
Specification DSP0117
STATUS: Preliminary

Copyright © "2000" Distributed Management Task Force, Inc. (DMTF). All rights
reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting
enterprise and systems management and interoperability. DMTF specifications
and documents may be reproduced for uses consistent with this purpose by
members and non-members, if correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and
release cited should always be noted."

DMTF LDAP Schema for the CIM v2.4
Core Information Model v1.0

May 6, 2002
Abstract
This document presents an LDAP schema for the CIM version 2.4 Core Information
Model [3].

Table of Contents

ABSTRACT ..1

TABLE OF CONTENTS ...1
1. Introduction .. 3
2. LDAP Mapping Considerations .. 3

2.1 Differences from the Core CIM Model.. 3
2.2 Changes from previous versions.. 3
2.3 Helper Classes ... 4

2.3.1 dlmOtherIdentifyingInfoInstance... 4
2.4 Naming considerations .. 5
2.5 Syntax Conversions ... 5

2.5.1 CIM String and LDAP DirectoryString ... 6
2.5.2 CIM DateTime and LDAP GeneralizedTime .. 6

2.6 Associations... 6
2.6.1 Types of associations ... 6
2.6.2 Mapping Associations.. 8

3. Class Definitions ... 12
3.1 ManagedElement ... 12

3.2 ManagedSystemElement ... 13
3.3 PhysicalElement .. 14
3.4 LogicalElement.. 16
3.5 System ... 16
3.6 ComputerSystem.. 17
3.7 AdminDomain ... 18
3.8 LogicalDevice.. 18
3.9 Service ... 21
3.10 ServiceAccessPoint.. 22
3.11 Collection... 22
3.12 CollectionOfMSEs... 22
3.13 Configuration Classes .. 23
3.14 Setting.. 25
3.15 Product Classes.. 26
3.16 SupportAccess Classes .. 27
3.17 FRU Classes .. 29
3.18 CollectedCollections Classes ... 30
3.19 LogicalIdentity... 31
3.20 ConfigurationComponent Classes ... 31
3.21 ElementConfiguration Classes... 32
3.22 ConfigurationCollection Classes ... 33
3.23 ElementSetting Classes.. 34
3.24 DefaultSetting Classes ... 34
3.25 SettingContext Classes .. 35
3.26 CollectionSetting Classes .. 36
3.27 Dependency ... 36
3.28 ServiceAccessBySAP Classes ... 37
3.29 HostedService .. 37
3.30 HostedAccessPoint .. 38
3.31 ProvidesServiceToElement Classes... 39
3.32 ServiceServiceDependency Classes... 40
3.33 ServiceSAPDependency Classes ... 42
3.34 SAPSAPDependency Classes.. 42
3.35 Realizes Classes... 43
3.36 MemberOfCollection Classes .. 44
3.37 CollectedMSEs Classes ... 44
3.38 Component... 45
3.39 SystemComponent Classes .. 45
3.40 SystemDevice Classes ... 46
3.41 ServiceComponent Classes.. 46
3.42 ProductParentChild Classes ... 47
3.43 CompatibleProduct Classes ... 48
3.44 ProductProductDependency Classes.. 49
3.45 ProductSupport Classes ... 50
3.46 ProductFRU Classes .. 51
3.47 ProductPhysicalElements Classes.. 52
3.48 FRUPhysicalElements Classes .. 52
3.49 FRUIncludesProduct Classes... 53
3.50 Synchronized Classes .. 53

4. References ... 55
5. Acknowledgment .. 55
A. Structural Rules .. 55
B. OID Assignments ... 56

B.1 Object Classes ... 56
B.2 Attributes... 58
B.3 Nameforms.. 61

1. Introduction
This document presents an LDAPv3 [1,2,6] schema for the DMTF CIM Core 2.4 Model
[3]. Abstract CIM classes are mapped to abstract LDAP classes. Concrete CIM classes
are mapped to structural and auxiliary LDAP classes. CIM associations are mapped
using a combination of auxiliary classes and structural LDAP classes. The content and
structure rules provided here are suggestions and may be modified as needed to support a
particular directory structure. Directory administrators do not need to subclass/instantiate
all of the classes in this schema. They are free to choose the subset that meets their
particular needs.

2. LDAP Mapping Considerations
2.1 Differences from the Core CIM Model
The LDAP schema presented here differs from the core CIM model in that not all classes
in the CIM Core model have been mapped in this model. Specifically, the
CIM_StatisticalInformation class and its subclasses, the CIM_Statistics class and its
subclasses, and the DependencyContext association have not been mapped.

This LDAP schema is not mapped one-to-one, class for class, from CIM. It uses the
following approaches:

• Abstract CIM classes (including associations) are mapped to abstract LDAP
object classes. This has the side effect that the reference properties of an abstract
CIM association are not mapped to attributes.

• Concrete CIM classes are mapped to a trio of LDAP classes:
o an abstract class, which mirrors the CIM class hierarchy through the

LDAP object class hierarchy mechanism
o an auxiliary class, which allows for the CIM information to be attached

to a pre-existing directory object instance
o a structural class

• CIM associations are mapped according to their cardinality and properties. The
cases for mapping associations are explained further in section 2.6

2.2 Changes from previous versions
This version of the LDAP schema has changes to the ABNF to correct errors that have
been pointed out by directory implementers. Specifically, the syntax rules are now
numeric object identifiers and equality rules have been added for multi-valued attributes.

The first version of this schema lacked the mapping from CIM concrete classes to
multiple LDAP classes. Also, the method of naming reference attributes was changed to
provide additional clarity and specificity when an instance of a structural LDAP class
participates in different associations.

This version no longer requires DIT containment for weak associations. These are just
considered a different flavor of one-to-many associations. Because of the use of

structural LDAP objects to represent certain associations, cimAssociationInstance is no
longer used in this mapping.

Finally, the scheme for the textual identification of the elements of the LDAP schema is
changed in this version. Previously, LDAP object classes were identified as
cimXXName, where XX was initially derived from the version of CIM from which the
LDAP class was mapped. (If the CIM class changed later, XX would change in a
subsequent mapping, but not necessarily in alignment with the revised CIM version
number.) This was chosen for convenience only. As it leads to misunderstandings
regarding synchronization with CIM versions, it has been dropped for a simpler scheme
in this and subsequent versions. The new scheme for LDAP object classes is dlmXName
for the mapping of the CIM class “Name”, where X is “1” in this version and increased
by one each time the CIM class changes and a new LDAP class is produced. For
consistency and to avoid confusion, the prefix “dlm” (DMTF LDAP Mapping) is used in
the identification of other LDAP schema elements such as attributes. The exceptions to
this naming change are the attributes arrayIndex, orderedCimKeys and
orderedCimModelPath, which retain their name from the previous mapping version.

2.3 Helper Classes

2.3.1 dlmOtherIdentifyingInfoInstance

CIM defines the concept of an ordered array, which LDAP does not support. In the core
CIM model, indexed arrays are only used in two abstract classes (CIM_ComputerSystem
and CIM_LogicalDevice) to tie the values of two property arrays together. In the LDAP
mapping, these properties are replaced with separate instances of
dlmOtherIdentifyingInfoInstance that each contain a single pair of attribute values and
are DIT contained by the parent class. The attribute dlmOtherIdentifyingInfo is defined
in Section 3.3 and reused here and the attribute arrayIndex is defined as the RDN for this
class. Finally, the structure rule is provided as a template to be filled in with structure
rule pointers to structural rules defined for concrete sub-classes of dlm1ComputerSystem
and dlm1LogicalDevice.

 (1.3.6.1.4.1.412.100.1.2.5 NAME 'arrayIndex'
 DESC 'the index of this child'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 EQUALITY caseIgnoreMatch
)

 (1.3.6.1.4.1.412.100.2.2.101 NAME 'dlmIdentifyingDescription'
 DESC 'A free-form string providing explanation and
 details behind the entries in the dlmOtherIdentifyingInfo
 attribute.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

 (1.3.6.1.4.1.412.100.2.1.3.92 NAME
'dlmOtherIdentifyingInfoInstance'
 DESC 'helper class to tie indexed arrays in core model together'
 SUP top
 MUST (arrayIndex)

 MAY (dlmOtherIdentifyingInfo $ dlmIdentifyingDescription)
)

 (1.3.6.1.4.1.412.100.2.3.3.9 NAME
'dlmOtherIdentifyingInfoInstanceNameForm'
 OC dlmOtherIdentifyingInfoInstance
 MUST (arrayIndex)
)

 (<core-sr-9> NAME 'dlmOtherIdentifyingInfoInstanceStructureRule'
 FORM dlmOtherIdentifyingInfoInstanceNameForm
)

2.4 Naming considerations
To support naming in the LDAP mapping of the core schema, the attribute
orderedCimKeys is defined, to provide the RDN for directory implementations.

 (1.3.6.1.4.1.412.100.1.2.1 NAME 'orderedCimKeys'
 DESC 'The model path for the instance (without propagated
 keys). May be used as an RDN'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
 EQUALITY octetStringMatch
)

The value of this attribute is constructed by ordering the CIM keys [formatted as
"<className>.<key>=<value>[,<key>=<value>]*"] of the object in the US-ASCII
collation order of the property names. For an instance with propagated keys in the CIM
namespace, the value of this attribute takes one of two forms: either it includes all of the
instance's keys, or it includes only the non-propagated ones. Ordinarily the propagated
keys will be included when the DIT hierarchy in which an instance appears does not
reflect the CIM naming hierarchy represented by the propagation of keys via weak
associations. When the DIT hierarchy does mirror the CIM naming hierarchy, the
propagated keys are unnecessary and may be omitted. By consulting the CIM schema, a
directory client can tell whether propagated keys may have been included.

In a previous version of this specification, the value of orderedCimKeys never included
propagated keys. A second attribute, orderedCimModelPath, was used when propagated
keys were required. Now that orderedCimKeys includes the case where propagated keys
are included, orderedCimModelPath can be marked as "obsolete".

 (1.3.6.1.4.1.412.100.1.2.2 NAME 'orderedCimModelPath'
 DESC 'The model path for the instance (with propagated keys). May
 be used as an RDN'
 OBSOLETE
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
 EQUALITY octetStringMatch
)

2.5 Syntax Conversions
This section discusses specific conversions needed for the core schema. Other mappings
may define additional conversion procedures.

2.5.1 CIM String and LDAP DirectoryString
Strings in CIM are stored as UCS-2 characters, while LDAP DirectoryStrings are stored
in UTF-8 format. See [5] for more information on how to convert between these formats.
2.5.2 CIM DateTime and LDAP GeneralizedTime
CIM DateTime is used to store both timestamps and intervals in UCS-2. LDAP
GeneralizedTime stores timestamps in a subset of UTF-8. See [5] for more information
on how to convert between these formats.

2.6 Associations

2.6.1 Types of associations
The various types of associations that may be encountered in a CIM model can be
categorized as follows:

• One-to-one
• One-to-one with properties
• One-to-many
• One-to-many with properties
• Many-to-many
• Many-to-many with properties.

Each of these can be illustrated as follows

2.6.1.1 One-to-One
Class A

Instance 1

Association X
Ref A
Ref B
Instance 1

Class B

Instance 1

An instance of class A or class B can be referenced by no more than one instance of
association X.

2.6.1.2 One-to-One with properties

Class A

Instance 1

Association X
Ref A
Ref B
Property_n
Instance 1

Class B

Instance 1

An instance of class A or class B can be referenced by no more than one instance of
association X. The association instance has one or more properties that characterize the
relationship. For example, if the association represented a serial link, it could have a
property stating the speed of the link.

2.6.1.3 One-to-many

Class A

Instance 2

Association X
Ref A
Ref B
Instance 1

Class B

Instance 1

Association X
Ref A
Ref B
Instance 2

Association X
Ref A
Ref B
Instance 3

Class A

Instance 3

Class A

Instance 1

A single instance of class A may be referenced by no more than on instance of
association X. A single instance of class B may be referenced by any number of
instances of association X. Note: Ref B is not an array. There is an instance of
association X for every A, B pair that is associated.

2.6.1.4 One-to-many with properties

Class A

Instance 2

Association X
Ref A
Ref B
Property_n
Instance 1

Class B

Instance 1

Association X
Ref A
Ref B
Property_n
Instance 2

Association X
Ref A
Ref B
Property_n
Instance 3

Class A

Instance 3

Class A

Instance 1

Each instance of the association has one or more properties that characterize the
relationship. For example a network switch may connect to many workstations (assume
each workstation can only support a single connection) is a star topology. Each link can
be half or full duplex. A property contained in the association class could be used to
model this.

2.6.1.5 Many-to-many

Class A

Instance 2

Association X
Ref A
Ref B
Instance 1

Class B

Instance 1

Association X
Ref A
Ref B
Instance 2

Association X
Ref A
Ref B
Instance 3

Class A

Instance 1

Class B

Instance 2

2.6.1.6 Many-to-many with properties

Class A

Instance 2

Association X
Ref A
Ref B
Property_n
Instance 1

Class B

Instance 1

Association X
Ref A
Ref B
Property_n
Instance 2

Association X
Ref A
Ref B
Property_n
Instance 3

Class A

Instance 1

Class B

Instance 2

2.6.2 Mapping Associations
There are three distinct models used for mapping non-abstract associations in this
document. Each has its own conventions for how such associations are not only mapped,
but also implemented in the directory. The following sections discuss these conventions.
Since all associations have referential properties, the term “additional properties” in the
remainder of this section refers to non-referential properties. The approach in Section
2.6.2.3 may also be used to map associations with no additional properties and 1-to-1 or
1-to-many associations with additional properties if necessary.

2.6.2.1 No Additional Properties
If a non-abstract association has no additional properties, then it is mapped as an
auxiliary class that contains both referential properties as optional DN attributes. This
class is attached to all structural objects that participate in the association, with the proper
attribute being populated for that particular structural object. An example of this type of
association is CIM_HostedService.

Class A
instance 1

Association 1 Aux
Ref A
Ref B

Class B
instance 1

Association 1 Aux
Ref A
Ref B

One-to-One

Class A
instance 1

Association 1 Aux
Ref A
Ref B []

Class B
instance 2

Association 1 Aux
Ref A
Ref B []

Class B
instance 1

Association 1 Aux
Ref A
Ref B []

Class B
instance 3

Association 1 Aux
Ref A
Ref B []

One-to-many

Class A
instance 2

Association 1 Aux
Ref A []
Ref B []

Class B
instance 2

Association 1 Aux
Ref A []
Ref B []

Class B
instance 1

Association 1 Aux
Ref A []
Ref B []

Class A
instance 1

Association 1 Aux
Ref A []
Ref B []

Many-to-Many

2.6.2.2 Additional Properties, 1-to-1 or 1-to-many
If a non-abstract association has additional properties, then the mapping is determined by
the cardinality of the referential properties. In the case of a 1-to-1 or 1-to-many
cardinality, the association is mapped as an auxiliary class with all properties mapped as
optional attributes. The auxiliary class is attached to all structural objects participating in
the association, with the referential attribute set appropriately. The additional properties
are set for the auxiliary class that is attached to the many side of a 1-to-many association.
The core model does not have an example of this class of association.

