""'”'"" — System Diagnostic

Model White Paper

DSP0138 Status: Preliminary

Copyright © 2000 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability.
Members and non-members may reproduce DM TF specifications and documents for uses consistent with this purpose, provided that correct
attribution is given. As DMTF specifications may be revised from time to time, the particular version and rel ease date should aways be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights, induding provisond petent
rights (herein "patent rights"'). DM TF makes no representations to users of the standard as to the existence of such rights, and is not responsible to
recognize, disclose, or identify any or all such third party patent right, ownersor daimants, nor for any incomplete or inaccurate identification or
disclosure of such rights, owners or claimants. DM TF shall have no liability to any party, in any manner or circumstance, under any legal theory
whatsoever, for failure to recognize, disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any party implementing such standard,
whether such implementation is foreseeable or not, nor to any patent owner or claimant, and shall have no liability or responsibility for costs or
losses incurred if a standard is withdrawn or modified after publication, and shall be indemnified and held harmless by any party implementing
the standard from any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DM TF that, in their opinion, such patent may relate to or impact
implementations of DM TF standards, visit http://www.dmtf.org/about/policies/disclosures.php.

A
Diagnostic Model in CIM

January 61", 2000

Abstract

Diagnostics under a multitasking operating system, like Windows NT?, are inherently complex. Itemslike
Hardware Abstraction Layers and accel erated hardware with advanced device drivers place an ever increasing
amount of software between the applications and the hardware, there by making diagnostics less effective. Kernel
features that allow “hot swapping” of devices, (including processors, and memory) can be extended to allow
“Suspend / Resume” features for diagnostics. Under the realm of concurrent diagnostics, idle devices, e.g.
processors, network cards, memory, ... could be “suspended” (taken off line) and testing performed, if the resource
were needed or the testing compl ete, the deviceis*resumed” (brought back on line).




Change History

Version Date Author Comments

0.001 01/27/99 RDWI/IBM  First Draft

0.002 02/08/99 RDWI/IBM  Added CIM detail

0.003 03/22/99 RDW/IBM  Added detail about modeling coverage, and intro/vision

0.004 04/15/99 RDW/IBM  Word smithing

0.005 04/22/99 RDW/IBM  Changing CIM_DevDiag to subclass from CIM_Dependency

0.006 04/29/99 RDW/IBM  Add subclass example, change nameto CIM _Diag interface

0.007 05/12/99 RDW/IBM  Changed CIM_Diag to subclasslogical system element

0.008 06/20/99 RDW/IBM  Changed CIM_Diag to subclass CIM_Service, added information about
settings. Moved many properties and qualifiers to the new Settings class.

0.009 07/05/99 RDW/IBM  Deleted settings class replaced with aresults class that stores settings
information along with results

10 07/19/99 RDW/IBM  First draft to the DMTF, matches Visio diagram, and MOF

1.001 07/28/99 DM/IBM Corrected typos

1.002 08/08/99 RDWI/IBM  Revised document with DMTF comments: Package class replaced with
DiagnosticTestlnPackage aggregation. Separated Settings, and results.
Several new associations added.

1.003 08/29/98 RDWI/IBM  Revised document with DM TF comments: DiagnosticResult class uses an
embedded DiagnosticSetting object, rather than copying all the properties
of DiagnosticSetting. DiagnosticResults no longer subclasses off of
LogicalElement.

1.004 09/09/99 RDWI/IBM  Corrections and clarifications based on feed back from DMTF

1.005 09/14/99 RDW/IBM  All valuemaps are now uint16, Results. TestStartTime made key; TestState
no key; TimeStamp not key, DiagnosticTest: ClearResults now takes aref
to a ManagedSystemElement; DiscontinueTest does not output a result
object. Added some usage examples for setting for test associations.

1.006 916/99 RDW/IBM  Changed cardinality on diagnosticResultForTest to 0..1 from 1..1.
Renamed stuff to Is, e.g. IsPackage, IsinUse,... Changed method returnsto
uint32

1.007 9/25/99 RDW/IBM  Typos corrected, new ones created.

1.008 10/05/99 RDW/IBM  Changesto make the Mof CIM Compliant. Added an association to

WHK/IBM  SoftwareElement

1.009 10/18/19 WHK/IBM Remove the imbedded settings object in Result and add a copy of the
setting propertiesinto Result

1.009a 10/20/99 RDWI/IBM  Cleaned up association inheritance differences with the MOF

JSB/IBM

1.010 11/18/99 RDWI/IBM  Removed the copy of settings from the result object. Intheory the settings
in results problem will be addressin CIM 2.4

1011 11/29/99 RDWI/IBM  Change the wording on PercentComplete in diagnosticResult

1.012 01/06/00 RDW/IBM Final cleanup of typo’sfor DM TF publishing




Editor

Rod Waltermann, et 4.

A joint effort of IBM, Intd, Watergate Software, And Dell.

The editor would like to thank the following contributors and reviewers (in dphabetical order):

Dél: Sdney Smith; IBM: Alfred Burress, Bill Klump, Ray Pedersen, Ken Young; Intd: Russ
Carr, Eric Grimm, Arvind Kumar, Reza Nassib, 1oan Scumpu; Watergate Software: R. Marc

Browning, Aki Korhonen, Mark Proudfoot
For further information contact: DM TF diagnostic sub group: tm-diag@dmitf.org

Company, product, and service names mentioned in this paper may be trademarks or service
marks of their respected owners.



Table of Contents

00 1 7= TR
CIM Schemafor diagnostics.........

