataTransferHandle shall be set to the NextDataTransferHandle 2968
that was obtained in the response to the previous RDEMultipartReceive command for this data 2969
transfer. 2970

• The TransferFlag specified in the response of a RDEMultipartReceive command has the 2971
following meanings: 2972

– START, which is the first part of the data transfer 2973

– MIDDLE, which is neither the first nor the last part of the data transfer 2974

– END, which is the last part of the data transfer 2975

– START_AND_END, which is the first and the last part of the data transfer 2976

• For a RDEMultipartReceive, the requester and responder shall consider a data transfer 2977
complete when the TransferFlag in the response is set to END or START_AND_END. After this 2978
point, the transfer may not be restarted without repeating the invoking commands, such as 2979
GetSchemaDictionary for a multipart transfer of a dictionary. 2980

14.1.3 RDE Multipart transfer examples 2981

The following examples show how the multipart transfers can be performed using the generic mechanism 2982
defined in the commands. 2983

In the first example, the MC sends data to the RDE Device as part of a Redfish Update operation. 2984
Following the RDEOperationInit command sequence, the MC effects the transfer via a series of 2985
RDEMultipartSend commands. Figure 17 shows the flow of the data transfer. 2986

In the second example, the MC retrieves the dictionary for a schema. The request is initiated via the 2987
GetSchemaDictionary command and then effected via one or more RDEMultipartReceive commands. 2988

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 139

Figure 18 shows the flow of the data transfer. 2989

RDEOperationInit Request
(OperationID = 0x12345678, TaskFlags & 2 = 2, SendDataTransferHandle = 0xAABBCCDD)

RDEOperationInit Response
(CompletionCode = SUCCESS)

RDEMultipartSend Request
(DataTransferHandle = 0xAABBCCDD, NextDataTransferHandle = 0x00000001, OperationID = 0x12345678,

TransferFlag = START, Data = 1st chunk)

RDEMultipartSend Response
(CompletionCode = SUCCESS, TransferOperation = XFER_NEXT_PART)

RDEMultipartSend Request
(DataTransferHandle= 0x00000001, NextDataTransferHandle = 0x00000002, OperationID = 0x12345678,

TransferFlag = MIDDLE, Data = 2nd chunk)

RDEMultiPartSend Response
(CompletionCode = SUCCESS, TransferOperation = XFER_NEXT_PART)

RDEMultipartSend Request
(DataTransferHandle= 0x00000002, NextDataTransferHandle = 0x00000000, OperationID = 0x12345678,

TransferFlag = END, Data = 3rd chunk)

RDEMultipartSend Response
(CompletionCode = SUCCESS, TransferOperation = XFER_COMPLETE)

MC RDE Device

 2990

Figure 17 – RDEMultipartSend example 2991

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

140 Published Version 1.1.0

GetSchemaDictionary Request
(ResourceID, schemaClass = MAJOR)

GetSchemaDictionary Response
(CompletionCode = SUCCESS, TransferHandle = 0x4A656E45)

RDEMultipartReceive Request
(DataTransferHandle = 0x4A656E45, OperationID = 0x0000, TransferOperation = XFER_FIRST_PART)

RDEMultipartReceive Response
(CompletionCode = SUCCESS, TransferFlag = START, NextDataTransferHandle = 0x08675309,

Data = 1st chunk)

RDEMultipartReceive Request
(DataTransferHandle= 0x08675309, OperationID = 0x0000, TransferOperation = XFER_NEXT_PART)

RDEMultiPartReceive Response
(CompletionCode = SUCCESS, TransferFlag = END, NextDataTransferHandle = 0x00000000,

Data = 2nd chunk)

MC RDE Device

 2992

Figure 18 – RDEMultipartReceive example 2993

14.2 Implementation notes 2994

Several implementation notes apply to manufacturers of RDE Devices or of management controllers. 2995

