

Specification DSP0100
Copyright © "2000" Distributed Management Task Force, Inc.

(DMTF). All rights reserved. DMTF is a not-for-profit association of industry members dedicated
to promoting enterprise and systems management and interoperability. DMTF specifications
and documents may be reproduced for uses consistent with this purpose by members and non-
members, provided that correct attribution is given. As DMTF specifications may be revised
from time to time, the particular version and release cited should always be noted."

Guidelines for CIM-to-LDAP Directory
Mappings

May 8th, 2000

Abstract
This paper discusses issues involved with mapping CIM schema to directories that support the
LDAP protocol and the X.500 model, and provides guidelines for resolving the issues. Several
directory schema entities that are useful in implementing mappings are defined. This is a living
document that embodies the collective experience of the DMTF-LDAP working group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and
systems management and interoperability. DMTF specifications and documents may be
reproduced for uses consistent with this purpose by members and non-members, provided that
correct attribution is given. As DMTF specifications may be revised from time to time, the
particular version and release cited should always be noted.
Copyright © "1999" Distributed Management Task Force, Inc. (DMTF) and Customer Support
Consortium (CSC). All rights reserved.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

i

Change History

Version Date Description
0.7 4/26/2000 Final edits for submission for member review

0.6 4/4//2000 Incorporated comments form user/security working group,
including adding a section on use of existing LDAP classes

0.5 3/31/2000 Incorporate more working group comments

0.4 3/28/2000 Incorporate working group comments

0.3 3/6/2000 Initial review

Author
Doug Wood, Tivoli Systems Inc.

Acknowledgment
This work is a product of the DMTF LDAP Mapping Working Group and has benefited
from many comments and discussions during this groups meetings.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

ii

Table of Contents
1 INTRODUCTION .. 1

2 OBJECT IDENTIFICATION.. 1
2.1 CIM Namespace..2
2.2 RDN Attributes...2
2.3 RDN Attribute for Weak Associations ...3

3 ASSOCIATION MAPPING ... 5
3.1 Mapping Strategies...6

3.1.1 Entry References..7
3.1.2 DIT Containment ...8
3.1.3 De-normalization ...8
3.1.4 Summary..11

3.2 Weak Associations ..11
3.3 Use of Auxiliary Classes ...11
3.4 Catalog of Mechanisms ..12
3.5 Recommended association mapping mechanism ...13

4 DATA TYPE MAPPING.. 15
4.1 Character set...15
4.2 DateTime Mapping...16

4.2.1 Mapping Moments...16
4.3 Real Mapping..17

4.3.1 String format..18
4.3.2 Examples ...19
4.3.3 32-bit vs. 64-bit values...19
4.3.4 Directory mapping ...19

5 OTHER MAPPING ISSUES ... 20
5.1 Indexed Arrays ...20
5.2 DIT Structure ...21
5.3 Versioning ...21
5.4 Naming ..22
5.5 OID Structure ...23

5.5.1 Guidelines..23
5.5.2 Example ...24
5.5.3 DMTF OID Assignment ..24

5.6 Reusing existing directory schema definitions ...24
5.6.1 Reusing Classes ...25
5.6.2 Reusing Attributes ...26

5.7 Must vs. May Attributes ..26

6 APPENDIX 1 – SCHEMA ELEMENTS... 28
6.1 Classes ...28
6.1.1 cimAssociationInstance...28

6.2 Attributes ..28
6.2.1 orderedCimKeys ..28
6.2.2 orderedCimModelPath ..28
6.2.3 cimAssociationName ..29
6.2.4 cimAssociationTypeName...29
6.2.5 arrayIndex ...29
6.2.6 cimFloat32 ...29

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

iii

6.2.7 cimFloat64 ...30
6.3 Name Forms..30
6.3.1 cimAssociationInstanceNameForm..30

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

1

1 Introduction
The Common Information Model (CIM) provides a mechanism for modeling various
types of information. The model is independent of any implementation or repository.
For a model or schema to be useful, it must be mapped into some implementation. This
paper discusses issues involved with mapping, and provides guidelines to aid in
mapping CIM schema to directories that support the LDAP protocol and the X.500
model.
There are several incongruities between the CIM meta model and the X.500 model. For
a successful mapping to be implemented, these incongruities must be resolved. The
most significant differences are:

● Object identification,

● Associations, and

● Data types.

Object Identification
There are differences in both the composition and scope of uniqueness of the name
domains between CIM and the X.500 model. The CIM name space must be projected
onto the directory name space in a way that preserves unique identification of every CIM
instance.

Associations
The Common Information Model supports a formal relationship model in which all
relationships between classes are expressed as association classes. The X.500 model
provides a hierarchical structuring of data elements, but no other means of expressing
relationships is explicitly supported. One or more mechanisms must be provided to map
CIM associations to directories.

Data Types
Not all data types defined by CIM can be directly mapped to syntaxes supported by the
LDAP protocol.

2 Object Identification
Instances of CIM classes are uniquely identified by their key properties, their class
name, and a namespace identifier. The set of key properties must be unique for all
instances of the class and any sub classes. Directory entries are uniquely identified by
their distinguished name, which also defines their location in the directory tree. Each
component of the distinguished name must be unique for all entries of any type that
share the same parent. Directories use one or more attributes of each entry to form its
Relative Distinguished Named or RDN.
There must be an algorithmic means of mapping the identity of any CIM object uniquely
into a directory, and of deriving the CIM identification of any previously mapped directory
entry.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

2

2.1 CIM Namespace
The namespace identifies the type and instance of a system hosting a CIM
implementation. All CIM entities hosted by the same implementation share the same
namespace. This paper assumes that a single directory instance hosts no more than
one CIM implementation. Therefore, the namespace is the same for all CIM instances
stored in the directory and is not useful for identification within the context of the
mapping.
Future versions of this paper may address a directory instance hosting more than one
CIM implementation.

2.2 RDN Attributes
There are several issues that arise when selecting the RDN for mapped entries. They
include:

1. CIM classes may have multi-valued keys, but many directory servers have
problems with multi-attribute RDNs.

2. The scoping rules for CIM keys and directory RDNs are different. CIM keys must
be unique for all instances of the class in which a key property is declared.
RDNs must be unique for all entries with a common parent. It is possible for
instances of different classes to have the same key value, to be stored under the
same parent.

