
 1

System Diagnostic
 Model White Paper
DSP0138 Status: Preliminary

Copyright © 2000 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management and interoperability.
Members and non-members may reproduce DMTF specifications and documents for uses consistent with this purpose, provided that correct
attribution is given. As DMTF specifications may be revised from time to time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights, including provisional patent
rights (herein "patent rights"). DMTF makes no representations to users of the standard as to the existence of such rights, and is not responsible to
recognize, disclose, or identify any or all such third party patent right, owners or claimants, nor for any incomplete or inaccurate identification or
disclosure of such rights, owners or claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory
whatsoever, for failure to recognize, disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any party implementing such standard,
whether such implementation is foreseeable or not, nor to any patent owner or claimant, and shall have no liability or responsibility for costs or
losses incurred if a standard is withdrawn or modified after publication, and shall be indemnified and held harmless by any party implementing
the standard from any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion, such patent may relate to or impact
implementations of DMTF standards, visit http://www.dmtf.org/about/policies/disclosures.php.

A

Diagnostic Model in CIM

January 6th, 2000

Abstract
Diagnostics under a multitasking operating system, like Windows NT, are inherently complex. Items like
Hardware Abstraction Layers and accelerated hardware with advanced device drivers place an ever increasing
amount of software between the applications and the hardware, there by making diagnostics less effective. Kernel
features that allow “hot swapping” of devices, (including processors, and memory) can be extended to allow
“Suspend / Resume” features for diagnostics. Under the realm of concurrent diagnostics, idle devices, e.g.
processors, network cards, memory, ... could be “suspended” (taken off line) and testing performed, if the resource
were needed or the testing complete, the device is “resumed” (brought back on line).

 2

Change History

Version Date Author Comments

0.001 01/27/99 RDW/IBM First Draft
0.002 02/08/99 RDW/IBM Added CIM detail
0.003 03/22/99 RDW/IBM Added detail about modeling coverage, and intro/vision
0.004 04/15/99 RDW/IBM Word smithing
0.005 04/22/99 RDW/IBM Changing CIM_DevDiag to subclass from CIM_Dependency
0.006 04/29/99 RDW/IBM Add subclass example, change name to CIM_Diag interface
0.007 05/12/99 RDW/IBM Changed CIM_Diag to subclass logical system element
0.008 06/20/99 RDW/IBM Changed CIM_Diag to subclass CIM_Service, added information about

settings. Moved many properties and qualifiers to the new Settings class.
0.009 07/05/99 RDW/IBM Deleted settings class replaced with a results class that stores settings

information along with results
1.0 07/19/99 RDW/IBM First draft to the DMTF, matches Visio diagram, and MOF
1.001 07/28/99 DM/IBM Corrected typos
1.002 08/08/99 RDW/IBM Revised document with DMTF comments: Package class replaced with

DiagnosticTestInPackage aggregation. Separated Settings, and results.
Several new associations added.

1.003 08/29/98 RDW/IBM Revised document with DMTF comments: DiagnosticResult class uses an
embedded DiagnosticSetting object, rather than copying all the properties
of DiagnosticSetting. DiagnosticResults no longer subclasses off of
LogicalElement.

1.004 09/09/99 RDW/IBM Corrections and clarifications based on feed back from DMTF
1.005 09/14/99 RDW/IBM All valuemaps are now uint16, Results: TestStartTime made key; TestState

no key; TimeStamp not key, DiagnosticTest: ClearResults now takes a ref
to a ManagedSystemElement; DiscontinueTest does not output a result
object. Added some usage examples for setting for test associations.

1.006 9/16/99 RDW/IBM Changed cardinality on diagnosticResultForTest to 0..1 from 1..1.
Renamed stuff to Is, e.g. IsPackage, IsInUse,… Changed method returns to
uint32

1.007 9/25/99 RDW/IBM Typos corrected, new ones created.
1.008 10/05/99 RDW/IBM

WHK/IBM
Changes to make the Mof CIM Compliant. Added an association to
SoftwareElement

1.009 10/18/19 WHK/IBM Remove the imbedded settings object in Result and add a copy of the
setting properties into Result

1.009a 10/20/99 RDW/IBM
JSB/IBM

Cleaned up association inheritance differences with the MOF

1.010 11/18/99 RDW/IBM Removed the copy of settings from the result object. In theory the settings
in results problem will be address in CIM 2.4

1.011 11/29/99 RDW/IBM Change the wording on PercentComplete in diagnosticResult
1.012 01/06/00 RDW/IBM Final cleanup of typo’s for DMTF publishing

 3

Editor
Rod Waltermann, et al.

A joint effort of IBM, Intel, Watergate Software, And Dell.

The editor would like to thank the following contributors and reviewers (in alphabetical order):
Dell: Sidney Smith; IBM: Alfred Burress, Bill Klump, Ray Pedersen, Ken Young; Intel: Russ
Carr, Eric Grimm, Arvind Kumar, Reza Nassib, Ioan Scumpu; Watergate Software: R. Marc
Browning, Aki Korhonen, Mark Proudfoot

For further information contact: DMTF diagnostic sub group: tm-diag@dmtf.org

Company, product, and service names mentioned in this paper may be trademarks or service
marks of their respected owners.

