
CIM System Model White Paper 1.0

June 17, 2003 1

CIM System Model White Paper
CIM Version 2.7

Document Version 1.0 June 10, 2003

Abstract
The DMTF Common Information Model (CIM) is a conceptual information model for
describing computing and business entities in enterprise and Internet environments. It
provides a consistent definition and structure of data, using object-oriented techniques.
The CIM Schema establishes a common conceptual framework that describes the
managed environment.

The CIM System Common Model defines computer system-related abstractions. Many
of the concepts related to computer systems derive from the CIM_System abstraction in
the Core Model. CIM_System describes the aggregation of 'parts' (or components) into a
single, manageable 'whole' (the system).

Besides the concept of the computer system itself, the System Model also addresses
components and functionality associated with most computer systems. These include
concepts such as file systems and files, operating systems, jobs, processes and threads,
and diagnostics. In addition, both general purpose and 'dedicated' systems can be
described. This is indicated using a simple enumeration (the Dedicated property in
CIM_ComputerSystem).

The goal of this paper is to overview the concepts that are currently modeled in the CIM
2.7 System Model. This paper mirrors the organization of the classes as they are
presented in the MOF and Visio diagrams.

CIM System Model White Paper 1.0

June 17, 2003 2

Notice

DSP150 Status: Preliminary

Copyright © 2003 Distributed Management Task Force, Inc. (DMTF). All rights
reserved.
DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management
and interoperability. Members and non-members may reproduce DMTF specifications and documents for uses consistent
with this purpose, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the
particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights,
including provisional patent rights (herein "patent rights"). DMTF makes no representations to users of the standard as to
the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third party patent
right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights, owners or
claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory whatsoever,
for failure to recognize, disclose, or identify any such third party patent rights, or for such party’s reliance on the standard
or incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any party
implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner or claimant, and
shall have no liability or responsibility for costs or losses incurred if a standard is withdrawn or modified after publication,
and shall be indemnified and held harmless by any party implementing the standard from any and all claims of
infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion, such patent may relate to or
impact implementations of DMTF standards, visit http://www.dmtf.org/about/policies/disclosures.php.

CIM System Model White Paper 1.0

June 17, 2003 3

Table of Contents
Abstract ... 1
Table of Contents.. 3
1 Introduction .. 4

1.1 Overview ... 4
1.2 Background Reference Material .. 4

2 The System Model ... 6
2.1 Background and Assumptions ... 6
2.2 Conceptual Areas Addressed by the Model .. 6
2.3 System Elements.. 6
2.4 File Elements ... 7
2.5 Operating System .. 9
2.6 Processing and Jobs ... 10

2.6.1 Process .. 10
2.6.2 Job & Concrete Job... 11

2.7 Services & Service Access Points .. 12
2.7.1 Services ... 12
2.7.2 Service Access Points ... 12

2.8 Time... 13
2.9 Unix ... 13
2.10 System Resources... 15
2.11 Logs.. 16
2.12 Diagnostics ... 16

3 Relationships to Other Standards and Specifications... 18
3.1 Overlapping Standards and Specifications .. 18
3.2 A Mapping of DMI MIFs into the Model.. 18
3.3 A Mapping of SNMP MIBs into the Model .. 18
3.4 A Mapping of the Unix Specification into the Model ... 18

4 System Model Use Case... 19
4.1 Server Example.. 19

5 Future Work ... 21
Appendix A – Change History.. 22
Appendix B – References ... 22
Appendix C – Extending the Model ... 22
Appendix D – Considerations for Implementation... 22

CIM System Model White Paper 1.0

June 17, 2003 4

1 Introduction

1.1 Overview
The CIM System Common Model defines computer-system related abstractions. Many
of the concepts related to computer system derive from the CIM_System abstraction in
the Core Model. CIM_System describes the aggregation of 'parts' (or components) into a
single manageable 'whole' (the system).

Important concepts related to a CIM_System are:

• Systems act as aggregation entities.
• Systems are not modeled as a collection.
• A system is more than the sum of its parts.
• Systems have status and they host services and access points.
• Systems are top-level objects that are frequently used to scope their aggregated

entities.

