

 1

Document Number: DSP0212 2

Date: 2013-08-22 3

Version: 1.0.1 4

Filter Query Language 5

Document Type: Specification 6

Document Status: DMTF Standard 7

Document Language: en-US 8

 9

Filter Query Language DSP0212

2 DMTF Standard Version 1.0.1

Copyright notice 10

Copyright © 2012-2013 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 12
management and interoperability. Members and non-members may reproduce DMTF specifications and 13
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 14
time, the particular version and release date should always be noted. 15

Implementation of certain elements of this standard or proposed standard may be subject to third party 16
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 17
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 18
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 19
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 20
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 21
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 22
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 23
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 24
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 25
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 26
implementing the standard from any and all claims of infringement by a patent owner for such 27
implementations. 28

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 29
such patent may relate to or impact implementations of DMTF standards, visit 30
http://www.dmtf.org/about/policies/disclosures.php. 31

 32

http://www.dmtf.org/about/policies/disclosures.php

DSP0212 Filter Query Language

Version 1.0.1 DMTF Standard 3

CONTENTS 33

Foreword ... 4 34

Introduction.. 5 35

1 Scope .. 7 36

2 Normative references .. 7 37

3 Terms and definitions .. 7 38

4 Symbols and abbreviated terms .. 8 39

5 Filter Query Language ... 8 40
5.1 Identifying the Filter Query Language... 8 41
5.2 Filter queries ... 8 42

5.2.1 General .. 8 43
5.2.2 Encoding .. 9 44
5.2.3 Whitespace .. 9 45
5.2.4 Property comparison overview (informative) ... 9 46
5.2.5 Scalar value comparison ... 9 47
5.2.6 Array value comparison ... 10 48
5.2.7 Array operators (ANY and EVERY) ... 10 49
5.2.8 Pattern matching operator (LIKE) .. 10 50
5.2.9 Operator precedence ... 11 51

5.3 Grammar ... 11 52
5.3.1 Reserved words ... 11 53
5.3.2 FQL grammar ... 11 54

5.4 Examples .. 13 55

ANNEX A (informative) Change log .. 15 56

Bibliography .. 16 57

 58

Tables 59

Table 1 - Comparison operators for scalar values ... 10 60

 61

Filter Query Language DSP0212

4 DMTF Standard Version 1.0.1

Foreword 62

The Filter Query Language (DSP0212) was prepared by the DMTF Architecture Working Group. 63

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 64
management and interoperability. For information about the DMTF, see http://www.dmtf.org. 65

Acknowledgments 66

The DMTF acknowledges the following individuals for their contributions to this document: 67

 Jim Davis – WS, Inc. (Editor) 68

 George Ericson – EMC 69

 Andreas Maier – IBM 70

 Karl Schopmeyer – Inova Development 71

http://www.dmtf.org/

DSP0212 Filter Query Language

Version 1.0.1 DMTF Standard 5

Introduction 72

The information in this specification should be sufficient for a provider or consumer to be able to utilize the 73
Filter Query Language to filter CIM instances. 74

The target audience for this specification is implementers of the Filter Query Language. 75

Document conventions 76

Typographical conventions 77

The following typographical conventions are used in this document: 78

 Document titles are marked in italics. 79

 Important terms that are used for the first time are marked in italics. 80

 ABNF rules and FQL filter queries are in monospaced font. 81

ABNF usage conventions 82

Format definitions in this document are specified using ABNF (see RFC5234), with the following 83
deviations: 84

 Literal strings are to be interpreted as case-sensitive Unicode characters, as opposed to the 85
definition in RFC5234 that interprets literal strings as case-insensitive US-ASCII characters, 86
unless otherwise specified. 87

Experimental material 88

Experimental material has yet to receive sufficient review to satisfy the adoption requirements set forth by 89
the DMTF. Experimental material is included in this document as an aid to implementers who are 90
interested in likely future developments. Experimental material may change as implementation 91
experience is gained. It is likely that experimental material will be included in an upcoming revision of the 92
specification. Until that time, experimental material is purely informational. 93

The following typographical convention indicates experimental material: 94

EXPERIMENTAL 95

Experimental material appears here. 96

EXPERIMENTAL 97

In places where this typographical convention cannot be used (for example, tables or figures), the 98
"EXPERIMENTAL" label is used alone 99
 100

