

Document Number: DSP0202

Date: 2007-08-13

Version: 1.0.0

CIM Query Language Specification

Document Type: Specification

Document Status: Final

Document Language: E

CIM Query Language Specification DSP0202

Copyright notice

Copyright © 2007 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release date should always be
noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

2 Version 1.0.0

DSP0202 CIM Query Language Specification

CONTENTS

1 Scope ... 7
2 Normative References ... 7

2.1 Approved References.. 7
2.2 Other References .. 7

3 Terms and Definitions .. 8
3.1 conditional ... 8
3.2 mandatory ... 8
3.3 optional.. 8
3.4 unspecified .. 8
3.5 Common Information Model (CIM).. 8
3.6 CIM indications.. 8
3.7 CIM service ... 8
3.8 From-criteria ... 8
3.9 Query... 8
3.10 Search-condition... 8
3.11 Select list ... 8
3.12 WBEM protocol ... 8
3.13 WBEM service... 8
3.14 XML-Query .. 9

4 Symbols and Abbreviated Terms... 9
4.1 ABNF... 9
4.2 BNF ... 9
4.3 CIM.. 9
4.4 CQL ... 9
4.5 CQLT... 9
4.6 MOF... 9
4.7 SQL ... 9
4.8 WBEM ... 9
4.9 WQL .. 9

5 Requirements and Concepts ... 9
6 CIM Query Language (CQL).. 10

6.1 Identifying the CIM Query Language .. 11
6.2 Query Language Type Lattice... 11
6.3 Query Functional Description.. 12
6.4 Query Language Grammar ... 13

6.4.1 Reserved Words .. 13
6.4.2 Identifiers ... 14
6.4.3 Class Paths.. 14
6.4.4 Numeric Literals ... 14
6.4.5 String Literals ... 15
6.4.6 Expressions ... 16
6.4.7 Select List .. 21
6.4.8 From Criteria .. 22
6.4.9 Select Statement.. 22

7 CIM Query Language Considerations.. 23
7.1 Considerations of the Constructs in the BNF.. 23

7.1.1 Property Identification .. 23
7.1.2 Arrays... 24
7.1.3 Embedded Objects .. 24
7.1.4 Symbolic Constants ... 24
7.1.5 Computation and Types... 25
7.1.6 Comparisons.. 25

Version 1.0.0 3

CIM Query Language Specification DSP0202

7.1.7 Comparisons of Array and Scalar.. 26
7.2 Query Language Functions... 27

7.2.1 Numeric Functions... 27
7.2.2 String Functions... 28
7.2.3 Instance Functions... 28
7.2.4 Path Functions... 28
7.2.5 Datetime Functions.. 29

7.3 Query Considerations.. 29
7.4 Query Errors.. 30

Annex A Examples (Informative) .. 31
A.1 Information Gathering Examples .. 31
A.2 Event Detection Examples.. 36
A.3 Policy Examples.. 37

Annex B CQL BNF (normative)... 39
Annex C Regular Expressions (normative)... 40

C.1 Basic Like Regular Expressions ... 40
C.2 Full Like Extended Regular Expressions.. 40

Annex D Datetime Operations and BNF (normative).. 41
D.1 Datetime Operations... 41
D.2 Datetime BNF (Normative) ... 44

Annex E Additional Query Language Features (normative) ... 46
E.1 Simple Join ... 46
E.2 Complex Join .. 46
E.3 Subquery... 46
E.4 Result Set Operations... 47
E.5 Extended Select List ... 48
E.6 Embedded Properties ... 48
E.7 Aggregations... 49
E.8 Regular Expression Like... 49
E.9 Array Range.. 50
E.10 Satisfies Array... 51
E.11 Foreign Namespace Support.. 51
E.12 Arithmetic Expression ... 51
E.13 Full Unicode .. 52
E.14 Conversion Utilities ... 52
E.15 Property Scope ... 52

Annex F CIM Query Template Language (normative).. 53
7.5 CQLT Examples .. 54

Annex G Acknowledgements(informative).. 55
Annex H Bibliography (informative) .. 55
Annex I Change Log (informative) .. 57

Tables

Table 1 – NOT Expression.. 19
Table 2 – AND Expression.. 20
Table 3 – OR Expression.. 20

4 Version 1.0.0

DSP0202 CIM Query Language Specification

Foreword

The CIM Query Language Specification (DSP0202) was prepared by the DMTF WBEM Infrastructure &
Protocols Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability.

Version 1.0.0 5

CIM Query Language Specification DSP0202

6 Version 1.0.0

Introduction

Common Information Model (CIM) and Web-Based Enterprise Management (WBEM) support a query
mechanism that is used to select sets of properties from CIM object instances. Query support is available
in some operations defined by the CIM Operations over HTTP Specification (DSP0200) and some CIM
classes within the CIM Event Model v2.14 and CIM Policy Model v2.14. Query definitions allow a WBEM
client to specify the nature and the number of instances that are selected and what information is returned
from those instances. This enables a WBEM-managed environment to place less burden on the network
infrastructure. The precise mechanics for delivering query requests and receiving query results are
specified as a part DSP0200.

A CIM service implements a Query Engine to parse the query and evaluate its results. Parsing enables
the server to understand the query sufficiently to determine where it should be processed (even if the
query is executed by some other process acting as a data provider for the server). The Query Language
is divided into a base level of functionality and a number of optional features, which determine the
complexity of the syntax and semantics. These features enable CIM service implementations, especially
in simple or resource-sensitive installations, to support a query interpreter that best suits the needs of
clients while also taking the capabilities of the server into account.

CIM implementations that support query may also support a query template mechanism. A query
template can be used to model a generic query and can be processed into a valid query. An optional pre-
processing facility may be implemented to convert a valid query template into a valid query string. This
feature allows for the writer of a query template to provide a model for a query but defer the decision on
specific query elements to a processing point further along. It is important to note that the query template
language can be used to support the query engine, but the query template language is not part of the
formal query language itself.

The CIM query design is based on concepts from both the ISO/IEC Structured Query Language (SQL-92)
and the W3C XML Query. Basic understanding of the use of relational databases is required. However,
specific knowledge of these other works is not required in order to understand the CIM Query Language.

DSP0202 CIM Query Language Specification

CIM Query Language Specification

1 Scope
The DMTF Common Information Model (CIM) uses a basic object-oriented structure and
conceptualization techniques in its approach to managing hardware, software, systems, and networks.
This approach provides a formal consistent model that enables cooperative development of an object-
oriented schema across multiple organizations and problem domains.

This document describes a query language used to extract data from a CIM-based management
infrastructure.

2 Normative References
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.1 Approved References

DMTF, DSP0200, CIM Operations over HTTP Specification v1.2, 2003.

DMTF, DSP0201, Specification for the Representation of CIM in XML, v2.2 2007.

DMTF, CIM Event Model v2.14 , 2006.

DMTF, CIM Policy Model v2.14 , 2006.

DMTF DSP0004, CIM Infrastructure Specification v2.3.0, 2005.

DMTF DSP0207, WBEM URI Specification v1.0, 2006.

2.2 Other References

ISO/IEC 9075:1992, Database Language SQL, July 30, 1992 (see http://www.iso.org for the latest
version).

W3C, XML Query (XQuery), 2001.

IETF, RFC 2234, Augmented BNF for Syntax Specifications: ABNF, 1997.

IETF, RFC 3629, UTF-8, a transformation format of ISO 10646, 2003.

IETF, RFC 1034, Domain Names – Concepts and Facilities, 1987.

IETF, RFC 1123, Requirements for Internet Hosts – Application and Support, 1989.

Unicode, Inc., Unicode Technical Standard #10: Unicode Collation Algorithm, 2006.

ISO/IEC 14651, Information Technology – International string ordering and comparison – Method for
comparing character strings and description of the common template tailorable ordering, 2000.

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, Fifth edition,
2004.

Version 1.0.0 7

http://www.dmtf.org/standards/published_documents/DSP200.html
http://www.dmtf.org/standards/published_documents/DSP201.html
http://www.dmtf.org/standards/cim/cim_schema_v214
http://www.dmtf.org/standards/cim/cim_schema_v214
http://www.dmtf.org/standards/published_documents/DSP0004V2.3_final.pdf
http://www.dmtf.org/standards/published_documents/DSP0207.pdf
http://www.iso.org/
http://www.iso.org/
http://www.w3.org/XML/Query
http://www.faqs.org/rfcs/rfc2234.html
http://www.ietf.org/rfc/rfc3629.txt?number=3629
http://www.ietf.org/rfc/rfc1034.txt?number=1034
http://www.ietf.org/rfc/rfc1123.txt?number=1123
http://www.unicode.org/unicode/reports/tr10/
http://isotc.iso.org/livelink/livelink.exe/4230517/ISO_IEC_Directives__Part_2__Rules_for_the_structure_and_drafting_of_International_Standards__2004__5th_edition___pdf_format_.pdf?func=doc.Fetch&nodeid=4230517

3 Terms and Definitions
The terms, definitions, and constraints on terms of ISO/IEC Directives, Part 2 apply to this document. In
particular, the constraints on the use of the words shall, shall not, must, should, should not, may, need
not, possible, impossible, can, and cannot apply to this document.

For the purposes of this document, the following additional terms and definitions apply.

3.1 conditional
Indicates requirements to be followed strictly in order to conform to the document when the specified
conditions are met

3.2 mandatory
Indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.3 optional
Indicates a course of action permissible within the limits of the document

3.4 unspecified
Indicates that this profile does not define any constraints for the referenced CIM element or operation

3.5 Common Information Model (CIM)
An object-oriented definition of a managed enterprise or Internet environment

3.6 CIM indications
A CIM class hierarchy, starting at CIM_Indication, which defines the data in various types of
management notifications

3.7 CIM service
A service that provides access to CIM object instances

3.8 From-criteria
A definition of the range of data over which a query is conducted

3.9 Query
The act of asking for specific data; for the purposes of this document, a query specifies the range of data
of interest (the from-criteria), the conditions under which data should be returned in the query result
(the search-condition), and the specific data to be returned (the select-list), as well as other
processing options

3.10 Search-condition
A specification of the criteria or conditions that select data to be returned in a query result

3.11 Select list
A definition of the specific data to be returned in a query result

3.12 WBEM protocol
A protocol specified by the DMTF for accessing a CIM service over the Internet (One of these is defined
by DSP0200)

3.13 WBEM service
A CIM service that supports WBEM protocol interfaces

8 Version 1.0.0

DSP0202 CIM Query Language Specification

3.14 XML-Query
An XML-based Query Language from W3C

4 Symbols and Abbreviated Terms
The following symbols and abbreviations are used in this document.

4.1 ABNF
Augmented Backus-Naur Form

4.2 BNF
Backus-Naur Form

4.3 CIM
Common Information Model

4.4 CQL
CIM Query Language

4.5 CQLT
CIM Query Template Language

4.6 MOF
Managed Object Format

4.7 SQL
Structured Query Language

4.8 WBEM
Web-Based Enterprise Management

4.9 WQL
WBEM Query Language

5 Requirements and Concepts
The CIM Query Language (CQL) has been exploited in the CIM Operations over HTTP Specification
(DSP0200), by the CIM Event Model v2.14, and by the CIM Policy Model v2.14. The language defines the
desired instance-level data ranging over a certain set of objects to be returned as the result of an
ExecQuery, OpenQueryInstances (see DSP0200, CIM Operations over HTTP Specification v1.3), CIM
operation. CQL also defines the conditions and data for Indications returned as a result of one of the
following events:

• subscription to CIM_IndicationFilter within the event model

• use of CIM_QueryCondition or CIM_MethodAction instances used within a
CIM_PolicySet

Query semantics shall include instance property projection (for example, a SQL SELECT clause) and a
range (for example, a SQL FROM clause) and may include predicate logic (for example, a SQL Where
clause). This support (defined specifically using the keywords Select-From-Where) was included in a
preliminary version of the CIM Query Language Specification, called the WBEM Query Language (WQL),
and implemented in various code bases. Although the preliminary specification was never released, it is

Version 1.0.0 9

http://foldoc.org/foldoc/?Backus-Naur+Form
http://foldoc.org/foldoc/?Backus-Naur+Form

important to maintain these keywords and concepts (unless a critical performance or operational error is
found), in order to prevent unnecessary code churn.

The instance property projection, which shall be supported as mentioned previously, is a mechanism to
select particular properties from a class to be included in a query response or Indication object. The
projection may include "static" entries that can be used for tagging the response or Indication object.
(These requirements are provided by the specific or array class-property-identifier and
select-string-literal constructs, respectively.) In addition, the CQL shall:

• Support the ability to project metadata, such as instance name and instance class into a
response. See 7.2.4 for descriptions of the OBJECTPATH() and CLASSPATH() methods,
respectively.

• Support the ability to query class versioning information (see the CLASSQUALIFIER production
in 6.4.6).

• Define and support a mechanism for querying class inheritance or hierarchy in a query
predicate (provided using the ISA operator).

• Support the ability to query all data types as well as the entries of an array, because CIM
defines arrays of simple data types as valid class properties.

Various other requirements for the query language have arisen over the last few years, as work on the
Event Model continued. Additional Event Model requirements are specific to Indication processing, but
they must be defined in the basic query language in order to have a consistent BNF and query engine.
These requirements are as follows:

• the ability to set a returned property value (such as an Indication Priority, which could be
overridden by a customer)

• the ability to specify a constant value set of properties to be returned

• Support for accessing property VALUES of an EMBEDDEDOBJECT

CQL is designed to operate on instances of one or more classes. Query operations on the schema are
not in the scope of CQL. However, referencing a certain set of class-level information such as class
names or qualifier VALUES is supported within the "Extended Select List" feature.

CQL shall support polymorphism. This means that if a query is issued against a base class, all derived
class instances will be considered as well. For instance, consider the following SELECT statement:

SELECT *
FROM CIM_Indication

This SELECT statement would match all instances of derived classes of CIM_Indication.

6 CIM Query Language (CQL)
In its simplest form, the CQL is a subset of SQL-92 with some extensions specific to CIM. It supports
queries specified as follows:

SELECT <select-list>
FROM <class-list>
WHERE <selection expression>

10 Version 1.0.0

DSP0202 CIM Query Language Specification

Where:

• A <select-list> is a comma-separated list of any of the following:

– CIM property names (optionally qualified by their class name) related to the individual
classes specified in the FROM clause. The asterisk (*) can be used to specify all the
properties of a class. The resultant column is named by the property name, but this may be
modified using the AS keyword followed by a new name.