Diagnostic class registration
CIM_DiagnOStICTESL : CIM _SEIVICE....ueiiecereririereeiresesisesessssssisesessssssasesssssesessssssssssssssessssssssessssssssessssesssssesssssssessssssnsessens
CIM_DiagnosticSetting : CIM_Setting
CIM_DiIaQNOSEICRESUIL ......outveaiireatireseiseee s sttt res e bbb s e p e p s
CIM_DiagnosticTestForMSE : CIM_ProvidesServiCeTOEIEMENL .........cocveurrreerirrereeeeresesie s esesessssessens 7
CIM_DiagnosticTestSoftware : CIM_Dependency..........c.ccveeereeeenieennns
CIM_DiagnosticTestlnPackage : CIM_Component
CIM_DiagnostiCRESUITINPACKBGE. .......cccoueririreeririsiserestseesesesesesssesesesesesesesssesesssssssssssssssesssssssessssssssssssssssssssssssssssssssssssssnenes
CIM_DiagnostiCRESUItFOIM SE...........cocceeinieeereeiee st ssssaeens
CIM_Diagnosti CRESUITFOI TESL.......cccvvireeieireeeressesee s sssssessesssesessesaeeens

CIM_DiagnostiCTest : CIM_SEIVICE ......cocereeerreremnernrernesesseseeseesseessssesssiennns
Properties
=21 o T LTSRN

CIM_DiagnosticSetting : CIM_SEtting .......cccccveerreremnernenerneserreesneesneesnseenns

CIM_DiagnOStiCRESUIL ......cceeiirrcrnscsssssss s sssssssens
PrOPEITIES. ...

CIM_DiagnosticTestForM SE
0] 07 =S PR TR

CIM_DiagnostiCRESUILSFOIMSE..........ccccovenriireereresesse s esssssesessesssesesens
0] 07 =S PO

CIM_DiagnosticResultsForTest
0] 07 == TR

CIM_DiagnosticTestInPackage : CIM_COMPONEL..........ccoveerecereeeenieenniennns
PrOPEITIES. .. ..ottt

CIM_DiagnosticResuUltINPACKagE............oouerreeerneeenerrnenseeseereesee e
PrOPEITIES. .. ..ottt

CIM_DiagnosticTestSoftware : CIM_Dependency .........ccoveeveeeveeerennns
PrOPEIMIES. ...t

CIM_DiagnosticSettingForTest : CIM_ElementSetting........cccccocvvevercvnnne.
0] 07 =S TP

Other features of CIM to be used
CIM EVENES.....ciiiereceetereee et
CIM Caollection classes..............

SDK Information ..........c.coveeeneeen.

MOF Class Definitions..............

(T = OO




Introduction

Diagnostics under a multitasking operating system, like Windows NT?,is inherently complex. Itemslike Hardware
Abstraction Layers and accel erated hardware with advanced device drivers place an ever increasing amount of
software between the applications and the hardware, there by making diagnostics less effective. Kernel features that
alow “hot swapping” of devices, (including processors, and memory) can be extended to allow “ Suspend / Resume”
features for diagnostics. Under the realm of concurrent diagnostics, idle devices, e.g. processors, network cards,
memory, ... could be “ suspended” (taken off line) and testing performed, if the resource were needed or the testing
complete, the deviceis “resumed” (brought back on line).

For example: the customer isinstalling anew card to allow connection to adigital camera. When they install the
devicedriver for the camera, adiagnostic for the hardware isinstalled along with the driver, thisdiagnostic is
refered to as adiagnostic data provider. This diagnostic provider will register its set of diagnostic methods and data,
called tests, into CIM (Common Information Model). These tests describe what methods and features of the
standard are supported. When the customer runs their diagnostic program it will query CIM for alist of registered
devicesthat havetests. The program will then build a menu of tests for the installed devices. Even though the
diagnostic program was purchased when the computer was new and never updated, the new digital camera option
shows up in the menu.

Aswe strive to move into the realm of concurrent / predictive diagnostics the primary requirements are:

Diagnostics from multiple sources, that interface through a common framework.

The ability to placeidle resourcesin a*“ diagnostic mode” for diagnostic testing.

Diagnostics can be remotely administered through CIM, or an enterprise management system.

A diagnostic consumer can access the cost of performing a given diagnostic, based on system load, or resources
used during the diagnosing.

Abnormal device conditions can trigger diagnostic events

During the development of this model we focused on three main users of diagnostics: the customer, service
personnel, and manufacturing. All three have somewhat different requirements

The customer would like to have a high level view of the system, i.e. they would like a pass/fail information about
the device. Additionally we would liketo link with other datain CIM for exampleinventory and FRU (Field
replaceable unit) data, and predictive failure datafor hard disks, memory, etc. This combined with diagnostic logs
stored on the machine, allow an IT (Information Technology) manager to gain asystem health view over their
machines. Another requirement is the ability to access and test the machinesremotely. CIM also allowsthe
customer to log the datafor trend analysis, or to make it available to the service personnel.

Service needs to be able to access the machine or the test results remotely, allowing them to validate what parts to
ship/bring along to complete the repair. The servicer needs to be able to recreate the error, thisimplies viewing the
settings for the diagnostic at the time the error was logged.

The manufacturing environment needs are somewhat different. During burn-in, a period of extensive testing of a
randomly selected machine for quality control, the OS and all components areinstalled. Thisisapoint wherethis
model seemsto fit; however during other phases of the assembly, diagnostic requirements are very different.
Having the same test modules work in a manufacturing only environment and a common diagnostics model is
desirable, both for repeatability, and to help reduce cost of development.

Along with the three users, we tried to stay with amodel that focused on modeling the results of the diagnostic being
performed on the device (a customer centered model), instead of modeling the methods/tests.