 4

Table of Contents
Introduction... 5

Instrumented Diagnostics through CIM .. 5
Vision ... 6

Road map .. 6
CIM Schema for diagnostics.. 7

Diagnostic class registration.. 7
CIM_DiagnosticTest : CIM_Service... 7
CIM_DiagnosticSetting : CIM_Setting .. 7
CIM_DiagnosticResult .. 7
CIM_DiagnosticTestForMSE : CIM_ProvidesServiceToElement .. 7
CIM_DiagnosticTestSoftware : CIM_Dependency.. 7
CIM_DiagnosticTestInPackage : CIM_Component... 7
CIM_DiagnosticResultInPackage.. 8
CIM_DiagnosticResultForMSE... 8
CIM_DiagnosticResultForTest... 8
CIM_ServiceServiceDependency.. 8
CIM_DiagnosticSettingForTest : CIM_ElementSetting.. 8
The data model, a picture:... 8

Class definitions... 11
CIM_DiagnosticTest : CIM_Service ... 11

Properties.. 11
Methods.. 12

CIM_DiagnosticSetting : CIM_Setting ... 14
CIM_DiagnosticResult ... 15

Properties.. 15
CIM_DiagnosticTestForMSE ... 17

Properties.. 17
CIM_DiagnosticResultsForMSE.. 18

Properties.. 18
CIM_DiagnosticResultsForTest.. 18

Properties.. 18
CIM_DiagnosticTestInPackage : CIM_Componet.. 18

Properties.. 18
CIM_DiagnosticResultInPackage... 19

Properties.. 19
CIM_DiagnosticTestSoftware : CIM_Dependency.. 19

Properties.. 19
CIM_DiagnosticSettingForTest : CIM_ElementSetting... 19

Properties.. 19
Other features of CIM to be used.. 20

CIM Events... 20
CIM Collection classes ... 20

SDK Information ... 21
MOF Class Definitions... 21
Qualifiers... 21

 5

Introduction
Diagnostics under a multitasking operating system, like Windows NT, is inherently complex. Items like Hardware
Abstraction Layers and accelerated hardware with advanced device drivers place an ever increasing amount of
software between the applications and the hardware, there by making diagnostics less effective. Kernel features that
allow “hot swapping” of devices, (including processors, and memory) can be extended to allow “Suspend / Resume”
features for diagnostics. Under the realm of concurrent diagnostics, idle devices, e.g. processors, network cards,
memory, ... could be “suspended” (taken off line) and testing performed, if the resource were needed or the testing
complete, the device is “resumed” (brought back on line).

For example: the customer is installing a new card to allow connection to a digital camera. When they install the
device driver for the camera, a diagnostic for the hardware is installed along with the driver, this diagnostic is
refered to as a diagnostic data provider. This diagnostic provider will register its set of diagnostic methods and data,
called tests, into CIM (Common Information Model). These tests describe what methods and features of the
standard are supported. When the customer runs their diagnostic program it will query CIM for a list of registered
devices that have tests. The program will then build a menu of tests for the installed devices. Even though the
diagnostic program was purchased when the computer was new and never updated, the new digital camera option
shows up in the menu.

 As we strive to move into the realm of concurrent / predictive diagnostics the primary requirements are:

• Diagnostics from multiple sources, that interface through a common framework.
• The ability to place idle resources in a “diagnostic mode” for diagnostic testing.
• Diagnostics can be remotely administered through CIM, or an enterprise management system.
• A diagnostic consumer can access the cost of performing a given diagnostic, based on system load, or resources

used during the diagnosing.
• Abnormal device conditions can trigger diagnostic events

During the development of this model we focused on three main users of diagnostics: the customer, service
personnel, and manufacturing. All three have somewhat different requirements

The customer would like to have a high level view of the system, i.e. they would like a pass/fail information about
the device. Additionally we would like to link with other data in CIM for example inventory and FRU (Field
replaceable unit) data, and predictive failure data for hard disks, memory, etc. This combined with diagnostic logs
stored on the machine, allow an IT (Information Technology) manager to gain a system health view over their
machines. Another requirement is the ability to access and test the machines remotely. CIM also allows the
customer to log the data for trend analysis, or to make it available to the service personnel.

Service needs to be able to access the machine or the test results remotely, allowing them to validate what parts to
ship/bring along to complete the repair. The servicer needs to be able to recreate the error, this implies viewing the
settings for the diagnostic at the time the error was logged.

The manufacturing environment needs are somewhat different. During burn-in, a period of extensive testing of a
randomly selected machine for quality control, the OS and all components are installed. This is a point where this
model seems to fit; however during other phases of the assembly, diagnostic requirements are very different.
Having the same test modules work in a manufacturing only environment and a common diagnostics model is
desirable, both for repeatability, and to help reduce cost of development.

Along with the three users, we tried to stay with a model that focused on modeling the results of the diagnostic being
performed on the device (a customer centered model), instead of modeling the methods/tests.

Instrumented Diagnostics through CIM
A diagnostic is broken into two parts. A diagnostic provider, and a diagnostic consumer. The diagnostic consumer
is the test module that will request a test, or call the methods in a diagnostic provider, to perform a single test or a set
of tests on the device. The diagnostic provider registers itself through CIM to export the events and methods

 6

supported. When a diagnostic test module queries CIM for diagnostics supported on a given device, CIM will report
about the instance of the diagnostic provider. This effectively establishes communication between the provider and
the consumer. The consumer can now enable events, or execute methods registered by the provider.

Vision
Modeling diagnostics further enhances the remote manageability of a machine. A diagnostic is composed of a
collection of methods and their resulting pass/fail and logged data. This document further breaks the model down
into classes, and associations. The classes being for the diagnostic, its’ methods, and results from their execution.
The associations relate the tests to the devices they support.

