
CIM Metrics Model White Paper Version 2.7

June 9, 2003 1 of 32

Common Information Model (CIM) Metrics Model

Version 2.7

June 16, 2003

Abstract
The DMTF Common Information Model (CIM) is a conceptual information model for
describing computing and business entities in enterprise and Internet environments. It
provides a consistent definition and structure of data, using object-oriented techniques. The
CIM Schema establishes a common conceptual framework that describes the managed
environment.

The Metrics Model is just one component of a more general set of models for managing
runtime applications. The charter for the DMTF’s Applications Working Group concerning
metrics is the following:

The Application Working Group will define a common model for metric data. A
metric is a value that characterizes the state or performance of a resource, and could
be any of several data types, including both numeric and non-numeric values. The
DMTF’s Distributed Application Performance schema will be folded into this more
general Metric Model. Other common schemas may define extensions to the basic
Metrics Model, defining metrics specific to the schema domain. It is expected that
metrics would be used in gets, queries, indications, etc.

This work on metrics was completed initially as part of version 2.2 of CIM. This white paper
describes the unit of work concept of version 2.7 of the CIM Metrics Model, which takes the
model further.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 2 of 32

Notices
DSP# 0141 Status: Preliminary

Copyright © 2003 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and
interoperability. Members and non-members may reproduce DMTF specifications and documents for uses consistent with this
purpose, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the particular
version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights, including
provisional patent rights (herein "patent rights"). DMTF makes no representations to users of the standard as to the existence
of such rights, and is not responsible to recognize, disclose, or identify any or all such third party patent right, owners or
claimants, nor for any incomplete or inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall
have no liability to any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or incorporation thereof in its
product, protocols or testing procedures. DMTF shall have no liability to any party implementing such standard, whether such
implementation is foreseeable or not, nor to any patent owner or claimant, and shall have no liability or responsibility for costs
or losses incurred if a standard is withdrawn or modified after publication, and shall be indemnified and held harmless by any
party implementing the standard from any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third parties that have notified the DMTF that, in their opinion, such patent may relate to
or impact implementations of DMTF standards, visit http://www.dmtf.org/about/policies/disclosures.php.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 3 of 32

Table of Contents
Notices ..2
1. Introduction...4
2. The Metrics Model ...5

2.1 Background and Assumptions..5
2.2 Conceptual Areas Addressed by the Model...6
2.3 Understanding Base Metrics Model...6

2.3.1 Differences from the CIM Statistics classes ...6
2.3.2 Base Metric Class diagram..7
2.3.3 Association classes ..9
2.3.4 Combining providers of different vendors..9
2.3.5 Breakdown dimensions ...10

2.4 Understanding the UoW Model ...10
2.4.1 UoW with Metrics ...14

3. Relationships to Other Standards and Specifications ..18
3.1 Relationship of CIM Metrics to the ARM Specification...18
3.2 What is ARM? ..18
3.3 Differences and Equivalences ..19

4. Examples of the UoW Model...21
4.1 A Holistic Example of the Use of UoW Model...21

4.1.1 Unit of Work Definitions and Metric Definitions ..22
4.1.2 Units of Work and Metrics..23

4.2 Looking Forward, an Extended Use Case Example ..25
4.2.1 Situation...25
4.2.2 Solution..26
4.2.3 Local Measurements..26
4.2.4 Correlation ...29
4.2.5 Lessons Learned in this Model ...30

Appendix A – Change History ...32
Appendix B – References...32

Table of Figures
Figure 1: Base Metric Definition/Base Metric as Subclasses of CIM_ManagedElement......................................7
Figure 2: UoW Model – Metrics Model Version 2.7 ..12
Figure 3: Example Scenario ...22
Figure 4: Definitions Instance Diagram...23
Figure 5: Metric and UnitOfWork Instance Diagram..24
Figure 6: Scenario of a Distributed Business Action...25
Figure 7: Using CIM_UnitOfWork and CIM_UnitOfWorkDefinition...27
Figure 8: Instantiating CIM_UnitOfWork ...28
Figure 9: Using CIM_MetricDefinition ...28
Figure 10: Instantiating CIM_MetricDefinition ..29
Figure 11: Inter-System Correlation ..30

CIM Metrics Model White Paper Version 2.7

June 9, 2003 4 of 32

1. Introduction
This white paper describes the CIM Metrics Model, a set of classes to support
gathering and managing dynamic metric information. Effective with the current CIM
release, this work includes both a metric to gather the Unit of Work information
(Unit of Work metric), and another to work with single valued metrics (called Base
Metrics). Previously, through version 2.6 of CIM, the Metrics Model consisted
simply of the Unit of Work Model. Now that the Model has been extended in CIM
2.7, the term UoW Model is used to discriminate the Units of Work concept from the
other parts of the Metrics Model, which are labeled Base Metrics. UoW comprises all
classes that relate to the Units of Work concept.

1.1 Overview
The Unit of Work Concept - A prime goal of administrators is to ensure availability
and timely response of the application systems. In the first place, statistics,
aggregated metrics, as well as indications are used as indicators for performance
problems and system failures. The continuous observation and comparison against
thresholds of these statistics, metrics, and indications is what application monitoring
is about. In order to calculate these statistics, “raw” measurement data is needed.
Such data is ideally produced by the instrumentation of the application and describes
an instance of an individual operation or software "action" executed by the
application system. The operation or action may address the entire response to a
user’s request or part of the response, such as the "important" part of a database
access that is required to fulfill the user’s request, or a combination of both. Every
time the request comes in, the instrumentation determines the measurements for
which it was built - resulting in the calculation of a metric and/or some measurement
of a unit of work.1

The values that are measured may comprise the duration of the operation or action,
the amount of memory used, the business process the unit of work belongs to, etc.
Once the unit of work has been measured, the data can be used either internally for
statistics and aggregated metrics calculation or is surfaced by means of an agent to
some management application that regularly collects the data and performs
additional calculations.

Getting unit of work data and using it as a basis for monitoring is only the first half
of the story. Detecting a performance bottleneck does not mean that the cause is
known. The analysis of the problem starts with the detection. So, additional business
process-specific statistics may be needed to get closer to the source of the problem,
since pre-defining statistics for all possible views of a complex system is very
difficult. Analysis statistics can only be provided if the unit of work data is available
for calculation. It is likely that the activity of individual business actions must be
investigated in order to get down to the cause of a failure or bottleneck. Therefore,
the measurement data of an individual unit of work is needed. The analysis problem

1 Note that the term ‚unit of work’ can be defined arbitrarily and does not need to correspond to a
transaction.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 5 of 32

is even more complex if the business action spans over several services or systems,
and thus a net of related unit of works makes up the business action.

The principal goals of the UnitOfWork Metrics Model are as follows:

1. Define a model for representing UnitOfWork metrics and their definitions; an
instance of a metric should exist only when a definition of its characteristics
is present. Stated differently, a metric exists only within the scope of its
definition. This allows, among others, the enumeration of all the metric
instances for a given metric definition.

2. Provide a mechanism for dynamically (i.e., at runtime) associating both
metrics and their definitions with a logical element.