Besides the concept of the computer system itself, the System Model also addresses
components and functionality associated with most computer systems. These include
concepts such as file systems and files, operating systems, jobs, processes and threads,
and diagnostics. In addition, both general purpose and 'dedicated' systems can be
described. This is indicated using a simple enumeration (the Dedicated property in
CIM_ComputerSystem).

Note that there are no specific subclasses of CIM_ComputerSystem to describe purpose
or functionality (i.e., to distinguish a router, storage array, or print server, for example).
The Dedicated property exists to help classify a system, but functionality is defined by
the services that are hosted on (or are capable of being hosted on) the computer. Taking
this approach allows the instantiation of one computer serves multiple purposes – as a
router, print server and storage array – instead of having to create three instances of
different CIM_ComputerSystem subclasses. It is certainly conceivable that a single
system could provide multiple services and be 'dedicated' to several functions.

1.2 Background Reference Material
In addition to this white paper, more information can be found in the following
documents:

CIM Core and Common Models - Versions 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7 -
Downloadable from http://www.dmtf.org/standards/standard_cim.php

Common Information Model (CIM) Specification, V2.2, June 14, 1999 - Downloadable
from http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf

DMTF Specifications - Approved Errata - Downloadable from
http://www.dmtf.org/standards/standard_cim.php

CIM System Model White Paper 1.0

June 17, 2003 5

Unified Modeling Language (UML) from the Open Management Group (OMG) -
Downloadable from http://www.omg.org/uml/

Internet Engineering Task Force (IETF) - MIBs and Work Group information at
http://www.ietf.org

Core White Paper, DSP111, June 2003 – Downloadable from
http://www.dmtf.org/standards/published_documents.php#whitepapers

CIM System Model White Paper 1.0

June 17, 2003 6

2 The System Model

2.1 Background and Assumptions
It is assumed that the reader is familiar with the concepts and terminology presented in
the CIM Specification, CIM White Paper and Core White Paper. The System Model
extends from the class structures and framework of the CIM Core Model.

It is possible (and probable) that additional objects and properties will be defined in
subsequent releases of the System Model. The addition of classes, properties and
associations does not have the same impact as deletions and modifications. Additions do
not impact current Common and Extension Models. Existing application and
instrumentation code should continue to function.

2.2 Conceptual Areas Addressed by the Model
Many of the concepts related to computer system derive from the CIM_System
abstraction in the Core Model. CIM_System describes the aggregation of 'parts' (or
components) into a single manageable 'whole' (the system). Besides the concept of the
computer system itself, the System Model also addresses components and functionality
associated with most computer systems. These include concepts such as file systems and
files, operating systems, jobs, processes and threads, and diagnostics. Therefore the
Common System Model is broken down into the following conceptual areas:

• System Elements – Subclasses of System (ComputerSystem, Virtual, Cluster,
etc.)

• File Elements – Defines FileSystems, Files, Directories, NFS, etc.
• Operating System – Defines Operating System and its key relationships
• Processing and Jobs – Represents the processes, threads, and jobs
• Services & Service Access Points – Defines high-level clustering and boot

services and service access points
• Time – Defines a setting for fully describing a timezone
• Unix – Defines Unix-specific extensions
• System Resource – Defines system hardware and software resources
• Logs – Defines message logs and log records
• Diagnostics – Represents the actual diagnostic test, configuration for that test, and

their results

2.3 System Elements
As stated previously, many of the concepts related to computer system derive from the
CIM_System abstraction in the Core Model. This means System, and most of its high-
level subclasses, is actually defined in the Core Model and, therefore, they are not
defined in the System Model MOF. The subclasses that are in the System MOF include:

CIM System Model White Paper 1.0

June 17, 2003 7

• StorageLibrary
The storage library describes storage locations and media. Since a StorageLibrary
may be totally manual, it is not a subclass of computer system. When automated,
a computer system is a component of the library.