Class A
instance 1

Association 1 Aux
Ref A
Ref B
Property_n

Class B
instance 1

Association 1 Aux
Ref A
Ref B
Property_n

One-to-one with properties

Class A
instance 1

Association 1 Aux
Ref A
Ref B []
Property_n

Class B
instance 2

Association 1 Aux
Ref A
Ref B []
Property_n

Class B
instance 1

Association 1 Aux
Ref A
Ref B []
Property_n

Class B
instance 3

Association 1 Aux
Ref A
Ref B []
Property_n

One-to-many with properties

2.6.2.3 Additional Properties, many-to-many
For a non-abstract association with additional properties and a many-to-many cardinality,
the most flexible mapping is to use a structural LDAP class that contains all properties of
the association as optional attributes. Since this is a separate object in the directory,
helper auxiliary classes are provided that are attached to the structural objects in the
directory participating in the association. These helper classes contain a single optional
attribute that points to the particular instance of the association that this object
participates in. There is an instance of the structural class for every instance of the
association. An example of this type of association is CIM_ServiceServiceDependency.

Class A
instance 2

Class B
instance 2

Class B
instance 1

Class A
instance 1

Association 1 Aux
RefAssociation 1 []

Association 1
Instance 1
Ref A
Ref B
Property_n

Association 1
Instance 2
Ref A
Ref B
Property_n

Association 1
Instance 3
Ref A
Ref B
Property_n

Association 1 Aux
RefAssociation 1 []

Association 1 Aux
RefAssociation 1 []

Association 1 Aux
RefAssociation 1 []

Many-to-many with properties

This approach may also be used to map associations with no additional properties and 1-
to-1 or 1-to-many associations with additional properties if necessary.

2.6.2.4 Weak associations
Weak associations are one-to-one, or one-to-many and may or may not have properties.
They may and should be mapped using the appropriate mechanism above. Weak implies
additional semantics that maps well to DIT containment. Instances of weak classes may
but are not required to be stored as children of the entries they are weak to. When such
storage is used, application may utilize this to optimize association traversal.

3. Class Definitions
3.1 ManagedElement
This abstract class provides a base for non-association classes in CIM. Its addition is one
of the major changes between CIM v2.2 and CIM v2.3.

 (1.3.6.1.4.1.412.100.2.2.103 NAME 'dlmCaption'
 DESC 'The Caption property is a short textual
 description (oneline string) of the object.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.104 NAME 'dlmDescription'
 DESC 'The Description property provides a textual
 description of the object.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.1 NAME 'dlm1ManagedElement'
 DESC 'ManagedElement is an abstract class that provides

 a common superclass (or top of the inheritance tree)
 for the non-association classes in the CIM Schema.'
 SUP top ABSTRACT
 MAY (dlmCaption $ dlmDescription $ orderedCimModelPath
 $ orderedCimKeys)
)

3.2 ManagedSystemElement
This is the base class for the system element hierarchy. Any distinguishable component
of a system is a candidate for inclusion in this class. Examples of this are software
components, such as files and devices, such as disk drives and controllers, and physical
components such as chips and cards.

 (1.3.6.1.4.1.412.100.2.2.105 NAME 'dlmInstallDate'
 DESC 'A datetime value indicating when the object was
 installed. A lack of a value does not indicate that
 the object is not installed.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.106 NAME 'dlmName'
 DESC 'The Name property defines the label by which the
 object is known. When subclassed, the Name property
 can be overridden to be a Key property.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.107 NAME 'dlmStatus'
 DESC 'A string indicating the current status of the
 object. Various operational and non-operational
 statuses are defined. Operational statuses are "OK",
 "Degraded", "Stressed" and "Pred Fail". "Stressed"
 indicates that the Element is functioning, but needs
 attention. Examples of "Stressed" states are overload,
 overheated, etc. The condition "Pred Fail" (failure
 predicted) indicates that an Element is functioning
 properly but predicting a failure in the near future.
 An example is a SMART-enabled hard drive.
 Non-operational statuses can also be specified. These
 are "Error", "NonRecover", "Starting", "Stopping",
 "Service", "No Contact" and "Lost Comm". "NonRecover"
 indicates that a non-recoverable error has occurred.
 "Service" describes an Element being configured,
 maintained, cleaned, or otherwise administered. This
 status could apply during mirror-resilvering of a
 disk, reload of a user permissions list, or other
 administrative task. Not all such work is on-line, yet
 the Element is neither "OK" nor in one of the other
 states. "No Contact" indicates that the current
 instance of the monitoring system has knowledge of
 this Element but has never been able to establish
 communications with it. "Lost Comm" indicates that the
 ManagedSystemElement is known to exist and has been
 contacted successfully in the past, but is currently
 unreachable. Value Mappings are "OK", "Error",

 "Degraded", "Unknown", "Pred Fail", "Starting",
 "Stopping", "Service", "Stressed", "NonRecover", "No
 Contact", "Lost Comm"'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{10} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.2 NAME 'dlm1ManagedSystemElement'
 DESC 'ManagedSystemElement is the base class for the
 System Element hierarchy. Membership Criteria: Any
 distinguishable component of a System is a candidate
 for inclusion in this class. Examples: software
 components, such as files; and devices, such as disk
 drives and controllers, and physical components such
 as chips and cards.'
 SUP dlm1ManagedElement ABSTRACT
 MAY (dlmInstallDate $ dlmName $ dlmStatus)
)

3.3 PhysicalElement
This class acts as the base class for any component of a system that has a distinct physical
identity. Instances of this class can be defined in terms of labels that can be physically
attached to the object. All processes, files, and logical devices are considered not to be
physical elements. For example, it is not possible to attach a label to a modem. It is only
possible to attach a label to the card that implements the modem. The same card could
also implement a LAN adapter. This is an example of a single physical element (the card)
hosting more than one logical device.

 (1.3.6.1.4.1.412.100.2.2.108 NAME 'dlmCreationClassName'
 DESC 'CreationClassName indicates the name of the class
 or the subclass used in the creation of an instance.
 When used with the other key properties of this class,
 this property allows all instances of this class and
 its subclasses to be uniquely identified.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.109 NAME 'dlmManufactureDate'
 DESC 'Date that this PhysicalElement was manufactured.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.110 NAME 'dlmManufacturer'
 DESC 'The name of the organization responsible for
 producing the PhysicalElement. This may be the entity
 from whom the Element is purchased, but this is not
 necessarily true. The latter information is contained
 in the Vendor property of Product.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.111 NAME 'dlmModel'
 DESC 'The name by which the PhysicalElement is
 generally known.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.112 NAME 'dlmOtherIdentifyingInfo'
 DESC 'OtherIdentifyingInfo captures additional data,
 beyond asset tag information, that could be used to
 identify a Physical Element. One example is bar code
 data associated with an Element that also has an asset
 tag. Note that if only bar code data is available and
 is unique/able to be used as an Element key, this
 property would be NULL and the bar code data used as
 the class key, in the Tag property.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.113 NAME 'dlmPartNumber'
 DESC 'The part number assigned by the organization
 responsible for producing or manufacturing the
 PhysicalElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.114 NAME 'dlmPoweredOn'
 DESC 'Boolean indicating that the PhysicalElement is
 powered on (TRUE), or is currently off (FALSE).'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.115 NAME 'dlmSKU'
 DESC 'The stock keeping unit number for this
 PhysicalElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.116 NAME 'dlmSerialNumber'
 DESC 'A manufacturer-allocated number used to identify
 the Physical Element.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.117 NAME 'dlmTag'
 DESC 'An arbitrary string that uniquely identifies the
 Physical Element and serves as the Element"s key. The
 Tag property can contain information such as asset tag
 or serial number data. The key for PhysicalElement is
 placed very high in the object hierarchy in order to
 independently identify the hardware/entity, regardless
 of physical placement in or on Cabinets, Adapters, etc.
 For example, a hotswappable or removeable component
 may be taken from its containing (scoping) Package and
 be temporarily unused. The object still continues to
 exist - and may even be inserted into a different
 scoping container. Therefore, the key for Physical
 Element is an arbitrary string and is defined
 independently of any placement or location-oriented
 hierarchy.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.118 NAME 'dlmVersion'
 DESC 'A string indicating the version of the
 PhysicalElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.3 NAME 'dlm1PhysicalElement'
 DESC 'Subclasses of PhysicalElement define any
 component of a System that has a distinct physical
 identity. Instances of this class can be defined in
 terms of labels that can be physically attached to the
 object. All Processes, Files, and LogicalDevices are
 considered not to be Physical Elements. For example,
 it is not possible to attach a label to a modem. It is
 only possible to attach a label to the card that
 implements the modem. The same card could also
 implement a LAN adapter. These are tangible Managed
 System Elements (usually actual hardware items) that
 have a physical manifestation of some sort. A Managed
 System Element is not necessarily a discrete
 component. For example, it is possible for a single
 Card (which is a type of Physical Element) to host
 more than one Logical Device. The card would be
 represented by a single Physical Element associated
 with multiple Logical Devices.'
 SUP dlm1ManagedSystemElement ABSTRACT
 MAY (dlmCreationClassName $ dlmManufactureDate $
 dlmManufacturer $ dlmModel $ dlmOtherIdentifyingInfo $
 dlmPartNumber $ dlmPoweredOn $ dlmSKU $ dlmSerialNumber $
 dlmTag $ dlmVersion)
)

3.4 LogicalElement
This class is the base class for all the components of a system that represent abstract
system components, such as files, processes, or system capabilities as logical devices.

 (1.3.6.1.4.1.412.100.2.1.3.4 NAME 'dlm1LogicalElement'
 DESC 'LogicalElement is a base class for all the
 components of a System that represent abstract system
 components, such as Files, Processes, or system
 capabilities in the form of Logical Devices.'
 SUP dlm1ManagedSystemElement ABSTRACT
)

3.5 System
This class is a logical element that aggregates an enumerable set of managed system
elements and operates as a functional whole. Within any particular subclass of system,
there is a well-defined list of managed system element classes whose instances must be
aggregated.

 (1.3.6.1.4.1.412.100.2.2.119 NAME 'dlmNameFormat'
 DESC 'The System object and its derivatives are Top
 Level Objects of CIM. They provide the scope for
 numerous components. Having unique System keys is
 required. A heuristic can be defined in individual

 System subclasses to attempt to always generate the
 same System Name Key. The NameFormat property
 identifies how the System name was generated, using
 the subclass" heuristic.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.120 NAME 'dlmPrimaryOwnerContact'
 DESC 'A string that provides information on how the
 primary system owner can be reached (e.g. phone
 number, email address, ...).'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.121 NAME 'dlmPrimaryOwnerName'
 DESC 'The name of the primary system owner.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.122 NAME 'dlmRoles'
 DESC 'An array (bag) of strings that specify the roles
 this System plays in the IT-environment. Subclasses of
 System may override this property to define explicit
 Roles values. Alternately, a Working Group may
 describe the heuristics, conventions and guidelines
 for specifying Roles. For example, for an instance of
 a networking system, the Roles property might contain
 the string, "Switch" or "Bridge".'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 EQUALITY caseExactMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.5 NAME 'dlm1System'
 DESC 'A System is a LogicalElement that aggregates an
 enumerable set of Managed System Elements. The
 aggregation operates as a functional whole. Within any
 particular subclass of System, there is a well-defined
 list of Managed System Element classes whose instances
 must be aggregated.'
 SUP dlm1LogicalElement ABSTRACT
 MAY (dlmCreationClassName $ dlmName $ dlmNameFormat $
 dlmPrimaryOwnerContact $ dlmPrimaryOwnerName $
 dlmRoles)
)

3.6 ComputerSystem
This class is derived from System and represents a special collection of managed system
elements that provide compute capabilities. Thus, it serves as aggregation point to
associate one or more of the following elements: file systems, operating systems,
processors and memory (volatile and/or non-volatile storage).

 (1.3.6.1.4.1.412.100.2.2.123 NAME 'dlmDedicated'
 DESC 'Enumeration indicating whether the ComputerSystem
 is a special-purpose System (ie, dedicated to a
 particular use), versus being "general purpose". For
 example, one could specify that the System is

 dedicated to "Print" (value=11) or acts as a "Hub"
 (value=8). Values are 0="Not Dedicated",
 1="Unknown", 2="Other", 3="Storage", 4="Router",
 5="Switch", 6="Layer 3 Switch", 7="Central Office
 Switch", 8="Hub", 9="Access Server", 10="Firewall",
 11="Print", 12="I/O", 13="Web Caching",
 14="Management"'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 EQUALITY integerMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.6 NAME 'dlm1ComputerSystem'
 DESC 'A class derived from System that is a special
 collection of ManagedSystemElements. This collection
 provides compute capabilities and serves as
 aggregation point to associate one or more of the
 following elements: FileSystem, OperatingSystem,
 Processor and Memory (Volatile and/or NonVolatile
 Storage).'
 SUP dlm1System ABSTRACT
 MAY (dlmDedicated $ dlmNameFormat)
))

3.7 AdminDomain

This abstract class represents a special grouping of MSEs that are all administered by the
same user or group of users.

 (1.3.6.1.4.1.412.100.2.1.3.93 NAME 'dlm1AdminDomain'
 DESC 'This is a special grouping of ManagedSystemElements that
 are all administered by the same user or group of users.
 It serves as an aggregation point to associate one or more
 of the following elements: network devices, such as
 routers and switches, servers, and other resources that
 can be accessed by end systems. This grouping of devices
 plays an essential role in ensuring that the same
 administrative POLICY is applied to all of the devices
 in the grouping.'
 SUP dlm1System ABSTRACT
)

3.8 LogicalDevice
This class represents an abstraction or emulation of a hardware entity that may or may
not be realized in physical hardware. Any characteristics of a logical device that are used
to manage its operation or configuration are contained in, or associated with, this object.