The diagnostic test class models a single test, e.g. a linear scan disk test. A test has properties that describe its
function. Properties that show if the test is currently in use, will destroy data (a hard drive test that writes to the disk
could overwrite data), and so on. A test is designed with a main entry point to run the test. Along with running the
test, there is a method to stop its execution.

The test needs to be associated with the hardware it can diagnose. As an example you have a machine with two
Ethernet cards (Network Interface Cards NICs)) from the same manufacturer. You only need to have one diagnostic
exposed through CIM, one diagnostic, with two associations, one for each NIC.

Now we have tests, and devices they can act upon. It is expected that there will be more than one test for a given
device. A way to collect the tests that share a common device is needed. A diagnostic package describes a
collection of tests. This collection will perform basically the same way that an individual test would perform, i.e.
you can start testing, stop testing, check if testing is in progress, etc.

The setting and result classes store all the information to rerun a test on the same device. For example you have a
machine with a hard drive. There are two tests for the hard drive and one package containing both tests. Given this
example, we call one of the tests. This test, with its setting object, will create a result object as it’s output.

If instead we call the package, there will still be only one setting object; however each test will create it’s own result
object that is associated to the package’s result object. In effect creating a package of results from all the tests. The
way to associate these results back to the device is defined in a manner similar to the way a test is associated to the
device.

Road map
The first release of this specification covers on-demand diagnostics. Diagnostics will run when invoked by a
method call.

Release two is scheduled to address many new areas including: real time (concurrent) and event driven diagnostics,
tests that need to interact with someone, e.g. a floppy disk test needs someone to insert the disk, data logging, and
parameter validation. Other topics in no particular order include: watch-dog timers, synchronous method execution,
diagnostic mode, and pre/post diagnostic processing.

The third version expects to cover self-diagnostics. Utilizing the base built in the first and second versions, a AI
(Artificial Intelligence) based data consumer could use the diagnostic results along with other CIM based data to
provide a “self-healing” function. A hypothetical example is a server with multiple network cards. One of the NICs
is causing problems on the machine. The fault detection built into the card throws an event that a diagnostic manager
will use to: launch the concurrent diagnostics built into the device driver, trigger an event which would send requests
to have the offending card powered down, and the network traffic rerouted. The system admin would be informed,
and an entry in the system log stating the problem and time are recorded.

 7

CIM Schema for diagnostics

Diagnostic class registration
Diagnostic providers need to subclass from three classes: CIM_DiagnosticTest, CIM_DiagnosticSetting, and
CIM_DiagnosticResult. The provider will also need to subclass from seven associations:
CIM_DiagnosticTestForMSE, CIM_DiagnosticSettingForTest, CIM_DiagnosticTestInPackage,
CIM_DiagnosticResultInPackage, CIM_DiagnosticResultForTest , CIM_DiagnosticResultForMSE, and
CIM_DiagnosticTestDependency.

CIM_DiagnosticTest : CIM_Service
The actual diagnostic test instances and subclasses are here. It is expected that there will be a subclass for every
manufacturer of diagnostics and one or more instances of diagnostic tests.

CIM_DiagnosticSetting : CIM_Setting
This class is used to store the default or run-specific settings for a given test. This class works in conjunction with
the result class, see the example in CIM_DiagnosticResult.

CIM_DiagnosticResult
For every RunTest method from a diagnostic instance of CIM_DiagnosticTest executed against an instance of
managed system element, there will be an instance of a subclass of CIM_DiagnosticResult . Along with the results
there will be an association instance of a subclass in CIM_DiagnosticResultsForMSE. For example, we have a
subclass of CIM_DiagnosticTest titled vendorX_ScanDiskDiag, which has one instance called
vendorX_ScanDiskDiag_1. Now we have a subclass of CIM_DiagnosticTestForMSE titled
vendorX_ScanDiskDiagAssoc. There is one instance of this association for the hard drive,
vendorX_HardDiskAssoc_1. Finally a subclass of CIM_DiagnosticResult titled vendorX_ScanDisk_1DiagResult
is created to store all the data for each running of the test.

When the RunTest method is invoked it will require one of the associations, and optionally an instance of
vendorX_ScanDisk_1DiagSetting. If the consumer wants to change any of the default settings, it will create its’ own
instance of vendorX_ScanDisk_1DiagSetting, adjust the test settings, and pass this instance to the RunTest method
when it is invoked. If an instance of vendorX_ScanDisk_1DiagSetting is not provided the default setting object
will be used. When the testing begins an instance of vendorX_ScanDisk_1DiagResult is created which stores a
copy of the settings and all the resulting test information.

CIM_DiagnosticTestForMSE : CIM_ProvidesServiceToElement
This is an association class to relate a device under CIM_ManagedSystemElement with the diagnostic test instance
provider in CIM_DiagnosticTest : CIM_Service. If there is no device registered for which a diagnostic test can
service, that diagnostic will not register an association. Diagnostic consumers will query this association for
instances of devices with a diagnostic test provider.

CIM_DiagnosticTestSoftware : CIM_Dependency
This is an association class to relate a diagnostic test under CIM_DiagnosticTest : CIM_Service with the
SoftwareElement that provides this test. SoftwareElement describes information about the test, for example: vendor,
version and other deployment information.

CIM_DiagnosticTestInPackage : CIM_Component
This is an association class to relate a diagnostic test under CIM_DiagnosticTest with the diagnostic test package
instance also under CIM_DiagnosticTest. Diagnostic consumers are expected to query this association in order to
discover which tests are in a given package.

