Desktop Management
Interface Specification

DSP0005 STATUS: Preliminary

Version 2.0.1s
January 10, 2003

Copyright © "1996-2003" Distributed Management Task Force, Inc. (DMTF). All rights
reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and
systems management and interoperability. DMTF standards and related documents may be
reproduced for uses consistent with this purpose by members and non-members, provided that
correct attribution is given. As DMTF specifications may be revised from time to time, the particular
version and release used should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third
party patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no
representations to users of the standard as to the existence of such rights, and is not responsible to
recognize, disclose, or identify any or all such third party patent right, owners or claimants, nor for any
incomplete or inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall
have no liability to any party, in any manner or circumstance, under any legal theory whatsoever, for
failure to recognize, disclose, or identify any such third party patent rights, or for such party’s reliance
on the standard or incorporation thereof in its product, protocols or testing procedures. DMTF shall
have no liability to any party implementing such standard, whether such implementation is
foreseeable or not, nor to any patent owner or claimant, and shall have no liability or responsibility for
costs or losses incurred if a standard is withdrawn or modified after publication, and shall be
indemnified and held harmless by any party implementing the standard from any and all claims of
infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit:

http://www.dmtf.org/about/policies/disclosures.php

January, 2003

Technical inquiries and editorial comments should be directed in writing to:

Distributed Management Task Force
c/o MKI
54 SW Yamhill St.
Portland, OR 97204
(503) 225-0725
(503) 225-0765 (fax)
email: dmtf-info@dmtf.org

Additional copies of this specification may be obtained free of charge electronically viainternet at:
ftp//ftp.dmtf.org
or
from the World Wide Web at:
http://www.dmtf.org

January, 2003

Desktop Management Interface Specification v2.01s

CONTENTS

1. INTRODUCTION AND OVERVIEWooiiiictieicese sttt sttt st s te et aestaabesneesae s e besbesreeseensensenaess 7
11 1Y K@ 1 B LY 7N 1 PSP S RS RUPRRRPROE 7
12 BASIC TERMINOLOGY8
13 ELEMENTSOF THE DMI9
1.4 DATA MODEL ...covvrverreiienne W11
15 THE DMI SERVICE PROVIDER.............. .12

151 Service Provider Responsihilities... .12
1.6 OPERATIONAL CHARACTERISTICS......... .13
17 REMOTEABLE INTERFACE14
18 SECURITY 1 tetertteteeeestesteseeeseesee e stesteebesseeseens e st e besaeebeeaeeseeaseseeabesRe e s e e m e e e e b e naeeb e e neen e e beneeebeene e s e eneeneenbenaeebeeneententens 15

2. INFORMATION SYNTAX ceotitieterieeieniesiestesiteteeseestessessessesseeseesseseessessesseessessessessessesssessessessessesseessessessessesessesnsessense 16

21 MANAGEMENT INFORMATION FORMATceuiiitirtistesieeteeseestesseseeesesseeseessestessesseeseensessessessessesseessensessessessessesnsensenne 16
211 Lexical conventions... .16
2.1.2 Comments.............. 16
213 Keywords..... 16
214 (== 1Y 0TSSP PRR PPN 17
2.15 (0002 | £SO SRR URUPOY 18
216 Block scope............ .20
217 Language statement... .20
2.1.8 Common statements... .21
219 Component definition
2.1.10 Pathdéfinition........... .
0 0 I A = o104 U= T T o g RSOSSN
2112 GrOUP AEFINMITION ..ovieeiceciiseeeet ettt b ettt e e b e et b et e bt b e e sb e e e b e se e st e b et eb e b e beseeneebeseeneebennas
2.1.13 Pragma statement.. .
2.1.14 Attribute definition. .
2.115 GrOUP EXAMPIE ... ettt ettt ettt e b et b e e s e b e s e ee e e eb e se e st e b e e e Rt b e R e eE e e eb e sEese e b e st ebe b ebenb e e ebeneeneebennan
2116 POPUIALING tADIES.euiiiiiiiiieteie ettt bbb bbb

2.2 MIF GRAMMAR

2.3 SAMPLE MIF.....

24 1SO 639.... .

25 L1 @ 1 SO S PSPPSRSOt

3. STANDARD GROUPS. ..ottt sttt st b et s et et e b e sae b e e ae e s e e sesaeebenaees e e e entebeseeebesneeneensensenne 41
31 COMPONENT STANDARD GROUPScttiuteteeniestesiesieeseseestessessessesseeseessessessessessesseensessessessessesssessessessessessesnsensensens 41
311 The ComponentI D group..... .41
3.2 EVENT STANDARD GROUFPS.... .43
321 Requirements................ .44
322 Event Generation Group... .44
323 Event Sate Group.......cceeeeeereenenenennens .49
33 DM SERVICE PROVIDER STANDARD GROUPSuciutitieieiestesitesesseeseessestessessesseessessessesssssesesssessessessessessesssensense 52
331 P INAiCALION SUDSCIIPLION ...ttt b e et b e st b e se s b e e e be e e st b e e enennane 53
3.3.2 P Filter Information........ .56
34 EVENT EXAMPLEovvvveveiiennee. .59
341 Software Sgnature Template... .59
342 Software Sgnature Table..... .60
343 Event Generation Group... .60

34.4 VT TOMPDIAEE. ...ttt b e st b et b ekt e et b s e e st e b e e e R e b e e eb e e ebenb et e b e e e neebenensenane 61

4, INTERFACE OVERVIEW ...ttt sttt et b e see et e et etesteebenaeese e e estebeseeebesneeneensensenne 65
4.1 PROGRAMMING CONSIDERATIONS ...uveeteiueeueeteseeasesseeseesessessesseesesseessessessessessessesnsensessessessessessensessessessessesssensense

411 Binding To A Managed Machine.... "

412 THE USE OF POINEEIS......etieeieeei ettt sttt bbb et b et b e b e e s e e e e b e se e st e b e e e st b esesb et ebesbeneebannas 66

January, 2003 2

Desktop Management Interface Specification v2.01s

413 CalliNG CONVENLIONS.......cueuerteeeterieieeteerieseetesee et see e besesbe s ebese et ebe s eseabesese e e ebesee st ebe e eseasesesee e abeneeseabanessenann 67
414 Re-entrancyccceveeereee. ..68
4.2 NATIONAL LANGUAGE SUPPORT69
421 REGUITEITIBN. ...ttt ettt b bbb ae b et e b e b e ke s e e e eb e s e e se e b e se e bt b e Rese e e ebene e st e beneeseabenessenane 69
422 OVENVIBW. ...ttt ettt te s te e e tesae e s te s se s e s e s ee e esesaeseses e et e s es e seeneeR e eese s ese e s e e ebeseeseaseseese s enenaeneeseneenensnnensensane 69
423 Trandlatable Text... .69
4.2.4 Ingtallation.......... .69
425 (@701 = 1100 RSO OETSOOS O S TP O SO PSP TSP TR PTPTUPOON 70
5. KEY DATA STRUCTURESco ottt ettt ettt st ae st se et s s ebe st e s ebesaesestaseebe s esestensebesaeseabaseesensans 71
51 DIMI DATA TYPES.. et tuteiuteiitessteesteesteesteesteesteesseessteassesssessseasteasseesseesaeesaeesaeesasesasesasesabesabe e besabeeabeeabeeabaaasaesssennsenns 71
5.2 ENUMERATED TYPES .tutttttetteutestesteseeatesseeseesessessessessesssessessesssssessesssensessensessessesnsensensessessesseessensensensessessesnsensensens 72
521 DmiAccessMode.... .12
522 DmiDataType..... .12
5.2.3 DM FTTETYPE. .ttt bbb b et h et E b bt e bbb b bt nena bt e e n b 73
5.2.4 DMIREGUESIMOTE ...ttt ettt b bbbt b bt ne et nebeben 73
5.25 DmiSetMode.......... .74
5.2.6 DmiStorageType. .74
53 DATA STRUCTURES...... .75
531 DmiAttributeData.. .75
532 DmiAttributelds..... .76
533 [0 N 11 10 = o TSRS RSTRRRN 76
5.34 DIMEATIDULELISEeveeeeeeieieteee ettt ettt e et s aeae st e e e se st ese st e e ebesaeseebeseesesseseesesebeseensebessesessanessennans 77
535 DmiAttributeValues... W77
5.3.6 DmiClassNamel nfo.... .78
5.3.7 DmiClassNamel.ist.... .78
5.3.8 DmiComponentinfo78
5.3.9 DmiComponentList.... .79
5.3.10 DmiDataUnion...... .79
5311 DmiEnuminfo..... .80
5.3.12 DmiEnumList...... .80
5.3.13 DmiFileDatalnfo... .80
5.3.14 DMIFTIEDAIALISE.....ccveieteietieeteitee ettt e et st eteste e ete e e se st eseete s etesseseebesaesessesessesseteseeseebessesensessssenseteseeneataneas 81
5.3.15 DIMIFIETYPELISE 1. vttt ettt b bt ne et b b sttt b b e e 81
5.3.16 DmiGroupInfo.... .82
5.3.17 DmiGroupLigt........ .83
5.3.18 DmiMultiRowData..... .83
5.3.19 DmiMultiRowRequest... .83
5.3.20 DmiNodeAddress....... .84
5.3.21 DIMIOCIEESITING .. evveteuerereetestntetetetesere sttt s s ebese e e b st s b b e st ne e b e s et e s e b b e st e ne b s et s e b ebes e e e et st seebeb e e neeean 84
5.3.22 DIMIROWDBIA.cuiitietiiiictieieiteste sttt et ete e te et ste et e saestesbesaeeseeasessessesseeseeseessenseseabesseeseessentensesseasesseesseaetenns 85
5.3.23 DmiRowRequest . ..86
5324 DmiSring........... .86
5.325 DmiSringList. .87
5.3.26 DIMITIMESIAITIDcutiuitiuiieietetseeteteteseseseeseseseasebesaseseseeseseseasebesasesessesase e asebebaseseabebese e et ebebaseaeasebeseneasebebasessnsasan 87

6. MANAGEMENT INTERFACE..... ..ottt ettt sttt b et et st e e e be e ebesteseebe s ebesbeseabaeesessesessenseseseens 89
6.1 INITIALIZATION FUNCTIONS ... ttttteiteesteesttesttesttestesssesssessesssesssessseessessssssssesssesssesssesssessesssesssesssesssesssensssesssnsssenns 89
6.1.1 DmiRegister..........c....... .89
6.1.2 DmiUnregister.... .89
6.1.3 DmiGetVersion... .90
6.1.4 DmiGetConfig91
6.1.5 DmiSetConfig91
6.2 LISTING FUNCTIONS.92
6.2.1 DmiListComponents............ .92
6.2.2 DmiListComponentsByClass... .93
6.2.3 DmiListLanguages............... .94
6.2.4 DIMILISECIASSNAMES.......cueteuiitiieteiteietesee e e et st ete st et e testesesbeseesessesesseseebeseeseebeseesessesesseseteseeneetessesessesessensans 94
6.2.5 DIMILISIGIOUPS ...ttt ettt b ettt h et b et s b bt e et bbb b e et b et ne s ebeben 95

January, 2003 3

Desktop Management Interface Specification v2.01s

6.2.6 DIMILISEALIITDULESevecveeeiec ettt ettt et e et e st e s besseese e e e aesbesbeebeeseessensansensesseeseeneensensens 96
6.3 OPERATION FUNCTIONS.. .98
6.3.1 DmiGetAttribute.... .98
6.3.2 (D04 1S = VA | 11 (SRS 929
6.3.3 DMIGEIMUIIPIE. ...t bbbt e bbbttt ee 100
6.34 DmiSetMultiple... ...101
6.3.5 DmiAddRow........ ..102
6.3.6 DIMIDE BEROW. ... ettt e e s e eeese e s e e e tesae e s te e esessese st eneesesaese et eseesesesesseneeseseene et aseesensesensenensenennn 103
6.4 DATABASE ADMINISTRATION FUNCTIONS.....cttitisteruiesieiestestesieeseeeeseessessessessesseensessessessessesnsessessessessessesnsensenses 104
6.4.1 DmiAddComponentc.ccoeveeeeruenne ...104
6.4.2 DmiAddLanguage.. ...104
6.4.3 DmiAddGroup........... ..105
6.4.4 DmiDel eteComponent... ..106
6.4.5 DmiDeletel anguage.. ...107
6.4.6 DMIDEIEIEGIOUD ...ttt ettt b b b re b bt e bbb e bbb bttt 107

7. MANAGEMENT APPLICATION PROVIDER AP ..ottt sttt sae st sbe s nae s e 109
7.1 LU0 T N £ PP PSS 109
711 DmiDeliverEvent........ ..109
7.12 DmiComponentAdded... ..110
7.13 DmiComponentDel eted. ...110
7.14 DMILANGUAGEATUEDcveeeeiireeieeet ettt b bbbt b et 111
7.15 DmiLangUAgEDEIELE...........coueeiuiieeeetee ettt b et b ek b e e et b e et b e e bt e e et r e e 111
7.1.6 DmiGroupAdded........ ..112
7.7 DmiGroupDeleted 112
7.1.8 DmiSubscriptionNotice. 113

8. COMPONENT INTERFACE ..ottt sttt ettt sae et et et e besaeebeeseess e s e stesbesaeeseeneenaensesran 114
8.1 DATA STRUCTURES. ...cttttttuteteeiestestesseeteseestestestessesseeseessessessesseaseessessessessessesseessensessessessessesnsensensensessessesnsensenses 115
811 DIMEACCESSDALAveeuvieteeitie sttt sttt ettt st et e et esaeesaeesate s abesabesabe e be e b e e abeeabeeabeeebbeesbeesbeenbeenbeesbeesaeessennann 115
8.1.2 DmiAccessDatalL.ist115
8.1.3 DMIREGIStENINfO116
8.2 SERVICE PROVIDER FUNCTIONS FOR COMPONENTS... .A17
821 DmiRegisterCi FUNCLioN.........ccceeveeieneiniens ..117
8.2.2 DmiUnregisterCi Function.. ...118
8.2.3 DmiOriginateEvent.................. ...118
8.3 COMPONENT PROVIDER FUNCTIONS..... ...119
8.3.1 CiGetAttribute........ccvveveveeee. ...119
8.3.2 CiGetNextAttribute ...120
8.3.3 (11 = A] U (SRRSO 120
8.34 CIRESENVEAIITDULE. ...ttt e et s e st e seebe e e sessene st e e eseneeneetesensessenensensnn 121
8.35 CiReleaseAttribute. ..122
8.3.6 CiAddRow........... ..122
8.3.7 CiDeleteROW.........coveeeeeereeeene 123
9. OPTIONAL MI SUPPORT FUNCTIONS.... 124
9.1 PROGRAMMING CONSIDERATIONSevviittieiteesteasesssesssesssesssessssssssesssesssesssesssesssesssessssssssssssssssesssesssesssesssessessns 125
9.2 RPC ABSTRACTIONS. .. .etetuteteeueestestesseeseeseessessesseasesseeseessessessesseasesssessensessessesseessensessessesseesesnsensensessessesseensensenses 126
9.21 MI Support Functions and RPC specific DMI API126
9.3 CONNECTION ESTABLISHMENT AND TEARDOWN....... 127
931 Connection Establishment127
9.3.2 Connection Teardown....... ..127
9.33 Transport List............ ..127
94 ERROR IMODELvtite sttt sttt sttt ettt st be st e et b saeeb e e st et e se e e b e e ne e s e e e e st e b e naeeseene et e benaeebenneeneeneenees 129
94.1 SMPIE ErTOr HANAIINGceieeeeeieieieeie ettt st e et e b b et b e s ese st e nennenens 129
9.4.2 Extended Error Handlingccccoveereenennenicieseenne 132
9.4.3 DCE/RPC and ONC/RPC mapping for standard functions... ..134
9.5 RUNTIME LINKAGE ..c.uveiiieiieiiesiie sttt sttt sieesiee e e 135

January, 2003

Desktop Management Interface Specification v2.01s

951
95.2 Runtime linkage example
9.6 MEMORY HANDLING FUNCTIONS..
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
10. INTRODUCTION TO DM12.0S
10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.25 Logging and event generation142
10.2.6 Security of local interfaces...... ...142
10.2.7 OSdependence... ...143
10.2.8 COMPALIDITTY ...vveteieeieteie ettt b et b ettt b b e e et e b e e e b e b e b e e et e b e st e e b et eba e sssbesene s ebebatans 143
11, ARCHITECTURE ..ottt ettt ettt st e bt ebe st eseebe e ese et esees et ebestensebeseesessesestenseteseesentaneas 145
11.1 DMIV2.0S FUNCTIONAL BLOCKS...c.ttruteteeneeneesessessesseeseessessessesseasesssessessessessessesssessessessessessesnsensessessessessesnsensenses 146
11.1.1 Authentication...........cccoc..... ...146
11.1.2 AUthorization.......cccceeeeevreecreeneennne ...146
11.1.3 Indication generation and logging.. ...147
11.1.4 MIF database Securityccceeereee. ...147
11.1.5 Component iNStrumentation SECUIITYc.eueiririeuetiriririeieeres ettt b et nenenene 147
12. DMIV2.0SSERVICE PROVIDER STANDARD GROUPS. ...ttt 148
12.1 DMIVv2.0S SERVICE PROVIDER CONFIGURATION ...veuiereeueesessesseeseeeesessessessessesseessessessessessesnsensessessessessesnsensenses 149

12.2 DMIv2.0S SECURITY INDICATION AND LOGGING CONFIGURATION .
12.3 AUTHENTICATION PROTOCOLS..

12.4
12.4.1
12.4.2
12.4.3
12.4.4
1245
12.4.6
12.4.7
125
13. MANAGEMENT INTERFACE SECURITY ittt sttt st nae e 159
13.1 AAUTHENTICATION ..uttiuteeutestessteesteesteesteesstesseessseasseasseasseesseesseesseesasesasesasesaseeaseenbeeabeesbeeaseaesbeenbeenbeenbessseassnenanesann 160
13.1.1 Non-authenticated registration ...160
13.2 POLICY AND AUTHORIZATION ...coteiereierenieeeeneeseessesenssenns ...161
13.3 PoLICY PROTECTION, MODIFICATION AND INITIALIZATION... ..162
134 INDICATION SUBSCRIPTION AND DELIVERY ...ocvvevrierenanenne ...163
135 LOCAL MANAGEMENT INTERFACEevtetteutestetestestesseeseessessessesseeseeneessessessessessesssessessessessessesnsensensessessesesnsensenses 164
13.5.1 Caveat: component instrumentation registration as a local management application...........c.cc.cecereeerenene 164
13.6 AUTHORIZATION ALGORITHM PSEUDO-CODE.......ceettiueeteeneeeestessesseseeeesseseessessessesssessessessessesnsessessessessesseessensesses 165
14. COMPONENT INTERFACE SECURITY .ottt st ettt sttt besne et eseeaesaassesbesneesaensansenns 166
15. MIF DATABASE PROTECTION ...ttt sttt st sttt sttt e st b sae b e e enaesbeseasbesneeneenseneas 167
16. SECURITY INDICATIONS.. ..ottt ettt sttt et te e te s e e saeste st e s besseese et essestesseeseessessesessesbesaeessensassenna 168
16.1 SECURITY INDICATION DATA ..ueeutiterteaterueeseensessessesseeseseessessessessesseessensessessesseesssnsensensessessesnsessessessessessessenssensense 168

January, 2003 5

Desktop Management Interface Specification v2.01s

16.1.1 Security indication event generation group

16.1.2 Security indication additional attribDULES..........cccouverieiieisee e eene

17. (IO 1 C1 €] [PSR OP ST STRPN
17.1 LOGGING INTERFACEc.ttiuteueeeesteasesit et et et et et se st e e e s e s e e b sheeb e ae e e e b e se e e b e s ae e s s e s e ne e b e saees e et e e e beneeebenaeenneneneis 174
1711 DIMIGENEIALELOQ ... cveueeuireerereeieresteseetestesestesessesseseseesseseseeseasesessessesessensesesaesessessesessesessessesessessesessesessessssensene 174
18. DMI1V2.0 AND DMIV2.0SCOMPATIBILITY CONSIDERATIONS........ooiiiieieeteeiee et 176
APPENDIX A —ERROR CODES........coititiietitrisieieie sttt ettt b ettt bbbt na bt b bbb s 177
APPENDIX B = DCE RPC IDL ..cuiiiiiiiiiieeiiiestie sttt st st ste e ste s steesseesaeasasesatesabesse e beesbeasbeessaesssessseestesseansessseessensnnn 179
APPENDIX C — ONC RPCGEN. ...ttt sttt sttt e e s sae e saeste s be s be e be e beesbeesbsesseeesbeestesseanbeesseesseesann 210
APPENDIX D —RELATED DOCUMENTS.......otiiiitiiiririei ettt ettt bbbttt 237
APPENDIX E = GLOSSARY ...ttt ittt sttt st te s ste s ste s s teasseesaeesaeesasesabeeabe e be e beeabeeabaeeseeesbeesbeebeanbeesseesseenann 239

January, 2003 6

Desktop Management Interface Specification v2.01s

1. INTRODUCTION AND OVERVIEW

1.1 MOTIVATION

Within acomputer system, there is a gap between management software and the system's components that require
management. Managers must understand how to manipulate information on a constantly growing number of products.
In order for products to be manageable, they must know the intricacies of complex encoding mechanisms and foreign
registration schemes. This arrangement is not desirable from either side.

This document describes the Desktop Management Interface, or DMI, that acts as alayer of abstraction between these
two worlds.

The DMI has been designed to be:
- independent of a specific computer or operating system

- independent of a specific management protocol

- easy for vendors to adopt

- usablelocally ¥ no network required

- usable remotely using DCE/RPC, ONC/RPC, or TI/RPC

- mappabl e to existing management protocols (e.g., CMIP, SNMP)

The DMI procedural interfaces are specifically designed to be remotely accessible through the use of Remote
Procedure Calls. The RPCs supported by the DMI include:

DCE/RPC
ONC/RPC
TI/RPC

January, 2003 7

Desktop Management Interface Specification v2.01s

1.2 BASIC TERMINOLOGY

Throughout this document, system means a computer system. Components are physical or logica entitieson a
system, such as hardware, software or firmware. Components may come with the system or may be added to it. The
code that carries out management actions for a particular component is known as the component instrumentation.

A management application is aprogram that initiates management requests. A management application uses the
DMI to perform management operations. The management application may be a program such as an application with
agraphical user interface. 1t may be a network management protocol agent that translates requests from a standard
network management protocol (such as SNMP or CMIP) to the DMI and back again.

DMI Service Provider, which is analogous to the DMI Service Layer of previous DMI specifications, may be
shortened to just DMI SP throughout this document. The abbreviations DMIv1.x and DMIVv2 are used respectively to
refer to the DMI 1.x and DMI 2.0 specifications.

Other terms are highlighted in italic bold when first introduced. A full glossary is provided in Appendix E.

January, 2003 8

Desktop Management Interface Specification v2.01s

1.3 ELEMENTS OF THE DMI

The DMI has four elements:
1. aformat for describing management information

2. aservice provider entity

3. two sets of APIs, one set for service providers and management applications
to interact, and the other for service providers and components to interact.

4. aset of servicesfor facilitating remote communication

Component descriptions are defined in alanguage called the Management | nformation Format, or MIF. Each
component hasaMIF file to describe its manageable characteristics. When a component isinitialy installed into the
system, the MIF is added to the (implementation-dependent) M| F database.

DMI Service Providers expose a set of entry points that are callable by Component instrumentation. These are
collectively termed the Service Provider API for Components. Likewise, Component instrumentation code exposes a
set of entry pointsthat are callable by the DMI Service Provider. These are collectively termed the Component
Provider API. Inthe DMI Version 1.x specification, these two APIs were together embodied in the Component
Interface.

The Component | nterface, or Cl, is used by component providers to describe access to management information and
to enable a component to be managed. The Cl and the MIF shield vendors from the complexity of encoding styles and
management registration information. They do not need to learn the details of the popular and emerging management
protocals.

Previous versions of this specification defined the Cl to be ablock oriented data interface as opposed to a procedural
interface. This specification introduces a new procedural Cl interface. All new functions introduced by this
specification are available only as part of the new procedural CI. *

NOTE that the functions in the Component Interface are OS-specific. Some OSes may not implement the
Cl but provide equivalent functionality using other, native mechanisms. In the rest of this document, the
use of the term Cl should be taken to stand equally for other OS-specific implementations of this
functionality.

The DMI Service Provider also exposes a set of entry points callable by Management Applications. These are
collectively termed the Service Provider API for Management Applications. Likewise, Management Applications
expose a set of entry points callable by the DMI Service Providers. These are collectively termed the Management
Provider API. Inthe DMI Version 1.x specification these were together embodied in the Management Interface.

The Management I nterface, or MI, is used by applications that wish to manage components. The M| shields
management application vendors from the different mechanisms used to obtain management information from
elements within a computer system.

Previous versions of this specification defined the M1 to be ablock oriented data interface as opposed to a procedural
interface. This specification introduces a new procedural M1 interface. All new functions introduced by this
specification are available only as part of the new procedural M. *

The new procedural MI introduced with this specification is a remotable interface designed to be used with one of the
supported RPCs.

The DMI Service Provider, previoudly called the Service Layer (SL), is an active, resident piece of code running on a
computer system that mediates between the MI and Cl and performs services on behaf of each.

A functional block diagram is shown in Figure 1-1.

The DMI Version 1.1 block oriented M1 and Cl interfaces are local interfaces, to be used within asingle system. The
new procedural M1 introduced with this specification is a remotable interface designed to be used with Remote
Procedure Call. The new procedural Cl isalocal interface, to be used within asingle system.

In Figure 1-1 al hardware and software components, the MIF Database, and the DMI Service Provider exist within a
single system, or are directly attached, such as printers or modems. The management applications may be command-

! The DMTF Compliance Guidelines Document contains the information regarding backwards compatibility of previous
DM specifications (the DMIv1.x block interface in particular).

January, 2003 9

Desktop Management Interface Specification v2.01s

line or graphical user interface programs, located on the local system or located on remote management work-stations.
Network protocol agents may be used to trand ate between a particular management protocol and the DMI.

Note: Itisvalid for component instrumentation to register permanently or temporarily as an M1 application in
addition to a Cl registration.. Thisis usually used by components as a means of dynamically obtaining their current
component ID at runtime from the DMI Service Provider.

Ml Interface Indication Ml Interface Indication
Local Block . "
Interface Client Server Client Server
Application RPC Support | RPC Support
+ RPC to/from >
[emote systems

Data Block Mgmt RPC Support
Interface (VI.X Ml) Management Interface Server] Indication Client

DMI SERVICE PROVIDER SP

DB

Data Block Component

Ingerface (VI.X MI) I t

Procedural Component Interface

Block CI Procedural ClI Procedural ClI Procedural ClI
Component Hardware Software Firmware
(HW/SW) Component Component Component

Figure 1-1. Functional Block Diagram.

January, 2003 10

Desktop Management Interface Specification v2.01s

1.4 DATA MODEL

Components have one or more named attributes that collectively define the information available to a management
application. Attributes are collected into named groups for ease of reference. Groups may be scalar or may be
multiple instantiations, such as the set of attributes for each instance of a network interface table. Multiply
instantiated groups are called tables, and arow (instance) of atableisreferred to by a set of attributes that form akey.