 (1.3.6.1.4.1.412.100.2.2.124 NAME 'dlmAdditionalAvailability'
 DESC 'Additional availability and status of the Device,
 beyond that specified in the Availability property. The
 Availability property denotes the primary status and
 availability of the Device. In some cases, this will
 not be sufficient to denote the complete status of the
 Device. In those cases, the AdditionalAvailability
 property can be used to provide further information.
 For example, a Device"s primary Availability may be

 "Off line" (value=8), but it may also be in a low
 power state (AdditonalAvailability value=14), or the
 Device could be running Diagnostics (Additional
 Availability value=5, "In Test"). Values are
 1="Other", 2="Unknown", 3="Running/Full Power",
 4="Warning", 5="In Test", 6="Not Applicable", 7="Power
 Off", 8="Off Line", 9="Off Duty", 10="Degraded",
 11="Not Installed", 12="Install Error", 13="Power Save
 - Unknown", 14="Power Save - Low Power Mode", 15="Power
 Save - Standby", 16="Power Cycle", 17="Power Save -
 Warning", 18="Paused", 19="Not Ready", 20="Not
 Configured", 21="Quiesced"'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 EQUALITY integerMatch
)

 (1.3.6.1.4.1.412.100.2.2.125 NAME 'dlmAvailability'
 DESC 'The primary availability and status of the
 Device. (Additional status information can be
 specified using the AdditionalAvailability array
 property.) For example, the Availability property
 indicates that the Device is running and has full
 power (value=3), or is in a warning (4), test (5),
 degraded (10) or power save state (values 13-15 and
 17). Regarding the Power Save states, these are
 defined as follows: Value 13 ("Power Save - Unknown\
 Values are 1="Other", 2="Unknown", 3="Running/Full
 Power", 4="Warning", 5="In Test", 6="Not Applicable",
 7="Power Off", 8="Off Line", 9="Off Duty",
 10="Degraded", 11="Not Installed", 12="Install Error",
 13="Power Save - Unknown", 14="Power Save - Low Power
 Mode", 15="Power Save - Standby", 16="Power Cycle",
 17="Power Save - Warning", 18="Paused", 19="Not
 Ready", 20="Not Configured", 21="Quiesced"'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.126 NAME 'dlmDeviceID'
 DESC 'An address or other identifying information to
 uniquely name the LogicalDevice.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.127 NAME 'dlmErrorCleared'
 DESC 'ErrorCleared is a boolean property indicating
 that the error reported in LastErrorCode is now
 cleared.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.128 NAME 'dlmErrorDescription'
 DESC 'ErrorDescription is a free-form string supplying
 more information about the error recorded in
 LastErrorCode, and information on any corrective
 actions that may be taken.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.129 NAME 'dlmLastErrorCode'
 DESC 'LastErrorCode captures the last error code
 reported by the LogicalDevice.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.130 NAME 'dlmMaxQuiesceTime'
 DESC 'Maximum time in milliseconds, that a Device can
 run in a "Quiesced" state. A Device"s state is defined
 in its Availability and Additional Availability
 properties, where "Quiesced" is conveyed by the value
 21. What occurs at the end of the time limit is
 device-specific. The Device may unquiesce, may offline
 or take other action. A value of 0 indicates that a
 Device can remain quiesced indefinitely. The value is
 considered to be MilliSeconds.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.131 NAME 'dlmPowerManagementCapabilities'
 DESC 'Indicates the specific power-related capabilities
 of a LogicalDevice. The array values, 0="Unknown",
 1="Not Supported" and 2="Disabled" are
 self-explanatory. The value, 3="Enabled" indicates
 that the power management features are currently
 enabled but the exact feature set is unknown or the
 information is unavailable. "Power Saving Modes
 Entered Automatically" (4) describes that a Device can
 change its power state based on usage or other
 criteria. "Power State Settable" (5) indicates that
 the SetPowerState method is supported. "Power Cycling
 Supported" (6) indicates that the SetPowerState method
 can be invoked with the PowerState input variable set
 to 5 ("Power Cycle"). "Timed Power On Supported" (7)
 indicates that the SetPowerState method can be invoked
 with the Power State input variable set to 5 ("Power
 Cycle") Values are 0="Unknown", 1="Not Supported",
 2="Disabled", 3="Enabled", 4="Power Saving Modes
 Entered Automatically", 5="Power State Settable",
 6="Power Cycling Supported", 7="Timed Power On
 Supported"'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 EQUALITY integerMatch
)

 (1.3.6.1.4.1.412.100.2.2.132 NAME 'dlmPowerManagementSupported'
 DESC 'Boolean indicating that the Device can be power
 managed - ie, put into a power save state. This
 boolean does not indicate that power management
 features are currently enabled, or if enabled, what
 features are supported. Refer to the
 PowerManagementCapabilities array for this
 information. If this boolean is false, the integer
 value 1, for the string, "Not Supported", should be
 the only entry in the PowerManagementCapabilities
 array.'

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.133 NAME 'dlmPowerOnHours'
 DESC 'The number of consecutive hours that this Device
 has been powered, since its last power cycle. The
 value is considered to be Hours.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.134 NAME 'dlmStatusInfo'
 DESC 'StatusInfo is a string indicating whether the
 Logical Device is in an enabled (value = 3), disabled
 (value = 4) or some other (1) or unknown (2) state. If
 this property does not apply to the LogicalDevice, the
 value, 5 ("Not Applicable”). Values are 1="Other",
 2="Unknown", 3="Enabled", 4="Disabled", 5="Not
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.135 NAME 'dlmTotalPowerOnHours'
 DESC 'The total number of hours that this Device has
 been powered. The value is considered to be Hours.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.7 NAME 'dlm1LogicalDevice'
 DESC 'An abstraction or emulation of a hardware entity,
 that may or may not be Realized in physical hardware.
 Any characteristics of a LogicalDevice that are used
 to manage its operation or configuration are contained
 in, or associated with, the LogicalDevice object.
 Examples of the operational properties of a Printer
 would be paper sizes supported, or detected errors.
 Examples of the configuration properties of a Sensor
 Device would be threshold settings. Various
 configurations could exist for a LogicalDevice. These
 configurations could be contained in Setting objects
 and associated with the LogicalDevice.'
 SUP dlm1LogicalElement ABSTRACT
 MAY (dlmAdditionalAvailability $ dlmAvailability $
 dlmCreationClassName $ dlmDeviceID $ dlmErrorCleared $
 dlmErrorDescription $ dlmLastErrorCode $ dlmMaxQuiesceTime $
 dlmPowerManagementCapabilities $
 dlmPowerManagementSupported $ dlmPowerOnHours $
 dlmStatusInfo $ dlmTotalPowerOnHours)
)

3.9 Service
This class represents a Logical Element that contains the information necessary to
represent and manage the functionality provided by a device and/or software feature. A
service is a general-purpose object to configure and manage the implementation of
functionality. It is not the functionality itself.

 (1.3.6.1.4.1.412.100.2.2.136 NAME 'dlmStartMode'
 DESC 'StartMode is a string value indicating whether

 the Service is automatically started by a System,
 Operating System, etc. or only started upon request.
 Value Mapping are "Automatic", "Manual"'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{10} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.137 NAME 'dlmStarted'
 DESC 'Started is a boolean indicating whether the
 Service has been started (TRUE), or stopped (FALSE).'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.8 NAME 'dlm1Service'
 DESC 'A Service is a Logical Element that contains the
 information necessary to represent and manage the
 functionality provided by a Device and/or
 SoftwareFeature. A Service is a general-purpose object
 to configure and manage the implementation of
 functionality. It is not the functionality itself.'
 SUP dlm1LogicalElement ABSTRACT
 MAY (dlmCreationClassName $ dlmName $ dlmStartMode $
 dlmStarted)
)

3.10 ServiceAccessPoint
This class represents the ability to use or invoke a service. Access points represent that a
service is made available to other entities for use.

 (1.3.6.1.4.1.412.100.2.1.3.9 NAME 'dlm1ServiceAccessPoint'
 DESC 'ServiceAccessPoint represents the ability to
 utilize or invoke a Service. Access points represent
 that a Service is made available to other entities for
 use.'
 SUP dlm1LogicalElement ABSTRACT
 MAY (dlmCreationClassName $ dlmName)
)

3.11 Collection
This abstract class provides a common superclass for classes that represent collections of
managed elements.

 (1.3.6.1.4.1.412.100.2.1.3.10 NAME 'dlm1Collection'
 DESC 'Collection is an abstract class that provides a
 common superclass for data elements that represent
 collections of ManagedElements and its subclasses.'
 SUP dlm1ManagedElement ABSTRACT
)

3.12 CollectionOfMSEs
This object allows the grouping of ManagedSystemElement objects for associating
settings and configurations. It is abstract to require further definition and semantic
refinement in subclasses. As this object does not carry any state or status information, it
only represents a grouping or 'bag' of elements. So, it is incorrect to subclass groups that

have state/status from this class - an example is RedundancyGroup (which is correctly
subclassed from LogicalElement).
Collections typically aggregate 'like' objects, and represent an optimization. Without
collections, one is forced to define individual associations, to tie settings and
configuration objects to individual ManagedSystemElements. There may be much
duplication in assigning the same setting to multiple objects. In addition, using this object
allows the determination that the setting and configuration associations are indeed the
same for the collection's members. This information would otherwise be obtained by
defining the collection in a proprietary way, and then querying the associations to
determine if the collection set is completely covered.

 (1.3.6.1.4.1.412.100.2.2.138 NAME 'dlmCollectionID'
 DESC 'The identification of the Collection object. When
 subclassed, the CollectionID property can be overridden
 to be a Key property.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.11 NAME 'dlm1CollectionOfMSEs'
 DESC 'The CollectionOfMSEs object allows the grouping
 of Managed SystemElements for the purposes of
 associating Settings and Configurations. It is
 abstract to require further definition and semantic
 refinement in subclasses. The CollectionOfMSEs object
 does not carry any state or status information, but
 only represents a grouping or "bag" of Elements. For
 this reason, it is incorrect to subclass groups that
 have state/status from CollectionOfMSEs - an example
 is Redundancy Group (which is correctly subclassed
 from LogicalElement). Collections typically aggregate
 "like" objects, and represent an optimization. Without
 Collections, one is forced to define individual
 ElementSetting and ElementConfiguration associations,
 to tie Settings and Configuration objects to
 individual ManagedSystemElements. There may be much
 duplication in assigning the same Setting to multiple
 objects. In addition, using the Collection object
 allows the determination that the Setting and
 Configuration associations are indeed the same for the
 Collection"s members. This information would otherwise
 be obtained by defining the Collection in a
 proprietary manner, and then querying the
 ElementSetting and ElementConfiguration associations
 to determine if the Collection set is completely
 covered.'
 SUP dlm1Collection ABSTRACT
 MAY (dlmCollectionID)
)

3.13 Configuration Classes
This object allows the grouping of sets of parameters (defined in Setting objects) and
dependencies for one or more managed system elements. The configuration object
represents a certain behavior, or a desired functional state for the managed system

elements. The desired functional state is typically driven by external requirements such as
time or location. For example, to connect to a Mail System from 'home', a dependency on
a modem exists, but a dependency on a network adapter exists at 'work'. Settings for the
pertinent logical devices can be defined and aggregated by the configuration. Therefore,
two 'Connect to Mail' configurations may be defined grouping the relevant dependencies
and setting objects.

 (1.3.6.1.4.1.412.100.2.1.3.12 NAME 'dlm1Configuration'
 DESC 'The Configuration object allows the grouping of
 sets of parameters (defined in Setting objects) and
 dependencies for one or more ManagedSystemElements.
 The Configuration object represents a certain
 behavior, or a desired functional state for the
 ManagedSystemElements. The desired functional state is
 typically driven by external requirements such as time
 or location. For example, to connect to a Mail System
 from "home", a dependency on a modem exists, but a
 dependency on a network adapter exists at "work".
 Settings for the pertinent LogicalDevices (in this
 example, POTSModem and NetworkAdapter) can be defined
 and aggregated by the Configuration. Therefore, two
 "Connect to Mail" Configurations may be defined
 grouping the relevant dependencies and Setting
 objects.'
 SUP dlm1ManagedElement ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.1.3.13 NAME 'dlm1ConfigurationAuxClass'
 DESC 'The Configuration object allows the grouping of
 sets of parameters (defined in Setting objects) and
 dependencies for one or more ManagedSystemElements.
 The Configuration object represents a certain
 behavior, or a desired functional state for the
 ManagedSystemElements. The desired functional state is
 typically driven by external requirements such as time
 or location. For example, to connect to a Mail System
 from "home", a dependency on a modem exists, but a
 dependency on a network adapter exists at "work".
 Settings for the pertinent LogicalDevices (in this
 example, POTSModem and NetworkAdapter) can be defined
 and aggregated by the Configuration. Therefore, two
 "Connect to Mail" Configurations may be defined
 grouping the relevant dependencies and Setting
 objects.'
 SUP dlm1Configuration AUXILIARY
)

 (1.3.6.1.4.1.412.100.2.1.3.14 NAME 'dlm1ConfigurationInstance'
 DESC 'The Configuration object allows the grouping of
 sets of parameters (defined in Setting objects) and
 dependencies for one or more ManagedSystemElements.
 The Configuration object represents a certain
 behavior, or a desired functional state for the
 ManagedSystemElements. The desired functional state is
 typically driven by external requirements such as time

 or location. For example, to connect to a Mail System
 from "home", a dependency on a modem exists, but a
 dependency on a network adapter exists at "work".
 Settings for the pertinent LogicalDevices (in this
 example, POTSModem and NetworkAdapter) can be defined
 and aggregated by the Configuration. Therefore, two
 "Connect to Mail" Configurations may be defined
 grouping the relevant dependencies and Setting
 objects.'
 SUP dlm1Configuration
)

 (1.3.6.1.4.1.412.100.2.3.3.1 NAME
'dlm1ConfigurationInstanceNameForm1'
 OC dlm1ConfigurationInstance
 MUST (orderedCimKeys)
)

 (<core-sr-1> NAME 'dlm1ConfigurationInstanceStructureRule1'
 Form dlm1ConfigurationInstanceNameForm1
)

The following content rule specifies the auxiliary classes that may be attached to
dlm1ConfigurationInstance.

 (1.3.6.1.4.1.412.100.2.1.3.14 NAME
'dlm1ConfigurationInstanceContentRule'
 DESC 'Aux classes that can attach to
 dlm1ConfigurationInstance.'
 MAY (dlm1ElementConfigurationAuxClass $
 dlm1CollectionConfigurationAuxClass $
 dlm1ConfigurationComponentAuxClass $
 dlm1SettingContextAuxClass)
)

3.14 Setting
This class represents configuration-related and operational parameters for one or more
managed system element(s). A managed system element may have multiple setting
objects associated with it. The current operational values for an element's parameters are
reflected by properties in the element itself or by properties in its associations. These
properties do not have to be the same values present in the setting object. For example, a
modem may have a setting baud rate of 56Kb/sec but be operating at 19.2Kb/sec.

 (1.3.6.1.4.1.412.100.2.2.139 NAME 'dlmSettingID'
 DESC 'The identifier by which the Setting object is
 known.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.15 NAME 'dlm1Setting'
 DESC 'The Setting class represents
 configuration-related and operational parameters for
 one or more ManagedSystem Element(s). A
 ManagedSystemElement may have multiple Setting objects
 associated with it. The current operational values for

 an Element"s parameters are reflected by properties in
 the Element itself or by properties in its
 associations. These properties do not have to be the
 same values present in the Setting object. For
 example, a modem may have a Setting baud rate of
 56Kb/sec but be operating at 19.2Kb/sec.'
 SUP dlm1ManagedElement ABSTRACT
 MAY (dlmSettingID)
)

3.15 Product Classes
This concrete class that is a collection of physical elements, software features and/or
other products, acquired as a unit. Acquisition implies an agreement between supplier and
consumer that may have implications to product licensing, support and warranty.