• ComputerSystem
The computer system describes a generic system that is used for computational
purposes. Therefore, a computer system requires both hardware and an operating
system. The role of the operating system is to control resources, execute code,
and etc). The operating system may be specialized firmware. Currently there are
three subclasses of ComputerSystem. They are VirtualComputerSystem, Cluster,
and UnitaryComputerSystem. However, further attempts to refine the Computer
System model with these categories of subclassing proved problematic. For
example, when trying to define a standard storage subsystem, where does one
subclass? For some implementations the storage subsystem might be a cluster,
others might be a unitary computer system, while other may be virtual computer
systems.

On the other hand, creating specific subclasses to describe system functionality is
also problematic. The functionality of the system should be described by the
services that are hosted or are capable of being hosted. Otherwise, the result is
individual subclasses for routing, storage, etc. It is conceivable that a single
system could provide all of these. Therefore, the Dedicated property should be
used to describe the primary functionalities the system supports.

These issues are being addressed by the System and Device working group.
Model changes regarding virtualization , clustering, and unitary computer system
are expected. Changes regarding ComputerSystem are not expected.

• AdminDomain
This is a special grouping of ManagedSystemElements. The grouping is viewed
as a single entity, reflecting that all of its components are administered similarly
(e.g., by the same user, group of users, or policy). It serves as an aggregation
point to associate one or more network devices (e.g., routers and switches),
servers, and other resources that can be accessed by end systems. This grouping
of devices plays an essential role in ensuring that the same administrative policy
and actions are applied to all of the devices in the grouping. The specific behavior
and/or semantics of the AdminDomain can be identified through its aggregated
and associated entities.

2.4 File Elements
File elements include the following:

CIM System Model White Paper 1.0

June 17, 2003 8

• FileSystem
Filesystem represents the file store and the services to access that store. It contains
information such as type, block size, path to root directory, read-only indication,
available space, etc. FileSystem further refines into remote or local file systems.

Filesystem is weakly associated to the ComputerSystem that controls it. The
mandatory HostedFileSystem association derived from SystemComponent
defines the relationship between a FileSystem and its “single” hosted system. The
FileSystem itself can only be hosted by one system. However, the abstract nature
of “system” itself allows the FileSystem to be distributed across many physical
systems.

The ResidesOnExtent association derived from Dependency represents the
relationship between a file system and the underlying storage where it is
“physically” located.

• LocalFileSystem

LocalFileSystem, derived from FileSystem, represents a file system that is
directly accessed by its ComputerSystem.

• RemoteFileSystem

RemoteFileSystem, derived from FileSystem, represents a file system that is
accessed using a network service.

• NFS

The NFS object and its associations describe the sharing of files between
Computer Systems. NFS functions by allowing the “export” of directories from a
Local File System and their “mount” by a remote Computer System. Mounted
directories are accessed as though they were local. The remote directories are
grafted into the Local File System. The relationships of “Export” and “Mount”
are described by associations of the same names below, with the Directory class.

• LogicalFile

LogicalFile is the superclass for various file types. A file is weakly associated to
the FileSystem on which it is located. LogicalFile further refines into directories,
data files, device files, symbolic links and FIFO pipes. LogicalFile contains
information such as name, size, access modes, etc.

The FileStorage association, derived from Component, represents the mandatory
relationship between a file and its FileSystem. This relationship is mandatory
since the definition of a file can only be guaranteed to be unique in the context of
its FileSystem.

CIM System Model White Paper 1.0

June 17, 2003 9

• Directory
Directory derives from LogicalFile. It is a type of file that contains a group of
LogicalFiles. Therefore, the mandatory FileStorage relationship is used to define
the directories that are contained by the FileSystem.

The DirectoryContainsFile association derived from Component represents the
relationship between a directory and the logical files it contains. A LogicalFile
can only belong to at most one directory.

The Mount association, derived from Dependency, represents the operation of
attaching at most one directory to a file system. Typically, the FileSystem
referenced by the Mount relationship is not the same FileSystem that is referenced
by the FileStorage relationship. Conceptually, the referenced FileSystem in
Mount is the result of the act of mounting versus the actual backing store. When
the directory’s FileStorage is remote (versus local), it is recommended that the
CIM_Export association be defined for remotely accessed/mounted Directories.

The Export association represents the local store for the exported directory.

• DeviceFile

DeviceFile derives from LogicalFile. It is a type of file that represents a device.