Instrumented Diagnostics through CIM

A diagnostic is brokeninto two parts. A diagnostic provider, and a diagnostic consumer. The diagnostic consumer
isthe test module that will request atest, or call the methods in a diagnostic provider, to perform asingle test or a set
of testson the device. The diagnostic provider registersitself through CIM to export the events and methods



supported. When a diagnostic test module queries CIM for diagnostics supported on agiven device, CIM will report
about the instance of the diagnostic provider. This effectively establishes communication between the provider and
the consumer. The consumer can now enable events, or execute methods registered by the provider.

Vision

Modeling diagnostics further enhances the remote manageability of amachine. A diagnosticis composed of a
collection of methods and their resulting pass/fail and logged data. This document further breaks the model down
into classes, and associations. The classes being for the diagnostic, its' methods, and results from their execution.
The associations rel ate the tests to the devices they support.

The diagnostic test class models asingletest, e.g. alinear scan disk test. A test has propertiesthat describeits
function. Propertiesthat show if thetest iscurrently in use, will destroy data (a hard drive test that writes to the disk
could overwrite data), and so on. A test is designed with amain entry point to run thetest. Along with running the
test, there is amethod to stop its execution.

The test needs to be associated with the hardware it can diagnose. As an example you have a machine with two
Ethernet cards (Network Interface Cards NICs)) from the same manufacturer. Y ou only need to have one diagnostic
exposed through CIM, one diagnostic, with two associations, one for each NIC.

Now we have tests, and devices they can act upon. It isexpected that there will be more than one test for agiven
device. A way to collect the tests that share acommon deviceisneeded. A diagnostic package describes a
collection of tests. Thiscollection will perform basically the same way that an individual test would perform, i.e.
you can start testing, stop testing, check if testing isin progress, etc.

The setting and result classes store all the information to rerun atest on the same device. For example you have a
machine with ahard drive. There aretwo testsfor the hard drive and one package containing both tests. Given this
example, we call one of thetests. Thistest, with its setting object, will create aresult object asit’ s output.

If instead we call the package, there will still be only one setting object; however each test will createit’s own result
object that is associated to the package’ s result object. 1n effect creating a package of results from all thetests. The
way to associate these results back to the device is defined in amanner similar to the way atest is associated to the
device.

Road map

Thefirst release of this specification covers on-demand diagnostics. Diagnostics will run when invoked by a
method call.

Release two is scheduled to address many new areas including: real time (concurrent) and event driven diagnostics,
tests that need to interact with someone, e.g. afloppy disk test needs someone to insert the disk, datalogging, and
parameter vaidation. Other topicsin no particular order include: watch-dog timers, synchronous method execution,
diagnostic mode, and pre/post diagnostic processing.

The third version expectsto cover self-diagnostics. Utilizing the base built in the first and second versions, aAl
(Artificial Intelligence) based data consumer could use the diagnostic results along with other CIM based data to
provide a“self-healing” function. A hypothetical exampleisaserver with multiple network cards. One of the NICs

is causing problems on the machine. The fault detection built into the card throws an event that a diagnostic manager
will use to: launch the concurrent diagnostics built into the device driver, trigger an event which would send requests
to have the offending card powered down, and the network traffic rerouted. The system admin would be informed,
and an entry in the system log stating the problem and time are recorded.



CIM Schema for diagnostics

Diagnostic class registration

Diagnostic providers need to subclass from three classes. CIM_DiagnosticTest, CIM_DiagnosticSetting, and
CIM_DiagnosticResult. The provider will also need to subclass from seven associations:
CIM_DiagnosticTestForM SE, CIM_DiagnosticSettingForTest, CIM_DiagnosticTestlnPackage,
CIM_DiagnosticResultlnPackage, CIM_DiagnosticResultForTest , CIM_DiagnosticResultForM SE, and
CIM_DiagnosticTestDependency.

CIM_DiagnosticTest : CIM_Service

The actual diagnostic test instances and subclasses are here. It isexpected that there will be asubclass for every
manufacturer of diagnostics and one or more instances of diagnostic tests.

CIM_DiagnosticSetting : CIM_Setting
Thisclassis used to store the default or run-specific settings for agiven test. This classworksin conjunction with
the result class, see the examplein CIM_DiagnosticResult.

CIM_DiagnosticResult

For every RunTest method from a diagnostic instance of CIM_DiagnosticTest executed against an instance of
managed system element, there will be an instance of a subclass of CIM_DiagnosticResult. Along with the results
therewill be an association instance of asubclassin CIM_DiagnosticResultsForMSE. For example, we have a
subclass of CIM_DiagnosticTest titled vendorX_ScanDiskDiag, which has one instance called
vendorX_ScanDiskDiag_1. Now we have a subclass of CIM_DiagnosticTestForM SE titled
vendorX_ScanDiskDiagAssoc. Thereisoneinstance of this association for the hard drive,
vendorX_HardDiskAssoc 1. Finally asubclass of CIM_DiagnosticResult titled vendorX_ScanDisk_1DiagResult
iscreated to store all the datafor each running of the test.

When the RunTest method isinvoked it will require one of the associations, and optionally an instance of
vendorX_ScanDisk_1DiagSetting. If the consumer wants to change any of the default settings, it will createits own
instance of vendorX _ScanDisk_1DiagSetting, adjust the test settings, and pass this instance to the RunTest method
whenitisinvoked. If aninstance of vendorX_ScanDisk_1DiagSetting is not provided the default setting object

will beused. When the testing begins an instance of vendorX _ScanDisk_1DiagResult is created which stores a
copy of the settings and all the resulting test information.