 (1.3.6.1.4.1.412.100.2.2.140 NAME 'dlmIdentifyingNumber'
 DESC 'Product identification such as a serial number on
 software, a die number on a hardware chip, or (for
 non-commercial Products) a project number.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.141 NAME 'dlmSKUNumber'
 DESC 'Product SKU (stock keeping unit) information.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.142 NAME 'dlmVendor'
 DESC 'The name of the Product"s supplier, or entity
 selling the Product (the manufacturer, reseller, OEM,
 etc.). Corresponds to the Vendor property in the
 Product object in the DMTF Solution Exchange Standard.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.143 NAME 'dlmWarrantyDuration'
 DESC 'If this Product is under warranty, the duration
 of the warranty in days. The value is considered to be
 Days.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.144 NAME 'dlmWarrantyStartDate'
 DESC 'If this Product is under warranty, the start date
 of the warranty.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.16 NAME 'dlm1Product'
 DESC 'Product is a concrete class that is a collection
 of PhysicalElements, SoftwareFeatures and/or other
 Products, acquired as a unit. Acquisition implies an
 agreement between supplier and consumer which may have
 implications to Product licensing, support and
 warranty. Non-commercial (e.g., in-house developed
 Products) should also be identified as an instance of

 Product.'
 SUP dlm1ManagedElement ABSTRACT
 MAY (dlmIdentifyingNumber $ dlmName $ dlmSKUNumber $
 dlmVendor $ dlmVersion $ dlmWarrantyDuration $
 dlmWarrantyStartDate)
)

 (1.3.6.1.4.1.412.100.2.1.3.17 NAME 'dlm1ProductAuxClass'
 DESC 'Product is a concrete class that is a collection
 of PhysicalElements, SoftwareFeatures and/or other
 Products, acquired as a unit. Acquisition implies an
 agreement between supplier and consumer which may have
 implications to Product licensing, support and
 warranty. Non-commercial (e.g., in-house developed
 Products) should also be identified as an instance of
 Product.'
 SUP dlm1Product AUXILIARY
)

 (1.3.6.1.4.1.412.100.2.1.3.18 NAME 'dlm1ProductInstance'
 DESC 'Product is a concrete class that is a collection
 of PhysicalElements, SoftwareFeatures and/or other
 Products, acquired as a unit. Acquisition implies an
 agreement between supplier and consumer which may have
 implications to Product licensing, support and
 warranty. Non-commercial (e.g., in-house developed
 Products) should also be identified as an instance of
 Product.'
 SUP dlm1Product
)

 (1.3.6.1.4.1.412.100.2.3.3.2 NAME 'dlm1ProductInstanceNameForm1'
 OC dlm1ProductInstance
 MUST (orderedCimKeys)
)

 (<core-sr-2> NAME 'dlm1ProductInstanceStructureRule1'
 Form dlm1ProductInstanceNameForm1
)

The following content rule specifies the auxiliary classes that may be attached to
dlm1ProductInstance.

 (1.3.6.1.4.1.412.100.2.1.3.18 NAME 'dlm1ProductInstanceContentRule'
 DESC 'Aux classes that can attach to
 dlm1ProductInstance.'
 MAY (dlm1ProductProductDependencyAuxClass $
 dlm1ProductSupportAuxClass $ dlm1ProductFRUAuxClass $
 dlm1ProductParentChildAuxClass $
 dlm1FRUIncludesProductAuxClass $
 dlm1ProductPhysicalElementsAuxClass)
)

3.16 SupportAccess Classes
These classes define how to obtain help for a product.

 (1.3.6.1.4.1.412.100.2.2.145 NAME 'dlmCommunicationInfo'
 DESC 'CommunicationInfo provides the details of the
 Communication Mode. For example, if the
 CommunicationMode is "Phone", CommunicationInfo
 specifies the phone number to be called.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.146 NAME 'dlmCommunicationMode'
 DESC 'CommunicationMode defines the form of
 communication in order to obtain support. For example,
 phone communication (value =2), fax (3) or email (8)
 can be specified. Values are 1="Other", 2="Phone",
 3="Fax", 4="BBS", 5="Online Service", 6="Web Page",
 7="FTP", 8="E-mail"'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.147 NAME 'dlmLocale'
 DESC 'Locale defines the geographic region and/or
 language dialect to which this Support resource
 pertains.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.148 NAME 'dlmSupportAccessId'
 DESC 'SupportAccessID is an arbitrary, free form string
 defined by the Product Vendor or by the organization
 that deploys the Product. This property, since it is
 a key, should be unique throughout the enterprise.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.19 NAME 'dlm1SupportAccess'
 DESC 'The SupportAccess association defines how to
 obtain assistance for a Product.'
 SUP dlm1ManagedElement ABSTRACT
 MAY (dlmCommunicationInfo $ dlmCommunicationMode $
 dlmDescription $ dlmLocale $ dlmSupportAccessId)
)

 (1.3.6.1.4.1.412.100.2.1.3.20 NAME 'dlm1SupportAccessAuxClass'
 DESC 'The SupportAccess association defines how to
 obtain assistance for a Product.'
 SUP dlm1SupportAccess AUXILIARY
)

 (1.3.6.1.4.1.412.100.2.1.3.21 NAME 'dlm1SupportAccessInstance'
 DESC 'The SupportAccess association defines how to
 obtain assistance for a Product.'
 SUP dlm1SupportAccess
)

 (1.3.6.1.4.1.412.100.2.3.3.3 NAME
'dlm1SupportAccessInstanceNameForm1'
 OC dlm1SupportAccessInstance
 MUST (orderedCimKeys)

)

 (<core-sr-3> NAME 'dlm1SupportAccessInstanceStructureRule1'
 Form dlm1SupportAccessInstanceNameForm1
)

The following content rule specifies the auxiliary classes that may be attached to
dlm1SupportAccessInstance.

 (1.3.6.1.4.1.412.100.2.1.3.21 NAME
'dlm1SupportAccessInstanceContentRule'
 DESC 'Aux classes that can attach to
 dlm1SupportAccessInstance.'
 MAY (dlm1ProductSupportAuxClass)
)

3.17 FRU Classes
These classes model vendor-defined collection of products and/or physical elements that
is associated with a product for supporting, maintaining or upgrading that product at the
customer's location. FRU is an acronym for 'field replaceable unit'.

 (1.3.6.1.4.1.412.100.2.2.149 NAME 'dlmFRUNumber'
 DESC 'FRU ordering information.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.150 NAME 'dlmRevisionLevel'
 DESC 'The FRU"s revision level.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{64} SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.22 NAME 'dlm1FRU'
 DESC 'The FRU class is a vendor-defined collection of
 Products and/or PhysicalElements that is associated
 with a Product for the purpose of supporting,
 maintaining or upgrading that Product at the
 customer"s location. FRU is an acronym for "field
 replaceable unit". '
 SUP dlm1ManagedElement ABSTRACT
 MAY (dlmDescription $ dlmFRUNumber $
 dlmIdentifyingNumber $ dlmName $ dlmRevisionLevel $
 dlmVendor)
)

 (1.3.6.1.4.1.412.100.2.1.3.23 NAME 'dlm1FRUAuxClass'
 DESC 'The FRU class is a vendor-defined collection of
 Products and/or PhysicalElements that is associated
 with a Product for the purpose of supporting,
 maintaining or upgrading that Product at the
 customer"s location. FRU is an acronym for "field
 replaceable unit". '
 SUP dlm1FRU AUXILIARY
)

 (1.3.6.1.4.1.412.100.2.1.3.24 NAME 'dlm1FRUInstance'

 DESC 'The FRU class is a vendor-defined collection of
 Products and/or PhysicalElements that is associated
 with a Product for the purpose of supporting,
 maintaining or upgrading that Product at the
 customer"s location. FRU is an acronym for "field
 replaceable unit". '
 SUP dlm1FRU
)

 (1.3.6.1.4.1.412.100.2.3.3.4 NAME 'dlm1FRUInstanceNameForm1'
 OC dlm1FRUInstance
 MUST (orderedCimKeys)
)

 (<core-sr-4> NAME 'dlm1FRUInstanceStructureRule1'
 Form dlm1FRUInstanceNameForm1
)

The following content rule specifies the auxiliary classes that may be attached to
dlm1FRUInstance.

 (1.3.6.1.4.1.412.100.2.1.3.24 NAME 'dlm1FRUInstanceContentRule'
 DESC 'Aux classes that can attach to dlm1FRUInstance.'
 MAY (dlm1ProductFRUAuxClass $
 dlm1FRUPhysicalElementsAuxClass $
 dlm1FRUIncludesProductAuxClass)
)

3.18 CollectedCollections Classes
These classes represent that a CollectionOfMSEs may itself be contained in another
CollectionOfMSEs object.

 (1.3.6.1.4.1.412.100.2.1.3.25 NAME 'dlm1CollectedCollections'
 DESC 'CollectedCollections is an aggregation
 association representing that a CollectionOfMSEs may
 itself be contained in a CollectionOfMSEs.'
 SUP top ABSTRACT
)
 (1.3.6.1.4.1.412.100.2.2.151 NAME
'dlmCollectedCollectionsCollectionRef'
 DESC 'The "higher level" or parent element in the
 aggregation.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

 (1.3.6.1.4.1.412.100.2.2.152 NAME
'dlmCollectedCollectionsCollectionInCollectionRef'
 DESC 'The "collected" Collection.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

 (1.3.6.1.4.1.412.100.2.1.3.26 NAME
'dlm1CollectedCollectionsAuxClass'
 DESC 'CollectedCollections is an aggregation
 association representing that a CollectionOfMSEs may
 itself be contained in a CollectionOfMSEs.'

 SUP dlm1CollectedCollections AUXILIARY
 MAY (dlmCollectedCollectionsCollectionRef $
 dlmCollectedCollectionsCollectionInCollectionRef)
)

3.19 LogicalIdentity
This auxiliary class represents an abstract and generic association, showing that two
LogicalElements represent different aspects of the same underlying entity. This
relationship conveys what could be defined with multiple inheritance. It is restricted to
the 'logical' aspects of a ManagedSystemElement. In most scenarios, the equivalence of
keys or some other identifying properties of the related elements determines the identity
relationship. The association should only be used in well-understood scenarios. This is
why the association is abstract - allowing more concrete definition and clarification in
subclasses.

 (1.3.6.1.4.1.412.100.2.1.3.27 NAME 'dlm1LogicalIdentity'
 DESC 'LogicalIdentity is an abstract and generic
 association, indicating that two LogicalElements
 represent different aspects of the same underlying
 entity. This relationship conveys what could be
 defined with multiple inheritance. It is restricted to
 the "logical" aspects of a ManagedSystem Element. In
 most scenarios, the Identity relationship is
 determined by the equivalence of Keys or some other
 identifying properties of the related Elements. The
 association should only be used in well understood
 scenarios. This is why the association is abstract -
 allowing more concrete definition and clarification in
 subclasses. One of the scenarios where this
 relationship is reasonable is to represent that a
 Device is both a "bus" entity and a "functional"
 entity. For example, a Device could be both a USB
 (bus) and a Keyboard (functional) entity.'
 SUP top ABSTRACT
)

3.20 ConfigurationComponent Classes
This association aggregates 'lower-level' configuration objects into a \'high-level'
configuration. This enables the assembly of complex configurations by grouping together
simpler ones.

 (1.3.6.1.4.1.412.100.2.1.3.28 NAME 'dlm1ConfigurationComponent'
 DESC 'ConfigurationComponent aggregates "lower-level"
 Configuration objects into a "high-level"
 Configuration. This enables the assembly of complex
 Configurations by grouping together simpler ones. For
 example, a logon policy for the United States could
 consist of two Configuration groups, one for the east
 coast and one for the west coast. Each of these could
 in turn consist of multiple Configurations to handle
 different aspects of the logon process.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.153 NAME
'dlmConfigurationComponentConfigComponentRef'
 DESC 'A Configuration that is part of a "higher-level"
 Configuration.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.154 NAME
'dlmConfigurationComponentConfigGroupRef'
 DESC 'The Configuration that aggregates additional
 Configurations. '
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.29 NAME
'dlm1ConfigurationComponentAuxClass'
 DESC 'ConfigurationComponent aggregates "lower-level"
 Configuration objects into a "high-level"
 Configuration. This enables the assembly of complex
 Configurations by grouping together simpler ones. For
 example, a logon policy for the United States could
 consist of two Configuration groups, one for the east
 coast and one for the west coast. Each of these could
 in turn consist of multiple Configurations to handle
 different aspects of the logon process.'
 SUP dlm1ConfigurationComponent AUXILIARY
 MAY (dlmConfigurationComponentConfigComponentRef $
 dlmConfigurationComponentConfigGroupRef)
)

3.21 ElementConfiguration Classes
This association relates a configuration object to one or more managed system elements.
The configuration object represents a certain behavior, or a desired functional state for
the associated managed system elements.

 (1.3.6.1.4.1.412.100.2.1.3.30 NAME 'dlm1ElementConfiguration'
 DESC 'This association relates a Configuration object
 to one or more ManagedSystemElements. The
 Configuration object represents a certain behavior, or
 a desired functional state for the associated
 ManagedSystemElements.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.155 NAME
'dlmElementConfigurationConfigurationRef'
 DESC 'The Configuration object that groups the Settings
 and dependencies associated with the
 ManagedSystemElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.156 NAME

'dlmElementConfigurationElementRef'
 DESC 'The ManagedSystemElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.31 NAME
'dlm1ElementConfigurationAuxClass'
 DESC 'This association relates a Configuration object
 to one or more ManagedSystemElements. The
 Configuration object represents a certain behavior, or
 a desired functional state for the associated
 ManagedSystemElements.'
 SUP dlm1ElementConfiguration AUXILIARY
 MAY (dlmElementConfigurationConfigurationRef $
 dlmElementConfigurationElementRef)
)

3.22 ConfigurationCollection Classes
These classes relate a Configuration object to one or more CollectionOfMSEs objects.
The Configuration object represents a certain behavior, or a desired functional state for
the associated collection.

 (1.3.6.1.4.1.412.100.2.1.3.32 NAME 'dlm1CollectionConfiguration'
 DESC 'This association relates a Configuration object
 to one or more CollectionOfMSEs objects. The
 Configuration object represents a certain behavior, or
 a desired functional state for the associated
 Collection.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.157 NAME
'dlmCollectionConfigurationCollectionRef'
 DESC 'The CollectionOfMSEs.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.158 NAME
'dlmCollectionConfigurationConfigurationRef'
 DESC 'The Configuration object that groups the Settings
 and dependencies associated with the Collection.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.33 NAME
'dlm1CollectionConfigurationAuxClass'
 DESC 'This association relates a Configuration object
 to one or more CollectionOfMSEs objects. The
 Configuration object represents a certain behavior, or
 a desired functional state for the associated
 Collection.'
 SUP dlm1CollectionConfiguration AUXILIARY
 MAY (dlmCollectionConfigurationCollectionRef $

 dlmCollectionConfigurationConfigurationRef)
)

3.23 ElementSetting Classes
These classes represent the association between managed system elements and the setting
class(es) defined for them.

 (1.3.6.1.4.1.412.100.2.1.3.34 NAME 'dlm1ElementSetting'
 DESC 'ElementSetting represents the association between
 Managed SystemElements and the Setting class(es)
 defined for them.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.159 NAME 'dlmElementSettingElementRef'
 DESC 'The ManagedSystemElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.160 NAME 'dlmElementSettingSettingRef'
 DESC 'The Setting object associated with the
 ManagedSystem Element.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.35 NAME 'dlm1ElementSettingAuxClass'
 DESC 'ElementSetting represents the association between
 Managed SystemElements and the Setting class(es)
 defined for them.'
 SUP dlm1ElementSetting AUXILIARY
 MAY (dlmElementSettingElementRef $
 dlmElementSettingSettingRef)
)

3.24 DefaultSetting Classes
These classes represent the association between a ManagedSystemElement and the single
Setting class that is defined to be the default setting for this element.