Filter Query Language DSP0212

6 DMTF Standard Version 1.0.1

 101

DSP0212 Filter Query Language

Version 1.0.1 DMTF Standard 7

Filter Query Language 102

1 Scope 103

The Filter Query Language provides a simple query language for filtering CIM instances. 104

2 Normative references 105

The following referenced documents are indispensable for the application of this document. For dated or 106
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 107
For references without a date or version, the latest published edition of the referenced document 108
(including any corrigenda or DMTF update versions) applies. 109

DMTF DSP0004, CIM Infrastructure Specification 2.7, 110
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf 111

DMTF DSP0207, WBEM URI Mapping 1.0, 112
http://www.dmtf.org/standards/published_documents/DSP0207_1.0.pdf 113

DMTF DSP1001, Management Profile Specification Usage Guide 1.1, 114
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf 115

IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, Jan. 2008, 116
http://www.ietf.org/rfc/rfc5234.txt 117

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 118
http://isotc.iso.org 119

3 Terms and definitions 120

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 121
are defined in this clause. 122

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), 123
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 124
in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term, 125
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 126
ISO/IEC Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional 127
alternatives shall be interpreted in their normal English meaning. 128

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as 129
described in ISO/IEC Directives, Part 2, Clause 5. 130

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 131
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 132
not contain normative content. Notes and examples are always informative elements. 133

The terms defined in DSP0004 apply to this document. The following additional terms are used in this 134
document. 135

3.1 136

filter query 137

an expression that can be applied to a CIM instance. See 5.2 for details. 138

http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf
http://www.dmtf.org/standards/published_documents/DSP0207_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0207_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
http://www.ietf.org/rfc/rfc5234.txt
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

Filter Query Language DSP0212

8 DMTF Standard Version 1.0.1

4 Symbols and abbreviated terms 139

The abbreviations defined in DSP0004 apply to this document. The following additional abbreviations are 140
used in this document. 141

4.1 142

CQL 143

CIM Query Language 144

4.2 145

FQL 146

Filter Query Language 147

4.3 148

URI 149

Uniform Resource Identifier 150

4.4 151

WBEM 152

Web Based Enterprise Management 153

5 Filter Query Language 154

The Filter Query Language (FQL) is designed to filter a set of CIM instances of a CIM class (including 155
subclasses) based on one or more property values of the class. 156

FQL has the following goals: 157

 Leverage the CIM Query Language (CQL) defined in DSP0202 wherever possible. 158

 The FQL was designed to be simple so that it can quickly be adopted by both implementers and 159
consumers. 160

 The FQL is not a fully functional query language; use the CIM Query Language defined in 161
DSP0202 if you need a full query language. 162

 No optional components, everything defined shall be supported. 163

5.1 Identifying the Filter Query Language 164

The Filter Query Language shall be identified by the string 165

 "DMTF:FQL" 166

following the convention used for other query languages defined by DMTF. 167

5.2 Filter queries 168

This subclause describes the FQL filter queries. 169

5.2.1 General 170

A filter query is an expression that can be evaluated on a CIM instance. The evaluation of a filter query on 171
an instance shall either succeed or fail. The evaluation of invalid filter queries shall fail. 172

DSP0212 Filter Query Language

Version 1.0.1 DMTF Standard 9

If the evaluation of a filter query on an instance succeeds, the filter query shall evaluate to a boolean 173
value indicating that the instance is either included (if True) or excluded (if False). Note that filter queries 174
that succeed cannot evaluate to Null. 175

If the evaluation of a filter query on an instance fails, the filter query shall not have an evaluation result. 176
Referencing specifications may define rules for the error handling of filter queries whose evaluation fails. 177

If a property does not exist in an instance that is being evaluated, the property shall be assumed to be 178
null. 179

5.2.2 Encoding 180

FQL filter queries may contain (unescaped) UCS characters (see UNICODE-CHAR rule in 5.3.2). The 181

encoding of FQL filter queries is not mandated in this specification. 182

For example, when an FQL filter query is transported in a communication protocol, the specification 183
defining the protocol will specify acceptable encodings; similarly for APIs. 184