The DeviceAccessedByFile association, derived from Dependency, indicates the
device that is being accessed by the DeviceFile.

• SymbolicLink

SymbolicLink derives from LogicalFile. It is a type of file that refers to another
file, thus enabling the target file to be referred to by many names. On Unix, a
symbolic link contains the path to the target file.

• FIFOPipeFile

FIFOPipeFile derives from LogicalFile. It represents a type of file that is used as
an inter-process communication mechanism, where different processes read from
it and write to it in FIFO manner.

2.5 Operating System
An OperatingSystem is software/firmware that makes the ComputerSystem hardware
usable, and implements and/or manages the resources, file systems, processes, user
interfaces, services, etc., that are available on the ComputerSystem.

• BootOSFromFS
The BootOSFromFS is used to indicate from which file system the operating
system is loaded. To accommodate a distributed operating system, the operating
system may have relationships to many different file systems.

CIM System Model White Paper 1.0

June 17, 2003 10

• RunningOS
RunningOS is used to indicate which operating system is currently running on
which computer system.

• InstalledOS

InstalledOS is a short cut to indicate the computer system that contains the
underlying storage (disk drive or memory) for the operating system. To
accommodate a distributed operating system, this relationship would run to the
higher level computer system and that computer system is comprised of the
underlying computer systems. Since a computer system can have multiple
operating systems installed, a computer system can have multiple InstalledOS
relationships to various instances of operating system.

• OperatingSystemSoftwareFeature

The OperatingSystemSoftwareFeature is used to indicate the software features
that are part of the operating system.

2.6 Processing and Jobs

2.6.1 Process
Process represents a running program. A user of the OperatingSystem will typically see a
Process as an application or task. Within an OperatingSystem, a Process is defined by a
workspace of memory resources and environmental settings that are allocated to it. On a
multitasking System, this workspace prevents intrusion of resources by other Processes.
Additionally, a Process can execute as multiple Threads, all which run within the same
workspace.

• OSProcess
A process is weakly associated to the operating system that controls it. The
OSProcess association defines this relationship.

• ProcessExecutable

The ProcessExecutable association defines the relationship between a data file
and the process using it. The data file might be the file representation of the
process itself.

• ServiceProcess

The ServiceProcess relationship indicates if a Service is running in a particular
Process. It is also used to indicate, via the ExecutionType property, if the Service
started and is wholly responsible for the Process, or if the Service is running in an
existing Process, perhaps with other unrelated Services, which is owned or started
by a different entity. This association relates a Service with an externally visible
system signature.

CIM System Model White Paper 1.0

June 17, 2003 11

• Thread
Threads represent the ability to execute units of a Process or task in parallel. A
Process can have many Threads.

Each thread is weakly associated to its controlling Process. The ProcessThread
association defines this relationship.

2.6.2 Job & Concrete Job
Job is an abstract definition that represents a unit of work for a System, such as a print
job. A Job is distinct from a Process or Thread in that a Job can be scheduled. When
waiting to execute, a Job may be placed in a queue, or more generically, into a Job
Destination object.

• ConcreteJob
ConcreteJob is an instantiable subclass of the abstract Job class.

• ProcessOfJob

The ProcessOfJob aggregation defines the processes that are apart of the Job.

• AffectedJobElement
The AffectedJobElement relationship indicates that the reference element is
affected by the running of the job. This association contains a property,
ElementEffects, which describes the actual affect.

• OwningJobElment

The OwningJobElment relationship indicates the element that owes the job.

• JobDestination
JobDestination represents a Job that is submitted for processing (i.e., the logical
entity users ‘point to’ if they request a job to be processed). It is a representation
of the fact that this entity can accept jobs of specific types, and can process and
execute them appropriately. Job Destinations can be, but do not have to be,
queues. This association represents the fact that computing environments allow
users to submit specific types of requests, such as a print job, to a named resource
that is capable of processing this request. For the submitter, it is irrelevant
whether the named resource is a direct printer, a single queue with an attached
printer, or a complex queuing system with alternate, remote and backup queues
and device servers. Job Destinations can also represent aliases for other Job
Destinations.