14.2.1 Schema updates 2996

If one or more schemas for an RDE Device are updated, the RDE Device may communicate this to the 2997
MC by triggering an event for the affected PDRs. When the MC detects a PDR update, it shall reread the 2998
affected PDRs. 2999

14.2.2 Storage of dictionaries 3000

It is not necessary for the MC to maintain all dictionaries in memory at any given time. It may flush 3001
dictionaries at will since they can be retrieved on demand from the RDE Devices via the 3002
GetSchemaDictionary command (clause 11.2). However, if the MC has to retrieve a dictionary “on 3003
demand” to support a Redfish query, this will likely incur a performance delay in responding to the client. 3004
For MCs with highly limited memory that cannot retain all the dictionaries they need to support, care must 3005
thus be exercised in the runtime selection of dictionaries to evict. Such caching considerations are 3006
outside the scope of this specification. 3007

14.2.3 Dictionaries for related schemas 3008

MCs must not assume that sibling instances of Redfish Resource PDRs in a hierarchy (such as collection 3009
members) use the same version of a schema. They could, for example, correspond to individual elements 3010
from an array of hardware (such as a disk array) built by separate manufacturers and supporting different 3011
versions of a major schema or with different OEM extensions to it. However, at such time as the MC has 3012
verified that two siblings do in fact use the same schemas, there is no reason to store multiple copies of 3013
the dictionary corresponding to that schema. Of course, sibling instances of resources stored within the 3014

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 141

same PDR share all dictionaries; it is only with instances of resources from separate PDRs that this 3015
applies. 3016

Similarly, it is expected to be fairly commonplace that the system managed by an MC could have multiple 3017
RDE Devices of the same class, such as multiple network adapters or multiple RAID array controllers. In 3018
such cases, however, there is no guarantee that each such RDE Device will support the same version of 3019
any given Redfish schema. 3020

To handle such cases, MCs have two choices. The most straightforward approach is to simply maintain 3021
each dictionary associated with the RDE Device it came from. This of course has space implications. A 3022
more practical approach is to store one copy of the dictionary for each version of the schema and then 3023
keep track of which version of the dictionary to use with which RDE Device. Because RDE Devices may 3024
support only subsets of the properties in resources, care must be taken when employing this approach to 3025
ensure that all supported properties are covered in the dictionaries selected. This may be done by 3026
merging dictionaries at runtime, though details of how to merge dictionaries are out of scope for this 3027
specification. In particular, OEM sections of dictionaries are not generally able to be merged as the 3028
sequence numbers for the names of the different OEM extensions themselves are likely to overlap. 3029

However, an even better approach is available. In Redfish schemas, so long as only the minor and 3030
release version numbers change, schemas are required to be fully backward compatible with earlier 3031
revisions. Individual properties and enumeration values may be added but never removed. The MC can 3032
therefore leverage this to retain only the newest instance of dictionary for each major version supported 3033
by RDE Devices. Again, the fact that RDE Devices may support only subsets of the properties in a 3034
resource means that care must be taken to ensure dictionary support for all the properties used across all 3035
RDE Devices that implement any given schema. 3036

14.2.4 [MC] HTTP/HTTPS POST Operations 3037

As specified in DSP0266, a Redfish POST Operation can represent either a Create Operation or an 3038
Action. To distinguish between these cases, the MC may examine the URI target supplied with the 3039
operation. If it points to a collection, the MC may assume that the Operation is a Create; if it points to an 3040
action, the MC may assume the Operation is an Action. Alternatively, the MC may presuppose that the 3041
POST is a Create Operation and if it receives an ERROR_WRONG_LOCATION_TYPE error code from 3042
the RDE Device, retry the Operation as an Action. This second approach reduces the amount of URI 3043
inspection the MC has to perform in order to proxy the Operation at the cost of a small delay in 3044
completion time for the Action case. (The supposition that POSTs correspond to Create Operations could 3045
of course be reversed, but it is expected that Actions will be much rarer than Create Operations.) 3046
Implementers should be aware that such delays could cause a client-side timeout. 3047

