LDAP CIM Physical Schema v2.3
Mapping
May 8th, 2000

Abstract
This draft presents a LDAP schema for the DMTF CIM Physical model version 2.3 \cite{3}.

Table of Contents

0. DRAFT CHANGES .. 2
 0.1 Initial version ... 2
 0.2 Changes to 3/28 version ... 3

1. INTRODUCTION .. 3

2. LDAP MAPPING CONSIDERATIONS .. 3
 2.1 DIT Considerations ... 3
 2.2 Helper Classes for Indexed Arrays .. 4
 2.2.1 cimServicePhilosophyInstance ... 4
 2.2.2 cimChassisTypeInstance .. 5
 2.2.3 cimMediaTypesSupportedInstance ... 6
 2.2.4 cimPhysicalLabelsInstance .. 7
 2.3 Syntax Conversion .. 7
 2.4 Attributes Defined in Core Mapping ... 8
 2.5 Object Classes defined in core mapping .. 8

3. CLASS DEFINITIONS ... 8
 3.1 cim23Location ... 8
 3.2 cim23PhysicalElementLocationAuxClass .. 9
3.3 cim23PhysicalCapacity ... 9
3.4 cim23ElementCapacityAuxClass .. 10
3.5 cim23MemoryCapacity ... 10
3.6 cim23ConfigurationCapacity ... 11
3.7 cim23ReplacementSet .. 12
3.8 cim23ParticipatesInSetAuxClass .. 13
3.9 cim23PhysicalPackage ... 13
3.10 cim23ContainerAuxClass ... 15
3.11 cim23PhysicalFrame ... 15
3.12 cim23Rack .. 17
3.13 cim23Chassis ... 17
3.14 cim23ChassisInRackAuxClass .. 18
3.15 cim23PackageInChassisAuxClass ... 18
3.16 cim23DockedAuxClass ... 19
3.17 cim23Card ... 19
3.18 cim23SystemBusCard ... 20
3.19 cim23CardOnCardAuxClass ... 21
3.20 cim23StorageMediaLocation .. 21
3.21 cim23PhysicalComponent ... 22
3.22 cim23PackagedComponentAuxClass 23
3.23 cim23Chip .. 23
3.24 cim23PhysicalMemory .. 24
3.25 cim23MemoryOnCardAuxClass ... 25
3.26 cim23PhysicalMedia ... 25
3.27 cim23MemoryWithMediaAuxClass ... 27
3.28 cim23PhysicalMediaInLocationAuxClass 27
3.29 cim23PhysicalTape ... 28
3.30 cim23PhysicalLink ... 28
3.31 cim23ElementsLinkedAuxClass ... 29
3.32 cim23PhysicalConnector .. 29
3.33 cim23ConnectedToAuxClass .. 31
3.34 cim23Slot ... 31
3.35 cim23SlotInSlotAuxClass ... 33
3.36 cim23AdjacentSlotsAuxClass ... 34
3.37 cim23PackageInConnectorAuxClass 34
3.38 cim23PackageInSlotAuxClass ... 35
3.39 cim23CardInSlotAuxClass ... 35
3.40 cim23LinkHasConnectorAuxClass ... 35
3.41 cim23ConnectorOnPackageAuxClass 35

4. REFERENCES ... 36

A. STRUCTURE RULE DEFINITIONS .. 36

B. OID ASSIGNMENTS ... 37
B.1 Object Classes .. 37
B.2 Attributes ... 38
B.3 Nameforms ... 40

0. Draft Changes

0.1 Initial version
0.2 Changes to 3/28 version

The 3/28 version has additional tables and internal links added for navigation. In addition, sections 2.4 and 2.5 added to list attribute/OIDs and object classes/OIDs from the core mapping used in this document. Draft text has been added to Section 2.1.

1. Introduction

This draft presents a LDAPv3 [1,2] schema for the DMTF CIM Physical model. Associations are mapped using a combination of auxiliary classes and DIT structure rules.

All attribute, object class, and name form OIDs are placeholders. Further, structure rule identifiers are placeholders and should be replaced as dictated by local implementations.

In the mapping of properties to attributes, syntax object identifiers have been replaced by textual names. The correspondence between names and OIDs is shown in the following table:

<table>
<thead>
<tr>
<th>Textual Name</th>
<th>OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>1.3.6.1.4.1.1466.115.121.1.7</td>
</tr>
<tr>
<td>DN</td>
<td>1.3.6.1.4.1.1466.115.121.1.12</td>
</tr>
<tr>
<td>DirectoryString</td>
<td>1.3.6.1.4.1.1466.115.121.1.15</td>
</tr>
<tr>
<td>Integer</td>
<td>1.3.6.1.4.1.1466.115.121.1.27</td>
</tr>
</tbody>
</table>

2. LDAP Mapping Considerations

There are several special considerations in mapping the physical model from CIM to LDAP. They are discussed in this section.

There are some classes that aren't included in this mapping: Since MediaTransferDevice isn't included in the device model, DeviceServiceLocation isn't included here. MediaPhysicalStatInfo isn't included here because it is filled with nothing but counters. Without StorageExtents, the associations RealizesExtent, RealizesPExtent, RealizesDiskPartition, RealizesAggregatePExtent, and RealizesTapePartition do not make sense to include here. Finally, the PackageTempSensor association is not included because there are no TemperatureSensors in the schema.

2.1 DIT Considerations

This mapping is concerned with CIM classes derived from CIM_PhysicalElement and associations relating instances of these classes with other classes. Instances of subclasses of CIM_PhysicalElement are identified by values of the two keys CreationClassName and Tag. This approach produces a flat, non hierarchical, namespace of physical
elements. CIM does not use weak associations to structure the namespace of physical elements because the relationship between physical elements may change, e.g., a card may be removed from one slot and placed in another. Were the card to be placed in a weak association to the slot, its keys would not be well-defined during the transition and would have to be changed after the move.

It is suggested that the RDN for instances of non abstract subclasses cimPhysicalElement be a value of orderedCimKeys. The value should be taken from the CIM key properties CreationClassName and Tag. This RDN value will provide for unambiguous, unchanging identification of the physical element, at least for elements from the same CIM namespace.

Other than RDN values, this mapping does not specify any DIT structure for the mapping of CIM physical element instances. As flat namespaces are normally not desirable in directories, some opportunities for site-specific DIT structures are suggested below.

Physical elements are typically constituents of a system of some kind. In CIM, the system composition is expressed by the CIM_SystemComponent aggregation. Although it is conceivable that a physical element is a component of more than one system, e.g., an admin domain and a unitary computer system, it is likely that one system will be most appropriate as a root for DIT containment. In this case the SystemComponent aggregation can be mapped, not using the auxiliary class approach of the CIM core model mapping, but as DIT containment, the physical element instances being immediately subordinate to the system instance. It is also possible to use both approaches together, that is, subordinating physical elements to a system instance, and to represent the component relationship using cim22SystemComponentAuxClass.

Another opportunity for deriving DIT structure from CIM relationships stems from the association CIM_Container and its subclasses: CIM_ChassisInRack, CIM_PackageInChassis, CIM_CardOnCard, CIM_PackagedComponent and CIM_ConnectorOnPackage.

2.2 Helper Classes for Indexed Arrays

This section presents all of the helper classes that are defined to support mapping of indexed arrays in CIM classes in the physical model.

2.2.1 cimServicePhilosophyInstance

The class cim23PhysicalFrame defines two linked indexed arrays: ServicePhilosophy and ServiceDescription. These are replaced with separate instances of cimServicePhilosophyInstance, which are DIT contained by cim23PhysicalFrame.

(<oid-at74> NAME 'cimServicePhilosophy' DESC 'ServicePhilosophy is an enumerated, integer value that indicates whether the Frame is serviced from the top (value=2), front (3), back (4) or side (5), whether it has sliding trays (6) or removable sides (7), and/or whether the Frame is moveable (8), for example, having rollers. Values are 0="Unknown", 1="Other", 2="Service From Top", ...)
3="Service From Front", 4="Service From Back", 5="Service From Side", 6="Sliding Trays", 7="Removable Sides", 8="Moveable"
SYNTAX integer SINGLE-VALUE
)

({<oid-at75> NAME 'cimServiceDescriptions'
DESC 'A free-form strings providing more detailed explanations for this entries.
SYNTAX DirectoryString SINGLE-VALUE
})

({<oid-oc45> NAME 'cimServicePhilosophyInstance'
DESC 'helper class to tie ServicePhilosophy and ServiceDescriptions in PhysicalFrame together'
SUP top
MUST (arrayIndex)
MAY (cimServicePhilosophy $ cimServiceDescription)
})

({<oid-nf10> NAME 'cimServicePhilosophyInstanceNameForm'
OC cimServicePhilosophyInstance
MUST (arrayIndex)
})

({<sr10> NAME 'cimServicePhilosophyInstanceStructureRule'
FORM cimServicePhilosophyInstanceNameForm
SUP (<sr24>)
})

2.2.2 cimChassisTypeInstance
The class cim23Chassis defines two linked indexed arrays: ChassisTypes and TypeDescriptions. In the LDAP mapping, these are replaced with separate instances of cimChassisTypeInstance, which are DIT contained by cim23Chassis.