5.2.3 Whitespace 185

In FQL, the following characters shall be considered whitespace: 186

 TAB (U+0009) 187

 CR (U+000D) 188

 LF (U+000A) 189

 SPACE (U+0020) 190

For the use of whitespace characters in FQL, see 5.3.2. 191

5.2.4 Property comparison overview (informative) 192

At its core, FQL filter queries specify property comparisons. Property comparisons result in a boolean 193
value and can be combined into the (boolean) evaluation result using boolean expressions, possibly 194
overriding precedence of the boolean operators using parenthesis. Expressions in FQL filter queries are 195
limited to combining the boolean results of property comparisons; there are no expressions in the 196
property comparisons. The property comparisons are simple operations such as equality, ordering, 197
pattern-matching or array related operations. For details, see the following subclauses. 198

5.2.5 Scalar value comparison 199

A scalar value comparison in a filter query compares two scalar values using equality operators ("=" and 200

"<>"), or ordering operators ("<", ">", "<=" and ">="). 201

For example, Started = True or Metric.Threshold > 25. 202

Table 1 defines the comparison operators that shall be supported for each data type of the property 203
involved in the scalar value comparison. Filter queries that specify operators other than those listed shall 204
be considered invalid. 205

The column "Literal syntax" defines the allowable literal syntax for each datatype, referring to the ABNF 206
rules defined in 5.3.2. Filter queries that specify literals that do not conform to these rules shall be 207
considered invalid. 208

Filter Query Language DSP0212

10 DMTF Standard Version 1.0.1

Table 1 - Comparison operators for scalar values 209

Property data type Literal syntax
Comparison
operators Remarks

boolean boolean-literal equality

integer (uint8 … uint64, sint8 … sint64) integer-literal equality, ordering

real (real32, real64) real-literal equality, ordering

string (string, char16) string-literal equality

string and uint8[] qualified as octet string
(OctetString qualifier)

octetstring-literal equality

string qualified as embedded object
(EmbeddedInstance or EmbeddedObject
qualifier)

N/A equality Not supported for
comparison with
literals

datetime datetime-literal equality, ordering

reference reference-literal equality

The semantic of the equality and ordering operators shall conform to DSP0004 subclause 5.2.6 210
"Comparison of Values" and for datetime typed properties in addition to DSP0004 subclause 5.2.4 211
"Datetime Type". 212

Note that DSP0004 permits the ordering operator on more data types than FQL does. 213

Only datatypes from the same row of Table 1 shall be compatible for scalar value comparison. A filter 214
query shall be considered invalid if the data types used in a scalar value comparison are not compatible 215
(that is, if they are from different rows of Table 1). 216

For example, comparing a boolean typed property to a string literal will be considered invalid. 217

5.2.6 Array value comparison 218

An array value comparison in a filter query compares two array values using equality operators ("=" and 219

"<>"). 220

For example, OperationalStates = {2,5}. 221

Array value comparison shall conform to the rules in DSP0004 subclause 5.2.6 "Comparison of Values". 222

5.2.7 Array operators (ANY and EVERY) 223

The array operators ANY and EVERY can be applied to array properties and the result is part of a scalar 224

value comparison. The ANY operator is used to determine if any of the elements of an array satisfies the 225

comparison. The EVERY operator is used to determine if all of the elements of an array satisfy the 226

comparison. The NOT operator can be used before an ANY or EVERY operator and reverses the semantics 227

of the following array operator. 228

For example, the scalar value comparison NOT EVERY Temperatures < MaxTemperature is True if 229

not every array entry of the Temperatures array property is less than the value of the MaxTemperature 230
scalar property. 231

5.2.8 Pattern matching operator (LIKE) 232

The LIKE operator can be used to match regular expression patterns. The regular expression syntax is 233

defined in DSP1001 Annex B. 234

DSP0212 Filter Query Language

Version 1.0.1 DMTF Standard 11

5.2.9 Operator precedence 235

The FQL operators shall have the following precedence, from highest to lowest: 236

1) NOT 237
2) array operators (ANY and EVERY) 238
3) equality and ordering operators and LIKE 239
4) AND 240
5) OR 241

5.3 Grammar 242

5.3.1 Reserved words 243

The following words are reserved for FQL. These reserved words shall be treated case insensitively. 244