So, within a system, there are many components, each with one or more groups. Each group has one or more
attributes; and each group may be multiply instantiated as atable. The component instrumentation presents this
component/group/key/attribute representation to the management application. A diagram is shown in Figure 1-2.

Component instrumentation may respond to requests by management applications, and may offer unsolicited
information (indications or events).

Component A Component B Component C Component D
Group 3 Group 2 Group 2 Group 2
Attribute 1 Attribute
i ribute
Attribute 1 Attribute 1 Attribute2 Attribute2
Attribute 2
Attributes Attribute 2 Attribute 3
ttribute Attribute 3 Group 3 Attribute 4
Attribute 4 Attribute 1 Attribute 5
Attribute 5 Attribute 2 Attribute 6
Attribute 6
Attribute 7
Attribute 8 4G-LQUDA—
Group 2 Attribute 1 Group 3
Attribute 2
Attribute 1 Attribute?
Attribute 2
Attribute2 G 3 —Group5 Attribute 3
Attribute 3 roup Attribute 1 Attribute 4
Attribute 1 Attribute 2

Figure 1-2. Diagram of Attribute Representation In Data Model.

January, 2003 11

Desktop Management Interface Specification v2.01s

1.5 THE DMI SERVICE PROVIDER

The DMI Service Provider coordinates and arbitrates requests from management applications to the specified
component instrumentation’s. The DMI Service Provider handles the run-time management of the MI and ClI, which
includes component installation, registration at both levels, request serialization and synchronization, and general flow
control and housekeeping.

The interfaces have been designed so that commands at the M1 level are either satisfied at the DM Service Provider
or passed directly to the Cl.

Figure 1-3 depicts a possible DMI Service Provider block diagram. Thisis an example only and is not part of the
DMI specification.

Requests Indications

‘ Management Interiace

‘ Synchronization and Flow Control

‘ Component Interface ‘

Requests Events
Command Processing Event Processing MIF Processing

MIF Access

‘ | wiF set |

MIF Install

IF
Database

Figure 1-3. DMI Service Provider Block Diagram.

1.5.1 Service Provider Responsibilities

The DMI Service Provider (SP) must coordinate the dynamic installation and removal of component instrumentation’s
and management applications. It must enforce that at least group 1 (the component ID group) isin each installed .

The DMI SP must coordinate the registration of entities wishing to initiate management activities.

The DMI SP isresponsible for all run time accesses to the MIF data. |mplementations of the DM Service Provider
may choose to store MIF filesin an internal format (a MIF database) for performance and ease of access.

The DMI SPisresponsible for launching the component instrumentation, if necessary.

The DMI SP must enforce command serialization to a component instrumentation and ensure that commands are
alowed to run to completion. Multiple requests for a particular component instrumentation must be queued.

The DMI SP must support event/indication subscription and filtering.

The DMI SP must forward indications based on subscription and filters to each registered management application, and
must time-stamp incoming indications before forwarding them.

The DMI SP must send indications to al registered management applications which have subscribed for indications
when components are installed or removed from the MIF database.

The DMI SP must appear to management applications as a component with ID 1 (one). Asacomponent, it must
support the standard ComponentI D group, defined in Section 3.1.1. Additionally, the DMI SP must support the
Subscription Indication and Filter standard groups. Also like any component, it may define additional groups beyond
the ComponentID group.

The DMI SP must support all of the NLS mechanisms contained in this specification, including Unicode and multiple
NLS installations of schemafor each component.

January, 2003 12

Desktop Management Interface Specification v2.01s

1.6 OPERATIONAL CHARACTERISTICS

The relationship among management applications, the DMI Service Provider and component instrumentation can exist
as a many-to-one-to-many relationship. There may be many management applications issuing commands through a
single DMI SP to manage many components. |f multiple management applications are active, each by have a
different language specified, requiring component instrumentation to support multiple languages simultaneously.

For purposes of identification, management applications must register with the DMI SP before they can participate in
management functions. Component instrumentation’s must install into the DM| SP once when first introduced to the
system. Components implemented using the Direct Interface MUST register with the DMI SP when they wish to
notify it of their immediate availability. The mechanics of "connecting" to the DMI SP to register or issue commands
may differ among operating systems and DM| SP implementations.

Control flow isusually initiated from the management application to the DMI Service Provider and on to the
component instrumentation. There may also be indications, which are unsolicited reports that flow in the opposite
direction.

There are three general categories of access commands: Get, Set and List. The Get and Set commands let
management applications read and write manageable entities within a system.

The List commands return "meta" information; information about the component MIF itself. The List commands do
not get the actual attribute values within the component. List commands allow a management application to get the
semantic information in aMIF. Since the DMI Service Provider gets MIF information from its MIF database, the List
commands do not cause any component instrumentation code to be invoked.

Along with these standard access commands are commands to register/unregister management entities, and allow
component instrumentation’s to generate indications.

Within DMI data structures, al strings are stored in the form <length> <data>, where <length> is an unsigned 32-bit
value giving the number of octetsin the <data> part of the string. Note that the number of charactersin the string
depend on whether it isin SO 8859-1 format (1 octet/character) or Unicode format (2 octets/character. In DMIv1.x,
String <data> values were not reguired to be zero-terminated as in the C programming language. For DMIv2.0, they
must be NULL terminated in addition to the <length> specifier.

Component instrumentation’s are serially re-usable, but they are not expected to be re-entrant.

The DMI does not provide primitives to own or lock resources over a sequence of commands. M ultiple management
applications may make simultaneous accesses to the interfaces described in this document. Grouping and scheduling
of operations, other than the synchronization provided by the DMI Service Provider, are the responsibility of the
management application. Likewise, any desire for mutual exclusion, to lockout certain accesses, or to provide DMI
database security in any form, isthe responsibility of the management application.

January, 2003 13

Desktop Management Interface Specification v2.01s

1.7 REMOTEABLE INTERFACE

The Data Block interface introduced in April of 1994 with DMI version 1 (DMIv1.x) uses asingle entry point
(‘Dmilnvoke’) and is passed a set of concatenated data structures. At the time DMIv1.x was created, it was felt that
this type of interface was needed for low level access such as when crossing protection rings in a protected processor,
interfacing to device drivers, and for easy packaging when remoting. The remoteable interface presents a procedural
interface as opposed to DMIv1.x’s block oriented interface. The procedural interface, in addition to being suitable to
remoting via one of the supported RPC mechanisms defined previously, is much friendlier to programmers and much
less error-prone.

RPC issues are limited to the opening and closing of remote sessions. Network-centric issues like transports, name
resolution, etc. are provided by the RPC services used and are outside of the scope of this specification.

The remotable interface (DM1v2.0) is designed to provide remote access to DMI functionality and data while hiding
the intricacies of manipulating the DMIv1.x datablocks. DMIv1.x often ‘batches together somewhat related
functionsinto single commands. This results in commands which return lots of related information and requires the
caller to pull out what they want. In DMIv2.0, calls are broken out functionally to provide specific information.
Therefore a given DMIv1.x command may equate to multiple DMIv2.0 commands, each one performing a specific
function.

RPC is based on aclient / server architecture. The client side includes a set of Stubs which have interfaces with the
same signatures as the function calls they represent on the server. The stubs interact with the local RPC support to
exchange the input parameters, the output parameters, and return codes with the remote procedure located at the
server. A Remote node acts as a client for procedural M1 function calls, and a server when receiving indications. The
node under management acts as a server for procedural M| function calls, and as a client when delivering indications
to aremote node.

Figure 1-4 shows the overall architecture for the remoteable interface. Note that the Cl isalocal interface and is not
remoted. Specific implementations of this specification may vary somewhat in the actual structure of the software
elements as shown.

MI + (Optional, Extensions)
DMI Service User
MI Client : Indication Server

RPC support

Remote Node

MI + (Optional, Extensions)
DMI Service User
MI Client : Indication Server

RPC support

A4

RPC support Local Node

______________ Aty = RSN

MI Server | Indication Client

DMI Service Provider

Optional CT (Local)

Figure 1-4. Remotable Interface Architecture

Certain elements of DMIv1.x are not present in DMIv2.0. The concept of concatenated command blocks has been
removed in DMIv2.0. DMIv2.0 isatotally synchronous call interface whereas DMIv1.x is asynchronous. Link level
security, new to DMIv2.0, is provided using the underlying RPC security mechanism.

January, 2003 14

Desktop Management Interface Specification v2.01s

1.8 SECURITY

DMIv2.0s defines a mechanism to control remote access to the DMI Management Interface and local accessto DMI
interfaces. The remote access control mechanism is defined on top of standard RPC mechanisms, whereas the local
access control mechanism is defined on top of operating system mechanisms. DMIv2.0s does not specify a standard
format for identities nor a cryptosystem to verify those identities, but relies on those provided through the RPC and by
the operating system. The main featuresintroduced by DMIv2.0s are authentication, role-based authorization, flexible
policy, security indications and logging. DMIVv2.0sis an extended version of DM1v2.0 specification. The bulk of the
DMI Security Extension appearsin Sections 10 through 18.

The DMI Security Extension is conditionally required. That is, if aDMI Service Provider implementation provides an
access control mechanism, it has to implement the DMI Security Extension as defined in this specification.

Note that DMI2.0s security is based on the security infrastructure provided by the RPC and the Operating System.
Therefore, if the security of the RPC or the Operating System is compromised, DM|2.0s security will be
compromised aswell. For example, if amalicioususer can circumvent the file system security and modify the MI F
database on a system, she could modify the DMI2.0s policy in the database to her advantage.

January, 2003 15

2. INFORMATION SYNTAX

Desktop Management Interface Specification v2.01s

2.1 MANAGEMENT INFORMATION FORMAT

Managed information is described in a simple format called the Management Information Format, or MIF. The MIF
defines components and their associated attributes. Filesthat contain information structured to MIF guidelines are
known as MIF files. Each instance of a managed component must provide a separate MIF file that describes the
manageable aspects of that component.

The MIFfileisatext filethat is "installed" -- presented to the DMI Service Provider for inclusion in the MIF
database. Modifications to the MIF file can be made with atext editor, although component providers are encouraged

to automate this process.

This section describes the MIF. The complete BNF syntax is specified in Section 2.2. A sample MIFfileisgivenin

Section 2.3

2.1.1 Lexical conventions

The MIF uses either the International Standards Organization document | SO 8859-1 (Latin Alphabet no. 1) or
Unicode 1.1 specification for its character sets. If aUnicode MIF is provided, the first octet of the MIF file must be
OXFE (hexadecimal), and the second must be OxFF. Otherwise the DMI Service Provider will treat the file asan

1S08859-1 MIF.

There are four classes of tokens: keywords, integer constants, strings (literals), and separators. Two keywords, start
and end, are scope keywords that are only useful when followed by another keyword. Blanks, tabs, new lines,
carriage returns and comments (collectively, "white space") as described below are ignored except asthey serve to
separate tokens. White spaceis required to separate otherwise adjacent keywords and constants.

The MIF is caseinsensitive in all cases except for literal strings (characters surrounded by double quote characters),

where case is retained.

Literal strings separated by white space are concatenated and stored as one literal string.

2.1.2 Comments

Comments may be placed throughout the file, and areignored. The start of a comment is denoted by two
consecutive forward slashes ("//"). The comment continues through the end of theline.

2.1.3 Keywords

The MIF uses the following keywords:

component
table

name

type

value
language
unsupported
gauge
string

date

winl6é
macos
read-only
direct-interface
pragma
unknown

January, 2003

group
path
description
class
access
start
counter
octetstring
integer
integer64
win32

0s2
read-write
common
win9x

attribute

counter64
displaystring
int

int64

dos

unix
write-only
specific
winnt

16

2.1.4 Datatypes

The MIF supports data types that describe the storage requirements as well as some semantics. The type can be:

Desktop Management Interface Specification v2.01s

DATATYPE

DESCRIPTION

integer (or int)
integer64 (or int64)
gauge

counter
counteré4

string (n) or
displaystring(n)

octetstring(n)
date

A 32-bit signed integer; no semantics known
A 64-bit signed integer; no semantics known

A 32-bit unsigned integer that may decrease or
increase

A 32-bit unsigned integer that never decreases
A 64-bit unsigned integer that never decreases
A displayable string of n octets

Note: For 8859-1, 1 octet/character;

For Unicode, 2 octets/character

A string of n octets, not necessarily displayable
A 28-octet displayable string, described below

A counter increases to its maximum value (232-1 or 264-1) and rolls over to zero at its maximum value. An

automobile's odometer is an example of a counter.

A gauge may increase or decrease, but when it reaches its maximum value (232-1), it continues to report the maximum

value until the value decreases below the maximum. An automobile's speedometer is an example of a gauge.

For the string types, the declared length n represents the maximum number of octetsin the string. The actual number
of octets in use may be shorter than this maximum value. displaystrings are required to be zero-terminated asin the

C/C++ programming languages. String lengths represent the number of octetsin the string for displaystrings and
include the terminating null character (Note, that in the case of Unicode a null character is 2 octets). In the case of

octetstrings the length n is the number of octetsin the string.

January, 2003

17

Desktop Management Interface Specification v2.01s

Implementation notes:

1) Intheimplementation of the string types the actual length of the string is computed and stored as part of the string
datastructure. See Section 5.3 for detalls.

2) Attributes whose values are Strings, OctetStrings, or DisplayStrings are required by the MIF syntax to specify a
maximum string length as part of their definition. However, in certain resource constrained environments, it is possible
that component instrumentation for such an attribute may implement a smaller maximum length for the attribute.
Therefore, consumers of MIF information must first ascertain the implemented maximum length of a string attribute
before operating on it, regardless of what the published MIF definition of the attribute might state. This may be done
through the use of the DmiListAttributes entry point that is defined in Section 6.2.6.

Dates are defined in the displayable format

yyyymuddHHWVBS. uuuuuu+o00
whereyyyy isthe year, nmis the month number, dd isthe day of the month, HHMVSS are the hours, minutes and
seconds, respectively, uuuuuu is the number of microseconds, and +ooo isthe offset from UTC in minutes. If east of
UTC, the number is preceded by aplus (+) sign, and if west of UTC, the number is preceded by a minus (-) sign.
Whilethisis only 25 octets, the date is stored as a 28-octet field for memory alignment reasons, and the last three
octets are zero (\0').

For example, Wednesday, May 25, 1994, at 1:30:15 PM EDT
would be represented as. 19940525133015. 000000- 300

Values must be zero-padded if necessary, like "05" in the example above. If avalueis not supplied for afield, each
character in the field must be replaced with asterisk (*') characters.

2.1.5 Constants

Integer values may be specified as in the C/C++ programming languages:

SYNTAX BASE
nnn decimal
Onnn octal
Oxnnn or 0Xnnn hexadecimal

wherenisadigit in the proper base.
The MIF does not support floating point values.

Literals (strings) are character sequences surrounded by double quotes. Adjacent double quote characters (besides
white space) indicate multi-part literals that are treated as one string. For example:
"This is an exanpl e"

" of a multi-part”
" literal string."

Theliteral escape character is the backslash. It isused asin C/C++, to enter the following characters:

January, 2003 18

Desktop Management Interface Specification v2.01s

SEQUENCE HARACTER

\a alert (ring terminal
bell)

\b backspace

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\" double quote

\xhh bit pattern,
hexadecimal

\ooo bit pattern, octal

For the octal bit pattern, ooo can be one, two or three octal digits (from \0 to \377) when the MIF is specified in
1S08859-1 format, and from one to six octal digits (from \0 to \177777) when the MIF isin Unicode format.

For the hexadecimal bit pattern, hh can be one or two hex digits (from \x0 to \xff) when the MIF is specified in
1S08859-1 format, and from one to four hex digits (from \x0 to \xffff) when the MIF isin Unicode format.

If the character following a backslash is not one the letters specified in the above table, the backslash is being used as a
quoting character. This use of the backslash is necessary to quote characters in those situations where those characters
might otherwise trigger inappropriate syntax processing to occur e.g. theinclusion of a™" (double-quote) character in a
string is not possible without quoting, since ™' characters are used to delimit strings.

The rules for using the '\ (backslash) character as a quoting character are as follows :

- Any printing character other than a,b,f,n,r.t, and v, may be quoted by prefacing it with the'\' character. In
particular '\' may be used to quoteitself by using "\\'.

-In nested strings, the charactersin the inner strings that might interfere with the parsing of the outer string
must be quoted

- If strings are nested more than two deep, then the quoting character must itself be quoted a number of times
that is equal to the nesting depth minus one. e.g.

"This is a first level string containing \"A second |evel string"
" and \\\"a third level string\\\"\""

In this example the "' characters quoting the second level string are quoted. In thethird level string the '\
character that quotes the "' characters must itself be quoted as'\\'.

-Non printing characters must be provided by their escaped octal or hexadecimal forms as described above.

January, 2003 19

2.1.6 Block scope

The keywords start and end delimit the scope of a definition block. An associated keyword must follow both start
and end. The keywords and their scope are:

Desktop Management Interface Specification v2.01s

BLOCK WITHIN DESCRIPTION

component MIFfile defines acomponent. All other blocks exist within this scope. There can be only one
component definition per MIF file.

path component associates a symbolic string with operating system-specific path names. Zero or more
path definitions may exist in the MIF, usually at the top of the file before any groups.

group component defines a collection of attributes, sometimes used as a template row for atable. At least
one group is required per MIF file (the ComponentID group, defined below).

attribute group defines a unit of managed data. All attributes "exist" within the scope of a group
definition. A group must have at least one attributein it.

table component defines one or more instances of a group using a previously defined group. Optional.

enum ;ﬂmgotnent o |definesalist of integer-to-string mappings. Named enumerations

rbute can be defined at the component level, while unnamed

enumerations can be defined within the scope of an attribute
definition. Optiona (but while many enum definitions can exist at
the component level, only one can be defined per attribute)

Here's an example of the structure of a MIF file. For readability, only one of each block isgiven. Each level is

indented for readability:

start conponent

start path
end path
start enum
end enum
start group
start attribute
start enum
end enum
end attribute

end group

start table

end table
end component

2.1.7 Language statement

Thelanguage statement is used to describe the native (human) language of the MIF file. This statement appears

before the start component statement. The syntax is

| anguage = "l anguage string"

where language string is atext string that identifies the language, dialect (as territory) and character encoding. The

format of language string is:

| anguage- code| territory-code| encodi ng

where language-code is one of the two-letter codes defined in SO 639, territory-code is one of the two letter codes
defined in SO 3166, and encoding is either is08859-1 or unicode. For example, the language string:

“fr|CAli s08859-1"

indicates French Canadian, with 1SO 8859-1 (8-hit) encoding.

If any fields are not supplied, they are simply omitted, but the two vertical bars must appear in the string. The default

language string is" en| US| i s08859- 1" .

The encoding field isignored in the MIF file because the first two bytes of the file determine the encoding. However

the field is used when communicating through the M1.

January, 2003

20

Desktop Management Interface Specification v2.01s

The language statement may appear only once per MIF file.
Samples of the codes defined in the two 1SO standards are in Sections 2.4 and 2.5.

A note on localization: MIF filesthat have been translated (localized) should translate only literal strings such as
names, descriptions and enumeration literals, and any comments within the MIF. Neither class strings nor language
names may belocalized. Keywords must not be localized.

2.1.8 Common statements

The following three statements can be used within the scope of most definitions, as noted. Definition-specific
statements are described when the definition is described.

2.1.8.1 NAME STATEMENT
The required name statement is used inside the scope of a definition to assign arelatively short string to the definition.
The name is normally used for display to users, and must be less than 256 characters. The syntax is:

name = "nanme string"

where name string is defined by the MIF file provider. However, users may edit the MIF file and change the name.
The name statement may appear only once per definition. Names are not required to be unique except for enumeration
and path names, which must be unique among other enum (and path) names within a component.

2.1.8.2 DESCRIPTION STATEMENT
The optional description statement is used inside the scope of a definition to give more information about the element
being defined. The description is used for display to users. The syntax is:

description = "description string"

where description string is defined by the MIF file provider. However, users may edit the MIF file and change the
description.

The description statement is used in the component, group and attribute definitions. The description statement may
appear only once per definition.

2.1.8.3 ID STATEMENT
Theid statement is used inside the scope of a definition to assign a unique numeric identifier for the definition. Each
type of definition that is required to have an id must have aunique id within its scope. Theid is used for naming items
at the API level, and for mapping to network management protocols. The syntax is:
id=n

where n is defined by the MIF file provider. The value of n must be a non-zero 32-bit unsigned integer, and must be
unique within the scope of the containing definition. For example, all attributes within a group must have different
IDs, but attribute IDs do not need to be unique across groups. Since components and management applications use
these IDs for communication, users may not change them.

Theid statement is required in the attribute and table definitions. It isoptional in the group definition. Itisnot usedin
the component, path and enum definitions. While components have I1Ds, they are assigned by the DMI Service
Provider at installation time. The id statement may appear only once per definition.

2.1.9 Component definition

The component definition has the following syntax:

start conponent
name = "conponent name"
[description = "description string"]
[pragma = “pragma string”]
(conmponent definition goes here)

end conponent

Only one component definition may appear in aMIF file.

2.1.10 Path definition

Path definitions are used to locate the files used for active management of the component. The definition begins with
the statement start path, followed by a name statement that defines a symbolic name, and a number of lines equating

January, 2003 21

Desktop Management Interface Specification v2.01s

operating system identifiers to the path of the callable program. The symbolic name may be used later in attribute
definitions, indicating that the value for the specified attribute should be retrieved or set by invoking the associated
callable function. The path definition ends with the keyword end path.

The operating system identifiers are dos, macos, 0s2, unix, winl6, win32, win9x, and winnt. Caseis not significant.

NOTE: Use of the Win32 keyword implies that the instrumentation in question will function on either Windows 9x or
Windows NT. Using the specific keywords: win9x or winnt implies that the component will ONLY run on that
environment.

If the component instrumentation is provided by code that will connect to the DMI Service Provider (as opposed to
having the SL start the code at request time), the keyword dir ect-inter face may be supplied instead of a path name.

Here's an example:

start path
name = "Performance Info Instrumentation Code"
winl6é = "C:\\sonepl ace\\w ncode. exe"
0s2 = "C:\\sonepl ace\\ os2code. dl | "
dos = "C:\\sonepl ace\\ doscode. ovl "
unix = direct-interface
end path

Many path definitions may appear within the component definition; potentially one for each callable function. The
path name must be unique among all other path names in this component definition.

See the sample MIF (Section 2.3) for usage of the symbols defined in the path definition.

2.1.11 Enum definition

Enumerated lists allow strings to be associated with signed 32-bit integers. They are defined within the component
scope or within the scope of individual attributes. These enumerations are primarily used by component
instrumentation to pass integers through the DMI, so management applications can display the corresponding text
string in the user's native language.

The syntax of enumerated listsis:

start enum

name = "enum name"

vvv = "string literal for vvv"

[xxx = "string literal for xxx"]
end enum

"enum name" is a unique enumeration list name within this component.

Integer values vwv and xxx above can be listed in any order and do not have to have every number represented between
the lowest and highest listed. However each value must be unique within this enumeration definition.

Many enum definitions may appear within the component definition; one for each enumeration list. Enumerations do
not have id or description statements.

2.1.12 Group definition

A group isacollection of one or more attributes. Groups let component providers arrange attributes into logical sets.
Groups can a'so be used to represent arrays (tables) of attributes. The use of groups allows logical subsets within a
component to be standardized across vendors.

January, 2003 2

Desktop Management Interface Specification v2.01s

The syntax of agroup definition is:

start group
name = "group name"
class = "class string"
[id = nnn]
[description = "description string"]
[key = nnn[,mj...]
[pragma = “pragma string"]
(attribute definitions go here)

end group

Theid statement, if provided, must have a value unique among other groups within the component. Specifying a group
id without a key means that this group definition defines agroup. If both id and key are provided, the group definition
represents a table but that group is not necessarily supported by component instrumentation code. Groups that provide
both an id and key can be used again later as atemplate in the creation of atable.

If the key statement is provided and the id statement is not provided, the group definition represents atemplate row in
ato-be-defined table, and the value statements (defined below) refer to default values within therow. A table
definition may follow to populate the table based on the template. See the section 2.1.16 on table definition for more.

The following table describes the possibilities:

KEY? | ID? RESULT
No No error
No Yes | scalar group (not atable. Idisthe group's|D)

Yes No | template (table definitions may follow)
Yes Yes | table(Idisthetable's|D. Can be used as atemplate later)

Many groups may be defined within the component.

2.1.12.1 CLASS STATEMENT
The required class statement is used inside a group definition to identify the source of the group and the group version.
All groups using the same class string must share the same attribute definitions within the group, including attribute
type, access, storage (defined below) and IDs. The attribute name, description and value may be different, however.
This assists management applications in determining the semantics of the group's attributes. Groups are identified as
unique only by their class string, not their Group ID. So management applications must retrieve the alocated ID of a
group by using its unique class string in a List command (refer to Section 6).

The class statement syntax is:
class = "class string"
where, by convention, class string is encoded as
"defining body|specific nane|version"

In this convention, defining body is the name of the organization (such as"DMTF", "IEEE", "Acme Computer”, etc.)
defining the group; specific name identifies the contents of the group ("Server Stats', "Toaster Controls’, etc.) and
version identifies the version of the group definition (001, 002, 003 etc.).

Essentially the class string is an opague string, and any convention may be used. However, since applications and DMI
Service Providers might rely on this convention for obtaining information via the List Component command,
component providers are encouraged to use this convention.

It isan error to specify the same class string for two groups if the group definitions are different. Management
applications can count on identical group definitions for identical class strings.

Note that " DMIF| Sanpl e| 001" isnot thesameas" DMIF | Sanple | 001" asone has spaces around the vertical
bars and the other does not.

Implementations that provide a subset of the attributes defined by a class must use the unsupported keyword within
the attribute definition (defined below).

Only one class statement is allowed per group.

January, 2003 23

Desktop Management Interface Specification v2.01s

2.1.12.2 KEY STATEMENT
When the attributes in a group define arow in atable, the group definition must contain akey statement to define the
attribute ID(s) that is (are) used as the index into the table. Attributes that act as keys may be of any datatype. Keys
always identify no more than one instance of agroup (row of atable).

The key statement syntax is:
key = n[,ni
where nisthe attribute ID that acts as the key for thistable. If multiple attributes are used to index atable, they should

be specified as comma-separated integers. When management applications send requests or component
instrumentation’s send results, key values must be sent in the order that they are listed in the key statement.

Only one key statement is alowed per group.
2.1.13 Pragma statement

Pragma definitions are used to provide additional information about the Component, Group or Attribute. Asfar asthe
DMI Service Provider is concerned the <MIF Literal> which is the value of the pragmais simply an opague octet
string. However, by DMTF convention the content of the octet string is structured in the following way:

<Pragma String> =
{ <Pragma Keyword> ':' <Parn» { ',' <Parme }* ';' }*

where <Pragma Keyword>, and <Parm> contain any literal character allowed by Unicode or 1SO 8859-1, EXCEPT the
characters™',")",";', '|'and ™" in any encoding unless inserted in the string as

their quoted formsi.e. \:',"\,,'\;, '\|'and \"' respectively, OR

their escaped hex or octal bit pattern equivalentsi.e. in the form \nnn where the n's are octal digits, or
\xmm where the m's are hexadecimal digits.

At thistime four <Pragma Keyword>s are defined, namely:

SNMP: This keyword takes avalue that isan SNMP OID of the form n.n.n.....n.n, where the n's are positive integers.
It isintended to help in the DMI-SNMP trandation process. This Pragma keyword has meaning only in the context of
a Group definition.