Note that not all schedulers provide the explicit concept of a job destination. For
example, the UNIX cron(1) does not support the specification of the target by
name. The implicit ‘JobDestination’ is the OS with the processor. In these cases,
the modeler should consider whether the ‘artificial’ introduction of a single and
fixed JobDestination object provides value on the abstraction level.

CIM System Model White Paper 1.0

June 17, 2003 12

JobDestinations are hosted on Systems, similar to the way Services are hosted on
Systems. The HostedJobDestination defines the relationship between a
JobDestination and its hosting System. The JobDestinationJobs relationship
indicates the JobDestination for a particular Job.

2.7 Services & Service Access Points

2.7.1 Services
The Service class represents the configuration, operational data and management of
"function." The semantics are not about the function itself, but information needed to
manage it. For example, although you might have "email" or "word processing" services
on your computer, you would not use CIM to handle your individual mail messages, or
open and edit documents and files. You would use the native utilities and software of
your computer system. These are the operating and executing entities that implement
Services. CIM is used to describe the existence of email and word processing Services, to
configure them, and to diagnose them if a problem occurs. Currently, the specific
services defined for Systems are ClusteringService, BootService, OBBAlertService and
WakeUpService.

• Clustering Service
Clustering Service represents generic clustering functionality (e.g., add or evict a
node from the Cluster), and should be subclassed to add the properties and
methods required for particular types of clustering. For example, for a failover
Cluster, one might define a method that invokes an application’s proactive fail to
another node. It is assumed that the Clustering Service is hosted on the Cluster
System itself, whereas the Clustering SAPs (Service Access Points) are hosted on
the individual nodes of the Cluster.

• Boot Services

Boot Services represent the functionality provided by a Logical Device (such as a
Disk Drive with a bootable Partition, on which an Operating System is loaded),
software (such as the requirements of a Virtual Computer System), or a network
(such as BootP Services) to load an Operating System on a Unitary Computer
System. Boot Services can be hosted on any System, not just a Computer System,
since booting from the network is possible. Boot SAPs (Service Access Points)
are hosted on the Unitary Computer Systems themselves (e.g., the Systems
needing to boot).

2.7.2 Service Access Points
Designed as a complementary class to Service, ServiceAccessPoint models the utilization
and invocation of a Service. It represents a Service that is made available for use by other
entities. Access Points are not the APIs, DLLs, or OS commands; they are not the
definition to invoke Services (these are actually the software implementations of

CIM System Model White Paper 1.0

June 17, 2003 13

Services); but they are the abstraction of access to a Service. One could distinguish
Service and Service Access Points (SAPs) in the context of a “provider-consumer”
relationship. Service represents the current configuration and operational data of the
provided function, and Service Access Points are the way to manage the consumption (or
access) of that function.

In client-server terms, Service is the function at the server, while the SAPs are the
management of a client's use of the Service. Service represents the management of any
kind of function and is a very abstract concept. For example, on a personal computer, a
wide variety of Services may be running - word processing, presentation preparation,
email client, meeting scheduling (including a local/offline store), and much more. In
addition, when specific Services are not locally available, they can often be accessed
using the network. Access could be modeled as instances of Service Access Points.

Examples of the latter are SAPs to pull email from a server, to print at a network printer,
or to pull the latest meetings from the corporate meeting database. In all of these
examples, there is actually a layering or dependency of Access Points. The application-
oriented Access Points are dependent on network access. Network access is modeled as
instances and subclasses of Protocol Endpoints, which are in turn subclasses of Service
Access Points in the CIM Network Model.

Currently, the specific service access points defined for System are ClusteringSAP and
BootSAP.

2.8 Time
TimeZone is a Setting that represents the various time zones that a system can use. For a
particular time zone, this class defines its name (long and short), when daylight savings
time starts and ends, when standard time starts and ends, and when this time zone
definition was or will be first used. The start and end times are defined by the values in a
combination of properties.

The ElementSetting relationship defined in the Core model is used to indicate the
ManagedSystemElement(s) that the TimeZone setting applies to.