 (1.3.6.1.4.1.412.100.2.1.3.36 NAME 'dlm1DefaultSetting'
 DESC 'DefaultSetting represents the association between
 a Managed SystemElement and the single Setting class
 that is defined to be the default setting for this
 Element.'
 SUP dlm1ElementSetting ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.161 NAME 'dlmDefaultSettingElementRef'
 DESC 'The ManagedSystemElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.162 NAME 'dlmDefaultSettingSettingRef'
 DESC 'The Setting object which is the default.'

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.37 NAME 'dlm1DefaultSettingAuxClass'
 DESC 'DefaultSetting represents the association between
 a Managed SystemElement and the single Setting class
 that is defined to be the default setting for this
 Element.'
 SUP dlm1DefaultSetting AUXILIARY
 MAY (dlmDefaultSettingElementRef $
 dlmDefaultSettingSettingRef)
)

3.25 SettingContext Classes
These classes associate a setting with one or more configuration objects. For example, a
network adapter's settings could change based on the site/network to which its hosting
computer system is attached.

 (1.3.6.1.4.1.412.100.2.1.3.38 NAME 'dlm1SettingContext'
 DESC 'This relationship associates Configuration
 objects with Setting objects. For example, a
 NetworkAdapter"s Settings could change based on the
 site/network to which its hosting ComputerSystem is
 attached. In this case, the ComputerSystem would have
 two different Configuration objects, corresponding to
 the differences in network configuration for the two
 network segments. Configuration A would aggregate a
 Setting object for the NetworkAdapter when operating
 on segment \"ANet\", whereas Configuration B would
 aggregate a different NetworkAdapter Setting object,
 specific to segment \"BNet\". Note that many Settings
 of the computer are independent of the network
 Configuration. For example, both Configurations A and
 B would aggregate the same Setting object for the
 ComputerSystem"s MonitorResolution.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.163 NAME 'dlmSettingContextContextRef'
 DESC 'The Configuration object that aggregates the
 Setting.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.164 NAME 'dlmSettingContextSettingRef'
 DESC 'An aggregated Setting.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.39 NAME 'dlm1SettingContextAuxClass'
 DESC 'This relationship associates Configuration
 objects with Setting objects. For example, a
 NetworkAdapter"s Settings could change based on the
 site/network to which its hosting ComputerSystem is

 attached. In this case, the ComputerSystem would have
 two different Configuration objects, corresponding to
 the differences in network configuration for the two
 network segments. Configuration A would aggregate a
 Setting object for the NetworkAdapter when operating
 on segment \"ANet\", whereas Configuration B would
 aggregate a different NetworkAdapter Setting object,
 specific to segment \"BNet\". Note that many Settings
 of the computer are independent of the network
 Configuration. For example, both Configurations A and
 B would aggregate the same Setting object for the
 ComputerSystem"s MonitorResolution.'
 SUP dlm1SettingContext AUXILIARY
 MAY (dlmSettingContextContextRef $
 dlmSettingContextSettingRef)
)

3.26 CollectionSetting Classes
These classes represent the association between a CollectionOfMSEs class and the
Setting class(es) defined for them.

 (1.3.6.1.4.1.412.100.2.1.3.40 NAME 'dlm1CollectionSetting'
 DESC 'CollectionSetting represents the association
 between a CollectionOfMSEs class and the Setting
 class(es) defined for them.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.165 NAME
'dlmCollectionSettingCollectionRef'
 DESC 'The CollectionOfMSEs.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.166 NAME 'dlmCollectionSettingSettingRef'
 DESC 'The Setting object associated with the
 Collection.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.41 NAME 'dlm1CollectionSettingAuxClass'
 DESC 'CollectionSetting represents the association
 between a CollectionOfMSEs class and the Setting
 class(es) defined for them.'
 SUP dlm1CollectionSetting AUXILIARY
 MAY (dlmCollectionSettingCollectionRef $
 dlmCollectionSettingSettingRef)
)

3.27 Dependency
This abstract class represents a generic association used to establish dependency
relationships between objects.

 (1.3.6.1.4.1.412.100.2.1.3.42 NAME 'dlm1Dependency'
 DESC 'Dependency is a generic association used to
 establish dependency relationships between
 ManagedElements.'
 SUP top ABSTRACT
)

3.28 ServiceAccessBySAP Classes
These classes identify the access points for a service. For example, Netware, MacIntosh
or Windows service access points may access a printer, which may be hosted on different
system.

 (1.3.6.1.4.1.412.100.2.1.3.43 NAME 'dlm1ServiceAccessBySAP'
 DESC 'ServiceAccessBySAP is an association that
 identifies the access points for a Service. For
 example, a printer may be accessed by Netware,
 MacIntosh or Windows ServiceAccess Points, potentially
 hosted on different Systems.'
 SUP dlm1Dependency ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.167 NAME
'dlmServiceAccessBySAPAntecedentRef'
 DESC 'The Service. '
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.168 NAME
'dlmServiceAccessBySAPDependentRef'
 DESC 'An Access Point for a Service. Access points are
 dependent in this relationship since they have no
 function without a corresponding Service. '
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.44 NAME 'dlm1ServiceAccessBySAPAuxClass'
 DESC 'ServiceAccessBySAP is an association that
 identifies the access points for a Service. For
 example, a printer may be accessed by Netware,
 MacIntosh or Windows ServiceAccess Points, potentially
 hosted on different Systems.'
 SUP dlm1ServiceAccessBySAP AUXILIARY
 MAY (dlmServiceAccessBySAPAntecedentRef $
 dlmServiceAccessBySAPDependentRef)
)

3.29 HostedService
This class maps the association between a Service and the System on which it resides.
While this could be represented with DIT containment, this class is provided to allow for
more general relationships.

 (1.3.6.1.4.1.412.100.2.1.3.45 NAME 'dlm1HostedService'
 DESC 'HostedService is an association between a Service

 and the System on which the functionality resides. The
 cardinality of this association is 1-to-many. A System
 may host many Services. Services are weak with respect
 to their hosting System. Heuristic: A Service is
 hosted on the System where the LogicalDevices or
 SoftwareFeatures that implement the Service are
 located. The model does not represent Services hosted
 across multiple systems. This is modeled as an
 ApplicationSystem that acts as an aggregation point
 for Services, that are each located on a single host.'
 SUP dlm1Dependency ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.169 NAME 'dlmHostedServiceDependentRef'
 DESC 'The Service hosted on the System.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.170 NAME 'dlmHostedServiceAntecedentRef'
 DESC 'The hosting System.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.46 NAME 'dlm1HostedServiceAuxClass'
 DESC 'HostedService is an association between a Service
 and the System on which the functionality resides. The
 cardinality of this association is 1-to-many. A System
 may host many Services. Services are weak with respect
 to their hosting System. Heuristic: A Service is
 hosted on the System where the LogicalDevices or
 SoftwareFeatures that implement the Service are
 located. The model does not represent Services hosted
 across multiple systems. This is modeled as an
 ApplicationSystem that acts as an aggregation point
 for Services, that are each located on a single host.'
 SUP dlm1HostedService AUXILIARY
 MAY (dlmHostedServiceDependentRef $
 dlmHostedServiceAntecedentRef)
)

3.30 HostedAccessPoint
These classes map an association between a ServiceAccessPoint and the System that
provides it. Like HostedService, this is provided for more general representations than
what is available through DIT containment.

 (1.3.6.1.4.1.412.100.2.1.3.47 NAME 'dlm1HostedAccessPoint'
 DESC 'HostedAccessPoint is an association between a
 Service AccessPoint and the System on which it is
 provided. The cardinality of this association is
 1-to-many and is weak with respect to the System. Each
 System may host many ServiceAccessPoints. Heuristic:
 If the implementation of the ServiceAccessPoint is
 modeled, it must be implemented by a Device or
 SoftwareFeature that is part of the System hosting the
 ServiceAccessPoint.'

 SUP dlm1Dependency ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.171 NAME
'dlmHostedAccessPointDependentRef'
 DESC 'The SAP(s) that are hosted on this System.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.172 NAME
'dlmHostedAccessPointAntecedentRef'
 DESC 'The hosting System.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.48 NAME 'dlm1HostedAccessPointAuxClass'
 DESC 'HostedAccessPoint is an association between a
 Service AccessPoint and the System on which it is
 provided. The cardinality of this association is
 1-to-many and is weak with respect to the System. Each
 System may host many ServiceAccessPoints. Heuristic:
 If the implementation of the ServiceAccessPoint is
 modeled, it must be implemented by a Device or
 SoftwareFeature that is part of the System hosting the
 ServiceAccessPoint.'
 SUP dlm1HostedAccessPoint AUXILIARY
 MAY (dlmHostedAccessPointDependentRef $
 dlmHostedAccessPointAntecedentRef)
)

3.31 ProvidesServiceToElement Classes
These classes map an association is used to describe that ManagedSystemElements may
be dependent on the functionality of one or more Services.

 (1.3.6.1.4.1.412.100.2.1.3.49 NAME 'dlm1ProvidesServiceToElement'
 DESC 'ProvidesServiceToElement is used to describe that
 ManagedSystemElements may be dependent on the
 functionality of one or more Services. An example is
 that a Processor and an Enclosure (PhysicalElement)
 are dependent on AlertOn LAN Services to signal an
 incomplete or erroneous boot, and hardware-related
 errors.'
 SUP dlm1Dependency ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.173 NAME
'dlmProvidesServiceToElementDependentRef'
 DESC 'The ManagedSystemElement dependent on the
 Service.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.174 NAME
'dlmProvidesServiceToElementAntecedentRef'

 DESC 'The Service provided.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.50 NAME
'dlm1ProvidesServiceToElementAuxClass'
 DESC 'ProvidesServiceToElement is used to describe that
 ManagedSystemElements may be dependent on the
 functionality of one or more Services. An example is
 that a Processor and an Enclosure (PhysicalElement)
 are dependent on AlertOn LAN Services to signal an
 incomplete or erroneous boot, and hardware-related
 errors.'
 SUP dlm1ProvidesServiceToElement AUXILIARY
 MAY (dlmProvidesServiceToElementDependentRef $
 dlmProvidesServiceToElementAntecedentRef)
)

3.32 ServiceServiceDependency Classes
These classes map an association between two services, showing that the latter is required
to be present, required to have completed, or must be absent for the former Service to
provide its functionality. For example, boot Services may be dependent on underlying
BIOS disk and initialization services. For initialization services, the boot service is
simply dependent on the initialization services completing.

 (1.3.6.1.4.1.412.100.2.2.175 NAME 'dlmRestartService'
 DESC 'this property describes that the antecedent
 service must be restarted after the dependent
 operation is complete.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.176 NAME 'dlmTypeOfDependency'
 DESC 'The nature of the Service to Service dependency.
 This property describes that the associated Service
 must have completed (value=2), must be started (3) or
 must not be started (4) in order for the Service to
 function. Values are 0="Unknown", 1="Other",
 2="Service Must Have Completed", 3="Service Must Be
 Started", 4="Service Must Not Be Started"'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.51 NAME 'dlm1ServiceServiceDependency'
 DESC 'ServiceServiceDependency is an association
 between a Service and another Service, indicating that
 the latter is required to be present, required to have
 completed, or must be absent for the former Service to
 provide its functionality. For example, Boot Services
 may be dependent upon underlying BIOS Disk and
 initialization Services. In the case of the
 initialization Services, the Boot Service is simply
 dependent on the init Services completing. For the
 Disk Services, Boot Services may actually utilize the

 SAPs of this Service. This usage dependency is
 modeled via the ServiceSAPDependency association.'
 SUP dlm1ProvidesServiceToElement ABSTRACT
 MAY (dlmRestartService $ dlmTypeOfDependency)
)

 (1.3.6.1.4.1.412.100.2.2.177 NAME
'dlmServiceServiceDependencyAntecedentRef'
 DESC 'The required Service.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.178 NAME
'dlmServiceServiceDependencyDependentRef'
 DESC 'The Service that is dependent on an underlying
 Service.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.52 NAME
'dlm1ServiceServiceDependencyInstance'
 DESC 'ServiceServiceDependency is an association
 between a Service and another Service, indicating that
 the latter is required to be present, required to have
 completed, or must be absent for the former Service to
 provide its functionality. For example, Boot Services
 may be dependent upon underlying BIOS Disk and
 initialization Services. In the case of the
 initialization Services, the Boot Service is simply
 dependent on the init Services completing. For the
 Disk Services, Boot Services may actually utilize the
 SAPs of this Service. This usage dependency is
 modeled via the ServiceSAPDependency association.'
 SUP dlm1ServiceServiceDependency
 MAY (dlmServiceServiceDependencyAntecedentRef $
 dlmServiceServiceDependencyDependentRef)
)

 (1.3.6.1.4.1.412.100.2.3.3.5 NAME
'dlm1ServiceServiceDependencyInstanceNameForm1'
 OC dlm1ServiceServiceDependencyInstance
 MUST (orderedCimKeys)
)

 (<core-sr-5> NAME
'dlm1ServiceServiceDependencyInstanceStructureRule1'
 Form dlm1ServiceServiceDependencyInstanceNameForm1
)

 (1.3.6.1.4.1.412.100.2.2.179 NAME
'dlmServiceServiceDependencyHelperRef'
 DESC 'Pointer to ServiceServiceDependencyInstance.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.53 NAME

'dlm1ServiceServiceDependencyHelper'
 DESC 'Helper class for finding
 ServiceServiceDependency.'
 SUP top AUXILIARY
 MAY (dlmHelperRefToServiceServiceDependency)
)

3.33 ServiceSAPDependency Classes
These classes map an association between a service and a service access point showing
that the referenced SAP is used by the service to provide its functionality. For example,
boot services may invoke BIOS disk services (interrupts) to function.

 (1.3.6.1.4.1.412.100.2.1.3.54 NAME 'dlm1ServiceSAPDependency'
 DESC 'ServiceSAPDependency is an association between a
 Service and a ServiceAccessPoint indicating that the
 referenced SAP is utilized by the Service to provide
 its functionality. For example, Boot Services may
 invoke BIOS" Disk Services (interrupts) in order to
 function.'
 SUP dlm1Dependency ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.180 NAME
'dlmServiceSAPDependencyDependentRef'
 DESC 'The Service that is dependent on an underlying
 SAP.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.181 NAME
'dlmServiceSAPDependencyAntecedentRef'
 DESC 'The required ServiceAccessPoint'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.55 NAME
'dlm1ServiceSAPDependencyAuxClass'
 DESC 'ServiceSAPDependency is an association between a
 Service and a ServiceAccessPoint indicating that the
 referenced SAP is utilized by the Service to provide
 its functionality. For example, Boot Services may
 invoke BIOS" Disk Services (interrupts) in order to
 function.'
 SUP dlm1ServiceSAPDependency AUXILIARY
 MAY (dlmServiceSAPDependencyDependentRef $
 dlmServiceSAPDependencyAntecedentRef)
)

3.34 SAPSAPDependency Classes
These classes model an association between two service access points showing that the
latter is required in order for the former to use or connect with its service. For example, to
print at a network printer, local print access points must use underlying network-related
SAPs, or protocol endpoints, to send the print request.