– Literals, named through the AS keyword followed by a name.

– Function results, named through the AS keyword followed by a name.

• The <class-list> is a comma-separated list of class names.

• A <selection expression> specifies the criteria by which results are selected. It is limited to
relatively simple property comparisons.

Moving beyond the simple SELECT-FROM-WHERE format, the ORDER BY functionality of SQL is
added. Other capabilities of the language, unique to CIM, are as follows:

• the ability to process arrays through indices

• the ability to query the properties of embedded objects

• the ability to traverse associations (based on the VALUES of their REF properties)

Queries are used to define the operation of some CIM classes (for example, CIM_IndicationFilter,
CIM_MethodAction and CIM_QueryCondition). If using CIM operations, a client may issue a query
through the ExecQuery or OpenQueryInstances operations if these operations are supported.

CQL operates on instances of one or more class. Operations against the set of classes are not
supported. Some class-level information such as class names and qualifier VALUES are folded into the
instances.

6.1 Identifying the CIM Query Language

In order to ensure uniqueness, valid VALUES for query-language should conform to the following syntax:

<organizationId>":"<languageId>

<organizationId> shall not include a colon (:) and shall include a copyrighted, trademarked, or
otherwise unique name that is owned by the entity that has defined the query language. For DMTF-
defined query languages, the <organizationId> is "DMTF".

The <languageId> shall include a unique (in the context of the identified organization) name for the
query language.

Following this convention, the string "DMTF:CQL" identifies the CIM Query Language.

6.2 Query Language Type Lattice

Version 1.0.0 11

The CQL type system incorporates the type system of the CIM Infrastructure Specification v2.3.0
(DSP0004), but it also extends that type system as follows:

• For every class C, there is an "object of C" type, whose VALUES may be either

– instances of C (including instances of any subclasses of C)

– the class C itself, or one of C's subclasses

NOTE: Classes arise as CQL VALUES only when they appear as embedded objects, and that support for
embedded objects is an optional feature of CQL. CQL implementations that do not support embedded
objects may consider the VALUES for "object of C" to be limited to instances of C (including instances of
any subclasses of C).

• The "object of C" types recapitulate the CIM class hierarchy, in that if C1 is a superclass of C2
then "object of C1" is a supertype of "object of C2".

• For every class C, there is an "object" type that is a supertype of "object of C" type.

• For every class C, there is a "reference" type that is a supertype of "C REF" type.

• There is a "boolean" type.

• There is an "unsigned integer" type that is a supertype of uint8, uint16, uint32, and
uint64.

• There is a "signed integer" type that is a supertype of sint8, sint16, sint32, and sint64.

• There is an "integer" type that is a supertype of unsigned integer and signed integer.

• There is a "real" type that is a supertype of real32 and real64.

• There is a "numeric" type that is a supertype of integer and real.

NOTE 1: CIM defines a "datetime" type, which contains either timestamp or interval VALUES . CIM
does not explicitly define timestamp and interval, but they are defined in Annex D. A timestamp with
the year field set to "0000" is interpreted as the year "1 BCE". A year field set to "0001" is interpreted
as the year "1 CE".

NOTE 2: There is a "string" type that is the CIM datatype string. It contains a sequence of Unicode
characters. The range of allowed code points is the same as the CIM datatype string. The encoding
form is defined by the specification that is using CQL.

NOTE 3: There is a "char16" type that is the CIM datatype char16. It contains one Unicode character.
The range of allowed code points is the same as the CIM datatype char16. The encoding form is
defined by the specification that is using CQL.

DSP0004 also defines a system of array types, which is similarly extended. In that system every non-
array type, T, in the CQL type lattice has a corresponding array type, array of T. The structure of the array
type lattice exactly matches that of the non-array types (that is, if T1 and T2 are non-array types, then
array of T1 is a supertype of array of T2 if and only if T1 is a supertype of T2).

CQL expressions are assigned types according to the rules described in the subsequent clauses. Any
CQL construct that has been assigned a particular type is said also to "have" all the supertypes of that
type. (For example, an expression that has been assigned type "object of CIM_ManagedElement" also
"has" type "object".)

6.3 Query Functional Description

CIM environments vary greatly in terms of processing capabilities and required functionality. CQL is
segmented based on functionality, with the assumption that a reduction in functionality is equivalent to
reduced processing requirements.

12 Version 1.0.0

DSP0202 CIM Query Language Specification

Section 6.4 defines the features required for CQL support. The subsections of Annex E each describe
the BNF for optional experimental CQL features.

Discovery of CQL features is enabled through the CQLFeatures enumeration property of the
QueryCapabilities class. Each optional feature shall be fully supported before it is advertised as being
supported.

If a query includes valid clauses or constructs that are not supported by the infrastructure, the error
CIM_ERR_INVALID_QUERY shall be returned on a request made through ExecQuery, the error
CIM_ERR_QUERY_FEATURE_NOT_SUPPORTED shall be returned on a request made through
OpenQueryInstances, or the error CIM_ERR_FAILED shall be returned for all other CIM operations.

If a query includes invalid clauses or constructs, the error CIM_ERR_INVALID_QUERY MUST be returned
on a request made through ExecQuery or OpenQueryInstances, or the error CIM_ERR_FAILED
must be returned for all other CIM operations.

6.4 Query Language Grammar

The CQL grammar in the following subclauses shall be supported by all implementations conforming to
this specification. The grammar is described using the BNF defined in 0. As much as possible, this
grammar is constructed to be LALR(1)-parsable.

6.4.1 Reserved Words

The following words are reserved for CQL. A property name that is a reserved word shall be scoped by
className, (see the E.15).

AND = "AND"
ANY = "ANY"
AS = "AS"
ASC = "ASC"
BY = "BY"
CLASSQUALIFIER = "CLASSQUALIFIER"
DESC = "DESC"
DISTINCT = "DISTINCT"
EVERY = "EVERY"
FALSE = "FALSE"
FIRST = "FIRST"
FROM = "FROM"
IN = "IN"
IS = "IS"
ISA = "ISA"
LIKE = "LIKE"
NOT = "NOT"
NULL = "NULL"
OR = “OR”
ORDER = "ORDER"
PROPERTYQUALIFIER = "PROPERTYQUALIFIER"
SATISFIES = "SATISFIES"
SELECT = "SELECT"
TRUE = "TRUE"

Version 1.0.0 13

WHERE = "WHERE"

6.4.2 Identifiers

The following productions define how identifiers are represented in CQL.

identifier-start = UNICODE-S1

identifier-subsequent = identifier-start | DECIMAL-DIGIT

identifier = identifier-start, *(identifier-subsequent)

6.4.3 Class Paths

The following productions define how class paths are represented in CQL.

class-name = identifier

The identifier shall be in accordance with the definition of className in DSP0004.

class-path = class-name

6.4.4 Numeric Literals

The following productions define how numeric literals are represented in CQL. The numeric literals are
intended to agree with the numeric literals of MOF, as defined in DSP0004.

sign = "+" | "-"

binary-digit = "0" | "1"

binary-value = [sign] 1*(binary-digit) "B"

Because ABNF is not case sensitive, this production defines both upper and lower case.

decimal-digit = binary-digit | "2" | "3" | "4" | "5" | "6" | "7" | "8" |
"9"

hex-digit = decimal-digit | "A" | "B" | "C" | "D" | "E" | "F"

Because ABNF is not case sensitive, this defines both upper and lower case.

hex-digit-value = [sign] "0X" 1*(hex-digit)

Because ABNF is not case sensitive, this defines both upper and lower case.

unsigned-integer = 1*(decimal-digit)

14 Version 1.0.0

DSP0202 CIM Query Language Specification

decimal-value = [sign] unsigned-integer

exact-numeric = unsigned-integer "." [unsigned-integer] | "." unsigned-
integer

real-value = [sign] exact-numeric ["E" decimal-value]

Because ABNF is not case sensitive, this defines both upper and lower case.

6.4.5 String Literals

The following productions define how string literals are represented in CQL.

single-quote = "'"

literal-string = single-quote, *(UNICODE-CHAR | char-escape , single-
quote)

The use of char-escape is mandatory for the non-printable Unicode characters that these
escape sequences represent.

char-escape = "\", ("\" | single-quote | "b" | "t" | "n" | "f" | "r" | (
"u", 4*4(hex-digit)) | ("U", 8*8(hex-digit)))

The escape characters directly following the initial backslash are case sensitive, even though
ABNF is not case sensitive. The meaning of these escape characters is as follows:

\\ – Backslash (U+005C)
\' – Single Quote (U+0027)
\b – Backspace (U+0008)
\t – Horizontal Tab (U+0009)
\n – Line Feed (U+000A)
\f – Form Feed (U+000C)
\r – Carriage Return (U+000D)
\u<hex> – One Unicode character, with <hex> being exactly 4 hexadecimal digits in any
lexical case, to be interpreted as a Unicode code point.
NOTE: The hexadecimal value is not in an encoded form, but it is given as a code point.

\U<hex> – One Unicode character, with <hex> being exactly 8 hexadecimal digits in any
lexical case, to be interpreted as a Unicode code point.
NOTE: The hexadecimal value is not in an encoded form, but it is given as a code point. The range
of allowed code points is \u0 to \u10FFFF, unless restricted by the range of the char16 CIM datatype.

NOTE: The escaping of double quotes is not necessary within a literal string, because only single quotes
can be used to delimit string literals. If the entire CQL string is put into an environment that uses double
quotes to delimit a string (for example, as a default value for properties in the MOF), then that environment
must define the escape rules for double quotes.

Version 1.0.0 15

6.4.6 Expressions

Expressions describe the calculation of VALUES used in the SELECT and WHERE clauses.

literal = literal-string

A literal-string has a string type.

| decimal-value

A decimal-value has an integer type.

| binary-value

A binary-value has an integer type.

| hex-digit-value

A hex-digit-value has an integer type.

| real-value

A real-value has real type.

| TRUE | FALSE

These literals have a Boolean type. Because ABNF is not case sensitive, this defines both
upper and lower case.

| "{" [[literal] *("," [literal])] "}"

All literals in the list shall be of the same type: (string, integer, real, or boolean).

arg-list = "*" | expr

This production defines the basic arguments that are allowed in a query language function.

chain = literal

The type of the literal is taken as the type for this production.

| "(" expr ")"

The type of the expr is taken as the type for this production.

| identifier

The identifier is interpreted as one of the following:

• If the identifier matches the name bound by an enclosing SATISFIES production
for array-compcomp, then the identifier is treated as a variable whose type is
determined by the SATISFIES expression. Variables bound by a SATISFIES
expression are described at that production.

16 Version 1.0.0

DSP0202 CIM Query Language Specification

• If the identifier matches a class alias that appears in a FROM criterion on a class
C, then the identifier refers to an instance of C and has a type of object of C.

• If the identifier matches the name of a class C that appears in a FROM criterion
without a class alias, then the identifier refers to an instance of C, and has a type
of object of C.

• If exactly one property defined by the CIM classes in the FROM clause, or their
superclasses, matches identifier, then the identifier refers to that property
(see 7.1.1), and the type of the identifier is determined by that property.

• For Basic Query, properties qualified with EMBEDDEDINSTANCE or EMBEDDEDOBJECT
shall be treated as type character string.

• If the "Embedded Properties" query feature is supported, then the ability to directly
access properties of the embedded instance shall be supported. Otherwise, the query
is invalid.

• If type is Array, then this form without a following " [" is equivalent to "Identifier
[*] ", and only "=" and "<>" comparisons are allowed.

| identifier "#" literal-string

identifier shall unambiguously identify a property (see 7.1.1). The type of the property is
taken as the type of this production. This production forms a symbolic constant based on the
VALUES and VALUEMAP qualifiers (see 7.1.4).

| chain "." identifier

chain shall have a type of object of C for some class C.

identifier shall be the name of a property. For details on the selection of the identified
property, see 7.1.1. The type of this production is the type of the property.

For Basic Query, chain is restricted to a single class name or class alias bound in the FROM
clause because Basic Query does not support extraction of properties from embedded objects.

| chain "." identifier "#" literal-string

chain, property-scope (if present), and identifier together identify a property, as
described in 7.1.1. This production forms a symbolic constant based on the VALUES and
VALUEMAP qualifiers (see 7.1.4). The type of this expression is the type of the identified
property.

For Basic Query, chain is restricted to a single class name or class alias bound in the FROM
clause because Basic Query does not support extraction of properties from embedded objects.

| chain "[" array-index-list "]"

chain shall have type array of T. If array-index-list comprises just a single expression, then
this production has type T; otherwise, the production has type array of T.

concat = chain

The type of the chain is taken as the type of this production.

| concat "||" chain

Version 1.0.0 17

concat and chain shall have a type of string or char16, and the result has string type.

factor = concat

The type of the concat is taken as the type of this production.

term = factor

The type of the factor is taken as the type of this production.

arith = term

The type of the term is taken as the type of this production.

value-symbol = "#" literal-string

This is a degenerate syntax for symbolic constants, which is used only for direct comparison;
type is determined by context. See productions for comp.comp-op = "=" | "<>" | "<" | "<=" | ">" |
">="arith-or-value-symbol

comp = arith

The type of the arith is taken as the type of this production.

| arith comp-op arith

This production has a Boolean type for all cases in which it applies. See 7.1.6 for a more
detailed description of comparisons.

If either arith is NULL, then the production evaluates to NULL.

| chain comp-op value-symbol

The left side shall be a property reference, and that property shall be used as the context for the
value-symbol (see 7.1.4).

This production has a Boolean type for all cases in which it applies. See 7.1.6 for a more
detailed description of comparisons.

If chain or the value-symbol is NULL, then the production evaluates to NULL.

| value-symbol comp-op chain

The right side shall be a property reference, and that property shall be used as the context for
the value-symbol (see 7.1.4).

This production has a Boolean type for all cases in which it applies. See 7.1.6 for a more
detailed description of comparisons.

If chain or the value-symbol is NULL, then the production evaluates to NULL.

| arith IS [NOT] NULL

This production has a Boolean type.