Dependent_Groups. This keyword takes a comma-delimited list of one or more class strings asitsvalue. It has
meaning only in the context of a Group definition. The class strings in the value of this keyword identify the other
Groups that must be implemented for this Group to be functional or meaningful. The class strings that are provided as
values for this keyword may have null (wild-carded) portions. For example, in atypical case, anull version field
implies that the dependency exists on any groups with the same defining body or specific name portions of the class
string.

Implementation_Guideline: This Pragma keyword may take one of the three following values: REQUIRED,
OPTIONAL, or OBSOLETE. It has meaning only in the context of a DMTF Standard Group definition.

- The value REQUIRED indicates that the working committee that defined this standard group thought it
important that it be implemented.

- The value OPTIONAL indicates that the working committee that defined this standard group wished to allow
implementors the option of not implementing it.

- The value OBSOLETE indicates that the working committee that defined this standard group recommends
that new products should implement the new group that replaces this group, other than this group which has
been superseded.

NOTE: This does not invalidate implementations of this group that are already in the field. Management Apps will
have to continue to recognize and utilize this obsol ete group as well as its successor.

Here is an example of a Pragma statement in a Group definition:

start group
nane = " ABCD"
class = "DMIF| ABCD| 001"

January, 2003 24

Desktop Management Interface Specification v2.01s

b.r.agrm = "Dependent _Groups:\"DMIF| FRU\"; "
"1 npl ement ati on_Gui del i ne: REQUI RED; "

end group

This example pragma definition states that the dependent group for DM TF Standard Group "ABCD" has the class
string "DMTHFRUJ". This means that implementing the group "ABCD" is not meaningful unless the group
represented by "DMTF|FRU|" has also been implemented. Note that the version number of the dependent group has
been wild-carded and that the ™' and the '|' characters were quoted using '\'. Furthermore, the
Implementation_Guideline states that the DM TF working committee, which defined group "ABCD", felt that it was
required for implementation

Reg_Key: The syntax for this keyword is as follows:
Reg_Key : <Reg_Key_Val ue> ;

wher e
<Reg_Key_Val ue> ::= <Reg_Key_Parnm> <M F Literal >
<Reg_Key_Parnme ::=

REG VALUE | REGDLL | REG VXD | REG NONE
<M F Literal > ::= <as defined in the MF grammar>

The<M F Li t er al > field may be any legal, properly constructed, embedded string in the form prescribed by
Section 2.1.5 (Constants). In other words, the characters":' (colon), ',' (comma), and ';" (semi-colon) must be properly
quoted, if they occur, by using the'\' (backward slash) character.

The <Reg_Key_Par n¥ field may take one of the four following values: REG_VALUE, REG_DLL, REG_ VXD, or
REG_NONE.

- Thevalue REG_VALUE indicates a value link to an existing data provider.

- Thevalue REG_DLL indicates avalue link to a dynamic link library data provider.

- The value REG_V XD indicates avalue link to adynamic device data provider.

- The value REG_NONE indicates that a value link should not be generated for this attribute.

The value of the Reg_Key pragmaisintended to help in the MIF-to-Registry translation process in the Microsoft
Windows environment. It isused to provide an indirect value link into the Registry when an attribute value is provided
by instrumentation. For further information on this Pragma Keyword, and its usage, please refer to the latest Microsoft
documentation. This pragma has meaning only in the context of an Attribute definition.

January, 2003 25

Desktop Management Interface Specification v2.01s

2.1.14 Attribute definition

An attribute is a piece of datarelated to acomponent. Attributes are defined within the scope of agroup. The syntax
of the attribute definition is:

start attribute

name = "attribute name"
id = nnn
[description = "description string"]

type = datatype
[access = net hod]

[pragma = “pragma string”]
[storage = storagetype]
[value = [v | * "name" | "enum string"

| unsupported | unknown]]
end attribute

Therequired id statement must have a value that is unique among all other attributes within the group.
Groups must have at least one attribute definition. Many attribute definitions may appear within the group definition.

2.1.14.1 TYPE STATEMENT
The required type statement in the attribute definition describes the storage and semantic characteristics of the attribute
being defined. The syntax is:

type = datatype

where datatype is usually one of the data types previously defined in Section 5.
A data type may be an enumeration; stored and treated as a signed 32-bit integer. Enumerations that have been
previously defined (at the component level) can be referenced by name asif they were atype, for example: t ype =
"Col or". Enumerations may also be constructed “in line":

type = start enum
(enum definition)
end enum

In this case the enumeration does not need a name since it cannot be referred to outside the scope of this attribute
definition. Any name given isignored.

Only one type statement may appear within the attribute definition.
2.1.14.2 ACCESS STATEMENT
The optional access statement determines whether the attribute value can be read or written. The syntax is:
access = net hod
where method may be read-only, read-write, or write-only. If the access statement is not specified, the default access

isread-only. Attributes marked as keys may not be write-only. Only one access statement may appear in the attribute
definition.

2.1.14.3 STORAGE STATEMENT
The optional storage statement provides a hint to management applications to assist in optimizing storage
requirements. The syntax is:

storage = where
where may be common or specific. Common signifies that the value of this attribute is typically limited to asmall set
of possibilities. An example of common may be the clock speed of a CPU. Specific signifiesthat the value of this

attribute is probably not a good candidate for optimization because there may be alarge number of different values.
An example of a specific attribute would be a component's serial number.

If the storage statement is not specified, the default storage is specific. Only one storage statement may appear in the
attribute definition.

January, 2003 26

Desktop Management Interface Specification v2.01s

2.1.14.4 VALUE STATEMENT
The value statement provides a value or value access mechanism. The syntax is:

value = v

val ue = "enuneration val ue"
value = * "Nane"

val ue = unsupported

val ue = unknown

Thevalue v isfor read-only attribute values that never change, such as the manufacturer of acomponent, or for read-
write attributes that the DMI Service Provider will handle, as opposed to the component instrumentation. Itisillegal to
specify v for write-only attributes. It must be specified in the correct data type for the attribute; for example dates and
literal strings must be specified within double quotes.

The value "enumeration value" (atext string enclosed in double quotes) is an enumeration text string that the DMI
Service Provider will map to an integer. The mapping must have been previously defined in an enum definition within
this component or attribute definition, and the attribute’ s type must be an enumeration. Note that specifying an integer
for an enumeration is acceptable.

When reading an enumerated value, there is no guarantee that a mapping exists for that value. Both static and dynamic
(instrumented) values may be outside the range of known mappings. This means that Management Applications
looking for a mapping must be prepared for the case where the mapping does not exist, and take appropriate action.
For example, an application may choose to display the string representation of the enum value. Note: in generd itis
not considered good practice to return enumerated values that are outside the known range of values, since this reduces
the semantic value of the enumerated type.

Thevalue* "Name" (aname with "*" before it and surrounded by double quotes) indicates the symbolic name of the
component instrumentation code to invoke to read or write the attribute at run time. The symbolic name must have
been previously defined in a path definition within this component definition.

The value unsupported (areserved keyword) can be given to tell the DMI Service Provider that this attribute is not
supported by this component.

The value unknown (areserved keyword) can be given to tell the DMI Service Provider that this attribute is normally
supported, but currently unknown.

The vaue statement is required except when defining table templates, in which caseit isoptiona. If avalueis
provided within atemplate, it becomes the default value when populating the table. If it isnot provided, thereisno
default value.

2.1.15 Group example

Here's an example of a group with two attributes:

Start G oup
Name = "Software Tenpl ate"
Class = "DMIF| Sof t war e Exanpl e| 001"
Key =1 /1 key on Product Nane
Pragma = "SNWP: 1.2.3.4.5.6"
Start Attribute
I D 1
Nare " Product Name"

Description "The nane of the product”
St or age Common
Type String(64)

End Attribute
Start Attribute

ID =2
Nanme = "Product Version"
Description = "The product's version nunber"
Type = String(32)
Val ue ="
End Attribute

End Group

In this example, the group is acting as atemplate, because thereis no group id and because akey is specified. The
default value for the version is an empty string. There is no default for the product name.

January, 2003 27

Desktop Management Interface Specification v2.01s

2.1.16 Populating tables

An array of group instancesis considered atable. Theinstances are rows of the table. Often simply defining the group
with akey is sufficient for defining the table, since the values of the attributes within each row are provided by the
component. However, sometimesit is useful to provide the table's values within the MIF fileitself, just asit is
sometimes useful to define values within an attribute definition.

The table population mechanism separates the definition of the group from the data in the group. It uses a previously
defined group as atemplate to store values into the MIF database. The syntax to populate tablesis:

start table

id = nnn
class = "class string"

{ vi[,v2 ...] }
[{ vn[,vm...] } 1]

end table

A name statement must be supplied that describesthistable. The required id statement specifies an integer value
unique across all other groups and tables within this component. The required class statement identifies the previously
defined group that is being used as atemplate.

A group definition specifying both an ID and a Key list defines an empty (zero row) table. The value statements on the
attribute definitions do not implicitly define atable row. To initialize atablein the MIF grammar, use the MIF table
statement, as described in this section.

Within atable row, the values are provided as in Section 2.2 separated by commas and surrounded by the curly braces
"{"and"}". Thelist of valuesis provided |eft-to-right in attribute-1D order; the value of the attribute with the lowest
1D appearing first. If avaluewithin thelist is omitted, the corresponding attribute value, if defined in the template, is
used asthe "default” value. Itisillegal to omit an attribute’ s value when no default value was provided in the templ ate.
Rows with too few commas are treated as rows with the requisite number of trailing commas, so the values specified in
the template are used for the remaining attributes in the row.

Here's an example of populating a table using the group defined in Section 2.1.15.

Start Table
Nane "Sof tware Tabl e"

Cl ass " DMTF| Sof t war e Exanpl e| 001"

Id 42

{"Circus", "4.0a"}

{"Disk Blaster", "2.0c"}

{"deo", "3.0"}

{"Presenter", "1.2"}

End Tabl e

In this example, the resulting table has four rows. The value statements in the group definition are used as default
values during row population and not as arow themselves.

It isan error to populate rows without providing unique values for the combination of attributes that comprise the key.
DMI Service Providers must reject a MIF that does not provide unique keys during row population.

A table definition must come after the group definition to which it refers. The group must have been specified with a
key statement, and without an id statement. More than one table may be created from a single template but each table
must have a different id.

January, 2003 28

Desktop Management Interface Specification v2.01s

2.2 MIF GRAMMAR

The MIF grammar below is expressed in BNF notation, based on the following rules:

1. Items are enclosed in less than and greater than symbols ("<>").

2. Anitemisdefined in terms of other items by identifying the item (<item>), using the symbols"::=" and
following with alist of one or more other items (<item1> ::= <item2>).

3. Items not inside of less than and greater than signs (<>") are considered literals and entered exactly as
they are defined. Single character literals are enclosed in apostrophes ().

4. Anitem enclosed in brackets ("[]") is optional.
5. Anitem enclosed in braces with an asterisk ("{}*") is present one or more times.

The MIF grammar is as defined as follows:

<M F Source File> ::= <Language> <Conponent Definition>

<Language> 11 = Language '=' <Language String>
<Language String> ::= <MF Literal >

<Conponent Definition> ;1= Start Conponent

<Conponent |dentification>
<Conponent Body>
End Conponent

<Conponent |dentification> ::= Nane '=' <Conponent Name>
<Conponent Nane> ::= <MF Literal>
<Conponent Body> ::=[<Description>] |

[{ <Path Definition > }*]
[{ <G obal Enuneration Defn> }*] |
{ <Goup Definition> }* |
[{ <Table Definition> }*] |
[<Pragnme Statenent>]
(Note: These statenments may be in any order.)

<Descri ption> ::= Description '=" <Description Text>
<Description Text>::= <MF Literal >
<Path Definition> ::= Start Path

<Path ldentification>
<Pat h Body>

End Path
<Path ldentification> ::= Nane '=' <Instrumentation Synbolic Name>
<l nstrunmentation Synbolic Name> ;1= <MF Literal >
<Pat h Body> ;1= <Path Body> <Path Statenent> |
<Pat h St at ement >
<Path Statement> ::= <OS Name> '=' <Path Val ue> |
<0S Nanme> '=' Direct-Interface
<0S Nane> 0= DOS| MACOS | OS2 | UNIX | WN16 | WN32 |
W N9x | W NNT
<Path Val ue> ::= <MF Literal >
<A obal Enumeration Defn> ;1= Start Enum

<Enuneration ldentification>
[<Enuneration Type>]
<Enuner ati on Body>

End Enum

January, 2003 29

Desktop Management Interface Specification v2.01s

<Enuneration ldentification> ::= Nanme '=' <Enuneration Nane>
<Enuneration Name> ::= <M F Literal >

<Enuneration Type>::= Type '=" Int[eger]

<Enuneration Body> ::= <Enuneration Body> <Enum St at ement > |

<Enum St at emrent >

<Enum Statenment> ::= <MF Integer> '=" <Enum Synbol Nane>
<Enum Synbol Nane>::= <M F Literal >
<Group Definition>::= Start Goup

<Group ldentification>

<G oup Body>

End G oup

<Group ldentification> ::= <G oup Narme Statenent>

<Cl ass Statenent>

[<ID Statenent>]
(Note: These statenents may be in any order.
If <Id Statenent> is onitted, the group is a
tenplate definition.)

<G oup Name Statenent> 1= Name '=' <Group Name>
<G oup Nane> ;= <MF Literal >

<Class Statenment> ::= Class '=" <Cass String>

<Cl ass String> ::= <MF Literal >

<I D Statenent> = 1ID"'=" <MF ID>
<Group Body> 1= [<Description>]

[<Key Statenent>]
[<Pragne Statement>]
{ <Attribute Definition> }*
(Note: These statenents may be in any order. |If
this is a tenplate definition, <Key Statenent>
is required.)

<Key Statenent> 1= Key '=' <Key List>
<Key List> :1= <Key List>, <Key> |
<Key>
<Key> :i= <Attribute ID>
<Pragma Statenent>::= Pragma '='" <Pragma String>
<Pragma String> ;1= <MF Literal >
<Attribute | D> 1:= <MF ID>
<Table Definition>::= Start Table
<Tabl e ldentification>
<Tabl e Body>
End Tabl e
<Tabl e ldentification> ;1= <Tabl e Nane Statenent>
<Cl ass Stat enent >
<I D Statenent>
(Note: These statenments may be in any order.)
<Tabl e Nane St atenent > 2= Nane '=' <Table Nane>
<Tabl e Nane> ::= <MF Literal >
<Tabl e Body> 11 = <Tabl e Body> <Tabl e Row> |
Tabl e Row>
<Tabl e Row> 1= '{' <Table Row List> '}"

January, 2003 30

Desktop Management Interface Specification v2.01s

<Table Row List> ::= <Table Row List>, [<Table Item] |

[<Table Itenp]
<Table Itenm> 1= <Constant Expression>
<Const ant Expressi on> ::= <Enum Synbol Name> |

'*' <Instrumentation Synbolic Name> |
<M F Counter> | <M F Counter64> |
<M F Date> |

<M F Gauge> |

<M F CctetString> |

<M F DisplayString> |

<M F Integer> | <MF Integer64>

<Attribute Definition> 1:= Start Attribute
<Attribute ldentification>
<Attribute Body>
End Attribute

<Attribute Identification> 1:= <Attribute Nane Statenent>
<|I D Statenent>
(Note: These statenents may be in any order.)

<Attribute Nane Statenent> ;= Nane '='" <Attribute Nane>
<Attribute Name> ::= <M F Literal>
<Attribute Body> = [<Description>]

[<Access Statenent>]
[<Storage Statenent>]
<Type St atenent>
[<Vvalue Statenent>]
[<Pragnme Statenent>]
(Note: These statenents may be in any order,
but the <Value Statenent> nust appear
after the <Type Staterment>. The <Val ue Statenent>
is optional for tenplates, and required otherw se.)

<Access Statement> ::= Access '='" <Access Type>
<Access Type> 1= Read-Only |
Read-Wite |
Wite-Only |
<St orage Statement> ::= Storage '=' <Storage Type>
<Storage Type> ;1= Specific |
Common
<Type Statement> ::= Type '=' <Attribute Type>
<Attribute Type> ::= <Enuneration Nane> |

<Local Enuneration Defn> |
Counter | Counter64 |

Date |

Gauge |

CctetString <String Size> |
Di splayString <String Size> |
String <String Size> |

Int[eger] | Int[eger]64
<String Size> ::="'(" <Unsigned Integer>")"
<Val ue Statement> ::= Value '=' <Constant Expression> |

Val ue '=' Unsupported

Val ue ' =" Unknown
<Local Enuneration Defn> 1:= Start Enum

[<Enuneration ldentification>]
[<Enuneration Type>]

<Enuner ati on Body>

End Enum

January, 2003 31

<M F Literal >

<Literal Char>

Desktop Management Interface Specification v2.01s

{ <Literal

: = <Escape Char> |
<Any |SO 8859-1 Char> |
<Any Uni code Char>
(Not e:

Char> }* '"*

character encoding cannot be m xed:

use | SO 8859-1 or Unicode, but not both).
<Escape Char> ;1= <Character Escape> |
<Cctal Escape> |
<Hexadeci nal Escape>
<Character Escape>::= '\' <Literal Escape Char>
<Literal Escape Char> e I R - U e o N |
el ettt v] X
<Cctal Escape> :1="\" <Cctal Digit>{ <Cctal Digit> }*
<Hexadeci mal Escape> 1= '"\x' <Hex Digit>{ <Hex Digit> }*
<M F | D> := <Unsi gned Integer (Non-Zero)>
<M F Count er > ;1= <Unsigned | nteger>
<M F Count er 64> ::= <Unsigned I|nteger>
<M F Dat e> 1= <MF Literal >
(Note: The contents of the literal is in the format
described in Section 2.1.4, Data types)
<M F Gauge> ::= <Unsigned |nteger>
<M F CctetString> ::= <MF Literal >
<M F Di spl ayString> ;1= <MF Literal >
<M F I nteger> ;= <Integer>
<M F | nt eger 64> 11 = <Integer>
<l| nt eger > ;1= <Decimal Integer> |
<Cctal Integer> |
<Hexadeci mal | nteger>
<Decimal Integer> ::=[<Sign>] <Decinmal Digit>{ <Decinmal Digit> }*
<Cctal |nteger> ::='0" <Cctal Digit>{ <Cctal Digit> }*
<Hexadeci nal | nteger> 11= '0x' <Hex Digit> { <Hex Digit> }* |
'0OX <Hex Digit>{ <Hex Digit> }*
<si gn> = e oo
<Unsigned Integer>::= <Decinal Digit> { <Decinmal Digit> }*
<Cctal Integer> | <Hexadecimal |nteger>
<Cctal Digits N N BTN R B¢ 4| s e T
<Decimal Digit> 1= <Cctal Digit>] '8 | '9
<Hex Digit> ;1= <Decimal Digit>| "A ‘B | 'C | 'D |
Bl CCE | ta | b]t |t | e |

<Any | SO 8859-1 Char>

<Any Uni code Char> "From Unicode 1.1

January, 2003

"From | SO 8859-1 First Edition 1987-02-15

Ref erence nunber

speci fication"

1 SO 8859-1: 1987 (E)"

32

Desktop Management Interface Specification v2.01s

2.3 SAMPLE MIF

/1

/1 SAMPLE M F FOR THE FI CTI oNAL ACS- 100
/1 MFG. BY ANY COWPUTER SYSTEM, | NC.

/1

START COVPONENT

Nave = " ANy CowPUTER SYSTEM MoDEL 100"
DESCRI PTION = " THI S COVPONENT REPRESENTS THE BASE CONFI GURATI ON"
" OF A SYSTEM MANUFACTURED BY ANY COMPUTER, | NC. "
" THREE GROUPS ARE | NCLUDED: "
" THE COWPONENTI D GrOUP, "
"THE SERVICE GROUP, AND "
" THE SYSTEM CHASSI S GROUP. "
START PATH
NaVvE = " CHAssI S Group Cope"
Dos = "C: \\ AN\ \ DOs\ \ cHAsSI S, ovL"
WN16 = "C: \\ AN\ \ wN3X\ \ cHASSI S, DLL"

END PATH
11
/'l CovPONENT | D GRouP
11
/1 TH S 1S THE REQUI RED GROUP CONTAI NI NG THE
/1 REQUI RED ATTRI BUTES FOR ALL COMPONENTS.
11
START GROUP
Nave = " COVPONENTI D'
ID=1

CLass = " DMIF| CowponenTl D] 001"
/1 TH'S GROUP IS DMIF SANCTI ONED
DESCRI PTION = " TH' S GROUP DEFI NES ATTRI BUTES COMMON TO ALL"
" COWPONENTS. THI'S GROUP |'S REQUI RED. "

START ATTRI BUTE

NAMVE = " MANUFACTURER"

ID=1

AcCCESs = ReAD- OWLY

STorRAGE = COWON

TYPE = STRING 64)

VALUE = " ANy COWPUTER SYSTEM, | NC. "
END ATTRI BUTE

START ATTRI BUTE
Nave = " ProbucT"
ID= 2
ACCESS = ReAD- OWLY
STorAGE = COWON
TYPE = STRING 64)
VALLE = "ACS-100"
END ATTRI BUTE

START ATTRI BUTE

NAMVE = " VERSI ON'
ID=3

January, 2003 33

END ATTRI BUTE

Desktop Management Interface Specification v2.01s

AcCCESs = ReAD- OWLY
STORAGE = SPECIFIC
TYPE = STRING 64)
VALLE = "V123"

START ATTRI BUTE

END ATTRI BUTE

NAMVE = " SERI AL NUVBER"

ID=4

AcCCESs = ReAD- OWLY

STORAGE = SPECIFIC

TYPE = STRING 64)

VALLE = "1234567890ABCDEF"

START ATTRI BUTE

END ATTRI BUTE

NAVE = " | NSTALLATI ON"

ID=5

ACCESS = READ- O\LY

STORAGE = SPECIFIC

TyPE = DATE

DESCRI PTION = " THE TI ME AND DATE OF THE (LAST) |INSTALL OF "
" THE COVPONENT"

VALUE = "19930629100000. 000000- 300"

START ATTRI BUTE

END ATTRI BUTE

END GrOUP

NAMVE = " VERI FY"
ID=6
ACCESS = READ- O\LY
STORAGE = SPECIFIC
TYPE = | NTEGER
DESCRI PTION = " A CODE THAT PROVI DES A LEVEL OF VERI FI CATION "
" THAT THE COMPONENT IS STILL | NSTALLED AND WORKI NG. "
VALUE = UNKNOMN

/1 DMTF| CovroneNnTl Dj 001

/'l SERVI CE GrROUP

START GROUP

THE SERVI CE GROUP CONTAI NS | NFORMATI ON REGARDI NG THE SERVI CI NG OF
THI'S SYSTEM

NaVE = " SERVI CE GROUP"

ID= 2

CLAss = " ANYCovPUTER| SYSTEMGROUP| 001"

DeESCRI PTION = " THE SERVI CE GROUP CONTAI NS | NFORMATI ON"
" ABOUT THE SERVICING OF THI' S SYSTEM "

START ATTRI BUTE

January, 2003

Nave = " SERVI CE TAG No. "
ID=1

ACCESS = ReAD- O\LY
STORAGE = SPECIFIC

END ATTRI BUTE

Desktop Management Interface Specification v2.01s

TYPE = STRING 64)
VALLE = "1234567890ABCDEF"
DESCRI PTION = " SERI AL TAG NUMBER. "

START ATTRI BUTE

END ATTRI BUTE

NAMVE = " WARRANTY START DATE"

ID= 2

AcCCESs = ReAD- OWLY

STORAGE = SPECIFIC

TYyPE = DaTE

VALUE = "19930107093000. 000000- 300"

DESCRI PTI ON = " THE START DATE OF THE SERVI CE WARRANTY. "

START ATTRI BUTE

END ATTRI BUTE

NaVvE = " WARRANTY DURATI ON'

ID=3

ACCESS = ReAD- O\LY

STORAGE = CowwvoN

TYPE = | NTEGER

VALLE = 24 /] MONTHS OF DURATI ON

DESCRI PTION = " THE TOTAL DURATI ON OF THI S SYSTEM S WARRANTY"
" | N CALENDAR MONTHS. "

START ATTRI BUTE

END ATTRI BUTE

NAME = " SUPPORT PHONE NUVBER'

ID= 4

ACCESS = READ- O\LY

STORAGE = COoMVON

TYPE = STRING 64)

VALUE = "1-800-555-1234"

DESCRI PTI ON = " THE PHONE NUMBER(S) FOR SUPPORT FOR THI'S SYSTEM "

START ATTRI BUTE

END ATTRI BUTE

END GrOUP

January, 2003

Nave = " ASSET NUMVBER'

ID=5

ACCESS = ReAD- O\LY

STORAGE = SPECIFIC

TYPE = STRING 64)

VALLE = "BIG CorrP-566-98-5725"

DESCRI PTION = " THE ASSET NUMBER FOR THI S SYSTEM "

/'l SERVI CE GROUP

35

Desktop Management Interface Specification v2.01s

/| SYSTEM CHASSI S GROUP

/1
/1 THE SYSTEM CHASSI S GROUP
/1 CONTAI NS A DESCRI PTI ON OF THE CHASSI S
/1 IN THI S SYSTEM
/1
START GROUP
NAVE = " SYSTEM CHASSI S GROUP"
ID= 3

CLAss = " ANYCOVPUTER| SYSTEMCHASSI S| 001"
DeESCRIPTION = " THE SYSTEM CHASSI S GROUP DESCRI BES THE"
" CHARACTERI STICS OF THI S SYSTEMS CHASSI S. "

START ATTRI BUTE
Nave = " SYSTEM MoDEL No. "
ID=1
ACCESS = ReAD- O\LY
STORAGE = SPECIFIC
TYPE = STRING 32)
VALLE = * "(CHassls Group Cooe"
DESCRI PTION = " THE SYSTEM MODEL NUMBER FOR THI S SYSTEM

"

END ATTRI BUTE

START ATTRI BUTE

NAVE = " PHYSI CAL CHARACTERI STI CS"

ID= 2

ACCESS = ReAD- O\LY

STorAGE = COWON

TYPE = STRING 64)

VALULE = * "CHassls Grour CoDE"

DESCRI PTI ON = " THE PHYSI CAL CHARACTERI STICS OF TH S SYSTEM "

" SUCH AS TOAER VS. SLIMLINE VS. DESKTOP. "

END ATTRI BUTE

START ATTRI BUTE

Nave = " CARD SLoT COuNT"

ID=3

ACCESS = ReAD- O\LY

STORAGE = CowwvoN

TYPE = | NTEGER

VALLE = * "(CHassls Grour Cope"

DESCRI PTION = " THE TOTAL NUMBER OF CARD SLOTS FOR THI S SYSTEM "
END ATTRI BUTE

START ATTRI BUTE
Nave = " NUMBER OF DRI VE BAYS"
ID= 4
ACCESS = ReAD- O\LY
STorRAGE = COWON
TYPE = | NTEGER
VALLE = * "CHassls Grour CoDE"
DESCRI PTION = " THE NUMBER OF HALF- HElI GHT DRI VE BAYS "
"IN TH S SYSTEM "
END ATTRI BUTE

START ATTRI BUTE

January, 2003 36

Desktop Management Interface Specification v2.01s

NAVE = " POAER SUPPLY WATTAGE"

ID=15

ACCESS = ReAD- O\LY

STORAGE = CowwvoN

TYPE = | NTEGER

VALLE = * "(CHassls GrRour Cope"

DESCRI PTION = " THE WATTAGE OF THI S SYSTEM S POWER SUPPLY. "
END ATTRI BUTE

START ATTRI BUTE

NAMVE = " POWER SUPPLY VOLTAGE"

ID=6

AcCCESs = ReAD- OWLY

STORAGE = CowwvoN

TYPE = | NTEGER

VALLE = * "(CHassls GRouP Cope"

DESCRIPTION = " THE VOLTAGE OF THI'S SYSTEM S POAER SUPPLY. "
END ATTRI BUTE

END GrROUP /| SYSTEM CHASSI S GROUP

END COVPONENT

January, 2003

37

2.4 1SO 639

Thefollowing isincluded for reference only. Thisis not the official SO document. It isalso not part of the DMI
specification, but is here for reference.For detailed information refer to the technical contents of 1SO 639:1988 (E/F)
"Code for the representation of names of languages'.