AND = "AND" 245

ANY = "ANY" 246

EVERY = "EVERY" 247

FALSE = "FALSE" 248

LIKE = "LIKE" 249

NOT = "NOT" 250

NULL = "NULL" 251

OR = "OR" 252

TRUE = "TRUE" 253

5.3.2 FQL grammar 254

Valid FQL filter queries shall conform to the ABNF rule fql defined in this subclause and to all 255

constraints defined in this subclause (including constraints defined in ABNF comments). As a 256
consequence, FQL filter queries that do not satisfy these rules need to be considered invalid and need to 257
fail. 258

The following ABNF rules shall be interpreted to combine their terminals by implicitly inserting zero or 259
more (or between adjacent reserved words, one or more) of the whitespace characters defined in 5.2.3. 260

fql = fql-expr / "(" fql-expr ")" *(bool-op "(" fql-expr ")") 261

 262

fql-expr = property-comp *(bool-op property-comp) 263

 264

property-comp = 265

 array-property array-comp-op array-literal / 266
 array-property array-comp-op array-property / 267
 scalar-property scalar-comp-op scalar-literal / 268
 scalar-property scalar-comp-op scalar-property / 269
 array-property "[" index "]" scalar-comp-op scalar-literal / 270
 array-property "[" index "]" scalar-comp-op scalar-property / 271
 array-property "[" index "]" scalar-comp-op array-property "[" index "]" / 272
 array-op array-property scalar-comp-op scalar-literal / 273
 array-op array-property scalar-comp-op scalar-property / 274
 array-op array-property scalar-comp-op array-property "[" index "]" / 275
 scalar-property like-op like-pattern / 276
 array-property "[" index "]" like-op like-pattern / 277
 array-op array-property like-op like-pattern 278

 279

scalar-property = property ; property shall identify a scalar property 280

Filter Query Language DSP0212

12 DMTF Standard Version 1.0.1

 281

array-property = property ; property shall identify an array property 282

 283

index = unsigned-integer ; the array on which the index is used may be of 284
 ; any array type (Bag, Ordered, Indexed) 285

 286

like-pattern = like-literal 287

 288

property = property-name *("." property-name) 289

 290

; property-name is the name of a property in the CIM instance that is evaluated 291

 292

scalar-comp-op = "=" / "<>" / "<" / ">" / "<=" / ">=" 293

 294

array-comp-op = "=" / "<>" 295

 296

like-op = [NOT] LIKE 297

 298

bool-op = AND / OR 299

 300

array-op = [NOT] (ANY / EVERY) 301

 302

array-literal = "{" [scalar-literal *("," scalar-literal)] "}" 303

 304

scalar-literal = boolean-literal / string-literal / integer-literal / 305
 real-literal / datetime-literal / reference-literal / NULL 306

The following ABNF rules shall be interpreted to combine their terminals as stated, without implicitly 307
inserting any whitespace characters. 308

Some alphabetic characters shall be treated case insensitively, as stated. All other alphabetic characters 309
shall be treated case sensitively. 310

boolean-literal = TRUE / FALSE 311

 312

like-literal = string-literal ; the literal shall conform to the regular 313
 ; expression syntax defined in DSP1001, Annex B 314

 315

datetime-literal = string-literal ; the literal shall conform to the datetime format 316
 ; defined in DSP0004 317

 318

reference-literal = string-literal ; the literal shall conform to the untyped WBEM URI 319
 ; syntax defined in DSP0207 320

 321

string-literal = single-quote *(UNICODE-CHAR / char-escape) single-quote 322

 323

single-quote = "'" 324

 325

; UNICODE-CHAR is any UCS character from the ranges: 326
; U+0020 .. U+D7FF 327
; U+E000 .. U+FFFD 328
; U+10000 .. U+10FFFF 329
; Note that these UCS characters can be represented in XML without any escaping 330

DSP0212 Filter Query Language

Version 1.0.1 DMTF Standard 13

; (see W3C XML). 331
 332

char-escape = "\" ("\" / single-quote / "b" / "t" / "n" / "f" / "r" / 333
 "u" 4*6(hex-digit)) 334