({<oid-at76> NAME 'cimChassisTypes'
SYNTAX integer SINGLE-VALUE
})

({<oid-at77> NAME 'cimTypeDescriptions'
DESC 'A free-form strings providing more information on the ChassisTypes array entries.'
SYNTAX DirectoryString SINGLE-VALUE
})

({<oid-oc46> NAME 'cimChassisTypeInstance'
DESC 'helper class to tie ChassisType and TypeDescriptions in Chassis together'
SUP top
MUST (arrayIndex)
MAY (cimChassisType $ cimTypeDescription)
})
2.2.3 cimMediaTypesSupportedInstance

The class cim23StorageMediaLocation defines two linked indexed arrays:
MediaTypesSupported and MediaSizesSupported. In the LDAP mapping, these are
replaced with separate instances of cimMediaTypesSupportedInstance, which are DIT
contained by cim23StorageMediaLocation.

SYNTAX integer SINGLE-VALUE

SYNTAX cim23Float32 SINGLE-VALUE

SYNTAX top
OC cimMediaTypesSupportedInstance
MUST (arrayIndex)
)

(<sr12> NAME 'cimMediaTypesSupportedInstanceStructureRule'
FORM cimMediaTypesSupportedInstanceNameForm
SUP (<sr28>)
)

2.2.4 cimPhysicalLabelsInstance
The class cim23PhysicalMedia defines three linked indexed arrays: PhysicalLabels, LabelStates, and LabelFormats. In the LDAP mapping, these are replaced with separate instances of cimPhysicalLabelsInstance, which are DIT contained by cim23PhysicalMedia.

(<oid-at80> NAME 'cimPhysicalLabels'
DESC "labels" on the PhysicalMedia. The format of the labels and their state (readable, unreadable, or upside-down) is indicated in LabelFormats and LabelStates properties.'
SYNTAX DirectoryString SINGLE-VALUE
)

(<oid-at81> NAME 'cimLabelStates'
DESC 'An enumerated integer describing the state of a label on a PhysicalMedia. The Label is listed in the PhysicalLabels property.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at82> NAME 'cimLabelFormats'
DESC 'An enumerated integer describing the format of a label on a PhysicalMedia. The Labels is listed in the PhysicalLabels property.'
SYNTAX integer SINGLE-VALUE
)

(<oid-oc48> NAME 'cimPhysicalLabelsInstance'
DESC 'helper class to tie PhysicalLabels, LabelStates, and LabelFormats in PhysicalMedia together'
SUP top
MUST (arrayIndex)
MAY (cimPhysicalLabels $ cimLabelStates $ cimLabelFormats)
)

(<oid-nf13> NAME 'cimPhysicalLabelsInstanceNameForm'
OC cimPhysicalLabelsInstance
MUST (arrayIndex)
)

(<sr13> NAME 'cimPhysicalLabelsInstanceStructureRule'
FORM cimPhysicalLabelsInstanceNameForm
SUP (<sr32>)
)

2.3 Syntax Conversion
In addition to the syntax conversion discussed in [4], the physical model has some attributes that require mapping floating point attributes. Mapping of these attributes is
accomplished by inheriting from the attributes cimFloat32 and cimFloat64, defined in [5]. Interested readers are directed there for information about these attribute definitions.

2.4 Attributes Defined in Core Mapping

The following table lists the attributes/OIDs used in this mapping that are defined in the core mapping document [4], the mapping guidelines document [5] or elsewhere.

<table>
<thead>
<tr>
<th>OID</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.6.1.4.1.412.100.1.2.5</td>
<td>arrayIndex</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.2.4</td>
<td>cimName</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.1.2.1</td>
<td>orderedCimKeys</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.1.2.2</td>
<td>orderedCimModelPath</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.2.26</td>
<td>cimElementRef</td>
</tr>
<tr>
<td>2.5.4.6</td>
<td>c</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.1.2.6</td>
<td>cimFloat32</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.1.2.7</td>
<td>cimFloat64</td>
</tr>
</tbody>
</table>

2.5 Object Classes defined in core mapping

The following table lists the object classes/OIDs used in this mapping that are defined in the core mapping document [4].

<table>
<thead>
<tr>
<th>OID</th>
<th>Object Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.2.44</td>
<td>cim23ManagedElement</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.29</td>
<td>cim22ComponentAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.22</td>
<td>cim22DependencyAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.2.5</td>
<td>cim23PhysicalElement</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.2.46</td>
<td>cim23MemberOfCollectionAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.28</td>
<td>cim22RealizesAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.40</td>
<td>cim22ProductPhysicalElementsAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.41</td>
<td>cim22FRUPhysicalElementsAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.2.3</td>
<td>cim23CollectedMSEsAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.27</td>
<td>cim22ProvidesServiceToElementAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.30</td>
<td>cim22SystemComponentAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.10</td>
<td>cim22ElementConfigurationAuxClass</td>
</tr>
<tr>
<td>1.3.6.1.4.1.412.100.2.1.1.13</td>
<td>cim22ElementSettingAuxClass</td>
</tr>
</tbody>
</table>

3. Class Definitions

For efficiency in the LDAP representation, associations are specified as a combination of auxiliary classes and DIT structure rules. Attribute definitions for each class are presented with the object class. Other definitions are also provided when necessary.

3.1 cim23Location

Locations are the position and address of a PhysicalElement.
The following content rule specifies the auxiliary classes that may be attached to cim23Location.

\[
\text{(cim23LocationContentRule)}
\]

\[
\begin{align*}
\text{DESC} & : \text{The auxiliary classes that may be attached to cim23Location} \\
\text{AUX} & : (\text{cim23PhysicalElementLocationAuxClass} \ $ \text{cim22DependencyAuxClass} \ $ \text{cim23MemberOfCollectionAuxClass})
\end{align*}
\]

3.2 cim23PhysicalElementLocationAuxClass

This class associates a physical element with a cim23Location object.

\[
\text{(cimPhysicalLocationRef)}
\]

\[
\begin{align*}
\text{DESC} & : \text{The PhysicalElement"s Location.} \\
\text{SYNTAX} & : \text{DN}
\end{align*}
\]

\[
\text{(cim23PhysicalElementLocationAuxClass)}
\]

\[
\begin{align*}
\text{DESC} & : \text{PhysicalElementLocation associates a PhysicalElement with a Location object for inventory or replacement purposes. Attribute cimElementRef points to cim23PhysicalElement and attribute cimPhysicalLocationRef points to cim23Location.} \\
\text{SUP} & : \text{top} \\
\text{AUXILIARY} & : \text{MAY} (\text{cimElementRef} \ $ \text{cimPhysicalLocationRef})
\end{align*}
\]

3.3 cim23PhysicalCapacity
This class describes a physical element's requirements.

(<oid-oc51> NAME 'cim23PhysicalCapacity'
 DESC 'PhysicalCapacity is an abstract class describing a
 PhysicalElement's minimum/maximum requirements and
 ability to support different types of hardware. For
 example, minimum and maximum memory requirements can be
 modeled as a subclass of cim23PhysicalCapacity.'
 SUP cim23ManagedElement ABSTRACT
 MAY (cimName)
)

3.4 cim23ElementCapacityAuxClass

This class associates a cim23PhysicalCapacity object with one or more
 cim23PhysicalElements.

(<oid-at86> NAME 'cimCapacityRef'
 DESC 'PhysicalCapacity describes the minimum and maximum
 requirements, and ability to support different types of
 hardware for a PhysicalElement.'
 SYNTAX DN
)

(<oid-oc52> NAME 'cim23ElementCapacityAuxClass'
 DESC 'ElementCapacity associates a PhysicalCapacity object with
 one or more PhysicalElements. It serves to associate a
 description of min/max hardware requirements or
 capabilities (stored as a kind of PhysicalCapacity), with
 the PhysicalElements being described. Attribute
 cimCapacityRef points to cim23PhysicalCapacity. Attribute
 cimElementRef points to cim23PhysicalElement.'
 SUP top AUXILIARY
 MAY (cimCapacityRef $ cimElementRef)
)

3.5 cim23MemoryCapacity

Physical elements are limited in what memory can be installed. Instances of this class
store information on what memory is currently installed.