RepRINBY

Afar
Abkhazian
Afrikaans
Amharic
Arabic
Assamese
Aymara
Azerbaijani

Bashkir
Byelorussian
Bulgarian

Bihari

Bidama
Bengdli; Bangla
Tibetan

Breton

Catalan
Corsican
Czech
Welsh

Danish
German
Bhutani

Greek
English
Esperanto
Spanish
Estonian
Basgue

Persian
Finnish
Fiji
Faeroese
French
Frisian

January, 2003

ga
gd
a

gn
gu

ha
hi

hr
hu

hy

ia
ie
ik
in
is

it

iw

ja
ji
jw

ka
kk
ki
km
kn
ko
ks
ku

Ky

Irish mg
Scots Gaglic mi
Gdlician mk
Guarani ml
Gujarati mn

mo
Hausa mr
Hindi ms
Croatian mt
Hungarian my
Armenian

na
Interlingua ne
Interlingue nl
I nupiak no
Indonesian
Icelandic oc
Italian om
Hebrew or
Japanese pa
Yiddish pl
Javanese ps

pt
Georgian
Kazakh qu
Greenlandic
Cambodian rm
Kannada rn
Korean ro
Kashmiri ru
Kurdish rw
Kirghiz

sa
Latin sd
Lingaa g
Laothian sh
Lithuanian S
Latvian, Lettish sk

d

Malagasy
Maori

Macedonian
Malayalam
Mongolian
Moldavian
Marathi
Malay
Maltese
Burmese

Nauru
Nepali
Dutch
Norwegian

Occitan
(Afan) Oromo
Oriya

Punjabi

Polish

Pashto, Pushto
Portuguese

Quechua

Rhaeto-Romance
Kirundi
Romanian
Russian
Kinyarwanda

Sanskrit

Sindhi

Sangro
Serbo-Croatian
Singhalese
Slovak
Slovenian

wo

xh

yo

zh
Zu

Desktop Management Interface Specification v2.01s

Somali
Albanian
Serbian
Siswati
Sesotho
Sundanese
Swedish
Swahili

Tamil
Tegulu
Tajik
Thai
Tigrinya
Turkmen
Tagalog
Setswana
Tonga
Turkish
Tsonga
Tatar
Twi

Ukrainian
Urdu
Uzbek

Vietnamese
Volapuk

Wolof
Xhosa
Y oruba

Chinese
Zulu

38

2.5 1SO 3166

Desktop Management Interface Specification v2.01s

The following isincluded for reference only. Thisis not the official 1SO document. Itisalso not part of the DMI
specification, but is here for reference. Students of political science will note that some of these entries are out of
date. For detailed information refer to the technical contents of 1SO 3166:1988 (E/F) "Code for the representation of
names of territory”. 1SO 3166 defines 2-letter codes, 3-letter codes and numeric codes. The DMI uses only the 2-

letter codes.

Afghanistan
Albania

Algeria
American Samoa
Andorra

Angola

Anguilla
Antarctica
Antigua & Barbuda
Argentina
Aruba

Australia
Austria

Bahamas
Bahrain
Bangladesh
Barbados
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Botswana
Bouvet Island
Brazil

British Indian O. Terr.

Brunei Darussalam
Bulgaria

Burkina Faso
Burma

Burundi
Byelorussian SSR

Cameroon

Canada

Cape Verde
Cayman Islands
Central African Rep.
Chad

Luxembourg

January, 2003

AF
AL
Dz
AS
AD
AO
Al
AQ
AG
AR
AW
AU
AT

BS
BH
BD
BB
BE
Bz
BJ
BM
BT
BO
BW
BV
BR
10
BN
BG
BF
BU
Bl
BY

CM
CA
cv
KY
CF
TD
LU

Chile

China
Christmas Island
Cocos (Keeling) Islands
Colombia
Comoros

Congo

Cook Islands
CostaRica

Cote D'lvoire
Cuba

Cyprus

Czechodlovakia

Denmark

Djibouti

Dominica
Dominican Republic

East Timor
Ecuador

Egypt

El Salvador
Equatorial Guinea
Ethiopia

Falkland | (Malvinas)
Faroel.

Fiji

Finland

France

French Guiana
French Polynesia
French Southern Terr.

Gabon
Gambia
Germany
Ghana
Gibraltar
Greece
Philippines

CH
CN
CX
CC
(6(0]
KM
CG
CK
CR
Cl

Cu
cYy
Cs

DK
DJ

DM
DO

TP
EC
EG
sV
GQ
ET

FK
FO
FJ
FI
FR
GF
PF
TF

GA
GM
DE
GH
Gl

GR
PH

Greenland
Grenada
Gudeloupe
Guam
Guatemala
Guinea
Guinea-Bissau
Guyana

Haiti

Heard & McDonad I.
Honduras

Hong Kong

Hungary

lceland

India

Indonesia

Iran (Islamic Republic)
Irag

Ireland

Israel

Italy

Jamaica
Japan
Jordan

Kampuchea, Democratic
Kenya

Kiribati

Korea,Dem. People's Rep
Korea, Rep. of

Kuwait

Lao People's Dem. Rep.
Lebanon

Lesotho

Liberia

Libyan Arab Jamahiriya
Liechtenstein

Tunisia

GL
GD
GP
GU
GT
GN
GW
GY

HT
HM
HN
HK
HU

IS
IN
ID
IR
1Q
IE
IL

IT

M
JP
JO

KH
KE
Kl
KP
KR
KW

LA
LB
LS
LR
LY
LI

TN

39

Macau
Madagascar
Malawi
Madaysia
Maldives
Mali

Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mexico
Micronesia
Monaco
Mongolia

Montserrat
Morocco
Mozambique

Namibia

Nauru

Nepal
Netherlands
Netherlands Antilles
Neutral Zone
New Caledonia
New Zedand
Nicaragua
Niger

Nigeria

Niue

Norfolk Island
Northern Marianal.
Norway

Oman

Pakistan

Palau

Panama

Papua New Guinea
Paraguay

Peru

January, 2003

MO
MG
MW
MY
MV
ML
MT
MH
MQ
MR
MU
MX
FM
MC
MN

MS
MA
MZ

NA
NR
NP
NL
AN
NT
NC
NZ
NI

NE
NG
NU

NF
MP
NO
oM
PK
PA

PY
PE

Desktop Management Interface Specification v2.01s

Pitcairn Island
Poland
Portugal
Puerto Rico

Qatar

Reunion
Romania
Rwanda

St. Helena

Saint Kitts and Nevis
Saint Lucia

St. Pierre & Miquelon
St.Vincent &
Grenadines

Samoa

San Marino

Sao Tome and Principe
Saudia Arabia
Senegal

Seychelles
SierraLeones
Singapore

Solomon Islands
Somalia

South Africa

Spain

Sri Lanka

Sudan

Suriname

Svalbard & Jan Mayen
l.

Swaziland

Sweden

Switzerland

Syrian Arab Republic

Taiwan

Tanzania, United Rep.
Thailand

Togo

Tokelau

Tonga

Trinidad and Tobago

PN
PL

PR
QA
RE
RO
RW
KN

PM
vC

=
&

22K LYBXBSB8HBLELL92

Turkey
Turks and Caicos |dl.
Tuvalu

Uganda

Ukranian SSR

United Arab Emirates
United Kingdom
United States

US Minor Outlying I.
Uruguay

USSR

Vanuatu
Vatican City State
Venezuela

Viet Nam
Virgin Islands (British)
Virgin Islands (US)

Wallis and Futunaldl.
Western Sahara

Y emen
Y emen, Democratic
Yugosavia

Zare
Zambia
Zimbabwe

TR
TC
TV

uG
UA
AE
GB
us
UM
uy

VU
VA
VE

VN
VG
2

WF
EH

YE
YD
YU

ZR

ZM
yAY

40

Desktop Management Interface Specification v2.01s

3. STANDARD GROUPS

This section describes the three important classes of standard groups for this version of the DMI. They are the
ComponentI D group, the Event Groups, and the DMI Service Provider Groups. The ComponentI D group is one that
must be implemented by all DMI components. The Event groups include a template group used to describe the format
of event data for standard events. In addition an Event State group is defined to hold the current state of state-based
events An event exampleis provided at the end of this section. The Service Provider standard groups are required to
be implemented by all DMI Service Provider implementations.

3.1 COMPONENT STANDARD GROUPS

3.1.1 The ComponentID group

Every MIF file must contain a standard group with ID 1. This group offers base-level identification of the component
and represents the minimum amount of information that a component vendor should provide (when meaningful). An

attribute that is not supported or that has no meaning for a given component should give the keyword unsupported or
unknown asitsvalue.

The ComponentI D class string is "DMTF|/Component| D|001".

The six named attributes in the group are: "Manufacturer”, "Product”, “Version”, "Serial Number", "Installation", and
"Verify". Their definitions are:

3.1.1.1 MANUFACTURER

Name = "Manufacturer”
ID=1
Description = " The organization that produced this conponent”

Access = Read-Only
St orage = Common
Type = String(64)

3.1.1.2 PRODUCT

Narme = "Product"

ID =2

Description = “The nanme of this conponent or product”
Access = Read-Only

Storage = Common

Type = String(64)

3.1.1.3 VERSION

Narme = “Version”
ID=3
Description = “The version string for this conponent”

Access = Read-Only
Storage = Specific
Type = String(64)

3.1.1.4 SERIAL NUMBER

Name = "Serial Nunber"

ID=4

Description = “The serial nunber for this conponent”
Access = Read-Only

Storage = Specific

Type = String(64)

January, 2003 4

Desktop Management Interface Specification v2.01s

3.1.1.5 INSTALLATION

Nanme = "lInstallation"

ID=5

Description = “The tinme and date of the last install of the conponent on this”
“systent

Access = Read-Only
Storage = Specific
Type = date

3.1.1.6 VERIFY

Name = "Verify"

ID=6

Description = “The verification level for this conmponent”
Access = Read-Only

St orage = common

Type = integer

Asking for the value of the “Verify” attribute causes the component instrumentation to perform checks to verify that
the component is still in the system and working properly. It should return one of the following values:

VALUE MEANI 1G

0 an error occurred; check status code
component does not exist
verify not supported
RESERVED
component exists, functionality untested
component exists, functionality unknown
component exists, functionality no good
component exists, functionality good

~N~NoubhwNBE

January, 2003 42

Desktop Management Interface Specification v2.01s

3.2 EVENT STANDARD GROUPS

This section describes amodel for producing standard DMI events and also provides mechanisms that vendors may
use to extend standard events to produce proprietary event types.

An Event is the manifestation of a change of state, or the occurrence of condition of interest with a hardware or
software device. The generation of an Event causes the DM| Service Provider to directly or indirectly processit. An
Indication is anotification of an Event to an event consumer. Indications include Event notifications as well as
notifications of changes in the DMI Service Provider's database, e.g. notification that a Component or a Group has
been added to or deleted from the database, that a Component has been installed or uninstalled.

An Event Generator is hardware or software device that has undergone a change in state or in which a certain
condition of interest has occurred. An Event Consumer is an entity that is interested in receiving notification of the
occurrence of an Event of interest. This change of state or condition will directly or indirectly cause a new event to be
processed by the DMI Service Provider which then produces and delivers an Indication data structure to event
consumers that have expressed their interest in receiving Indications. An Event Reporter is a software entity that
causes anew DM event to be processed by the Service Provider, either on its own behalf (in which caseitisalso an
Event Generator), or on behalf of another Event Generator entity. Events are “reported” by calling the Service
Provider entry point DmiOriginateEvent.?

Event consumers must express their interest in receiving event notifications through a subscription mechanism
described later in this chapter. Upon the reporting of an Event, the DMI Service Provider produces and delivers a data
structure (an Indication) containing data describing the Event to all event consumers that have subscribed to receive
Indications.

Event consumers could, of course, be remote relative to the DM Service Provider. In this caseit is desireable not to
propagate all event notifications to the remote site across the intervening communication medium. Thisimplies the
need for afiltering mechanism for event notifications. Such afiltering mechanism is specified later in this chapter.
The DMI Service Provider matches each event against filters provided by a remote consumer to determine whether or
not a specific Indication should be delivered to that remote consumer.

When an Indication is delivered to an event consumer, the event data appear to the consumer exactly as though the
consumer had done a DM Get operation to a functional group; we say that the Event data appear as though they were
the result of an "unsolicited Get". Naturally, therefore, the event data need to be formatted as a DMI group. To
describe this format we introduce the notion of a Event Generation Group which isreally only atemplate. The
syntactic definition of this group appears very much like that of normal groups. However, itsroleis solely that of a
template to define the format of event data. Conseguently, we distringuish this special format-defining group through
aspecia form of class string.

When a consumer receives an Indication the data structure contains a DmiMultiRowData structure within it. Each
DmiMultiRowData structure is composed of possibly multiple DmiRowData structures. This chapter describes the
format of the first two DmiRowData structures for standard Indications. (See Section 5.3 for definitions of these data
structures)

Some key aspects of the event model described in this chapter are:
-An Event Generation Group

As described above, this group is atemplate for, and defines the “format” of standard events. By interpreting the
delivered Indication data according to this format, the management application can display alocalized® description of
the cause (and possibly solution) of the event.

This chapter also describes a mechanism whereby a vendor can extend, in a proprietary manner, the set of events
described by a standard event generation group.

-An Event State Group

The Event State Group defines atable, each of whose rows represents the state of a state-based event, within the
Component where the Event State Group is instrumented. A state-based event can occur when the state of the event
generating device changes. Most typically, a state-based event might be generated when (8) a device encounters a
problem and enters a problem state, or, (b) when the problem is cleared and the device re-enters its normal operating
state. An instance of the Event State Group must be included in every Component that generates state-based events.

2 or an analogous native entry point in OSes that do not implement the CI
%i.e. translated into the appropriate language.

January, 2003 43

Desktop Management Interface Specification v2.01s

3.2.1 Requirements

3.2.1.1 MIF REQUIREMENTS
Each group in the MIF that represents Event Generator(s) must have a corresponding Event Generation Group (See
Section 3.2.2). It is recommended that each Event Generation group immediately follow the referenced group, and that
the Event Generation group’s ID value is the numeric successor of the referenced group’s ID value.

Additionally, if the Event Generation group is capable of generating state-based events (which is the usual case), then
there must be an instance of the Event State group defined in the Component that contains the Event Generation group.

3.2.1.2 EVENT REPORTER REQUIREMENTS
For events that may be associated with a particular instance of agroup (arow in atable), Event Reporters must provide
instance-specific data (i.e. akeylist) in the second DmiRowData structure within the Indication data structure.

Software entities that are not registered as components with the DM Service Provider may act as Event Reporters by
calling the DmiQriginateEvent entry point in the Component Interface (Cl), or its equivalent in the operating system
environment in question. This would typically occur in situations where that software entity is reporting a " synthetic
event"; an event that is generated based on a composite analysis of various elements of state in the managed machine.
In such acase, the reported Component ID field in the Indication data structure must be zero. Likewise, the reported
Class String of the event generating group must be a null string.

3.2.2 Event Generation Group

This section describes the “ skeleton” or template for a group that is used for event generation. The Event Generation
Group definition isin atemplate form and is not a true group definition. The reason for thisis that the event definition
contains elements that must be tailored for the group representing the entity(s) actually causing the event(s).

Structure of event data

The event data received by an event consumer will consist of one or more DmiRowData structures (i.e. a
DmiMultiRowData structure). For standard events the following conditions apply to these DmiRowData structures:

The first DmiRowData structure contains arow whose format isidentical to that of the Event Generation
Group defined below in this section.

The second DmiRowData structure contains a keylist in the case that the event generating group is a tabular
group. Thiskeylist selects the precise row of the tabular group that was the Event Generator (e.g. the event
generating Processor in atable of Processors).

The third DmiRowData structure is reserved for carrying addressing information describing the node that
originated the event in the case that the event is (multiply) forwarded to its eventual destination across a
communication medium.

Fourth and subsequent DmiRowData structures, if they exist, may contain any additional (proprietary)
information that is required to further elaborate on the event.

Vendor proprietary events

Vendor proprietary events need not adhere to these conditions, but then their event data will not be recognized or
processed by all DMI management applications. A mechanism using an extended class string format is described
below for those vendors wishing to provide proprietary indications while staying within the above conditions.

Template definition and class string

Attribute definitions within a non-tabular group must have a value statement. The attribute values in template group
definition below are arbitrary; they are provided only for syntactic completeness, so that they will not cause errors
when processed by MIF parsers and processors. In practice, Management Applications will not access these values
defined in the template — rather, Management Applications will use values directly from the Indication data structure
that is delivered to a consumer of Indications. (An exception to thisruleis Attribute 5, the Associated Group Attribute.
The value of this attribute identifies the Event Generator group and therefore must be avalid attribute value even
within the template.) The template group definition is used by Management Applications to associate valuesin the
Indication data structure with enumeration display strings. The definition of the event generation group will start as
follows:

Name = "Event Generation”
Class = "Event Cenerati on| <Speci fic name>| 002"

January, 2003 44

Desktop Management Interface Specification v2.01s

Key = 5

Note here that the version number in the class string for the Event Generation template refers to the version of the
template.

Each event generation group will have a unique class string in which the <Specific name> field above is constructed
according to the following format*:
<def i ni ng- body> <del i m> <speci fi c- nane- of - assoc- gr oup>
or
<defi ni ng- body> <del i m> <speci fi c- nane- of - assoc- group> <del i m> <proprietary-
ext ensi on>
where <delim> =" (i.e. two caret characters in sequence)

It is suggested that the proprietary-extension field contain additional characters that make the field unique. To
accomplish this, component vendors who wish to include additional event types for a standard event generation group
should augment the proprietary-extension field with additional descriptivetext. In particular, the full, registered name
of the corporate entity of the vendor should be used to ensure uniqueness of the specific-name field of the event
generation group.
For example, if the DMTF Server Working Committee wished to define an Event Generation group for the UPS
Battery standard group, they might choose:

"Event Gener ati on| DMTFAUPS Battery| 002"
asitsclass string. A UPS vendor, named say “Excellent Power Systems, Inc.” wishing to define an additional
proprietary event condition for their UPS batteries might choose, for example:

"Event Gener ati on| DMTFAUPS Battery”~Low El ectrol yte"
" Excel | ent Power Systems, |nc.|002"

asthe class string.

Of course, vendors may choose to define entirely proprietary sets of events by using the full registered name of their
corporate entity in the defining-body portion of the class string. If the format of the EventGeneration template is
maintained in the first, second and third RowData structures of the Indication data, then these proprietary events could
still be manipulated in simple ways by any DMI management application. However, their full semantics would only be
known to the vendors' own proprietary management applications.

It is suggested that when defining multiple Event Generation templates for a single Event Generator group, that they all
appear immediately following the associated group in the MIF, and that they have sequential group IDs.

The vaue of thisgroup’s ID may be any unused ID. Thekey is used by Management Applications to discover the
associated group. See “Associated Group” in Section 3.2.2.2.5.

3.2.2.1 COMMON DEFINITIONS

Start Enum

Name = " BOOL"
0 = "Fal se"
1 ="True"
End Enum

3.2.2.2 DEFINITIONS OF REQUIRED ATTRIBUTES
The following attributes must be included in the definition of a standard Event Generation group. See Section 3.2.3.2.

“Rationale:
A. The use of another type of delimiter in the class string for the EventGeneration template, over and above the ‘|
character, isrequired to

1. distinguish different defining bodies (e.g. user groups such as OURS),

2. disambiguate the cases “ StdGroup”, “ StdGroup Capabilities’, and “ StdGroup MyTemplate” where the first
two are standard group names and the third one is a proprietary event extension to the “ StdGroup” event
generator. In other words there is no way to tell that “ StdGroup MyTemplate” is proprietary and “ StdGroup
Capabilities’ is standard unless the MA has an up-to-date list of all standard class names.

3. provide clarity and readability

B. A delimiter composed of an unlikely string of multiple characters is specified so that the use of the individual

charactersis still retained. Also, current parsers will not break.

January, 2003 45

Desktop Management Interface Specification v2.01s

3.2.2.2.1 Event Type
The “reason” that the event occurred. For example, a printer may be able to generate JAM events.
Name = "Event Type"
ID=1
Description = "The type of event that has occurred.”
Type = <Enump
Access = Read-Only
Storage = Specific
Val ue = unknown
Note that the enumeration is not defined here. Each Event Generation group will have aunique definition for this
attribute.

3.2.2.2.2 Event Severity
The event severity describes the type of event. Monitor and Information events are not associated with the state of the
entity generating the event and are used to convey information. OK, Non-Critical, Critical, and Non-Recoverable
events are state-based and represent successively more serious abnormal conditions.

Monitor events are used by transaction-oriented event generators. Monitor events are periodic in nature and are
expected to be encountered by event consumers. An example of a Monitor event would alock/unlock operation from a
database server.

Information events are used to indicate a non-problematic change that is non-periodic in nature. An example of an
Information event would be a paper size change in a paper tray of aprinter.

OK events inform the event consumer that the entity generating the event has entered the OK or “normal” state. On
initialization a device may generate this event. State-based generators will produce this event after a Non-Critical,
Critical, or Non-Recoverable error state has “cleared.”

Non-Ciritical events convey a problem that needs to be corrected. However, they do not imply a specific time period
within which corrective action(s) need to be taken. For example, a printer that had two paper trays may generate a
Non-Critical event when one of them runs out of paper.

A Critical event ismore serious. These problems need to be corrected usually within a specific time period whose
duration is governed by the device type and/or the particular problem situation. For example, if a printer has only one
paper tray, and that tray runs out of paper, printing cannot continue. In this scenario, the printer may generate a
Critical event. A time period may be associated with this event after which, if the paper tray is not replenished, the
print job might be discarded.

A Non-Recoverable event is the most serious. Not only must it be corrected immediately for an operation to proceed,
but the cause of the failureitself is severe. Failuresin devicesthat can only be corrected by cycling the power, or
performing an off-line repair operation are Non-Recoverable events.

The contents of the event state field within the rows of the Event State group associated with the Component, in which
the Event Generator group is located, will contain one of the following four Severities at any time: OK, Non-Critical,
Critical, Non-Recoverable.

Name = "Event Severity"

ID=2
Description = "The severity of this event."
Type = Start Enum
0x001 = "Monitor"
0x002 = "Infornation"
0x004 = "CK"
0x008 = "Non-Critical"
0x010 = "Critical"
0x020 = "Non- Recover abl e"
End Enum

Access = Read-Only

Storage = Specific

Val ue = unknown
The enumeration defined in this attribute must not be changed. Thisisto allow this same enumeration to be
used to filter events.

3.2.2.2.3 Event Is State-Based
Event generators may be state-based or non state-based. State-based generators generate an event anytime the device
changes state. Furthermore, for each non-normal event generated, an OK event will be generated when that condition
clears. If the printer runs out of paper in bin one (and generates a Non-Critical event), and develops ajam in the output

January, 2003 46

Desktop Management Interface Specification v2.01s

path (generating a Critical event), then that printer will generate an OK event for each of those events when they are
corrected.

It is presumed that state-based event generators generate no more than one event of any given event type for each
relevant state transition.

A non state-based generator will issue an event for each condition of interest that develops, but does not issue
corresponding OK events as above.

This attribute takes the value TRUE if the Event being reported is state-based. Otherwise, it takes the value FAL SE.

Name = " Event |s State Based"
ID=3
Description = "The value of this attribute determ nes whether the Event being”

“reported is a state-based Event or not. If the value of this attribute”
“is TRUE then the Event is state-based. Else the Event is not state-
“based. "
Type = "BOOL"
Access = Read-Only
St orage = Common
Val ue = unknown

3.2.2.2.4 Event State Key
This attribute has meaning if and only if the Event being reported is state-based, i.e. the value of the attribute above
(Event |s State-Based) is TRUE (see Section 3.2.2.2.3). This attribute holds asingle integer key that identifiesarow in
the Event State group associated with the Component within which the Event Generator group is located. The Current
State attribute within that row holds the value of the current state of the Event. The contents of the Current State
attribute are one of four enumerated severity levels (not including Monitor and Information)

Nanme = "Event State Key"

ID =4

Description = "This attribute holds the key identifying a row of the Event State group”
“W thin the Conponent in which the event generator group is |ocated. The”
“Current State attribute within the row contains the current state of this”
“state-based event. The current state can be one of the four severities:
“OK, Non-Critical, Critical, and Non-Recoverable."

Type = Integer

Access = Read-Only

Storage = Specific

Val ue = unknown

3.2.2.2.5 Associated Group

This attribute contains the value of the class string of the associated group i.e. the Event Generator group. Thisisa
keyed attribute. A Management Application that discovers an Event Generation template group can find the associated
group by using a DmiListComponentsByClass command with a class filter of “ EventGeneration||” and a keylist with
this attribute’ s value.

Name = "Associ ated G oup"

ID=5

Description = "The class string of the group that is associated with the events”

“defined in this Event Generation group."

Type = String (<Size>)

Access = Read-Only

St orage = Common

Val ue = "<C assString>"

The vaue of this attribute should be defined in the MIF. For example, if this Event Generation group defines events
for the Processor group defined in the Systems Standard Groups Definition, V1.0, then this value would be
“DMTF|Processor|003”.

3.2.2.2.6 Event System
The event system attribute indicates the functional system of the product that caused the event. For example a printer
might define Engine, Feeder, and Sorter as functional systems of the printer. A simple management application could
use the values of the Event System and Event subsystem attributes (see below) to construct a simple message
describing the event.

Name = "Event Systent

ID=6

Description = "The major functional aspect of the product causing the fault."
Type = <Enun»

Access = Read-Only

January, 2003 47

Desktop Management Interface Specification v2.01s

Storage = Specific
Val ue = unknown

Note that the enumeration is not defined here. Each Event Generation Template will have a unique definition for this
attribute.

3.2.2.2.7 Event Subsystem

The event subsystem attribute indicates the functional subsystem of the product that caused the event. For example a
printer might define BIN1 and BIN2 as functional subsystems of the printer. A simple management application could
use the values of the Event System (see above) and Event subsystem attributes to construct a simple message
describing the event.

Name = "Event Subsystent

ID=7

Description = "The minor functional aspect of the product causing the fault."

Type = <Enunmp

Access = Read-Only

Storage = Specific

Val ue = unknown

Note that the enumeration is not defined here. Each Event Generation Template will have a unique definition for this
attribute.