 8

CIM_DiagnosticResultInPackage
This is an association class to relate a diagnostic test’s results under CIM_DiagnosticResult : CIM_LogicalElement
with the diagnostic result package instance also under CIM_DiagnosticResult. Diagnostic consumers are expected
to query this association in order to dis cover which results are in a given package.

CIM_DiagnosticResultForMSE
This is an association class to relate a device under CIM_ManagedSystemElement with the diagnostic result
instance provider in CIM_DiagnosticResult. If there are no results, do not register an association. Results for a
given execution of a diagnostic are stored in the diagnostic result class. Diagnostic consumers will query this
association for instances of diagnostic result for devices with a diagnostic provider.

CIM_DiagnosticResultForTest
This is an association class to relate a diagnostic result under CIM_DiagnosticResult with the diagnostic test
instance under CIM_DiagnosticTest. Diagnostic consumers are expected to query this association in order to
discover which tests have results from previous runs.

CIM_ServiceServiceDependency
This is an association class used to order execution of tests with services or other tests that may be running on the
device. For example: A network interface card ping-test requires that the TCP/IP service be running on the card
before it can execute the test. Diagnostic consumers are expected to query this association to discover which tests
have dependencies on other services or tests.

CIM_DiagnosticSettingForTest : CIM_ElementSetting
This is an association class to relate a diagnostic test’s settings under CIM_DiagnosticSetting : CIM_Setting with
the diagnostic test instance under CIM_DiagnosticTest. Diagnostic consumers are expected to query this association
in order to discover settings for a given test.

The data model, a picture:
Figure 1, below, shows the relationship between the classes and figure 2 shows the associations.

 9

Service

(See Core Model)

1

(See Core Model)

LogicalElement

Dependency

*

ManagedSystemElement

(See Core Model)

*
(See Core Model)

ManagedElement

DiagnosticTest

Characteristics: uint16[]
OtherCharacteristicDescription : string
IsInUse : boolean
ResourcesUsed: uint16[]

RunTest([IN] SystemElement: ref ManagedSystemElement,
 [IN] Setting: ref DiagnosticSetting, [OUT] Result: ref DiagnosticSetting)
 :uint32
ClearResults([IN]SystemElement: ref ManagedSystemElement,
 [OUT] ResultsNotCleared: string[]) : uint32
DiscontinueTest([IN] SystemElement: ref ManagedSystemElement,
 [IN] DiagnosticResult ref DiagnosticResult,
 [OUT] TestingStopped : boolean) : uint32

Setting

(See Core Model)

DiagnosticSetting

SettingID: string [key]
TestWarningLevel:uint16
ReportSoftErrors: boolean
ReportStatusMessages: boolean
HaltOnError: boolean
QuickMode: boolean
PercentOfTestCoverage: uint8

DiagnosticResult

ExecutionID: string [Key]
TimeStamp: datetime
IsPackage: boolean
TestStartTime: datetime
TestCompletionTime: datetime
TestState: uint16
OtherStateDescription: string
EstimatedTimeOfPerforming : uint32
TestResults: string[]
PercentComplete: uint8
TestWarningLevel : uint16
ReportSoftErrors : boolean
ReportStatusMessages : boolean
HaltOnError: boolean
QuickMode: boolean
PercentOfTestCoverage: uint8

DiagnosticResultForMSE

*

*

DiagnosticResultForTest

w 1

DiagnosticTestForMSE

*

*

DiagnosticTestInPackage

*

*

DiagnosticResultInPackage

*

*

SoftwareElement

(See Application Model)

DiagnosticTestSoftware

*

*

DiagnosticSettingForTest

*

*

Figure 1: UML diagnostic Classes

 10

DiagnosticResultForMSE

Result: ref DiagnosticResult [key]
SystemElement: ref ManagedSystemElement
[key]

Dependency

Antecedent: ref ManagedElement [key]
Dependent: ref ManagedElement [key]

ProvidesServiceToElement

Antecedent: ref Service
Dependent: ref ManagedElement

DiagnosticResultForTest

Result: ref DiagnosticResult [key] [weak]
DiagnosticTest: ref DiagnosticTest [key]

DiagnosticTestForMSE

Antecedent: ref DiagnosticTest
Dependent: ref ManagedSystemElement
EstimatedTimeOfPerforming: uint32
IsExclusiverForMSE: boolean

Component

GroupComponent: ref ManagedSystemElement [key]
PartComponent: ref ManagedSystemElement [key]

DiagnosticTestInPackage

GroupComponent: ref DiagnosticTest
PartComponent: ref DiagnosticTest

DiagnosticResultInPackage

PackageResult: ref DiagnosticResult [key]
Result: ref DiagnosticResult [key]

DiagnosticTestSoftware

Antecedent: ref SoftwareElement
Dependent: ref DiagnosticTest

ElementSetting

Element: ref ManagedSystemElement [key]
Setting: ref Setting [key]

DiagnosticSettingForTest

Element: ref DiagnosticTest
Setting: ref DiagnosticSetting

Figure 2: UML Diagnostic Associations

 11

Class definitions

CIM_DiagnosticTest : CIM_Service
The CIM_DiagnosticTest class represents the ability to execute a test. Specific diagnostic tests may be defined by
subclassing and/or instantiating this object. To provide more detail for a type of test (additional properties and
methods), subclassing is appropriate. To indicate that a test exists and may be applied to a specific
ManagedSystemElement, instantiation of the DiagnosticTest class may suffice.

Properties

• Characteristics[]

• Uint16 array
• Values supported

• Unknown
• Other

• When other is defined, additional detail may be found in the OtherCharacteristicDescription
property of this class.