2.9 Unix
The following represent class extensions that are specific to Unix-based operating
systems. The classes and properties are based on the Single Unix Specification (at
http://www.opengroup.org/onlinepubs/7908799/toc.htm) or the DMTF Unix MIF.
MappingStrings property qualifiers are used to indicate how the value is generated or
defined. For example, MappingStrings {"POSIX.TOG|pathconf|_PC_LINK_MAX"}
shows that the property value is generated by executing the pathconf command with the
input argument PC_LINK_MAX.

CIM System Model White Paper 1.0

June 17, 2003 14

• UnixLocalFileSystem
UnixLocalFileSystem derives from LocalFileSystem to represent a Unix file
system that is accessed directly by the computer system (i.e., without relying on a
file server). It introduces properties that are specific to a Unix filesystem, such as
the number of free inodes and total inodes. The statvfs system interface, as
described in the Single Unix Specification, defines the information that can be
retrieved for a file system. It is weakly associated to the computer system via its
super class LocalFileSystem. For a cluster, the file system is weakly associated to
the cluster.

• UnixProcess

UnixProcess derives from Process. It introduces properties that are specific to a
Unix process. These new properties represent values produced by the “ps”
command, as described in the Single Unix Specification. Since UnixProcess
subclasses from Process, it is weakly associated to the operating system that
controls it. The OSProcess association adequately defines this relationship.

• UnixThread

UnixThread derives from Thread. It introduces properties that are specific to a
Unix thread. These properties include information about scheduling policy,
concurrency level and contention scope. More details of the properties can be
obtained from the MOF and the Threads section in the Single Unix Specification
at http://www.opengroup.org/onlinepubs/007908799/xsh/threads.html. The values
for these properties can be found in sched.h and psched.h. As inherited from
Thread, it is weakly associated to the Process that controls it. The ProcessThread
association adequately defines this relationship.

• UnixProcessStatisticalInformation

UnixProcessStatisticalInformation derives from StatisticalInformation. It contains
the statistics that are specific to a Unix process. The statistics include information
about various aspects of memory utilization. Additionally, CPU utilization
statistics of the process and its children are also available. The
UnixProcessStatistics association is derived from Statistics to define the
relationship between a Unix process and its statistics.

• UnixFile

UnixFile derives from LogicalElement. It contains information specific to Unix
files such as the UID and GID owner, inode number, and various POSIX settings.
These new properties represent values produced by the ls and pathconf
commands, as described in the Single Unix Specification.
UnixFile does not derive from LogicalFile, because its properties also apply to
other types of Unix files such as directories, symbolic links, device files, etc.
Instead, UnixFile is tied to its corresponding LogicalFile by the FileIdentity
association, which derives from LogicalIdentity.

CIM System Model White Paper 1.0

June 17, 2003 15

• UnixDirectory

UnixDirectory derives from LogicalDirectory, which is a LogicalFile subclass. It
has one additional property that describes the maximum size of file allowed
within that directory. This value is produced by executing pathconf command
with input argument _PC_FILESIZEBITS, as defined in the Single Unix
Specification.

• UnixDeviceFile

UnixDeviceFile derives from DeviceFile, which is a LogicalFile subclass. It
contains information specific to Unix device files, such as major and minor device
numbers.

2.10 System Resources
System Resources are individually identifiable entities that are managed by software, and
are available for use by application software and/or LogicalDevices. Resources may be
shared and are allocated entities that are assignable, reservable, counted/tracked,
releasable, reset-able, etc.

Examples of software Resources are message queues, shared memory segments
(identified by a key value), and named pipes, while examples of hardware Resources (in
an x86 environment) are IRQs, DMA channels and memory mapped I/O.
SystemResource represents system resources that may be used by a device.

• AllocatedResource
AllocatedResource represents the relationship of a resource to a consuming
device.

• AllocatedDMA

AllocatedDMA specializes AllocatedResource to represent the relationship of a
DMA resource to a computing device.

• ResourceOfSystem

The ResourceOfSystem (a specialization of SystemComponent) relationship ties
resources to the owning system. The owning system is the system that provides
the context for the resource. The system may or may not provide the backing
implementation for the resource. For example, a print queue is managed in the
context of a specific print server.