3.2.2.3 DEFINITIONS OF OPTIONAL ATTRIBUTES
The following attributes may be included or excluded from the definition of standard Event Generation Groups. See
Section 3.2.2.

3.2.2.3.1 Event Solution
The event solution attribute describes a sol ution to the problem that caused the event. The vendor of a product
generating this event may choose to provide a string here that describes what the user of the Management Application
must do to correct the problem. This string may also specify atime period within which action must be taken in the
case that a Critical event is being reported.

Name = "Event Sol ution"
ID =38
Description = "A solution to the problemthat caused the event."

Type = <Enun»
Access = Read-Only
Storage = Specific
Val ue = unknown

Note that the enumeration is not defined here. Each Event Generation Template will have a unique definition for this
attribute. The set of possible solution strings are provided here as an enumeration so that they may be easily localized
to the desired language of the end-user of the Management Application.

3.2.2.3.2 Instance Data Present
This attribute is used to inform the Management Application that the second DmiRowData data structure within the
Indication data structure contains instance-specific data...For example, if an event template were constructed to support
the Processor group from the Systems Standard Groups Definition, then it would be desirable if an event not only
described a particular processor fault, but also which processor in the table was the one that caused the failure.

Nane = "lInstance Data Present”

ID=9

Description = "Indicates whether the second event block contains instance-specific data."
Type = "BOOL"

Access = Read-Only
Storage = Specific
Val ue = unknown

3.2.2.3.3 Vendor Specific Message
The following two attributes allows the product supplier to define a“private” interface between the producer and the
consumer of an event. Producers of events are usually the instrumentation code associated with a product, but may in
fact be any active task. Consumers are Management Applications that have registered with the DMI Service Provider
to receive indications. Manufacturers who develop products that encompass both producers and consumers may find
that these attributes provide an efficient, easy-to-use method of passing arbitrary information. In particular, they may
use these attributes to fold existing proprietary solutionsinto the DMI Indications paradigm.

This attribute is used to pass displayable string data.

January, 2003 48

Desktop Management Interface Specification v2.01s

Name = "Event Message"
ID =10
Description = "Auxiliary information related to the event."

Type = String(<Size>)
Access = Read-Only
Storage = Specific
Val ue = unknown

Note that the string definition has no maximum size associated with it. Implementors of this template may choose
whatever maximum size is convenient for the set of strings defined for this attribute.

3.2.2.3.4 Vendor Specific Data

This attribute is used to pass arbitrary data.
Name = "Vendor Specific Data"
ID =11
Description = "Auxiliary information related to the event."
Type = CctetString(<Size>)
Access = Read-Only
Storage = Specific
Val ue = unknown

Note that the octetstring definition has no maximum size associated with it. Implementors of this template may choose
whatever maximum size is appropriate for this attribute.

3.2.3 Event State Group

The Event State group is atable keyed with asingle integer which is aunique identifier for each row of the table. Each
row of this table holds information about a unique single event type that is generated from a given Event Generation
group within the event generating Component. The Event State group only carries the current state of state-based
events within the Component.

NOTE: Unlike the event generation template defined in Section 3.2.2, thisis atrue group definition with the usua form
of Class String.

In theory there is one event state table per location within a component which generates events, and it holds the current
state of the events generated at that location. However, for simplicity, the Event State Group combines these theoretical
tables into one single table in a Component, wherein each entry holds the state of one event type and "points back" to
the event generation group at the event generating location within the Component.

For each row of this keyed group the Event Generation Group attribute carries the ID of the event generation group
that defines the event type represented by the row. Management applications may scan for all state based events within
asystem by using a class filter of "|Event State|" to discover instances of this group. Then for each instance of this
group the application may scan the rows of this group to discover state-based events.

A vendor desiring to maintain current state for proprietary state-based events may simply include additional rows
within this group that "point" to the vendor's proprietary event generation group. Thisis done by assigning the class
string of their proprietary event generation group (see Section 3.2.2) as the value of the Event Generation Group
attribute in those additional rows.

January, 2003 49

Desktop Management Interface Specification v2.01s

Name = "Event State"
Class = "DMIF| Event State| 001"

3.2.3.1 EVENT INDEX
Thisisaunique index for rows of thistable.

Name = "Event |ndex"
ID=1
Description = "A unique index into the Event State table"

Type = Integer
Access = Read-Only
Storage = Common
Val ue = unknown

3.2.3.2 EVENT GENERATION GROUP
This attribute contains the class string of the Event Generation group within this Component that described the
Indication format for the related Event. The Component ID of the component from which the Event arose is reported in
the header of the Indication data structure that is received by the Event Consumer(s).

3.2.3.3

Name = "Event Generation G oup C ass"”

ID=2

Description = "The Class String of the event generator group within the generating”
“ Conponent "

Type = String (256)
Access = Read-Only
Storage = Common
Val ue = unknown

EVENT TYPE

This attribute contains the type of the Event that was generated. The value of this attribute is the integer value of one of
the enumerated itemsin the Event Type attribute in the associated Event Generation group (see Section 3.2.2.2.1). The
Event Generation group in question can be identified by the attribute defined immediately above (see Section 3.2.3.2)

Name = "Event Type"

ID=3

Description = "Integer value that identifies one of the Event types enunerated”
“in the associated Event Ceneration group"

Type = Integer

St orage = Conmon

Val ue = unknown

3.2.3.4 CURRENT STATE
This attribute contains the current state (i.e. severity) of the specific event type represented by this row of the group.

Nane = "Current State"
ID =4
Description = "The current state of the Event type identified by Event Type”
“attribute in this row"
Type = Start ENUM
0x0004 = "OK"
0x0008 = "Non-Critical"
0x0010 = "Critical"
0x0020 = "Non- Recover abl e"
End ENUM
Access = Read-Only
Storage = Specific
Val ue = "K"

The enumeration defined in this attribute is a subset of the Event Severity enumeration defined in the Event Generation
group. It is kept aligned with that enumeration because it reflects the current severity of the event type within the event
generating component.

January, 2003 50

Desktop Management Interface Specification v2.01s

3.2.3.5 ASSOCIATED GROUP KEYS
This attribute exists to identify an instance of the Associated Group that may generate the state-based event in question.

For instance, consider that the Associated Group is the Disks group in the Systems Standard Groups Definition. Thisis
atable group keyed by a pair of keys. The first key is an integer in an Enum called Storage Type, the second key isan
integer index within a storage type. If adisk in the Disks table generates a state-based event (e.g. "disk failure") then its
related entry in the Event State table must be able to identify the specific disk that was the source of the event... not just
that some disk sourced the event.

In the case of an arbitrarily keyed Associated Group there could be a number of different keys each of a different type.
However, we restrict the possible keys here to be Integers only (this includes simple table indexes as well as Enums.
This should cover the mgjority of practical cases.

To represent a KeyList of integers keys we use an encoded string, the contents of which are a comma-separated list of
integers without any spaces. The simple BNF for the grammar of thisstring is:

<KeyListString> ::= """ <Integer>{ ',' <Integer> }* "'"'

where<| nt eger > isasdefined in the MIF Grammar in Section 2.2.

Name = "Associ ated G oup Keys"

ID=5

Description = "A list of integer keys that identify the instance of the”
“Associated Group that actually" "generated the state-based event.”
“The list of integer keys are represented in the value of this”
“attribute as a string containing a comm-separated |ist of"
"integers. The managenent application nust parse this string to”
“obtain the list of integer keys.”

Type = String(256)

Access = Read-Only

Storage = Specific

Val ue = unknown

January, 2003 51

Desktop Management Interface Specification v2.01s

3.3 DMI SERVICE PROVIDER STANDARD GROUPS

When Indications are sent to remote consumers, it is desireable to limit the set of indications that are actually
transmitted on the intervening communication medium. To achieve this indication consumers are required to

subscribe for indications at each potential indication-originating node in the network. In addition, the mere act of
subscribing for indications enables only the sending of notification of DMI Service Provider database changesto the
consumer (e.g. "component added/deleted”, "group added/deleted”, etc.). If Event notifications are desired, event
consumers must provide filters that select the specific event notifications they are interested in receiving. This section
describes the mechanisms for subscription and filtering. DMIv2.0s introduces new standard groups to configure the
security features, and to define security indications. These groups are defined in sections 12 and 16 respectively.

Subscription and Filter table groups

There are two groups defined for use with the Indication subscription and filtering process. Each group is instantiated
as atable, where the addition or deletion of indication subscription and filter entriesis handled as ADD/DELETE row
operations. It isthe responsibility of the DMI Service Provider to manage and use these tables. To the user of the M|
interface, they will smply appear as two additional tables instantiated in the DMI Service Provider component. An
important distinction is that the subscription appliesto all DMI indications, while the filter applies only to that subset
of indications called events. In other words, if amanaging system simply adds an indication subscription entry in a
managed node, it will receive al indication that are not classified as events. It will only receive the indications
classified as events if it has added the appropriate filter table entry. NOTE: A consumer of indications must first
subscribe for events and then specify filters. A consumer may have only a single subscription but may specify
multiple filters.

Per sistence of subscriptions

Subscriptions and Filters are intended to be persistent so that indications would continue to be delivered even if a
managing system dropped off the communication medium, or was otherwise inaccessible, for some period, before
returning. Likewise, subscriptions and filters are intended to be persistent over periods when the DMI Service
Provider isitself not functioning. However, it is not desireable for subscriptions and filters to be so long-lived that
they outlive the event consumer that specified them. To achieve this, each Indication subscription has apair of
associated timestamps, namely, an expiration warning timestamp and a expiration timestamp. These timestamps are
specified by the consumer when subscribing. At the time specified by the expiration warning timestamp the DMI
Service Provider sends an expiration warning indication to the Dmi SubscriptionNotice entry point of the consumer.
Likewise, at the time specified by the expiration timestamp, the DM Service Provider sends an expiration indication
to the Dmi SubscriptionNotice entry point of the consumer. NOTE: When a subscription expires, the DMI Service
Provider removes the row corresponding to the subscrption in the SP Indication Subscription table and all associated
filter rowsin the SP Filter Information table. These may be identified by matching the subscriber address fields of the
subscription and the filters.

Indication retry threshold

The DMI Service Provider makes its best efforts to deliver indications despite outages of itself, the intervening
communication medium, or the event consumer. If indication delivery is not possible because of such outages, it
retries the delivery after waiting a reasonable period to allow the outage to clear. The maximum number of such
retriesis specified by the event consumer in the Indication Failure Threshold attribute within the SP Indication
Subscription group defined below®.

Indication entry pointsin theclient

Event notifications are delivered to the event consumer at the DmiDeliver Event entry point. As noted above, event
notifications will not be delivered unless the consumer has specified filters for those events. There are specific
individual entry points for notification of DMI Service Provider database changes (e.g. DmiComponentAdded,
DmiGroupAdded, DmiComponentDeleted, DmiGroupDeleted, ... etc.). If amanaging system does not wish to receive
one of thislatter set of indicationsit simply does not implement and/or publish the specific entry point. Please refer to
the Interface Description Language (1DL) description of the Indication Delivery Interface for precise details of these
entry points.

® It is expected that DM Service Provider implementations will also choose to log at |east the fact that the maximum retry
threshold was exceeded. In this case the event data of the undelivered indication should also be logged. Of course, DMI
Service Providers may aso chooseto log al events. It is expected that DM Service Providers will use the native OS
logging mechanisms and this document does not specify a separate logging mechanism.

January, 2003 52

Desktop Management Interface Specification v2.01s

3.3.1 SP Indication Subscription

This group will be instantiated as atable by the DM Service Provider. Itissimply alist of managing nodes that have
subscribed with this managed node to receive indications. This group is used to store the information about a
managing node that is required in order for the managed node to correctly forward indications. It is meant to be
persistent over reboots until the time specified by the “ Subscription Expiration Datestamp” attribute, defined below.
The values in this group are set and modified by using the DmiAddRow(), DmiDeleteRow(), DmiGetAttribute(), and
DmiSetAttribute().

Subscriber addressinformation

Note that the set of subscriber addressing information specified includes an RPC Type and a Transport Type. Thisis
because this version of DMI supports multiple standard RPCs, each of which is multi-transport. Thusthe DMI Service
Provider sending the Indication needs to know which RPC and transport must be used to reach a particular subscriber.

Single ver sus multiple management applications on the client node

In most cases, the managing node has running on it a single management application. This management application
then needs to implement the indication delivery entry points described in the Indication Delivery Interface (see the
IDL description of this interface in the appendix). The management application also publishes these indication entry
points as available RPC service end pointsin the appropriate RPC naming services (e.g. Cell Directory Servicesin the
case of DCE/RPC). The DMI Service Provider sending the indication then binds to these RPC service end points
before calling the appropriate entry point to deliver the indication.

The situation may be dlightly different in the case of a management node that is hosting multiple management
applications simultaneously. There are two possibilities in this case, namely:

Each individual management application publishesitsindication entry points as RPC service end points
separate and distinct from those of the other management applications on the node. In this case, each
management application will have its own subscription and filter entries registered at the DMI Service
Provider sending the indication.

The managing node implements an optional "front-end" software entity that supports multiple simultaneous
management applications on the managing node and insul ates these management applications from the
specifics of dealing with the underlying RPCs (see Section 9 "Optional M1 Support Functions"). In this case,
the RPC service end points are published by the front-end so that all indications, intended for the
management applications it supports, are delivered to it alone. The front-end also subscribes for indications
and provides filters on behalf of the multiple management applications. In other words there will be asingle
subscription entry and a set of filter entries corresponding solely to, and managed solely by the front-end on
behalf of the management applications it supports. In this situation, when an indication is delivered to the
front-end, it needs to be able to distinguish which management application is the intended final destination
for the indication. To achieve thislocal "routing” of indications to management applications, an attribute
named Subscriber 1D is defined below in both the subscription and filter groups. The contents of this
attribute are a handle provided by the front-end for its own use in implementing thislocal "routing" of
indications to the management applications it supports. This handle is opaque to the DMI Service Provider at
which the subscription and filter entries are established; the DM Service Provider simply returns this handle
as part of the indication information when it delivers the indication. NOTE: the implementation aspects of
this opague handle are purely afunction of the implementation of the front-end e.g. persistence of the
meaning of the handle over re-boots, management application crashes, etc.

The Indication Subscription group is defined next.

Name = "SP | ndication Subscription"
Class = "DMIF| SP | ndication Subscription| 001"
Description = "This group defines the subscription information for a managi ng node”
“interested in indications fromthis system The DM Service Provider”
“Wll maintain this as a table, with each row representing an individual”
“managi ng node.”
Key = 1,2,3,4

January, 2003 53

Desktop Management Interface Specification v2.01s

3.3.1.1 SUBSCRIBER RPC TYPE

Name = "Subscriber RPC Type"

ID=1

Description = "This is an identifier of the type of RPC in use by the Subscriber.”
Access = Read-Wite

St orage = Conmmon

Type = String(64)

/1 NOTE: the allowabl e RPC strings are defined as follows
/1 “DCE RPC’

/1 “ONC RPC’

/1 “TIl RPC

Val ue = unknown

3.3.1.2 SUBSCRIBER TRANSPORT TYPE

Name = "Subscriber Transport Type"

ID=2

Description = "This is an identifier of the type of Transport in use by the Subscriber.”
Access = Read-Wite

St orage = Conmmon

Type = String(64)

Val ue = unknown

T RANSPORT DESCRIF TION
NAME

ncacn_nb_tcp Connection-oriented NetBIOS
over TCP

ncacn_nb_ipx Connection-oriented NetBIOS
over IPX

ncacn_nb_nb Connection-oriented NetBEUI

ncacn_ip_tcp Connection-oriented TCP/IP

ncacn_np Connection-oriented named pipes

ncacn_spx Connection-oriented SPX

ncacn_dnet_nsp Connection-oriented DECnet

ncacn_at_dsp Connection-oriented AppleTak
DSP

ncadg_ip_udp Datagram (connectionless)
UDP/IP

ncadg_ipx Datagram (connectionless) IPX

ncalrpc Local procedure call

3.3.1.3 SUBSCRIBER ADDRESSING
The format of the Subscriber Addressing field varies according to RPC type, Transport type, and
the implementation of the Service Provider. For example, for DCE RPC and transport type
ncacn_ip_tcp, the subscriber addressing information might take the form:

ipaddress [port number]

whereipaddressisin dotted decimal form, and port number is the TCP/IP port assigned to the
management process during its initialization.

Because the format of thisfield is dependent on the Service Provider implementation, it is not
possible to list the formats for each combination of RPC and Transport type here. In order to
remove the burden of determining the correct contents and format of thisfield from the
management application, SP vendors provide a support function called
DmiGetSubscriptionAddress(). This function may be called by a management application to

January, 2003 54

Desktop Management Interface Specification v2.01s

obtain the subscriber addressing information for a given combination of RPC and Transport types.

It takes the form:

Dmi ErrorStatus_t DM _API

Dmi Get Subscri pti onAddress (
[in] DmString_t* rpcType,
[in] DmString_t* transport Type,
[out] DmiString_t* address);

Narme = "Subscriber Addressing"
ID=3

“to receive indications fromthis managed node."
Access = Read-Wite
Storage = Common
Type = String(1024)
Val ue = unknown

3.3.1.4 SUBSCRIBER ID

Name = "Subscriber ID'

ID =4
Description = "An ID or handl e passed by the nanaging node to the SP. It is opaque”
“to the DM Service Provider, but is used in all indications to the”
“managi ng node as a correlator, or nmultiplexing handle. It is intended”

“only for use by the managi ng node.”
Access = Read-Only
Storage = Specific
Type = Integer
Val ue = unknown

3.3.1.5 SUBSCRIPTION EXPIRATION WARNING DATE STAMP

Name = "Subscription Expiration Warning Date Stanp"
ID=5

Description = "On this date and tine, the DM Service Provider will send an”
“indication to the subscriber, notifying it that the subscription

“is about to |apse.”

// NOTE |f the transmission was UNSUCCESSFUL the DM Service Provider
/1 should reset this value using the follow ng formul a:

11 (((Exp TinmeStanp)-(Warn Tinmestanp)) / 2) + (Warn Ti nestanp)

/1 This behavior should continue until the indication is successfully
/1 transmitted, or until either the Expiration date is reached, or the
/1 Indication Failure Threshold is reached.

Access = Read-Only
Storage = Specific
Type = Date

Val ue = unknown

3.3.1.6 SUBSCRIPTION EXPIRATION DATESTAMP

Name = “Subscription Expiration DateStanp”
ID=6
Description = "On this date, after having issued the appropriate nunber of”

“war ni ng indications as described by the Subscription Expiration”

“VWarning Tinmestanp, this subscription will |apse.”

“NOTE: that then, this entry is to be renoved by the DM Service”
“Provider, along with any filter table entries associated with it.”

Access = Read-Only
Storage = Specific
Type = DATE

Val ue = unknown

January, 2003

Description = "Addressing informati on of the nmanagi ng node that has subscribed”

55

Desktop Management Interface Specification v2.01s

3.3.1.7 INDICATION FAILURE THRESHOLD

Name = "Indication Failure Threshold"
ID=7
Description = "This is a nunber that corresponds to the nunber of indication”

“transm ssion failures to allow, before the indication subscription”
“is considered to be invalid, and renoved.”

Access = Read-Only
Storage = specific
Type = Integer

Val ue = unknown

3.3.2 SP Filter Information

This tabular group will be instantiated and maintained by the DMI Service Provider. Itisalist of filtersto applied to
all outbound indications that are classified as events.

Filter operation

The operation of the filter is such that the event will pass, ie. will be forwarded to the managing node, if afilter is
present that matches the event's ComponentI D, Class string, and the event's severity is one of the severity levels
specified in the Event Severity attribute.

Specifying a Component I1D of OxFFFFFFFF in the filter will match any component ID in the event. Specific
component ID's may be used to match events generated by the corresponding component. Recall also that a component
ID of zero impliesthat the event is being reported by an Event Reporter on the originating node that is not registered as
acomponent with its DMI Service Provider.

Class strings may be matched by providing partial class strings in the filter in amanner similar to the class string
parameter to the ListComponentsByClass command in the MI. For example, the partial class string "DMTF||001" will
match all DMTF defined version 1 standard groups. Similarly, "||" will match al group definitions of al versions,
whether defined by the DMTF or another other industry body or vendor. Likewise "|Processor|" will match al
Processor groups of all versions whether defined by the DMTF or any other entity.

Event severity is matched by providing, in effect, abit mask. It will be noted that the enumeration specifying event
severity has been deliberately defined with selectors that are powers of 2. Thus to match multiple event severities a bit
mask must be created by OR'ing the respective selectors. This bit mask is then stored in the Event Severity attribute in
the filter entry and must be specially interpreted by management applications and service providers, namely:

Management applications must not use the contents of the Event Severity attribute as simply asingle
enumeration selector but rather recognize that it is a bit mask and break it down into the corresponding event
severities before printing it or otherwise manipulating it.

DMI Service Providers must interpret the contents of Event Severity attribute as a bit mask rather than asa
single enumeration selector when determining whether or not the event is to be propagated onto the
communication network.

The SP Filter Information group is defined next:

Name = "SP Filter Infornation"
Class = "DMIF| SPFilterlnformation| 001"
Description = "This group defines a rowin a table of event filters. One filter”

“is created for each conbination of ConponentlD, C ass, and severity”
“that the managing node is interested in.”
Key = 1,2,3,4,5,6

3.3.2.1 SUBSCRIBER RPC TYPE

Name = "Subscriber RPC Type"

ID=1

Description = "This is an identifier of the type of RPC in use by the Subscriber.”
Access = Read-Wite

St orage = Common

Type = String(64)

/1 NOTE: the allowabl e RPC strings are defined as follows

/1 “DCE RPC’
/1 “ONC RPC’

January, 2003 56

Desktop Management Interface Specification v2.01s

/1 “Tl RPC
Val ue = unknown

3.3.2.2 SUBSCRIBER TRANSPORT TYPE

Name = "Subscriber Transport Type"
ID =2

Description = "This is an identifier of the type of Transport in use by the Subscriber.”

Access = Read-Wite
Storage = Common
Type = String(64)
Val ue = unknown

T RANSPORT DESCRIF TION
NAME

ncacn_nb_tcp Connection-oriented NetBIOS
over TCP

ncacn_nb_ipx Connection-oriented NetBIOS
over IPX

ncacn_nb_nb Connection-oriented NetBEUI

ncacn_ip_tcp Connection-oriented TCP/IP

ncacn_np Connection-oriented named pipes

ncacn_spx Connection-oriented SPX

ncacn_dnet_nsp Connection-oriented DECnet

ncacn_at_dsp Connection-oriented AppleTak
DSP

ncadg_ip_udp Datagram (connectionless)
UDP/IP

ncadg_ipx Datagram (connectionless) IPX

ncalrpc Local procedure call

3.3.2.3 SUBSCRIBER ADDRESSING

Name = "Subscriber Addressing"
ID=3

Description = "Addressing informati on of the nanagi ng node that has subscribed”

“to receive indications fromthis managed node."
Access = Read-Wite
Storage = Common
Type = String(1024)
Val ue = unknown

3.3.2.4 SUBSCRIBER ID

Name = "Subscriber ID'

ID=4

Description = "An ID or handl e passed by the nanagi ng node to the SP.
“opaque to the DM Service Provider, but is used in all”
“indications to the nanagi ng node as a correlator, or”

“mul tiplexing handle. It is intended only for use by the”

“managi ng node.”
Access = Read-Only
Storage = Specific
Type = Integer
Val ue = unknown

January, 2003

57

Desktop Management Interface Specification v2.01s

3.3.2.5 COMPONENT ID

Name = "Conponent |D'

ID=5

Description = "The conmponent |ID, as assigned by the DM Service Provider, of the”
“conponent from which the managi ng node wi shes to receive events.”

Access = Read-Wite

Storage = Specific

Type = Integer

Val ue = unknown

3.3.2.6 GROUP CLASS STRING

name = "Group Class String"
ID=6
Description = "The Class string corresponding to the groups wthin the above”

“mentioned conponent, from which the managi ng node w shes to”
“receive events.”

Access = Read-Wite

Storage = Specific

Type = String(64)

Val ue = unknown

/1 Note: that a value of NULL STRI NG should be used if the entity generating
/1 this event is an application.

3.3.2.7 EVENT SEVERITY
This particular attribute within arow of the SP Filter Information Entry group needs to be treated specially by
Management Applications (i.e. subscribers for event notifications) and by DM| Service Providers. The Event Severity
enumeration is purposely defined as a bit-mask so that multiple event severities may be selected for afilter entry. This
means that when a management application reads a row of this group it must be aware that the contents of this attribute
might be a set of enumeration selectors that have been OR'ed together. In other words, the contents of this attribute in
the entry should not automatically be treated as a single enumeration selector as would happen in the case of normal
enumerations. DMI Service Providers must also interpret the contents of this attribute as potentially a set of OR'ed
enumeration selectors that specify several event severities for filtering.
Name = "Event Severity"
ID=7
Description = "The event severity |level, at which an event originating ”
“in a group described by the previous class and conmponent!|D, should be
“forwarded to the managi ng node. Note that ”
"The Severity enumeration is defined as a bit mask so that events at nore
"than one |evel of Severity may be requested by OR ing together the appropriate
"Severity selectors.”
Type = Start Enum

0x001 = “Monitor”

0x002 = “Infornation”

0x004 = “CK”

0x008 = “Non-Critical”

0x010 = “Critical”

0x020 = “Non- Recover abl e”
End Enum

Access = Read-Wite
Storage = Specific
Val ue = unknown

January, 2003 58

Desktop Management Interface Specification v2.01s

3.4 EVENT EXAMPLE

This section uses the previously described event model with standard groups to demonstrate the construction of an
Event Generation group.

Assume that a spreadsheet product has two executable modules: file.exe and calc.exe. File.exe opens and closes
worksheets and calc.exe performs calculations on them. Each of the modules can fault in various ways. (1) File.exe
can encounter aread error or awrite error. (2) Calc.exe can encounter an overflow error or an out of range error. In
addition, calc.exe can encounter awrite error during an automatic save.