The Base Metric Concept - The base metrics concept generalizes the previously
introduced UoW concept. It is not only focused on raw data related to response times
of requests or actions, but allows modeling any type of raw and aggregated metrics.
It also adheres to the separation of meta data (definitions) and the values, which
alleviates all cases where late bound data retrieval mechanisms are needed.

2. The Metrics Model
2.1 Background and Assumptions
The Metrics Model began with the Unit of Work metric. The UoW Model was
originally within the DAP (Distributed Application Performance) Working Group
(later renamed the Metrics Working Group). The focus of DAP was specifically to
develop a CIM Schema for measurement information about units of work, such as
would be measured with Application Response Measurement (ARM) tools and
standards. The original scope was oriented around modeling the concept of the
UnitOfWork.

The UoW Model today includes the classes and associations to model the concept of
UnitOfWork, the definition of UnitOfWork, the creation of instances of UnitOfWork
and the metrics associated with a UnitOfWork.

In 2000, the DMTF Applications Working Group began to develop a model
specifically for the management of runtime applications (the initial applications
model deals primarily with software distribution). One of the specific objectives of
that work was the modeling of metrics, such as counters and gauges. It became
apparent that the UoW Model of the Metrics group and the work of the Applications
Working Group on metrics had common objectives so the groups were merged so
that the current and future work of the Metrics Model is expected to be part of the
Applications Working Group.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 6 of 32

2.2 Conceptual Areas Addressed by the Model
What are the major issues that are tackled by the CIM Metrics Model?

1. Addressing performance, availability, and fault management.

2. Delivering flexible, dynamically extensible meta data with very fine
granularity.

3. Identifying (or associating to) individual operations, software actions, or
generic managed resources – like resources of an operating system.

4. Publishing the semantics of the measurement data, i.e., providing a definition
for the management application in order to understand what the data means.

5. Relating the measurements to the entity (application system, service,
component, etc.) that executed the measured operation or action.

For the UoW model, the following issues are also important:

6. Showing the currently pending or recently finished actions.

7. Relating the measurements hierarchically (granularity) as well as sequentially
(correlation).

The measurement data that is to be described with the Metrics Model is not
necessarily provided by application instrumentation (i.e. intrusively), but
instrumentation is the more powerful means to provide the right semantics needed
for fault and performance management. Non-intrusive measurements are applicable
if existing, non-instrumented applications need to be considered.

CIM Metrics may be based on top of existing performance measurement
infrastructure, so that no data is replicated. In this case, CIM is only used as a
standardized interface to existing performance gatherers. As CIM is an open
standard, in the future customers may combine best-of-breed performance tools for
various needs (like storage management, operating system, or middleware
applications) from different vendors and feed the (correlated) data into other systems
management applications of their choice.

2.3 Understanding Base Metrics Model
CIM users often desire metric objects that model designers have not provided. Rather
than fill more and more CIM Schema with standardized objects, the Metrics Model
supports externally defined metrics, which add dynamic properties to existing
classes.

2.3.1 Differences from the CIM Statistics classes

There are several differences between CIM Metrics and CIM Statistics classes
(CIM_StatisticalInformation or its newer equivalent, CIM_StatisticalData):

CIM Metrics Model White Paper Version 2.7

June 9, 2003 7 of 32

• Metrics always contain exactly one value with meta data associated to a
managed element, so metrics generally have a very fine granularity. Statistics
classes usually contain several properties. If the exploiter applications need a
given set of metrics together, and if this set can be identified beforehand for
all relevant exploiter applications, statistics have the advantage that they are
faster, because they transfer several metrics in one object instance.

• As a consequence of the fine granularity, it is possible to add meta data,
which precisely refers to only one property.

• Applications can reference to single metrics using associations, instead of
cumulated classes containing several metrics, which may not all be relevant
for the association.

• It is assumed that metrics define a variety of analyses (such as time series
analysis) on statistical or other numeric properties of CIM. So, "standard"
statistics are defined in subclasses of CIM Statistics or StatisticalData, while
these higher-order analyses are defined in metricse.

• Late binding-like concepts can be realized. As an example, it would be
possible to have a systems management application consuming data from a
performance monitor for storage-related metrics. The performance monitor
could be exchanged with a different performance monitor from another
vendor without the need of change in the exploiter application.

2.3.2 Base Metric Class diagram

Base Metric Definition instances and related Base Metric Value instances can be
associated to generic instances of subclasses of CIM_ManagedElement. By
traversing the associations between the metric instances and existing CIM resources,
it is possible to obtain all metric values associated to a given resource instance and
related to a given metric definition.

The class diagram looks like this:

CIM_ManagedElement

Caption : string
Description : string
ElementName : string

(f rom CIM_Core27.mof)

CIM_BaseMetricValue

InstanceId : string
MetricDefinitionId : string
MeasuredElementName : string
TimeStamp : datetime
Duration : datetime
MetricValue : string
BreakdownDimension : string
BreakdownValue : string
Volatile : boolean

(f rom CIM_Metrics27.mof)

+Dependent

+Antecedent CIM_MetricForME

CIM_BaseMetricDefinition

Id : string
Name : string
DataType : uint16
Calculable : uint16
Units : string
BreakdownDimensions[] : string

(f rom CIM_Metrics27.mof)

+Dependent

+AntecedentCIM_MetricDefForME

+Dependent+Antecedent CIM_MetricInstance

1

Figure 1: Base Metric Definition/Base Metric as Subclasses of CIM_ManagedElement

CIM Metrics Model White Paper Version 2.7

June 9, 2003 8 of 32

In the following, all important classes of the picture above are described.

Class CIM_BaseMetricDefinition

A CIM_BaseMetricDefinition instance represents the definitions aspects of a metric,
i.e., a definition template containing meta data about a new metric. Since
CIM_BaseMetricDefinition does not capture metric instance information, it does not
contain the value of the metric. The associated class CIM_BaseMetricValue holds
the metric value. The purpose of CIM_BaseMetricDefinition is to provide a
convenient mechanism for introducing a new metric definition at runtime and
capturing its instance values in a separate class. Vendors of managed resources may
make use of this mechanism if a small subset of a potentially large and
heterogeneous amount of performance-related data needs to be exposed. Additional
meta data for a metric can be provided by sub classing from
CIM_BaseMetricDefinition. The CIM_BaseMetricDefinition should be associated
with the CIM_ManagedElement(s) to which it is applied.

Properties:

• Id: key; OSF UUID recommended
This is an opaque key and has no special semantic meaning. The usage scenario
should be that the CIM client application may ask for all
CIM_BaseMetricDefinitions associated to a given resource.

• Name: descriptive name of the metric (like metric "RequestRate").

• DataType: standard CIM data type like string, sint32, ...

• Calculable: Non-calculable or Summable or Non-Summable.
− "Non-calculable": a string. Arithmetic makes no sense.
− "Non-summable": it does not make sense to sum this value over many instances of

BaseMetricValue. An example would be a metric that measures the queue length
when a job arrives at a server. If the average queue length when each job arrives
is 33, it does not make sense that the average queue length for 100 jobs is 3300. It
does make sense to say that the mean is 33.

− "Summable": It is reasonable to sum this value over many instances, such as the
number of errors.