(<oid-at87> NAME 'cimMemoryType'
 DESC 'The type of memory. This is a part of the object
 key. Values correspond to the list of possible memory types
 in the PhysicalMemory class. Values are 0="Unknown",
 1="Other", 2="DRAM", 3="Synchronous DRAM", 4="Cache DRAM",
 5="EDO", 6="EDRAM", 7="VRAM", 8="SRAM", 9="RAM", 10="ROM",
 16="3DRAM", 17="SDRAM", 18="SGRAM", 19="RDRAM".'
 SYNTAX integer SINGLE-VALUE
)

(<oid-at88> NAME 'cimMinimumMemoryCapacity'
 DESC 'Minimum amount of memory, in Kbytes, that is needed for
 the associated PhysicalElement to operate correctly.
 SYNTAX integer SINGLE-VALUE
)

(<oid-at89> NAME 'cimMaximumMemoryCapacity'
 DESC 'Maximum amount of memory, in Kbytes, that can be supported
 by the associated PhysicalElement.'
 SYNTAX integer SINGLE-VALUE
)
3.6 cim23ConfigurationCapacity

Capacity includes the number of power supplies, fans, disk drives, etc. that can be connected to or placed on/into a physical element (and the number that must be connected/added/removed at a time). cim23ElementCapacityAuxClass identifies the physical element whose configuration is described.

This class does NOT represent the tradeoffs required of one resource for another. It simply represents capacities. For a StorageLibrary, there are only 2 valid configurations - 9 TapeDrives with 88 Slots, or 3 TapeDrives with 264 Slots. It only conveys that 'up to' 9 Drives and 'up to' 264 slots are available and supported.
SYNTAX integer SINGLE-VALUE

(<oid-at93> NAME 'cimMaximumCapacity'
DESC 'Maximum number of Elements of type, ObjectType, that may be installed.'
SYNTAX integer SINGLE-VALUE)

(<oid-at94> NAME 'cimIncrement'
DESC 'Increment in which Elements must be added or removed.'
SYNTAX integer SINGLE-VALUE)

(<oid-oc54> NAME 'cim23ConfigurationCapacity'
DESC 'ConfigurationCapacity provides information on the minimum and maximum numbers of power supplies, fans, disk drives, etc. that can be connected to or placed on/into a PhysicalElement (and the number that must be connected/added/removed at a time). The PhysicalElement whose configuration is described is identified using the ElementCapacity association, inherited from PhysicalCapacity. The object whose capacities are indicated (i.e., the power supply or fan) is identified in the ObjectType property of this class. Since the same min/max configurations can apply to multiple instances, this class is not defined as "weak". Examples of the use of the ConfigurationCapacity class are to describe that a "control unit" Chassis may be connected to (at most) 4 other I/O chassis, or to describe what a StorageLibrary"s cabinet may contain. Continuing the latter example, a particular StorageLibrary"s cabinet might hold a minimum of 3 and a maximum of 9 TapeDrives, and a minimum of 88 and a maximum of 264 StorageMediaLocations ("Slots"). This information would be described in two instances of ConfigurationCapacity, both associated to the StorageLibrary"s PhysicalPackage. This class does NOT represent the tradeoffs that are likely to be required of one resource for another. It simply represents capacities. In the case of the StorageLibrary, there may be only 2 valid configurations - 9 TapeDrives with 88 Slots, or 3 TapeDrives with 264 Slots. This class only conveys that "up to" 9 Drives and "up to" 264 slots may be available and are supported.'
SUP cim23PhysicalCapacity
MAY (cimObjectType $ cimOtherTypeDescription $ cimMinimumCapacity $ cimMaximumCapacity $ cimIncrement))

(<oid-nf18> NAME 'cim23ConfigurationCapacityNameForm'
OC cim23ConfigurationCapacity
MUST (orderedCimKeys))

(<sr18> NAME 'cim23ConfigurationCapacityStructureRule'
FORM cim23ConfigurationCapacityNameForm)

3.7 cim23ReplacementSet

A replacement set is a group of physical elements that must be replaced or FRUed together. For example, when replacing a memory card, the component memory chips could be removed and replaced as well.
The ReplacementSet class aggregates PhysicalElements that must be "replaced" or "FRUed" together. For example, when replacing a memory card, the component memory chips could be removed and replaced as well. Or, a set of memory chips may be specified to be replaced or upgraded together using this association.

The following content rule specifies the auxiliary classes that may be attached to cim23ReplacementSet.

3.8 cim23ParticipatesInSetAuxClass
This class shows which physical elements should be replaced together.

3.9 cim23PhysicalPackage
A physical package contains or hosts components. Examples are a rack enclosure or an adapter Card.
is both Removable and HotSwappable. For example, an extra battery in a laptop is Removable, as is a disk drive Package inserted using SCA connectors. However, the latter is also HotSwappable. A laptop’s display is not Removable, nor is a non-redundant power supply. Removing these components would impact the function of the overall packaging or is impossible due to the tight integration of the Package.

SYNTAX boolean SINGLE-VALUE

(<oid-at97> NAME 'cimReplaceable'
DESC 'A PhysicalPackage is Replaceable if it is possible to replace (FRU or upgrade) the Element with a physically different one. For example, some ComputerSystems allow the main Processor chip to be upgraded to one of a higher clock rating. In this case, the Processor is said to be Replaceable. Another example is a power supply Package mounted on sliding rails. All Removable packages are inherently Replaceable.'
SYNTAX boolean SINGLE-VALUE
)

(<oid-at98> NAME 'cimHotSwappable'
DESC 'A PhysicalPackage is HotSwappable if it is possible to replace the Element with a physically different but equivalent one while the containing Package has power applied to it (i.e., is "on"). For example, a disk drive Package inserted using SCA connectors is both Removable and HotSwappable. All HotSwappable packages are inherently Removable and Replaceable.'
SYNTAX boolean SINGLE-VALUE
)

(<oid-at99> NAME 'cimHeight'
DESC 'The height of the PhysicalPackage in inches.'
SUP cimFloat32 SINGLE-VALUE
)

(<oid-at100> NAME 'cimDepth'
DESC 'The depth of the PhysicalPackage in inches.'
SUP cimFloat32 SINGLE-VALUE
)

(<oid-at101> NAME 'cimWidth'
DESC 'The width of the PhysicalPackage in inches.'
SUP cimFloat32 SINGLE-VALUE
)

(<oid-at102> NAME 'cimWeight'
DESC 'The weight of the PhysicalPackage in pounds.'
SUP cimFloat32 SINGLE-VALUE
)

(<oid-oc57> NAME 'cim23PhysicalPackage'
DESC 'The PhysicalPackage class represents PhysicalElements that contain or host other components. Examples are a Rack enclosure or an adapter Card.'
SUP cim23PhysicalElement
MAY (cimRemovable $ cimReplaceable $ cimHotSwappable $ cimHeight $ cimDepth $ cimWidth $ cimWeight)
)

(<oid-nf22> NAME 'cim23PhysicalPackageNameForm'
The following content rule specifies the auxiliary classes that may be attached to `cim23PhysicalPackage`.

```
( <oid-oc57> NAME 'cim23PhysicalPackageContentRule'
  DESC 'The auxiliary classes that may be attached to
  cim23PhysicalPackage'
  AUX ( cim23ContainerAuxClass $ cim23PackageInChassisAuxClass $
    cim23PackagedComponentAuxClass $ cim23PackageInConnectorAuxClass $
    cim23PackageInSlotAuxClass $ cim23ConnectorOnPackageAuxClass $
    cim22RealizesAuxClass $ cim22ProductPhysicalElementsAuxClass $
    cim22FRUPhysicalElementsAuxClass $ cim23PhysicalElementLocationAuxClass $
    cim23ElementCapacityAuxClass $ cim23ParticipatesInSetAuxClass $
    cim23ElementsLinkedAuxClass $ cim22ElementConfigurationAuxClass $
    cim22ElementSettingAuxClass $ cim23CollectedMSEsAuxClass $
    cim22ProvidesServiceToElementAuxClass $ cim22ComponentAuxClass $
    cim22SystemComponentAuxClass $ cim22DependencyAuxClass $
    cim23MemberOfCollectionAuxClass )
)
```

3.10 cim23ContainerAuxClass

This class represents the relationship between a contained and a containing PhysicalElement.

```
( <oid-at103> NAME 'cimLocationWithinContainer'
  DESC 'A free-form string representing the positioning of the
  PhysicalElement within the PhysicalPackage. This string
  could supplement or be used in place of instantiating the
  cimLocation object.'
  SYNTAX DirectoryString SINGLE-VALUE
)
```

```
( <oid-oc58> NAME 'cim23ContainerAuxClass'
  DESC 'The Container association represents the relationship
  between a contained and a containing PhysicalElement. A
  containing object must be a PhysicalPackage. Attribute
  cimGroupComponentRef points to cim23PhysicalPackage and
  attribute cimPartComponentRef points to
  cim23PhysicalElement.'
  SUP cim22ComponentAuxClass AUXILIARY
  MAY ( cimLocationWithinContainer )
)
```

3.11 cim23PhysicalFrame

A physical frame is a generic frame enclosure.

```
( <oid-at104> NAME 'cimCableManagementStrategy'
  DESC 'CableManagementStrategy is a free-form string that contains
  information on how the various cables are connected and
  bundled for the Frame. With many networking,
```
storage-related and power cables, cable management can be a complex and challenging endeavor. This string property contains information to aid in assembly and service of the Frame.'