• IsExclusive
• If exclusive is specified for the test module only if the diagnostic cannot run more than one test

 at a time, regardless of how many SystemElements are supported. Typically, this occurs when
 hardware or software constraints prevent the test from running as multiple, concurrent instances.
 If the diagnostic can be run against multiple SystemElements, but only once per Element, then set
 the IsExclusiveForMSE boolean property on the appropriate instances of DiagnosticTestForMSE.

• IsInteractive
• IsInteractive is set if the diagnostic displays a message either before, during or after the testing.

• IsDestructive
• IsDestructive is set if the diagnostic will destroy data or reconfigure the Element that is being

tested.
• IsRisky

• Is Risky indicates that data loss may occur if the test is interrupted. Some tests make copies of the
data, perform the test, and restore the data returning the tested entity to its previous configuration.
If the test is interrupted, then loss of data or reconfiguration of the tested ManagedSystenElement
may occur.

• IsPackage
• If IsPackage is set, this test is actually a set of lower level diagnostics, that are packaged together .

• SupportsPrecentOfCoverage
• SupportsPrecentOfCoverage indicates that a request for reduced coverage can be specified using

the PrecentOfCoverage property of this class.

• OtherCharacteristicDescription;
• String
• Provides additional information for the Characteristic when its value is set to "Other".

• IsInuse

• Boolean
• If this test is being performed, the InUse property is set to TRUE. To determine which

ManagedSystemElement is being tested, query the DiagnosticResults objects associated with this test
(query DiagnosticResultForTest), and for which the TrestState equals InProgress, The DiagnosticResult
object is associated with the SystemElement under test, using DiagnosticResultForMSE..

• ResourcesUsed []
• Uint16 Array, type “bag”, read only

 12

• The Expensive qualifier can be applied to this class and its RunTest method. If so, the ResourcesUsed
property describes the resources that are capitalized, based on a default setup for the test. Multiple
resources can be specified since this is an array.

• Currently recognized values are:
• CPU
• Memory
• Hard Disk, CDROM, Floppy
• PCI Bus, USB Bus , IEEE 1394 Bus, SCSI Bus, IDE Bus
• ISA Bus, EISA Bus, VESA Bus, PCMCIA Bus, CardBus
• Access.bus, NuBus, AGP, VME Bus
• Sbus IEEE 1396-1993, MCA Bus, GIO Bus, XIO Bus, HIO Bus, PMC Bus, SIO Bus
• Network

• This property uses value mapping with the above keywords

Methods
Diagnostic providers should register for the following methods. Access these methods through the functionality
built-into the CIM Object manager.
• Uint32 RunTest
The RunTest method executes this DiagnosticTest for the specified ManagedSystemElement (defined using the
SystemElement input parameter). Results of the test are stored in a CIM_DiagnosticResult object, a reference to
which is returned as the Result output parameter. How the test should execute, i.e. its settings, is defined in a
CIM_DiagnosticSetting object (or by a subclass of DiagnosticSetting). A reference to a Setting object is specified
using the "Setting" input parameter. If a reference is not passed into the method, then a default DiagnosticSetting
may be specified and used. This default Setting is associated with the DiagnoticTest using the DefaultSetting
relationship of the Core Model.

• [IN] Ref CIM_ManagedSystemElement
• The Path to the logical element you want to test.

• [IN] Ref CIM_DiagnosticSetting
• Default for this parameter is “”. If the consumer wants to change the default settings, it should

instantiate an instance of CIM_DiagnosticSetting or the correct subclass, make any changes needed,
then pass the reference in this parameter.

• [OUT] String Ref CIM_DiagnosticResult
• The instance that contains the settings used and the results of this run

• Method Returns: uint32 and supports the following values:
These return codes are expected to adhere to the XML return codes as they are introduced.
• 0 = OK (function succeeded. Note: the hardware may have failed the test even

 though the function succeeded.)
• 1 = UnspecifiedError (unexpected failure, reason unknown/unspecified)
• 2 = NotImplemented (member function is no implemented)
• 3 = OutOfResources (component could not allocate required resources)

• Uint32 ClearResults
Execution of this method will delete all instances of the CIM_DiagnosticResultForMSE object, for this
DiagnosticTest and the specified ManagedSystemElement (defined using the SystemElement input parameter).
Also all of the association refereeing to the result object will be deleted. One output parameter is defined -
ResultsNotCleared - which is a string array that lists the keys of the DiagnosticResults which could not be
deleted. This information enables those Results to be revisited and either manually removed, or other corrective
action taken.
• [IN] Ref CIM_ManagedSystemElement

A reference to the managed system element that you want the test results cleared.
• [OUT] String ResultsNotCleared []

• Any instances of the correct subclass of CIM_DiagnosticResult that were not deleted, will have their
name stored in this array.

 13

• An empty array implies that all of the results were deleted.
• Method Returns: uint32 and supports the following values:

These return codes are expected to adhere to the XML return codes as they are introduced.
• 0 = OK (function succeeded. Note: the hardware may have failed the test even

 though the function succeeded.)
• 1 = UnspecifiedError (unexpected failure, reason unknown/unspecified)
• 2 = NotImplemented (member function is no implemented)
• 3 = OutOfResources (component could not allocate required resources)

• Uint32 DiscontinueTest
After invocation of this method and its completion, the specified test(s) will be discontinued for the indicated
ManagedSystemElement (defined by the SystemElement input parameter). The test to discontinue is specified
using the Result input parameter. If all instances of this test should be stopped for the SystemElement, then the
Result reference should be NULL. Upon completion of the method, test status and other information (such as
PercentComplete) will be stored in the DiagnosticResult instance defined by the Result input parameter. The
output parameter, TestingStopped, is used as follows:

• Set to TRUE if testing was successfully stopped.
• Set to FALSE if the current test(s) can not be stopped.