To resolve both of these issues and to insure consistent naming of mapped CIM
instances, the following mechanism for creating RDNs is recommended.
The value of the RDN is one of two variants of the CIM Model Path. The CIM
Specification defines a Model Path as

The object name constructed as a scoping path through the CIM schema is referred
to as a Model Path. A model path is a combination of the key properties values
qualified by the class name. It is solely described by CIM elements and is absolutely
implementation-independent. It is used to describe the path to a particular object or
to identify a particular object within a namespace. The name of any object is a
concatenation of named key property values, including all key values of its scoping
objects. When the class is weak with respect to another class, the model path
includes all key properties from the scoping objects1.

The model path is defined to be unique across all instances of all CIM classes within a
namespace; therefore, it provides the basis for assigning RDN values. The model path
definition is not complete for our purposes in that it does not specify the order of values
for classes with multi-valued keys. To resolve the ambiguity, and to avoid problems with
multi-attribute RDNs, two new attributes, orderedCimKeys and orderedCimModelPath,
are defined for mapping purposes. They are defined as:

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

3

orderedCimKeys

(1.3.6.1.4.1.412.100.1.2.1

NAME ‘orderedCimKeys'

DESC ‘The model path for the instance (without
propagated keys). May be used as an RDN'

SYNTAX DirectoryString

SINGLE-VALUE

EQUALITY octetStringMatch

)

orderedCimModelPath

(

1.3.6.1.4.1.412.100.1.2.2

NAME 'orderedCimModelPath'

DESC 'The model path for the instance (with propagated
keys). May be used as an RDN'

SYNTAX DirectoryString

SINGLE-VALUE

EQUALITY octetStringMatch

)

The value of these attributes are constructed by ordering the CIM keys [formatted as
"<className>.<key>=<value>[,<key>=<value>]*"] of the object in the US-ASCII
collation order of the property names. Propagated keys are not included in
orderedCimKeys, but are included in orderedCimModelPath. Consider, as an example,
the case of an instance of the class CIM_Rack. It’s Model Path identification might be:

CIM_Rack.CreationClassName=CIM_Rack,Tag=AcmeRack4279B

where the ordering of the keys is not significant. The corresponding value of
orderedCimModelPath and orderedCimKeys, which happen to be the same for CIM top-
level classes, is:

CIM_Rack.CreationClassName=CIM_Rack,Tag=AcmeRack4279B

where the ordering of the keys is significant.
The attribute orderedCimKeys is used as the RDN for all CIM classes mapped to a
directory, with the possible exception of the weak side of weak associations, where, as
described below, in certain circumstances, orderedCimModelPath is used.

2.3 RDN Attribute for Weak Associations
When weak associations are mapped through DIT containment, the RDN can benefit
from special treatment to reduce its complexity. Because the key propagation method of
weak associations is similar to the way a DN is assembled, the RDN of the weak
member of the association only needs to contain the key properties that it adds.
An example illustrates this. Consider the following set of CIM classes:

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

4

Class A

Property p1 [key]

Class B

Property p2 [key]

Class C

Property p3 [key]

X Y

Class X

Reference A
Reference B (weak)

Class Y

Reference B
Reference C (weak)

Now consider instances of these classes with the associations mapped by DIT
containment.

Using orderedCimModelPath as defined above, which includes propagated keys, the
RDN for the three entries would be:

orderedCimModelPath=A.p1=prop 1

orderedCimModelPath=B.p1=prop 1, p2=prop 2

orderedCimModelPath=C.p1=prop 1, p2=prop 2, p3=prop 3

The similarity between the model path for weak associations and a DN is obvious.
Therefore, for entries on the weak side of a weak association, the RDN needs only to
contain the properties added to the key by the entry, and can be expressed as a value of
orderedCimKeys. The remaining properties are available in the DN. Using this
approach, the three RDNs are:

orderedCimKeys=A.p1=prop 1

orderedCimKeys=B.p2=prop 2

orderedCimKeys=C.p3=prop 3

Moreover, abbreviating for the attribute name, the DN for the entry of class C is:
ock=C.p3=prop 3, ock=B.p2=prop 2, ock=A.p1=prop 1

This is the usage defined for orderedCimKeys; that is, propagated keys are not included
in its value. If this behavior is not desired, the alternate naming attribute

p1=’prop 1’

p2=’prop 2’

p3=’prop 3’

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

5

orderedCimModelPath may be used. It is defined exactly the same as orderedCimKeys
except that all propagated keys must be present.
If weak associations are not mapped by DIT containment, then the propagated keys are
not easily inferred from the directory structure, and may be required to insure the
uniqueness of RDNs. In this case, orderedCimModelPath should be used for the RDN.
For classes that do not participate in weak associations, and therefore do not have
propagated keys, orderedCimKeys and orderedCimModelPath are equivalent.
Therefore, if orderedCimModelPath is required by weak associations, it may be used for
all RDNs. Note, however, that not using DIT containment to map weak associations
may cause interoperability issues.

3 Association Mapping
The Common Information Model uses association classes to express relationships
between instances of classes in the model. The design of associations resembles the
OMG CORBA relationship service. That is, an association allows two previously
unrelated classes to be associated without modifying either of them. This is done by
creating a new association class, which has references to each of the classes to be
associated. Association classes are the only classes that may contain references. A
reference is simply a pointer to an object instance. Its value is the key (model path) of
the instance to which it points. References may not be arrays. This implies that there is
an instance of an association for every related object pair (or set if the cardinality of the
association is greater than two). For example if instance A is related to instances X, Y,
and Z by the same association, there must be three instances of the association AX, AY,
and AZ.
When CIM associations are mapped to a backing store, it is desirable that they exhibit
the following characteristics:

● They should be stable.

● They should allow efficient traversal, using mechanisms native to the backing
store.

● They should not adversely affect the scalability or performance of the backing
store.

● The mapping should not alter the semantics of the information model, or
introduce additional semantics.

Stability
Stability implies that the values of association references are always valid. This is
always an issue with object deletes. Ideally, any associations referencing the deleted
object are also deleted. Depending on how the associations are stored, it may be
acceptable to simply null out the pointer. Where it is implied by the semantics of the
association, it is desirable for the backing store to perform cascade deletes.
For some backing stores, such as directories that have structured storage, move or
rename operations can also cause problems. When an association pointer uses the
storage location (DN) to reference the associated object, then it must be updated if the
object is renamed or moved. Many directories do not guarantee referential integrity of
DN syntax attributes by making the update automatically.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

6

Efficient Traversal
Because most implementations do not bring the entire information model into memory,
associations are generally traversed in the context of the backing store, using
mechanisms provided by it. In the case of directories where search efficiency is tied to
directory structure, the mechanism used to store associations has a large impact on
traversal efficiency.