SYNTAX DirectoryString SINGLE-VALUE

(<oid-at105> NAME 'cimLockPresent'
 DESC 'Boolean indicating whether the Frame is protected with a lock.'
 SYNTAX boolean SINGLE-VALUE
)

(<oid-at106> NAME 'cimAudibleAlarm'
 DESC 'Boolean indicating whether the Frame is equipped with an audible alarm.'
 SYNTAX boolean SINGLE-VALUE
)

(<oid-at107> NAME 'cimVisibleAlarm'
 DESC 'Boolean indicating that the equipment includes a visible alarm.'
 SYNTAX boolean SINGLE-VALUE
)

(<oid-at108> NAME 'cimSecurityBreach'
 DESC 'SecurityBreach is an enumerated, integer-valued property indicating whether a physical breach of the Frame was attempted but unsuccessful (value=4) or attempted and successful (5). Also, the values, "Unknown", "Other" or "No Breach", can be specified. Values are 1="Other", 2="Unknown", 3="No Breach", 4="Breach Attempted", 5="Breach Successful".'
 SYNTAX integer SINGLE-VALUE
)

(<oid-at109> NAME 'cimBreachDescription'
 DESC 'BreachDescription is a free-form string providing more information if the SecurityBreach property indicates that a breach or some other security-related event occurred.'
 SYNTAX DirectoryString SINGLE-VALUE
)

(<oid-at110> NAME 'cimIsLocked'
 DESC 'Boolean indicating that the Frame is currently locked.'
 SYNTAX boolean SINGLE-VALUE
)

(<oid-oc59> NAME 'cim23PhysicalFrame'
 DESC 'PhysicalFrame is a superclass of Rack, Chassis and other frame enclosures, as they are defined in extension classes. Properties like visible or audible alarm, and data related to security breaches are in this superclass.'
 SUP cim23PhysicalPackage
)

(<oid-nf24> NAME 'cim23PhysicalFrameNameForm'
 OC cim23PhysicalFrame
 MUST (orderedCimKeys)
)
3.12 cim23Rack

Racks are enclosures in which chassis are placed. Typically they are nothing more than the enclosure, and the chassis packages all functioning components.

3.13 cim23Chassis

Chassis enclose other elements and provide definable functionality.
enclose other Elements and provide definable functionality, such as a desktop, processing node, UPS, disk or tape storage, or a combination of these.'

SUP cim23PhysicalFrame
MAY (cimNumberOfPowerCords $ cimCurrentRequiredOrProduced $ cimHeatGeneration)

This class makes explicit the 'containing' relationship between the Rack and the Chassis.

SUP cim23ContainerAuxClass AUXILIARY
MAY (cimLocationWithinContainer $ cimBottomU)

The following content rule specifies the auxiliary classes that may be attached to cim23Chassis.

3.14 cim23ChassisInRackAuxClass
This class makes explicit the 'containing' relationship between the Rack and the Chassis.

SUP cim23ContainerAuxClass AUXILIARY
MAY (cimLocationWithinContainer $ cimBottomU)

3.15 cim23PackageInChassisAuxClass
This class makes the containment relationship between a chassis and other packages explicit.
3.16 cim23DockedAuxClass

This class makes explicit the relationship between a laptop, a type of chassis, which docks in another type of chassis, a docking station.

\[
\begin{align*}
\langle \text{oid-oc64} \rangle & \text{ NAME } '\text{cim23DockedAuxClass}' \\
& \text{ DESC } 'A laptop, a type of Chassis, may be docked in another type of Chassis, a Docking Station. This is the relationship represented by the Docked association. Because this is such a typical relationship, it is explicitly described. Both attributes point to cim23Chassis objects.' \\
& \text{ SUP } \text{cim22DependencyAuxClass AUXILIARY}
\end{align*}
\]

3.17 cim23Card

This class represents a type of physical container that can be plugged into another Card or HostingBoard, or is itself a HostingBoard/Motherboard in a Chassis. It includes any package capable of carrying signals and providing a mounting point for PhysicalComponents, such as Chips, or other PhysicalPackages, such as other Cards.

\[
\begin{align*}
\langle \text{oid-at116} \rangle & \text{ NAME } '\text{cimHostingBoard}' \\
& \text{ DESC } 'Boolean indicating that this Card is a Motherboard or, more generically, a baseboard in a Chassis.' \\
& \text{ SYNTAX } \text{boolean SINGLE-VALUE}
\end{align*}
\]

\[
\begin{align*}
\langle \text{oid-at117} \rangle & \text{ NAME } '\text{cimSlotLayout}' \\
& \text{ DESC } 'SlotLayout is a free-form string that describes the slot positioning, typical usage, restrictions, individual slot spacings or any other pertinent information for the slots on a Card.' \\
& \text{ SYNTAX } \text{DirectoryString SINGLE-VALUE}
\end{align*}
\]

\[
\begin{align*}
\langle \text{oid-at118} \rangle & \text{ NAME } '\text{cimRequiresDaughterBoard}' \\
& \text{ DESC } 'Boolean indicating that at least one daughterboard or auxiliary Card is required in order to function properly.' \\
& \text{ SYNTAX } \text{boolean SINGLE-VALUE}
\end{align*}
\]

\[
\begin{align*}
\langle \text{oid-at119} \rangle & \text{ NAME } '\text{cimSpecialRequirements}' \\
& \text{ DESC } 'Boolean indicating that this Card is physically unique from other Cards of the same type and therefore requires a special Slot. For example, a doublewide Card requires two Slots. Another example is where a certain Card may be used for the same general function as other Cards but requires a special Slot (e.g., extra long), whereas the other Cards can be placed in any available Slot. If set to TRUE, then the corresponding property, RequirementsDescription, should specify the nature of the uniqueness or purpose of the Card.' \\
& \text{ SYNTAX } \text{boolean SINGLE-VALUE}
\end{align*}
\]

\[
\begin{align*}
\langle \text{oid-at120} \rangle & \text{ NAME } '\text{cimRequirementsDescription}' \\
& \text{ DESC } 'A free-form string describing the way(s) in which this Card is physically unique from other Cards. This property only has meaning when the corresponding boolean property,
\end{align*}
\]
SpecialRequirements, is set to TRUE.'
SYNTAX DirectoryString SINGLE-VALUE
)

(<oid-at121> NAME 'cimOperatingVoltages'
DESC 'Operating voltages required by the Card.'
SYNTAX integer)

(<oid-oc65> NAME 'cim23Card'
DESC 'The Card class represents a type of physical container that
 can be plugged into another Card or HostingBoard, or is
 itself a HostingBoard/Motherboard in a Chassis. The
cim23Card class includes any package capable of carrying
 signals and providing a mounting point for
 PhysicalComponents, such as Chips, or other
 PhysicalPackages, such as other Cards.'
SUP cim23PhysicalPackage
MAY (cimHostingBoard $ cimSlotLayout $ cimRequiresDaughterBoard $
cimSpecialRequirements $ cimRequirementsDescription $
cimOperatingVoltages)
)

The following content rule specifies the auxiliary classes that may be attached to
cim23Card.

(<oid-oc65> NAME 'cim23CardContentRule'
DESC 'The auxiliary classes that may be attached to cim23Card'
AUX (cim23CardOnCardAuxClass $ cim23MemoryOnCardAuxClass $
cim23CardInSlotAuxClass)
)

3.18 cim23SystemBusCard

System bus cards require additional attributes, detailing the card's bus type and data
width, which dictate the type of slot into which the card can be inserted. For example,
attributes can define that a card is a PCI 64-bit adapter.

(<oid-at122> NAME 'cimBusType'
DESC 'An enumerated integer describing the System bus type for
 this Card. It indicates the type of slot into which the
SYNTAX integer SINGLE-VALUE)

(<oid-at123> NAME 'cimBusWidth'
DESC 'System bus width (in bits) required by this Card. If
 "unknown", enter 0. If "other" than the values, 8, 16, 32, 64 or 128, enter 1. Values are 0, 1, 8, 16, 32, 64, and 128'
SYNTAX integer SINGLE-VALUE)
)
The SystemBusCard class represents additional information for a cimCard, detailing the Card's bus type and data width. These properties dictate the type of Slot into which the Card can be inserted. For example, using the properties of this class, one can define that a Card is a PCI, 64 bit adapter.

SUP cim23Card
MAY (cimBusType $ cimBusWidth)

3.19 cim23CardOnCardAuxClass
Cards may be plugged into Motherboards/baseboards, are daughtercards of an adapter, or support special Card-like modules. This auxiliary class describes these relationships.

SUP cim23ContainerAuxClass AUXILIARY
MAY (cimLocationWithinContainer $ cimMountOrSlotDescription)

3.20 cim23StorageMediaLocation
A storage media location holds media and goes beyond being just a location used by a storage library.