CIM_DiagnosticTestForMSE : CIM_ProvidesServiceToElement

Thisis an association class to relate a device under CIM_ManagedSystemElement with the diagnostic test instance
provider in CIM_DiagnosticTest : CIM_Service. If thereis no device registered for which adiagnostic test can
service, that diagnostic will not register an association. Diagnostic consumerswill query this association for
instances of devices with adiagnostic test provider.

CIM_DiagnosticTestSoftware : CIM_Dependency

Thisisan association class to relate a diagnostic test under CIM_DiagnosticTest : CIM_Service with the
SoftwareElement that providesthistest. SoftwareElement describes information about the test, for example: vendor,
version and other deployment information.

CIM_DiagnosticTestinPackage : CIM_Component

Thisisan association classto relate a diagnostic test under CIM_DiagnosticTest with the diagnostic test package
instance also under CIM_DiagnosticTest. Diagnostic consumers are expected to query this association in order to
discover which tests are in agiven package.



CIM_DiagnosticResultinPackage

Thisisan association class to relate a diagnostic test’ s results under CIM_DiagnosticResult : CIM_L ogical Element
with the diagnostic result package instance also under CIM_DiagnosticResult. Diagnostic consumers are expected
to query this association in order to discover which results are in a given package.

CIM_DiagnosticResultForMSE

Thisisan association class to relate a device under CIM_ManagedSystemElement with the diagnostic result
instance provider in CIM_DiagnosticResult. If there are no results, do not register an association. Resultsfor a
given execution of adiagnostic are stored in the diagnostic result class. Diagnostic consumerswill query this
association for instances of diagnostic result for devices with adiagnostic provider.

CIM_DiagnosticResultForTest

Thisisan association classto relate a diagnostic result under CIM_DiagnosticResult with the diagnostic test
instance under CIM_DiagnosticTest. Diagnostic consumers are expected to query this association in order to
discover which tests have results from previous runs.

CIM_ServiceServiceDependency

Thisisan association class used to order execution of tests with services or other tests that may be running on the
device. For example: A network interface card ping-test requires that the TCP/IP service be running on the card
beforeit can execute the test. Diagnostic consumers are expected to query this association to discover which tests
have dependencies on other services or tests.

CIM_DiagnosticSettingForTest : CIM_ElementSetting

Thisis anassociation classto relate a diagnostic test’ s settings under CIM_DiagnosticSetting : CIM_Setting with
the diagnostic test instance under CIM_DiagnosticTest. Diagnostic consumers are expected to query this association
in order to discover settings for agiven test.

The data model, a picture:
Figure 1, below, shows the relationship between the classes and figure 2 shows the associations.



*

ManagedElement Dependency DiagnosticResult
(See Core Model) ExecutionID: string [Key]
TimeStamp: datetime
IsPackage: boolean
/ TestStartTime: datetime
DiagnosticResuItForMSE TestCom;_)le@lonTlme. datetime
3 7 TestState: uintl6
Setting ManagedSystemElement OtherStateDescription: string
EstimatedTimeOfPerforming : uint32
(See Core Model) (See Care Model) * TestResults: string[ ]
PercentComplete: uint8
[N TestWarningLevel : uint16
ReportSoftErrors : boolean
ReportStatusMessages : boolean
i i i LogicalElement HaltOnError: boolean
DiagnosticSetting QuickMode: boolean
SettingID: string [key] (See Core Model) PercentOfTestCoverage: uint8
TestWarningLevel:uint16 A w1
ReportSoftErrors: boolean
ReportStatusMessages: boolean
gﬁ:ﬁ&iﬁgv&ﬁfg‘ DiagnosticTestForMSE
PercentOfTestCoverage: uint8
9 * SoftwareElement Service
— DiagnosticResultForTest
(See Application Model) (See Core Model)
N
DiagnosticTeslSoﬂware—| 4
* *
DiagnosticTest
Characteristics: uint16[ |
DiagnosticSettingForTest OtherCharacteristicDescription : string
IsinUse : boolean
ResourcesUsed: uint16[ ]
RunTest([IN] SystemElement: ref ManagedSystemElement,
[IN] Setting: ref DiagnosticSetting, [OUT] Result: ref DiagnosticSetting)
:uint32
ClearResults([IN]SystemElement: ref ManagedSystemElement, *
[OUT] ResultsNotCleared: string[] ) : uint32
DiscontinueTest([IN] SystemElement: ref ManagedSystemElement, . . ”
[IN] DiagnosticResult ref DiagnosticResult, DiagnosticTestinPackage
[OUT] TestingStopped : boolean) : uint32

*

Figure 1: UML diagnostic Classes

*

DiagnosticResultinPackage



DiagnosticResultForMSE

Dependency

Result: ref DiagnosticResult [key]
SystemElement: ref ManagedSystemElement
[key]

Antecedent: ref ManagedElement [key]
Dependent: ref ManagedElement [key]

Component

DiagnosticResultForTest

Result: ref DiagnosticResult [key] [weak]
DiagnosticTest: ref DiagnosticTest [key]

DiagnosticResultinPackage

PackageResult: ref DiagnosticResult [key]
Result: ref DiagnosticResult [key]

A

GroupComponent: ref ManagedSystemElement [key]
PartComponent: ref ManagedSystemElement [key]

ProvidesServiceToElement

Antecedent: ref Service
Dependent: ref ManagedElement

A

DiagnosticTestinPackage

A
DiagnosticTestForMSE
Antecedent: ref DiagnosticTest
Dependent: ref ManagedSystemElement
EstimatedTimeOfPerforming: uint32
IsExclusiverForMSE: boolean
DiagnosticTestSoftware

Antecedent: ref SoftwareElement
Dependent: ref DiagnosticTest

ElementSetting

Element: ref ManagedSystemElement [key]
Setting: ref Setting [key]

A

DiagnosticSettingForTest

Element: ref DiagnosticTest
Setting: ref DiagnosticSetting

Figure 2: UML Diagnostic Associations

GroupComponent: ref DiagnosticTest
PartComponent: ref DiagnosticTest

10




Class definitions

CIM_DiagnosticTest : CIM_Service

The CIM_DiagnosticTest class represents the ability to execute atest. Specific diagnostic tests may be defined by
subclassing and/or instantiating this object. To provide more detail for atype of test (additional properties and
methods), subclassing is appropriate. To indicate that atest exists and may be applied to a specific
ManagedSystemElement, instantiation of the DiagnosticTest class may suffice.