Scalability
The mechanism used to store associations can affect scalability and performance in
several ways. These include:

● Number of entries
Because CIM models each association instance as a unique object instance,
associations have the potential to increase by several times the total number of
entries that must be stored. For an entry-centric store such as a directory, this
effectively reduces the size model that can be stored by the same factor.

● Search performance
The mechanism used to store the object reference in the association should play
into the strengths of the backing store search engine. In the case of directories,
search efficiency is dependent upon directory structure and object location.

● Number of lookups
If following an association requires several individual searches, even if each
individual request is very efficient as viewed from the backing store, the network
overhead of making each request could result in poor client performance.

Semantics
Semantics is not much of a problem for a flat data store such as an RDBMS, but for a
structured data store such as a directory, it must be considered. In a directory, the
location an entry is stored at has meaning. It implies a relationship with entries that are
stored above and below it. Ideally, the implied relationship will reinforce the semantics
of the information model, not contradict it.

3.1 Mapping Strategies
There are three general approaches that can be utilized to map CIM associations to a
directory. They are:

● Storing an entry reference,

● Using directory tree structure to express associations, and

● De-normalizing the information model.
Within that framework, there are a number of variations and hybrids. Each of the three
main approaches has advantages and disadvantages, which vary based on:

● The semantics of the association being mapped,

● The target directory, and

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

7

● The performance characteristics of the target application.
Each approach is evaluated against the criteria discussed above.

3.1.1 Entry References
The pointer in the association class can be stored as a reference to the entry that is
referenced by the association. There are two ways that the reference may be
expressed:

● As the DN of the entry, or

● As the value of a globally unique required value of the entry.
There are several ways that the references may be used. All uses share common
characteristics of the reference mechanism.

DN Pointers
Advantages

● It can model any association, and introduces no additional semantics.

● For many servers, retrieval of an entry by its DN is a very vast operation.

● It is simple from both a conceptual and implementation view.

Disadvantages

● Because many directories do not provide support for maintaining the integrity of
DN pointers, they are not stable. Deletion of entries leaves dangling references.
Moving or renaming entries creates broken references.

Unique Key Reference
In this approach, the reference properties are attributes that store the value of some
unique property of the referenced class. There are three possibilities for the unique
property.

● The CIM key,

● The directory RDN. and

● An additional unique key value provided for all directory entries.
There are problems with guaranteeing the universal uniqueness of either the CIM key or
the RDN, so these values may not be suitable. (See the discussion of RDN construction
in section 2.2) There are several algorithms for generating unique key values or
Universally Unique IDs (UUIDs). It would be straightforward to add a Must attribute to all
directory entries which map to CIM classes. This might be done by adding it to the
mapping of ManagedElement that all CIM classes are derived from. Some directories
include a UUID in their definition of top or as an operational attribute. This approach
may be particularly appealing for these directories.
UUIDs provide stability for move and rename operations because a search for the UUID
value will always return the correct entry no mater where it is moved to, or what it is
named.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

8

If orderedCimModelPath is used for the RDN, it may be used as the unique identifier
because CIM guarantees that the model path is unique for any object instance.

Advantages

● It can model any association, and introduces no additional semantics.

● It may be more stable than DN pointers because moving and renaming entries is.
a stable operation

Disadvantages

● Deletes can result in dangling entries.

● Retrieval may be slow.

● Some may find the unique key an intrusive requirement.

3.1.2 DIT Containment
This approach recognizes that the parent-child relationship of the directory tree is a
relationship explicitly managed by directories. Associations are expressed by placing
the related classes in a parent-child relationship in the directory tree.

Advantages

● Because the relationship is explicitly supported by directories, it is completely
stable. It supports cascade deletes.

● Traversal of the association is fast and easy.

Disadvantages

● Many-to-many relationships can not be modeled.

● Only one association per instance may be expressed through the parent-child
relationship.

● The semantics of containment expressed by the parent-child relationship is not
appropriate for all associations.

● The semantics of the directory tree are already overloaded by directory servers.
It is used for administration of access control, and for partitioning. Forcing the
structure to express associations could interfere with its other uses.
For example, There might be an association between a computer system and a
location expressing the physical location of the system. If that association is
mapped by DIT containment, then systems are stored beneath the location at
which they reside. If a particular implementation restricts access to systems
based on owning organization, then the most efficient DIT structure for
administrative purposes is to place systems beneath organizations. However,
this structure is prohibited by the requirements of the association mapping.

3.1.3 De-normalization
De-normalization involves grouping data elements that are normally independent into a
single instance. In cases where a data element is referenced by more than one entity,
the data element may need to be duplicated when the references are de-normalized.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

9

General approaches
The CIM schemas are highly normalized, whereas directory schemas are typically not at
all normalized. To make a CIM schema more compatible with a directory, it can be de-
normalized. There are two possible levels of de-normalization:

● Association classes can be eliminated

● The association class and all but one of the associated classes can be folded
into the remaining class

To implement the de-normalization, the attributes of the associated classes must be
combined to form a new de-normalized class. This works well for one-to-one
relationships. Several specific mechanisms are examined following this discussion.
One-to-many relationships are more difficult because directories provide no formal
means of defining structured or aggregate attributes, and multi-valued attributes are not
ordered. It is not practical to de-normalize many-to-many associations.
To illustrate one-to-many, consider classes A and B, which have a one-to-many
association from A to B defined as C. Class A has the single attribute Color. Class B
has the attributes Size and Shape. For simplicity, class C has no attributes other then
the references.

When association C is de-normalized, the resulting class D has the attributes Color,
Size, and Shape. The instance resulting from the above example is

Color = Blue
Size = Large
 = Small
Shape = Circle
 = Square

Because multi-valued attributes are not ordered it could just as easily be:
Color = Blue
Size = Small
 = Large
Shape = Circle
 = Square

It is not possible to determine the original grouping of attribute values.

Combining attributes
For a one-to-one association, the attributes of the two classes may be combined into a
new class. There are three approaches that may be used to accomplish this. They are:

Color = Blue

Size = Large
Shape = Circle

Size = Small
Shape = Square

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

10

● A single new class may be declared that has the attributes of both classes.

● The two classes may be layered into a single class using inherence. This
provides documentation of the original source of each attribute, and it places the
name of both classes into the value of the objectClass attribute. (See section
5.4.)

● An auxiliary class may be declared with the attributes of one of the associated
classes and applied to entries that participate in the association.

Advantages

● Its stable – Both move safe and delete safe.

● Retrieval is fast.

Disadvantages

● Not all directory servers allow the objectClass attribute to be modified. On these
servers, associations could only be added when the entry is created, or in one
case, when the auxiliary class is defined.