DESC 'The type of Location. For example, whether this is an individual Media "Slot" (value=2), a MediaAccessDevice (value=4) or a "Magazine" (value=3) is indicated in this property. Values are 0="Unknown", 1="Other", 2="Slot", 3="Magazine", 4="MediaAccessDevice", 5="InterLibrary Port", 6="Limited Access Port", 7="Door", 8="Shelf", 9="Vault".'
SYNTAX integer SINGLE-VALUE
The following content rule specifies the auxiliary classes that may be attached to `cim23StorageMediaLocation`.

3.21 cim23PhysicalComponent

A physical component either can not or does not need to be decomposed into its constituent parts. For example, an ASIC can not be further decomposed and a tape for data storage does not need to be decomposed. Any element that is not a link, connector, or package is subclassed from this class.
The following content rule specifies the auxiliary classes that may be attached to cim23PhysicalComponent.

```
( <oid-oc69> NAME 'cim23PhysicalComponentContentRule'
DESC 'The auxiliary classes that may be attached to cim23PhysicalComponent'
AUX ( cim23PackagedComponentAuxClass $ cim22RealizesAuxClass $ cim22ProductPhysicalElementsAuxClass $ cim22FRUPhysicalElementsAuxClass $ cim23PhysicalElementLocationAuxClass $ cim23ElementCapacityAuxClass $ cim23ParticipatesInSetAuxClass $ cim23ContainerAuxClass $ cim23ElementsLinkedAuxClass $ cim22ElementConfigurationAuxClass $ cim22ElementSettingAuxClass $ cim23CollectedMSEsAuxClass $ cim22ProvidesServiceToElementAuxClass $ cim22ComponentAuxClass $ cim22SystemComponentAuxClass $ cim22DependencyAuxClass $ cim23MemberOfCollectionAuxClass )
)
```

3.22 cim23PackagedComponentAuxClass

As a physical package typically contains a component, this class makes this relationship explicit. The word, 'typically', is used because a Component may be removed from, or not yet inserted into, its containing Package (i.e., the Removable boolean is TRUE). Therefore, a Component may not always be associated with a container.

```
( <oid-oc70> NAME 'cim23PackagedComponentAuxClass'
DESC 'A Component is typically contained by a PhysicalPackage, such as a Chassis or Card. The PackagedComponent association makes this relationship explicit. In the first sentence, the word, "typically", is used. This is because a Component may be removed from, or not yet inserted into, its containing Package (i.e., the Removable boolean is TRUE). Therefore, a Component may not always be associated with a container. Attribute cimGroupComponentRef points to cim23PhysicalPackage and attribute cimPartComponentRef points to cim23PhysicalComponent.'
SUP cim23ContainerAuxClass AUXILIARY
MAY ( cimLocationWithinContainer )
)
```

3.23 cim23Chip

A chip is of IC hardware, including ASICs, processors, and memory chips.

```
( <oid-at128> NAME 'cimFormFactor'
DESC 'The implementation form factor for the Chip. For example, values such as SIMM (7), TSOP (9) or PGA (10) can be specified. Values are 0="Unknown", 1="Other", 2="SIP", 3="DIP", 4="ZIP", 5="SOJ", 6="Proprietary", 7="SIMM", 8="DIMM", 9="TSOP", 10="PGA", 11="RIMM", 12="SODIMM", 13="SRIMM", 14="SMD", 15="SSMP", 16="QFP", 17="TQFP",
```
18="SOIC", 19="LCC", 20="PLCC", 21="BGA", 22="FPBGA", 23="LGA".

SYNTAX integer SINGLE-VALUE
)

(<oid-oc71> NAME 'cim23Chip'
DESC 'The Chip class represents any type of integrated circuit
hardware, including ASICs, processors, memory chips, etc.'
SUP cim23PhysicalComponent
MAY (cimFormFactor)
)

3.24 cim23PhysicalMemory

Low level memory devices are examples of physical memory.

(<oid-at129> NAME 'cimTotalWidth'
DESC 'Total width, in bits, of the PhysicalMemory, including
check or error correction bits. If there are no error
correction bits, the value in this property should match
that specified for DataWidth.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at130> NAME 'cimDataWidth'
DESC 'Data width of the PhysicalMemory, in bits. A data width of
0 and a TotalWidth of 8 would indicate that the Memory is
solely used to provide error correction bits.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at131> NAME 'cimSpeed'
DESC 'The speed of the PhysicalMemory, in nanoseconds.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at132> NAME 'cimCapacity'
DESC 'The total capacity of this PhysicalMemory, in bytes.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at133> NAME 'cimBankLabel'
DESC 'A string identifying the physically labeled bank where the
Memory is located - for example, "Bank 0" or "Bank A".'
SYNTAX DirectoryString(64) SINGLE-VALUE
)

(<oid-at134> NAME 'cimPositionInRow'
DESC 'Specifies the position of the PhysicalMemory in a
"row". For example, if it takes two 8-bit memory devices to
form a 16-bit row, then a value of "2" means that this
Memory is the second device. 0 is an invalid value for this
property.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at135> NAME 'cimInterleavePosition'
DESC 'The position of this PhysicalMemory in an interleave. 0
indicates non-interleaved. 1 indicates the first position,
2 the second position and so on. For example, in a 2:1
interleave, a value of "1" would indicate that the Memory
is in the "even" position.'
SYNTAX integer SINGLE-VALUE
)
The following content rule specifies the auxiliary classes that may be attached to cim23PhysicalMemory.

{ <oid-oc72> NAME 'cim23PhysicalMemoryContentRule'
 DESC 'The auxiliary classes that may be attached to cim23PhysicalMemory'
 AUX (cim23MemoryOnCardAuxClass $ cim23MemoryWithMediaAuxClass)
}

3.25 cim23MemoryOnCardAuxClass
Hosting boards, adapter Cards, etc., can hold physical memory. Therefore, this class represents that relationship.

{ <oid-oc73> NAME 'cim23MemoryOnCardAuxClass'
 DESC 'PhysicalMemory can be located on HostingBoards, adapter Cards, etc. This association explicitly defines this relationship of Memory to Cards. Attribute cimGroupComponentRef points to cim23Card. Attribute cimPartComponentRef points to cim23PhysicalMemory.'
 SUP cim23PackagedComponentAuxClass AUXILIARY
 MAY (cimLocationWithinContainer)
}

3.26 cim23PhysicalMedia
Physical media are any type of documentation or storage medium, typically removable media. However, this class can also model 'sealed' media where cim23PackagedComponentAuxClass associates the media with the physical package.

{ <oid-at136> NAME 'cimMediaType'
SYNTAX integer SINGLE-VALUE

(<oid-at137> NAME 'cimMediaDescription'
DESC 'Additional detail related to the MediaType enumeration. For example, if value 3 ("QIC Cartridge") is specified, this property could indicate whether the tape is wide or 1/4 inch, whether it is pre-formatted, whether it is Travan compatible, etc.'
SYNTAX DirectoryString SINGLE-VALUE
)

(<oid-at138> NAME 'cimWriteProtectOn'
DESC 'Boolean specifying whether the Media is currently write protected by some kind of physical mechanism, such as a protect tab on a floppy diskette.'
SYNTAX boolean SINGLE-VALUE
)

(<oid-at139> NAME 'cimCleanerMedia'
DESC 'Boolean indicating that the PhysicalMedia is used for cleaning purposes and not data storage.'
SYNTAX boolean SINGLE-VALUE
)

(<oid-at140> NAME 'cimMediaSize'
DESC 'Size of the Media in inches. For example, "3.5" would be entered for a 3.5 inch disk, or "12" would be entered for a 12 inch optical disk. On the other hand, "0.5" would be defined for a 1/2 inch tape.'
SUP cim23Float32 SINGLE-VALUE
)

(<oid-at141> NAME 'cimMaxMounts'
DESC 'For removable Media, the maximum number of times that the Media can be mounted before it should be retired. For cleaner Media, this is the maximum number of Drive cleans that can be performed. For nonremovable Media, such as hard disks, this property is not applicable and should be set to 0.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at142> NAME 'cimDualSided'
DESC 'Boolean indicating that the Media has two recording sides (TRUE) or only a single side (FALSE). Examples of dual sided Media include DVD-ROM and some optical disks. Examples of single sided Media are tapes and CD-ROM.'
SYNTAX boolean SINGLE-VALUE
)

(<oid-oc74> NAME 'cim23PhysicalMedia'
DESC 'The PhysicalMedia class represents any type of documentation or storage medium, such as tapes, CDROMs,
etc. This class is typically used to locate and manage Removable Media (versus Media sealed with the MediaAccessDevice, as a single Package, as is the case with hard disks). However, "sealed" Media can also be modeled using this class, where the Media would then be associated with the PhysicalPackage using the PackagedComponent relationship.'