• Units: identifies the specific units of a value, like Bytes or Packets.

• BreakdownDimensions[] (array of strings): Defines one or more strings that can be
used to refine (break down) queries against the BaseMetricValues along a certain
dimension. An example for a dimension is a transaction name, allowing a break
down of the total value for all transactions into a set of values, one for each
transaction name. Other examples would be application system name, or user
group name. The strings are free format and should be meaningful to the end
users of the metric data. The strings indicate which break down dimensions are
supported for this metric definition by the underlying instrumentation. It can then
filter out the metric it would like to use by looking at the Name property.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 9 of 32

Class CIM_BaseMetricValue

Each instance of CIM_BaseMetricValue represents a metric value.

Properties:

 InstanceId: key property.

 MetricDefinitionId: foreign key for CIM_BaseMetricDefinition.Id

 MeasuredElementName: descriptive name for the managed element being
measured.

 MetricValue: the measured value itself.

 TimeStamp, Duration: Time range to which the metric value applies.
TimeStamp identifies the time when the value of a metric instance is
computed. Note that this is different from the time when the instance is
created. For a given CIM_BaseMetricValue instance, the TimeStamp changes
whenever a new measurement snapshot is taken if Volatile is true. A
management application may establish a time series of metric data by
retrieving the instances of CIM_BaseMetricValue and sorting them according
to their TimeStamp.

Duration represents the time duration over which this metric value is valid.
This property should not exist for time stamps that apply only to a point in
time but should be defined for values that are considered valid for a certain
time period (e.g. sampling). If the "Duration" property exists and is not null,
the TimeStamp is to be considered the end of the interval.

2.3.3 Association classes

The associations are central to the Base Metrics Model.

To find out which metrics are available for a given resource, one has to traverse the
CIM_MetricDefForME association between CIM_ManagedElement and
CIM_BaseMetricDefinition.

Traversing from CIM_BaseMetricDefinition to CIM_BaseMetricValue can result in
the set of all metric values for a given base metric definition.

Finally, the CIM_MetricForME association can help find all metric values for a
given CIM_ManagedElement resource class.

2.3.4 Combining providers of different vendors
In enterprise server environments, it is expected to be common to have various CIM
metrics providers active at the same time. For example, there may be a database
monitor, a self-tuning systems management application with some externalized status
information, and a SAN monitoring application.

In CIM, each class has exactly one provider. Therefore, it is recommended that every
CIM metrics provider subclasses from CIM_BaseMetric and
CIM_BaseMetricDefinition (like IBMDB_BaseMetric and

CIM Metrics Model White Paper Version 2.7

June 9, 2003 10 of 32

IBMDB_BaseMetricDefinition). If an exploiter application would like to ask all
metrics providers, this is still possible due to the inheritance mechanisms
implemented in the CIMOM.

2.3.5 Breakdown dimensions
Some performance monitors allow break down of the value of some metrics along a
breakdown dimension, such as a process or a service class. This effectively adds
another dimension to the performance metric: you cannot only see the RequestRate
of a disk drive as a whole, but also the RequestRate initiated by a given process. It is
then easy see which process is the most active user of that disk resource.

2.4 Understanding the UoW Model
The unit of work concept stems from the original DAP Model whose objective was
to define a common model for probing the response time of distributed applications
in heterogeneous environments, at runtime. The unit of work measures time for some
work to be performed, and can attach other metrics to provide additional information.

Originally defined for transaction response time measurement, the Unit of Work
concept can be extended to address a variety of runtime entities, such as:

• Batch jobs

• User-initiated interactive operations

• Transactions executed under the control of a TP Monitor

• Short server transactions, such as a database read

• Round trip network delays

The term unit of work is used instead of “transaction” because the latter term may
imply specific behavior and, as the list above shows, there are many possible units of
work beyond mere transaction processing.

There are two primary properties to any unit of work measurement:

• Time it took to complete the unit of work (or elapsed time if still executing)

• Status of the unit of work: Active, Suspended, Completed (with unknown
state), Completed Good, Completed Failed, Completed Aborted

In addition, it is very useful to understand if a unit of work depends on another unit
of work, such as one invoking a second unit of work, waiting for data to be returned,
and then continuing processing. This relationship between a unit of work and its sub-
units may occur repeatedly and at multiple levels. The interplay and outcomes of the
units of work affect metrics and status. For example, it is common that a failure in a

CIM Metrics Model White Paper Version 2.7

June 9, 2003 11 of 32

sub-unit will cause its calling unit of work to fail, and this failure may then propagate
up the calling chain.

The central class of the UoW Model is CIM_UnitOfWork. It represents an individual
software action or operation – a unit of work. It has an identity (which is its key) and
provides contextual information (e.g. the UserName or MutualContextId) and, most
importantly, the response time measurement values along with the execution status
of the instance. Each instance needs to reference additional information that allows a
management application to understand the semantics of the unit of work. Therefore,
CIM_UnitOfWork instances are associated via CIM_StartedUoW to their
corresponding definition (CIM_UnitOfWorkDefinition). The unit of work instance
can also be related to an element (i.e. some instance of CIM_System, CIM_Service,
etc.) that executes/executed the unit of work via the association,
CIM_LogicalElementPerformsUoW.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 12 of 32

Figure 2: UoW Model – Metrics Model Version 2.7

An important feature of the model is the association CIM_SubUoW. The use of the
association allows correlation of instances of CIM_UnitOfWork. The correlation
may express several situations:

• Hierarchy: A high-level unit of work can be broken down to several smaller
units of work, i.e., the granularity of measurements is refined. Note, however,
that accumulating an overall response time from these smaller units of work
is often a complex and error-prone activity. Sub-transactions may execute

CIM Metrics Model White Paper Version 2.7

June 9, 2003 13 of 32

serially or in parallel and there are often small time components that are not
measured. Thus, ten sub-transactions running in parallel and all taking one
second to complete only delay the parent transaction one second, not ten
seconds. There has been discussion with the ARM community that additional
semantics be defined to indicate if a sub-transaction was blocking or non-
blocking, but this has not moved beyond the stage of discussion to date.

• Selective hierarchy: The execution of a high-level unit of work may be
refined by its "more important" fine-granularity sub-units and measurements.
Database access or communication to services outside the application during
the execution of a business action are examples of such selected and fine-
grained units of work.

Note that the semantics of CIM_SubUoW is not intended to model sequential
relationship of units of work, but for blocking and non-blocking hierarchical calls.

If the unit of work hierarchies are predefined and known before the execution of the
action or operation, CIM_SubUoWDef can be used to express the anticipated
relationships between the instances. A management application could use such
information to determine incorrect execution paths or to prepare graphical
representation of the results of the unit of work measurements. Note that an instance
of unit of work can only be associated to one parent. This is true because the sub-unit
can only be executing in the context of one parent. On the CIM_SubUoWDef side,
this is not true – since a definition can be used as a template in many higher level
definitions.