Properties

Characteristicy[]
Uintl6 array
Values supported
Unknown
Other
When other is defined, additional detail may be found in the OtherCharacteristicDescription
property of this class.
IsExclusive
If exclusive is specified for the test module only if the diagnostic cannot run more than one test
at atime, regardless of how many SystemElements are supported. Typically, this occurs when
hardware or software constraints prevent the test from running as multiple, concurrent instances.
If the diagnostic can be run against multiple SystemElements, but only once per Element, then set
the IsExclusiveFForM SE boolean property on the appropriate instances of DiagnosticTestForM SE.
IsInteractive
Islnteractiveis set if the diagnostic displays a message either before, during or after the testing.
IsDestructive
IsDestructiveis set if the diagnostic will destroy data or reconfigure the Element that is being
tested.
IsRisky
IsRisky indicates that dataloss may occur if the test isinterrupted. Some tests make copies of the
data, perform the test, and restore the data returning the tested entity to its previous configuration.
If thetest isinterrupted, then loss of data or reconfiguration of the tested ManagedSystenElement
may occur.
IsPackage
If IsPackage is set, thistest is actually a set of lower level diagnostics, that are packaged together .
SupportsPrecentOf Coverage
SupportsPrecentOf Coverage indicates that arequest for reduced coverage can be specified using
the PrecentOf Coverage property of thisclass.

OtherCharacteristicDescription;
String
Provides additional information for the Characteristic when itsvalueis set to "Other".

Islnuse
Boolean

If thistest is being performed, the InUse property is set to TRUE. To determine which
ManagedSystemElement is being tested, query the DiagnosticResults objects associated with this test
(query DiagnosticResultForTest), and for which the TrestState equals InProgress, The DiagnosticResult
object is associated with the SystemElement under test, using DiagnosticResultForM SE..

ResourcesUsed []
Uint16 Array, type “bag”, read only

1



The Expensive qualifier can be applied to this class and its RunTest method. If so, the ResourcesUsed
property describes the resources that are capitalized, based on a default setup for the test. Multiple
resources can be specified since thisisan array.
Currently recognized values are:
- CPU
Memory
Hard Disk, CDROM, Floppy
PCI Bus, USB Bus, |EEE 1394 Bus, SCS| Bus, IDE Bus
ISA Bus, EISA Bus, VESA Bus, PCMCIA Bus, CardBus
Access.bus, NuBus, AGP, VME Bus
Sbus |EEE 1396-1993, MCA Bus, GIO Bus, XI10 Bus, HIO Bus, PMC Bus, SIO Bus
- Network
This property uses value mapping with the above keywords

Methods

Diagnostic providers should register for the following methods. Access these methods through the functionality
built-into the CIM Object manager.
Uint32 RunTest
The RunTest method executes this DiagnosticTest for the specified ManagedSystemElement (defined using the
SystemElement input parameter). Results of the test are stored in a CIM_DiagnosticResult object, areference to
which isreturned as the Result output parameter. How the test should execute, i.e. its settings, isdefined in a
CIM_DiagnosticSetting object (or by a subclass of DiagnosticSetting). A reference to a Setting object is specified
using the "Setting” input parameter. If areferenceis not passed into the method, then a default DiagnosticSetting
may be specified and used. This default Setting is associated with the DiagnoticTest using the DefaultSetting
relationship of the Core Model.
[IN] Ref CIM_ManagedSystemElement
The Path to the logical element you want to test.
[IN] Ref CIM_DiagnosticSetting
Default for this parameter is“”. If the consumer wants to change the default settings, it should
instantiate an instance of CIM_DiagnosticSetting or the correct subclass, make any changes needed,
then pass the reference in this parameter.
[OUT] String Ref CIM_DiagnosticResult
Theinstance that contains the settings used and the results of thisrun
Method Returns: uint32 and supports the following values:
These return codes are expected to adhere to the XML return codes as they are introduced.

0=0K (function succeeded. Note: the hardware may have failed the test even
though the function succeeded.)

1 = UnspecifiedError (unexpected failure, reason unknown/unspecified)

2 = NotImplemented (member function is no implemented)

3 = OutOfResources (component could not allocate required resources)

Uint32 ClearResults
Execution of this method will delete all instances of the CIM_DiagnosticResultForM SE object, for this
DiagnosticTest and the specified ManagedSystemElement (defined using the SystemElement input parameter).
Also al of the association refereeing to the result object will be deleted. One output parameter is defined -
ResultsNotCleared - which isastring array that lists the keys of the DiagnosticResults which could not be
deleted. Thisinformation enables those Resultsto be revisited and either manually removed, or other corrective
action taken.

[IN] Ref CIM_ManagedSystemElement

A reference to the managed system element that you want the test results cleared.

[OUT] String ResultsNotCleared []

Any instances of the correct subclass of CIM_DiagnosticResult that were not deleted, will have their
name stored in thisarray.



An empty array impliesthat all of the results were deleted.
Method Returns: uint32 and supports the following values:
These return codes are expected to adhere to the XML return codes asthey are introduced.