Another clue that could be used to differentiate between POSTs intended as create operations vs POSTs 3048
intended as actions would be trial encodings of supplied payload data. If there is no payload data, then 3049
the request is either in error or an action. In this case, the payload should be encoded with the dictionary 3050
for the major schema associated with target resource. On the other hand, if the payload is intended for a 3051
create operation, the correct dictionary to use would be the collection member dictionary, which may be 3052
retrieved via the GetSchemaDictionary command (clause 11.2), specifying 3053
COLLECTION_MEMBER_TYPE as the dictionary to retrieve. 3054

14.2.4.1 Support for Actions 3055

When a Redfish client issues a Redfish Operation for an Action, the URI target for the Action will be a 3056
POST of the form /redfish/v1/{path to root of RDE Device component}/{path to RDE Device owned 3057
resource}/Actions/schema_name.action_name. To process this, the MC may translate {path to root of 3058
RDE Device component} and {path to RDE Device owned resource} normally to identify the PDR against 3059
which the Operation should be executed. (If the URI is not in this format, this is another indication that the 3060
POST operation is probably a CREATE.) After it has performed this step, the MC can then check its PDR 3061
hierarchy to find the Redfish Action PDR containing an action named schema_name.action_name. If it 3062

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

142 Published Version 1.1.0

doesn’t find one, the MC shall respond with HTTP status code 404, Not Found and stop processing the 3063
Operation. 3064

After the correct Action is located, the MC can translate any request parameters supplied with the Action. 3065
To do so, it should look within the dictionary at the point beginning with the named action, and then 3066
navigate into the Parameters set under the action. From there, standard encoding rules apply. When 3067
supplying a locator for the Action to the RDE Device as part of the RDEOperationInit command, the MC 3068
shall not include the Parameters set as one of the sequence numbers comprising the locator; rather, it 3069
shall stop with the sequence number for the property corresponding to the Action’s name. 3070

After the Action is complete, it may contain result parameters. If present, definitions for these will be found 3071
in the dictionary in a ReturnType set parallel to the Parameters set that contained any request 3072
parameters. If an Action does not contain explicit result parameters, the ReturnType set will generally not 3073
be present in the dictionary. The structure of the ReturnType set mirrors exactly that of the Parameters 3074
set. 3075

14.2.5 Consistency checking of read Operations 3076

Because the collection of data contained within a schema cannot generally be read atomically by RDE 3077
Devices, issues of consistency arise. In particular, if the RDE Device reads some of the data, performs an 3078
update, and then reads more data, there is no guarantee that data read in the separate “chunks” will be 3079
mutually consistent. While the level of risk that this could pose for a client consumer of the data may vary, 3080
the threat will not. The problem is exacerbated when reads must be performed across multiple resources 3081
in order to satisfy a client request: The window of opportunity for a write to slip in between distinct 3082
resource reads is much larger than the window between reads of individual pieces of data in a single 3083
resource. 3084

To resolve the threat of inconsistency, MCs should utilize a technique known as consistency checking. 3085
Before issuing a read, the MC should retrieve the ETag for the schema to be read, using the 3086
GetResourceETag command (clause 11.5). For a read that spans multiple resources, the global ETag 3087
should be read instead, by supplying 0xFFFFFFFF for the ResourceID in the command. The MC should 3088
then proceed with all of the reads and then check the ETag again. If the ETag matches what was initially 3089
read, the MC may conclude that the read was consistent and return it to the client. Otherwise, the MC 3090
should retry. It is expected that consistency failures will be very rare; however, if after three attempts, the 3091
MC cannot obtain a consistent read, it should report error 500, Internal Server Error to the client. 3092

NOTE For reads that only span a single resource, if the RDE Device asserts the atomic_resource_read bit in the 3093
DeviceCapabilitiesFlags response message to the NegotiateRedfishParameters command (clause 11.1), the MC 3094
may skip consistency checking. 3095