SUP cim23PhysicalComponent
MAY (cimCapacity $ cimMediaType $ cimMediaDescription $ cimWriteProtectOn $ cimCleanerMedia $ cimMediaSize $ cimMaxMounts $ cimDualSided $ cimPhysicalLabels $ cimLabelStates $ cimLabelFormats)

The following content rule specifies the auxiliary classes that may be attached to cim23PhysicalMedia.

AUX (cim23MemoryWithMediaAuxClass $
 cim23PhysicalMediaInLocationAuxClass)

3.27 cim23MemoryWithMediaAuxClass

This class shows that memory is associated with a physical media and its cartridge and provides identification and also stores user-specific data.

AUXILIARY

3.28 cim23PhysicalMediaInLocationAuxClass

Within a storage library, all media should be accounted for, and be present in some storage location. In addition, one can determine if a location is empty or full based on whether this auxiliary class is attached to a cim23StorageMediaLocation object.
the StorageMediaLocation. Attribute cimAntecedentRef points to cim23StorageMediaLocation and attribute cimDependentRef points to cim23PhysicalMedia.'
SUP cim22DependencyAuxClass AUXILIARY
)

3.29 cim23PhysicalTape
This class represents data for a tape Media, including information on the length and whether it must be unloaded from BOT.

(<oid-at143> NAME 'cimTapeLength'
 DESC 'The physical length of the Tape in feet.'
 SUP cim23Float32 SINGLE-VALUE
)

(<oid-at144> NAME 'cimUnloadAnywhere'
 DESC 'Boolean set to TRUE if the Tape can be unloaded at any position on the Media. It is set to FALSE if the tape must be at a certain position for unload - such as at the beginning of tape (BOT) area, or at mid-tape point for TapeDrives with mid-tape load.'
 SYNTAX boolean SINGLE-VALUE
)

(<oid-oc77> NAME 'cim23PhysicalTape'
 DESC 'The PhysicalTape class represents additional data for a Tape Media. Information on the tape length and whether it must be unloaded from BOT are properties of this class.'
 SUP cim23PhysicalMedia
 MAY (cimTapeLength $ cimUnloadAnywhere)
)

3.30 cim23PhysicalLink
Physical links are the cabling together of physical elements, including cables and links. Rather than model the numerous physical cables within a physical package or network, this class is intended for those cases where the cables or links are either critical components or important assets.

(<oid-at145> NAME 'cimMaxLength'
 DESC 'The maximum length of the PhysicalLink in feet.'
 SUP cim23Float64 SINGLE-VALUE
)

(<oid-at146> NAME 'cimLength'
 DESC 'The current length of the PhysicalLink in feet. For some connections, especially wireless technologies, this property may not be applicable and should be left uninitialized.'
 SUP cim23Float64 SINGLE-VALUE
)

(<oid-at147> NAME 'cimWired'
 DESC 'Boolean indicating whether the PhysicalLink is an actual cable (TRUE) or a wireless connection (FALSE).'
 SYNTAX boolean SINGLE-VALUE
)

(<oid-oc78> NAME 'cim23PhysicalLink'
 DESC 'The PhysicalLink class represents the cabling of PhysicalElements together. For example, serial or Ethernet
cables, and infrared Links would be subclasses (if additional properties or associations are defined) or instances of PhysicalLink. In many cases, the numerous physical cables within a PhysicalPackage or Network will not be modeled. However, where these cables or Links are critical components, or are tagged assets of the company, these objects can be instantiated using this class or one of its descendant classes.'

SUP cim23PhysicalElement
MAY (cimMaxLength $ cimLength $ cimWired $ cimMediaType)

<oid-nf34> NAME 'cim23PhysicalLinkNameForm'
OC cim23PhysicalLink
MUST (orderedCimKeys)

<sr34> NAME 'cim23PhysicalLinkStructureRule'
FORM cim23PhysicalLinkNameForm

The following content rule specifies the auxiliary classes that may be attached to cim23PhysicalLink.

<oid-oc78> NAME 'cim23PhysicalLinkContentRule'
DESC 'The auxiliary classes that may be attached to cim23PhysicalLink'
AUX (cim23ElementsLinkedAuxClass $ cim23LinkHasConnectorAuxClass $ cim22RealizesAuxClass $ cim22ProductPhysicalElementsAuxClass $ cim22FRUPhysicalElementsAuxClass $ cim23PhysicalElementLocationAuxClass $ cim23ElementCapacityAuxClass $ cim23ParticipatesInSetAuxClass $ cim23ContainerAuxClass $ cim22ElementConfigurationAuxClass $ cim22ElementSettingAuxClass $ cim23CollectedMSEsAuxClass $ cim22ProvidesServiceToElementAuxClass $ cim22ComponentAuxClass $ cim22SystemComponentAuxClass $ cim23MemberOfCollectionAuxClass)

3.31 cim23ElementsLinkedAuxClass
This class shows which physical elements are cabled together by a physical link.

<oid-oc79> NAME 'cim23ElementsLinkedAuxClass'
DESC 'The ElementsLinked association indicates which PhysicalElements are cabled together by a PhysicalLink. Attribute cimAntecedentRef points to cim23PhysicalLink and attribute cimDependentRef points to cim23PhysicalElement.'
SUP cim22DependencyAuxClass AUXILIARY

3.32 cim23PhysicalConnector
This class represents any physical element that is used to connect to other elements. Any object that can be used to connect and transmit signals or power between two or more physical elements is a descendant of this class. For example, slots and D-shell connectors are types of physical connectors.

<oid-at148> NAME 'cimConnectorPinout'
DESC 'A free-form string describing the pin configuration and signal usage of a PhysicalConnector.'
SYNTAX DirectoryString SINGLE-VALUE

(<oid-at149> NAME 'cimConnectorType'
DESC 'An array of integers defining the type of PhysicalConnector. An array is specified to allow the description of "combinations" of Connector information. For example, one array entry could specify RS-232 (value=25), another DB-25 (value=23) and a third entry define the Connector as "Male" (value=2). Values are 0="Unknown", 1="Other", 2="Male", 3="Female", 4="Shielded", 5="Unshielded", 6="SCSI (A) High-Density (50 pins)", 7="SCSI (A) Low-Density (50 pins)", 8="SCSI (P)
SYNTAX integer

(<oid-oc80> NAME 'cim23PhysicalConnector'
DESC 'The PhysicalConnector class represents any PhysicalElement that is used to connect to other Elements. Any object that can be used to connect and transmit signals or power between two or more PhysicalElements is a descendant (or member) of this class. For example, Slots and D-shell connectors are types of PhysicalConnectors.'
SUP cim23PhysicalElement
MAY (cimConnectorPinout $ cimConnectorType $

SYNTAX integer

)
The following content rule specifies the auxiliary classes that may be attached to cim23PhysicalConnector.

```
3.33 cim23ConnectedToAuxClass
This class shows that two or more physical connectors are connected.
```

```
3.34 cim23Slot
A slot represents connectors into which packages are inserted. For example, a physical package that is a disk drive may be inserted into a SCA slot. As another example, a card may be inserted into a 16-, 32-, or 64-bit expansion slot on a hosting board.
```
SUP cim23Float32 SINGLE-VALUE
)

(<oid-at152> NAME 'cimLengthAllowed'
DESC 'Maximum length of an adapter Card that can be inserted into
the Slot, in inches.'
SUP cim23Float32 SINGLE-VALUE
)

(<oid-at153> NAME 'cimMaxDataWidth'
DESC 'Maximum bus width of adapter Cards that can be inserted
into this Slot, in bits. IF the value is "unknown", enter
0. IF the value is other than 8, 16, 32, 64 or 128, enter
1. Values are 0, 1, 8, 16, 32, 64, 128.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at154> NAME 'cimVccMixedVoltageSupport'
DESC 'An array of enumerated integers indicating the Vcc voltage
supported by this Slot. Values are 0="Unknown", 1="Other",
2="3.3V", 3="5V".'
SYNTAX integer
)

(<oid-at155> NAME 'cimVppMixedVoltageSupport'
DESC 'An array of enumerated integers indicating the Vpp voltage
supported by this Slot. Values are 0="Unknown", 1="Other",
2="3.3V", 3="5V", 4="12V".'
SYNTAX integer
)

(<oid-at156> NAME 'cimThermalRating'
DESC 'Maximum thermal dissipation of the Slot in milliwatts.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at157> NAME 'cimSpecialPurpose'
DESC 'Boolean indicating that this Slot is physically unique and
may hold special types of hardware, e.g. a graphics
processor slot. If set to TRUE, then the property,
SpecialPurposeDescription (a string), should specify the
nature of the uniqueness or purpose of the Slot.'
SYNTAX boolean SINGLE-VALUE
)

(<oid-at158> NAME 'cimPurposeDescription'
DESC 'A free-form string describing that this Slot is physically
unique and may hold special types of hardware. This
property only has meaning when the corresponding boolean
property, SpecialPurpose, is set to TRUE.'
SYNTAX DirectoryString SINGLE-VALUE
)