 (1.3.6.1.4.1.412.100.2.1.3.56 NAME 'dlm1SAPSAPDependency'
 DESC 'SAPSAPDependency is an association between a
 Service AccessPoint and another ServiceAccessPoint
 indicating that the latter is required in order for
 the former ServiceAccess Point to utilize or connect
 with its Service. For example, to print at a network
 printer, local Print Access Points must utilize
 underlying network-related SAPs, or ProtocolEndpoints,
 in order to send the print request.'
 SUP dlm1Dependency ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.182 NAME
'dlmSAPSAPDependencyAntecedentRef'
 DESC 'The required ServiceAccessPoint.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.183 NAME 'dlmSAPSAPDependencyDependentRef'
 DESC 'The ServiceAccessPoint that is dependent on an
 underlying SAP.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.57 NAME 'dlm1SAPSAPDependencyAuxClass'
 DESC 'SAPSAPDependency is an association between a
 Service AccessPoint and another ServiceAccessPoint
 indicating that the latter is required in order for
 the former ServiceAccess Point to utilize or connect
 with its Service. For example, to print at a network
 printer, local Print Access Points must utilize
 underlying network-related SAPs, or ProtocolEndpoints,
 in order to send the print request.'
 SUP dlm1SAPSAPDependency AUXILIARY
 MAY (dlmSAPSAPDependencyAntecedentRef $
 dlmSAPSAPDependencyDependentRef)
)

3.35 Realizes Classes
These classes define the mapping between a logical device and the physical component
that implements the device.

 (1.3.6.1.4.1.412.100.2.1.3.58 NAME 'dlm1Realizes'
 DESC 'Realizes is the association that defines the
 mapping between a Logical Device and the physical
 component that implements the Device.'
 SUP dlm1Dependency ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.184 NAME 'dlmRealizesDependentRef'
 DESC 'The LogicalDevice.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch

)

 (1.3.6.1.4.1.412.100.2.2.185 NAME 'dlmRealizesAntecedentRef'
 DESC 'The physical component that implements the
 Device.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.59 NAME 'dlm1RealizesAuxClass'
 DESC 'Realizes is the association that defines the
 mapping between a Logical Device and the physical
 component that implements the Device.'
 SUP dlm1Realizes AUXILIARY
 MAY (dlmRealizesDependentRef $
 dlmRealizesAntecedentRef)
)

3.36 MemberOfCollection Classes
These classes establish membership of ManagedElement objects in a collection.

 (1.3.6.1.4.1.412.100.2.1.3.60 NAME 'dlm1MemberOfCollection'
 DESC 'MemberOfCollection is an aggregation used to
 establish membership of ManagedElements in a
 Collection.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.186 NAME
'dlmMemberOfCollectionCollectionRef'
 DESC 'The Collection that aggregates members'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.187 NAME 'dlmMemberOfCollectionMemberRef'
 DESC 'The aggregated member of the collection.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.61 NAME 'dlm1MemberOfCollectionAuxClass'
 DESC 'MemberOfCollection is an aggregation used to
 establish membership of ManagedElements in a
 Collection.'
 SUP dlm1MemberOfCollection AUXILIARY
 MAY (dlmMemberOfCollectionCollectionRef $
 dlmMemberOfCollectionMemberRef)
)

3.37 CollectedMSEs Classes
These classes represent a generic association used to establish the members of the
grouping object, CollectionOfMSEs.

 (1.3.6.1.4.1.412.100.2.1.3.62 NAME 'dlm1CollectedMSEs'
 DESC 'CollectedMSEs is a generic association used to

 establish the members of the grouping object,
 CollectionOf MSEs.'
 SUP dlm1MemberOfCollection ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.188 NAME 'dlmCollectedMSEsCollectionRef'
 DESC 'The grouping or "bag" object that represents the
 Collection.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.189 NAME 'dlmCollectedMSEsMemberRef'
 DESC 'The members of the Collection.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.63 NAME 'dlm1CollectedMSEsAuxClass'
 DESC 'CollectedMSEs is a generic association used to
 establish the members of the grouping object,
 CollectionOf MSEs.'
 SUP dlm1CollectedMSEs AUXILIARY
 MAY (dlmCollectedMSEsCollectionRef $
 dlmCollectedMSEsMemberRef)
)

3.38 Component
This abstract class maps a generic association used to establish 'part of' relationships
between managed system elements. For example, the system component association
defines parts of a system.

 (1.3.6.1.4.1.412.100.2.1.3.64 NAME 'dlm1Component'
 DESC 'Component is a generic association used to
 establish "part of" relationships between Managed
 System Elements. For example, the SystemComponent
 association defines parts of a System.'
 SUP top ABSTRACT
)

3.39 SystemComponent Classes
These classes specialize dlmComponent to establish relationships between a system and
the managed system elements of which it is composed.

 (1.3.6.1.4.1.412.100.2.1.3.65 NAME 'dlm1SystemComponent'
 DESC 'SystemComponent is a specialization of the
 Component association that establishes "part of"
 relationships between a System and the Managed System
 Elements of which it is composed.'
 SUP dlm1Component ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.190 NAME
'dlmSystemComponentPartComponentRef'
 DESC 'The child element that is a component of a

 System.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.191 NAME
'dlmSystemComponentGroupComponentRef'
 DESC 'The parent System in the Association.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.66 NAME 'dlm1SystemComponentAuxClass'
 DESC 'SystemComponent is a specialization of the
 Component association that establishes "part of"
 relationships between a System and the Managed System
 Elements of which it is composed.'
 SUP dlm1SystemComponent AUXILIARY
 MAY (dlmSystemComponentPartComponentRef $
 dlmSystemComponentGroupComponentRef)
)

3.40 SystemDevice Classes
These classes model the aggregation of a LogicalDevices by a System.

 (1.3.6.1.4.1.412.100.2.1.3.67 NAME 'dlm1SystemDevice'
 DESC 'LogicalDevices may be aggregated by a System.
 This relationship is made explicit by the SystemDevice
 association. '
 SUP dlm1SystemComponent ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.192 NAME 'dlmSystemDevicePartComponentRef'
 DESC 'The LogicalDevice that is a component of a
 System.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.193 NAME
'dlmSystemDeviceGroupComponentRef'
 DESC 'The parent system in the Association.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.68 NAME 'dlm1SystemDeviceAuxClass'
 DESC 'LogicalDevices may be aggregated by a System.
 This relationship is made explicit by the SystemDevice
 association. '
 SUP dlm1SystemDevice AUXILIARY
 MAY (dlmSystemDevicePartComponentRef $
 dlmSystemDeviceGroupComponentRef)
)

3.41 ServiceComponent Classes

These classes model a set of subordinate services that are aggregated together to form a
higher-level service.

 (1.3.6.1.4.1.412.100.2.1.3.69 NAME 'dlm1ServiceComponent'
 DESC 'The ServiceComponent aggregation models a set of
 subordinate Services that are aggregated together to
 form a higher-level service.'
 SUP dlm1Component ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.194 NAME
'dlmServiceComponentGroupComponentRef'
 DESC 'The parent Service.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.195 NAME
'dlmServiceComponentPartComponentRef'
 DESC 'The component Service.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.70 NAME 'dlm1ServiceComponentAuxClass'
 DESC 'The ServiceComponent aggregation models a set of
 subordinate Services that are aggregated together to
 form a higher-level service.'
 SUP dlm1ServiceComponent AUXILIARY
 MAY (dlmServiceComponentGroupComponentRef $
 dlmServiceComponentPartComponentRef)
)

3.42 ProductParentChild Classes
These classes define a parent child hierarchy among products. For example, a product
may come bundled with other products.

 (1.3.6.1.4.1.412.100.2.1.3.71 NAME 'dlm1ProductParentChild'
 DESC 'The ProductParentChild association defines a
 parent child hierarchy among Products. For example, a
 Product may come bundled with other Products. '
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.196 NAME 'dlmProductParentChildChildRef'
 DESC 'The child Product in the association.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.197 NAME 'dlmProductParentChildParentRef'
 DESC 'The parent Product in the association.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.72 NAME 'dlm1ProductParentChildAuxClass'
 DESC 'The ProductParentChild association defines a
 parent child hierarchy among Products. For example, a
 Product may come bundled with other Products. '
 SUP dlm1ProductParentChild AUXILIARY
 MAY (dlmProductParentChildChildRef $
 dlmProductParentChildParentRef)
)

3.43 CompatibleProduct Classes
These classes model an association between products can show a wide variety of
information. For example, it can show that the two referenced products interoperate, that
they can be installed together, that one can be the physical container for the other, etc.

 (1.3.6.1.4.1.412.100.2.2.198 NAME 'dlmCompatibilityDescription'
 DESC 'CompatibilityDescription is a free-form string
 defining how the two referenced Products interoperate
 or are compatible, any limitations to compatibility,
 etc.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.73 NAME 'dlm1CompatibleProduct'
 DESC 'CompatibleProduct is an association between
 Products that can indicate a wide variety of
 information. For example, it can indicate that the two
 referenced Products interoperate, that they can be
 installed together, that one can be the physical
 container for the other, etc. The string property,
 CompatibilityDescription, defines how the Products
 interoperate or are compatible, any limitations
 regarding interoperability or installation, ...'
 SUP top ABSTRACT
 MAY (dlmCompatibilityDescription)
)

 (1.3.6.1.4.1.412.100.2.2.199 NAME
'dlmCompatibleProductCompatibleProductRef'
 DESC 'The compatible Product.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.200 NAME 'dlmCompatibleProductProductRef'
 DESC 'The Product for which compatible offerings are
 defined.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.74 NAME 'dlm1CompatibleProductInstance'
 DESC 'CompatibleProduct is an association between
 Products that can indicate a wide variety of
 information. For example, it can indicate that the two
 referenced Products interoperate, that they can be
 installed together, that one can be the physical
 container for the other, etc. The string property,
 CompatibilityDescription, defines how the Products

 interoperate or are compatible, any limitations
 regarding interoperability or installation, ...'
 SUP dlm1CompatibleProduct
 MAY (dlmCompatibleProductCompatibleProductRef $
 dlmCompatibleProductProductRef)
)

 (1.3.6.1.4.1.412.100.2.3.3.6 NAME
'dlm1CompatibleProductInstanceNameForm1'
 OC dlm1CompatibleProductInstance
 MUST (orderedCimKeys)
)

 (<core-sr-6> NAME 'dlm1CompatibleProductInstanceStructureRule1'
 Form dlm1CompatibleProductInstanceNameForm1
)

 (1.3.6.1.4.1.412.100.2.2.201 NAME 'dlmCompatibleProductHelperRef'
 DESC 'Pointer to CompatibleProductInstance.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.75 NAME 'dlm1CompatibleProductHelper'
 DESC 'Helper class for finding CompatibleProduct.'
 SUP top AUXILIARY
 MAY (dlmHelperRefToCompatibleProduct)
)

3.44 ProductProductDependency Classes
These classes model an association between two products, showing that one must be
installed, or must be absent, for the other to function. This is conceptually equivalent to
the service to service dependency association.

 (1.3.6.1.4.1.412.100.2.1.3.76 NAME 'dlm1ProductProductDependency'
 DESC 'ProductProductDependency is an association
 between two Products, indicating that one must be
 installed, or must be absent, for the other to
 function. This is conceptually equivalent to the
 ServiceServiceDependency association.'
 SUP top ABSTRACT
 MAY (dlmTypeOfDependency)
)

 (1.3.6.1.4.1.412.100.2.2.202 NAME
'dlmProductProductDependencyDependentProductRef'
 DESC 'The Product that is dependent on another Product.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.203 NAME
'dlmProductProductDependencyRequiredProductRef'
 DESC 'The required Product.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.77 NAME
'dlm1ProductProductDependencyInstance'
 DESC 'ProductProductDependency is an association
 between two Products, indicating that one must be
 installed, or must be absent, for the other to
 function. This is conceptually equivalent to the
 ServiceServiceDependency association.'
 SUP dlm1ProductProductDependency
 MAY (dlmProductProductDependencyDependentProductRef $
 dlmProductProductDependencyRequiredProductRef)
)

 (1.3.6.1.4.1.412.100.2.3.3.7 NAME
'dlm1ProductProductDependencyInstanceNameForm1'
 OC dlm1ProductProductDependencyInstance
 MUST (orderedCimKeys)
)

 (<core-sr-7> NAME
'dlm1ProductProductDependencyInstanceStructureRule1'
 Form dlm1ProductProductDependencyInstanceNameForm1
)

 (1.3.6.1.4.1.412.100.2.2.204 NAME
'dlmProductProductDependencyHelperRef'
 DESC 'Pointer to ProductProductDependencyInstance.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.78 NAME
'dlm1ProductProductDependencyHelper'
 DESC 'Helper class for finding
 ProductProductDependency.'
 SUP top AUXILIARY
 MAY (dlmHelperRefToProductProductDependency)
)

3.45 ProductSupport Classes
This classes represent the association between products and support access that conveys
how support is obtained for the product. This is a many-to-many relationship, implying
that various types of support are available for a product, and that the same support object
can provide help for multiple products. This class defines two attributes that are self-
explanatory.

 (1.3.6.1.4.1.412.100.2.1.3.79 NAME 'dlm1ProductSupport'
 DESC 'ProductSupport is an association between Product
 and SupportAccess that conveys how support is obtained
 for the Product. This is a many-to-many relationship,
 implying that various types of Support are available
 for a Product, and that the same Support object can
 provide assistance for multiple Products.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.205 NAME 'dlmProductSupportProductRef'
 DESC 'The Product.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.206 NAME 'dlmProductSupportSupportRef'
 DESC 'Support for the Product.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.80 NAME 'dlm1ProductSupportAuxClass'
 DESC 'ProductSupport is an association between Product
 and SupportAccess that conveys how support is obtained
 for the Product. This is a many-to-many relationship,
 implying that various types of Support are available
 for a Product, and that the same Support object can
 provide assistance for multiple Products.'
 SUP dlm1ProductSupport AUXILIARY
 MAY (dlmProductSupportProductRef $
 dlmProductSupportSupportRef)
)

3.46 ProductFRU Classes
These classes provides information regarding what product components have been or are
being replaced.

 (1.3.6.1.4.1.412.100.2.1.3.81 NAME 'dlm1ProductFRU'
 DESC 'ProductFRU is an association between Product and
 FRU that provides information regarding what Product
 components have been or are being replaced. The
 association is one to many, conveying that a Product
 can have many FRUs, and that a particular instance of
 a FRU is only applied to one (instance of a) Product.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.207 NAME 'dlmProductFRUFRURef'
 DESC 'The FRU.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.208 NAME 'dlmProductFRUProductRef'
 DESC 'The Product to which the FRU is applied.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.82 NAME 'dlm1ProductFRUAuxClass'
 DESC 'ProductFRU is an association between Product and
 FRU that provides information regarding what Product
 components have been or are being replaced. The
 association is one to many, conveying that a Product
 can have many FRUs, and that a particular instance of
 a FRU is only applied to one (instance of a) Product.'