14.2.6 [MC] Placement of RDE Device resources in the outward-facing Redfish 3096

URI hierarchy 3097

In the Redfish Resource PDRs and Redfish Entity Association PDRs that an RDE Device presents, there 3098
will normally be one or a limited number that reflect EXTERNAL (0x0000) as their ContainingResourceID. 3099
These resources need to be integrated into the outward-facing Redfish URI hierarchy. Resources that do 3100
not reflect EXTERNAL as their ContainingResourceID do not need to be placed by the MC; it is the RDE 3101
Device’s responsibility to make sure that they are accessible via some chain of Redfish Resource and 3102
Redfish Entity Association PDRs (including PDRs chained via @link properties) that ultimately link to 3103
EXTERNAL. 3104

When retrieving these PDRs for RDE Device components, the MC should read the 3105
ProposedContainingResourceName from the PDR. While following this recommendation is not 3106
mandatory, the MC should use it to inform a placement decision. If the MC does not follow the placement 3107
recommendation, it should read the MajorSchemaName field to identify the type of RDE Device they 3108
correspond to. Within the canon of standard Redfish schemas, there are comparatively few that reside at 3109
the top level, and each has a well-defined place it should appear within the hierarchy. The MC should 3110

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 143

thus make a simple map of which top-level schema types map to which places in the hierarchy and use 3111
this to place RDE Devices. In making these placement decisions, the MC should take information about 3112
the hardware platform topology into account so as to best reflect the overall Redfish system. 3113

It may happen that the MC encounters a schema it does not recognize. This can occur, for example, if a 3114
new schema type is standardized after the MC firmware is built. The handling of such cases is up to the 3115
MC. One possibility would be to place the schema in the OEM section under the most appropriate 3116
subobject. For an unknown DMTF standard schema, this should be the OEM/DMTF object. (To tell that a 3117
schema is DMTF standard, the MC may retrieve the published URI via GetSchemaURI command of 3118
clause 11.4, download the schema, and inspect the schema, namespace, or other content.) 3119

Naturally, wherever the MC places the RDE Device component, it shall add a link to the RDE Device 3120
component in the JSON retrieved by a client from the enclosing location. 3121

14.2.7 LogEntry and LogEntryCollection resources 3122

RDE Devices that support the LogEntry and LogEntryCollection resources must be aware that large 3123
volumes of LogEntries can overwhelm the 16 bit ResourceID space available for identifying Redfish 3124
Resource PDRs. To handle this case, it is recommended that RDE Devices provide a PDR for the 3125
LogEntryCollection but do NOT provide PDRs for the individual LogEntry instances. Instead, RDE 3126
Devices that support these schemas should also support the link expansion query parameter (see $levels 3127
in DSP0266 and the LinkExpand parameter from SupplyCustomRequestParameters in clause 12.2). This 3128
means that they should fill out the related resource links in the “Members” section of the response with 3129
bejResourceLinkExpansion data in which the encoded ResourceID is set to zero to ensure that the MC 3130
gets the COLLECTION_MEMBER_TYPE dictionary from the LogEntryCollection. 3131

14.2.8 On-demand pagination 3132

In Redfish, certain read operations may produce a very large amount of data. For example, reading a 3133
collection with many members will produce output with size proportional to the number of members. 3134
Rather than overload clients with a huge transfer of data, Redfish Devices may paginate it into chunks 3135
and provide one page at a time with an @odata.nextlink annotation giving a URI from which to retrieve 3136
the next piece. 3137

RDE supports the same pagination approach. It is entirely at the RDE Device’s discretion whether to 3138
paginate and where to draw pagination boundaries. When the RDE Device wishes to paginate, it shall 3139
insert an @odata.nextlink annotation, using a deferred binding pagination reference (see 3140
$LINK.PDR<resource-ID>.PAGE<pagination-offset>% in clause 8.3), filling in the next page number for 3141
the data being returned. When the MC decodes this deferred binding, it shall create a temporary URI for 3142
the pagination and expose this pagination URI in the decoded JSON response it sends back to the client. 3143
Naturally, the encoded pagination URI must be decodable to extract the page number. Finally, when the 3144
client attempts a read from the pagination URI, the MC shall extract out the page number and send it to 3145
the RDE Device via the PaginationOffset field in the request message for the 3146
SupplyCustomRequestParameters command (clause 12.2). 3147