When using CIM_SubUoWDef and CIM_SubUoW for correlation, an important
issue is cross-namespace associations. Cross-namespace associations come up if the
entities that are associated reside in different namespaces (e.g. on different
machines), i.e., the instances of CIM_UnitOfWork are provided separately and so
would need to be associated by a cross-namespace association. Current CIMOM
implementations cannot resolve an association that possesses a reference that points
to another namespace (neither local nor remote). This general problem is not the
scope of the model. The possible solutions are:

• Organizing the providers in such a way that they operate against one
namespace

• Using a correlation information class that implicitly carries the necessary
correlation properties (see the extended use case example in Section 4 for
details). Some central manager would access the correlation information and
could provide the associations when needed.

As described, the correlation context of CIM_UnitOfWork instances is provided by
CIM_SubUoW association instances. Thus, the mutual context of CIM_UnitOfWork
instances has to be retrieved by following the associations between these instances
(associator queries). Still, the mutual context is not named explicitly. Naming the
context may be interesting for two situations:

• Displaying all CIM_UnitOfWork instances that participate in an action as a
whole (e.g. a table where each mutual context is a row and each participating
CIM_UnitOfWork instance is a column)

CIM Metrics Model White Paper Version 2.7

June 9, 2003 14 of 32

• Direct retrieval of CIM_UnitOfWork instances that participate in the same
context by using one query expression.

CIM_UnitOfWork.MutualContextId names such mutual context of
CIM_UnitOfWork instances. It should not replace CIM_SubUoW association
instances. It should support better recognition of distributed actions. Note that it is up
to the implementation of the model to generate and distribute the ID in order to
ensure that all participating CIM_UnitOfWork instances are consistently assigned the
proper mutual context ID.

2.4.1 UoW with Metrics

CIM_UnitOfWork can be extended with metrics. The metrics may have any
semantic and data type. Type and semantic are defined in CIM_MetricDefinition. In
contrast to version 2.6 of the Metrics Model, CIM_MetricDefinition inherits from
CIM_BaseMetricDefinition, which was newly introduced to version 2.7 in the effort
to generalize the metrics concept. The metric definition is always defined in
conjunction with at least one definition of a unit of work
(CIM_UoWMetricDefinition). It is not reasonable to define metrics that are not used.

Like the unit of work definition, the metric definition provides additional information
to a management application to understand the semantics and usage of the metric.
The value of a metric is maintained in a property in the CIM_UoWMetric
association. Providing the metric value by means of this association avoids cluttering
the model. The alternative was to model the value of the metric as an additional CIM
metric class. This additional class would still need the association to
CIM_MetricDefinition and an additional association to CIM_UnitOfWork. This
would result in many instances just to obtain a value.

The definition is kept separate from the values of unit of work and metrics because:

1. The model provides great flexibility due to the general semantics of the
classes. Therefore, the class definitions need not be changed in order to
provide new types of units of work. One needs only to create new instances.
Since there may be an infinite number of metrics, this seemed a preferable
modeling approach. Note that where "standard" metrics exist, subclasses of
these "basic" metric classes may still be defined.

2. Instances of CIM_MetricDefinition can be reused across many different
CIM_UnitOfWorkDefinition instances.

3. An alternative approach would be to define qualifiers of the unit of work
class. This approach has the same shortcomings of #1, above, and a few
additional ones. For example, more than one qualifier would be needed to lay
down the definition. And, no container is provided that shows the inherent
relationship of these qualifiers.

4. Another alternative would be to combine the properties of the unit of work
with its definition. This results in a duplication of the definitional information
in every instance, and therefore, model clutter and lack of reuse.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 15 of 32

CIM_UnitOfWork.Status and CIM_UnitOfWork.ElapsedTime may be indicators of
faulty system behavior or performance bottlenecks. But they are usually insufficient
to determine the cause of the fault or performance bottleneck. More detailed
information is needed. Such information is often provided by traces that are written
during the execution of the unit of work. The administrator needs to know whether
traces for some particular unit of work instance are available.
CIM_UnitOfWork.TraceLevel is the indicator to the admin about the fact that the
unit of work instance has traces. The trace level also defines the granularity of the
traces produced. It does not indicate where the traces are found and how they are
accessed.

The semantics of the trace level are usually implementation dependent. Therefore,
the management application may also need to discriminate different semantics (the
trace level type: CIM_TraceLevelType) as well as the actual encoding of the applied
types (i.e., whether the level is represented by a bit map or just plain numbers and
what the different possible levels mean). Note that the association
CIM_UoWDefTraceLevelType is not attached to CIM_UnitOfWork since it seemed
unacceptable to burden the potentially numerous CIM_UnitOfWork objects with
additional associations (as well as to prevent application code behind
CIM_UnitOfWork instances of the same definition to implement different trace level
encodings). In order to facilitate the detection of semantic difference of trace levels,
the TraceLevelType.InstanceId is replicated to
CIM_UnitOfWorkDefinition.TraceLevelTypeId. So, the management application is
not forced to traverse the association to the CIM_TraceLevelType in order to
determine such difference.

The following class descriptions are for the purpose of completeness in the
document. They briefly summarize the key points of the classes or add details not
listed above description nor stated in the MOF. Further class details can be found in
the corresponding MOF file.

Class CIM_UnitOfWorkDefinition

Derived from CIM_LogicalElement, the CIM_UnitOfWorkDefinition class describes
units of work (e.g. "transactions”) associated with a logical element. This class
represents the definitional components of a unit of work, and not the unit itself.
CIM_UnitOfWorkDefinition.Id is the key. A 16-byte value (OSF UUID is
recommended) that uniquely identifies this definition is expected.

NOTE: Today, UnitOfWork derives from logical element for historical reasons. One
of the open questions for future versions is the possibility of making it more general
by deriving it from CIM_ManagedElement in the future

Class CIM_UnitOfWork

Each instance of CIM_UnitOfWork identifies a transaction that is either in-process
or already completed. Because instances of 'in-process' CIM_UnitOfWork can be
very short-lived and there can be a great number of active instances, use of this class
as an instrumentation source for determining response time may be incorrect or
inefficient, unless the rate and duration of the UnitsOfWork are known. The intended
use is to respond to queries about currently active or recently completed units of
work. The length of time that a CIM_UnitOfWork instance exists after the unit of

CIM Metrics Model White Paper Version 2.7

June 9, 2003 16 of 32

work completes is not defined and should be assumed to be implementation-
dependent. This class is weak to its definition CIM_UnitOfWorkDefintion.

NOTE: It must be remembered that Description is a property of CIM_Managed
Element and therefore applies to this class. It is recommended that this property not
be used to reduce the size of the UnitOfWork class. Both this and Caption can be left
NULL.

The keys for CIM_UnitOfWork are:

• ID - This is a 64-bit signed integer that uniquely identifies the instance of the
unit of work within the context of an instance of
CIM_UnitOfWorkDefinition. The use of standard identifiers such as the OSF
UUID/GUIDs is recommended.

• UoWDefId – Propagated from the UnitOfWorkDefinition.

Some other properties of the CIM_UnitOfWork are:

• UserName – Representing the name of the user who started the UnitOfWork,
either a real login name or a logical name representing an application.

• StartTime – Time the UnitOfWork Started.

• ElapsedTime – Upon completion this property contains the total time that it
took the unit of work to complete. During execution, it represents the time
that the transaction has been executing.