3.4.1 Software Signature Template®

Start G oup

Name = "Software Signature"”
Class = "DMIF| Sof t ware Si gnature| 001"
Key =1

Start Attribute
Name = "File Nane"
ID=1

Storage = Common
Access = Read-Only
Type = String(256)
End Attribute

Start Attribute
Name = "File Size"
ID =2

Storage = Specific
Access = Read-Only
Type = Integer

End Attribute

Start Attribute

Nane = "File Date and Ti me"
ID=3

Storage = Specific

Access = Read-Only

Type = Date

End Attribute

Start Attribute

Name = "File Checksunt
ID=4

Storage = Specific
Access = Read-Only
Type = Integer

End Attribute

Start Attribute
Nanme = "File CRC 1"
ID=5

Access = Read-Only
Type = Integer

End Attribute

Start Attribute
Name = "File CRC 2"
ID=6
Storage = Specific
Access = Read-Only
Type = Integer
End Attribute

End Group

€ The groups in this section are reproduced without the descriptions for the sake of brevity. For the same reason, the
ComponentI D group and Software Component Information group are not reproduced here.
January, 2003 59

3.4.2 Software Signature Table’

Start Table

Name = "Software Signature"

Class = "DMIF| Sof t ware Si gnature| 001"
ID= 3%

{"file.exe", 100, "19950101000000.000000- 000",
{"cal c.exe", 100, "19950101000000. 000000- 000",

End Tabl e

3.4.3 Event Generation Group

Start Enum
Nane = "BOOL"
0 = "Fal se"
1 ="True"
End Enum
Start G oup
Name = "Event Generation"

Desktop Management Interface Specification v2.01s

200, 300, 400}
200, 300, 400}

Class = "Event Generati on| DMIFA"Sof t war e Si gnat ure Exanpl e| 002"

ID =14
Key = 5

Start Attribute
Narre "Event Type"
D=

Type

1
= Start Enum

"Read Error"
"Wite Error"
"Qut of Range"
"Overflow
Enum

Access Read- Onl y
Storage = Specific

Val ue = unknown

End Attribute

[N | I T N T3]

NmawN e ®
>

Start Attribute

Name = "Event Severity"

ID =2

Type = Start Enum
0x001 = "Monitor"
0x002 = "Infornation"
0x004 = "CK"
0x008 = "Non-Critical"
0x010 = "Critical"
0x020 = "Non- Recover abl e"
End Enum

Access = Read-Only
Storage = Specific
Val ue = unknown
End Attribute

Start Attribute

Nane = "Event |s State-Based"
ID =3
Type = "BOOL"

Access = Read-Only
Storage = Specific
Val ue = unknown
End Attribute

Start Attribute

Name = "Event State Key"
ID=4

Type = Integer

Access = Read-Only
Storage = Specific

Val ue = unknown

" The values of the numeric data in this table are contrived.

81D 1 isthe ComponentlD group. 1D 2 is the Software Component Information group.

January, 2003

60

Desktop Management Interface Specification v2.01s

End Attribute

Start Attribute

Name = "Associ ated G oup"

ID=5

Type = String

Access = Read-Only

Storage = Common

Val ue = "DMTF| Sof t ware Si gnat ure| 001"
End Attribute

Start Attribute

Name = "Event Systent

ID=6

Type = Start Enum
1="10
2 = "Cal cul ation"
End Enum

Access = Read-Only
Storage = Specific
Val ue = unknown
End Attribute

Start Attribute

Name = "Event Subsystent
ID=7
Type = Start Enum

0 = "None"

End Enum

Access = Read-Only
Storage = Specific
Val ue = unknown
End Attribute

Start Attribute

Name = "lInstance |s Data Present"
ID =38
Type = "BOOL"

Access = Read-Only
Storage = Specific

Val ue = "Fal se"
End Attribute
End Group

3.4.4 MIF Template

PILLLTLTET T n i nini i irnrn
/1 DMIF Standard Event Group Definition //
PHELTILTT T n i rir i i

THELLLELLL L iririns
/1 Common Definitions //
THELELELETT iy

Start Enum

Nane = "BOOL"
0 = "Fal se"
1 ="True"
End Enum

PULLLTETET i bbb n i r i r i r i r i r i rnry
/1 Group Definition 11
/1 (Replace bracketed identifiers with actual definition.) //
PHLLLIETETEE i bbb r i r i r i r i r i r i rn g

Start G oup

Name = "Event Generation"

Class = "Event Cenerati on| <Speci fic name>| 002"
ID = <ID>

Key = 5

January, 2003

61

Desktop Management Interface Specification v2.01s

TIELELETEE it
/'l Required Attributes //
THELELELEL it

January, 2003

Start Attribute

Name = "Event Type"

ID=1

Description = "The type of event that has occurred."
Type = <Enun»

Access = Read-Only

Storage = Specific

Val ue = unknown // Value definition required by Installer.

End Attribute

Start Attribute
Name = "Event Severity"

ID=2
Description = "The severity of this event."
Type = Start Enum

0x001 = "Monitor"

0x002 = "Infornation"

0x004 = "CK"

0x008 = "Non-Critical"

0x010 = "Critical"

0x020 = "Non- Recover abl e"

End Enum

Access = Read-Only
Storage = Specific

Val ue = unknown // Value definition required by Installer.

End Attribute

Start Attribute

Name = "Event |s State-Based"
ID=3
Description = "The value of this attribute determ nes"

"whet her the Event being reported is a"
"state-based Event or not. If the value of"
"this attribute is TRUE then the Event is "
"state-based. Qtherwise the Event is not
"state-based. "

Type = "BOOL"
Access = Read-Only
Storage = Specific

Val ue = unknown // Value definition required by Installer.

End Attribute

Start Attribute

Name = "Event State Key"

ID=4

Description = "A unique, single integer key into the”
"Event State group if this is a state-based"

"Event. If this is not a state-based Event then”
“this attribute's value is not defined. "

Type = Integer

Access = Read-Only

Storage = Common

Val ue = unknown // Value definition required by Installer.

End Attribute

I gnore.

| gnore.

| gnore.

| gnore.

62

January, 2003

Desktop Management Interface Specification v2.01s

Start Attribute
Name = "Associ ated G oup"

ID=5

Description = "The class nane of the group that is associated”
“with the events defined in this Event Generation”
“group.”

Type = String

Access = Read-Only

St orage = Conmmon

Val ue = "<C ass name>"
End Attribute

Start Attribute

Name = "Event Systent

ID=6

Description = "The major functional aspect of the product causing”
“the fault."

Type = <Enun»

Access = Read-Only

Storage = Specific

Val ue = unknown // Value definition required by Installer. Ignore.

End Attribute

Start Attribute
Name = "Event Subsystent
ID=7
Description = "The minor functional aspect of the"
"product causing the fault."
Type = <Enuneration>
Access = Read-Only
Storage = Specific
Val ue = unknown // Value definition required by Installer. Ignore.
End Attribute

THELELETEE it
/1 Optional Attributes //
THELLEETEL it

Start Attribute

Name = "Event Sol ution"
ID=38
Description = "A solution to the problemthat caused the event."

Type = <Enun»

Access = Read-Only

Storage = Specific

Val ue = unknown // Value definition required by Installer. Ignore.
End Attribute

Start Attribute

Name = "lnstance Data Present"
ID=9
Description = "Indicates whether the second event"

“data structure contains instance-specific data."”
Type = "BOOL"
Access = Read-Only
Storage = Specific
Val ue = unknown // Value definition required by Installer. Ignore.
End Attribute

63

End Group

January, 2003

Desktop Management Interface Specification v2.01s

Start Attribute

Name = "Vendor Specific Message"

ID =10

Description = "Auxiliary information
Type = String(<Size>)

Access = Read-Only

Storage = Specific

Val ue = unknown // Value definition
End Attribute

Start Attribute

Name = "Vendor Specific Data"

ID =11

Description = "Auxiliary information
Type = CctetString(<Size>)

Access = Read-Only

Storage = Specific

Val ue = unknown // Value definition
End Attribute

related to the event."

required by Installer.

related to the event."

required by Installer.

I gnore

I gnore

Desktop Management Interface Specification v2.01s

4. INTERFACE OVERVIEW

In the DMI framework there are four broad classes of APIs as depicted abstractly in Figure 4-1. They are,
respectively,

Management Application Provider Functions. These are functionsimplemented by the Management Application
Provider that may be invoked by the DMI Service Provider. An example of thisis the function entry point at which
the DMI Service Provider delivers Indications to the Management Application. The Management Application
Provider Functions are specified in Section 7.

DMI Service Provider Functionsfor Management Applications. These are functionsimplemented by the DMI
Service Provider that may be invoked by Management Applications. All of the functionsin the DM Service Provider
Functions for Management Applications are specified as part of the Management Interface (M) in subsequent Section
6.

DM Service Provider Functionsfor Components. These are functions implemented by the DMI Service Provider
that may be invoked by Component Providers. Registrations functions, or Indication origination functions fall into
this abstract class. The DM Service Provider Functions for Components are specified as part of the Component
Interface (Cl) in Section 8. These functions are OS-specific. Some OSes may not implement the CI but provide the
equivalent functionality using other, native mechanisms.

Component Provider Functions. These are functions implemented by Component Providers that may be invoked by
DMI Service Providers. Examples of these functions are CiGetAttribute and Ci SetAttribute. The Component Provider
functions are specified as part of the Component Interface (Cl) in Section 8. These functions are OS-specific. Some
OSes may not implement the CI but provide the equivalent functionality using other, native mechanisms.

‘ Management Application Provider

DM Service Provider
Functions for Mgt Apps Management Application
Provider Functions

DMI Service Provider
(previously called Service Layer)

Component Provider DMI Service Provider
Functions Functions for Components

/ Component
OPERATING
SYSTEM
SPECIFIC

Figure 4-1. Abstract classes of APIs in the DMI Framework.

In this document the DMI Service Provider Functions for Management Applications are defined in Section 6
"Management Interface”". The Management Application Provider functions are defined in Section 7 "Management
Application Provider API". The remaining two abstract classes of functions described above are defined in Section 8
"Component Interface".

January, 2003 65

Desktop Management Interface Specification v2.01s

4.1 PROGRAMMING CONSIDERATIONS

Working in an RPC environment has some unusual characteristics that merit special attention. The following section
introduces some of these issues. However, a complete discussion of al RPC issuesis outside the scope of this
document. Appendix D contains alist of related documents for further reference.

4.1.1 Binding To A Managed Machine

One of the first questions to answer when devel oping a management application is that of connecting, or binding, to the
managed machine. The DMI 2.0 interface relies on standard RPC mechanisms to accomplish this binding.

To connect to a machine, a management application must supply

the machine's name or address,

the protocol sequence (e.g,, TCP/IP),

the Service Provider’ s process address (endpoint) on the managed machine,
and the user's identity

A management application will typically specify the machine name and protocol sequence, and will most likely use a
dynamically determined endpoint. This addressing datais used to construct a binding handle; binding handles are
RPC-defined data structures that are used to manage the connection between RPC clients and servers.

Management applications that only talk to one machine at a time can construct an implicit, or global, binding handle.
When used in this manner, the application is effectively saying that all remote procedure calls are directed toward a
specific machine. When the application is done talking to that machine, it will free the binding. At this point, the
application can construct a new binding handle for some other machine.

Management applications that simultaneously manage multiple machines will need to construct and maintain multiple
binding handles: one per connection. In this usage model, the management application must explicitly supply a
binding handle with each procedure call. This allows an application to direct procedure calsto different machines,
while eliminating the need to create and free binding handles between procedure calls.

The Management Interface APIs specified in Sections 6 and 7 do not include binding handles in the procedures
formal parameter lists. Instead, these API specifications concentrate on the DMI 2.0 interfaces themselves.

Some RPC implementations can retrieve the management application's user identity implicitly and provideit to the
managed machine Service Provider.

NOTE: The absence of abinding handlein a procedure’ s formal parameter list
does not preclude the use of explicit binding handlesin a management application.
The DCE RPC programming environment, for example, provides a mechanism
whereby management applications can tailor the interface for implicit or explicit
binding, without changing the IDL description itself. This customization occurs
when the devel oper creates the RPC procedure stubs with the RPC IDL compiler.
Appendix B describes the DCE RPC development process and includes the DCE
IDL description for the interfaces described in this document.

4.1.2 The use of pointers

In general, the formal parameter list for any procedure will be composed of three parameter types: in, out, and in/out.
The“in” parameters are used to pass information to the procedure; the “out” parameters (including the procedure’s
return value) are used to return results from the procedure, and the “in/out” parameters are used to both pass
information and to receive results.

For simple data types, we can pass the data by value. Thisisthe case, for example, when passing the component 1D to
aprocedure. To receive asimple datatype in return, the caller passes the address of a variable to hold the result.

January, 2003 66

Desktop Management Interface Specification v2.01s

When a procedure call returns from aremote system, the RPC stub copies the data val ue into the address specified by
the caller.

Things become a little more complicated when passing data structures by reference. The DMI procedural interface
contains procedures that accept and return arrays of data structures. These structures are passed by reference, with
some memory allocated by the management application, and some allocated by the DMI Service Provider. Given all
this memory allocation, we need some clear rules about who performs the allocation, and who owns the allocated data.
For each parameter class, the responsibility for allocating and freeing reference parametersis as follows:

TYPE ALLOCATE D BY OWNED
BY
In Caller Caler
Out Callee Caler
In/Out Caller oninput; callee reallocateson | Caller
output

In the latter two cases there is one piece of code (e.g., the RPC stub) that allocates the memory and a different piece of
code (e.g., the management application) that freesit. For thisto be successful, the two pieces of code must have
knowledge of which memory allocator is being used. In RPC programming environments, the client application and
the RPC stubs use a common memory allocator, usually specified by the RPC runtime system.

Further, the treatment of out and in-out parameters in failure conditions requires special attention. If afunction returns
a status code which is afailure code, then in general the caller has no way to clean up the out or in-out parameters
returned to him. This leads to afew additional rules:

out parameters

For error returns, out parameters must be always reliably set to avalue which will be cleaned up without any action on
the caller’s part.

Further, it is the case that al out pointer parameters (usually passed in a pointer-to-pointer parameter, but which can
also be passed as a member of a caller-allocate, callee-fill structure) must explicitly be set to NULL.

As a DMI management application writer, then, you should assume that a failed procedure call requires no additional
memory cleanup; the DMI Service Provider should NOT allocate any memory in the failure case.

in-out parameters

For error returns, al in-out parameters must either be |eft alone by the callee (and thus remaining at the value to which
it was initialized by the caller) or be explicitly set asin the out parameter error return case.

4.1.3 Calling Conventions

In order to support portability, and for clarity in this document, all of the DMI functions are defined to have a calling
convention of DMI_API.

For example:
Dmi ErrorStatus_t DM _APlI Dmi AddRow(Dmi Handl e_t Handl e, Dnmi RowData_t *RowData);

This allows a calling convention that is native to a host operating system to be used when building implementations for
that operating system. The following isalist of calling conventions to be used by each of the Operating Systems
discussed in this document:

January, 2003 67

Desktop Management Interface Specification v2.01s

(]S IMPLEM ZNTATIONS
macos
Os2 #define DMI_API APIENTRY
unix

winlé | #define DMI_API WINAPI
win32 | #define DMI_API WINAPI
windx | #define DMI_API WINAPI
winnt #define DMI_API WINAPI

4.1.4 Re-entrancy

Most, if not all, 32-bit operating system environments today provide multi-threaded operation. In addition, in a
networked environment, there may be several simultaneous sources of function callsto any particular function entry
point. In consequence, all entry pointsin the procedural interface portion of this specification must be implemented to
be re-entrant, with the exception of the Component Provider functions. This exception is provided to subsume current
implementations of component instrumentation code with a minimum of re-design.

January, 2003 68

Desktop Management Interface Specification v2.01s

4.2 NATIONAL LANGUAGE SUPPORT

4.2.1 Requirement

The DMI has aways supported NLS functionality, but with this version it is no longer an optional element. Any
implementation that claims to be conformant to this specification MUST support all of the NL S functions defined in
this specification. One important note for component vendors, with this version of the specification the LANGUAGE
statement, as defined in Section 2.2 (MIF Grammar) of this document, is no longer optional .

4.2.2 Overview

DMI handles NL S functionality through several functions defined in this document. This section presents a brief
overview of al of those functions. There are two primary mechanisms that are enabled in the DMI architecture that
dlow for NLSto work. Thefirst isthe installability of additional MIF files, known as language mapping files. These
filesare MIF files that differ in two ways - the language string at the top (which is now mandatory in al MIF files)
defines the language and encoding style used for thisfile, and secondly that the trandatable text isin that language.
The second mechanism defined in this spec to enable NL S is the use of two different character encoding styles. This
document allow the use of either 1ISO 8859-1 (L atin Alphabet 1) for those languages that can be represented using this
single byte character set, or UNICODE. UNICODE is atwo byte character set that represents an attempt to combine
the multitude of character sets, and encoding stylesinto a single element. It should be noted that the first 255 code
points of the UNICODE code page correspond exactly to 1SO 8859-1, so coexistence is greatly simplified.

NOTE: the above description refers to OS environments that implement the Cl interface described in Section 8.
However, the functionality and database schemaimplied by the Cl are OS-specific. Some OSes may not implement
the Cl functions and the MIF schema but provide equivalent functionality using other, native mechanisms and native
schema’s. In this case the language mapping files are another form of schema description filesin that environment.

4.2.3 Translatable Text

A discussion of what is translatable within aMIF file is probably best dealt with by stating what is NOT translatable
withinaMIFfile. Thefollowingisalist of the MIF elementsthat are NOT trandatable:

1) Keywords

2) Language strings

3) Class strings

4) String vaues that are keys

4.2.4 Installation

As stated above, NLS support isinitiated by the installation of multiple MIF files for agiven component. Thisis
accomplished by use of the DmiAddComponent() and DmiAddL anguage() functions. The primary difference
between these functionsis that one - DmiAddComponent() returns a component |D, and the other

DmiAddL anguage() takes a component 1D as one of itsinput parameters.

It should be noted, that Dmi AddComponent() can be used to install both the Default MIF and language mapping MIFs
dl at the sametime. Thisis done through the use of the DmiFileDatal ist_t data structure. The first, or only MIFfile
passed to DmiAddComponet() will become the default language for that component, and any additional MIF files
(and all files passed to DmiAddLanguage()) will be used as requestable languages. Additional languages can be
installed for a given component at any time, but it should be noted that since Groups can be added to, or removed
from, a component at any time, the newly installed language mapping should make a reasonable attempt to match the
installed component.

NOTE: the above description refers to OS environments that implement the Cl interface described in Section 8.
However, the functionality and database schemaimplied by the Cl are OS-specific. Some OSes may not implement
the CI functions and MIF schema but provide the equivalent functionality using other, native mechanisms and native
schemas. Also see Section 6.4.

January, 2003 69

Desktop Management Interface Specification v2.01s

4.2.5 Operation

In operation, the DMI allows a user to discover and select the language to use on all subsegquent requestsin the
following manner. A user of the M1 interface can issue the DmiListL anguages() to retrieve alist of the languages
that are currently available for a given component. The DMI Service Provider will return queriesto all commands
using the default (first) language installed for a component, unless or until the application uses the DmiSetConfig()
function to change the response language. An application can issue this call at any time, and as often as needed, but it
should be noted that for the periods between invocations of this function, all DMI functions will use the currently set
language to build responses. |f a component does not have the requested language installed to support a given request,
then the DMI Service Provider will use the default (first) language for the response, and an error code of
DMIERR_DEFAULT_LANGUAGE_RETURNED will be returned to the caller.

January, 2003 70

5. KEY DATA STRUCTURES

5.1 DMI DATA TYPES

The DMI data types presented in this specification adhere to the naming convention for DCE RPC data types. DCE
data types have the following size representations:

| DL Datatype Size

char 8 bits

boolean 8 hits

long 32 bits

hyper 64 bits

unsigned long 32 bits

unsigned hyper 64 bits
typedef unsigned | ong Dmi Counter _t;
typedef unsigned hyper Dmi Count er 64_t ;
typedef unsigned | ong Dmi ErrorStatus_t;
typedef unsigned | ong Dmi Gauge_t;
typedef unsigned | ong Dmi Handl e_t ;
typedef unsigned | ong Dmild_t;
typedef |ong Dmi | nteger _t;
typedef hyper Dmi I nteger64_t;
typedef unsigned | ong Dmi Unsi gned_t ;
typedef bool ean Dni Bool ean_t;

January, 2003

Desktop Management Interface Specification v2.01s

71

Desktop Management Interface Specification v2.01s

5.2 ENUMERATED TYPES

5.2.1 DmiAccessMode

This enumerated type defines the access modes for an attribute.

FIE .D NAME

DESCF IPTION

MIF_UNKNOWN
MIF_READ_ONLY
MIF_READ_WRITE
MIF_WRITE_ONLY
MIF_UNSUPPORTED

Unknown access mode
Read access only
Readable and writable
Write access only
Attribute is not supported

typedef enum {
M F_UNKNOWN,
M F_READ_ONLY,
M F_READ_WRI TE,
M F_WRI TE_ONLY,
M F_UNSUPPORTED
} Dmi AccesshMbde_t;

5.2.2 DmiDataType
This enumerated type defines the data types referenced by DmiDataUnion.

FIEL D NAME DESCRIPTION
MIF_DATATYPE_O RESERVED
MIF_COUNTER 32-bit unsigned integer that never decreases
MIF_COUNTER64 64-bit unsigned integer that never decreases
MIF_GAUGE 32-bit unsigned integer that may increase or decrease
MIF_DATATYPE 4 RESERVED
MIF_INTEGER 32-hit signed integer

MIF_INTEGER64
MIF_OCTETSTRING
MIF_DISPLAY STRING
MIF_DATATYPE_9
MIF_DATATYPE_10
MIF_DATE

64-bit signed integer

String of n octets, not necessarily displayable
Displayable string of n octets

RESERVED

RESERVED

28-octet displayable string (yyyyrmudhhmss. uuuuuu+ooo)

typedef enum {
M F_DATATYPE_O,
M F_COUNTER,
M F_COUNTER64,
M F_GAUGE,

January, 2003

72

DATATYPE_4,

I NTEGER,

| NTEGER64,
OCTETSTRI NG

DI SPLAYSTRI NG,
DATATYPE_9,
DATATYPE_10,
F_DATE

} Dmi DataType_t;

T2

5.2.3 DmiFileType

Desktop Management Interface Specification v2.01s

This data structure defines the DMI mapping file types.

FIELD NAN E

DESCRIPTION

DMI_FILETYPE_ O
DMI_FILETYPE_1
DMI_MIF_FILE_NAME
DMI_MIF_FILE_DATA
SNMP_MAPPING_FILE_NAME
SNMP_MAPPING_FILE DATA
DMI_GROUP_FILE_NAME
DMI_GROUP_FILE_DATA
VENDOR_FORMAT_FILE_NAME
VENDOR_FORMAT _FILE_DATA

RESERVED

RESERVED

File datais the name of aDMI MIF file

File datais the contents of DMI MIF file

File datais the name of an SNMP mapping file
File datais the contents of an SNMP mapping file
File datais the name of aDMI GROUP file

File datais the contents of a DMI GROUP file
File datais the name of a Vendor-format datafile

File datais the contents of a VVendor-format data
file

typedef enum {
DM _FI LETYPE_O,
DM _FI LETYPE_1,
DM _M F_FI LE_NAME,
DM _M F_FI LE_DATA,
SNVP_MAPPI NG_FI LE_NAME,
SNVP_MAPPI NG_FI LE_DATA,
DM _GROUP_FI LE_NAME,
DM _GROUP_FI LE_DATA,
VENDOR_FORMAT_FI LE_NAME,
VENDOR_FORMAT_FI LE_DATA
} DmiFileType_t;

5.2.4 DmiRequestMode

This data structure defines sequential access modes.

FIELL NAME

DESCRIPTI DN

DMI_UNIQUE
DMI_FIRST
DMI_NEXT

Access the specified item (or table row)
Accessthefirst item
Access the next item

typedef enum {
DM _UNI QUE,
DM _FI RST,

January, 2003

73

Desktop Management Interface Specification v2.01s

DM _NEXT
} Dmi Request Mode_t;

5.2.5 DmiSetMode
This data structure describes set operations.

FIELL NAME DESCF IPTION
DMI_SET Set data values
DMI_RESERVE Reserve resources for a set

operation
DMI_RELEASE Release previously reserved
resources

typedef enum {
DM _SET,
DM _RESERVE,
DM _RELEASE
} Dmi Set Mode_t;

5.2.6 DmiStorageType
This data structure defines the storage type for an attribute.

FIELI NAME DESCF IPTION
MIF_COMMON Valueisfromasmall set of
possibilities
MIF_SPECIFIC Valueisfrom alarge set of
possibilities

typedef enum {
M F_COMVON,
M F_SPECI FI C

} Dmi StorageType_t;

January, 2003 74

Desktop Management Interface Specification v2.01s

5.3 DATA STRUCTURES

5.3.1 DmiAttributeData
This data structure describes an attribute id, type, and value.

DmiAttributeData DmiString char(]
id size text... ‘ 0 ‘
STRING J body
value
DmiAttributeData DmiOctetString char(]
id size text...
OCTETSTRING J body
value
DmiAttributeData DmiTimestamp
id date /time [0]0]0]
DATE
value
DmiAttributeData
id
ALL OTHERS
value
FIELD DE 53CRIPTION
NAME
id Attribute ID
data Attribute type and
value

typedef struct DmiAttributeData {
Dmi | d_t id;
Dmi Dat aUni on_t dat a;
} DmiAttributeData_t;

January, 2003 75

Desktop Management Interface Specification v2.01s

5.3.2 DmiAttributelds

This data structure describes a conformant array of DmiAttributelds.

F ELD NAME DESCRI >TION
size Array elements
list Array data

typedef struct Dmi Attributelds {
Dmi Unsi gned_t si ze;
Dmld_t* list;
} DmiAttributelds_t;

5.3.3 DmiAttributelnfo

This data structure holds information about an attribute.

DmiAttributelnfo DmiString charf]
id j» size ﬁ text... ‘ 0 ‘
name body
pragma
description —Lb size ﬁ text... ‘ 0 ‘
storage body
access
type size ﬁ text... ‘ 0 ‘
maxSize body
enumList
1 DmiEnumlList DmiEnuminfo DmiString charf]
size jb name > size text... ‘ 0 ‘
list value body
name > size ﬁ text... ‘ 0 ‘
value body

January, 2003 76

Desktop Management Interface Specification v2.01s

FIE .D NAME DESCRIPTION
id Attribute ID
name Attribute name string
pragma Attribute pragma string [optional]
description Attribute description string [optional]
storage Common or specific storage
access read-only, read-write, etc.
type Counter, integer, etc.
maxSize Maximum length of the attribute
enumList EnumList for enumerated types [optional]

typedef struct Dmi Attributelnfo {

Dmild_t id;

Dmi String_t* name;

Dmi String_t* pragma;

Dmi String_t* description;
Dmi St or ageType_t st or age;

Dmi AccessMode_t access;
Dni Dat aType_t type;

Dmi Unsi gned_t maxSi ze;

struct Dm Enunli st* enuntLi st ;
} DmiAttributelnfo_t;

5.3.4 DmiAttributeList

This data structure describes a conformant array of DmiAttributelnfo structs.

FI ZLD NAME DESCF IPTION
size Array elements
list Array data

typedef struct Dmi AttributeList {
Dmi Unsi gned_t si ze;
Dm Attributelnfo_t* list;
} DmiAttributelist_t;

5.3.5 DmiAttributeValues

This data structure describes a conformant array of DmiAttributeV alues.

Fl LD NAME DESCF IPTION
size Array elements
list Array data

typedef struct Dmi AttributeVal ues {
Dmi Unsi gned_t si ze;
Dmi AttributeData_t* list;

} DmiAttributeVal ues_t;

January, 2003

7

5.3.6 DmiClassNamelnfo

This data structure holds a group’sid and class string.

FIELD N AME DESCRIP110ON
id Group ID
className Group class name string

typedef struct Dmi Cl assNanelnfo {

Dmild_t
Dmi String_t*
} DmiCl assNanelnfo_t;

5.3.7 DmiClassNameList

id;
cl assNane;

This data structure describes a conformant array of DmiClassNamelnfo structs.

FIELD N AME DESCRIP1I10ON
size Array elements
list Array data

typedef struct Dmi Cl assNaneList {

Dmi Unsi gned_t

Dm Cl assNanel nfo_t*
} Dmi Cl assNaneLi st _t;

5.3.8 DmiComponentinfo

si ze;
list;

This data structure holds information about a component.