● Because an association simply adds attributes to an entry, only a single instance
of an association type can be expressed through an auxiliary class. (one-to-one
relationship)

● The set of attributes in the classes to be associated must be disjoint. This is only
guaranteed if directory attributes are never used to map more than one CIM
class.

● The semantics of the auxiliary class imply that one member of the association is
dominant. Not all associations have this semantic.

● It can not be used to associate two instances of the same class.

Formatted string
A solution to de-normalizing one-to-many associations used by several commercial
directory applications is to store all of the attributes of the subordinate class in a single
formatted string. Using this approach Class D, from the previous example, might have
attributes Color, and ShapeDescription. The instance would be stored as

Color = Blue
ShapeDescription = Large - Circle
 = Small - Square

Advantages

● Search and retrieval are fast.

● Traversal of the association is fast and easy.

● It is stable.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

11

Disadvantages

● Formatted strings require client applications to understand the structure of the
data.

● Formatted strings add complexity to the client because of the requirement to
parse and build the strings.

● De-normalization implies a superior–subordinate relationship that may not be
appropriate for all associations.

● If a class participates in more than one association that is de-normalized, then
data must be duplicated.

3.1.4 Summary
As evidenced by the listed disadvantages, there is no single general-purpose solution.
Both DIT containment and de-normalization may work well for relationships with strong
containment semantics, but may not be suitable for more loosely associated classes. In
addition, a class may only participate as a subordinate in one association that is mapped
through either of these mechanisms. Entry references are the only general-purpose
mechanism available, but they are not well supported on many directory servers. They
may be used in combination with a limited use of de-normalization to eliminate the
association classes.

3.2 Weak Associations
Despite the disadvantages of directory containment, there is a class of associations well
suited to mapping in this way because its semantics are similar to the directory
containment relationship. Weak associations express the same parent-child relationship
as the directory tree structure, and the life cycle of the child is linked to the life cycle of
the parent. The types of entities modeled by weak associations are not likely to conflict
with either the administrative or the partitioning function of the directory tree. In both
cases, the parent and related classes can be treated as a single entity.
If the weak association has no attributes, it does not need to be stored. The parent-child
relationship of the entries expresses everything required. If the association has
attributes, the attributes must be stored. There are two possibilities.

● The association could be stored as a separate entry as a child of the dominant
class. Other referenced classes are stored as its children. This adds to
complexity and retrieval time by adding an addition layer in the directory tree.
However, it is the only mechanism that supports weak associations of greater
cardinality then binary.

● The properties of the association can be stored with the child entry by use of an
auxiliary class. Because an instance can only be weak with respect to one other
instance, there will never be a need to store more than one instance of the
association class with the child.

3.3 Use of Auxiliary Classes
Auxiliary classes provide a mechanism for adding additional attributes to an entry
without modifying its structural class. As such, their use in mapping associations
represents some variant of de-normalization. Because of their flexibility, a number of the
mechanisms listed utilize them.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

12

There is some variance among directory servers in their implementation of auxiliary
classes. For simplicity, this document assumes they are implemented in accordance
with the X.500 specification. In particular, auxiliary classes are added to entries on a
per-entry basis, and existing entries may be modified to include an auxiliary class. It is
left to the implementor to modify suggested mechanisms to conform to the actual
implementation of a target directory server.
The use of auxiliary classes to add associations to entries preserves the intent of the
association mechanism. Auxiliary classes allow new associations to be defined for
existing entries without requiring their definition to be modified.

3.4 Catalog of Mechanisms
Following is an (incomplete) list of possible mechanisms using combinations of the
approaches discussed previously.

1. Store the association as a separate class exactly as it is represented in the CIM
schema. Use references for the reference properties.

2. Use an auxiliary class to add a reference to one of the classes referenced by the
association. The association class is de-normalized out of existence.

3. Use an auxiliary class with two references that is added to both members of the
association. This allows the association to be easily traversed from either
direction. The association class is de-normalized out of existence.

4. Add the reference attributes to one or both classes in the association. The
Association class is de-normalized out of existence. If the references attribute is
not used by an instance then the association doesn’t exist.

5. Create a class that has the references required by the association, and a class
name unique to the association. An instance of the class is stored by DIT
containment under each participant in the association. The references point to
all members of the association.

6. Use DIT containment to express the association. Associated classes are stored
under the class with which they are associated. The association class is not
stored. This mechanism is well suited for weak associations because the
superior/inferior relationship is well established.

7. Use DIT containment to express the association. Associated classes are stored
under the class with which they are associated. The association class is not
stored. Attributes from the association class are stored as part of the contained
class. They are added to the contained class with an auxiliary class.

8. Use DIT containment to express the association. The association class is stored
under one of the associated classes. Remaining associated classes are stored
under the association class. If the association class has attributes, they are
stored with the association class. This mechanism is useful for associations with
cardinality greater than two.

9. De-normalize the association by combining the attributes of the associated
classes. A new structural class is defined that has the combined attribute set. It
is used in place of the individual members of the association.

10. De-normalize the association by combining the attributes of the associated
classes. Define one member of the association as an auxiliary class so its

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

13

attributes may be added to the other member. This mechanism only works if the
cardinality of the side of the association represented by an auxiliary class is one,
or it only has one attribute

11. De-normalize the association by combining attributes of the associated classes.
All of the attributes of one of the associated classes are combined into a single
formatted string. An attribute for the string is added to the other class in the
association. It is either single valued or multi-valued depending on the cardinality
of the association.

Note:
References may be implemented using any of the methods discussed above.

3.5 Recommended association mapping mechanism
In many situations, the choice between mechanisms for mapping associations is
somewhat arbitrary. However, to improve consistency and interoperability it is desirable
that, when possible, all mappings use the same approach. This section describes the
association mapping used by the DMTF for the core schema, and provides it as a model
for use by other mappings.
The core schema mapping uses a combination of three mechanisms discussed
previously. They are:

● Adding reference attributes to each member of the association through auxiliary
classes

● Adding references to each member of the association through DIT containment
of a helper class containing the references

● Direct DIT containment for weak associations
The first two mechanisms are related. In the core mapping, all non-weak associations
classes are defined as auxiliary classes which have references to both members of the
association. The auxiliary classes are attached to each member of the association so
they are mutually referencing.

In some cases, it may not be practical to attach the association directly to associated
classes. This may be the case if an entry participates in multiple instances of an

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

14

association, or if the directory server restricts the behavior of auxiliary classes. In these
cases, the references may be stored under each member of the association. For the
sake of simplicity, both sides of an association are always mapped the same way. That
is, either both sides use attached auxiliary classes or both sides use DIT containment of
the references.