0=0K (function succeeded. Note: the hardware may have failed the test even
though the function succeeded.)

1 = UnspecifiedError (unexpected failure, reason unknown/unspecified)

2 = Notlmplemented (member function is no implemented)

3 = OutOfResources (component could not allocate required resources)

Uint32 DiscontinueTest
After invocation of this method and its completion, the specified test(s) will be discontinued for the indicated
ManagedSystemElement (defined by the SystemElement input parameter). The test to discontinue is specified
using the Result input parameter. If all instances of thistest should be stopped for the SystemElement, then the
Result reference should be NULL. Upon completion of the method, test status and other information (such as
PercentComplete) will be stored in the DiagnosticResult instance defined by the Result input parameter. The
output parameter, TestingStopped, is used as follows:
Set to TRUE if testing was successfully stopped.
Set to FALSEIf the current test(s) can not be stopped.
If set to FAL SE, testing will stop when the diagnostic is able to do so safely. To determine
if/when thetesting is stopped, check the TestState property in the DiagnosticResult
instance defined by the Result parameter. TestState will change from In Progress to Stopped.
[IN] Ref CIM_ManagedSystemElement
Thereferenceto the logical element on which you want testing to stop.
[IN] Ref CIM_DiagnosticResult
Theinstance that contains the settings used and the results of thisrun
[OUT] Boolean TestingStopped
TRUE if al testing was successfully stopped.
FALSE if the current test cannot be stopped. Testing will stop when the diagnosticis able to do so
safely.
Method Returns: uint32 and supports the following values:
These return codes are expected to adhere to the XML return codes as they are introduced.

0=0K (function succeeded. Note: the hardware may have failed the test even
though the function succeeded.)

1 = UnspecifiedError (unexpected failure, reason unknown/unspecified)

2 = NotImplemented (member function is no implemented)

3 = OutOfResources (component could not allocate required resources)

Any additional methods added should support the following parameters.

[IN] Ref CIM_ManagedSystemElement
A reference to the logical element you want to test.

[IN] Ref CIM_DiagnosticSetting
Default for this parameter is“”. If the consumer wants to change the default settings, it should
instantiate an instance of CIM_DiagnosticSetting or the correct subclass, make any changes needed,
then pass the reference in this parameter.

[OUT] String Ref CIM_DiagnosticResult
subclassinstance that contains the settings used and the results of thisrun

Method Returns: uint32 and supports the following values:

OK (function succeeded. Note: the hardware may have failed the test even
though the function succeeded.)

UnspecifiedError (unexpected failure, reason unknown/unspecified)

Notlmplemented (member function is no implemented)

OutOfResources (component could not allocate required resources)

13



CIM_DiagnosticSetting : CIM_Setting

Specific diagnostic test parameters and execution instructions are defined by subclassing and/or instantiating
the DiagnosticSetting object. To provide more detailed Settings for atype of test (i.e., additional properties),
subclassing is appropriate. When only the generic Setting information is required, instantiation of the Diagnostic

Setting class may suffice. The following properties are copied to the diagnostics results class. Any new properties
added to diagnostic setting must be replicated in diagnostic results.

Settingl D
String
Key property
Theidentifier by which the DiagnosticSetting object is known and uniquely named. If thereisaoneto one

mapping between the DiagnosticSetting and its DiagnosticTest (and there will always be only aoneto one

mapping), then the DiagnosticCreationClassName and DiagnosticName key pair can be used as the
SettingID..

TestWarningL evel
Uint16

Setsthe level of warning messagesto be logged. If for example no warning information isrequired, the
level would be set to No Warnings. Using MissingResources will cause warnings to be generated when
required resources or hardware are not found. Setting the value to Testing Impacts, resultsin both missing
resources and 'test impact' warnings (for example, multiple retries required) to be reported.

This property uses value mapping, and values to define the following keywords
No Warnings

Missing Resources
Testing Impacts
All Warnings

ReportSoftErrors
Boolean

A soft error, in this context, is amessage from the diagnostic software that relates to aknown defect in the
hardware or driver and has avalid workaround. For example:

Not enough memory
Driver IOCTL not implemented

Video ram compare failed during polygon fill test (A known defect in the video chipset).

ReportStatusMessges
Boolean

When thisflag istrue, the diagnostic test will report statusinformation. Examples are:
Diagnostic state information
Debug or trap information

HaltOnError
Boolean

When this flag is TRUE, the test will halt after finding thefirst error.

QuickMode
Boolean

When thisflag istrue, the test software should attempt to run in an accel erated fashion either by reducing
the coverage or number of tests performed.

PercentOf TestCoverage
uint8

14



Requests the diagnostic software to reduce test coverage to the specified percentage. For example, a hard
drive scan test could be asked to run at 50%. The most effective way to accomplish thisis for the test
software to scan every other track, as opposed to only scanning the first half of adrive. It is assumed that
the effectiveness of the test isimpacted proportional to the percentage of testing requested. Permissible
valuesfor this property range from 0 to 100.
This property may not be applicableto all tests. If it can be set for atest, the value Supports PercentOf
TestCoverage should be entered into the Diagnostic Test's Characteristics array.

CIM_DiagnosticResult

When a DiagnosticTest Serviceisrunning, test results are reported using a DiagnosticResult object, or one of its
subclasses. A DiagnosticTest may be running because its Service is Started or due to an invocation of the RunTest
method. DiagnosticResults are related to their Test via an instance of the DiagnosticResultsForM SE associ ation.

Aninstance of the settings could be changed without the DiagnosticResults indicating that data has been changed.
Therefore the DiagnosticSetting used is copied in the DiagnosticResults.