18 Version 1.0.0

DSP0202 CIM Query Language Specification

| arith ISA identifier

The left side shall be either an instance or a property containing an EMBEDDEDOBJECT or
EMBEDDEDINSTANCE. The right side shall be the name of a class or a class alias.

The ISA tests whether the left side is of the class or a subclass of the class named by the
identifier on the right side.

If arith is NULL, then the production evaluates to NULL.

The production has a Boolean type.

| arith LIKE literal-string

arith shall have a string or char16 type; the result has a Boolean type.

If arith is NULL, then the production evaluates to NULL.

The Basic Query feature includes only the Like features described in C.1.

expr-factor = comp

The type of the comp is taken as the type for this production.

| NOT comp

comp shall have a Boolean type; this production has a Boolean type.

Table 1 defines the result of the NOT expression:

Table 1 – NOT Expression

Comp NOT comp

TRUE FALSE

FALSE TRUE
NULL NULL

expr-term = expr-factor

The type of the expr-factor is taken as the type for this production.

| expr-term AND expr-factor

expr-term and expr-factor must both have a Boolean type; the production has a
Boolean type.

Table 2 defines the result of the AND expression:

Version 1.0.0 19

Table 2 – AND Expression

expr-term expr-
factor

Expr-term AND expr-
factor

TRUE TRUE TRUE

TRUE FALSE FALSE

TRUE NULL NULL

FALSE TRUE FALSE

FALSE FALSE FALSE

FALSE NULL FALSE

expr = expr-term

The type of the expr-term is taken as the type for this production.

| expr OR expr-term

expr and expr-term must both have a Boolean type; the production has a Boolean type.

Table 3 defines the result of the OR expression:

Table 3 – OR Expression

expr-
term

Expr-
factor

Expr-term OR expr-
factor

TRUE TRUE TRUE

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

FALSE NULL NULL

array-index = expr

expr shall have an unsigned integer type.

Array indices are zero-relative. Note that arrays defined with the qualifier 'ArrayType ("Bag")'
should not be referenced using specific indices because these may vary across retrievals and
time.

array-index-list = array-index

The array-index-list specifies one array element.

20 Version 1.0.0

DSP0202 CIM Query Language Specification

6.4.7 Select List

The productions in this section define the select list of the query. Each entry of the select list defines one
column of the query result.

star-expr = "*"

This production refers to all the properties exposed by all classes defined in the from-
criteria. This includes uncovered properties of superclasses of the from-criteria
classes. Properties of subclasses of the from-criteria classes are not included.

Covered properties (that is, properties of the same name that are not overridden) may be
explicitly referenced by using the scoping operator " : : " in the expr of the selected-entry
production.

As a consequence of these rules, the property list produced does not vary over the query. For
example, if referencing a CIM 2.8 schema and the from-criteria includes
CIM_ManagedSystemElement, then the properties "Caption", "Description",
"ElementName", "InstallDate", "Name", "OperationalStatus",
"StatusDescriptions", and "Status" would be included.

| chain "." "*"

chain shall have type object of C for some class C. This production refers to all the properties
exposed by C, including those of C's superclasses. Properties of subclasses of C are not
included in the set.

selected-entry = expr

expr may have any primitive, reference, or array type, and defines the type of the column
defined by this production. If the type of the expression is an object type, then the
corresponding result column shall have a string type and be populated with string
representations of the VALUES .

The set of column names in the query result shall not contain duplicates.

Basic Query allows only properties in the select-list. If there is more than one entry in the
FROM list, then each selected entry that is a property reference shall be a chain expression
starting with either a class name or an alias that is included in the FROM list.

| star-expr

This generates a set of selected entries in the query result where the " * " is enumerated to be a
list of properties. The set of selected entries is taken as the default names for a subset of the
columns returned.

If there is more than one entry in the FROM list, then each star-expr shall be a chain
expression starting with either a class name or an alias that is included in the FROM list.

select-list = selected-entry *("," selected-entry)

If the select-list contains any aggregating expressions, then all items in the select-list
shall be aggregating expressions.

Version 1.0.0 21

6.4.8 From Criteria

The productions in this section define the from-criteria of the query. The from-criteria is
generically a list of data sources over which the query is processed. In basic query, the list is limited to
one data source.

from-specifier = class-path [[AS] identifier]

Each from-specifier using this production identifies a CIM class that will participate in the
query, along with a name by which instances of that class will be referenced in the query. If the
explicit identifier is present, it is the name that will be used; otherwise, the name of the
class will be used as the name.

Even if the explicit identifier is present, the name of the class may also be used as an
alternative name for instances of the class, provided such use would not conflict with a name
established by any other from-specifier.

Additionally, each property of the class identified by class-path can be accessed by its name
alone, provided that name doesn’t conflict with any other property or class name in the from-
criteria.

from-criteria = from-specifier

6.4.9 Select Statement

The productions in this section define the Select statement, which is a directive to the query processor
create an output table with columns defined by a select-list and rows containing data specified by
the from-criteria and search-condition.

search-condition = expr

expr shall have a Boolean type.

select-statement = SELECT select-list
 FROM from-criteria
 [WHERE search-condition]

This clause produces information that represents the rows returned by the query. Each row has
an entry for each selected entry.

The FROM clause produces a candidate set of rows from instances identified by the from-
criteria.

When present, the WHERE clause rejects all rows of the candidate set produced by the FROM
clause except those for which the search-condition evaluates to TRUE. (Evaluation to
NULL is not the same as TRUE.)

The select-list selects particular columns of the rows of the candidate set and also may
introduce additional derived columns.

start = select-statement

22 Version 1.0.0

DSP0202 CIM Query Language Specification

7 CIM Query Language Considerations
This section provides additional details on the use of both basic query features and the extended query
features described in Annex E.

7.1 Considerations of the Constructs in the BNF

The CIM Query Language does not currently define "data change" operations (INSERT, DELETE, or
UPDATE). These may be added at a later time, but they are not currently required. Today, these
operations are supported by invoking individual operations defined in DSP0200.

CQL queries operate only against instances and their properties. CQL does not support the ability to
query the supported schema or invoke methods of instances. Through the ISA operator, CQL supports
the ability to determine if an instance is a member of a class.

Several of the constructs in the BNF require usage information or some additional explanation, which is
provided in the following subclauses.

7.1.1 Property Identification

A CIM class may expose more than one property with a given name, but it is not permitted to define more
than one property with a particular name. However, more than one property with a particular name can
happen if a base class defines a property with the same name as a property defined in a derived class
without overriding the base class property. The scoping operator (" : : ") is used to provide an explicit
context for resolving identifiers to properties.

The general syntax by which a property is identified is as follows:

 [chain "."] [property-scope] identifier

In this expression, chain shall have type object of C.

Property names identify properties relative to a class context. Given a class context C, the search for the
property begins at C and selects a property defined on C whose name matches the identifier, if there is
one; if C does not define a property with this name, then the search continues with C's direct superclass,
and so on. If no property is located with this search, then the property reference is invalid.

The class context is determined according to the following rules:

• If property-scope is present, then it declares the class context C and one of the following
rules applies:

– If the scoped identifier does not name a property exposed by C, then the query is
invalid.

– If chain is not present, C shall be the same as, a superclass of, or a subclass of exactly
one entry in the FROM list. In this case, chain is inferred to refer to instances produced by
that FROM list entry.

– If chain is present and it has type object of D, for some D, then C shall be the same as, a
superclass of, or a subclass of D.

– If chain is present and it does not have type object of D for some D, then chain must
have type object.

– If the value of the chain expression is not of class C (or subclasses of C), then the
application of the property produces NULL.

• If chain " . " is present, then chain shall be of type object of C, and C is the class context.

Version 1.0.0 23

• If neither property-scope nor chain are present, then the identifier must be declared in
at most one of the classes named in the FROM list.

• If none of the preceding rules applies, the context cannot be determined and the query is
invalid.

7.1.2 Arrays

For properties of type Array, [*] is implicitly used if no specific array-index-list is given; therefore, for
example, "OperationalStatus" has the same semantic meaning as "OperationalStatus[*] ". For
more details on Arrays, please refer to the CIM Infrastructure Specification v2.3.0 (DSP0004).

7.1.3 Embedded Objects

An embedded object is conveyed as a property of a string type annotated only with the
EMBEDDEDOBJECT qualifier. This qualifier indicates that the property's value is to be interpreted as an
embedded object, but it identifies neither whether the embedded object will be a class or an instance, nor
the class to which the embedded instances belong. For this reason, expressions in CQL that refer to
string properties with the EMBEDDEDOBJECT qualifier are assigned type object. References to the
embedded properties of that property have their native type unless they too are qualified with
EMBEDDEDOBJECT.

The actual type of an EMBEDDEDOBJECT is not known until an instance is selected. This uncertainty can
lead to situations in which the type of a projected result cannot be determined in advance of the query's
execution, and, indeed, may vary even within the execution of a single query. This circumstance affects
the resolution of properties of the embedded object. To remove ambiguity, queries that concern
themselves with properties of embedded objects shall use the scoping operator (" : : ") to scope those
properties, (see E.15). A CQL implementation shall reject any query that involves expressions whose type
cannot be determined.

For example, the following query would be permitted because both properties of SourceInstance were
provided a scope. The DeviceID property would be returned as NULL when SourceInstance is a
CIM_PhysicalElement.

 SELECT SourceInstance.CIM_LogicalDevice::DeviceID,
 SourceInstance.CIM_ManagedSystemElement::OperationalStatus
 FROM CIM_InstIndication
 WHERE SourceInstance ISA CIM_LogicalDevice
 OR SourceInstance ISA CIM_PhysicalElement

7.1.4 Symbolic Constants

The "# " syntax uses the VALUES and VALUEMAP qualifiers of a property to look up an enumerated
value that a particular property may take. The property shall expose a VALUES qualifier, and the
accompanying literal-string shall match one of the strings in the VALUES qualifier's value.

If the property does not also expose a VALUEMAP qualifier, then the property shall have an integer type,
and the index of the literal-string among the VALUES qualifier's value is taken as the value of this
production. If, conversely, the property also exposes a VALUEMAP qualifier, then the value for this
production shall be based on the value in the VALUEMAP array corresponding to the selected value of the
VALUES array, as follows:

1) If the property has a string type, then the VALUEMAP entry itself is the value of the production.

2) Otherwise, the property shall have an integer type, the VALUEMAP entry shall not include the
sequence " . . " , and the VALUEMAP entry is converted into an integer of the appropriate type

NOTE: CIM_FCPort.OperationalStatus#'OK' is equivalent to the constant 2, and
CIM_FCPort.OperationalStatus#'Predictive Failure' is equivalent to 5.

24 Version 1.0.0

DSP0202 CIM Query Language Specification

If the expression on one side of a comparison identifies exactly one property, then the # syntax may be
used in a standalone form on the opposite side of the comparison. The identified property becomes the
defining context of the symbolic constant. For example:

CIM_FCPort.OperationalStatus[3] > #'OK'

is equivalent to

CIM_FCPort.OperationalStatus[3] > CIM_FCPort.OperationalStatus #'OK'

If a class name is used to qualify a symbolic constant, that class does not need to be related to any class
in the query. For example the following query is valid even though CIM_LogicalDevice has nothing to
do with the query:

SELECT * FROM CIM_AlertIndication WHERE AlertType >
CIM_LogicalDevice.OperationalStatus#’OK’

7.1.5 Computation and Types

The use of arithmetic operators causes numeric types to be "widened" as necessary to minimize the loss
of precision. Unless both operands are unsigned, addition, subtraction, and multiplication among integer
types results in sint64. If both operands are unsigned, then the result is uint64. Otherwise, all arithmetic
operations (that is, all cases of division, as well as addition, subtraction, or multiplication involving at least
one non-integer type) produce real64 type. If an overflow or underflow occurs, an error is returned.

Arithmetic and comparisons on datetime types are defined in Annex D.

7.1.6 Comparisons

Comparison is supported between all numeric types. When comparisons are made between different
numeric types, comparison is performed using the type with the greater precision.

Comparison between strings and between char16 VALUES is supported and is done case-sensitively on
a Unicode-character basis. A comparison between a string and a char16 value is accomplished by
treating the char16 value as a single-character string. For string and char16 comparison and sort
operations, the Default Collation Algorithm as defined in ISO/IEC 14651 and Unicode Technical Report
#10 shall be applied. Unicode character-based comparison is done as follows:

The "=" and "<>" operators shall use the string identity matching rules defined in W3C Character
Model for the World Wide Web 1.0: Normalization, section 4 "String Identity Matching".

The following rules apply to comparison between strings and char16 VALUES using the "<" and ">"
operators:

1) For Basic Query, these operators shall behave as if the normalization defined in Character
Model for the World Wide Web 1.0: Normalization, section 4 "String Identity Matching", was
applied and then the comparison was performed on the resulting strings. The strings are
compared from the beginning, on a Unicode character basis. Each character is compared
based on its Unicode code point order. The first character found to be different determines the
result of the comparison. If the strings are of different lengths, but are otherwise equal, then the
longer string is greater than the shorter string.
NOTE: For implementations that use UTF-8 or UTF-32 as the encoding, the binary order of the encoded
characters matches the Unicode code point order. For UTF-16, the binary order of the supplementary
characters does not match their Unicode code point order. For more information, refer to section 2.5 of
The Unicode Standard.

2) For the Full Unicode feature, these operators shall behave as if the normalization defined in
Character Model for the World Wide Web 1.0: Normalization, section 4 "String Identity
Matching", was applied and then the default collation order defined in the Unicode Collation

Version 1.0.0 25

Algorithm was used on the resulting strings. Note that this collation order accommodates most
languages, without having to take any locales into account.

Comparison between datetime types is supported and is defined in Annex D.

Comparison between Boolean VALUES, complete Arrays, and References is supported, but this support
is limited to the "=" and "<>" operators.

Reference comparison is performed through a process of comparing certain components of the
references. The components to be compared are the namespace type, namespace handle, and model
path, as defined by DSP0004. Two references are considered to be equal if all of the following conditions
are true:

• For the model path, all of the following conditions must be true:

– There must be the same number of key property name/value pairs.

– For each key property name/value pair in one reference, exactly one matching key
property name/value pair must be found in the other reference.

– The order of the key property name/value pairs does not affect the comparison.
Comparison is not done case sensitively for key property names.