To avoid the need to declare new structural classes for the DIT-contained references, a
single helper structural class, cimAssociationInstance, is used for all such mappings.
The auxiliary class that would have been attached to the associated class is instead
attached to the helper class. Therefore, cimAssociationInstance may have any CIM
association auxiliary class attached to it This approach allows a single schema definition
to support either approach. The helper class is defined as:

cimAssociationInstance

(

1.3.6.1.4.1.412.100.1.1.1.1

NAME 'cimAssociationInstance'

SUP top

MUST (cimAssociationName)

MAY (cimAssociationTypeName)

)

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

15

cimAssociationName

(

1.3.6.1.4.1.412.100.1.2.3

NAME 'cimAssociationName'

DESC 'The RDN of this association instance'

SYNTAX DirectoryString

SINGLE-VALUE

)

cimAssociationTypeName

(

1.3.6.1.4.1.412.100.1.2.4

NAME 'cimAssociationTypeName'

DESC 'support storing extra information about the
association type'

SYNTAX DirectoryString

SINGLE-VALUE

)

(
<sr5>
NAME 'cimAssociationInstanceStructureRule'
FORM cimAssociationInstanceNameForm
SUP (<sr1> <sr2> <sr3> <sr4>)

)

The attribute cimAssociationName is used to construct the RDN of entries of class
cimAssociationInstance. To permit directory implementers to use implementation-
dependent values for cimAssociationName, cimAssociationTypeName is also defined. It
is intended to hold the CIM Association Type (e.g. "CIM_VLANFor") to aid when
searching.

4 Data Type Mapping
There are several inconsistencies between the data types supported by CIM and the
syntaxes supported by directories. This section proposes mechanisms to map CIM data
types into directories.

4.1 Character set
The vast majority of directory syntaxes are string based. Because of this the character
set or code page used in the string may be of issue. CIM specifies USC-2 as the
character set for its strings. RFC 22512 specifies UTF-8 as the character set to use with
the LDAP protocol. Other character sets may be used by non-conforming
implementations. In most situations, the selected programming environment provides a
consistent character set; however, some applications may need to perform character set

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

16

translation. When such translation is required, it should be done in accordance with
RFC 22793.
In the mappings described below all characters used have ASCII values of 127 or less
which means that they have the same code point in all character sets in wide usage.

4.2 DateTime Mapping
The CIM DateTime type is used to store moments in time, and time intervals. When
used to store moments in time, the semantics are the same as the Generalized Time
syntax specified for directories in X.2084, and the syntax is similar. DateTime properties
that store moments may be mapped to Generalized Time. This assumes that the
semantics of a property is clear. That is it will never contain an interval value.

4.2.1 Mapping Moments
Both CIM DateTime and Directory Generalized Time are used to store a date and a time
combination as a string. However, there are several syntactic differences in the formats.
They are:

● The character set used (see previous discussion).

● Reduced accuracy is represented differently.

● DateTime is a fixed length string Generalized Time is a variable length format.

● DateTime uses hundreds of minutes ("mmm") to specify offset from UTC.
Generalized Time uses hours and minutes ("hhmm").

● DateTime uses zero minutes offset to specify UTC. Generalized Times uses a
“Z”.

● Generalized Time allows for either a period “.” or a comma “,” to be used as the
decimal separator. DateTime requires a period.

Accuracy
Both CIM DateTime and directory Generalized Time provides for specifying times with
reduced precision. However, the mechanism is not the same. CIM DateTime is a fixed
length format so fields that are not significant must be replaced with a placeholder. The
“*” asterisk is used. Generalized Time is variable length syntax. Non significant fields
may be omitted starting form the right up to the entire time portion of the string. The
entire date must be present.
When mapping from Generalized Time to DateTime, all omitted fields in the Generalized
Time value must be present in the DateTime value and filled with asterisks.
When mapping from DateTime to Generalized Time, all contiguous asterisk-filled fields
starting from the right most (microseconds) up to the first date field, may be omitted.
Any remaining asterisk-filled fields must be zero filled. Note: the semantics of non-
significant fields embedded in a DateTime value is unclear.

Mapping algorithms
DateTime to Generalized Time:

1. Perform character set translation as required.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

17

2. Map asterisks as described above.
3. If the UTC offset is +000 it is replaced with a “Z”. Otherwise the UTC offset is

translated from minutes to hours and minutes format.

Generalized Time to DateTime:

1. Zero pad or truncate the decimal portion of the seconds to be exactly six digits. If
there are no decimal seconds specified then use the decimal point “.” and six
asterisks.

2. If the value is in UTC, that is, it is followed by a “Z” the “Z” is replaced with +000.
Otherwise, the UTC offset is translated from hours and minutes(“hhmm”) format
to minutes(“mmm”) format.

3. If a comma is used as the decimal separator, replace it with a period.
4. Perform character set translation as required.

4.3 Real Mapping
CIM supports IEEE four byte and eight byte floating point values as real32 and real64
types. However, the LDAP protocol has no specific support for floating point values.
Because LDAP is a string-based protocol, any binary or byte coded representation of
reals in the directory raises byte ordering issues. To avoid these, and to remain in
keeping with the spirit of the protocol, the recommended mapping is string based.
The mapping is intended to create a string representation of floating point numbers
which allows standard string comparison functions to sort the values into their correct
collating sequence based on their floating point value.
Because string comparison is positional, it is necessary to define a fix format for
representing the mantissa, and the exponent. Because the collating sequence for string
comparison is left to right, the most significant portion of the representation must be on
the left. There are four separate cases that must be handled.

● Negative mantissa and positive exponent

● Negative mantissa and negative exponent

● Positive mantissa and negative exponent

● Positive mantissa, and positive exponent
The above list is ordered by the desired collating sequence from smallest value to
largest value. A single representation does not provide the correct collating sequence
for all cases. Therefore, it is necessary to sort by case, and then to sort within each
case. To accomplish this, the cases are numbered from one to five as follows:

1. Negative mantissa and positive exponent
2. Negative mantissa and negative exponent
3. Zero
4. Positive mantissa and negative exponent
5. Positive mantissa, and positive exponent

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

18

For symmetry, zero is treated as its own case instead of a special sub-case of case 4.

4.3.1 String format
A 64-bit float has a range of 1.7976931348623158e+308 to 2.2250738585072014e-
3085. To represent this as a string, three digits are required for the exponent, and 17 for
the mantissa, not including the decimal point. The directory representation is fixed
format, zero padded, blank separated, with the most significant fields on the left. The
first character in the string is the case number. For readability, it is followed by a blank.
Next is a three digit exponent, again followed by a blank. Next are a single digit, a
decimal point, and 16 digits of decimal.