• If set to FALSE, testing will stop when the diagnostic is able to do so safely. To determine
if/when the testing is stopped, check the TestState property in the DiagnosticResult
instance defined by the Result parameter. TestState will change from In Progress to Stopped.

• [IN] Ref CIM_ManagedSystemElement
• The reference to the logical element on which you want testing to stop.

• [IN] Ref CIM_DiagnosticResult
• The instance that contains the settings used and the results of this run

• [OUT] Boolean TestingStopped
• TRUE if all testing was successfully stopped.
• FALSE if the current test cannot be stopped. Testing will stop when the diagnostic is able to do so

safely.
• Method Returns: uint32 and supports the following values:

These return codes are expected to adhere to the XML return codes as they are introduced.
• 0 = OK (function succeeded. Note: the hardware may have failed the test even

 though the function succeeded.)
• 1 = UnspecifiedError (unexpected failure, reason unknown/unspecified)
• 2 = NotImplemented (member function is no implemented)
• 3 = OutOfResources (component could not allocate required resources)

• Any additional methods added should support the following parameters.
• [IN] Ref CIM_ManagedSystemElement

• A reference to the logical element you want to test.
• [IN] Ref CIM_DiagnosticSetting

• Default for this parameter is “”. If the consumer wants to change the default settings, it should
instantiate an instance of CIM_DiagnosticSetting or the correct subclass, make any changes needed,
then pass the reference in this parameter.

• [OUT] String Ref CIM_DiagnosticResult
• subclass instance that contains the settings used and the results of this run

• Method Returns: uint32 and supports the following values:
• OK (function succeeded. Note: the hardware may have failed the test even

 though the function succeeded.)
• UnspecifiedError (unexpected failure, reason unknown/unspecified)
• NotImplemented (member function is no implemented)
• OutOfResources (component could not allocate required resources)

 14

CIM_DiagnosticSetting : CIM_Setting
Specific diagnostic test parameters and execution instructions are defined by subclassing and/or instantiating
the DiagnosticSetting object. To provide more detailed Settings for a type of test (i.e., additional properties),
subclassing is appropriate. When only the generic Setting information is required, instantiation of the Diagnostic
Setting class may suffice. The following properties are copied to the diagnostics results class. Any new properties
added to diagnostic setting must be replicated in diagnostic results.

• SettingID

• String
• Key property
• The identifier by which the DiagnosticSetting object is known and uniquely named. If there is a one to one

mapping between the DiagnosticSetting and its DiagnosticTest (and there will always be only a one to one
mapping), then the DiagnosticCreationClassName and DiagnosticName key pair can be used as the
SettingID..

• TestWarningLevel
• Uint16
• Sets the level of warning messages to be logged. If for example no warning information is required, the

level would be set to No Warnings. Using MissingResources will cause warnings to be generated when
required resources or hardware are not found. Setting the value to Testing Impacts, results in both missing
resources and 'test impact' warnings (for example, multiple retries required) to be reported.

• This property uses value mapping, and values to define the following keywords
• No Warnings
• Missing Resources
• Testing Impacts
• All Warnings

• ReportSoftErrors

• Boolean
• A soft error, in this context, is a message from the diagnostic software that relates to a known defect in the

hardware or driver and has a valid workaround. For example:
• Not enough memory
• Driver IOCTL not implemented
• Video ram compare failed during polygon fill test (A known defect in the video chipset).

• ReportStatusMessges

• Boolean
• When this flag is true, the diagnostic test will report status information. Examples are:

• Diagnostic state information
• Debug or trap information

• HaltOnError

• Boolean
• When this flag is TRUE, the test will halt after finding the first error.

• QuickMode

• Boolean
• When this flag is true, the test software should attempt to run in an accelerated fashion either by reducing

the coverage or number of tests performed.

• PercentOfTestCoverage

• uint8

 15

• Requests the diagnostic software to reduce test coverage to the specified percentage. For example, a hard
drive scan test could be asked to run at 50%. The most effective way to accomplish this is for the test
software to scan every other track, as opposed to only scanning the first half of a drive. It is assumed that
the effectiveness of the test is impacted proportional to the percentage of testing requested. Permissible
values for this property range from 0 to 100.

 This property may not be applicable to all tests. If it can be set for a test, the value Supports PercentOf
 TestCoverage should be entered into the Diagnostic Test's Characteristics array.

CIM_DiagnosticResult
When a DiagnosticTest Service is running, test results are reported using a DiagnosticResult object, or one of its
subclasses. A DiagnosticTest may be running because its Service is Started or due to an invocation of the RunTest
method. DiagnosticResults are related to their Test via an instance of the DiagnosticResultsForMSE association.

An instance of the settings could be changed without the DiagnosticResults indicating that data has been changed.
Therefore the DiagnosticSetting used is copied in the DiagnosticResults.

Properties
• DiagnosticName

• String
• Key property
• Propagated from CIM_DiagnosticTest
• The scoping test’s name. Must be a unique name

• Use: companyName_TestName_N
• N is a counter for each instance of the diagnostic result method provider.

• DiagnosticCreationClassName

• String
• Key property
• The scoping test’s CreationClassName

• ExecutionID

• String
• Key property
• The Unique identifier for an instance of DiagnosticResults.

• TimeStamp

• DateTime, read only
• The date and time the result was last updated.