– Key property VALUES are compared according to their type, as defined in this section.

• For all components except the model path, the comparison is not done case sensitively.
NOTE: The implementation may perform reference comparisons using alternative, but equivalent, paths or
representations.

Comparison of classes requires that the ClassName is the same and that the properties and property
types defined by this class and by each superclass in the classes hierarchy compare equal. The
comparison of class names, property names and property types is not done case sensitively. The set of
qualifiers defined on each class shall be the same and evaluate to the same VALUES .

Comparison of instances requires that the instances be of the same class and that all property VALUES
either compare as equal or are both NULL. The comparison of the property VALUES is done case-
sensitively.

For comparison between an array property and a non-array property, see 7.1.7.

NOTE: This type of comparison shall be supported if the Array Range query feature is supported.

Comparison of complete arrays shall be supported in Basic Query. Comparison of parts of arrays shall
be supported in the Array Range query feature. The ArrayType governs how matches are made. There
are three types of arrays: Bag, Ordered, and Indexed. If one of the arrays is a Bag, then comparison rules
for Bags are used. As defined in DSP0004, a bag is an unordered multiset. Two arrays of ArrayType
"Bag" are equal if and only if the number of elements is equal and if it is possible to find a permutation for
one of the arrays so that for an element-by-element comparison, all elements of the compared arrays are
equal. Equality for Bag-type arrays may be tested by sorting both arrays and then doing an element-by-
element comparison. For comparison of Ordered and Indexed arrays, an element-by-element comparison
is performed. Arrays that have different numbers of elements do not compare as equal.

Other than the cases described in this section, comparisons among disparate types are not supported in
CQL.

7.1.7 Comparisons of Array and Scalar

This section only applies to comparison operations between array properties and non-array properties, as
part of the Array Range and Satisfies Array query features. A comparison between an array property and
a non-array property is illegal if neither the EVERY keyword nor the ANY keyword is used. If multiple

26 Version 1.0.0

DSP0202 CIM Query Language Specification

elements of an array property are compared, the operation evaluates to TRUE if and only if the specified
comparison is TRUE for all the indicated Array Range.
EXAMPLE: The following are examples of comparison operations in array processing:

• EVERY CIM_LogicalDevice.OperationalStatus[*] <> 2 is TRUE if and only if every value of the
OperationalStatus array is not 2.

• EVERY CIM_LogicalDevice.OperationalStatus[*] = 2 is TRUE if and only if all of the VALUES of
OperationalStatus are 2.

• EVERY CIM_LogicalDevice.OperationalStatus[*] < 2 is TRUE if and only if all of the VALUES of
OperationalStatus are less than 2.

• ANY CIM_LogicalDevice.OperationalStatus[*] > 2 is TRUE if and only if any the VALUES of the
OperationalStatus array are greater than 2.

• ANY CIM_LogicalDevice.OperationalStatus[*] <> 2 is TRUE if and only if any of the VALUES of
the OperationalStatus array are NOT 2.

• NOT EVERY CIM_LogicalDevice.OperationalStatus[*] = 2 is TRUE if and only if any of the
VALUES of the OperationalStatus array are <> 2.

• CIM_LogicalDevice.OperationalStatus[0] = 2 is TRUE if the first value of the array is set to 2.

• EVERY CIM_LogicalDevice.OperationalStatus[0..3] > 2 is TRUE if the first four VALUES of the
OperationalStatus array are each greater than 2.

• ANY stat IN CIM_LogicalDevice.OperationalStatus[*] SATISFIES (stat = 3 OR stat > 5) is TRUE
if any value of the OperationalStatus array is equal to 3 or greater than 5.

7.2 Query Language Functions

This section describes the functions available for CQL.

If the arguments of these functions do not conform to the defined constraints, then the query will be in
error.

7.2.1 Numeric Functions

The following define the numeric functions that may be used within a query statement.

• DATETIMETOMICROSECOND(expr)

The argument shall have a datetime type, and the result has type uint64. If the argument is a
timestamp, it is converted to the number of microseconds since 00:00:00.000000UTC on
1/1/0000; otherwise (that is, if the argument is an interval), it is converted to microseconds.

If expr computes to a time before 00:00:00.000000UTC on 1/1/0000 the result is an arithmetic
underflow error. If expr computes to a time after 23:59:59.999999 UTC on 12/31/9999, the
result is an arithmetic overflow error. In either case, the query will result in an error.

• STRINGTOUINT(expr)

The argument shall have a string or char16 type and must be a binary-value, hex-digit-value,
decimal-value, or real-value in the range of 0 to 264-1. The result has type uint64. The fractional
portion of any real-value is discarded.

• STRINGTOSINT(expr)

The argument shall have a string or char16 type and must be a binary-value, hex-digit-value,
decimal-value, or real-value in the range of -263 to 263-1. The result has type sint64. The
fractional portion of any real-value is discarded.

Version 1.0.0 27

• STRINGTOREAL(expr)

The argument shall have a string type and must be a binary-value, hex-digit-value, decimal-
value, or real-value. The result has type real64.

7.2.2 String Functions

The following define the string functions that may be used within a query statement.

• UPPERCASE(expr)

The argument shall have a string or char16 type, and the result has a string type. This function
canonicalizes its argument by converting all lowercase characters to uppercase. For Basic
Query, this function converts lowercase characters in the US-ASCII range (U+0000...U+007F)
to uppercase. Characters outside of the US-ASCII range are not changed. For the Full Unicode
feature, this function performs Case Mapping, as defined in the Unicode standard, on all
characters.

• NUMERICTOSTRING(expr)

The argument shall have a numeric type, and the result shall have a string type. This function
constructs a string representation of its argument, using the following rules:

– If the argument is of one of the integer types, it is represented using decimal radix. Positive
numbers do not have a plus sign, and negative numbers have a preceding minus sign.

– If the argument is of one of the real types, it is represented using decimal mantissa. If an
exponent is needed, it uses decimal radix, follows after an upper case "E", and does not
have any leading zeros. If the mantissa has more than one digit, the decimal point is
always after the first digit. Positive mantissas and exponents do not have a plus sign, and
negative mantissas and exponents have a preceding minus sign.

– If the argument has a value of zero, it is represented as the single character “0”.

• REFERENCETOSTRING(expr)

The argument shall have a reference type, and the result shall have a string type. This function
returns an object path string based exclusively on the information in the input reference.
Canonicalization may be accomplished by using the Path Functions.

7.2.3 Instance Functions

The following functions operate on objects, references, or strings whose content is a WBEM-URI, as
defined in the WBEM URI Mapping Specification (DSP0207).

• INSTANCEOF([expr])

The argument shall be an instance, an embedded instance, an embedded object, a reference to
an instance, or a string containing a WBEM-URI to an instance. If the argument is of type
embedded object, it shall represent an instance and shall be scoped using the property-
scope syntax. In all cases using valid input, if the instance is of type C, the result of this
function is an embedded instance of type C. In all other cases, the query is invalid.

7.2.4 Path Functions

These functions operate on objects, references, or strings whose content is a WBEM-URI, as defined in
DSP0207.

• CLASSPATH([expr])

The argument shall be an object, a reference, or a string containing a WBEM-URI. The result of
this function is of a reference type. If the argument is of a reference or string type and it refers to

28 Version 1.0.0

DSP0202 CIM Query Language Specification

a class, the result of this function refers to that class. If the argument is of reference or string
type and it refers to an instance, the result of this function refers to the creation class of that
instance. If the argument is of type object, it shall be an instance value that is not an Indication
or an embedded instance, and the result of this function refers to the creation class of that
instance. In all other cases, the query is invalid. Whether the class or instance referenced by the
argument exists does not matter for the successful execution of the function. The function does
not add any missing components to the namespace path of the resulting reference.

• OBJECTPATH([expr])

The argument shall be an object, a reference, or a string containing a WBEM-URI. The result of
this function is of a reference type. If the argument is of type reference or string and it refers to a
class, the result of this function refers to that class. If the argument is of type reference or string
and it refers to an instance, the result of this function refers to that instance. If the argument is of
type object, it shall be an instance value that is not an Indication or an embedded instance, and
the result of this function refers to that instance. In all other cases, the query is invalid. Whether
the class or instance referenced by the argument exists does not matter for the successful
execution of the function. The function does not add any missing components to the namespace
path of the resulting reference.

7.2.5 Datetime Functions

• The following define the time and date conversion functions that may be used within a query
statement.CURRENTDATETIME()

This function returns the "current" datetime as determined by the implementation.

• DATETIME(expr)

The argument shall be of a string type and at runtime shall take on a 25-character value
conformant with a datetime specification (either timestamp or interval). The result shall have a
datetime type.

• MICROSECONDTOTIMESTAMP(expr)

The argument shall be of an integer type, and the result shall have a datetime type. The
argument will be interpreted as a number of microseconds since 00:00:00.000000UTC on
1/1/0000, and the result shall be a timestamp.

• MICROSECONDTOINTERVAL(expr)

The argument shall be of an integer type, and the result shall have an interval (datetime) type.
The argument will be interpreted as a number of microseconds, and the result shall be an
interval.

7.3 Query Considerations

The result of a query is a table that contains a set of zero or more rows that contain the columns defined
in the select-list. This table is not stored beyond the execution of a particular invocation of the query.
These instances have the following additional characteristics:

• Each column has a type and a distinct name.

• Each classname in the FROM list is considered by query as a table that has one row for each
class instance and where the properties of the class are mapped to columns of the table.

• Subqueries are considered by query to produce tables.

• On the relation to classes, instances, and properties the following assertions apply:

Version 1.0.0 29

– Each table may be considered as a class. However, it is not required to conform to the
definition of a CIM class.

– Each row may be considered as an instance. However, it is not required to conform to the
definition of a CIM instance.

– Each column may be considered a property that conforms to the definition of a CIM
Property.

• A query may be specified as part of a class definition (such as CIM_IndicationFilter,
CIM_QueryCondition, and CIM_MethodAction). The implementation of the class is
responsible for processing queries specified in instances of that class. For example,
CIM_IndicationFilter subclasses constrain the select-list to produce entries that
conform to the CIM_Indication subclass that is used in the FROM clause. The results are
then typically delivered by the CIM_ListenerDestination subclass as instances of the
named CIM_Indication subclass.

7.4 Query Errors

It is not in the scope of this specification to specify errors returned as a result of processing CQL queries.
Specifications that specify the use of CQL should specify the type of errors that might return. For
instance, (see DSP0200 for errors returned by ExecQuery and DSP0200, CIM Operations over HTTP
Specification v1.3 for errors returned by OpenQueryInstances.) Use of CQL queries in the context of
class definitions should be documented in the class definition.

In the future, the CIM_Error class will be used to expand on the errors defined in this clause..

30 Version 1.0.0

DSP0202 CIM Query Language Specification

Annex A Examples (Informative)
This section provides a number of sample queries to illustrate the use of CQL.

A.1 Information Gathering Examples

The following eight examples show example Select statements that each might be used to provide
information about the current state of an implementation.

1) Get the object path, ElementName, and Caption for all CIM_StorageExtents.

Required Features: Basic Query, Extended Select List, Conversion Utilities

SELECT OBJECTPATH(CIM_StorageExtent) AS Path,
 ElementName, Caption
FROM CIM_StorageExtent

A set of instances would be returned with three properties: the object path of the instance, as
well as the ElementName and Caption properties.

2) Select all LogicalDevices on a particular CIM_ComputerSystem that have an
OperationalStatus not equal to "OK" (value = 2), and return their object paths and
OperationalStatus.

Required Features: Basic Query, Extended Select List, Complex Join, Array Range, Conversion
Utilities

SELECT OBJECTPATH(CIM_LogicalDevice) AS Path,
 CIM_LogicalDevice.OperationalStatus[*]
FROM CIM_LogicalDevice,
 CIM_ComputerSystem,
 CIM_SystemDevice
WHERE CIM_ComputerSystem.ElementName = 'MySystemName'
 AND CIM_SystemDevice.GroupComponent =
 OBJECTPATH(CIM_ComputerSystem)
 AND CIM_ SystemDevice.PartComponent =

 OBJECTPATH(CIM_LogicalDevice)
 AND ANY CIM_LogicalDevice.OperationalStatus[*] <> 2)

A set of instances would be returned, each with the following properties: a string containing the
object path of the instance of CIM_LogicalDevice and the OperationalStatus array
property.

3) Get all CIM_StorageExtent and CIM_MediaAccessDevice instances. Note that the
projection is limited to instances that are either CIM_StorageExtent or
CIM_MediaAccessDevice; however, only properties of CIM_LogicalDevice and its
superclasses are returned.

Required Features: Basic Query

SELECT *
FROM CIM_LogicalDevice
WHERE CIM_LogicalDevice ISA CIM_StorageExtent OR
 CIM_LogicalDevice ISA CIM_MediaAccessDevice

Version 1.0.0 31

A set of instances would be returned with a complete select-list as defined by
CIM_LogicalDevice.

4) List all CIM_ComputerSystem instances and the object paths of any instances dependent on
the system as described by the CIM_Dependency association.

Required Features: Basic Query, Extended Select List, Complex Join, Conversion Utilities

SELECT CIM_ComputerSystem.*,
 OBJECTPATH(CIM_ManagedElement) AS MEObjectName
FROM CIM_ComputerSystem,
 CIM_ManagedElement,
 CIM_Dependency
WHERE CIM_Dependency.Antecedent =
 OBJECTPATH(CIM_ComputerSystem)
 AND CIM_Dependency.Dependent =
 OBJECTPATH(CIM_ManagedElement)

This query returns a set of instances defined by the references of the CIM_Dependency
association's instances. The instances that are created contain all the properties of
CIM_ComputerSystem and a string representing the related or associated ManagedElement's
object path.

5) Traverse from a resource (CIM_ComputerSystem) to the CIM_BaseMetricValue instances
associated through the CIM_MetricForME association. The resource instance is known by its
keys, many (more than 10000) CIM_BaseMetricValue objects are associated with it, and the
selection criteria is such that only a handful of them match.