• Status - An enumeration identifying the status of the UnitOfWork:

Status Value Additional Description

Active 1

Suspended 2

Completed 3 Should be used to represent a 'completed' transaction
whose status ('good', 'failed' or 'aborted') is unknown.

Completed
Good

4

Completed
Failed

5

Completed
Aborted

6 Should be used when a UnitOfWork has completed but
was not allowed to end normally. An example would be
when the Stop or Back buttons are selected from a web
browser, before a page is fully loaded.

Class CIM_MetricDefinition

CIM Metrics Model White Paper Version 2.7

June 9, 2003 17 of 32

The CIM_MetricDefinition class defines a metric that could be associated with a
CIM_UnitOfWork. It describes the metric value and behavior (meta data for the
metric).These metrics usually describe some aspect of a CIM_UnitOfWork such as
how much work was done, or the size of the CIM_UnitOfWork. For example, the
size of a print job or the number of pages printed could be metrics of a 'print' unit of
work. Almost all properties are inherited from CIM_BaseMetricDefinition.

The properties for MetricDefinition are:

• Validity - The property Validity is an enumerated value describing when the
Metric may be considered valid. Some metrics are valid only:

— at the beginning of a transaction (e.g., bytes to print),

—while the transaction is running (e.g., percent complete),

—when the transaction is finished (e.g., pages printed).

If a metric is valid at more than one of the enumerated values, such as both
when the unit of work starts and when it stops, it is recommended to not use
Validity, because it is defined as being single-valued (i.e., it is not an array of
possible values). The allowable values are: "atStart","inMiddle","atStop".

CIM_UnitOfWork.TraceLevel, CIM_UnitOfWorkDefinition.TraceLevelId,
CIM_TraceLevelType, CIM_UoWDefTraceLevelType

The following addresses questions on why the trace levels have been modeled as is:

 Why not make CIM_UnitOfWork.TraceLevel and
CIM_TraceLevelType.Values[] of type string instead of uint32?

It is unusual to use strings to define trace levels, in general, numeric values
are used. Therefore, computation is straightforward with uint32.

 Why have CIM_UnitOfWorkDefinition.TraceLevelTypeId?

In order to increase access efficiency. After looking at the trace level itself, a
user needs to know whether two identical trace levels have the same
meaning. So, the management application would need to query for the
corresponding TraceLevelTypeIds traverses the association between
CIM_UnitOfWork and CIM_UnitOfWorkDefinition, and then between
CIM_UnitOfWorkDefinition and CIM_TraceLevelType. This is two hops.
Placing TraceLevelTypeId in CIM_UnitOfWorkDefinition requires only one
hop to retrieve the information that trace levels are to be handled differently.

 Why have CIM_UoWDefTraceLevelType?

Since TraceLevelTypeId is already present in CIM_UnitOfWorkDefinition
(as a foreign key), direct access to the corresponding TraceLevelType
instance is guaranteed. In general, CIM requires that classes and their
instances should be related by associations and their instances, respectively.
Creation of so-called data islands (instances or entire sub-models that are not
associated to the rest of the model) is not desired, since management

CIM Metrics Model White Paper Version 2.7

June 9, 2003 18 of 32

applications could not navigate through such a model. So, removing
CIM_UoWDefTraceLevelType is not an option since CIM_TraceLevelType
created a data island. Eliminating CIM_UoWDefTraceLevelType and
determining another class to which CIM_TraceLevelType could be attached
to is beyond the scope of the current extension. So, for the time being,
CIM_UoWDefTraceLevelType is not wrong, supports the standard access to
CIM_TraceLevelType instances (query: associators of) and avoids data
islands.

Association class CIM_UoWMetric

The association between CIM_MetricDefinition and CIM_UnitOfWork has the
additional property Value. Value holds the current value of the metric defined by the
referenced metric definition. The value is only meaningful if
CIM_MetricDefinition.Validity is interpreted correctly. The value is expected to be
encoded as human readable string and not as an array of bytes (e.g. the number 16
(unit32) is encoded as Value =”16” and not as Value = {0x00, 0x00, 0x00, 0x10, \0}
or any other encoding).

All other associations have already been described in previous paragraphs.

3. Relationships to Other Standards
and Specifications

3.1 Relationship of CIM Metrics to the ARM Specification

The ARM (Applicatison Response Measurement) standard developed as a way to
instrument applications for measurement data about transactions response times from
the client point-of-view. The CIM UoW Model objective is the definition of the
information objects that will represent units of work, a generalization of the initial
problem of transaction response time measurement. ARM and the UoW Model are
grounded in the same fundamental concept, so it is not surprising that the UoW
Model can be used to represent data measured with ARM. While ARM and the UoW
Model were developed as components of a common solution to the problem of
capturing unit of work information, users are also free to use any other appropriate
instrumentation to populate the CIM UoW Model. The following two sections
provide some brief background about ARM and a mapping between ARM and the
CIM UoW Model.

3.2 What is ARM?
ARM was introduced in 1996 and arose from the necessity to define an
instrumentation standard that addressed response time measurements of applications.
ARM 1.0 and 2.0 described C APIs, and ARM 3.0 describes Java interfaces that are
to be implemented in an ARM agent. These APIs can be used to capture
identification, time between initiation and completion, and other metrics information.
They can be used to capture performance information for transactions or any

CIM Metrics Model White Paper Version 2.7

June 9, 2003 19 of 32

programming function where the time-to-complete is important. The decision to only
define APIs is due to the fact that some abstraction from the underlying
implementation was needed. The interfaces’ methods serve as the communication
between the measurement agent and the application. The ARM standard does not
define the characteristics of the resulting data, standards for communicating this data
to a management system, or APIs for the management system to work with ARM
information. The goal was simply to define the APIs that an application could use to
capture the information. Conceptually, these interfaces are very simple (like start(),
update() and stop(), with a few other supporting APIs).

In version 3.0, ARM interfaces address two different situations:

• The ARM agent is triggered by the application to do the
measurements (interface ArmTransaction)

• The ARM agent receives measurements already completed by the
application (ArmTranReport)

Both interfaces imply the same data structures to describe the response time, status of
the action, identity of the measured action, correlation data, and contextual data.
ARM’s concept of correlation is that the predecessor (described by a unit of work
token called the “parent correlator”) of the current action is stored with measurement
data.

ARM 3.0 also allows enhancing measurements about a transaction (and its inherent
response time metric) with up to seven additional metrics. Therefore, the interfaces
ArmTranReportWithMetrics and ArmTransactionWithMetrics are defined to extend
the respective transaction interfaces. The metrics fall into four pre-defined categories
(gauges, counters, non-calculable numeric values, and strings) and are described by
their tailored interface.

ARM requires the application to define the transaction and the metrics prior to the
first measurements received or executed by the agent. Thus, additional interfaces for
the definition of metrics and transaction types are specified (ArmTranDefinition,
ArmMetricDefinition).

3.3 Differences and Equivalences
The most obvious difference between ARM and the CIM Metrics Model is that ARM
defines an API that consists of interface methods, used in a pre-defined order. In
contrast, CIM_UnitOfWork and its associated classes define a data model that is an
abstraction of the metrics themselves and the actual instrumentation. Although the
ARM spec also provides diagrams that describe the data model that is implemented
by the API, the model has no formal data representation.