• IsPackage

• Boolean, read only
• If this property is TRUE, then this DiagnosticResult summarizes the results from the execution of a

packaged set of DiagnosticTests. The Tests in the package can be identified by following the
DiagnosticResultForTest association to the test and then using the DiagnosticTestInPackage aggregation.
The individual Results can be broken out by instantiating DiagnosticResults for the individual lower level
tests and aggregating into the ‘summary’ Result using the DiagnosticResultInPackage ..

• TestStartTime
• DateTime, read only
• The time and date when this test started.

 16

• TestCompletionTime
• DateTime, read only
• The time and date when this test completed.

• TestState

• Uint16
• Describes how the test is progressing. For example, if the test was discontinued, the TestState will be

Stopped, or if testing is currently executing, TestState will be In Progress.
• This property uses value mapping, and values to define the following keywords

• Unknown
• Other
• Passed
• Failed
• InProgress
• Stopped

• OtherStateDescription

• String
• When Other is entered in the TestState property, OtherStateDescription can be used to describe the test's

state.

• TestResults []

• String Array, type “Ordered”, read only.
• One entry is considered a cell location in the array.
• TestResults stores one or more textual results from the execution of the DiagnosticTest(s) referenced by the

DiagnosticCreationClassName and DiagnosticName properties. One entry is considered a cell location in
the array. Each entry is time stamped and contains the following information, in the following format:
yyymmddhhttssoutc|DiagnosticName|Textual message Where:

• yyyy = year, e.g. 2000
• mm = month (01 – 12)
• dd = day (01 – 31)
• hh = hour (00 – 24)
• tt = minute (00-59)
• ss = second (00-59)
• o = "+" or "-", indicating the sign of the UTC (Universal Coordinated Time; for all intents and

purposes the same as Greenwich Mean Time) correction field.
• utc is the offset from UTC in minutes (using the sign indicated by o).
• A '|' followed by the name of either the diagnostic package, or the diagnostic test that is making

the entry.
• Every thing following the second '|' is the textual message.

• PercentComplete
The percentage of the test that has executed thus far, if the TestState property is set to \"In Progress\" or the
percentage of the complete test that was executed if the TestState property is set to any of the completed states
(\"Passed\", \"Failed\" or \"Stopped\"). Final results may be based on less than 100% coverage due to the parameters
defined in DiagnosticSetting (such as QuickMode, PercentOfTestCoverage or HaltOnError).

• uint8, read only
• This value varies from 0 to 100 during execution of the DiagnosticTest. If the value is 0, the test has not

started. If the value is 100, then testing is complete.
• In the case of a package, this is the sum of the percentage of contribution for each method

 17

• EstimatedTimeOfPerforming
• uint32
• Estimated number of seconds to perform the Diagnostic Test indicated by the

DiagnosticCreationClassName and DiagnosticName properties. After the test has completed, the actual
elapsed time can be determined by subtracting the TestStartTime from the TestCompletionTime. A similar
property is defined in the association, DiagnosticTestForMSE. The difference between the two properties is
that the value stored in the association is a generic test execution time for the Element and the Test. But, the
value here (in DiagnosticResult) is the estimated time that this instance of testing would run.

• The following properties are duplicated from DiagnosticSettings
• TestWarningLevel
• ReportSoftErrors
• ReportStatusMessages
• HaltOnError
• QuickMode
• PercentOfTestCoverage

CIM_DiagnosticTestForMSE
This is an association class that relates a DiagnosticTest to a ManagedSystemElement. Consumers wishing to
'diagnose' a particular Element could query this association, for the Element, to determine what tests are available.

Properties
• Antecedent

• The test that may be run against a ManagedSystemElement
• Must be a unique name.
• Path to the diagnostic.

• Dependent

• The MSE(ManagedSystemElement) that can be tested.
• Must be a unique name.
• Path to the managed system element

• EstimatedTimeOfPerforming

Estimated number of seconds to perform the referenced DiagnosticTest against the ManagedSystemElement.
Since execution times could vary by Element, this property is located in the association between the two
entities. It is also captured in DiagnosticResult, in the Estimated TimeOfPerforming property.
• uint32
• Estimated number of seconds to perform. To find out the real elapsed time Subtract TestStartTime from

TestCompletionTime in the CIM_DiagnosticResult object.

• IsExclusioveForMSE
• Boolean
• If the DiagnosticTest referenced in this object can be run concurrently against multiple SystemElements,

but only run one at a time for the referenced ManagedSystemElement, then this boolean is set to TRUE.
Alternately, if the test can NOT be run concurrently irregardless of the SystemElements being tested, then
the more general IsExclusive enumerated value should be set in DiagnosticTest.Characteristics.

 18

CIM_DiagnosticResultsForMSE
This is an association class relating diagnostic test results to the ManagedSystemElement that is/was tested..

Properties
• Result

• This is the diagnostic result.
• Key property.
• Reference to the diagnostic result.

• SystemElement

• The MSE (ManagedSystemElement) to which the results applies.
• Key property.

CIM_DiagnosticResultsForTest
This is an association class to relate the results of a test to the test itself.

Properties
• DiagnosticResult

• This is the diagnostic result.
• Key property.
• Reference to the diagnostic result.

• DiagnosticTest

• The tests that generated the result.
• Key property.

CIM_DiagnosticTestInPackage : CIM_Componet
This is an association class that identifies a Diagnostic Test as made up of lower level Tests. In this case, the
Test identified as the GroupComponent reference (i.e, the higher level test) would have the Is Package
enumerated value specified in DiagnosticTest.