(<oid-at159> NAME 'cimNumber'
DESC 'The Number property indicates the physical slot number,
which can be used as an index into a system slot table,
whether or not that slot is physically occupied.'
SYNTAX integer SINGLE-VALUE
)

(<oid-at160> NAME 'cimPowered'
DESC 'A boolean indicating whether the Slot is currently powered
(TRUE) or not (FALSE).'
SYNTAX boolean SINGLE-VALUE
)
NAME 'cimOpenSwitch'
DESC 'A boolean indicating whether the switch state of the Slot is currently open (TRUE) or closed (FALSE). This switch state determines whether the contents of the Slot can be hot-plugged.'
SYNTAX boolean SINGLE-VALUE

NAME 'cim23Slot'
DESC 'The Slot class represents Connectors into which Packages are inserted. For example, a PhysicalPackage that is a DiskDrive may be inserted into an SCA "Slot". As another example, a Card (subclass of PhysicalPackage) may be inserted into a 16-, 32-, or 64-bit expansion "Slot" on a HostingBoard. PCI or PCMCIA Type III Slots are examples of the latter.'
SUP cim23PhysicalConnector
MAY (cimSupportsHotPlug $ cimHeightAllowed $ cimLengthAllowed $ cimMaxDataWidth $ cimThermalRating $ cimVccMixedVoltageSupport $ cimVppMixedVoltageSupport $ cimSpecialPurpose $ cimPurposeDescription $ cimNumber $ cimPowered $ cimOpenSwitch)

The following content rule specifies the auxiliary classes that may be attached to cim23Slot.

NAME 'cim23SlotContentRule'
DESC 'The auxiliary classes that may be attached to cim23Slot'
AUX (cim23SlotInSlotAuxClass $ cim23AdjacentSlotsAuxClass $ cim23PackageInSlotAuxClass $ cim23CardInSlotAuxClass)

3.35 cim23SlotInSlotAuxClass

This class represents the ability of an adapter to extend a slot structure, which enables the slot to support cards that would otherwise be incompatible by interfacing to the slot provided by the adapter. This has many practical uses.

NAME 'cim23SlotInSlotAuxClass'
DESC 'Slots are special types of Connectors into which adapter Cards are typically inserted. The SlotInSlot relationship represents the ability of a special adapter to extend the existing Slot structure to enable otherwise incompatible Cards to be plugged into a Frame or HostingBoard. The adapter effectively creates a new Slot and can be thought of (conceptually) as a Slot in a Slot. This enables Cards that would otherwise be physically and/or electrically incompatible with the existing Slots to be supported, by interfacing to the Slot provided by the adapter. This has many practical uses. For example, networking boards are very expensive. As new hardware becomes available, Chassis and even Card configurations change. To protect the investment of their customers, networking vendors will manufacture special adapters that enable old Cards to fit into new Chassis or HostingBoards and/or new Cards to fit into old. This is done using a special adapter that fits over one or more existing Slots and presents a new Slot into which the Card can plug. Both attributes point to cim23Slot objects.'
SUP cim23ConnectedToAuxClass AUXILIARY

3.36 cim23AdjacentSlotsAuxClass

This class describes the layout of slots on a hosting board or adapter card and includes the distance between the slots and whether they are 'shared'.

(<oid-at162> NAME 'cimSlotARef' DESC 'One of the adjacent Slots.' SYNTAX DN)

(<oid-at163> NAME 'cimSlotBRef' DESC 'The "other" adjacent Slot.' SYNTAX DN)

(<oid-at164> NAME 'cimDistanceBetweenSlots' DESC 'The distance, in inches, between adjacent Slots.' SUP cim23Float32 SINGLE-VALUE)

(<oid-at165> NAME 'cimSharedSlots' DESC 'Slots can be located in close proximity on Hosting Boards or other Cards, such that if one of these Slots is populated by an adapter Card, the other Slot must be left empty. This relationship is indicated by the SharedSlots boolean set to TRUE.' SYNTAX boolean SINGLE-VALUE)

(<oid-oc84> NAME 'cim23AdjacentSlotsAuxClass' DESC 'AdjacentSlots describes the layout of Slots on a HostingBoard or adapter Card. Information like the distance between the Slots and whether they are "shared" (if one is populated, then the other Slot can not be used), is conveyed as properties of the association. Both reference attributes point to cim23Slot objects.' SUP top AUXILIARY MAY (cimSlotARef $ cimSlotBRef $ cimDistanceBetweenSlots $ cimSharedSlots))

3.37 cim23PackageInConnectorAuxClass

This class represents the relationship between cards that are into system connectors for power and/or to transfer data. For example, it would be used to describe the insertion of a daughter card onto another card.

(<oid-oc85> NAME 'cim23PackageInConnectorAuxClass' DESC 'Adapter cards and other "packaging" are plugged into System Connectors for power and/or to transfer data. This relationship is defined by PackageInConnector. For example, it would be used to describe the insertion of a daughtercard onto another Card. Various subclasses of PackageInConnector are also defined. PackageInSlot and its subclass, CardInSlot, are two examples of subclasses. Attribute cimAntecedentRef points to cim23PhysicalConnector and attribute cimDependentRef points to cim23PhysicalPackage.' SUP cim22DependencyAuxClass AUXILIARY)
3.38 cim23PackageInSlotAuxClass
Complex networking devices often are based on chassis, which allow for enhancement and/or augmentation of their base functionality adding new chassis devices, similar to adding cards. This auxiliary class models this capability.

```
{ <oid-oc86> NAME 'cim23PackageInSlotAuxClass'
  DESC 'Complex networking devices often are Chassis-based. These Chassis allow for enhancement and/or augmentation of their base functionality by accepting additional Chassis devices, similar to accepting functionality in the form of adding Cards. This association models this capability. Attribute cimAntecedentRef points to cim23Slot and attribute cimDependentRef points to cim23PhysicalPackage.'
  SUP cim23PackageInConnectorAuxClass AUXILIARY }
```

3.39 cim23CardInSlotAuxClass
Slots are special types of connectors into which cards are inserted. This relationship of a Card in a Slot is made explicit using this class.

```
{ <oid-oc87> NAME 'cim23CardInSlotAuxClass'
  DESC 'Slots are special types of Connectors into which adapter Cards are inserted. This relationship of a Card in a Slot is made explicit using the CardInSlot association. Attribute cimAntecedentRef points to cim23Slot and attribute cimDependentRef points to cim23Card.'
  SUP cim23PackageInSlotAuxClass AUXILIARY }
```

3.40 cim23LinkHasConnectorAuxClass
Cables and links use physical connectors to connect physical elements, which this class explicitly defines.

```
{ <oid-oc88> NAME 'cim23LinkHasConnectorAuxClass'
  DESC 'Cables and Links utilize PhysicalConnectors to actually "connect" PhysicalElements. This association explicitly defines this relationship of Connectors for PhysicalLinks. Attribute cimGroupComponentRef points to cim23PhysicalLink and attribute cimPartComponentRef points to cim23PhysicalConnector.'
  SUP cim22ComponentAuxClass AUXILIARY }
```

3.41 cim23ConnectorOnPackageAuxClass
Physical packages contain connectors and other physical elements, which this class makes explicit.

```
{ <oid-oc89> NAME 'cim23ConnectorOnPackageAuxClass'
  DESC 'PhysicalPackages contain Connectors as well as other PhysicalElements. The ConnectorOnPackage association makes explicit the containment relationship between Connectors and Packages. Attribute cimGroupComponentRef points to cim23PhysicalPackage and attribute cimPartComponentRef points to cim23PhysicalConnector.'
  SUP cim23ContainerAuxClass AUXILIARY
  MAY ( cimLocationWithinContainer ) }
```
4. References

Request For Comments (RFC) and Internet Draft documents are available from numerous mirror sites.