Required Features: Basic Query, Extended Select List, Complex Join, Conversion Utilities

SELECT OBJECTPATH(CIM_ComputerSystem) AS CSOBJECTPATH,
 CIM_BaseMetricValue.*
FROM CIM_ComputerSystem,

 CIM_BaseMetricValue,
 CIM_MetricForME

WHERE CIM_ComputerSystem.Name = 'MySystem1'
 AND CIM_BaseMetricValue.TimeStamp >

DATETIME('200407101000********+300')
 AND CIM_BaseMetricValue.TimeStamp <
DATETIME('200407101030********+300')
 AND CIM_BaseMetricValue.Duration =
DATETIME('000000000005********:000')
 AND CIM_MetricForME.Antecedent =
 OBJECTPATH(CIM_ComputerSystem)
 AND CIM_MetricForME.Dependent =

 OBJECTPATH(CIM_BaseMetricValue)

As in example 4), this query returns a set of instances defined by the query's join. The instances
that are returned contain all properties of CIM_BaseMetricValue and the associated
CIM_ComputerSystem instance's object path.

The query in this example is very selective: Only six instances are returned, while the combined
number of instances in the classes selected from can be in the tens of thousands. This shows
that it is essential that these instances never be enumerated or "walked" in the implementation
of the query engine, because this would likely result in huge computational penalties. It is critical
to appropriately break down the query to the different providers involved.

32 Version 1.0.0

DSP0202 CIM Query Language Specification

6) Display all the Settings for a particular CIM_ManagedSystemElement in a Composite Setting
that is associated with the MSE.

Required Features: Basic Query, Complex Join, Conversion Utilities

SELECT SD.*
FROM CIM_SettingData CSD,
 CIM_SettingData SD,
 CIM_ManagedSystemElement MSE,
 CIM_ElementSettingData ESD,
 CIM_ConcreteComponent CC
WHERE OBJECTPATH(MSE) = 'some desired key'
 AND ESD.ManagedElement = OBJECTPATH(MSE)
 AND ESD.SettingData = OBJECTPATH(CSD)
 AND CC.GroupComponent = OBJECTPATH(CSD)
 AND CC.PartComponent = OBJECTPATH(SD)

A set of instances would be returned (that meet the association criteria) with properties as
specified by CIM_SettingData.

Version 1.0.0 33

7) Get a storage array's LUN masking and mapping for a failed CIM_FCPort. This query uses
aliasing in the FROM clause and a series of subqueries. The use of nested subqueries guides
the query engine through a step-wise process that is similar to one that would be used by a
client executing a series of CIM intrinsic operations. Use of subqueries is recommended to limit
the complexity of otherwise very large joins. The principle advantage over the series of intrinsic
operations is that the query is a single operation that returns only the final results.

Required Features: Basic Query, Extended Select List, Complex Join, Subquery, Array
 Element, Property Scope, Conversion Utilities

SELECT OBJECTPATH(pms) AS PrivilegeMgmtServiceInst,
 Oh AS StorageHardwareIDInst, Op AS AuthorizedPrivilegeInst,
 Ov AS StorageVolumeInst
FROM CIM_HostedService hs,
 CIM_PrivilegeManagementService pms,
 (SELECT OBJECTPATH(cs) AS Oc, O.Op, O.Oh, O.Ov
 FROM CIM_ComputerSystem cs, CIM_SystemDevice sd,
 (SELECT OBJECTPATH(v) AS Ov, P.Op, P.Oh
 FROM CIM_AuthorizedTarget t,
 CIM_StorageVolume v,
 (SELECT OBJECTPATH(p) AS Op,
 OBJECTPATH(hi) AS Oh
 FROM CIM_StorageHardwareID hi, CIM_AuthorizedPrivilege p,

 CIM_AuthorizedSubject s,
 (SELECT SourceInstance.
 CIM_FCPort ::PermanentAddress
 FROM CIM_InstModification
 WHERE SourceInstance ISA CIM_FCPort
 AND ANY SourceInstance.CIM_FCPort::OperationalStatus[*]
 <> #’OK’
) fc
 WHERE fc.PermanentAddress = hi.StorageID
 AND s.PrivilegedElement = OBJECTPATH(hi)
 AND s.Privilege = OBJECTPATH(p)
) P

 WHERE t.Privilege = P.Op AND t.TargetElement = OBJECTPATH(v)
) O
 WHERE sd.PartComponent = Ov
 AND sd.GroupComponent = OBJECTPATH(cs)
) C
WHERE hs.Antecedent = Oc AND hs.Dependent = OBJECTPATH(pms)

34 Version 1.0.0

DSP0202 CIM Query Language Specification

Without the use of subqueries, but keeping the same color codes to relate to the subqueries of
the above query, an equivalent query can be expressed as:

Required Features: Basic Query, Extended Select List, Complex Join, Array Element,
Property Scope, Conversion Utilities

SELECT OBJECTPATH(pms) AS PrivilegeMgmtServiceInst,
 OBJECTPATH(hi) AS StorageHardwareIDInst,
 OBJECTPATH(p) AS AuthorizedPrivilegeInst,
 OBJECTPATH(v) AS StorageVolumeInst
FROM CIM_InstModification im,
 CIM_StorageHardwareID hi,
 CIM_AuthorizedSubject s,
 CIM_AuthorizedPrivilege p,
 CIM_AuthorizedTarget t,
 CIM_StorageVolume v,
 CIM_SystemDevice sd,
 CIM_ComputerSystem cs,
 CIM_HostedService hs,
 CIM_PrivilegeManagementService pms
WHERE im.SourceInstance ISA CIM_FCPort
 AND ANY im.SourceInstance.CIM_FCPort::OperationalStatus[*] <> #'OK'
 AND im.SourceInstance.CIM_FCPort::PermanentAddress = hi.StorageID
 AND s.PrivilegedElement = OBJECTPATH(hi)
 AND s.Privilege = OBJECTPATH(p)
 AND t.Privilege = OBJECTPATH(p)
 AND t.TargetElement = OBJECTPATH(v)
 AND sd.PartComponent = OBJECTPATH(v)
 AND sd.GroupComponent = OBJECTPATH(cs)
 AND hs.Antecedent = OBJECTPATH(cs)
 AND hs.Dependent = OBJECTPATH(pms)

The primary difference is that without the use of subqueries, the query implementation would
have to determine how to optimize this query to avoid an uncorrelated join across all of the
instances belonging to the 10 classes named in the FROM clause. This level of analysis is
beyond the capability of most expected implementations.

8) Example of mathematical aggregation function

Required Features: Basic Query, Extended Select List, Aggregation, Result Set Operations,
 Subquery

SELECT DISTINCT OBJECTPATH(sv) AS VolumePath,
 (sv.BlockSize * sv.NumberOfBlocks) AS Size

FROM CIM_StorageVolume sv,
 (SELECT MAX(v.BlockSize*v.NumberOfBlocks) AS Maxbytes
 FROM CIM_StorageVolume v) mv
WHERE (sv.BlockSize * sv.NumberOfBlocks) = mv.Maxbytes

Version 1.0.0 35

A.2 Event Detection Examples

The following examples define queries that might be contained in the Query property of a
CIM_IndicationFilter instance within a storage management implementation. The corresponding
QueryLanguage property would contain the value "DMTF:CQL".

1) Using the lifecycle indication classes, the following query would be stored in the Query string
property of an instance of CIM_IndicationFilter and its delivery defined by a
CIM_IndicationSubscription association to a ListenerDestination (see the CIM Event
Model). A CIM_InstCreation notification would be delivered any time that a CIM_FCPort
was created. The notification would consist of a single instance with a select-list as
defined by the CIM_InstCreation class.

Required Features: Basic Query

SELECT *
FROM CIM_InstCreation
WHERE SourceInstance ISA CIM_FCPort

2) As in the previous example, this query would be stored in the Query string property of an
instance of IndicationFilter and its delivery would be defined by a
CIM_IndicationSubscription association. A CIM_InstModification notification
would be delivered any time that a CIM_FCPort was modified and its first array property had
changed. The notification would consist of a single instance with a select-list as defined by
the CIM_InstModification class.

Required Features: Basic Query, Embedded Properties, Property Scope

SELECT *
FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
 AND PreviousInstance ISA CIM_FCPort
 AND SourceInstance.CIM_FCPort::OperationalStatus[0] <>
 PreviousInstance.CIM_FCPort::OperationalStatus[0]

3) Send an Indication consisting of EventTime, AlertingManagedElement, PerceivedSeverity and
ProbableCause whenever AlertingManagedElmeent is '/dev/tty0p1' and ProbableCause=20.

Required Features: Basic Query

 SELECT EventTime,
 AlertingManagedElement,
 PerceivedSeverity,
 ProbableCause
FROM CIM_AlertIndication
WHERE AlertingManagedElement = '/dev/tty0p1'
 AND ProbableCause = 20

4) Building on the previous example, in order to facilitate auditing and maintenance, the IT
department requires that all Indications be "tagged" with an ID that identifies the filter condition
that the Indication satisfied.

Required Features: Basic Query, Extended Select List

 SELECT EventTime,
 AlertingManagedElement,
 PerceivedSeverity,

36 Version 1.0.0

DSP0202 CIM Query Language Specification

 ProbableCause,
 'HP12345' AS FilterID
FROM CIM_AlertIndication
WHERE AlertingManagedElement = '/dev/tty0p1'
 AND ProbableCause = 20

5) Continuing the previous example, to ensure prompt processing of this type of Indication, define
a CustomSeverity and set it to "Critical".

Required Features: Basic Query, Extended Select List

SELECT EventTime,
 AlertingManagedElement,
 1 = PerceivedSeverity,
 'Critical' = OtherSeverity,
 ProbableCause,
 'HP12345' AS FilterID
FROM CIM_AlertIndication
WHERE AlertingManagedElement = '/dev/tty0p1'
 AND ProbableCause = 20

6) Locate sick System/LogicalDevice combinations.

Required Features: Basic Query, Satisfies Array, Complex Join, Conversion Utilities

SELECT s.Name, d.Name
FROM CIM_System s, CIM_SystemDevice sd, CIM_LogicalDevice d
WHERE OBJECTPATH(s) = sd.GroupComponent
 AND OBJECTPATH(d) = sd.PartComponent
 AND ANY i IN s.OperationalStatus[*] SATISFIES
 (i = #'Non-Recoverable Error' OR i=#'Degraded')

 AND ANY j in d.OperationalStaus[*] SATISFIES (j =#'Degraded')

7) Locate creation of an export relationship for a CIM_FileShare.

Required Features: Basic Query, PropertyScope, Conversion Utilities

SELECT
 InstanceOf(
 SourceInstance.CIM_SharedElement::SameElement)
 AS FileShare

FROM CIM_InstCreation
WHERE SourceInstance ISA CIM_SharedElement
 AND InstanceOf(SourceInstance.CIM_SharedElement::SameElement)
 ISA CIM_FileShare

A.3 Policy Examples

For policy, identify a StoragePool that is low on space and allocate more space to it. In this example,
there are two underlying StoragePools to draw space from. The preferred one is a free pool. The other is
used only if the free pool cannot satisfy the need.

1) The following query is used in a CIM_QueryCondition with QueryResultName set to
"PR_Needy". The query selects a CIM_StoragePool that is low on space. Evaluation results
in zero or more PR_Needy instances that are used by a related CIM_MethodAction.

Version 1.0.0 37

Required Features: Basic Query, Extended Select List, Complex Join, Embedded Properties,
Conversion Utilities, Property Scope

SELECT OBJECTPATH(IM.SourceInstance) AS NeedySPPath
FROM CIM_InstModification AS IM,
 CIM_PolicyRule AS PR,
 CIM_PolicySetAppliesToElement AS PSATE
WHERE IM.SourceInstance ISA CIM_StoragePool
 AND PR.Name = 'AllocateMoreSpace'
 AND OBJECTPATH(PR) = PSATE.PolicySet
 AND OBJECTPATH(IM.SourceInstance) = PSATE.ManagedElement
 AND 100 * (IM.SourcInstance.
CIM_StoragePool::RemainingManagedSpace / IM.SourcInstance.
CIM_StoragePool::TotalManagedSpace) < 10
 AND IM.SourcInstance. CIM_StoragePool::RemainingManagedSpace <>
 IM.PreviousInstance. CIM_StoragePool::RemainingManagedSpace

2) The following query is used in MethodAction to invoke a CreateOrModifyStoragePool
method. It uses PR_Needy instances produced by the previous CIM_QueryCondition. The
CIM_InstMethodCall results of the call are named by the property InstMethodCallName
set to "PR_ModifySP".

Required Features: Basic Query, Extended Select List, Complex Join, Conversion Utilities

SELECT OBJECTPATH(SCS) || '.CreateOrModifyStoragePool'
 AS MethodName,
 QCR.NeedySPPath AS Pool,
 QCR.NeedySPPath.Size + (QCR.TotalManagedSpace / 10) AS Size,
 OBJECTPATH(SP) AS InPools
FROM PR_Needy AS QCR,
 CIM_ServiceAffectsElement AS SAE,
 CIM_StorageConfigurationService AS SCS,
 CIM_StoragePool AS SP,
 CIM_AllocatedFromStoragePool AS AFSP
WHERE QCR.NeedySPPath = SAE.AffectedElement
 AND OBJECTPATH(SCS) = SAE.AffectingElement
 AND SP.ElementName = 'FreePool'
 AND QCR.NeedySPPath = AFSP.Antecedent
 AND OBJECTPATH(SP) = AFSP.Dependent

38 Version 1.0.0

DSP0202 CIM Query Language Specification

3) Use the results of the previous CIM_MethodActionResults as input to a second
CIM_MethodAction to take action on an error. It also calls the
CreateOrModifyStoragePool method.

Required Features: Basic Query, Extended Select List, Complex Join, Array Range, Embedded
Properties, Conversion Utilities

SELECT MAR.MethodName,
 MAR.MethodParameters.Pool,
 MAR.MethodParameters.Size,
 OBJECTPATH(SP) AS InPools

FROM PR_ModifySP MAR,
 StoragePool SP,
 AllocatedFromStoragePool AFSP
WHERE MAR.ResultValue <> '0'
 AND SP.ElementName = 'SafetyPool'
 AND MAR.MethodParameters ISA __MethodParameters
 AND MAR.MethodParameters.__MethodParameters::Pool =
 AFSP.Antecedent
 AND OBJECTPATH(SP) = AFSP.Dependent

Annex B CQL BNF (normative)
This document uses Augmented BNF (ABNF) with the following exceptions:

• Rules separated by a bar (|) shall represent choices (instead of using a slash (/) as defined in
ABNF).