Properties

Di

agnosticName
String
Key property
Propagated from CIM_DiagnosticTest
The scoping test’s name. Must be a unique name
Use: companyName_TestName_N
N isacounter for each instance of the diagnostic result method provider.

DiagnosticCreationClassName

String
Key property
The scoping test’ s CreationClassName

ExecutionlD

String
Key property
The Unique identifier for an instance of DiagnosticResults.

TimeStamp

DateTime, read only
The date and time the result was last updated.

IsPackage

Boolean, read only

If this property is TRUE, then this DiagnosticResult summarizes the results from the execution of a
packaged set of DiagnosticTests. The Tests in the package can be identified by following the
DiagnosticResultForTest association to the test and then using the DiagnosticTestlnPackage aggregation.
Theindividual Results can be broken out by instantiating DiagnosticResults for the individual lower level
tests and aggregating into the ‘ summary’ Result using the DiagnosticResultInPackage ..

TestStartTime

DateTime, read only
The time and date when this test started.

15



TestCompletionTime
DateTime, read only
Thetime and date when this test completed.

TestState
Uint16
Describes how the test is progressing. For example, if the test was discontinued, the TestState will be
Stopped, or if testing is currently executing, TestState will be In Progress.
This property uses value mapping, and values to define the following keywords
Unknown
Other
Passed
Failed
InProgress
Stopped

OtherStateDescription
String
When Other is entered in the TestState property, OtherStateDescription can be used to describe the test's
state.

TestResults[]
String Array, type “Ordered”, read only.
Oneentry is considered acell location in the array.
TestResults stores one or more textual results from the execution of the DiagnosticTest(s) referenced by the
DiagnosticCreationClassName and DiagnosticName properties. One entry is considered acell locationin
the array. Each entry istime stamped and contains the following information, in the following format:
yyymmddhhttssoutc|D|agnostlcName|Textual message Where:
yyyy = year, e.g. 2000
mm = month (01 — 12)
dd=day (01-31)
hh = hour (00 — 24)
tt = minute (00-59)
ss = second (00-59)
o= "+"or"-",indicating the sign of the UTC (Universal Coordinated Time; for al intents and
purposes the same as Greenwich Mean Time) correction field.
utc isthe offset from UTC in minutes (using the sign indicated by o).
A'| followed by the name of either the diagnostic package, or the diagnostic test that is making
the entry.
Every thing following the second '|' is the textual message.

PercentComplete
The percentage of the test that has executed thusfar, if the TestState property is set to\"In Progress\" or the
percentage of the complete test that was executed if the TestState property is set to any of the completed states
(\"Passed\", \"Failed\" or \" Stopped\"). Final results may be based on |ess than 100% coverage due to the parameters
defined in DiagnosticSetting (such as QuickMode, PercentOf TestCoverage or HaltOnError).
uint8, read only
Thisvalue varies from 0 to 100 during execution of the DiagnosticTest. If the valueis 0, the test has not
started. If the valueis 100, then testing is compl ete.
In the case of apackage, thisisthe sum of the percentage of contribution for each method

16



Estimated TimeOfPerforming
uint32
Estimated number of secondsto perform the Diagnostic Test indicated by the
DiagnosticCreationClassName and DiagnosticName properties. After the test has completed, the actual
elapsed time can be determined by subtracting the TestStartTime from the TestCompletionTime. A similar
property is defined in the association, DiagnosticTestForM SE. The difference between the two propertiesis
that the value stored in the association is a generic test execution time for the Element and the Test. But, the
value here (in DiagnosticResult) is the estimated time that this instance of testing would run.

The following properties are duplicated from DiagnosticSettings
TestWarningL evel

ReportSoftErrors
ReportStatusM essages
HatOnError
QuickMode

PercentOf TestCoverage

CIM_DiagnosticTestForMSE

Thisisan association class that relates a DiagnosticTest to a ManagedSystemElement. Consumers wishing to
‘diagnose’ a particular Element could query this association, for the Element, to determine what tests are available.

Properties
Antecedent
Thetest that may be run against a M anagedSystemElement
Must be a unique name.
Path to the diagnostic.

Dependent
The M SE(ManagedSystemElement) that can be tested.
Must be a unique name.
Path to the managed system element

Estimated TimeOf Performing
Estimated number of seconds to perform the referenced DiagnosticTest against the M anagedSystemElement.
Since execution times could vary by Element, this property islocated in the association between the two
entities. It isalso captured in DiagnosticResult, in the Estimated TimeOfPerforming property.

uint32

Estimated number of secondsto perform. To find out the real elapsed time Subtract TestStartTime from
TestCompletionTime in the CIM_DiagnosticResult object.

IsExclusioveForM SE
Boolean
If the DiagnosticTest referenced in this object can be run concurrently against multiple SystemElements,
but only run one at atime for the referenced M anagedSystemElement, then this boolean is set to TRUE.

Alternately, if the test can NOT be run concurrently irregardless of the SystemElements being tested, then
the more general 1sExclusive enumerated value should be set in DiagnosticTest.Characteristics.

17



CIM_DiagnosticResultsForMSE
Thisis an association class relating diagnostic test results to the ManagedSystemElement that is/was tested..

Properties
Result
Thisisthe diagnostic result.

Key property.
Reference to the diagnostic result.

SystemElement
The M SE (ManagedSystemElement) to which the results applies.

Key property.

CIM_DiagnosticResultsForTest
Thisisan association classto relate the results of atest to the test itself.

Properties
DiagnosticResult
Thisisthe diagnostic result.

Key property.
Reference to the diagnostic result.

DiagnosticTest
Thetests that generated the result.

Key property.