 335

integer-literal = decimal-literal / binary-literal / hex-literal 336

 337

octetstring-literal = hex-literal 338

 339

decimal-literal = [sign] unsigned-integer 340

 341

unsigned-integer = 1*(decimal-digit) 342

 343

binary-literal = [sign] 1*(binary-digit) "B" ; case insensitive 344

 345

hex-literal = [sign] "0X" 1*(hex-digit hex-digit) ; case insensitive 346

 347

real-literal = [sign] exact-numeric ["E" decimal-value] ; case insensitive 348

 349

exact-numeric = unsigned-integer "." [unsigned-integer] / 350
 "." unsigned-integer 351

 352

sign = "+" / "-" 353

 354

binary-digit = "0" / "1" 355

 356

decimal-digit = binary-digit / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9" 357

 358

hex-digit = decimal-digit / "A" / "B" / "C" / "D" / "E" / "F" ; case insensitive 359

 360

5.4 Examples (Informative) 361

 Started = TRUE 362

evaluates to true when an instance has a boolean property named Started with the value TRUE. 363
 364

 Started = TRUE AND StartMode = 'Manual' 365

evaluates to true when an instance has a boolean property named Started with the value TRUE and 366
a string property named StartMode with a value of "Manual". 367
 368

 Threshold > 25 369

evaluates to true when an instance has a numeric property named Threshold that has a value 370
greater than 25. 371
 372

 CreationClassName NOT LIKE 'CIM_.*' 373

evaluates to true when an instance has a string property named CreationClassName that has a 374
value that does not start with "CIM_". 375
 376

 Dedicated = {3,14} 377

evaluates to true when an instance has a numeric array property named Dedicated that has the 378

Filter Query Language DSP0212

14 DMTF Standard Version 1.0.1

values 3,14 (in order). 379
 380

 ANY Dedicated = 3 AND ANY Dedicated = 14 381

evaluates to true when an instance has a numeric array property named Dedicated that has the 382
values 3 and14 (in any order) along with zero or more additional values. 383
 384

 ANY Dedicated = 3 AND NOT ANY Dedicated = 2 385

evaluates to true when an instance has a numeric array property named Dedicated that includes the 386
value 3 and does not include the value 2. 387
 388

 NOT EVERY Dedicated = 5 389

evaluates to true when an instance has a numeric array property named Dedicated that does not 390
have the value 5 for each value in the array. 391
 392

 (Started = true and startmode='manual') OR (Started=False and 393
Startmode='Automatic') 394

evaluates to true when an instance has either of the comparisons in parentheses evaluate to true. 395
 396

 RequestedState = EnabledState 397

evaluates to true if the property value of EnabledState equals the property value of RequestedState. 398
 399

 SystemTime = "20051003112233.000000+000" 400

evaluates to true if the SystemTime property value is "20051003112233.000000+000"; otherwise, 401
false. 402
 403

 InstallDate > "20051003112233.000000+000" 404

evaluates to true if the property InstallDate is later than "20051003112233.000000+000"; otherwise, 405
false. 406
 407

 SourceInstance.RequestedState = 5 408

evaluates to true if the embedded instance referenced by the SourceInstance property has a 409
property named RequestedState that has a value of 5. 410

DSP0212 Filter Query Language

Version 1.0.1 DMTF Standard 15

ANNEX A 411

(informative) 412

 413

 414

Change log 415

Version Date Description

1.0.0 2012-12-13

1.0.1 2013-08-22 Released as DMTF Standard with the following changes

1) Eliminate option to qualify a property by class name

2) Add option to do array compares with like

3) Clarified that property evaluation is against what is in
the instance being compared.

4) Added informative next to examples

5) Fixed example text to match syntax

6) Added example for embedded instance

Filter Query Language DSP0212

16 DMTF Standard Version 1.0.1

Bibliography 416

DMTF DSP0202, CIM Query Language Specification 1.0, 417
http://www.dmtf.org/standards/published_documents/DSP0202_1.0.pdf 418

W3C XML, Extensible Markup Language (XML) 1.0, 419
http://www.w3.org/TR/REC-xml/ 420

http://www.dmtf.org/standards/published_documents/DSP0202_1.0.pdf
http://www.w3.org/TR/REC-xml/