• Ranges of alphabetic characters or numeric VALUES shall be specified using two periods (. .)
between the beginning and ending VALUES of the range (instead of using the minus sign (-) as
defined in ABNF).

• The rules defined in this syntax should be assembled into a complete query by assuming
whitespace characters between them, except where noted otherwise. (ABNF requires explicit
specification of whitespace.)

• The comma (,) shall explicitly designate concatenation of rules with all intervening whitespace
removed (instead of implicit concatenation of rules as specified by ABNF).

NOTE 1: ABNF is not case sensitive.

NOTE 2: The BNF used here and not to the resultant Regular Expression used in Full or Basic
Like. In particular, except where noted, whitespace is significant within the resultant Regular
Expression.

NOTE 3: UNICODE-CHAR is a Unicode character. The range of allowed code points is the same
as the range for the char16 datatype in 6.2. UNICODE-S1 is a subset of UNICODE-CHAR in
which the characters from the US-ASCII range (U+0000…U+007F) are limited to the set S1,
where S1 = {U+005F, U+0041…U+005A, U+0061…U+007A}. (This is alphabetic, plus
underscore.) The encoding form of UNICODE-CHAR is defined by the specification that is using
CQL.

NOTE 4: The CQL string (that is, the entire string, beyond just string literals) uses Unicode
characters. The encoding of the CQL string is the same as the encoding of UNICODE-CHAR.

Version 1.0.0 39

Annex C Regular Expressions (normative)
This annex describes the Regular Expression grammar used by CQL.

The grammar is defined in two sections. The first (C.2) is used to construct Regular Expressions used by
the Basic Like feature. The second (C.2) is used to create Regular Expressions used by the Regular
Expression Like feature.

The Regular Expression grammar described in this annex uses the BNF conventions described in 0

C.1 Basic Like Regular Expressions

Basic Like Regular Expressions is a subset of the XQuery Regular Expression syntax as defined in
Regular Expressions.
NOTE: Basic Like Regular Expressions complies with levels RL1.1 and RL 1.7 of Unicode Regular Expressions
Level 1, which is a subset of the XQuery Regular Expressions compliance to Unicode Regular Expressions Level 1.

blre-ordinary-char= UNICODE-CHAR

A character, other than a metacharacter, excluded from the Char production of XQuery Regular
Expressions.

blre-escaped-char = char-escape | SingleCharEsc

An escaped character. The char-escape is defined in Error! Reference source not found..
The SingleCharEsc is defined in XQuery Regular Expressions. The "/u" and "/U" syntax of char-
escape replaces the character reference syntax defined in XQuery Regular Expressions.
NOTE: The char-escape includes escape sequences that may not be supported by XQuery. The CQL
processor may need to convert these escape sequences to a form that is compatible with XQuery.

blre-single-char = "." | blre-ordinary-char| blre-escaped-char

Single character regular expression. The '.' meta-character matches any character except the
newline character (\u000A).

blre-multi-char = blre-single-char,"*"

Matches multiple occurrences of a single character.

blre-expression = *(blre-single-char | blre-multi-char)

Basic Like regular expression.

C.2 Full Like Extended Regular Expressions

Full Like Regular Expressions is conformant with the XQuery Regular Expression syntax as defined in
Regular Expressions, with the following exceptions:

1) The Unicode characters allowed in the expression are defined by UNICODE-CHAR in the
Query Language BNF section.

2) The escape sequences of char-escape in Error! Reference source not found. may be used in
addition to the escape sequences in SingleCharEsc in XQuery Regular Expressions. The "/u"

40 Version 1.0.0

DSP0202 CIM Query Language Specification

and "/U" syntax of char-escape replaces the character reference syntax defined in XQuery
Regular Expressions.
NOTE: The char-escape includes escape sequences that may not be supported by XQuery. The CQL
processor may need to convert these escape sequences to a form that is compatible with XQuery.

3) None of the flags defined in section 7.6.1.1 of XQuery Regular Expressions are supported, and
the expression matching behaves as if all the flags have the default VALUES .

Annex D Datetime Operations and BNF (normative)
The operations on datetime and the datetime BNF described in this annex will ultimately be
incorporated into some other DMTF specification, and references to this annex should be updated to refer
to the incorporating specification.

D.1 Datetime Operations

The following operations are defined on datetime types:

1) Arithmetic operations:

• Adding or subtracting an interval to or from an interval results in an interval.
• Adding or subtracting an interval to or from a timestamp results in a timestamp.
• Subtracting a timestamp from a timestamp results in an interval.
• Multiplying an interval with a numeric or vice versa results in an interval.
• Dividing an interval by a numeric value results in an interval.

Other arithmetic operations are not defined.

2) Comparison operations:

• Testing for equality or inequality of two timestamps or two intervals results in a Boolean
value.

• Testing for the ordering relation (<, <=, >, >=) of two timestamps or two intervals results in
a Boolean value.

Other comparison operations are not defined.

Note that comparison between a timestamp and an interval, and vice versa, is not defined.

Specifications using the definition of these operations (for instance, query language specifications) should
define how undefined operations are handled.

Any operations on datetime types in an expression shall be handled as if the following sequential steps
were performed:

1) Each datetime value is converted into a range of microsecond VALUES , as follows:

• The lower bound of the range is calculated from the datetime value, with any asterisks
replaced by their minimum value.

• The upper bound of the range is calculated from the datetime value, with any asterisks
replaced by their maximum value.

• The basis value for timestamps is the oldest valid value (that is, 0 microseconds
corresponds to 00:00.000000 in the timezone with datetime offset +720, on January 1 in
the year 1 BCE, using the proleptic Gregorian calendar). Note that this definition implicitly
performs timestamp normalization. Note that 1 BCE is the year before 1 CE.

Version 1.0.0 41

2) The expression is evaluated, using the following rules for any datetime ranges:

• Definitions

– T(x, y) is the microsecond range for a timestamp with the lower bound x and the
upper bound y.

– I(x, y) is the microsecond range for an interval with the lower bound x and the
upper bound y.

– D(x, y) is the microsecond range for a datetime (timestamp or interval) with the
lower bound x and the upper bound y.

• Rules

I(a, b) + I(c, d) := I(a+c, b+d)
I(a, b) - I(c, d) := I(a-d, b-c)
T(a, b) + I(c, d) := T(a+c, b+d)
T(a, b) - I(c, d) := T(a-d, b-c)
T(a, b) - T(c, d) := I(a-d, b-c)
I(a, b) * c := I(a*c, b*c)
I(a, b) / c := I(a/c, b/c)

D(a, b) < D(c, d) := true if b < c, false if a >= d, otherwise
NULL (uncertain)

D(a, b) <= D(c, d) := true if b <= c, false if a > d, otherwise
NULL (uncertain)

D(a, b) > D(c, d) := true if a > d, false if b <= c, otherwise
NULL (uncertain)

D(a, b) >= D(c, d) := true if a >= d, false if b < c, otherwise
NULL (uncertain)

D(a, b) = D(c, d) := true if a = b = c = d, false if b < c OR a
> d, otherwise NULL (uncertain)

D(a, b) <> D(c, d) := true if b < c OR a > d, false if a = b = c
= d, otherwise NULL (uncertain)

These rules follow the well known mathematical interval arithmetic. An informational link to a
definition of mathematical interval arithmetic is http://en.wikipedia.org/wiki/Interval_arithmetic.

Mathematical interval arithmetic is commutative and associative for addition and multiplication,
like ordinary arithmetic.

Mathematical interval arithmetic mandates the use of three-state logic for the result of
comparison operations, using a special value called "uncertain" to represent that a decision
cannot be made. The special value of "uncertain" is mapped to the NULL value in datetime
comparison operations.

3) Overflow and underflow condition checking is performed on the result of the expression, as
follows:

• For timestamp results

– A timestamp older than the oldest valid value in the time zone of the result produces
an arithmetic underflow condition.

– A timestamp newer than the newest valid value in the time zone of the result produces
an arithmetic overflow condition.

42 Version 1.0.0

http://en.wikipedia.org/wiki/Interval_arithmetic

DSP0202 CIM Query Language Specification

• For interval results

– A negative interval produces an arithmetic underflow condition.

– A positive interval greater than the largest valid value produces an arithmetic overflow
condition.

Specifications using the definition of these operations (for instance, query languages) should define how
these conditions are handled.

4) If the result of the expression is again a datetime type, the microsecond range gets converted
into a valid datetime value such that the set of asterisks (if any) determines a range that
matches the actual result range, or encloses it as closely as possible. The GMT time zone must
be used for any timestamp results.

For most fields, asterisks can be used only with the granularity of the entire field.

EXAMPLE: The following are datetime examples:
"20051003110000.000000+000" + "00000000002233.000000:000"
 evaluates to "20051003112233.000000+000"
"20051003110000.******+000" + "00000000002233.000000:000"
 evaluates to "20051003112233.******+000"
"20051003110000.******+000" + "00000000002233.00000*:000"
 evaluates to "200510031122**.******+000"
"20051003110000.******+000" + "00000000002233.******:000"
 evaluates to "200510031122**.******+000"
"20051003110000.******+000" + "00000000005959.******:000"
 evaluates to "20051003******.******+000"
"20051003110000.******+000" + "000000000022**.******:000"
 evaluates to "2005100311****.******+000"
"20051003112233.000000+000" - "00000000002233.000000:000"
 evaluates to "20051003110000.000000+000"
"20051003112233.******+000" - "00000000002233.000000:000"
 evaluates to "20051003110000.******+000"
"20051003112233.******+000" - "00000000002233.00000*:000"
 evaluates to "20051003110000.******+000"
"20051003112233.******+000" - "00000000002232.******:000"
 evaluates to "200510031100**.******+000"
"20051003112233.******+000" - "00000000002233.******:000"
 evaluates to "20051003******.******+000"
"20051003060000.000000-300" + "00000000002233.000000:000"
 evaluates to "20051003112233.000000+000"
"20051003060000.******-300" + "00000000002233.000000:000"
 evaluates to "20051003112233.******+000"
"000000000011**.******:000" * 60
 evaluates to "0000000011****.******:000"
60 times adding up "000000000011**.******:000"
 evaluates to "0000000011****.******:000"
"20051003112233.000000+000" = "20051003112233.000000+000"
 evaluates to true
"20051003122233.000000+060" = "20051003112233.000000+000"
 evaluates to true
"20051003112233.******+000" = "20051003112233.******+000"
 evaluates to NULL (uncertain)

Version 1.0.0 43

"20051003112233.******+000" = "200510031122**.******+000"
 evaluates to NULL (uncertain)
"20051003112233.******+000" = "20051003112234.******+000"
 evaluates to false
"20051003112233.******+000" < "20051003112234.******+000"
 evaluates to true
"20051003112233.5*****+000" < "20051003112233.******+000"
 evaluates to NULL (uncertain)

D.2 Datetime BNF (Normative)

The Datatime grammar below uses BNF as defined in 0.

dt-decimal-digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" |
"9"

Allowed decimal digits

dt-single-quote = "'"

A single Quote

dt-two-time-digits = (2*2(dt-decimal-digit)) | ("**")

A two digit field for time. This field either contains two valid decimal digits or it contains
asterisks ("*"), which signifies that those digits are not significant.

dt-microsecond-digits = 6*6(dt-decimal-digit)
 | 5*5(dt-decimal-digit), ("*")
 | 4*4(dt-decimal-digit), ("**")
 | 3*3(dt-decimal-digit), ("***")
 | 2*2(dt-decimal-digit), ("****")
 | 1*1(dt-decimal-digit), ("*****")
 | ("******")

A six character field for microseconds. The lower order digits may be specified as a field of
asterisks ("*"), which signifies that those lower order digits is not significant.

dt-datetime = dt-single-quote,
 (dt_timestamp-specification | dt_interval_specification),
 dt-single-quote

See the CIM Infrastructure Specification (DSP0004) for a detailed description of the use of a
datetime .

A timestamp with the year field set to 0000 is interpreted as the year 1 BCE. A year field set to
0001 is interpreted as the year 1 CE.

dt-timestamp-specificaton = (14*14("*")
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit))

A wildcard timestamp specification

44 Version 1.0.0

DSP0202 CIM Query Language Specification

| (4*4(dt-decimal-digits), "**********",
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit))

A timestamp specifying a precision of years

| (6*6(dt-decimal-digits), dt-two-time-digits, "******",
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit))

A timestamp specifying a precision of months

| (8*8(dt-decimal-digits), dt-two-time-digits, "****",

 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit))

A timestamp specifying a precision of days

| (10*10(dt-decimal-digits), dt-two-time-digits,"**",
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit))

A timestamp specifying a precision of minutes

| (12*12(dt-decimal-digits), dt-two-time-digits,
 ".", ("******"), ("+"|"-"), 3*3(dt-decimal-digit))

A timestamp specifying a precision of seconds

| (14*14(dt-decimal-digits),
 ".", (dt-microsecond-digits), ("+"|"-"), 3*3(dt-decimal-
digit))

A timestamp specifying a precision of microseconds

dt-interval-specification = ((14*14("*"), ".", ("******"), (":"),
3*3("0"))

A wildcard interval specification

| (8*8(dt-decimal-digit) | ("********")), ("******"),
 ".", ("******"), (":"), 3*3(dt-decimal-digit))

An interval specifying a precision of days

| (8*8(dt-decimal-digits), dt-two-time-digits, "****",
 ".", ("******"), (":"), 3*3(dt-decimal-digit))

An interval specifying a precision of hours

| (10*10(dt-decimal-digits), dt-two-time-digits,"**",
 ".", ("******"), (":"), 3*3(dt-decimal-digit))

An interval specifying a precision of minutes

| (12*12(dt-decimal-digits), dt-two-time-digits,
 ".", ("******"), (":"), 3*3(dt-decimal-digit))

An interval specifying a precision of seconds

Version 1.0.0 45

| (14*14(dt-decimal-digits),
 ".", (dt-microsecond-digits), (":"), 3*3(dt-decimal-digit))

An interval specifying a precision of microseconds

Annex E Additional Query Language Features (normative)
Section 6.4 defines the features required for CQL support. The following subsections each describe
additional CQL features.

The features described in this section are all experimental and may change as a result of implementation
experience.