DmiComponentinfo DmiString charl]
id j size text... ‘ 0 ‘
name body
pragma
description —Lb size ﬁ text... ‘ 0 ‘
exactMatch body
text... ‘ 0 ‘

January, 2003

size ﬁ
body

Desktop Management Interface Specification v2.01s

78

Desktop Management Interface Specification v2.01s

FIEL) NAME DESCRIPTION
id Component ID
name Component name string
pragma Component pragma string [optional]
description Component description string [optional]
exactMatch TRUE = Exact match

FALSE = Possible match

typedef struct Dmi Conponentlnfo {
Dmild_t id;

Dmi String_t*
Dmi String_t*
Dmi String_t*
Dmi Bool ean_t

nane;

pragma;
description;
exact Mat ch;

} Dmi ConponentInfo_t;
5.3.9 DmiComponentList
This data structure describes a conformant array of DmiComponentinfo structs.

FIt LD NAME DESCRIPTI DN
size Array elements

list Array data

typedef struct Dmi ConponentList {
Dmi Unsi gned_t si ze;
Dni Conponent I nfo_t* list;
} Dmi Conponent Li st _t;

5.3.10 DmiDataUnion
This data structure is a discriminated union of DMI data types.

Fl :LD NAME DESCRIPTI DN
type Discriminator for the union
value Union of DMI attribute data types

typedef union
switch (DmiDataType_t type) value {

case M F_COUNTER: Dmi Count er _t counter;
case M F_COUNTERG64: Dmi Count er 64_t count er 64;
case M F_GAUCE: Dmi Gauge_t gauge;
case M F_| NTEGER: Dmi | nt eger _t i nteger;
case M F_| NTEGER64: Dni | nt eger 64_t i nt eger 64;
case M F_COCTETSTRI NG Dmi String_t* octetstring;
case M F_DI SPLAYSTRI NG Dmi String_t* di spl aystring;
case M F_DATE: Dmi Ti mestanp_t * dat e;

} Dmi Dat alni on_t;

January, 2003

79

Desktop Management Interface Specification v2.01s

5.3.11 DmiEnuminfo

This data structure associates an integer value with descriptive text.

FIt LD NAME DESCRIPTI DN
name Enumeration name
value Enumeration value

typedef struct Dmi Enum nfo {
Dmi String_t* name;
Dmi | nt eger _t val ue;
} Dmi Enum nfo_t;

5.3.12 DmiEnumList

This data structure describes a conformant array of DmiEnuminfo structs.

FIELI) NAME DESCRIPTION
size Array elements
list Array data

typedef struct Dm Enunilist {
Dmi Unsi gned_t si ze;
Dm Enum nfo_t* list;
} Dmi Enumli st _t;

5.3.13 DmiFileDatalnfo
This data structure holds language file type and mapping data.

FIELD NAME DESCRIPTI DN
fileType Mif file, SNMP mapping file, etc.
file Data Thefileinfo (name or contents)

typedef struct DmiFileDatalnfo {
Dmi Fi | eType_t fileType;
Dmi CctetString_t* fil eData;
} DmiFileDatalnfo_t;

January, 2003

80

5.3.14 DmiFileDataList

This data structure describes a conformant array of DmiFileDatal nfo structs.

Desktop Management Interface Specification v2.01s

FIEl D NAME DESCRIPTION
size Array elements
list Array data

typedef struct Dm Fil eDatalist {

Dmi Unsi gned_t

si ze;

Dmi Fi | eDatal nfo_t* list;

} DmiFil eDataList_t;

5.3.15 DmiFileTypeList

This data structure describes a conformant array of DmiFileTypes. It isused by the DmiGetVersion function to return

alist of file types supported by the DmiAddComponent, DmiAddLanguage, and DmiAddGroup functions.

Fl 2LD NAME DESCRIPT ON
size Array elements
list Array data

typedef struct DmiFileTypelList {

Dmi Unsi gned_t
Dmi Fi |l eType_t*
} DmiFil eTypelList_t;

January, 2003

si ze;
list;

81

5.3.16 DmiGroupinfo

Desktop Management Interface Specification v2.01s

This data structure holds information about a group.

DmiGroupinfo DmiString char[]
id J» size jb{ text... ‘ 0 ‘
name body
pragma
className T» size jb{ text... ‘ 0 ‘
description body
keyList 1
size jb{ text... ‘ 0 ‘
body
size ﬁ text... ‘ 0 ‘
body
DmiAttributelds Dmild
size ﬁ id |
FIEL D NAME DESCRIP 'ION
id Group ID
name Group name stri ng
pragma Group pragma string [optional]
className Group class name string
description Group description string [optional]
keyList Attribute Idsfor table row keys
typedef struct Dmi Grouplnfo {
Dmild_t id;
Dmi String_t* name;
Dmi String_t* pragma;
Dmi String_t* cl assNane;
Dmi String_t* description;
struct Dmi Attributeslds* KeylLi st;

} Dmi Gouplnfo_t;

January, 2003

82

Desktop Management Interface Specification v2.01s

5.3.17 DmiGrouplList

This data structure describes a conformant array of DmiGrouplnfo structs.

FIEI D NAME DESCRIPTION

size Array elements
list Array data

typedef struct Dmi GroupList {
Dmi Unsi gned_t si ze;
Dmi Grouplnfo_t* |ist;

} Dmi GrouplList_t;

5.3.18 DmiMultiRowData

This data structure describes a conformant array of DmiRowData structs.

FIEI D NAME DESCRIPTION

size Array elements
list Array data

typedef struct Dmi Multi RowData {
Dmi Unsi gned_t si ze;
Dni RowDat a_t * list;
} DmiMulti RowData_t;

5.3.19 DmiMultiRowRequest

This data structure describes a conformant array of DmiRowRequest structs.

FIEl D NAME DESCRIPTION
size Array elements

list Array data

typedef struct Dmi Multi RowRequest {
Dmi Unsi gned_t si ze;
Dmi RowRequest _t * list;

} Dmi Mul ti RowRequest _t;

January, 2003

83

Desktop Management Interface Specification v2.01s

5.3.20 DmiNodeAddress

This data structure describes addressing information for indication originators.

FIELD NAME DESCRIPTION
address Transport-dependent node address
rpc Identifies the RPC (DCE, ONC, etc)
transport Identifies the transport (TCP/IP, SPX, etc.)

typedef struct Dmi NodeAddress {

Dmi String_t* addr ess;
Dmi String_t* rpc;
Dmi String_t* transport;

} Dmi NodeAddress_t;

5.3.21 DmiOctetString
This data structure defines the DMI octet string representation.

F ELD NAME DESCRIPTION
size Number of octetsin the string body
body String contents

typedef struct Dmi CctetString {
Dmi Unsi gned_t si ze;
char* body;
} DmiCctetString_t;

January, 2003 84

5.3.22 DmiRowData

This data structure identifies

Desktop Management Interface Specification v2.01s

{component, group, row, ids} to set.

DmiMultiRowData DmiRowData DmiString char(]
size j» compld size text... ‘ 0 ‘
list groupld body
className
keyList I DmiAttributeValues DmiAttributeData
values size jb id
. list type
compld value
groupld
className DmiAttributeValues DmiAttributeData
keyList size jb id
values list type
value
id
type
value
FI =LD NAME DESCRIPTIOI |
compld Component ID
groupld Group ID
className Class name string for the group. Used for
indications.
keyList Array of values for key attributes
values Array of values for data attributes

typedef struct Dmi RowData {

Dmi | d_t

Dmi | d_t

Dmi String_t*

struct Dm Att

struct Dm Att
} Dmi RowData_t;

January, 2003

conpl d;

groupl d;

cl assNane;
ri but eval ues* keylLi st;
ri but eval ues* val ues;

85

5.3.23 DmiRowRequest

Desktop Management Interface Specification v2.01s

This data structure identifies { component, group, row, ids} to get.

DmiMultiRowRequest ~ DmiRowRequest DmiAttributeValues DmiAttributeData
size j» compld size j» id
list groupld list type
requestMode value
keyList DmiAttributelds
ids »> size Dmild
e list o id |
groupld e
keyList
ids
FIELD NAME DESCRIPTION
compld Component ID
groupld Group ID
requestM ode Get from specified row, first row, or next row
keyList Array of valuesfor key attributes
ids Array of Idsfor data attributes
typedef struct Dm RowRequest {
Dmild_t conpl d;
Dmild_t groupl d;
Dni Request Mode_t request Mode;
struct Dm AttributeVal ues* keyLi st ;

struct Dmi Attributel ds*
} Dmi RowRequest _t;

5.3.24 DmiString

This data structure defines the DM string representation. All DmiStrings must be null terminated. A display string

ids;

with zero displayable characters still contains the null terminator, and thus has a non-zero length. For the ISO8859-1
character format, the string length for this empty string is 1.

FIEL D NAME DESCRIPTION
size Number of octetsin the string body including the
terminating null character (Note: null is 2 octets
in Unicode)
body String contents
typedef struct Dmi String {
Dmi Unsi gned_t si ze;
char* body;

} DmiString_t;

January, 2003

86

5.3.25 DmiStringList

Desktop Management Interface Specification v2.01s

This data structure describes a conformant array of DmiString structs.

FIEL) NAME DESCRIF TION
size Array elements
list Array data

typedef struct Dm StringList {

Dmi Unsi gned_t
Dmi String_t**
} Dmi StringList_t;

5.3.26 DmiTimeStamp

This data structure describes the time format used by DMI. The format of the time block is a 28-octet displayable
string with SO 8859-1 encoding, so each element is one or more printable characters.

For example, Wednesday May 25, 1994 at 1:30:15 PM EDT would be represented as:

si ze;
list;

19940525133015. 000000- 300
A seconds value of 60 is used for leap seconds.

The offset from UTC is the number of minutes west (negative number) or east offset from UTC that indicates the time

zone of the system.

Values must be zero-padded if necessary, like "05" in the example above. If avalueisnot supplied for afield, each

character in the field must be replaced with asterisk (*') characters.

The DMI Server is not required to check the contents of this string for validity.

FII /LD NAME DESCRIPTION
year Theyear
month Themonth (‘1'.."12)
day The day of themonth (‘1'.."31)
hour The hour of theday (‘0'.."23')
minutes Theminutes (‘0'.."59’)
seconds The seconds (‘0'.."60’)
dot Adot (“.'}
microseconds Microseconds (‘0'..”999999')
plusORminus ‘+' for east, or ‘- west of UTC
utcOffset Minutes (‘0'.." 720") from UTC
padding Unused padding for 4-byte alignment

January, 2003

87

typedef struct Dmi Ti nestanp {

char
char
char
char
char
char
char
char
char
char
char

year

nmont h

day

hour

m nut es
seconds

dot;

m cr oseconds
pl usORmi nus;
utcOf f set
paddi ng

} Dmi Ti meSt anp_t

January, 2003

[4];
[2];
[2];
[2];
[2];
[2];

[6];

[3];
[3;

Desktop Management Interface Specification v2.01s

88

Desktop Management Interface Specification v2.01s

6. MANAGEMENT INTERFACE

The functions that comprise the Management Interface (M) belong to the API described as the Service Provider API
for Management Applications. Please see Section 4 for a discussion of the abstract classes of interfacesin the DMI.
Also see Section 4.1 for a description of explicit versusimplicit bindings. If the Service Provider implements the
DMI Security Extension, Management Interface calls are authorized as described in section 13.

6.1 INITIALIZATION FUNCTIONS

DMIv2.0 retains the concept of registration of management applications to the DMI Service Provider agent. The
functions DmiRegister and DmiUnregister provide this capability. Some of the data carried in each command in
DMIv1.x DmiMgmtCommand block has been extracted. Thisinformation is set with a DmiSetConfig call and
accessed by DmiGetConfig. These calls contain fields which rarely change between a manager and a client.
DmiGetVersion is pulled out as a separate call rather than being a byproduct of the DmiRegisterMgmtReq asit wasin
DMIv1.x.

6.1.1 DmiRegister

The DmiRegister procedure provides the management application with a unique per-session handle. The DMI Service
Provider uses this procedure to initialize its internal state for subsequent procedure calls made by the application. This
must be the first DMI command executed by the application. Upon registration, the DMIv2.0s Service Provider
associates the roles of the management application user with the allocated management handle, as described in section
13.1.

P/ RAMETER DIRECTION DESCRI >TION
NAME
handle Out On completion, an open session
handle

Dmi ErrorStatus_t DM _API
Dmi Regi ster (
[out] Dmi Handl e_t * handl e);

The client provides the address of the handle parameter and the server fillsitin. All commands except DmiRegister()
require avalid handle, so this must be the first command sent to the server.

ERROR CODES

DM ERR_NO_ERROR

DM ERR_OUT_OF_MEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

6.1.2 DmiUnregister

The DmiUnregister procedure must be the last DMI command executed by the management application. The DMI
Service Provider uses this procedure to perform its end-of-session cleanup actions. On return from this function, the
session handle is no longer valid.

January, 2003 89

Desktop Management Interface Specification v2.01s

P/ RAMETER DIRECTION DESCRIFTION
NAME
handle In An open session handle to be
closed

Dmi Error Status_t DM _API
Dmi Unr egi ster (
[in] Dmi Handl e_t handle);

ERROR CODES

DM ERR_NO_ERROR
DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

6.1.3 DmiGetVersion

The DmiGetVersion procedure retrieves information about the DMI Service Provider. The management application
uses this procedure to determine the DMI specification level supported by the service provider. This procedure also
returns the service provider description string, and may contain version information about the service provider
implementation.

P/ RAMETER DIRECTION DESCRIP "ION
NAME

handle In An open session handle

dmi SpecL evel Out The DMI Specification version

description Out The os-specific DMI Service
Provider version

fileTypes Out The file types supported for MIF
installation

Dmi Error Status_t DM _API
Dmi Get Ver si on (

[in] Dni Handl e_t handl e,

[out] Dmi String_t** dmi SpeclLevel ,

[out] Dmi String_t** description,

[out] DmiFileTypeList_t** fileTypes);
ERROR CODES

DM ERR_NO_ERROR
DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

January, 2003 9%

Desktop Management Interface Specification v2.01s

6.1.4 DmiGetConfig

The DmiGetConfig procedure retrieves the per-session configuration information. For the DMIv2.0 specification, this
configuration information consists of a string describing the current language in use for the session.

P/ RAMETER DIRECTION DESCRIFTION
NAME
handle In An open session handle
language Out language-code | territory-code |
encoding

Dmi Error Status_t DM _API

Dni Get Config (
[in] Dni Handl e_t handl e,
[out] Dmi String_t** | anguage);
ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI CI ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

6.1.5 DmiSetConfig

The Dmi SetConfig procedure sets the per-session configuration information. For the DMIv2.0 specification, this
configuration information consists of a string describing the language required by the management application.

P/ RAMETER DIRECTION DESCRIF TION
NAME
handle In An open session handle
language In language-code | territory-code |
encoding

Dmi ErrorStatus_t DM _API

Dmi Set Config (
[in] Dni Handl e_t handl e,
[in] Dmi String_t* | anguage);
ERROR CODES

DM ERR_NO_ERROR

RR_| LLEGAL_HANDLE
OUT_OF_MVEMORY

| NSUFFI Cl ENT_PRI VI LEGES
SP_I NACTI VE

| LLEGAL_TO SET
ERR_DEFAULT_LANGUAGE_RETURNED

January, 2003 o1

Desktop Management Interface Specification v2.01s

6.2 LISTING FUNCTIONS

Discovery functions retain the DMIv1.1 model of sequential or random access to the component, group, and attribute
information. Each function takes a requestM ode parameter, allowing the caller to specify DMI_FIRST, DMI_NEXT,
or DMI_UNIQUE when accessing the information.

In addition, the component list commands have been separated into individual callsto retrieve group classes within a
component, to use filtering options, and to retrive mapping files.

Note: commands that allow for the retrieval of pragma or description stringswill return a NULL pointer if the string is
unavailable. This note applies to component, group, and attribute listings.

6.2.1 DmiListComponents

This call retrieves the name and (optionally) the description of componentsin a system. This command is used to
interrogate a system to determine what components are installed. An enumeration can access a specific component or
may be used to sequentially access all componentsin asystem. The caller may choose not to retrieve the component
description by setting the value getDescription to false. The caller may choose not to retrieve the pragma string by
setting the value of getPragmarto false.

The maxCount, requestMode, and compld parameters allow the caller to control the information returned by the DMI
Service Provider. When the requestMode is DMI_UNIQUE, compld specifies the first component requested (or only
component if maxCount isone). When the requestMode is DMI_NEXT, compld specifies the component just before
the one requested. When requestMode is DMI_FIRST, compld is unused.

To control the amount of information returned, the caller sets maxCount to something other than zero. The service
provider must honor this limit on the amount of information returned. When maxCount is zero the service provider
returns information for all components, subject to the constraints imposed by requestM ode and compl d.

P/ RAMETER DIRECTION DESCRIPT ON
NAME

handle In An open session handle

requestM ode In Unique, first, or next

maxCount In Maximum number to return, or O for
al

getPragma In Get optiona pragmastring ?

getDescription In Get optional component description ?

compld In Component to start with (see
requestM ode)

reply Out List of components

Dmi Error Status_t DM _API
Dnmi Li st Conponents (

[in] Dni Handl e_t handl e,
[in] Dni Request Mode_t request Mode,
[in] Dmi Unsi gned_t maxCount ,
[in] Dmi Bool ean_t get Pragns,
[in] Dmi Bool ean_t get Descri ption,
[in] Dmi | d_t conpl d,
[out] Dmi Conponent List_t** reply);
ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

January, 2003 92

Desktop Management Interface Specification v2.01s

DM ERR_COMPONENT_NOT_FOUND

DM ERR_DATABASE_CORRUPT

DM ERR_FI LE_ERROR

DM ERR_DEFAULT_LANGUAGE_RETURNED

6.2.2 DmiListComponentsByClass

This command lists components which match specified criteria. This command is used to determine if a component

contains a certain group or a certain row in atable. A filter condition may be that a component contains a specified

group class name or that it contains a specific row in a specific group. Aswith DmiListComponents, the description
and pragma strings are optional return values.

Also, see DmiListComponents for an explanation of how requestM ode, maxCount, and compld interact to select the

information returned.

P/ RAMETER [IRECTION DESCRIF TION
NAME
handle In An open session handle
requestM ode In Unique, first, or next
maxCount In Maximum number to return, or O
for all
getPragma In Get optional pragmastring ?
getDescription In Get optional component
description
compld In Component to start with (see
requestMode)
className In Group class name string to match
keyList In Group row keysto match, or null
reply Out List of components
Dmi ErrorStatus_t DM _API
Dni Li st Conponent sByd ass (
[in] Dmi Handl e_t handl e,
[in] Dmi Request Mode_t request Mode,
[in] Dmi Unsi gned_t maxCount ,
[in] Dni Bool ean_t get Pragnms,
[in] Dni Bool ean_t get Descri ption,
[in] Dmi | d_t conpl d,
[in] Dmi String_t* cl assNane,
[in] Dmi Attri buteval ues_t* keylLi st
[out] Dmi Conponent List_t** reply);
ERROR CODES

January, 2003

ERR_| NSUFFI CI ENT_PRI VI LEGES
RR_SP_| NACTI VE
RR_COVPONENT_NOT_FOUND
RR_NO_DESCRI PTI ON

DM
DM El
DM El
DM El
DM ERR_NO_PRAGVA
DM El
DM El
DM El

RR_DATABASE_CORRUPT
RR_FI LE_ERROR
RR_DEFAULT_LANGUAGE_RETURNED

93

Desktop Management Interface Specification v2.01s

6.2.3 DmilListLanguages

The DmiListLanguages procedure retrieves the set of language mappings installed for the specified component. The
maxCount parameter limits the number of strings returned to the caller.

P/ RAMETER JIRECTION DESCRI °TION
NAME
handle In An open session handle
maxCount In Maximum number to return, or O
for all
compld In Component to access
reply Out List of language strings
Dmi ErrorStatus_t DM _API
Dmi Li st Languages (
[in] Dni Handl e_t handl e,
[in] Dmi Unsi gned_t maxCount ,
[in] Dmi | d_t conpl d,

[out] Dmi StringList_t** reply);

ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

DM ERR_COVMPONENT_NOT_FOUND

DM ERR_DATABASE_CORRUPT

DM ERR_FI LE_ERROR

6.2.4 DmiListClassNames

The DmiListClassNames procedure retrieves the class name strings for al groupsin a component. This alowsthe
management application to easily determine if a component contains a specific group, or groups. The maxCount
parameter limits the number of class name strings returned to the caller.

P/ RAMETER DIRECTION DESCRIP '1ON
NAME
handle In An open session handle
maxCount In Maximum number to return, or O for
al
compld In Component to access
reply Out List of class names and group ids

Dmi ErrorStatus_t DM _API
Dnmi Li st Ol assNames (

[in] Dni Handl e_t handl e,
[in] Dmi Unsi gned_t maxCount ,
[in] Dmild_t conpl d,

[out] Dmi Cl assNaneList_t** reply);

January, 2003 94

Desktop Management Interface Specification v2.01s

ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_QUT_OF NMEMORY

ERR_| NSUFFI Cl ENT_PRI VI LEGES
RR_SP_| NACTI VE
RR_COVPONENT_NOT_FOUND
RR_DATABASE_CORRUPT

DM
DM
DM
DM
DM ERR_FI LE_ERROR

El
El
El
El

6.2.5 DmiListGroups

This call retrieves alist of groups within acomponent. This command can access a specific group or may be used to
sequentially access al groupsin acomponent. Note that all enumerations of groups occur within the specified
component and do not span components.

The caller may choose not to retrieve the group description by setting the value getDescription to false. The caller may
choose not to retrieve the pragma string by setting the value of getPragmarto false.

The maxCount, requestMode, and groupld parameters allow the caller to control the information returned by the DMI
Service Provider. When the requestMode is DMI_UNIQUE, groupld specifies the first group requested (or only group
if maxCount isone). When the requestMode is DMI_NEXT, groupld specifies the group just before the one requested.
When requestMode is DMI_FIRST, groupld is unused.

To control the amount of information returned, the caller sets maxCount to something other than zero. The service
provider must honor this limit on the amount of information returned. When maxCount is zero the service provider
returns information for all groups, subject to the constraints imposed by requestM ode and groupl d.

P/ RAMETER DIRECTION DESCRIP 'ION
NAME

handle In An open session handle

requestMode In Unique, first, or next group

maxCount In M aximum number to return, or O for
all

getPragma In Get optiona pragmastring ?

getDescription In Get optional group description ?

compld In Component to access

groupld In Group to start with (see
requestM ode)

reply Out List of groups

Dmi ErrorStatus_t DM _API
Dmi Li st G oups(

[in] Dmi Handl e_t handl e,

[in] Dmi Request Mode_t request Mode,
[in] Dmi Unsi gned_t maxCount ,

[in] Dni Bool ean_t get Pragnms,

[in] Dmi Bool ean_t get Descri ption,

[in] Dmild_t conpl d,

[in] Dmi | d_t groupl d,

[out] Dmi GroupLi st _t** reply);

January, 2003 95

Desktop Management Interface Specification v2.01s

ERROR CODES

DM ERR_| LLEGAL_HANDLE

ERR_| NSUFFI CI ENT_PRI VI LEGES
ERR_SP_| NACTI VE
ERR_COVPONENT_NOT_FOUND
ERR_GROUP_NOT_FOUND
ERR_NO_PRAGVA

ERR_NO_DESCRI PTI ON
DM ERR_DATABASE_CORRUPT
DM ERR_FI LE_ERROR
DM ERR_DEFAULT_LANGUAGE_RETURNED

DM
DM
DM
DM
DM
DM

6.2.6 DmiListAttributes

This DmiListAttributes procedure retrieves the properties for one or more attributesin agroup. Note that all
enumerations of attributes occur within the specified group, and do not span groups.

The caller may choose not to retrieve the description string by setting the value of getDescription to false. Likewise,
the caller may choose not to retrieve the pragma string by setting the value of getPragmato false.

The maxCount, requestMode, and attribld parameters allow the caller to control the information returned by the DMI
Service Provider. When the requestMode is DMI_UNIQUE, attribld specifies the first attribute requested (or only
attribute if maxCount is one). When the requestModeis DMI_NEXT, attribld specifies the attribute just before the one
requested. When requestMode is DMI_FIRST, attribld is unused.

To control the amount of information returned, the caller sets maxCount to something other than zero. The service
provider must honor this limit on the amount of information returned. When maxCount is zero the service provider
returns information for all attributes, subject to the constraints imposed by requestMode and attribld.

P/ RAMETER JIRECTION DESCRI >TION
NAME

handle In An open session handle

requestM ode In Unique, first, or next attribute

maxCount In Maximum number to return, or O
for al

getPragma In Get optional pragmastring ?

getDescription In Get optiona attribute description
?

compld In Component to access

groupld In Group to access

attribld In Attribute to start with (see
requestMode)

reply Out List of attributes

Dmi Error Status_t DM _API
Dmi Li st Attri butes(

[in] Dni Handl e_t handl e,

[in] Dnmi Request Mode_t request Mode,
[in] Dmi Unsi gned_t maxCount ,

[in] Dmi Bool ean_t get Pragns,

[in] Dni Bool ean_t get Descri ption,
[in] Dmi | d_t conpl d,

[in] Dmild_t groupl d,

January, 2003 9%

[in] Dmild_t
[out] Dmi

ERROR CODES

January, 2003

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
ERR_SP_| NACTI VE

ERR_ATTRI BUTE_NOT_FOUND
ERR_COVPONENT_NOT_FQUND
ERR_GROUP_NOT_FOUND
ERR_NO_PRAGMVA

ERR_NO_DESCRI PTI ON
ERR_DATABASE_CORRUPT

ERR_FI LE_ERROR
ERR_DEFAULT_LANGUAGE_RETURNED

222222222

AttributeList_t** reply);

Desktop Management Interface Specification v2.01s

attribld,

97

6.3 OPERATION FUNCTIONS

6.3.1 DmiGetAttribute

Desktop Management Interface Specification v2.01s

The DmiGetAttribute procedure provides a simple method for retrieving a single attribute value from the DMI Service

Provider. The compld, groupld, attribld, and keyL.ist identify the desired attribute. The resulting attribute value is
returned in anewly allocated DmiDataUnion structure. The address of this structure is returned through the value

parameter.

A management application may or may not specify akeylist. When akeylist is omitted for atable access, the Service

Provider or instrumentation shall operate on the first row of the table, regardless of the Access Mode specified.

Note: the "first row" of atable will remain constant during the execution of the Service Provider. Thisistrue for both
instrumented and non-instrumented tables. The "first row" can change between reboots of the system, or restarts of the
Service Provider. This restriction ensures that management applications dealing with the first row of atable are ways

operating on the same row.