• ComputerSystemResource

The ComputerSystemResource (a specialization of ResourceOfSystem) ties
resources to a single ComputerSystem. The ComputerSystemMappedIO,
ComputerSystemIRQ, and ComputerSystemDMA relationships further refine
the ComputerSystemResources from a ComputerSystem to an individual
resource.

CIM System Model White Paper 1.0

June 17, 2003 16

2.11 Logs
Logs include the following:

• MessageLog
MessageLog represents any type of event, error, or informational register or
chronicle. This object describes the existence of the log and its characteristics.
Several methods are defined for retrieving, writing and deleting log entries, and
maintaining the log.

MessageLogs can make use of three different associations to indicate their
backing store. LogInStorage is used to indicate that the backing store is
Memory, LogInDataFile, for a file, and LogInDeviceFile when the log is piped
to a device.

The UseOfMessageLog association is used to indicate the
ManagedSystemElement that is making use of the MessageLog.

The RecordInLog aggregation is used to place LogRecords into the MessageLog.

• LogRecord

The LogRecord object can describe the definitional format for entries in a
MessageLog, or can be used to instantiate the actual records in the Log. The latter
approach provides a great deal more semantic definition and management control
over the individual entries in a MessageLog, than do the record manipulation
methods of the Log class. It is recommended that the data in individual Log
entries be modeled using subclasses of LogRecord, to avoid the creation of
LogRecords with one property (such as RecordData) without semantics.

Definitional formats for LogRecords could be specified by establishing a naming
convention for the RecordID and MessageTimestamp key properties.

2.12 Diagnostics
Diagnostics include the following:

• DiagnosticTest
This specifies the actual test that is to be performed. It is expected that there will
be a subclass for every manufacturer of diagnostics. Diagnostic test is a subclass
of Service, and is therefore weakly associated to the system that hosts it. The test
can be started and stopped.
The DiagnosticTestForMSE indicates the possible Managed System Elements that
the diagnostic test can be run against.

CIM System Model White Paper 1.0

June 17, 2003 17

• DiagnosticSetting
This is used to store the configuration for a given test. The
DiagnosticSettingForTest indicates the relationship between the setting and the
test.

• DiagnosticResult
This specifies the result of the execution of the diagnostic test. The result is
weakly associated to the test that creates it. This is described by the
DiagnosticResultForTest relationship. In addition the DiagnosticResultForMSE
relationship indicates the Managed System Element that the test was executed
against.

Implementation feedback is driving changes and cleanup to the diagnostic model. These
changes are expected in version 2.8.

CIM System Model White Paper 1.0

June 17, 2003 18

3 Relationships to Other Standards and Specifications

3.1 Overlapping Standards and Specifications
A lot of the objects, properties, and association in the system models were mapped from:

• DMI MIFs (Management Information Format files, available at
http://www.dmtf.org/standards/standard_dmi.php

• SNMP MIBs (Management Information Bases, available at www.ietf.org)
• As stated previously, the Unix sub-model’s classes and properties are based on

the Single Unix Specification (at
http://www.opengroup.org/onlinepubs/7908799/toc.htm) or the DMTF Unix MIF.

3.2 A Mapping of DMI MIFs into the Model
The MappingStrings qualifiers are used to indicate how the CIM class property’s value
correlates to the DMI attribute. For example,

MappingStrings {"MIF.DMTF|System Hardware Security|001.4"}

shows that the property correlates to version 4 of the DMI “System Hardware Security”
group’s attribute ID # 1.

In general, the MIF mapping string takes on the form:

MappingStrings {“MIF.DMTF|<DMI group name>|<attribute ID>.<group version #>”}

3.3 A Mapping of SNMP MIBs into the Model
The MappingStrings qualifiers are used to indicate how the CIM class property’s value
correlates to the SNMP attribute. For example,

MappingStrings {"MIB.IETF|MIB-II.sysServices"}

shows that the property correlates to the sysServices object in the IETF’s MIB-II mib
definition.

In general, the MIB mapping string takes on the form:

MappingStrings {“MIB.IETF|<IETF MIB Name>.<object name>”}

3.4 A Mapping of the Unix Specification into the Model
The MappingStrings qualifiers are used to indicate how the CIM class property’s value is
generated or defined in the context of the Unix Specification. For example,
MappingStrings {"POSIX.TOG|pathconf|_PC_LINK_MAX"} shows that the
property value is generated by executing the pathconf command with the input argument
PC_LINK_MAX.