E.1 Simple Join

The from-criteria production from Basic Query is enhanced to support a join of two elements defined
by from-specifier.

from-criteria = <as specified in Basic Query>

| from-specifier "," from-specifier

E.2 Complex Join

The from-criteria production from Simple Join is enhanced as follows.

The FROM clause shall support a join of more than two from-specifiers.

from-criteria = <as specified in Simple Join>

| from-specifier *("," from-specifier)

E.3 Subquery

The from-specifier production from Basic Query is enhanced as follows.

subquery = select-statement

A subquery is defined by a select-statement

from-specifier = <as specified in Basic Query>

| "(" subquery ")" identifier

This production defines identifier as a name by which the rows returned by the subquery
are identified. The subquery is self-defined. There is no correlation between identifiers used
within the select-statement of the subquery and those used within the select-
statement containing the subquery.

46 Version 1.0.0

DSP0202 CIM Query Language Specification

E.4 Result Set Operations

The DISTINCT and FIRST operators shall be supported and the ORDER BY clause shall be supported.
The Extended Select List feature is a prerequisite.

sort-spec = expr (ASC | DESC)

The specified expr shall be defined in the SELECT clause. Properties resulting from the
specification of a star-expr as the selected-entry can be subject to sorting. NULL VALUES
are considered "higher" than all other VALUES . If the ORDER BY clause does not completely
order the instances of the result set, instances with duplicate VALUES in sorting properties will
be displayed in an arbitrary order.

sort-spec-list = sort-spec *("," sort-spec)

The sort-spec entries are listed in order of sorting preference; the first entry on the list defines
the primary sort order of the query result.

select-statement = <as defined in Basic Query>

| SELECT [FIRST unsigned-integer] [DISTINCT] select-list
 FROM from-criteria
 [WHERE search-condition]
 [ORDER BY sort-spec-list]

If DISTINCT is used, all but one of each set of duplicate rows will be eliminated from the result
set. Two instances are considered duplicates of one another if and only if the VALUES of all of
the properties (including those of embedded instances), are equal after the projection operation
has been executed. When determining duplicates, two NULL VALUES are considered equal.

If FIRST is used, the result set will contain only the first n rows. Typically, this clause is used
with ORDER BY to define a specific and repeatable sort order of the results and then to define
the number of instances to return. Note that the sort order for string or char16 data is defined by
the rules for operator “=”, operator “<”, and operator “>” in the Comparison section. Note that if
DISTINCT is also specified, the duplicate entries are eliminated before the FIRST n instances
are determined. If n instances do not exist, then all the available instances are returned and the
query completes normally.

arg-list = <as defined in Basic Query>

| DISTINCT expr

This production specifies that only distinct VALUES selected by the expression shall be used
as input to the query language function.

Version 1.0.0 47

E.5 Extended Select List

The select-list:

• shall support functions

• shall support CLASSQUALIFIER and PROPERTYQUALIFIER

• shall support the AS construct for property aliasing

An underlying assumption is that function support in the Select list requires the AS construct to provide a
column name.

selected-entry = <as defined by Basic Query>

| expr AS identifier

To avoid duplicated column names in the query result, the "AS identifier" clause is used to
explicitly specify a name. If the "AS identifier" clause is not present, then the selected entry
shall be a property reference and the expr itself (minus any whitespace) is taken as the name
of the corresponding result column.

The "AS identifier" clause shall be used for all forms of expr that do not resolve to a
property name. This includes the use of functions and all forms of arithmetic expressions.

chain = <as defined in Basic Query>

| identifier1 PROPERTYQUALIFIER identifier2

This production refers to a property qualifier. identifier1 shall unambiguously identify a
property (see 7.1.1), and the type of the expression is the type of that qualifier. If the property
does not expose a qualifier with this name, the qualifier's default value applies.

| chain "." identifier "#" literal-string

chain, and identifier1 together identify a property, as described in 7.1.1. This production
refers to the value of a property qualifier from that property, and the type of the expression is
the type of that qualifier. If the property does not expose a qualifier with this name, the qualifier's
default value applies.

| chain CLASSQUALIFIER identifier

chain shall be of type object of C for some class C. This production refers to a qualifier on that
class, and the type of the expression is the type of that qualifier. If the class does not expose a
qualifier with this name, the qualifier's default value applies.

E.6 Embedded Properties

The query shall support the ability to reference the properties of the embedded instance.

chain = <as specified in Basic Query>

| chain "." identifier

chain shall have a type of object of C for some class C.

identifier shall be the name of a property. For details on the selection of the identified
property, see 7.1.1. The type of this production is the type of the property.

48 Version 1.0.0

DSP0202 CIM Query Language Specification

| chain "." identifier "#" literal-string

chain, and identifier together identify a property, as described in 7.1.1. This production
forms a symbolic constant based on the VALUES and VALUEMAP qualifiers (see 7.1.4). The
type of this expression is the type of the identified property.

E.7 Aggregations

The query shall support aggregation functions in the select clause. The Extended Select List feature is a
prerequisite, (see E.5.) The Conversion Utilities feature is a prerequisite, (see E.14.)

These functions are valid only within the select-list. If the select-list contains any aggregating
expressions, then all items in the select-list shall be aggregating expressions. In this case, the
result set contains one row and the aggregating expressions operate on the rows determined by the
WHERE clause. An aggregating expression is an expression with at least one aggregation function, in
which any properties are used only in the expression representing the argument of an aggregation
function.

• COUNT([DISTINCT] expr)

This function counts the number of rows for which the argument is non-NULL. If DISTINCT is
specified, then COUNT counts the number of different non-NULL VALUES that the argument
assumes. The set of rows that COUNT considers is affected by including FIRST or DISTINCT
on the select-statement. The result type is uint64.

• COUNT(*)

COUNT(*) is a special function returning the number of rows the query selects. The value
returned by COUNT is affected by including FIRST or DISTINCT on the select-statement.
The result type is uint64.

• MIN(expr), MAX(expr), SUM(expr)

These functions all act analogously to the like-named SQL functions. The argument to each
function must have a numeric type; the result is of the same type as the argument. The result
type is the same as the type of expr.

• MEAN(expr), MEDIAN(expr)

These functions compute the mean and median, respectively, of the distribution represented by
the non-NULL VALUES that the arguments assume. The result type for MEAN is real64. The
result type for MEDIAN is the type of expr.

E.8 Regular Expression Like
The WHERE clause shall support for the like-predicate with the capabilities defined in C.2.

comp = <as specified in Basic Query>

| arith LIKE arith

Both sides of the LIKE comparison must have a string or char16 type; the result has a Boolean
type. The LIKE comparison allows a string or char16 to be tested by pattern-matching, using
special characters in the pattern on the right side (see C.2).

If either arith is NULL, then the production evaluates to NULL.

Version 1.0.0 49

E.9 Array Range
The query shall support the full range of array-index-list productions in order to compare Array properties with
Non-Array properties as described in 5.6 or in order to compare parts of arrays.

The WHERE clause shall support the array-comp production.

array-index-list = <as defined in Basic Query>

| array-index "," array-index

The array-index-list specifies one or more elements of an array.

| "*"

This array-index-list refers to all the elements of the array.

| ""

This array-index-list refers to none of the array elements. x [] is an empty array with the
same type as x, for any x with array type.

comp = <as defined in Basic Query>

| array-comp

Add array comparison.

arith-or-value-symbol = arith | value-symbol

array-comp = (ANY | EVERY) arith comp-op arith-or-value-symbol

arith shall have type array of T. Each element of arith 's value will be compared to the value
of the arith-or-value-symbol. If ANY is specified, the results of these comparisons are
combined as if by OR; if EVERY is specified, the results are combined as if by AND.

| arith-or-value-symbol comp-op (ANY | EVERY) arith

This production acts like the preceding one, except that the array value represented by arith
appears on the right side.

array-index = <as defined in Basic Query>

| expr ".." [expr]

Both expr VALUES shall have an unsigned integer type. The " . . " notation is used to specify
ranges of indices within an array.

| ".." expr

expr shall have an unsigned integer type.

50 Version 1.0.0

DSP0202 CIM Query Language Specification

E.10 Satisfies Array

The WHERE clause shall support the SATISFIES clause. This feature extends the Array Range feature.

array-comp = <as defined in Array Range>

| (ANY | EVERY) identifier IN expr SATISFIES "(" comp ")"

The SATISFIES construct makes identifier available as a name whose scope is the
included comp. expr shall have type array of T, in which case identifier will have type T
within comp. identifier shall not be the same as any name established by the from-
criteria and shall not be the same as any name established by any surrounding SATISFIES
clauses.

E.11 Foreign Namespace Support

The query shall support references to namespaces other than the one in which the query is executed.

Following is an additional production for class-path

class-path = <As defined in Basic Query>

| literal-string "." class-name

If specified, literal-string shall conform to the format of the namespacePath production
defined in the WBEM URI Specification v1.0 (DSP0207).

E.12 Arithmetic Expression

The query must support arithmetic expressions using +, -, *, and /.

factor = concat

| ("+" | "-") concat

When this production is used, concat shall have a numeric type, which will be the type of the
production.

If concat is NULL, then the production evaluates to NULL.

term = <as defined in Basic Query>

| term "*" factor

If term and factor both have numeric types, the production has a numeric type.

If term has a numeric type, and factor has a datetime type and evaluates to an interval,
then the production has datetime type and will produce an interval value.

If term has datetime type and evaluates to an interval, and factor has a numeric type,
then the production has a datetime type and will produce an interval value. The rules for
operations with datetime type operands are defined in D.1.

If term or factor is NULL, then the production evaluates to NULL.

No other type combinations are allowed.

| term "/" factor

Version 1.0.0 51

If term and factor both have numeric types, the production has a numeric type.

If term has a datetime type and evaluates to an interval, and factor has a numeric type,
the production has a datetime type and will produce an interval value. The rules for
operations with datetime type operands are defined in D.1.

If term or factor is NULL, then the production evaluates to NULL.

No other type combinations are allowed.

arith = <as defined in Basic Query>

| arith ("+" | "-") term

If arith and term both have a numeric type, the result has a numeric type.

If arith and term have datetime types, then refer to D.1 for a definition of the operation.

No other type combinations are allowed.

If arith contains multiple occurrences of arithmetic operators, normal mathematical
precedence rules apply.

If arith or term is NULL, then this production evaluates to NULL.

E.13 Full Unicode

The comparison operators shall behave as if the normalization defined in Character Model for the World
Wide Web 1.0: Normalization, section 4 "String Identity Matching", was applied and then the default
collation order defined in the Unicode Collation Algorithm was used on the resulting strings. Note that this
collation order accommodates most languages, without having to take any locales into account.

In CQL Basic Query the Unicode Collation Algorithm is not required, see 7.1.6.

E.14 Conversion Utilities

This feature adds support for conversion utilities. Use of conversion utilities in a select-list depends
on the Extended Select List feature.

chain = <As defined in Basic Query>

| identifier "(" arg-list ")"

identifier shall be the name of a query language function. See 7.2 for type rules of function
calls. The numeric, string, instance, path, pathname, and datetime functions shall be
supported.

NOTE: This syntax does not describe the invocation of a method defined on a CIM class.

E.15 Property Scope

The following production defines how properties are scoped by their defining class in CQL.

property-scope = class-path "::"

The scoping operator "::" provides a class within which the property name identifier is
interpreted. Generally, the class of the property is sufficient. However, if a property of a class is
covered by another property that has the same name and that belongs to a subclass, then the

52 Version 1.0.0

DSP0202 CIM Query Language Specification

"::" syntax is required to access the covered property when it is in the scope of the covering
subclass. Details on how to determine which property to use are provided in 7.1.1.

chain = <As defined in Basic Query>

| property-scope identifier

Property-scope declares that the identifier identifies a property exposed by the
property-scope classname (see 7.1.1). The type of the property is taken as the type of this
production.

| chain "." property-scope identifier

chain shall have a type of object of C for some class C.

identifier shall be the name of a property. For details on the selection of the identified
property, see 7.1.1. The type of this production is the type of the property.

For Basic Query, chain is restricted to a single class name or class alias bound in the FROM
clause because Basic Query does not support extraction of properties from embedded objects.

| chain "." property-scope identifier "#" literal-string

chain, property-scope, and identifier together identify a property, as described in
7.1.1. This production forms a symbolic constant based on the VALUES and VALUEMAP
qualifiers (see 7.1.4). The type of this expression is the type of the identified property.

For Basic Query, chain is restricted to a single class name or class alias bound in the FROM
clause because Basic Query does not support extraction of properties from embedded objects.

star-expr = <As in Basic Query>

| chain "." property-scope "*"

chain shall have type object of C for some class C. property-scope identifies some class
S. S shall be the same class as, or be a superclass of, class C; this production refers to all the
properties exposed by S, including those of S’s superclasses. Properties of subclasses of S are
not included in the set. The property list produced does not vary over the query.

Annex F CIM Query Template Language (normative)
This section defines an experimental, separate and optional pre-processing facility that supports the
conversion of CQL template strings into CQL strings.

The CQLT processing facility parses the input string from left to right for CQLT tokens. Each CQLT token
represents a CQLT variable named by identifier.

• The CQLT processor recognizes a backslash (\) as an escape character when the next
character is a single-quote (') (U+0027).
NOTE: The escaping of double quotes is not necessary within a literal string, because only single quotes
can be used to delimit string literals. If the entire CQLT string is put into an environment that uses double
quotes to delimit a string (for example, as a default value for properties in the MOF), then that environment
must define the escape rules for double quotes.

• If a non-escaped single-quote is encountered, detection of CQLT tokens is disabled until the
first character after a corresponding non-escaped single-quote.

Version 1.0.0 53

• While detection is enabled, the sequence "$"identifier"$" is recognized as a CQLT token.

• For each CQLT token encountered, the CQLT processor makes a string substitution for that
token and resumes parsing with the first character after the replaced token.

The string substitution replaces the token with the value of the CQLT variable as defined to the pre-
processing facility. The value of the CQLT variable must be a string value. Note that any occurrences of
the sequence "$"identifier"$" in that string value will not be replaced. The mapping of a CQLT
variable to a value is not specified here and must be specified where this facility is used.

CQLT tokens are semantically unrelated to the identifiers of the CQL query itself.

Unquoted $'s may not appear in the query template except as part of pre-processing tokens.