 Exp 16 digits zero padded to right
5 n n n n . n n n n n n n n n n n n n n n n

The way each of the fields is interpreted varies with the case.
The cases are examined in reverse order so the simplest may be examined first.

Positive mantissa, and positive exponent (case 5)
This is relatively straightforward. The exponent field has the exponent value expressed
as a three-digit integer string. It is zero padded to the left if necessary. The mantissa
field as a seventeen-digit decimal string with exactly one digit to the left of the decimal
point, for a total of 18 characters. It is zero padded to the right if necessary.
Notes:

● The first digit is a 5 to indicate the case.

● There is exactly one digit to the left of the decimal place. It is always non zero.

● Positions 2 through 4 have the exponent. It is right justified, and zero padded to
the left if it is less than three digits.

● Spaces are added to aid human readability.

● No signs are required for the exponent or the mantissa because they are
expressed in the case number.

Positive mantissa and negative exponent (case 4)
When the exponent is negative, larger whole number values for the exponent produce
smaller actual values. For this case, a string comparison of the numeric representation
of the exponent yields the reverse of the desired collating sequence. To flip the collating
sequence, the value of the exponent is added to 999, and the result stored as the
exponent. No sign is stored. The sign of both the exponent and mantissa are indicated
by the case character.

Zero (case 3)
The case number is sufficient to insure the correct collating sequence. To insure
equality comparisons work correctly, all remaining digits are zero.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

19

Negative mantissa and negative exponent (case 2)
When both the exponent and the mantissa are negative, the collating order for the
exponent is correct. A larger exponent yields a number that is closer to zero and
therefore larger. However, the collating sequence for the mantissa is reversed. To flip
the collating sequence for the mantissa it is added to 10, and the result stored.

Negative mantissa and positive exponent (case 1)
When the mantissa is negative and the exponent is positive, the collating sequence is
flipped for both of them. This is achieved by subtracting the exponent to 999, and
adding the mantissa to 10.

4.3.2 Examples
Value Representation

3.25e5 5 005 3.2500000000000000

8.4e-5 4 994 8.4000000000000000

8.4e-7 4 992 8.4000000000000000

7.23e-7 4 992 7.2300000000000000

0.0e0 3 000 0.0000000000000000

-4.25e-4 2 004 5.7500000000000000

-6.35e-4 2 004 3.6500000000000000

-6.35e-3 2 003 3.6500000000000000

-4.0e104 1 895 6.0000000000000000

-4.0e105 1 894 6.0000000000000000

-6.0e105 1 894 4.0000000000000000

4.3.3 32-bit vs. 64-bit values
CIM supports both 32- and 64-bit floating-point values. To allow comparisons between
the two, both are stored in the 64-bit format described above. This implies a greater
degree of precision than is actually available for 32-bit values. This is considered
acceptable. The directory mapping described below provides implicit documentation of
the actual precision of a value.

4.3.4 Directory mapping
The intent of the mapping is to simulate a new syntax. To foster that illusion, and to aid
in documentation, two new attributes are defined. cimFloat32, and CimFloat64. All CIM
floating point attributes will be derived from either cimFloat32 or cimFloat64 as
appropriate. They are defined as:

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

20

CimFloat32

(

1.3.6.1.4.1.412.100.1.2.6

 NAME ‘cimFloat32’

DESC ’CIM 32 bit float encoded as CIM sortable float
format’

EQUALITY caseIgnoreMatch

ORDERING caseIgnoreOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

)

CimFloat64

(

1.3.6.1.4.1.412.100.1.2.7

 NAME ‘cimFloat64’

DESC ’CIM 64 bit float encoded as CIM sortable float
format’

EQUALITY caseIgnoreMatch

ORDERING caseIgnoreOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

)

5 Other Mapping Issues
5.1 Indexed Arrays

Because LDAP multi-valued attributes do not provide ordering, there is no easy
mechanism for mapping CIM index arrays to directories. Possible solutions include:

1. Defining a new syntax, and possible matching rules.
Since most commercial directories are not true X.500 implementations, adding a
new syntax requires updating the directory server. Although directory servers
may add support for index arrays in the future, such a change is beyond the
scope of this paper.

2. Define a formatted string that contains the indexing information, and is
manipulated by the client. This could be done by defining a single string that
contains the entire array, or by using a multi-valued attribute and adding an index
tag to each attribute value.
This requires extra work on the part of the client, requires the client to understand
the format, and requires the cooperation of all clients who update the data to
insure it is correct.
Access and update performance may be a problem, especially for a large array

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

21

3. Define a new structural class to replace the indexed property. The class contains
an index attribute, which is the RDN, and the attribute that is the array property.
There is an instance of the class for each array element. Instances are stored
under the entry that contains the array.
Again, clients must cooperate to insure the integrity of the data.
If there are a large number of arrays, or the arrays are large, the additional
entries could degrade the performance of the directory server.

4. Redefine the schema to eliminate the need for the indexing. For example, if two
parallel indexed arrays are used to relate values with the same index, a new
class can be defined that has both properties. For each index an entry is created,
that has the values from each array. Entries of the new class are stored under
the entry, which contained the arrays.
If there are a large number of arrays, or the arrays are large, the additional
entries could degrade the performance of the directory server.
Note:
The DMTF core schema mapping uses this technique to eliminate parallel arrays.
It is combined with approach 3 to retain the index value.

5.2 DIT Structure
It is neither reasonable nor desirable for a mapping to specify or constrain the overall
structure of the Directory Tree. This is the true because the semantics of the directory
tree are already overloaded. The structure of the directory tree is used to determine
access control for entries, and partition the tree across physical servers.
However, it is desirable to have a well-known structure for specific groups of related
classes. This is especially true when DIT containment is used to map associations.
To facilitate this, some classes can be designated as top-level container classes. The
remaining mapped classes may be constrained in the placement to be placed either
directly or indirectly below the top-level classes. It is desirable that the classes selected
to be top level are course enough grained that they have meaning to the directory at
large.

5.3 Versioning
Object/entry definitions are expected to change between versions of CIM schema;
therefore, mapping techniques should recognize this and provide mechanisms to
distinguish between object versions. Because there is no explicit support for schema
versioning in directories, it is not possible to provide a mechanism that guarantees
application compatibility across versions. However, it is possible to provide naming
conventions and guidelines that reduce unnecessary incompatibility, and allows an
application to detect when they exist. They are as follows:

● The definition of some classes may change between schema versions.
Therefore, the schema entry name for CIM classes contains the schema version
from which they were mapped.