Properties
• GroupComponet

• The DiagnosticTest object that acts as the container for all the tests in the package.
• Reference to CIM_DiagnosticTest.

• PartComponet
• The DiagnosticTest object that is one of the elements of the package.
• Reference to CIM_DiagnosticTest.

 19

CIM_DiagnosticResultInPackage
This is an association class that identifies a Diagnostic Result as made up of lower level Results. In this case, the
Result identified as the PackageResult reference (i.e., the higher level result) would have its IsPackage property
set to TRUE.

Properties
• PackageResult

• The DiagnosticResult object that acts as the container for all the results of the package.
• Reference to CIM_DiagnosticResult
• Key property.

• Result
• The DiagnosticResult object that is one of the elements of the package.
• Reference to CIM_DiagnosticResult.
• Key peoperty.

CIM_DiagnosticTestSoftware : CIM_Dependency
This is an association class relating DiagnosticTest to the SoftwareElements that provide this test. SoftwareElement
describes vendor/version information and other deployment data..

Properties
• Antecedent

• Vendor/Version and other information about the software the runs as the DiagnosticTest.
• Reference to CIM_SoftwareElement.

• Dependent
• The DiagnosticTest whose software is described.
• Reference to CIM_DiagnosticTest.

CIM_DiagnosticSettingForTest : CIM_ElementSetting
This is an association class to relate test settings with diagnostic tests.

Properties
• Element

• The diagnostic test that can use the Ssetting object.
• Reference to CIM_DiagnosticTest.

• Setting
• The Setting the can be applied to the execution fo the DiagnosticTest.
• Reference to CIM_DiagnosticSetting

 20

Other features of CIM to be used

CIM Events
Events under diagnostics are used for the following.
Since all the events are asynchronous and time of delivery is not guaranteed, some care must be taken to ensure that
enough data is reported/logged with the event to resolve the condition being diagnosed.
• Message passing, for test messages that the operator needs to see.
• Abnormal condition reporting.
• Checksum errors in a data stream
• Parity errors in local cache.
• Buffer overrun flags (software diagnostics).
• Data logging
• Some event-logging model is needed to support postmortem operations, and interactive testing.

CIM Collection classes
Collection classes allow an association to be made to groups of CIM objects. For example: we have a diagnostic
that applies to a part of the machine that is represented by many CIM objects, the best way to associate to all the
different CIM objects is through a collection.

 21

SDK Information

MOF Class Definitions
See the file CIM_Diagnostic.MOF

Qualifiers
This is a selection of the qualifiers CIM has defined. To see all of them visit http://www.dmtf.org/
Excerpts of this were taken from the DMTF web site.
• ABSTRACT

• Indicates that the class is abstract and serves only as a base for new classes. It is not possible to create
instances of such classes.

• AGGREGATION
• Indicates that the association is an aggregation.

• ARRAYTYPE
• Indicates the type of the qualified array. Valid values are "Bag", "Indexed" and "Ordered".

• DESCRIPTION
• A human readable description of the element

• IN
• Applies to method parameters
• Indicates this parameter is an input parameter.

• KEY
• Indicates that the property is part of the namespace handle. If more than one property has the KEY

qualifier, then all such properties collectively form the key (a compound key).
• Usage Rule: Keys are written once at object instantiation and must not be modified thereafter. It does

not make sense to apply a default value to a KEY-qualified property
• MAXLEN

• Indicates the maximum number of values a given multi-valued reference can have. A value of NULL
implies no limit.

• OUT
• Applies to method parameters
• Indicates this parameter is an output parameter

• READ
• The property is marked readable, read-only if write is not present.

• REQUIRED
• A non-null value must be specified.

• REVISION
• Provides the minor revision number of the schema object.

• Usage Rule: The VERSION qualifier must be present to supply the major version number when the
REVISION qualifier is used.

• Units
• Define the units a given property is in.
• See DMTF web site for a complete listing of the key unit names.

• VALUEMAP
• Defines the set of permissible values for this property. The ValueMap can be used alone, or in combination

with the Values qualifier. When used in combination with the Values qualifier, the location of the property
value in the ValueMap array provides the location of the corresponding entry in the Values array.

• ValueMap may only be used with string and integer values.
• For example: We have a string array that only supports a limited set of key names the qualifier would look

like:
• ValueMap{"Key1", "Key2", "Key3"}

 22

• VALUES
• Provides translation between an integer value and an associated string. If a ValueMap qualifier is not

present, the Values array is indexed (zero relative) using the value in the associated property. If a
ValueMap qualifier is present, the Values index is defined by the location of the property value in the
ValueMap.

• For example: We have an integer that we want to relate a limited set of key names to the integer values the
qualifiers would look like:

• ValueMap {“0”, “1”, “2”}, Values {"Key1", "Key2", "Key3"}
• VERSION

• Provides the major version number of the schema object. This is incremented when changes are made to
the schema that alter the interface.

• WRITE
• The property is writable by anyone

• EXPENSIVE
• Indicates the property is expensive to compute.

• Diagnostics uses this in conjunction with the ResourcesUsed property of CIM_DiagnosticTest to state
what is expensive in terms of system usage.

• LARGE
• This property requires a large amount of storage space.

• For example an instance of a subclass of CIM_DiagnosticTestSettingAndResult may have a large
amount of data in it, and may need to be qualified as large.

• User-defined Qualifiers
• The user can define any additional arbitrary named qualifiers. However, it is recommended that only

defined qualifiers be used, and that the list of qualifiers be extended only if there is no other way to
accomplish a particular objective.