The following table lists the CIM classes and the approximate ARM equivalents:

UoW (CIM Metrics 2.7) ARM 3.0

CIM_UnitOfWork ARMTransaction
ARMTransactionWithMetrics

CIM Metrics Model White Paper Version 2.7

June 9, 2003 20 of 32

ARMTranReport
ARMTranReportWithMetrics

CIM_UoWDefinition ARMTranDefinition

CIM_MetricDefinition ARMMetricDefinition

CIM User Model ARMUserDefinition

CIM_UoWMetric ARMMetric
ARMTranReportWithMetrics.MetricValues

CIM_LogicalElementPerformsUoW ARMSystem, ARMSystemId

CIM_SubUoW ARMCorrelator

CIM_LogicalElementUnitOfWorkDef No equivalent

CIM_TraceLevelType No equivalent

There is no semantic gap between the ARM API and CIM, though clearly the ARM
classes are a particular implementation of the more abstract CIM Schema. The
following table compares the Metrics Model with ARM 3.0 at a more detailed level:

UoW (CIM Metrics 2.7) ARM 3.0

CIM_UnitOfWork ARMTransaction, ...

• StartTime

• ElapsedTime

• CIM_SubUoW.Antecedent

• CIM_SubUoW.Dependent

• Id

• MutualContextId

• TraceLevel

• StopTime

• ResponseTime

• ParentCorrelator

• CurrentCorrelator

• TransactionHandle

• No equivalent

• CurrentCorrelator.TraceFlag

CIM_UnitOfWorkDefiniton ARMTranDefinition

• Context

• TraceLevelTypeId

• ApplicationName

• No equivalent

CIM_MetricDefinition ARMMetricDefinition

• Calculable • Subclasses

CIM Metrics Model White Paper Version 2.7

June 9, 2003 21 of 32

• Units

• Datatype

• Validity

• No equivalent

• Subclasses

• ARMTransactionWithMetrics.
SetMetricValid()

Although, the CIM_UnitOfWork concepts matches ARM very well, some conceptual
differences can be identified. The most important difference addresses the metrics. In
contrast to ARM, CIM introduces a concept of metrics that is more flexible and more
general.

UoW (CIM Metrics 2.7) ARM 3.0

Model API

• No data access interface provided

• Abstracted from implementation

• Data access defined by methods

• Implementation issues (factories)

No pre-defined metrics types
(values=strings)

Pre-defined metric types (10 types)

Number of metrics not limited Max of seven metrics

4. Examples of the UoW Model
4.1 A Holistic Example of the Use of UoW Model
In order to demonstrate the usage of the UoW Model, a very simple example has
been chosen. The example uses all features of the model.

Assume a simple application system that browses a catalog (the Catalog Application
System). The catalog is stored in a database. The only function provided by the
system is searching the catalog. When a catalog search request is issued against the
system, the request is validated (format of the query) and handed to a component
(DB SAP = database service access point) that executes the DB query. Finally, the
results of the query are prepared for presentation and sent back to the requestor. The
system is intelligent enough to work on several requests in parallel.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 22 of 32

Catalog Application System

Catalog Search
Request

Elapsed Time
Memory Consumption

Elapsed Time
Bytes Read

DB SAP

DB
Catalog
Search
Action

DB Query

Validation

Presentation

Figure 3: Example Scenario

The developers need information on blocking requests, as well as detailed
performance information of the requests to optimally tune their catalog system and
database according to specific user needs. They want to measure the entire search,
including duration (elapsed time) and its memory consumption. Since the database
access is crucial they decide to also measure the DB query in terms of duration and
the bytes that have been received (read) from the database during each call.

4.1.1 Unit of Work Definitions and Metric Definitions

For the sake of simplicity, the classes of the Metrics Model have been used as is. It is
up to the designer to decide whether derivation is necessary or not. But, the
derivation for CIM_ServiceAccessPoint is necessary since this class is defined as
abstract, and so cannot be instantiated. The catalog system is represented by an
instance of CIM_ApplicationSystem (CatalogSearchSystem). The database access
component (DB SAP) is modeled as MY_DBSAP:CIM_ServiceAccessPoint
(DBAccess). The Hosted-relationship is not depicted, but DBAccess is assumed to be
hosted by CatalogSearchSystem. The application may be described by different
instances of CIM_LogicalElement.

As mentioned earlier, the system activity comprises two actions: the catalog search
and the database query, whereas the query is always executed within the scope of the
catalog search (nested unit of work). These two action types are modeled as different
instances of CIM_UnitOfWorkDefinition. Their nesting relationship is expressed by
an instance of CIM_SubUoWDef. Instances of
CIM_LogicalElementUnitOfWorkDef assign the definitions to the entity that
actually executes the units of work. In our case, this is CatalogSearchSystem and
DBAccess. In principle, the DBQuery definition could also be attached to
CatalogSearchSystem, since the system includes the service access point, too. The
definitions for units of work SearchAction and DBQuery are straightforward.
InstallDate and Status are omitted. The Id does not represented a GUID, which was a
deliberate choice (compare CIM_MetricDefinition instances). Context was chosen to
be the application name (CatalogSearchSystem). If the system participated in a
particular business scenario, one might choose a scenario name. Only the search
action writes traces. Therefore, the corresponding trace level type is attached to the
search action definition. The type ID is set to the instance ID of the

CIM Metrics Model White Paper Version 2.7

June 9, 2003 23 of 32

CIM_TraceLevelType instance. The trace level type expresses a simple trace level
encoding by means of numbers allowing for setting the trace implementation to off,
errors-only and verbose (errors and informational messages).

Figure 4: Definitions Instance Diagram

Since not only the elapsed time is expected to be measured, but also memory
consumption and the number of bytes read for the respective units of work, these two
additional metrics must be defined by instances of CIM_MetricDefinition. These two
instances are attached to the respective CIM_UnitOfWorkDefinition by means of
CIM_UoWMetricDefinition. The metric definitions’ Caption and Description are
omitted. ID is a GUID, Datatype corresponds to uint32, Validity is “atStop”.
MemoryConsumption.Calculable is “Non-Summable” since the amount of consumed
memory does not make sense to be summed up. BytesRead.Calculable was chosen to
be “Summable,” since it may be valid to calculate the overall throughput to the
database by summing up the values of the metric value.

The definitions are assumed to be static, such that the property values need no
modification during the lifetime of the definition instances. In order to keep the
example simple, no breakdown dimension is used.

4.1.2 Units of Work and Metrics

Now that the definitions are instantiated, let us look at the measurements themselves.
The figure depicts only one search action with its corresponding DB query, both
described as instances of UnitOfWork. The search was executed by the user

CIM Metrics Model White Paper Version 2.7

June 9, 2003 24 of 32

“MyUser”. The action started at March 8 2002:5:45:12.2 pm (GMT) and lasted 0.5
seconds. The mutual context is “11111122222”. It is an instance ID of the action and
is valid for both the search and DB access. The search action was completed
successfully (status = 4). If it was not yet completed, the status would be “Active”
(status = 1). The memory consumption of the search was 1453 kB. Traces on the
level of errors (TraceLevel = 1) are available. The nested DB query was executed at
March 8 2002:5:45:12.3 pm (GMT) and lasted 0.3 seconds. Thus, the validation and
presentation lasted approximately 0.2 seconds (approximately, since the impact of
the measurements is not considered). The query was also completed successfully
(status = 4). The number of bytes read during the query is 201 kB. The metric values
for memory consumption and bytes read are stored in the respective value property
of CIM_UoWMetric instances. No traces are available (TraceLevel = 1); this is
according to the definition of the unit of work. The instances of
CIM_LogicalElementPerformsUoW are used to attach search-units-of-work to
CatalogSearchSystem and the query-units-of-work to DBAccess.