● Attribute definitions are considered much less likely to change. Therefore, their
name does not contain a version number.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

22

● New schema entries are only created for class definitions in new CIM schema
versions that have changed in ways that materially effect the mapping. This
includes anything that changes the ASN.1 string, which is the schema entry.
This includes addition or removal of any properties or the change of a class’s
superior. A class may have a new superior because of a change that forced its
superior to move to a new version. Thus, changes may cascade down the
inheritance hierarchy.
This implies that a given version of a schema may have classes with names from
any or all previously mapped versions.

5.4 Naming
Mapping CIM schema requires the specification of many new directory schema entries.
Each of these entries requires a name. As much as possible, the name of a mapped
directory schema element should be derived from its CIM name and vise versa. This is
not possible in cases where there are name collisions.

Naming guidelines
Following are guidelines for naming new directory schema elements.

● Where there is a match in both semantics and type, it is desirable to reuse
attributes defined in RFC 2256.

● When two or more classes have a property with identical name and type, a single
attribute should be declared and shared among the classes.

● When two or more classes have properties with the same name, but different
types, the name of all but one of the properties must be mangled. The un-
mangled name should be used for the property of the class highest (closest to
the root) in the inheritance hierarchy.
Future versions of this document may specify a name-mangling scheme.

● OIDs for directory objects that are required by mappings are standardized by the
DMTF, and assigned by the DMTF.

Name Structure
Where it is necessary to create new attributes or classes, their names should be prefixed
with “cim”. Class names have the form:

cimVVClassName
Where ClassName is the name of the CIM class, and VV is the version of the schema in
which the mapped definition first appeared in its current form. Class names contain
version tags because they are expected to change from time to time.
Attributes names have the form:

cimPropertyName

where PropertyName is the name of a property belonging to a mapped CIM class.
Attribute names do not have version tags because they are expected to change only
rarely. In the rare instance when a CIM property definition changes significantly enough

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

23

to require a change to the mapped attribute, but doesn’t change its name, a new
attribute must be created with a mangled name.

Naming de-normalized directory classes
When the mapping de-normalizes the CIM schema, more than one CIM class is mapped
to a single directory class. In these cases, there are several options for naming the
directory class. They include

● Selecting the name of one of the mapped classes for the directory class name.
This is appropriate if all but one of the classes are associations. Names of
association can generally be dropped because they are covered by the
association mapping selected. It may also be appropriate when weak
associations are de-normalized. The name of the primary class may be used.

● Add a level of inheritance to the directory class definition for each addition CIM
classes mapped to it. This allows the value of the objectless attribute to have the
name of all mapped CIM classes.

● Concatenate the names of all mapped CIM classes together to form the directory
class name.

5.5 OID Structure
Although the OID is considered an opaque object, it does have internal structure. The
following guidelines are suggested to aid human readability to OIDs assigned to mapped
schema elements.

5.5.1 Guidelines
The OID should be structured:
BaseOID.schema.entity_type.version.entity_id
Where:

BaseOID: Is the root of the OID sub tree of the assigning organization
Schema: is the identity of the CIM schema being mapped. It is arbitrary, but

must be unique. For schemas with OIDs assigned from the
DMTF tree, the schema ID must be obtained from the DMTF.

Entity_type: identifies the type of directory entity where:
 1 = Object class
 2 = Attribute
 3 = Name form
Version: is the version of the specific entity. Versions start at one and are

incremented each time a new version of an entity is needed.
Entity_Id: identifies the specific entity. Initial assignment is arbitrary, but

once an ID is assigned, it is constant through all versions of the
entity.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

24

5.5.2 Example
The CIM 2.2 class System is mapped to a directory class called cim22System. The OID
is assigned from the DMTF subtree as follows.
1.3.6.1.4.1.412.100.2.1.1.17

● 1.3.6.1.4.1.412.100 is the OID subtree assigned by the DMTF for directory
schema mapping.

● 2 is a the branch allocated for mapping the core schema.

● 1 indicates that the mapping is an object class.

● 1 indicates that it is the first version mapped.

● 17 is the ID assigned to the System object class.
Assume in CIM 2.3 that the System class is altered in a way that requires a new version
of the directory mapping. It is now mapped to the directory class cim23System that is
assigned OID

1.3.6.1.4.1.412.100.2.1.2.17

The only change is that the version number is incremented.
Further, assume that after the cim23System definition is published, an error is
discovered that requires issuing an updated mapping cim23aSystem. It is assigned OID

1.3.6.1.4.1.412.100.2.1.3.17

Notice that there may not be a correlation between the OID version arc and a CIM
schema version.

5.5.3 DMTF OID Assignment
The DMTF has been assigned the OID:

1.3.6.1.4.1.412

and is responsible for the assignment of OIDs subordinate to it. The DMTF has assigned
the OID

1.3.6.1.4.1.412.100

as a prefix for LDAP mappings of CIM schema done by the DMTF. In addition, the
following schema specific assignments have been made.

1.3.6.1.4.1.412.100.1 General schema entities that support
schema mapping but are not specific to
a schema

1.3.6.1.4.1.412.100.2 the Core schema

1.3.6.1.4.1.412.100.3 the Physical schema

Other DMTF-sponsored mappings will be assigned a root OID directly below
1.3.6.1.4.1.412.100

5.6 Reusing existing directory schema definitions
They are situations in which CIM classes are closely related to existing directory classes,
or a CIM property has the same semantics as a widely used directory attribute. In these

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

25

cases, it is desirable to reuse the existing directory definitions in the mapping. This may
occur because the CIM schema was originally derived from a directory schema, or
because CIM and directory schemas have been separately developed to model the
same domain. In the first case, it is likely that the two schemas are similar and a
mapping can be made with relatively minor extensions to the directory schema. In the
second case, a description of how to translate between the two schemas may be the
most that can be provided.

5.6.1 Reusing Classes
There are several issues that must be addressed when existing directory classes are
reused. These include:

● Class name

● RDN attribute

Class name
Because the guidelines provide for the inclusion of the CIM class name in the directory
class name, some application may be written to search the objectClass attribute for CIM
class names (for example, using a substring match). Existing directory classes must be
extended if this capability is to be supported.

RDN attribute
Some directories specify the RDN for a class either as part of the class definition or as a
name form rule. In these directories, it may not be possible to use orderedCimKeys or
orderedCimModelPath for the RDN of the reused class. In addition, changing the RDN
may hinder interoperability with existing applications.