Following the convention on identifying a query language detailed in 6.1, the string "DMTF:CQLT" will
identify the CIM Query Template Language to represent the use of this pre-processing capability for CQL.

7.5 CQLT Examples

Following are three examples which show the input to a query template processor and the output from
that processor.

1) Define a template for retrieving instances of the class identified by the targetClassName
variable.

Assuming the value of targetClassName is "CIM_StorageExtent", the CQLT would translate
the following string:

SELECT *
FROM $targetClassName$

into
SELECT *
FROM CIM_StorageExtent

2) Define a template for requesting account information about the entity identified by the UserID
variable.

Assuming the value of UserID is "guest", the CQLT processor would translate the string
SELECT *
FROM CIM_Account
 WHERE UserID = $UserID$

into
SELECT *
FROM UserID = 'guest'

3) Define a template that allows the filter condition of a CIM_IndicationFilter to be restricted to a
particular provider and with a selectable level of severity.

Assuming the value of TemplateVariable[0] = 'AcmeWidgets' AND TemplateVariable[1] = '2', the
CQLT processor would translate the string

SELECT *
FROM CIM_AlertIndication
WHERE ProviderName = $TemplateVariable[0]$
AND PerceivedSeverity > StringToUINT($TemplateVariable[1]$)

into
SELECT *

FROM CIM_AlertIndication
WHERE ProviderName = 'AcmeWidgets'
AND PerceivedSeverity > '2'

54 Version 1.0.0

DSP0202 CIM Query Language Specification

Annex G Acknowledgements(informative)
This document is based on an original WBEM Query Language Specification submitted by Patrick
Thompson of Microsoft.

The authors wish to acknowledge the following people.

Authors:
• George Ericson – EMC Corporation
• Jeff Piazza – Hewlett-Packard Company
• Andrea Westerinen – Microsoft Corporation

Contributors:
• Andreas Maier – IBM Corporation
• Oliver Benke – IBM Corporation
• Lee Vantine – EMC Corporation
• Aaron Merkin – IBM Corporation
• Brian Lucier – IBM Corporation
• Dave Sudlik – IBM Corporation
• Asad Faizi – Microsoft Corporation
• Jim Davis – WBEM Solutions, Inc.
•

Annex H Bibliography (informative)
This section contains a list of the external references and dependencies for this specification that are not
otherwise listed in the Normative References section (2).

DMTF, DSP0200, CIM Operations over HTTP Specification v1.3, draft

In this document, the term Unicode refers to the Universal Character Set (UCS), defined jointly by the
Unicode Standard and ISO/IEC 10646.

The Unicode Consortium, The Unicode Standard, version 4.1, ISBN 0-321-18578-1, as updated from
time to time by the publication of new minor versions. See
http://www.unicode.org/unicode/standard/versions for the latest version and additional information on
versions of the standard and of the Unicode Character Database.

ISO/IEC 10646:2003, Information Technology – Universal Multiple-Octet Coded Character Set (UCS)
as, from time to time, amended replaced by a new edition or expanded by the addition of new parts.
See http://www.iso.org for the latest version.

W3C, Working Draft, Character Model for the World Wide Web 1.0: Normalization, February 24, 2004,

The Unicode Consortium, Unicode Collation Algorithm (Unicode Technical Standard #10), as, from time
to time, amended, replaced by a new edition, or expanded by the addition of new parts. See Unicode
Consortium Web site for the latest version.

The Unicode Consortium, Unicode Regular Expressions (Unicode Technical Standard #18) as, from
time to time, amended, replaced by a new edition, or expanded by the addition of new parts.

Version 1.0.0 55

http://www.unicode.org/unicode/standard/versions
http://www.iso.org/
http://www.w3.org/TR/charmod-norm/
http://www.unicode.org/reports/tr10
http://www.unicode.org/reports/tr10
http://www.unicode.org/reports/tr10
http://www.unicode.org/reports/tr18

XQuery 1.0 and XPath 2.0 Functions and Operators, section 7.6.1 Regular Expression Syntax.

56 Version 1.0.0

http://www.w3.org/TR/xpath-functions

DSP0202 CIM Query Language Specification

Annex I Change Log (informative)

Version Date Author Description
0.1 2002/10 Initial release of the CIM Query Language definition.

Document is based on work in the WBEM Interoperability
Working Group and the original WBEM Query Language
proposed and documented in 2000.

0.2 2002/11 Corrected one example in Section 5 and acknowledged that
more examples/use cases need to be provided.

0.3 2003/01 Updates to the CIM Query Language BNF based on email
feedback from Dan Nuffer; Completion of Section 3.2; Addition
of information regarding what is returned by specific query
examples in Section 5.

0.4 2003/01 Clarified requirement for ISA function as mechanism to query
class inheritance/hierarchy, and added check for a class'
Version qualifier.

0.5 2003/09 Updated much of the text previously missing, defined
additional examples, clarified the text of the examples to
indicate that "query-specific" instances are returned, clarified
that _KEY is a complete instance path and that a property
value of "*" indicates all properties + _KEY, _CLASS and
_VERSION, added a section on naming of the returned "query
row instances" (3.2), corrected the BNF rules, cleaned up
many of the comments ("//") in the BNF, and added many
capabilities to the BNF and/or corrected BNF errors. The
ability to specify aliases and subqueries was also added at this
time.

0.6 2003/09 Updated internal document version number, corrected
example that still included the BETWEEN construct, and
defined requirement for properties to be returned in the order
specified in the SELECT clause.

0.7 2003/10 Updated internal document version number and made
clarification changes and minor corrections to the text and
BNF. Specifically, the following changes were made:

- CIM_ERR_NOT_SUPPORTED is ambiguous, used
CIM_Error instead

- Added ability to reference a specific-class-property-
identifier in select-string-literal

- Added [("."property-identifier)*] to specific-class-
property-identifier, deleted embedded_object in the
property-identifier definition, and deleted the
embedded_object definition – To allow arbitrary
depth of embedding in class_property_identifier

- Moved "alias" from class-list in the from-criteria
to the individual class-names in class-list

Eliminated recursive definition of sort-spec-list, and defined a
"sort-spec" entry

0.8/0.9 2004/01 Updated internal document version numbers and made many
changes simplifying and clarifying the text and BNF, based on
Interop and DMTF member review feedback. Also, added an
Acknowledgements Section.

0.10 2004/02 Many updates to deal with member comments.
_KEY renamed to _OBJECTPATH.
_CLASS renamed to _CLASSPATH.
_VERSION eliminated.

Version 1.0.0 57

58 Version 1.0.0

Version Date Author Description
Extended BNF to added support for Character and Arithmetic
operations.
Added Symbolic constants.

0.11 2004/03 George M Ericson Updates to cover review comments
Clarified CQL Feature:
Remove 'MAY NOT' clauses
Isolate complex Array processing from Basic
Do not include Array ANY/EVERY processing
Make consistent with ABNF: IETF RFC 2234. With several
exceptions called out.
Isolated URI BNF to appendix. Expectation that this will move
into WBEM URI spec and to reference RFC2396, or
equivalent.
Added ANY/EVERY/ SATISFIES syntax to clarify Array
element references.
Add use case for CREATEARRAY. "For MethodAction…"
Clarified descriptions for DISTINCT and FIRST
Agreed to include LIKE Posix API as optional feature. Simple
LIKE functionality is defined as a Posix subset, described in
chapter 3.3
Many editorial changes
Allow White Space between "." period operator. Added ","
operator to BNF to make explicit when White Space is not
allowed.
Make clear that Query does NOT execute intrinsic methods
Agree to capitalize all keywords. However, note that these are
not case sensitive.
Added production for parenthesization in arithmetic-
expression.
Switched from properties for Path elements to using Path
functions.
Removed all references to Qualifying Class.
Remove references to new errors. These can not be
introduced with this revision.
Add language that covers comparison between arrays for

• Bag: set match
• Ordered: element by element match to maxsize of

both arrays.
• Indexed: element by element match to maxsize of

both arrays.
Added Scoping: The incorporating identifier MAY be named in
an ISA comparison-predicate of the WHERE clause. This
serves to specify the class of the embedded object as used in
the select-list and the containing boolean-primary of the
search-condition. A different class MAY be compared to
in different boolean-primaries. The outermost ISA class in a
class-hierarchy that compares TRUE scopes the properties
that MAY be referenced in the select-list.
Add ISA back into the spec.
Implementation casts object paths to internal REFs and
compare based on the internal form. The implementation
should know alternative, equivalent forms of NamespacePath
and treat them all as equal.
Do not allow use of LIKE on result of OBJECTPATH(). Only
support =, <>.

DSP0202 CIM Query Language Specification

Version 1.0.0 59

Version Date Author Description
Add capability to make case in-sensitive comparisons. Add
UpperCase function.
Created and added table of conversions.
Added arithmetic-expression
Added Scopingclass function
Added use-case examples.
Defined QueryResult subclass usage
A reference is represented as an Object Path. A property that
is a reference MAY be named in the Select-Critera.
Add semantics for ANY/EVERY/SATISFIES as proposed by
Jeff.
Select classname.* returns only properties defined in named
class or its superclasses

0.12 2004/04 George M Ericson Updates to cover review comments
Made Scopingclass be ScopingType function
Clarify that Path_functions are part of the basic functions
Clarified prerequiste column
Clarified errors
Clarified string definition
Removed Truth VALUES from arithmetic expressions
Clarified Count
Clarified Regular Expression use by Basic and Regular
Expression Like.

0.13 2004/05 George M Ericson Updates to cover review comments
Simplify Basic Like
Clarify conversion table
Man y corrections

0.14 George M Ericson Review resolutions
0.15 George M Ericson More review resolutions. Accepted by Interop pending

resolution of set of issues
0.16 George M Ericson Resolution resulted in conversion to compilable BNF. This is a

significant revision.
0.17 George M Ericson Resolution of issues after conversion.
0.18 George M Ericson (Company Review Version, Version 1.0.0 Prelim)

Clarify that Timestamp 0 is 1 BCE; Remove notes from text.
1.0.0f 2005/12/15 George M Ericson Applied CRs WIPCR00251.001, WIPCR00231.009
1.0.0f 2006/02/02 George M Ericson Applied CRs WIPCR00255.002, WIPCR00242.007,

WIPCR00240.002
1.0.0f 2006/02/06 George M Ericson Applied CRs WIPCR00270.000.htm
1.0.0f 2006/02/08 George M Ericson Applied CRs WIPCR00272.002.htm, WIPCR00268.001.htm
1.0.0g 2006/02/10 George M Ericson Applied CRs WIPCR00261.002.htm, WIPCR00247.006.htm
1.0.0g 2006/02/15 George M Ericson Fixed typo wrt closing parenthesis after char-escape
1.0.0g 2006/02/16 George M Ericson Applied CRs WIPCR00245.008.htm, WIPCR00269.001.htm,

WIPCR00271.002.htm
1.0.0g 2006/02/27 George M Ericson Applied CRs WIPCR00266.001.htm, WIPCR00268.001.htm,

WIPCR00265.001.htm, WIPCR00264.000.htm,
WIPCR00263.000.htm, WIPCR00262.000.htm,
WIPCR00254.003.htm, WIPCR00248.001.htm

1.0.0g 2006/03/16 George M Ericson Applied CRs WIPCR00280.000.htm, WIPCR00282.000.htm
Updated reference numbers

1.0.0h 2006/03/22 George M Ericson Ballot version of the spec
1.0.0i 2007/04/12 George M Ericson cPubs ISO template update

60 Version 1.0.0

Version Date Author Description
1.0.0j 2007/05/01 George M Ericson cPubs ISO template update + cPubs comment resolutions
1.0.0k 2007/06/02 George M Ericson Added cPubs requested section lead-in paragraphs

Moved each non-basic feature to separate feature specific
Annexes. Applied WIPCR00398.003

1.0.0l 2007/07/23 George M Ericson Applied:

WIPCR00415.001: Move all experimental features to separate
clauses in Annex. This CR also finishes making updates
to implement cPubs recommendations.

WIPCR00418.002: Create Conversion Utilities and Property
Scope features.

WIPCR00420.002:
- Make Result Set Operations feature be dependent on
Extended Select List feature.
- Restrict select-list of Basic Query to allow only
properties of at most one class in the From list.
- Restrict Chain in Basic Query to not allow an embedded
property.
- Add boolean to type lattice.

WIP_CQLCR00002.002:
- Reflect change from ExecuteQuery to
OpenQueryInstances throughout specification.
- State that properties that are reserved words must be
qualified by ClassName.
- Update all examples to reflect accumulated updates.

1.0.0m 2007/08/13 George M Ericson Updates to cover review comments from Final ballot: Tracked
as issues #110, #111, and #113. (#112 was deferred to
v1.1)
- Issue #110 and #111: Updates to section (now 7.4)

Query Errors.
- Issue #113: Move was section 7 to now Annex F CIM

Query Template Language and mark as experimental
- Add new section 7 CIM Query Language

Considerations in front of prior subsections 6.5 and
clarify that contents apply to both section 6 for basic
and Annex E for extended features.

	Foreword
	Introduction
	1 Scope
	2 Normative References
	2.1 Approved References
	2.2 Other References

	3 Terms and Definitions
	4 Symbols and Abbreviated Terms
	5 Requirements and Concepts
	6 CIM Query Language (CQL)
	6.1 Identifying the CIM Query Language
	6.2 Query Language Type Lattice
	6.3 Query Functional Description
	6.4 Query Language Grammar
	6.4.1 Reserved Words
	6.4.2 Identifiers
	6.4.3 Class Paths
	6.4.4 Numeric Literals
	6.4.5 String Literals
	6.4.6 Expressions
	6.4.8 From Criteria
	6.4.9 Select Statement

	7 CIM Query Language Considerations
	7.1 Considerations of the Constructs in the BNF
	7.1.1 Property Identification
	7.1.2 Arrays
	7.1.3 Embedded Objects
	7.1.4 Symbolic Constants
	7.1.5 Computation and Types
	7.1.6 Comparisons
	7.1.7 Comparisons of Array and Scalar

	7.2 Query Language Functions
	7.2.2 String Functions
	7.2.3 Instance Functions
	7.2.4 Path Functions
	7.2.5 Datetime Functions

	7.3 Query Considerations
	7.4 Query Errors
	7.5 CQLT Examples