 SUP dlm1ProductFRU AUXILIARY
 MAY (dlmProductFRUFRURef $ dlmProductFRUProductRef)
)

3.47 ProductPhysicalElements Classes
These classes show the physical elements that make up a product.

 (1.3.6.1.4.1.412.100.2.1.3.83 NAME 'dlm1ProductPhysicalElements'
 DESC 'Indicates the PhysicalElements that make up a
 Product.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.209 NAME
'dlmProductPhysicalElementsComponentRef'
 DESC 'The PhysicalElement which is a part of the
 Product.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.2.210 NAME
'dlmProductPhysicalElementsProductRef'
 DESC 'The Product.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.84 NAME
'dlm1ProductPhysicalElementsAuxClass'
 DESC 'Indicates the PhysicalElements that make up a
 Product.'
 SUP dlm1ProductPhysicalElements AUXILIARY
 MAY (dlmProductPhysicalElementsComponentRef $
 dlmProductPhysicalElementsProductRef)
)

3.48 FRUPhysicalElements Classes
These classes show the physical elements that make up a FRU.

 (1.3.6.1.4.1.412.100.2.1.3.85 NAME 'dlm1FRUPhysicalElements'
 DESC 'Indicates the PhysicalElements that make up a
 FRU.'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.211 NAME 'dlmFRUPhysicalElementsFRURef'
 DESC 'The FRU.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.212 NAME
'dlmFRUPhysicalElementsComponentRef'
 DESC 'The PhysicalElement which is a part of the FRU.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.86 NAME
'dlm1FRUPhysicalElementsAuxClass'
 DESC 'Indicates the PhysicalElements that make up a
 FRU.'
 SUP dlm1FRUPhysicalElements AUXILIARY
 MAY (dlmFRUPhysicalElementsFRURef $
 dlmFRUPhysicalElementsComponentRef)
)

3.49 FRUIncludesProduct Classes
These classes show that a FRU may be composed of other product(s).

 (1.3.6.1.4.1.412.100.2.1.3.87 NAME 'dlm1FRUIncludesProduct'
 DESC 'Indicates that a FRU may be composed of other
 Product(s).'
 SUP top ABSTRACT
)

 (1.3.6.1.4.1.412.100.2.2.213 NAME 'dlmFRUIncludesProductFRURef'
 DESC 'The FRU.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.214 NAME
'dlmFRUIncludesProductComponentRef'
 DESC 'The Product which is a part of the FRU.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.88 NAME 'dlm1FRUIncludesProductAuxClass'
 DESC 'Indicates that a FRU may be composed of other
 Product(s).'
 SUP dlm1FRUIncludesProduct AUXILIARY
 MAY (dlmFRUIncludesProductFRURef $
 dlmFRUIncludesProductComponentRef)
)

3.50 Synchronized Classes
These classes indicate that two logical elements were aligned or made to be equivalent at
the specified point in time. Preservation of synchronization is determined by the value of
the dlmSyncMaintained attribute.

 (1.3.6.1.4.1.412.100.2.2.215 NAME 'dlmSyncMaintained'
 DESC 'Boolean indicating whether synchronization is
 maintained.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.216 NAME 'dlmWhenSynced'
 DESC 'The point in time that the Elements were
 synchronized.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.89 NAME 'dlm1Synchronized'
 DESC 'Indicates that two LogicalElements were aligned
 or made to be equivalent at the specified point in
 time. If the boolean property SyncMaintained is TRUE,
 then synchronization of the Elements is preserved.
 Both like and unlike objects may be synchronized. For
 example, two WatchDog timers may be aligned, or the
 contents of a LogicalFile may be synchronized with the
 contents of a StorageExtent.'
 SUP top ABSTRACT
 MAY (dlmSyncMaintained $ dlmWhenSynced)
)

 (1.3.6.1.4.1.412.100.2.2.217 NAME 'dlmSynchronizedSyncedElementRef'
 DESC 'SyncedElement represents another LogicalElement
 that is synchronized with the entity referenced as
 SystemElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.2.218 NAME 'dlmSynchronizedSystemElementRef'
 DESC 'SystemElement represents one LogicalElement that
 is synchronized with the entity referenced as
 SyncedElement.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
)

 (1.3.6.1.4.1.412.100.2.1.3.90 NAME 'dlm1SynchronizedInstance'
 DESC 'Indicates that two LogicalElements were aligned
 or made to be equivalent at the specified point in
 time. If the boolean property SyncMaintained is TRUE,
 then synchronization of the Elements is preserved.
 Both like and unlike objects may be synchronized. For
 example, two WatchDog timers may be aligned, or the
 contents of a LogicalFile may be synchronized with the
 contents of a StorageExtent.'
 SUP dlm1Synchronized
 MAY (dlmSynchronizedSyncedElementRef $
 dlmSynchronizedSystemElementRef)
)

 (1.3.6.1.4.1.412.100.2.3.3.8 NAME
'dlm1SynchronizedInstanceNameForm1'
 OC dlm1SynchronizedInstance
 MUST (orderedCimKeys)
)

 (<core-sr-8> NAME 'dlm1SynchronizedInstanceStructureRule1'
 Form dlm1SynchronizedInstanceNameForm1
)

 (1.3.6.1.4.1.412.100.2.2.219 NAME 'dlmSynchronizedHelperRef'
 DESC 'Pointer to SynchronizedInstance.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
 EQUALITY distinguishedNameMatch
)

 (1.3.6.1.4.1.412.100.2.1.3.91 NAME 'dlm1SynchronizedHelper'
 DESC 'Helper class for finding Synchronized.'
 SUP top AUXILIARY
 MAY (dlmSynchronizedHelperRef)
)

4. References
Request For Comments (RFC) and Internet Draft documents are available from numerous
mirror sites.

[1] M. Wahl, T. Howes, S. Kille, "Lightweight Directory Access Protocol (v3)," RFC
2251, December 1997.

[2] M. Wahl, A. Coulbeck, T. Howes, S. Kille, "Lightweight Directory Access
Protocol (v3): Attribute Syntax Definitions," RFC 2252, December 1997.

[3] CIM, "CIM Core Model, v2.4," http://www.dmtf.org/spec/cims.html.

[4] F. Yergeau, "UTF-8, a transformation format of ISO 10646," RFC 2279, January
1998.

[5] DMTF, "LDAP Mapping Guidelines", http://www.dmtf.org/spec/denh.html

[6] M. Wahl, S. Kille, T. Howes, "Lightweight Directory Access Protocol (v3): UTF-
8 String Representation of Distinguished Names," RFC 2253, December 1997

5. Acknowledgment
This work is a product of the DMTF LDAP Mapping Working Group and has benefited
from many comments and discussions during this group's meetings.

A. Structural Rules
The following table states the structural rules defined in this document.

Rule Structural Class RDN Attribute Superior
Rules Defined

<core-sr-1> dlm1ConfigurationInstance orderedCimKeys * 3.13
<core-sr-2> dlm1ProductInstance orderedCimKeys * 3.15
<core-sr-3> dlm1SupportAccessInstance orderedCimKeys * 3.16
<core-sr-4> dlm1FRUInstance orderedCimKeys * 3.17
<core-sr-5> dlm1ServiceServiceDependencyInstance orderedCimKeys * 3.32
<core-sr-6> dlm1CompatibleProductInstance orderedCimKeys * 3.43
<core-sr-7> dlm1ProductProductDependencyInstance orderedCimKeys * 3.44
<core-sr-8> dlm1SynchronizedInstance orderedCimKeys * 3.50
<core-sr-9> dlmOtherIdentifyingInfoInstance arrayIndex ** 2.3.2

* This mapping document does not provide suggestions regarding DIT placement of
mapped top-level CIM objects.

** The superiors for this rule are not defined in this mapping. In subsequent DMTF CIM
mapping documents that define mappings of non-abstract subclasses of
CIM_ComputerSystem and CIM_LogicalDevice, it will be possible to define the possible
superiors for cimOtherIdentifyingInfoInstance.

B. OID Assignments
The following three tables provides the summary of OID assignments made in this
document

B.1 Object Classes
OID Object Class Section
1.3.6.1.4.1.412.100.2.1.3.92 dlmOtherIdentifyingInfoInstance 2.3.1
1.3.6.1.4.1.412.100.2.1.3.1 dlm1ManagedElement 3.1
1.3.6.1.4.1.412.100.2.1.3.2 dlm1ManagedSystemElement 3.2
1.3.6.1.4.1.412.100.2.1.3.3 dlm1PhysicalElement 3.3
1.3.6.1.4.1.412.100.2.1.3.4 dlm1LogicalElement 3.4
1.3.6.1.4.1.412.100.2.1.3.5 dlm1System 3.5
1.3.6.1.4.1.412.100.2.1.3.6 dlm1ComputerSystem 3.6
1.3.6.1.4.1.412.100.2.1.3.93 dlm1AdminDomain 3.7
1.3.6.1.4.1.412.100.2.1.3.7 dlm1LogicalDevice 3.8
1.3.6.1.4.1.412.100.2.1.3.8 dlm1Service 3.9
1.3.6.1.4.1.412.100.2.1.3.9 dlm1ServiceAccessPoint 3.10
1.3.6.1.4.1.412.100.2.1.3.10 dlm1Collection 3.11
1.3.6.1.4.1.412.100.2.1.3.11 dlm1CollectionOfMSEs 3.12
1.3.6.1.4.1.412.100.2.1.3.12 dlm1Configuration 3.13
1.3.6.1.4.1.412.100.2.1.3.13 dlm1ConfigurationAuxClass 3.13
1.3.6.1.4.1.412.100.2.1.3.14 dlm1ConfigurationInstance 3.13
1.3.6.1.4.1.412.100.2.1.3.15 dlm1Setting 3.14
1.3.6.1.4.1.412.100.2.1.3.16 dlm1Product 3.15
1.3.6.1.4.1.412.100.2.1.3.17 dlm1ProductAuxClass 3.15
1.3.6.1.4.1.412.100.2.1.3.18 dlm1ProductInstance 3.15
1.3.6.1.4.1.412.100.2.1.3.19 dlm1SupportAccess 3.16
1.3.6.1.4.1.412.100.2.1.3.20 dlm1SupportAccessAuxClass 3.16
1.3.6.1.4.1.412.100.2.1.3.21 dlm1SupportAccessInstance 3.16
1.3.6.1.4.1.412.100.2.1.3.22 dlm1FRU 3.17
1.3.6.1.4.1.412.100.2.1.3.23 dlm1FRUAuxClass 3.17
1.3.6.1.4.1.412.100.2.1.3.24 dlm1FRUInstance 3.17

1.3.6.1.4.1.412.100.2.1.3.25 dlm1CollectedCollections 3.18
1.3.6.1.4.1.412.100.2.1.3.26 dlm1CollectedCollectionsAuxClass 3.18
1.3.6.1.4.1.412.100.2.1.3.27 dlm1LogicalIdentity 3.19
1.3.6.1.4.1.412.100.2.1.3.28 dlm1ConfigurationComponent 3.20
1.3.6.1.4.1.412.100.2.1.3.29 dlm1ConfigurationComponentAuxClass 3.20
1.3.6.1.4.1.412.100.2.1.3.30 dlm1ElementConfiguration 3.21
1.3.6.1.4.1.412.100.2.1.3.31 dlm1ElementConfigurationAuxClass 3.21
1.3.6.1.4.1.412.100.2.1.3.32 dlm1CollectionConfiguration 3.22
1.3.6.1.4.1.412.100.2.1.3.33 dlm1CollectionConfigurationAuxClass 3.22
1.3.6.1.4.1.412.100.2.1.3.34 dlm1ElementSetting 3.23
1.3.6.1.4.1.412.100.2.1.3.35 dlm1ElementSettingAuxClass 3.23
1.3.6.1.4.1.412.100.2.1.3.36 dlm1DefaultSetting 3.24
1.3.6.1.4.1.412.100.2.1.3.37 dlm1DefaultSettingAuxClass 3.24
1.3.6.1.4.1.412.100.2.1.3.38 dlm1SettingContext 3.25
1.3.6.1.4.1.412.100.2.1.3.39 dlm1SettingContextAuxClass 3.25
1.3.6.1.4.1.412.100.2.1.3.40 dlm1CollectionSetting 3.26
1.3.6.1.4.1.412.100.2.1.3.41 dlm1CollectionSettingAuxClass 3.26
1.3.6.1.4.1.412.100.2.1.3.42 dlm1Dependency 3.27
1.3.6.1.4.1.412.100.2.1.3.43 dlm1ServiceAccessBySAP 3.28
1.3.6.1.4.1.412.100.2.1.3.44 dlm1ServiceAccessBySAPAuxClass 3.28
1.3.6.1.4.1.412.100.2.1.3.45 dlm1HostedService 3.29
1.3.6.1.4.1.412.100.2.1.3.46 dlm1HostedServiceAuxClass 3.29
1.3.6.1.4.1.412.100.2.1.3.47 dlm1HostedAccessPoint 3.30
1.3.6.1.4.1.412.100.2.1.3.48 dlm1HostedAccessPointAuxClass 3.30
1.3.6.1.4.1.412.100.2.1.3.49 dlm1ProvidesServiceToElement 3.31
1.3.6.1.4.1.412.100.2.1.3.50 dlm1ProvidesServiceToElementAuxClass 3.31
1.3.6.1.4.1.412.100.2.1.3.51 dlm1ServiceServiceDependency 3.32
1.3.6.1.4.1.412.100.2.1.3.52 dlm1ServiceServiceDependencyInstance 3.32
1.3.6.1.4.1.412.100.2.1.3.53 dlm1ServiceServiceDependencyHelper 3.32
1.3.6.1.4.1.412.100.2.1.3.54 dlm1ServiceSAPDependency 3.33
1.3.6.1.4.1.412.100.2.1.3.55 dlm1ServiceSAPDependencyAuxClass 3.33
1.3.6.1.4.1.412.100.2.1.3.56 dlm1SAPSAPDependency 3.34
1.3.6.1.4.1.412.100.2.1.3.57 dlm1SAPSAPDependencyAuxClass 3.34
1.3.6.1.4.1.412.100.2.1.3.58 dlm1Realizes 3.35
1.3.6.1.4.1.412.100.2.1.3.59 dlm1RealizesAuxClass 3.35
1.3.6.1.4.1.412.100.2.1.3.60 dlm1MemberOfCollection 3.36
1.3.6.1.4.1.412.100.2.1.3.61 dlm1MemberOfCollectionAuxClass 3.36
1.3.6.1.4.1.412.100.2.1.3.62 dlm1CollectedMSEs 3.37
1.3.6.1.4.1.412.100.2.1.3.63 dlm1CollectedMSEsAuxClass 3.37
1.3.6.1.4.1.412.100.2.1.3.64 dlm1Component 3.38