There are three general approaches that can be used when it is necessary to reconcile
minor differences in order to reuse existing classes. They are:

● Reuse the class unmodified,

● Extend the class through inheritance, or

● Extend the class by attaching an auxiliary class.
Each approach implies tradeoffs between interoperability with applications geared
towards a CIM centric mapping, and application geared towards other directory schema.

Unmodified
A CIM class may be mapped to an unmodified directory class. It is likely that some CIM
properties will not be mapped. This is the most directory centric option and provides the
greatest interoperability with existing directory applications.

Inheritance
The additional attributes required by the CIM side of the mapping may be added to an
existing entry by deriving a new class from the class to be reused.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

26

Some directories allow the RDN for a class to be changed by derived classes. For these
directories, inheritance is the preferred approach for applications that wish to use
orderedCimKeys or orderedCimModelPath for all RDNs. A problem with this technique is
that it may introduce problems for existing directory applications that assume a strict
extension semantics in subclassing of the derived classes. That is, if the interpretation of
the object-oriented semantics that an instance of a subclass is a valid instance of all of
its superclasses is assumed to include the classes RDN attribute.
Another drawback to using inheritance is there may be other classes that inherit from the
class being reused. The mapping can not be applied to these derived classes.
Despite these drawbacks, this approach may be useful for mappings who’s primary
concern is compatibility with other mappings conforming to these guideline, but must
also provide some level of interoperability with existing schema.

Auxiliary Class
An auxiliary class can be defined for additional attributes defined by the CIM side of the
mapping. This allows the mapping to be applied to all entries that have the target class
anywhere in its ancestry. The auxiliary class should be named in conformance with
section 5.4.
Some directories do not include the names of auxiliary classes in the value of the
objectClass attribute. For these directories, applications will have problems if they make
use of the CIM class name.
Many directories do not allow an entry’s RDN to be specified as an attribute supplied by
an auxiliary class. In these directories, this approach prohibits the use of CIM specific
RDNs.

5.6.2 Reusing Attributes
There is much less flexibility in the handling of attributes then there is in the handling of
classes. It is not possible to access an attribute by the name of one of its ancestors, so
it is not possible to add the name of the mapped CIM property to attributes the way it can
be added to classes.
When existing classes are used by a mapping, all the attributes included in those
classes are also used. The mapping from CIM property to attribute is implied, and must
be understood by client applications. This may cause applications that rely on the
naming scheme defined in section 5.4 problems.
Because some directory applications are attribute based as opposed to class based, it
may be desirable to reuse individual standard attributes outside the context of existing
classes. In such cases, the mapper should insure that there is a good fit between the
semantics of the CIM property and the attribute. This should take into account the
implied semantics of the general usage of the attribute.

5.7 Must vs. May Attributes
It is recommended that all attributes be mapped as MAY attributes. It is the
responsibility of a specific application to insure the properties it needs are mapped and
present. If a class mapping is derived from existing non CIM classes either by
inheritance or via auxiliary classes, then any MUST attributes in the existing class(es)
need to be accommodated.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

27

RDN
Since two options are provided for the RDN attribute, neither is specified as a Must
attribute. Specific installations may elevate the selected RDN attribute to Must.

CIM Keys and Propagated Keys
It would normally be desirable to insure that all key attributes are present by mapping
properties with the Key qualifier to Must attributes. However, both options for the RDN
attribute require that the values for all key properties be present in the RDN. Requiring
Key properties to be present separately would force a duplication of data that may not be
desirable.
Likewise, the value of propagated keys is available from either the RDN value or the DN
value. To avoid data duplication, it is recommended that propagated keys not be
mapped in the weak side of the association at all.

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

28

6 Appendix 1 – Schema Elements
6.1 Classes
6.1.1 cimAssociationInstance

(

1.3.6.1.4.1.412.100.1.1.1.1

NAME 'cimAssociationInstance'

SUP top

MUST (cimAssociationName)

MAY (cimAssociationTypeName)

)

6.2 Attributes
6.2.1 orderedCimKeys

(

1.3.6.1.4.1.412.100.1.2.1

NAME ‘orderedCimKeys'

DESC ‘The model path for the instance (without
propagated keys). May be used as an RDN'

SYNTAX DirectoryString

SINGLE-VALUE

EQUALITY octetStringMatch

)

6.2.2 orderedCimModelPath

(

1.3.6.1.4.1.412.100.1.2.2

NAME 'orderedCimModelPath'

DESC 'The model path for the instance (with propagated
keys). May be used as an RDN'

SYNTAX DirectoryString

SINGLE-VALUE

EQUALITY octetStringMatch

)

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

29

6.2.3 cimAssociationName

(

1.3.6.1.4.1.412.100.1.2.3

NAME 'cimAssociationName'

DESC 'The associations" name'

SYNTAX DirectoryString

SINGLE-VALUE

)

6.2.4 cimAssociationTypeName

(

1.3.6.1.4.1.412.100.1.2.4

NAME 'cimAssociationTypeName'

DESC 'support storing extra information about the
association type'

SYNTAX DirectoryString

SINGLE-VALUE

)

6.2.5 arrayIndex

(

1.3.6.1.4.1.412.100.1.2.5

NAME 'arrayIndex'

DESC 'the index of this child'

SYNTAX integer

EQUALITY integerMatch

)

6.2.6 cimFloat32

 (

1.3.6.1.4.1.412.100.1.2.6

 NAME ‘CimFloat32’

DESC ’CIM 32 bit float encoded as CIM sortable float
format’

EQUALITY caseIgnoreeMatch

ORDERING caseIgnoreOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

)

Guidelines for CIM-to-LDAP
Directory Mappings

March 28, 2000
This is a draft specification and subject to revision

30

6.2.7 cimFloat64

(

1.3.6.1.4.1.412.100.1.2.7

 NAME ‘CimFloat64’

DESC ’CIM 64 bit float encoded as CIM sortable float
format’

EQUALITY caseIgnoreeMatch

ORDERING caseIgnoreOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

)

6.3 Name Forms
6.3.1cimAssociationInstanceNameForm

(

1.3.6.1.4.1.412.100.1.3.1.1

NAME 'cimAssociationInstanceNameForm'

OC cimAssociationInstance

MUST (cimAssociationName)
)

1 COMMON NFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2 - DMTF

2 M. Wahl, T. Howes, S. Kille, "Lightweight Directory Access Protocol (v3)," RFC 2251, December 1997
3 F. Yergeau, "UTF-8, a transformation format of ISO 10646," RFC 2279, January 1998.

4 OPEN SYSTEMS INTERCONNECTION MODEL AND NOTATIONSPECIFICATION OF ABSTRACT SYNTAX NOTATION ONE
(ASN.1)
5 From sys/limits.h on AIX 4.3