CIM System Model White Paper 1.0

June 17, 2003 19

4 System Model Use Case

4.1 Server Example

System
Components System

Component

System Component

System
 Components

System
ComponentFS

FS

Compound
Functionality

OS +

FileSystems + Files
+ SoftwareElements

OS

When examining a typical server, we are likely to find the following logical elements:

• Several installed operating systems, and one running operating system which has
jobs and processes

• Local and remote file systems that are composed of directories and files
• Devices such as a Monitor, Keyboard, Mouse, Hard Disk, Processor, Power

Supply, Fan, etc.
• Services and network interfaces that are hosted on the server itself, such as

diagnostic services and IP endpoints
• Services that are available to the server via service access points, such as a print

service

In addition, the server has physical aspects such as:
• A chassis or multiple chassis, which may be mounted in a rack
• Cards and components (chips) within chassis
• Locations for the physical entities

In the CIM environment, the server can be broken into its logical components (its
devices), related to its physical aspects (via association), and be referenced in
dependency and hosting relationships (such as the hosting of services and access
points). The logical aspects of a computer are shown below. (The elements denoted
in blue are defined in the System Common Model.)

CIM System Model White Paper 1.0

June 17, 2003 20

As regards the other boxes in the figure above:

• The high level abstractions (services, access points, devices, etc., denoted in
white) are defined in the Core Model.

• The specific subclasses of PhysicalElements (denoted in green) are defined in the
Physical Common Model.

• The specific subclasses of LogicalDevice (such as power supplies, fans, monitors
and keyboards) are defined in the Device Common Model.

• The asset aspects of Software are defined as instances of the SoftwareIdentity
class, found in the Core Model.

• The management of software deployment is addressed by the Application
Common Model.

Processes
Jobs

Operating
System(s)

Logical
Devices

Computer
System

Diagnostics
Services Service

Access
Points

Message
Logs

Files
Directory

File
System

Card(s)
Chassis

Physical
Elements

Software

CIM System Model White Paper 1.0

June 17, 2003 21

5 Future Work
• As mentioned in section 2.3, clean up work regarding the

VirtualComputerSystem, Cluster, and UnitaryComputerSystem class definitions is
underway for CIM V2.9.

• As mentioned in section 2.12, changes and cleanup to the diagnostic model will
be seen in CIM V2.8.

• Considerations for OperatingSystem provisioning will likely generate changes
regarding how an operating systems “type” and “version” are specified.

CIM System Model White Paper 1.0

June 17, 2003 22

Appendix A – Change History

Version 1.0 June 10, 2003 Initial Draft

Appendix B – References
[1] Common Information Model (CIM) Specification, V2.2, June 14, 1999 -
Downloadable from http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf
[2] Unified Modeling Language (UML) from the Open Management Group (OMG) -
Downloadable from http://www.omg.org/uml/

Appendix C – Extending the Model
As previously stated in section 2.3, extending the definition of system for specialization
is problematic. Most likely, any “system” specialization needs to be made as extensions
to Service, LogicalDevice, Capabilities, Settings, and/or StatisticalData.

Vendor extension for describing a specific diagnostic test are expected and encouraged.

Appendix D – Considerations for Implementation

1. Use of the System object should be limited to compound functional entities with
significance in the enterprise.

2. The Operating System reference in the Running OS association should also be
referenced in an instance of the Installed OS association.

3. Unitary Computer System’s Last Load Info property should be set to an entry from the
Initial Load Info array.

4. If the Operating System’s Distributed property is set to TRUE, all Computer Systems
running a single copy of the OS should be grouped together in a Cluster.

5. Creation of Computer System subtypes on the basis of hardware alone should be
avoided. If possible, subtypes should be defined by a combination of hardware
architecture and an operating system, which results in a “functional whole”.

6. Care should be taken that the Local File System is weak with respect to the same
Computer System that scopes the Storage Extent on which the File System resides.

7. If data is duplicated, take care that the correct items are appropriately related and that
the data is consistent across the objects.