CIM_DiagnosticTestinPackage : CIM_Componet
Thisisan association class that identifies a Diagnostic Test as made up of lower level Tests. In this case, the

Test identified as the GroupComponent reference (i.e, the higher level test) would have the I's Package
enumerated value specified in DiagnosticTest.

Properties
GroupComponet
The DiagnosticTest object that acts as the container for al the testsin the package.
Referenceto CIM_DiagnosticTest.
PartComponet
The DiagnosticTest object that is one of the elements of the package.
Referenceto CIM_DiagnosticTest.

18



CIM_DiagnosticResultinPackage

Thisisan association class that identifies a Diagnostic Result as made up of lower level Results. In this case, the
Result identified as the PackageResult reference (i.e., the higher level result) would have its | sPackage property
set to TRUE.

Properties
PackageResult
The DiagnosticResult object that acts as the container for all the results of the package.
Referenceto CIM_DiagnosticResult
Key property.
Result
The DiagnosticResult object that is one of the elements of the package.

Reference to CIM_DiagnosticResullt.
Key peoperty.

CIM_DiagnosticTestSoftware : CIM_Dependency
Thisisan association class relating DiagnosticTest to the SoftwareElements that provide thistest. SoftwareElement
describes vendor/version information and other deployment data..

Properties
Antecedent
Vendor/Version and other information about the software the runs as the DiagnosticTest.
Reference to CIM_SoftwareElement.
Dependent
The DiagnosticTest whose software is described.
Referenceto CIM_DiagnosticTest.

CIM_DiagnosticSettingForTest : CIM_ElementSetting
Thisisan association classto relate test settings with diagnostic tests.

Properties
Element
The diagnostic test that can use the Ssetting object.
Referenceto CIM_DiagnosticTest.
Setting
The Setting the can be applied to the execution fo the DiagnosticTest.
Referenceto CIM_DiagnosticSetting

19



Other features of CIM to be used

CIM Events

Events under diagnostics are used for the following.
Since all the events are asynchronous and time of delivery is not guaranteed, some care must be taken to ensure that
enough dataisreported/logged with the event to resolve the condition being diagnosed.

M essage passing, for test messages that the operator needs to see.

Abnormal condition reporting.

Checksum errorsin adata stream

Parity errorsinlocal cache.

Buffer overrun flags (software diagnostics).

Datalogging

Some event-logging model is needed to support postmortem operations, and interactive testing.

CIM Collection classes

Collection classes allow an association to be made to groups of CIM objects. For example: we have a diagnostic
that appliesto apart of the machine that is represented by many CIM objects, the best way to associate to all the
different CIM objectsisthrough acollection.



SDK Information

MOF Class Definitions
Seethefile CIM_Diagnostic.MOF

Qualifiers
Thisisaselection of the qualifiers CIM has defined. To see all of them visit http://www.dmtf.org/
Excerpts of this were taken from the DMTF web site.
ABSTRACT
Indicates that the class is abstract and serves only as abase for new classes. It is not possible to create
instances of such classes.
AGGREGATION
Indicates that the association is an aggregation.
ARRAYTYPE
Indicates the type of the qualified array. Valid values are "Bag", "Indexed" and "Ordered".
DESCRIPTION
A human readable description of the element

IN
Appliesto method parameters
Indicates this parameter is an input parameter.
KEY
Indicates that the property is part of the namespace handle. If more than one property hasthe KEY
qualifier, then all such properties collectively form the key (acompound key).
Usage Rule: Keys are written once at object instantiation and must not be modified thereafter. It does
not make sense to apply adefault value to aKEY -qualified property
MAXLEN
Indicates the maximum number of values a given multi-valued reference can have. A value of NULL
impliesno limit.
ouT
Appliesto method parameters
Indicates this parameter is an output parameter
READ
The property is marked readable, read-only if writeis not present.
REQUIRED
A non-null value must be specified.
REVISION
Provides the minor revision number of the schema object.
Usage Rule: The VERSION qualifier must be present to supply the major version number when the
REVISION qualifier isused.
Units
Define the units agiven property isin.
See DMTF web site for acomplete listing of the key unit names.
VALUEMAP
- Definesthe set of permissible valuesfor this property. The ValueMap can be used alone, or in combination
with the Vaues qualifier. When used in combination with the VValues qualifier, the location of the property
valueinthe VaueMap array provides the location of the corresponding entry in the Values array.
VaueMap may only be used with string and integer values.
For example: We have astring array that only supports alimited set of key names the qualifier would look
like:
ValueMap{"Keyl", "Key2", "Key3"}

21



VALUES
- Providestranslation between an integer value and an associated string. If aVaueMap qualifier is not

present, the Values array isindexed (zero relative) using the value in the associated property. If a
VaueMap qualifier is present, the Values index is defined by the location of the property valuein the
ValueMap.
For example: We have an integer that we want to relate alimited set of key namesto the integer values the
qualifierswould look like:
- VadueMap{“0",“1",“2"}, Values{"Keyl", "Key2", "Key3"}
VERSION
Provides the major version number of the schema object. Thisisincremented when changes are made to
the schemarthat alter the interface.
WRITE
The property iswritable by anyone
EXPENSIVE
Indicates the property is expensive to compute.
Diagnostics uses thisin conjunction with the ResourcesUsed property of CIM_DiagnosticTest to state
what is expensive in terms of system usage.
LARGE
This property requires alarge amount of storage space.
For example an instance of a subclass of CIM_DiagnosticT estSettingAndResult may have alarge
amount of datain it, and may need to be qualified aslarge.
User-defined Qualifiers
The user can define any additional arbitrary named qualifiers. However, it is recommended that only
defined qualifiers be used, and that the list of qualifiers be extended only if thereis no other way to
accomplish aparticular objective.