Figure 5: Metric and UnitOfWork Instance Diagram

CIM_UnitOfWork.Caption and Description have been chosen to be empty for both
CIM_UnitOfWork instances.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 25 of 32

4.2 Looking Forward, an Extended Use Case Example
The following example creates a scenario that uses the current model but includes
functionality beyond the current UoW Model. It is included in this white paper
because it demonstrates a real-world utilization, demonstrates the use of the current
CIM Schema in cases where it must be significantly extended to solve the problem,
and also provides some insight into the future directions of the Metrics working
group. Note, however, that discussion of functionalities like correlation in this model
is not commitments by the work group to include this functionality in the model.

The following example does not use the standard in all its facets. Its scope is a CIM
description of unit of work data that adheres to the already existing, underlying data
structures without imposing an entire CIM hierarchy on the application, and surfaces
the data structures with minimal impact on the existing instrumentation. In addition,
the management application is chosen to be custom-tailored to the model presented
in this example. Look at the example as a transition model – between having no CIM
Schema at all, and having a holistic model as described in the previous section.

4.2.1 Situation

A user requests a business action (e.g. search for a catalogue item). The action
requires co-operation of several application systems (system A, B, C and D, running
on different hosts) for successful completion. Thus, the requested business action is
in fact distributed. In addition, each system may need to execute more than one local
action (system A and B). These local actions are subsequent actions i.e. not nested
and may also require calls to other systems (e.g. between systems A and B or B and
C).

System B System C

System D

Distributed Business Action

Local
Action 2

Local
Action 1

Local
Action 1

Local
Action 1

System A

Local
Action 1

Local
Action 2

Frontend/
Browser

Figure 6: Scenario of a Distributed Business Action

Performance analysis and performance monitoring of the distributed business action
is the ultimate goal of the application systems administrator or the application
software vendor’s support organization to successfully detect performance
bottlenecks. Therefore, it is necessary to measure each local action and store the
results of the measurement. Further, a mechanism needs to be provided that allows
for the correlation of the local actions in order to re-assemble the distributed business
action for monitoring or analysis purposes. The data that is generated by local
measurements and for correlation purposes is to be described in a CIM Schema that
allows management tools to efficiently access and work on such performance data.
Although correlation is not addressed by the current Metrics Model, it seemed
worthwhile to provide deeper insight into this topic.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 26 of 32

4.2.2 Solution

The solution to the above situation is attained by using the CIM_UnitOfWork
concept with some extensions for correlation. For reasons of clarity, the solution is
described in two steps. The first step addresses the local measurements, the second
step addresses the correlation. The solution has been implemented for SAP systems
like mySAP components like the ITS (Internet Transaction Server) and is called
Distributed Statistic Records (DSR). Some modelers are uneasy about CIM and
historical data (which is implied by the denomination “Record”). The underlying
data store is well capable of handling object lifecycle issues and the time frame data
is kept is not days or weeks.

4.2.3 Local Measurements

A local action is defined as all code that is locally executed in one particular OS
process. The underlying software architecture consists of several processes operating
in parallel. The processes have a dedicated "type" or purpose. Due to scalability,
several processes may serve the same purpose. As soon as a request is received by
the application system, the request is either assigned to a free process (of the
appropriate type) or, if no process is available, input to a queue for subsequent
processing.

Each local action creates a so-called main record, which is an instance of a unit of
work. The main record is derived from CIM_UnitOfWork and adds other statistical
information about the local action. The main record consists of the properties
inherited from UnitOfWork, with the addition of local context information, such as
Action: name of the local action; ActionType: type of the local action and local
measurements as CPUTime; QueueTime; MaxMem: the maximum amount of
memory used during the action, etc. Note that the local context could have been
placed in a subclass of CIM_LogicalElementPerformsUoW that is related to some
CIM_Service, but modeling the entire environment, including Services, was out of
scope of this modeling effort. The designers of underlying data structures also
foresaw the property “Additional” for potential custom-defined parameters in the
format ‘name1=value1 name2=value2”. Although it is better to clearly define the
semantics of any data used in a model, it was chosen to surface this “data container”
as is. A particular problem is the Id. It is no problem to locally assign a unique
number. But as soon as the records/instances are to be retained in a central
repository, the uniqueness is far from guaranteed. Eventually, a new key may have to
be assigned on such operations, but reservation of some bits of the Id for a system
identification is also a potential solution.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 27 of 32

Figure 7: Using CIM_UnitOfWork and CIM_UnitOfWorkDefinition

During the course of the local action, calls to external systems may be issued. Apart
from correlation that is addressed later, the information about the called system and
measurements of the calls are important for performance analysis. Such information
is identified in a call record. A main record can have multiple call records (or none, if
no calls have been executed). The call record is the sum of all calls issued to a
particular system (described by the destination context: ComponentType: type of
system that is called; ComponentName: ID of the system; Destination: description of
the service access point used for the calls). Note, that the destination context could
have been placed in some CIM_ServiceAccessPoint associated via
CIM_LogicalElementPerformsUnitOfWork, but extending the model to the
environment of the units of work was not the intent of the model.

Strictly speaking, the call record could also be modeled as
CIM_StatisticalInformation. But the record structure needs to have a version (which
is accomplished by using CIM_UnitOfWorkDefinition), the number of calls per
record is small or even equal to one (which is not the basic idea of statistical
information), and finally the call record is always within the scope of a particular
main record. All these arguments led to the decision to model the call record as
SubUnitOfWork.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 28 of 32

Figure 8: Instantiating CIM_UnitOfWork

In addition, the implementation supports trace levels. Since the concept of trace
levels is straight forward, trace levels are not depicted to reduce the size of the
example.

In order to allow the management application to benefit from
CIM_MetricDefinition.Validity, CIM_BaseMetricDefinition.Calculable and to
enhance standard compliance, CIM_MetricDefinition is used to add the description
of the metrics that are defined in the classes SAP_DSRxxxRecord. For this purpose,
SAP_DSRMetricDefinition was derived from CIM_MetricDefinition. Its instances
carry the metric definition, which is associated to the appropriate UoW definition
(SAP_DSRRecordDefinition). Since the metrics are already present in subclasses of
CIM_UnitOfWork, information like Datatype and Name (inherited from
BaseMetricDefinition) is actually duplicated. Units could be expressed by means of
the appropriate qualifier or by CIM_MetricDefinition.Units.