1.3.6.1.4.1.412.100.2.1.3.65 dlm1SystemComponent 3.39
1.3.6.1.4.1.412.100.2.1.3.66 dlm1SystemComponentAuxClass 3.39
1.3.6.1.4.1.412.100.2.1.3.67 dlm1SystemDevice 3.40
1.3.6.1.4.1.412.100.2.1.3.68 dlm1SystemDeviceAuxClass 3.40
1.3.6.1.4.1.412.100.2.1.3.69 dlm1ServiceComponent 3.41
1.3.6.1.4.1.412.100.2.1.3.70 dlm1ServiceComponentAuxClass 3.41
1.3.6.1.4.1.412.100.2.1.3.71 dlm1ProductParentChild 3.42
1.3.6.1.4.1.412.100.2.1.3.72 dlm1ProductParentChildAuxClass 3.42
1.3.6.1.4.1.412.100.2.1.3.73 dlm1CompatibleProduct 3.43
1.3.6.1.4.1.412.100.2.1.3.74 dlm1CompatibleProductInstance 3.43
1.3.6.1.4.1.412.100.2.1.3.75 dlm1CompatibleProductHelper 3.43
1.3.6.1.4.1.412.100.2.1.3.76 dlm1ProductProductDependency 3.44
1.3.6.1.4.1.412.100.2.1.3.77 dlm1ProductProductDependencyInstance 3.44
1.3.6.1.4.1.412.100.2.1.3.78 dlm1ProductProductDependencyHelper 3.44
1.3.6.1.4.1.412.100.2.1.3.79 dlm1ProductSupport 3.45
1.3.6.1.4.1.412.100.2.1.3.80 dlm1ProductSupportAuxClass 3.45
1.3.6.1.4.1.412.100.2.1.3.81 dlm1ProductFRU 3.46
1.3.6.1.4.1.412.100.2.1.3.82 dlm1ProductFRUAuxClass 3.46
1.3.6.1.4.1.412.100.2.1.3.83 dlm1ProductPhysicalElements 3.47
1.3.6.1.4.1.412.100.2.1.3.84 dlm1ProductPhysicalElementsAuxClass 3.47
1.3.6.1.4.1.412.100.2.1.3.85 dlm1FRUPhysicalElements 3.48
1.3.6.1.4.1.412.100.2.1.3.86 dlm1FRUPhysicalElementsAuxClass 3.48
1.3.6.1.4.1.412.100.2.1.3.87 dlm1FRUIncludesProduct 3.49
1.3.6.1.4.1.412.100.2.1.3.88 dlm1FRUIncludesProductAuxClass 3.49
1.3.6.1.4.1.412.100.2.1.3.89 dlm1Synchronized 3.50
1.3.6.1.4.1.412.100.2.1.3.90 dlm1SynchronizedInstance 3.50
1.3.6.1.4.1.412.100.2.1.3.91 dlm1SynchronizedHelper 3.50

B.2 Attributes
OID Attribute Section
1.3.6.1.4.1.412.100.1.2.5 arrayIndex 2.3.1
1.3.6.1.4.1.412.100.2.2.101 dlmIdentifyingDescription 2.3.1
1.3.6.1.4.1.412.100.1.2.1 orderedCimKeys 2.4
1.3.6.1.4.1.412.100.2.2.103 dlmCaption 3.1
1.3.6.1.4.1.412.100.2.2.104 dlmDescription 3.1
1.3.6.1.4.1.412.100.2.2.105 dlmInstallDate 3.2
1.3.6.1.4.1.412.100.2.2.106 dlmName 3.2
1.3.6.1.4.1.412.100.2.2.107 dlmStatus 3.2
1.3.6.1.4.1.412.100.2.2.108 dlmCreationClassName 3.3
1.3.6.1.4.1.412.100.2.2.109 dlmManufactureDate 3.3

1.3.6.1.4.1.412.100.2.2.110 dlmManufacturer 3.3
1.3.6.1.4.1.412.100.2.2.111 dlmModel 3.3
1.3.6.1.4.1.412.100.2.2.112 dlmOtherIdentifyingInfo 3.3
1.3.6.1.4.1.412.100.2.2.113 dlmPartNumber 3.3
1.3.6.1.4.1.412.100.2.2.114 dlmPoweredOn 3.3
1.3.6.1.4.1.412.100.2.2.115 dlmSKU 3.3
1.3.6.1.4.1.412.100.2.2.116 dlmSerialNumber 3.3
1.3.6.1.4.1.412.100.2.2.117 dlmTag 3.3
1.3.6.1.4.1.412.100.2.2.118 dlmVersion 3.3
1.3.6.1.4.1.412.100.2.2.119 dlmNameFormat 3.5
1.3.6.1.4.1.412.100.2.2.120 dlmPrimaryOwnerContact 3.5
1.3.6.1.4.1.412.100.2.2.121 dlmPrimaryOwnerName 3.5
1.3.6.1.4.1.412.100.2.2.122 dlmRoles 3.5
1.3.6.1.4.1.412.100.2.2.123 dlmDedicated 3.6
1.3.6.1.4.1.412.100.2.2.124 dlmAdditionalAvailability 3.8
1.3.6.1.4.1.412.100.2.2.125 dlmAvailability 3.8
1.3.6.1.4.1.412.100.2.2.126 dlmDeviceID 3.8
1.3.6.1.4.1.412.100.2.2.127 dlmErrorCleared 3.8
1.3.6.1.4.1.412.100.2.2.128 dlmErrorDescription 3.8
1.3.6.1.4.1.412.100.2.2.129 dlmLastErrorCode 3.8
1.3.6.1.4.1.412.100.2.2.130 dlmMaxQuiesceTime 3.8
1.3.6.1.4.1.412.100.2.2.131 dlmPowerManagementCapabilities 3.8
1.3.6.1.4.1.412.100.2.2.132 dlmPowerManagementSupported 3.8
1.3.6.1.4.1.412.100.2.2.133 dlmPowerOnHours 3.8
1.3.6.1.4.1.412.100.2.2.134 dlmStatusInfo 3.8
1.3.6.1.4.1.412.100.2.2.135 dlmTotalPowerOnHours 3.8
1.3.6.1.4.1.412.100.2.2.136 dlmStartMode 3.9
1.3.6.1.4.1.412.100.2.2.137 dlmStarted 3.9
1.3.6.1.4.1.412.100.2.2.138 dlmCollectionID 3.12
1.3.6.1.4.1.412.100.2.2.139 dlmSettingID 3.14
1.3.6.1.4.1.412.100.2.2.140 dlmIdentifyingNumber 3.15
1.3.6.1.4.1.412.100.2.2.141 dlmSKUNumber 3.15
1.3.6.1.4.1.412.100.2.2.142 dlmVendor 3.15
1.3.6.1.4.1.412.100.2.2.143 dlmWarrantyDuration 3.15
1.3.6.1.4.1.412.100.2.2.144 dlmWarrantyStartDate 3.15
1.3.6.1.4.1.412.100.2.2.145 dlmCommunicationInfo 3.16
1.3.6.1.4.1.412.100.2.2.146 dlmCommunicationMode 3.16
1.3.6.1.4.1.412.100.2.2.147 dlmLocale 3.16
1.3.6.1.4.1.412.100.2.2.148 dlmSupportAccessId 3.16
1.3.6.1.4.1.412.100.2.2.149 dlmFRUNumber 3.17

1.3.6.1.4.1.412.100.2.2.150 dlmRevisionLevel 3.17
1.3.6.1.4.1.412.100.2.2.151 dlmCollectedCollectionsCollectionRef 3.18
1.3.6.1.4.1.412.100.2.2.152 dlmCollectedCollectionsCollectionInCollectionRef 3.18
1.3.6.1.4.1.412.100.2.2.153 dlmConfigurationComponentConfigComponentRef 3.20
1.3.6.1.4.1.412.100.2.2.154 dlmConfigurationComponentConfigGroupRef 3.20
1.3.6.1.4.1.412.100.2.2.155 dlmElementConfigurationConfigurationRef 3.21
1.3.6.1.4.1.412.100.2.2.156 dlmElementConfigurationElementRef 3.21
1.3.6.1.4.1.412.100.2.2.157 dlmCollectionConfigurationCollectionRef 3.22
1.3.6.1.4.1.412.100.2.2.158 dlmCollectionConfigurationConfigurationRef 3.22
1.3.6.1.4.1.412.100.2.2.159 dlmElementSettingElementRef 3.23
1.3.6.1.4.1.412.100.2.2.160 dlmElementSettingSettingRef 3.23
1.3.6.1.4.1.412.100.2.2.161 dlmDefaultSettingElementRef 3.24
1.3.6.1.4.1.412.100.2.2.162 dlmDefaultSettingSettingRef 3.24
1.3.6.1.4.1.412.100.2.2.163 dlmSettingContextContextRef 3.25
1.3.6.1.4.1.412.100.2.2.164 dlmSettingContextSettingRef 3.25
1.3.6.1.4.1.412.100.2.2.165 dlmCollectionSettingCollectionRef 3.26
1.3.6.1.4.1.412.100.2.2.166 dlmCollectionSettingSettingRef 3.26
1.3.6.1.4.1.412.100.2.2.167 dlmServiceAccessBySAPAntecedentRef 3.28
1.3.6.1.4.1.412.100.2.2.168 dlmServiceAccessBySAPDependentRef 3.28
1.3.6.1.4.1.412.100.2.2.169 dlmHostedServiceDependentRef 3.29
1.3.6.1.4.1.412.100.2.2.170 dlmHostedServiceAntecedentRef 3.29
1.3.6.1.4.1.412.100.2.2.171 dlmHostedAccessPointDependentRef 3.30
1.3.6.1.4.1.412.100.2.2.172 dlmHostedAccessPointAntecedentRef 3.30
1.3.6.1.4.1.412.100.2.2.173 dlmProvidesServiceToElementDependentRef 3.31
1.3.6.1.4.1.412.100.2.2.174 dlmProvidesServiceToElementAntecedentRef 3.31
1.3.6.1.4.1.412.100.2.2.175 dlmRestartService 3.32
1.3.6.1.4.1.412.100.2.2.176 dlmTypeOfDependency 3.32
1.3.6.1.4.1.412.100.2.2.177 dlmServiceServiceDependencyAntecedentRef 3.32
1.3.6.1.4.1.412.100.2.2.178 dlmServiceServiceDependencyDependentRef 3.32
1.3.6.1.4.1.412.100.2.2.179 dlmServiceServiceDependencyHelperRef 3.32
1.3.6.1.4.1.412.100.2.2.180 dlmServiceSAPDependencyDependentRef 3.33
1.3.6.1.4.1.412.100.2.2.181 dlmServiceSAPDependencyAntecedentRef 3.33
1.3.6.1.4.1.412.100.2.2.182 dlmSAPSAPDependencyAntecedentRef 3.34
1.3.6.1.4.1.412.100.2.2.183 dlmSAPSAPDependencyDependentRef 3.34
1.3.6.1.4.1.412.100.2.2.184 dlmRealizesDependentRef 3.35
1.3.6.1.4.1.412.100.2.2.185 dlmRealizesAntecedentRef 3.35
1.3.6.1.4.1.412.100.2.2.186 dlmMemberOfCollectionCollectionRef 3.36
1.3.6.1.4.1.412.100.2.2.187 dlmMemberOfCollectionMemberRef 3.36
1.3.6.1.4.1.412.100.2.2.188 dlmCollectedMSEsCollectionRef 3.37
1.3.6.1.4.1.412.100.2.2.189 dlmCollectedMSEsMemberRef 3.37

1.3.6.1.4.1.412.100.2.2.190 dlmSystemComponentPartComponentRef 3.39
1.3.6.1.4.1.412.100.2.2.191 dlmSystemComponentGroupComponentRef 3.39
1.3.6.1.4.1.412.100.2.2.192 dlmSystemDevicePartComponentRef 3.40
1.3.6.1.4.1.412.100.2.2.193 dlmSystemDeviceGroupComponentRef 3.40
1.3.6.1.4.1.412.100.2.2.194 dlmServiceComponentGroupComponentRef 3.41
1.3.6.1.4.1.412.100.2.2.195 dlmServiceComponentPartComponentRef 3.41
1.3.6.1.4.1.412.100.2.2.196 dlmProductParentChildChildRef 3.42
1.3.6.1.4.1.412.100.2.2.197 dlmProductParentChildParentRef 3.42
1.3.6.1.4.1.412.100.2.2.198 dlmCompatibilityDescription 3.43
1.3.6.1.4.1.412.100.2.2.199 dlmCompatibleProductCompatibleProductRef 3.43
1.3.6.1.4.1.412.100.2.2.200 dlmCompatibleProductProductRef 3.43
1.3.6.1.4.1.412.100.2.2.201 dlmCompatibleProductHelperRef 3.43
1.3.6.1.4.1.412.100.2.2.202 dlmProductProductDependencyDependentProductRef 3.44
1.3.6.1.4.1.412.100.2.2.203 dlmProductProductDependencyRequiredProductRef 3.44
1.3.6.1.4.1.412.100.2.2.204 dlmProductProductDependencyHelperRef 3.44
1.3.6.1.4.1.412.100.2.2.205 dlmProductSupportProductRef 3.45
1.3.6.1.4.1.412.100.2.2.206 dlmProductSupportSupportRef 3.45
1.3.6.1.4.1.412.100.2.2.207 dlmProductFRUFRURef 3.46
1.3.6.1.4.1.412.100.2.2.208 dlmProductFRUProductRef 3.46
1.3.6.1.4.1.412.100.2.2.209 dlmProductPhysicalElementsComponentRef 3.47
1.3.6.1.4.1.412.100.2.2.210 dlmProductPhysicalElementsProductRef 3.47
1.3.6.1.4.1.412.100.2.2.211 dlmFRUPhysicalElementsFRURef 3.48
1.3.6.1.4.1.412.100.2.2.212 dlmFRUPhysicalElementsComponentRef 3.48
1.3.6.1.4.1.412.100.2.2.213 dlmFRUIncludesProductFRURef 3.49
1.3.6.1.4.1.412.100.2.2.214 dlmFRUIncludesProductComponentRef 3.49
1.3.6.1.4.1.412.100.2.2.215 dlmSyncMaintained 3.50
1.3.6.1.4.1.412.100.2.2.216 dlmWhenSynced 3.50
1.3.6.1.4.1.412.100.2.2.217 dlmSynchronizedSyncedElementRef 3.50
1.3.6.1.4.1.412.100.2.2.218 dlmSynchronizedSystemElementRef 3.50
1.3.6.1.4.1.412.100.2.2.219 dlmSynchronizedHelperRef 3.50

B.3 Nameforms
OID Nameform Section
1.3.6.1.4.1.412.100.2.3.3.9 dlmOtherIdentifyingInfoInstanceNameForm 2.3.1
1.3.6.1.4.1.412.100.2.3.3.1 dlm1ConfigurationInstanceNameForm1 3.13
1.3.6.1.4.1.412.100.2.3.3.2 dlm1ProductInstanceNameForm1 3.15
1.3.6.1.4.1.412.100.2.3.3.3 dlm1SupportAccessInstanceNameForm1 3.16
1.3.6.1.4.1.412.100.2.3.3.4 dlm1FRUInstanceNameForm1 3.17
1.3.6.1.4.1.412.100.2.3.3.5 dlm1ServiceServiceDependencyInstanceNameForm1 3.32
1.3.6.1.4.1.412.100.2.3.3.6 dlm1CompatibleProductInstanceNameForm1 3.43

1.3.6.1.4.1.412.100.2.3.3.7 dlm1ProductProductDependencyInstanceNameForm1 3.44
1.3.6.1.4.1.412.100.2.3.3.8 dlm1SynchronizedInstanceNameForm1 3.50