14.2.9 Considerations for Redfish clients 3148

No changes to behavior are required of Redfish clients in order to interact with BEJ-based RDE Devices; 3149
the details of providing them to the client are completely transparent from the client perspective. In fact, a 3150
fundamental design goal of this specification is that it should be impossible for a client to tell whether a 3151
Redfish message was ultimately serviced by an RDE Device that operates in JSON over HTTP/HTTPS or 3152
BEJ over PLDM. 3153

 3154

Platform Level Data Model (PLDM) for Redfish Device Enablement DSP0218

144 Published Version 1.1.0

14.2.10 OriginOfCondition in Redfish events 3155

The OriginOfCondition field in the Redfish event schema contains a link reference to a Redfish resource 3156
associated with a Redfish event. In typical use cases, resource data is read upon receiving the event to 3157
determine the resource state when the event transpired. This can happen either explicitly, from the client 3158
performing a read on the OriginOfCondition resource, or implicitly, if IncludeOriginOfCondition is set in the 3159
EventDestination when the client registered for Redfish events. 3160

RDE version 1.1 does not provide support for a device to populate the OriginOfCondition field with full 3161
resource data. However, an MC that wishes to minimize the timing window for the race condition may 3162
perform the appropriate read immediately upon receiving the Redfish event. 3163

14.2.11 [MC] Merging dictionaries with OEM extensions 3164

When merging dictionaries, MCs should consider that OEM extensions to Redfish schemas are 3165
enumerated alphabetically. In particular, the root objects (sets) of extensions (which come immediately 3166
under “OEM” inside the root object of the host schema) are likely to have conflicting sequence numbers if 3167
different sets of extensions appear in two different dictionaries for a given host schema. 3168

Additionally, no attempt has been made in this specification to make registry dictionaries able to be 3169
merged. 3170

DSP0218 Platform Level Data Model (PLDM) for Redfish Device Enablement

Version 1.1.0 Published 145

ANNEX A 3171

(normative) 3172

 3173

Change log 3174

 3175

Version Date Description

1.0.0 2019-06-25

1.0.1 2019-12-09 Errata update

1.1.0 2021-02-11 • Added support for nested annotations

• Enhanced message registry support, including a new registry
dictionary, BEJ encoding

• Improved ability to identify OEM extensions to schemas

• Added support for PLDM common multipart transfers

 3176

	Ref_DMTF_DSP0248
	Ref_DMTF_DSP0222
	Ref_DMTF_DSP0266
	Ref_DMTF_DSP0236
	Ref_DMTF_DSP0240
	Ref_DMTF_DSP0241
	Ref_DMTF_DSP0245
	Ref_DMTF_DSP0267
	Ref_JSON
	Ref_IETF_RFC2781
	Ref_IETF_RFC4122
	Ref_IETF_RFC4646
	Ref_IETF_RFC7231
	Ref_IETF_RFC7232
	Ref_IETF_RFC7234
	RefISO_P2
	Ref_OData
	Ref_ITU_X690
	Term_Action
	Term_Annotation
	Term_Client
	Term_Collection
	Term_Device_Component
	Term_Dictionary
	Term_Discovery
	Term_Major_Schema
	Term_Member
	Term_Metadata
	Term_OData
	Term_OEM_Extension
	Term_Property
	Term_RDE_Device
	Term_RDE_Provider
	Term_RDE_Operation
	Term_Redfish_Operation
	Term_Registration
	Term_Resource
	Term_Task
	Term_Triggering_Command
	Term_Truncated
	Abbr_BEJ
	Abbr_JSON
	Abbr_RDE