Figure 9: Using CIM_MetricDefinition

CIM Metrics Model White Paper Version 2.7

June 9, 2003 29 of 32

The association CIM_UoWMetric has not been used since the metric values are
already published in DSRxxxRecord instances. This modeling decision was made
since intended usage of the unit of work data was either the retrieval of the entire
record (with all its metrics), or no record at-all. Therefore, the additional WQL query
needed to also retrieve the metric values and the more complex provider
implementation seemed to require too much overhead. In consequence, the
management application dealing with these units of work needs to know about the
deviation from the standard. Other decisions could be made in this circumstance.

The instance model shows how the definition-sub-model has been applied to the
example. SAP_DSRMetricDefinition.Name corresponds to the property names
defined in the DSRxxxRecords that represent the values of the metrics. For each
metric property of the DSRxxxRecords a corresponding DSRMetricDefinition
instance exists.

Id = "1"
Name = "SAP_DSRMainRecord"

:SAP_DSRRecordDefinition

Id = "2"
Name = "SAP_DSRCallRecord"

:SAP_DSRRecordDefinition

:SAP_DSRCallRecordsDef

:SAP_DSRMetricDefinition

id = "111"
Name = "CPU-time"
DataType = uint32
Calculable = yes
Units = "MilliSeconds"
Validity = 3

:SAP_DSRMain
RecordMetricDefs

:SAP_DSRCall
RecordMetricDefs

:SAP_DSRMetricDefinition

id = "112"
Name = "ReceivedBytes"
DataType = uint32
Calculable = yes
Units = "KiloBytes"
Validity = 3

instances also for:
Queue-time: uint32
Load-time: uint32
Gen-time: uint32
Net-time: uint32
Wait-time: uint32
Max-mem: uint32
Resp-time: uint32

instances also for:
Receivetime: uint32
SentBytes: uint32
NoOfCalls: uint16

Figure 10: Instantiating CIM_MetricDefinition

4.2.4 Correlation

Now that we understand the model that describes the local measurements, the model
must support the correlation of these local measurements. In order to achieve
correlation, some distributed context must be defined. First, such distributed context
needs to be known to each participating action, and second, it needs to be stored for
subsequent aggregation. The context, the so-called ClientInfo, has been defined to
hold information about the system that initiates the action (InitiatorSystem,
InitiatorService: the component or function that has been addressed by the action),
the user (InitiatorUserId), the first action executed (InitiatorAction,
InitiatorActionType). These properties are helpful for aggregation of local actions in
order to calculate statistics according to the common context of several distributed
business actions. The InitiatorTransId (Trans = Transaction) is assigned to each
business action once by the initiating system and allows for correlation or statistical
calculations local actions of the entire business action. It also becomes visible in the
MutualContextId properties of the unit of work instances.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 30 of 32

Figure 11: Inter-System Correlation

The ClientInfo is created by the first system that receives a request without
ClientInfo. The InitiatorTransId is generated and all other initiator context attributes
are set. Each call to another system requires that the payload of the call is enhanced
with the ClientInfo. In addition, the calling system enters its system ID to the
PreviousSystem-property of the ClientInfo and sets TraceFlag to the appropriate
level before transmitting the ClientInfo. At the end of its local action the ClientInfo
(with PreviousSystem =””) is stored together with the corresponding MainRecord.
The called system receives the ClientInfo, checks whether the TraceFlag requires to
write traces (remember that we resigned to depict the trace levels in the unit of work
instances and definitions), and prepares the measurements of its own (local)
MainRecord. On its calls to other systems, it transmits the same ClientInfo it has
received, only the PreviousSystem-property has been changed to its system ID. The
unchanged value of the TraceFlag allows for selective tracing of an entire business
action. It corresponds to the field of ARM’s correlator.

If a local action initiates subsequent local actions on the same system (each
represented by a new MainRecord – compare the example in section ‘Situation’:
SystemA.LocalAction1 initiates SystemA.LocalAction2), only the initiating
MainRecord is associated with the ClientInfo (Cardinality 0..1). This is possible
since the generated or received ClientInfo is internally transferred via shared memory
and these subsequent local actions still store the TransId (and becomes its
MutualContextId), which is enough to either relate to the ClientInfo associated with
the first local action or to relate all local actions that logically share the same
ClientInfo. Keep in mind that subsequent local actions also transfer the ClientInfo, in
case calls to other systems are to be executed. The local actions could be associated
via CIM_SubUoW (not depicted in the figures). In contrast, the ClientInfo resolves
the necessary cross-namespace CIM_SubUoW associations that would be needed
between related MainRecords on different systems. This modeling decision allows
one to access all needed information local to one provider, and represents a solution
that is less abstracted from implementation issues. The properties of the ClientInfo
class may be considered as the externalized properties of a cross-namespace
CIM_SubUoW association subclass.

4.2.5 Lessons Learned in this Model

1. The above example mixes semantics expressed on the level of the model (e.g.
metric properties already defined in the derived UoW-classes), and semantics
expressed on the instance level (UoW and metric definitions). It is a
compromise between the simplest programmatic access by the management

CIM Metrics Model White Paper Version 2.7

June 9, 2003 31 of 32

applications that know about these specific UoW subclasses, as well as
simpler provider implementation, and the standard.

2. In order to provide powerful correlation information, the additional definition
of such information (s. SAP_DSRClientInfo) seems to be necessary.
However, discussion is still in progress.

3. Some of the context properties defined in SAP_DSRxxxRecords implicitly
refer to systems, processes and services. Usage of
CIM_LogicalElementPerformsUnitOfWork would require explicit modeling
of all otherwise implicitly referred entities, which, at the time, was beyond
the scope of the example. So, in a first step, a model that reduces the number
of entities that need to be modeled and implemented is a feasible solution.

4. Sometimes #1 and #3 are referred to as denormalization of a model.

CIM Metrics Model White Paper Version 2.7

June 9, 2003 32 of 32

Appendix A – Change History

Version 0.1 (Draft) October 12 2002 Preliminary version that incorporates

some additions to V2.6 (concept of
BaseMetrics excluded, CR 819 (Mutual
Context ID) and CR 818 (Trace Level)
included), CR 820 (Base Metrics) is not
included.

Version 0.2 March 25, 2003 Added Base Metric-specific information

Version 0.3 March 28, 2003 Some changes after initial discussion in
Metrics Model Extensions subgroup of
the Applications WG

Appendix B – References
CIM Core and Common Models - Versions 2.0 through 2.7 - Downloadable from
http://www.dmtf.org/standards/standard_cim.php

Common Information Model (CIM) Specification, V2.2, June 14, 1999 -
Downloadable from http://www.dmtf.org/standards/documents/CIM/DSP0004.pdf

DMTF Specifications - Approved Errata - Downloadable from
http://www.dmtf.org/standards/standard_cim.php

Desktop Management Interface (DMI) - Downloadable from
http://www.dmtf.org/standards/standard_dmi.php

Internet Engineering Task Force (IETF) - MIBs and Work Group information at
http://www.ietf.org

Application Response Measurement (ARM) 3.0 Java Binding, Open Group
Technical Standard - Downloadable from
http://www.opengroup.org/management/arm.htm

Application Response Measurement (ARM) 2.0, Open Group Technical Standard -
Downloadable from http://www.opengroup.org/management/arm.htm or from
www.cmg.org