A. Structure Rule definitions

To aid the reader in mapping what structure rules have been defined and referenced, the following table lists sections and documents where they have been defined.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Structural Class</th>
<th>RDN Attribute</th>
<th>Superior Rules</th>
<th>Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td><sr10></td>
<td>cimServicePhilosophyInstance</td>
<td>arrayIndex</td>
<td><sr24></td>
<td>2.2.1</td>
</tr>
<tr>
<td><sr11></td>
<td>cimChassisTypeInstance</td>
<td>arrayIndex</td>
<td><sr26></td>
<td>2.2.2</td>
</tr>
<tr>
<td><sr12></td>
<td>cimMediaTypesInstance</td>
<td>arrayIndex</td>
<td><sr28></td>
<td>2.2.3</td>
</tr>
<tr>
<td><sr13></td>
<td>cimPhysicalLabelsInstance</td>
<td>arrayIndex</td>
<td><sr32></td>
<td>2.2.4</td>
</tr>
<tr>
<td><sr14></td>
<td>cim23Location</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.1</td>
</tr>
<tr>
<td><sr16></td>
<td>cim23MemoryCapacity</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.5</td>
</tr>
<tr>
<td><sr18></td>
<td>cim23ConfigurationCapacity</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.6</td>
</tr>
<tr>
<td><sr20></td>
<td>cim23ReplacementSet</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.7</td>
</tr>
<tr>
<td><sr22></td>
<td>cim23PhysicalPackage</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.9</td>
</tr>
<tr>
<td><sr24></td>
<td>cim23PhysicalFrame</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.11</td>
</tr>
<tr>
<td><sr26></td>
<td>cim23Chassis</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.13</td>
</tr>
<tr>
<td><sr28></td>
<td>cim23StorageMediaLocation</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.20</td>
</tr>
<tr>
<td><sr30></td>
<td>cim23PhysicalComponent</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.21</td>
</tr>
<tr>
<td><sr32></td>
<td>cim23PhysicalMedia</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.26</td>
</tr>
<tr>
<td><sr34></td>
<td>cim23PhysicalLink</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.30</td>
</tr>
<tr>
<td><sr36></td>
<td>cim23PhysicalConnector</td>
<td>orderedCimKeys</td>
<td>*</td>
<td>3.32</td>
</tr>
</tbody>
</table>
This rule is corresponds to the mapping of a top level object in CIM. This mapping document does not provide suggestions regarding DIT placement of mapped top-level CIM objects.

B. OID Assignments

The following three tables provides the summary of OID assignments made in this document

B.1 Object Classes

<table>
<thead>
<tr>
<th>OID</th>
<th>Object Class</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cimServicePhilosophyInstance</td>
<td>2.2.1</td>
</tr>
<tr>
<td></td>
<td>cimChassisTypeInstance</td>
<td>2.2.2</td>
</tr>
<tr>
<td></td>
<td>cimMediaTypesSupportedInstance</td>
<td>2.2.3</td>
</tr>
<tr>
<td></td>
<td>cimPhysicalLabelsInstance</td>
<td>2.2.4</td>
</tr>
<tr>
<td></td>
<td>cim23Location</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>cim23PhysicalElementLocationAuxClass</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>cim23PhysicalCapacity</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>cim23ElementCapacityAuxClass</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>cim23MemoryCapacity</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>cim23ConfigurationCapacity</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>cim23ReplacementSet</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>cim23ParticipatesInSetAuxClass</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>cim23PhysicalPackage</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>cim23ContainerAuxClass</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>cim23PhysicalFrame</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>cim23Rack</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>cim23Chassis</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>cim23ChassisInRackAuxClass</td>
<td>3.14</td>
</tr>
<tr>
<td></td>
<td>cim23PackageInChassisAuxClass</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>cim23DockedAuxClass</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>cim23Card</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>cim23SystemBusCard</td>
<td>3.18</td>
</tr>
<tr>
<td></td>
<td>cim23CardOnCardAuxClass</td>
<td>3.19</td>
</tr>
<tr>
<td></td>
<td>cim23StorageMediaLocation</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>cim23PhysicalComponent</td>
<td>3.21</td>
</tr>
<tr>
<td></td>
<td>cim23PackagedComponentAuxClass</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>cim23Chip</td>
<td>3.23</td>
</tr>
<tr>
<td></td>
<td>cim23PhysicalMemory</td>
<td>3.24</td>
</tr>
<tr>
<td></td>
<td>cim23MemoryOnCardAuxClass</td>
<td>3.25</td>
</tr>
<tr>
<td>OID</td>
<td>Attribute</td>
<td>Section</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>cimServicePhilosophy</td>
<td>2.2.1</td>
<td></td>
</tr>
<tr>
<td>cimServiceDescriptions</td>
<td>2.2.1</td>
<td></td>
</tr>
<tr>
<td>cimChassisTypes</td>
<td>2.2.2</td>
<td></td>
</tr>
<tr>
<td>cimTypeDescriptions</td>
<td>2.2.2</td>
<td></td>
</tr>
<tr>
<td>cimMediaTypesSupported</td>
<td>2.2.3</td>
<td></td>
</tr>
<tr>
<td>cimMediaSizesSupported</td>
<td>2.2.3</td>
<td></td>
</tr>
<tr>
<td>cimPhysicalLabels</td>
<td>2.2.4</td>
<td></td>
</tr>
<tr>
<td>cimLabelStates</td>
<td>2.2.4</td>
<td></td>
</tr>
<tr>
<td>cimLabelFormats</td>
<td>2.2.4</td>
<td></td>
</tr>
<tr>
<td>cimPhysicalPosition</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>cimAddress</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>cimPhysicalLocationRef</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>cimCapacityRef</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>cimMemoryType</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>cimMinimumMemoryCapacity</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>cimMaximumMemoryCapacity</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>cimObjectType</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>cimOtherTypeDescription</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>cimMinimumCapacity</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>cimMaximumCapacity</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>cimIncrement</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>cimSetRef</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>cimRemovable</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>cimReplaceable</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>cimHotSwappable</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>cimHeight</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>cimDepth</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>cimWidth</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>cimWeight</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>cimLocationWithinContainer</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>cimCableManagementStrategy</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>cimLockPresent</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>cimAudibleAlarm</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>cimVisibleAlarm</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>cimSecurityBreach</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>cimBreachDescription</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>cimIsLocked</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>cimTypeOfRack</td>
<td>3.12</td>
<td></td>
</tr>
<tr>
<td>cimNumberOfPowerCords</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>cimCurrentRequiredOrProduced</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>cimHeatGeneration</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>cimBottomU</td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td>cimHostingBoard</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>cimSlotLayout</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>cimRequiresDaughterBoard</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>cimSpecialRequirements</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>cimRequirementsDescription</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>cimOperatingVoltages</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>cimBusType</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td>cimBusWidth</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td>cimMountOrSlotDescription</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>cimLocationType</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>cimLocationCoordinates</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>cimMediaCapacity</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>cimFormFactor</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>cimTotalWidth</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>cimDataWidth</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>OID</td>
<td>Nameform</td>
<td>Section</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>cimSpeed</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>cimCapacity</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>cimBankLabel</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>cimPositionInRow</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>cimInterleavePosition</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>cimMediaType</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>cimMediaDescription</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>cimWriteProtectOn</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>cimCleanerMedia</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>cimMediaSize</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>cimMaxMounts</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>cimDualSided</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>cimTapeLength</td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td>cimUnloadAnywhere</td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td>cimMaxLength</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>cimLength</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>cimWired</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>cimConnectorPinout</td>
<td>3.32</td>
<td></td>
</tr>
<tr>
<td>cimConnectorType</td>
<td>3.32</td>
<td></td>
</tr>
<tr>
<td>cimSupportsHotPlug</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimHeightAllowed</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimLengthAllowed</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimMaxDataWidth</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimVccMixedVoltageSupport</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimVppMixedVoltageSupport</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimThermalRating</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimSpecialPurpose</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimPurposeDescription</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimNumber</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimPowered</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimOpenSwitch</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>cimSlotARef</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>cimSlotBRef</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>cimDistanceBetweenSlots</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>cimSharedSlots</td>
<td>3.36</td>
<td></td>
</tr>
</tbody>
</table>

B.3 Nameforms
<table>
<thead>
<tr>
<th>Class Name</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>cimServicePhilosophyInstanceNameForm</td>
<td>2.2.1</td>
</tr>
<tr>
<td>cimChassisTypeInstanceNameForm</td>
<td>2.2.2</td>
</tr>
<tr>
<td>cimMediaTypesSupportedInstanceNameForm</td>
<td>2.2.3</td>
</tr>
<tr>
<td>cimPhysicalLabelsInstanceNameForm</td>
<td>2.2.4</td>
</tr>
<tr>
<td>cim23LocationNameForm</td>
<td>3.1</td>
</tr>
<tr>
<td>cim23MemoryCapacityNameForm</td>
<td>3.5</td>
</tr>
<tr>
<td>cim23ConfigurationCapacityNameForm</td>
<td>3.6</td>
</tr>
<tr>
<td>cim23ReplacementSetNameForm</td>
<td>3.7</td>
</tr>
<tr>
<td>cim23PhysicalPackageNameForm</td>
<td>3.9</td>
</tr>
<tr>
<td>cim23PhysicalFrameNameForm</td>
<td>3.11</td>
</tr>
<tr>
<td>cim23ChassisNameForm</td>
<td>3.13</td>
</tr>
<tr>
<td>cim23StorageMediaLocationNameForm</td>
<td>3.20</td>
</tr>
<tr>
<td>cim23PhysicalComponentNameForm</td>
<td>3.21</td>
</tr>
<tr>
<td>cim23PhysicalMediaNameForm</td>
<td>3.26</td>
</tr>
<tr>
<td>cim23PhysicalLinkNameForm</td>
<td>3.30</td>
</tr>
<tr>
<td>cim23PhysicalConnectorNameForm</td>
<td>3.32</td>
</tr>
</tbody>
</table>