P/ RAMETER JIRECTION DESCRI °TION
NAME

Handle In An open session handle
Compld In Component to access
Groupld In Group within component
attribld In Attribute within group
keyList In Keylist to specify atable row
value Out Attribute value returned

Dmi ErrorStatus_t DM _API
Dmi Get Attribute (

[in] Dmi Handl e_t

[in] Dmild_t

[in] Dmild_t

[in] Dmild_t

[in] Dmi Attri buteVal ues_t*
[out] Dmi Dat aUni on_t **

ERROR CODES

DM ERR_NO_ERROR
DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
ERR_SP_| NACTI VE

ERR_ATTRI BUTE_NOT_FOUND
ERR_COVPONENT_NOT_FOUND
ERR_GROUP_NOT_FOUND

ERR_| LLEGAL_KEYS
ERR_OVERLAY_NANME_NOT_FOUND
ERR_| LLEGAL_TO GET

ERR_ROW NOT_FOUND

E

ERR_DATABASE_CORRUPT
ERR_ATTRI BUTE_NOT_SUPPORTED
ERR_UNKNOWN_CI _REGI STRY
ERR_FI LE_ERROR
ERR_OVERLAY_NOT_FOUND
ERR_VALUE_UNKNOWN

22222222222222°%2

January, 2003

handl e,
conpl d,
groupl d,
attribld,
keylLi st ,
val ue);

RR_DI RECT_| NTERFACE_NOT_REG STERED

98

Desktop Management Interface Specification v2.01s

6.3.2 DmiSetAttribute

The Dmi SetAttribute procedure provides a simple method for setting a single attribute value. The compld, groupld,
attribld, and keyList identify the desired attribute; the setMode parameter defines the procedure call as a Set, Reserve,
or Release operation. The new attribute value is contained in the DmiDataUnion structure whose address is passed in
the value parameter.

A management application may or may not specify akeylist. When akeylist is omitted for atable access, the Service
Provider or instrumentation shall operate on the first row of the table, regardless of the Access Mode specified.

Note: the "first row" of atable will remain constant during the execution of the Service Provider. Thisistrue for both
instrumented and non-instrumented tables. The "first row" can change between reboots of the system, or restarts of the
Service Provider. Thisrestriction ensures that management applications dealing with the first row of atable are always
operating on the same row.

P/ RAMETER JIRECTION DESCF IPTION
NAME

handle In An open session handle
compld In Component to access
groupld In Group within component
attribld In Attribute within group
keyList In Keylist to specify atable row
setMode In Set, reserve, or release ?
value In Attribute value to set

Dmi ErrorStatus_t DM _API
Dmi Set Attribute (

[in] Dmi Handl e_t handl e,
[in] Dmi | d_t conpl d,
[in] Dmi | d_t groupl d,
[in] Dmild_t attribld,
[in] Dmi Attributeval ues_t* keylist,
[in] Dmi Set Mbde_t set Mbde,
[in] Dni Dat aUni on_t * val ue);
ERROR CODES

DM ERR_NO_ERRCR
DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_MEMORY

DM ERR_I NSUFFI Cl ENT_PRI VI LEGES
ERR_SP_| NACTI VE

RR_ATTRI BUTE_NOT_FOUND
RR_COMPONENT_NOT_FOUND
RR_GROUP_NOT_FOUND

RR_| LLEGAL_KEYS
RR_OVERLAY_NAME_NOT_FCUND
RR_| LLEGAL_TO GET

RR_DI RECT_| NTERFACE_NOT_REG STERED
RR_DATABASE_CORRUPT

RR_ATTRI BUTE_NOT_SUPPORTED
RR_UNKNOWN_CI _REG STRY

RR_OVERLAY_NOT_FOUND
RR_VALUE_UNKNOWN

222222222222222

El
El
El
El
El
El
El
El
El
El
El
El
El
El

January, 2003 9

Desktop Management Interface Specification v2.01s

6.3.3 DmiGetMultiple

The DmiGetM ultiple procedure retrieves attribute values from the DM Service Provider. This command may get the
value for anindividual attribute, or for multiple attributes across groups, components, or rows of atable.

The request array, described in Section 5.3.16, specifies the attribute val ues requested by the management application.
Each element of the array specifies a component, group, request mode, key list (for table accesses), and attribute list to
retrieve. Thekey listisomitted (NULL pointer value) for scalar groups. If the attribute list is omitted, the service
provider returns al attributesin the group or table row. The requestM ode specifier allows the management application
to request the first, next, or specific attribute value.

The rowData array, described in Sections 5.3.15, contains the reply from the DMI Service Provider. The structure of
thisreply isidentica to that of the original request, with the same number of elements that were in the request array.

A management application may or may not specify akeylist. When akeylist is omitted for atable access, the Service
Provider or instrumentation shall operate on the first row of the table, regardless of the Access Mode specified.

Note: the "first row" of atable will remain constant during the execution of the Service Provider. Thisistrue for both
instrumented and non-instrumented tables. The "first row" can change between reboots of the system, or restarts of the
Service Provider. This restriction ensures that management applications dealing with the first row of atable are aways
operating on the same row.

When DmiGetMultipleis called without an attribute list, the Service Provider returns all attributes in the group or table
row. Attributes that are UNSUPPORTED or WRITE-ONLY are omitted from the reply data, and the return status for
the operation is DMIERR_NO_ERROR.

When DmiGetMultipleis called with a specific attribute list, the Service Provider returns a value for each requested
attribute. Attributes that are UNSUPPORTED or WRITE-ONLY cause the Service Provider to stop processing the
request and return data for all attributes up to, but not including, the error attribute.

If partia attribute data is returned, the operation's return statusis DMIERR_NO_ERROR_MORE_DATA. When
DmiGetMultiple returns a status of DMIERR_NO_ERROR_MORE_DATA, the caller should reissue the operation
with anew attribute list. This new attribute list should start with the first attribute not returned in the previous call, and
should contain all subsequent attributes from the original list.

If the first attribute in the attribute list is UNSUPPORTED, the Service Provider shall stop processing the request and
return an error status of DMIERR_ATTRIBUTE_NOT_SUPPORTED.

If the first attribute in the attribute list isWRITE-ONLY, the Service Provider shall stop processing the request and
return an error status of DMIERR_ILLEGAL_TO_GET.

P/ RAMETER JIRECTION DESCR PTION
NAME
handle In An open session handle
request In Attributes to get
rowData Out Requested attribute values

Dmi Error Status_t DM _API
Dmi Get Mul tiple (

[in] Dni Handl e_t handl e,
[in] Dmi Mul ti RowRequest _t* request,
[out] Dmi Mul ti RowDat a_t ** rowData);

January, 2003 100

Desktop Management Interface Specification v2.01s

ERROR CODES

DM ERR_| NSUFFI CI ENT_PRI VI LEGES
ERR_SP_| NACTI VE

ERR_ATTRI BUTE_NOT_FOUND
ERR_COVPONENT_NOT_FOUND
ERR_GROUP_NOT_FOUND

ERR_| LLEGAL_KEYS
ERR_OVERLAY_NANE_NOT_FOUND

ERR_| LLEGAL_TO GET

ERR_ROW NOT_FOUND

ERR_DI RECT_| NTERFACE_NOT_REGI STERED
ERR_DATABASE_CORRUPT

ERR_ATTRI BUTE_NOT_SUPPORTED
ERR_UNKNOWN_CI _REGI STRY

ERR_FI LE_ERROR

DM ERR_OVERLAY_NOT_FOUND

DM ERR_VALUE_UNKNOVN

2222222222222

6.3.4 DmiSetMultiple

This command performs a set operation on an attribute or list of attributes. Set operationsinclude actually setting the
value, testing and reserving the attribute for future setting, or releasing the set reserve. These variations on the set
operation are specified by the parameter setMode.

The rowData array describes the attributes to set, and contains the new attribute values. Each element of rowData
specifies a component, group, key list (for table accesses), and attribute list to set. No datais returned from this
function.

A management application may or may not specify akeylist. When akeylist is omitted for atable access, the Service
Provider or instrumentation shall operate on the first row of the table, regardless of the Access Mode specified.

Note: the "first row" of atable will remain constant during the execution of the Service Provider. Thisistrue for both
instrumented and non-instrumented tables. The "first row" can change between reboots of the system, or restarts of the
Service Provider. Thisrestriction ensures that management applications dealing with the first row of atable are always
operating on the same row.

P/ RAMETER [IRECTION DESCRIPTION
NAME
handle In An open session handle
setMode In Set, reserve, or release
rowData In Attribute values to set

Dmi Set Mul ti pl e

(
[in] Dmi Handl e_t handl e,
[in] Dmi Set Mbde_t set Mbde,
[in] Dmi Mul ti RowDat a_t * rowData);

ERROR CODES

DM ERR_NO_ERRCR
DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_MEMORY

DM ERR_| NSUFFI CI ENT_PRI VI LEGES
ERR_SP_I NACTI VE

ERR_ATTRI BUTE_NOT_FCUND
ERR_VALUE_EXCEEDS_MAXS| ZE
ERR_COVPONENT_NOT_FOUND
ERR_GROUP_NOT_FOUND

ERR_| LLEGAL_KEYS

ERR_| LLEGAL_TO_SET

E

DM
DM
DM
DM
DM
DM
DM
DM ERR_OVERLAY_NANME_NOT_FOUND

January, 2003 101

Desktop Management Interface Specification v2.01s

DM ERR_ROW NOT_FOUND

DM ERR_DI RECT_| NTERFACE_NOT_REG STERED
DM ERR_DATABASE_CORRUPT

DM ERR_ATTRI BUTE_NOT_SUPPORTED

DM ERR_UNKNOWK_CI _REGI STRY

DM ERR_FI LE_ERROR

DM ERR_OVERLAY_NOT_FOUND

DM ERR_VALUE_UNKNOWN

6.3.5 DmiAddRow

The DmiAddRow procedure adds arow to an existing table. The rowData parameter contains the full data, including
key attribute values, for arow. Itisan error for the key list to specify an existing table row.

When atable contains a mix of instrumented and non-instrumented attributes, the DmiAddRow operation is not
permitted. Thisrestriction is necessary because the Service Provider does not know whether to add the row in the MIF
database, or in the (partially) supporting instrumentation. The Service Provider will fail the operation with a
DMIERR_UNABLE_TO_ADD_ROW status.

Note that, from both a design and implementation standpoint, it is generally abad idea to mix instrumented and non-
instrumented values in atable. Thisis especially true where keys are concerned. Synchronization between the
component attributes and database attributes is problematic, at best. A case where some keys reside in component
instrumentation and other keysreside in the MIF database is nearly impossible to implement in the Service Provider, or
manage in component instrumentation. Itis STRONGLY recommended that component providers do NOT mix table
rowsin thisway.

P£ RAMETER JIRECTION DESC RIPTION
NAME
handle In An open session handle
rowData In Attribute values to set

Dmi ErrorStatus_t DM _API

Dni AddRow (
[in] Dni Handl e_t handl e,
[in] Dnmi RowDat a_t * rowData);

ERROR CODES

DM ERR_NO_ERROR
DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES

ERR_SP_| NACTI VE
RR_VALUE_EXCEEDS_MAXS| ZE
RR_COVPONENT_NOT_FOUND
RR_GROUP_NOT_FOUND

RR | LLEGAL_KEYS
RR_OVERLAY_NAVE_NOT_FOUND

RR_ROW NOT_FOUND

RR_DI RECT_I NTERFACE_NOT_REG STERED
RR_DATABASE_CORRUPT

RR_ATTRI BUTE_NOT_SUPPORTED
RR_UNKNOWN_CI_REG STRY

RR_FI LE_ERROR

RR_OVERLAY_NOT_FOUND
RR_VALUE_UNKNOAN

RR_UNABLE_TO ADD_ROW

22222222222222%2

El
El
El
El
El
El
El
El
El
El
El
El
El
El

January, 2003 102

6.3.6 DmiDeleteRow
The DmiDeleteRow procedure removes arow from an existing table. The key list must specify valid keysfor atable

Desktop Management Interface Specification v2.01s

row.
P/ RAMETER 'IRECTION DES CRIPTION
NAME
handle In An open session handle
rowData In Row to delete
Dmi ErrorStatus_t DM _API
Dni Del et eRow (
[in] Dni Handl e_t handl e,
[in] Dri RowDat a_t * rowbata);
ERROR CODES

January, 2003

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

ERR_ATTRI BUTE_NOT_FOUND
ERR_COVPONENT_NOT_FQUND
ERR_GROUP_NOT_FOUND

ERR_| LLEGAL_KEYS
ERR_OVERLAY_NANME_NOT_FOUND
ERR_| LLEGAL_TO GET

ERR_ROW NOT_FOUND

ERR_DI RECT_| NTERFACE_NOT_REGI STERED
ERR_DATABASE_CORRUPT
ERR_ATTRI BUTE_NOT_SUPPORTED
ERR_UNKNOWN_CI _REGI STRY
ERR_FI LE_ERROR
ERR_OVERLAY_NOT_FOUND
ERR_VALUE_UNKNOWN
ERR_UNABLE_TO DELETE_ROW

22222222222222°%2

103

Desktop Management Interface Specification v2.01s

6.4 DATABASE ADMINISTRATION FUNCTIONS

The APIslisted in this section modify the schema of the database.

6.4.1 DmiAddComponent

The DmiAddComponent procedure is used to add a new component to the DMI database. It takes the name of afile, or
the address of memory block containing schema description data, checks the data for adherence to the appropriate
schema description format (e.g. DMI MIF format), and installs the schema description in the database. The procedure
returns a unigue component |D for the newly installed component.

P/ RAMETER IRECTION DESCRIFTION
NAME

handle In An open session handle

fileData In Schema description file data for the
component

compld Out On Completion, the SP-allocated
component 1D

errors Out Installation error messages

Dmi Error Status_t DM _API
Dnmi AddConponent ()

[in] Dmi Handl e_t handl e,
[in] Dmi Fi | eDat aLi st _t* fil eData,
[out] Dmild_t* conpl d,
[out] Dmi StringList_t** errors);

ERROR CODES

DM ERR_NO_ERROR
DM ERR_| LLEGAL_HANDLE

| NSUFFI Cl ENT_PRI VI LEGES
SP_I NACTI VE
DATABASE_CORRUPT

| NSUFFI CI ENT_PRI VI LEGES

FI LE_ERROR
BAD_SCHEMA_DESCRI PTI ON_FI LE
I NVALI D_FI LE_TYPE

RR_FI LE_TYPE_NOT_SUPPORTED

22222928¢
\%\%I%I%\%\%\%I

El
El
El
El
El
El
El
El
El

6.4.2 DmiAddLanguage

The DmiAddL anguage procedure is used to add a new language mapping for an existing component in the database. It
takes the name of afile, or the address of memory block containing translated schema description data, checks the data
for adherence to the schema description grammar (e.g. DMI MIF grammar), and installs the translated schema
description in the database.

The description of the new language mapping must match the currently installed component's groups and attributes,
excluding names, descriptions, pragmas, and values. That is, the structure of the component must be maintained by the
new language mapping.

January, 2003 104

Desktop Management Interface Specification v2.01s

P/ RAMETER DIRECTION DESCRIP 'ION
NAME
handle In An open session handle
fileData In Language mapping file for the
component
compld In Component to access
errors Out Installation error messages

Dmi Error Status_t DM _API
Dmi AddLanguage (

[in] Dmi Handl e_t handl e,
[in] Dmi Fi | eDat aLi st _t* fil eData,
[in] Dmi | d_t conpl d,
[out] Dmi StringList_t** errors);

ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

DM ERR_COMPONENT_NOT_FOUND

DM ERR_DATABASE_CORRUPT

DM ERR_FI LE_ERROR

DM ERR_BAD_SCHEMA_DESCRI PTI ON_FI LE
DM ERR_| NVALI D_FI LE_TYPE

DM ERR_FI LE_TYPE_NOT_SUPPORTED

6.4.3 DmiAddGroup

The DmiAddGroup procedure is used to add a new group to an existing component in the database. It takes the name
of afile, or the address of memory block containing the group's schema description data, checks the data for adherence
to the schema description grammar (e.g. DM MIF grammar), and installs the group schema description in the
database.

When the DmiFileTypeis DMI_GROUP_FILE_NAME or DMI_GROUP_FILE_DATA, the format of the data must
be avalid component definition containing a single group definition. This means that the data must include both
START COMPONENT and END COMPONENT declarations, and may include, for example, PATH statements and
ENUM definitions at the component level.

Note that certains restrictions apply to the schema supplied for DmiAddGroup():
Table Definitions are disallowed

One and only one Group Definition isalowed. This group definition MUST specify agroup ID (i.e., it may
not be an uninstantiated template).

Schema violating these restrictions will be rejected by the Service Provider with a status of
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE.

When adding agroup to component that already has multiple languages installed, the fileData included with
DmiAddGroup must contain a group definition for each installed language. Tthis ensures that a complete language
mapping is always available for a component.

January, 2003 105

Desktop Management Interface Specification v2.01s

P/ RAMETER HIRECTION DESCRI °TION
NAME
handle In An open session handle
fileData In Schema description file data for
the group definition
compld In Component to access
groupld Out On completion, the SP-allocated
group ID
errors Out Installation error messages
Dmi ErrorStatus_t DM _API
Dmi AddG oup (
[in] Dmi Handl e_t handl e,
[in] Dmi Fi | eDat aLi st _t* fil eData,
[in] Dmi | d_t conpl d,
[out] Dmild_t groupl d,
[out] Dmi StringList_t** errors);

ERROR CODES

DM ERR_NO_ERRCR
DM ERR_| LLEGAL_HANDLE
DM ERR_OUT_OF_MEMORY

DM ERR_|I NSUFFI Cl ENT_PRI VI LEGES

DM ERR_SP_I NACTI VE

DM ERR_COMPONENT_NOT_FOUND
DM ERR_DATABASE_CORRUPT

DM ERR_FI LE_ERROR

DM ERR_BAD_SCHEMA_DESCRI PTI ON_FI LE

DM ERR_| NVALI D_FI LE_TYPE

6.4.4 DmiDeleteComponent

The DmiDeleteComponent procedure is used to remove an existing component from the database.

P/ RAMETER JIRECTION DES CRIPTION
NAME
handle In An open session handle
compld In Component to delete

Dmi ErrorStatus_t DM _API
Dni Del et eConponent (

[in] Dni Handl e_t
[in] Dmild_t
ERROR CODES

DM ERR_NO_ERROR
DM ERR_| LLEGAL_HANDLE
DM ERR_QUT_OF NMEMORY

ERR_SP_| NACTI VE

ERR_COVPONENT_NOT_FOUND
ERR_DATABASE_CORRUPT
E
E

DM
DM
DM
DM
DM ERR_FI LE_ERROR
DM

January, 2003

ERR_|I NSUFFI Cl ENT_PRI VI LEGES

handl e,
conpl d

RR_CANT_UNI NSTALL_SP_COVPONENT

)

106

6.4.5 DmiDeleteLanguage

The DmiDeletel_anguage procedure is used to remove a specific language mapping for acomponent. The caller

Desktop Management Interface Specification v2.01s

specifies the language string and component I1D.
P/ RAMETER DIRECTION DESCRIF TION
NAME
handle In An open session handle
language In language-code | territory-code |
encoding
compld In Component to access
Dmi ErrorStatus_t DM _API
Dni Del et eLanguage (
[in] Dni Handl e_t handl e,
[in] Dmi String_t* | anguage,
[in] Dmi | d_t conpld);

ERROR CODES
DM ERR_NO_ERRCR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

DM ERR_COMPONENT_NOT_FOUND

DM ERR_DATABASE_CORRUPT

DM ERR_FI LE_ERROR

DM ERR_CANT_UNI NSTALL_COVPONENT_LANGUAGE

6.4.6 DmiDeleteGroup

The DmiDeleteGroup procedure is used to remove a group from a component. The caller specifies the component and

group IDs.
P/ RAMETER JIRECTION DESCR PTION
NAME
handle In An open session handle
compld In Component containing group
groupld In Group to delete
Dmi ErrorStatus_t DM _API
Dni Del et eGroup (
[in] Dni Handl e_t handl e,
[in] Dmi | d_t conpl d,
[in] Dmild_t groupld);

January, 2003

107

ERROR CODES

January, 2003

ERR_| NSUFFI CI ENT_PRI VI LEGES
ERR_SP_| NACTI VE
ERR_COVPONENT_NOT_FOUND
ERR_GROUP_NOT_FOUND
ERR_DATABASE_CORRUPT

ERR_FI LE_ERROR

ERR_CANT_UNI NSTALL_GROUP

Desktop Management Interface Specification v2.01s

108

Desktop Management I nterface Specification v2.01s

7. MANAGEMENT APPLICATION PROVIDER API

7.1 FUNCTIONS

This section describes the functions that a client must provide to receive indications. These functions belong to the
API described as the Management Application Provider Functions. Please see Section 4 for adiscussion of the
abstract classes of interfaces in the DMI.

A client receiving indications undergoes arole reversal where, in RPC terms, it becomes an indication delivery server.
The DMI Service Provider isaclient of thisinterface.

There are eight indication types defined by the DM TF: add/delete component, add/del ete language mapping,
add/del ete group, subscription expiration notice, and event delivery. Each indication arrives at a unique entry point in
the indication interface.

All indication functions have some information in common, and some that is unique to the indication. Thefirst piece
of common information is the opagque handle returned to the application. This handle contains the Subscriberl D
attribute from the client's row in the SPIndicationSubscription table. This can be used by the indication delivery
interface to determine which local management application should receive the indication.

The second piece of common information is the sender's address. Since indications can arrive from any number of
remote systems, the receiver needs away to determine its origin. The sender's address provides this mechanism.

The eight entry points, including their specific details, are described in the following sections.

7.1.1 DmiDeliverEvent

This command delivers event data to an application.

P/ RAMETER DIRECTION DESCRIPTI DN
NAME

handle In An opaque ID returned to the
sender In Address of the node delivering the
language In Language encoding for the indication
compld In Component reporting the event
timestamp In Event generation time
rowData In Standard and context-specific indication

Dmi Del i ver Event (

[in] Dmi Unsi gned_t handl e,

[in] Dmi NodeAddress_t * sender,
[in] Dmi String_t* | anguage,

[in] Dmild_t conpl d,

[in] Dmi Ti mest anp_t * ti mest anp,
[in] Dmi Mul ti RowDat a_t * rowData);

January, 2003 109

ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

7.1.2 DmiComponentAdded

Desktop Management I nterface Specification v2.01s

P/ RAMETER HIRECTION DESCRIP 'ION
NAME
handle In An opaque ID returned to the
application
sender In Address of the node délivering the
indication
info In Information about the component
added
Dmi Error Status_t DM _API
Dnmi Conponent Added (
[in] DmiUnsigned_t handl e,
[in] Dnmi NodeAddress_t* sender,
[in] Dmi Conponentlnfo_t* info);
ERROR CODES
DM ERR_NO_ERROR
DM ERR | LLEGAL_HANDLE
DM ERR_OUT_OF_MEMORY
DM ERR_| NSUFFI ClI ENT_PRI VI LEGES
DM ERR_SP_| NACTI VE
7.1.3 DmiComponentDeleted
P/ RAMETER DIRECTION DESCRIPT ON
NAME
handle In An opaque ID returned to the
application
sender In Address of the node delivering the
indication
compld In Component deleted from the data
base
Dmi ErrorStatus_t DM _API
Dni Conponent Del et ed (
[in] DmiUnsigned_t handl e,
[in] Dnmi NodeAddress_t* sender,
[in] Dmld_t conpld);

ERROR CODES
DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE
DM ERR_OUT_OF_MEMORY

January, 2003

110

Desktop Management I nterface Specification v2.01s

DM ERR_| NSUFFI CI ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

7.1.4 DmiLanguageAdded

P/ RAMETER JIRECTION DESCRIP 'ION
NAME

handle In An opaque ID returned to the
application

sender In Address of the node delivering the
indication

compld In Component with new language
mapping

language In Language-code | territory-code |
encoding

Dmi ErrorStatus_t DM _API
Dnmi LanguageAdded (

[in] Dmi Unsigned_t handl e,

[in] Dnmi NodeAddress_t* sender,
[in] Dmld_t conpl d,

[in] DmString_t* | anguage);

ERROR CODES

Dni LanguageAdded(handl e, sender, conpi d, | anguage)
DM ERR_NO_ERROR
DM ERR | LLEGAL_HANDLE
DM ERR_QOUT_OF_MEMORY
DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

7.1.5 DmiLanguageDeleted

P/ RAMETER DIRECTION DESCRIPTI DN
NAME

handle In An opaque ID returned to the
application

sender In Address of the node delivering the
indication

compld In Component with deleted language
mapping

language In Language-code | territory-code |
encoding

Dmi ErrorStatus_t DM _API
Dni LanguageDel et ed (

[in] Dmi Unsigned_t handl e,

[in] Dmi NodeAddress_t* sender,
[in] Dmld_t conpl d,

[in] DmiString_t* | anguage);

January, 2003

111

ERROR CODES
DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI CI ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

7.1.6 DmiGroupAdded

Desktop Management I nterface Specification v2.01s

P/ RAMETER JIRECTION DESCRIPTI DN
NAME

handle In An opaque ID returned to the
application

sender In Address of the node delivering the
indication

compld In Component with new group added

info In Information about the new group added

Dmi Error Status_t DM _API

Dmi Gr oupAdded (

[in] DmiUnsigned_t handl e,
[in] Dnmi NodeAddress_t* sender,
[in] Dmld_t conpld,
[in] Dm Gouplnfo_t* info);
ERROR CODES
DM ERR_NO_ERROR
DM ERR_| LLEGAL_HANDLE
DM ERR_OUT_OF_MEMORY
DM ERR_| NSUFFI ClI ENT_PRI VI LEGES
DM ERR_SP_| NACTI VE
7.1.7 DmiGroupDeleted
P/ RAMETER JIRECTION DESCRIPTI(N
NAME
handle In An opaque ID returned to the application
Sender In Address of the node délivering the
indication
Compld In Component with the group deleted
Groupld In Group deleted from the component

Dmi ErrorStatus_t DM _API
Dni GroupDel eted (

Lin]
[in]
[in]
Lin]

January, 2003

Dmi Unsi gned_t

Dnmi NodeAddress_t *
Dmild_t

Dmild_t

handl e,

sender,
conpl d,
groupld);

112

Desktop Management I nterface Specification v2.01s

ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

7.1.8 DmiSubscriptionNotice

In order to receive indications, a managing node must have subscribed for indications with a managed node. The
process for doing thisis basically the populating of arow in the SPIndicationSubscription table on the managed node.
This can be accomplished using the DmiAddRow() and DmiDeleteRow() commands defined elsewherein this
document. Among the attributes in this group, are an expiration date for this subscription, and a date on which the
service provider should start warning the managing node of a pending expiration. The DMI Service Provider is
responsible for sending two types of indications to the managing node, based on these dates, to inform it that its current
subscription is either about to expire, or has expired, and it does so using Dmi SubscriptionNotice.

NOTE: for a complete description of how the managed node determines when to send the expiration pending
indication, see the group definition for "SPIndicationSubscription”, Section 3.3.1.

PARAMETE L IRECTION DESCRIPTION
R NAME

handle In An opague ID returned to the application

sender In Address of the originating node

expired In False: Subscription expiration pending
True: Subscription has expired

rowData In Information about this subscription. Thiswill be the
row information for the appropriate entry in the
indication table defined by the
“ SPIndi cationSubscription” group.

Dmi ErrorStatus_t DM _API
Dmi Subscri ptionNotice (
[in] Dmi Unsigned_t handl e,

[in] Dnmi NodeAddress_t* sender,
[in] DniBool ean_t expired,
[in] Dni RowData_t* rowData);

ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI CI ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

January, 2003 113

Desktop Management I nterface Specification v2.01s

8. COMPONENT INTERFACE

The Component Interface (Cl) is an optional interface allowing managed components to connect directly to the DMI
Service Provider. Note that the capabilities provided by thisinterface are often platform or operating system specific.
For this reason the Distributed Management Task Force, the administrative body responsible for the DMI, has made
the Cl optional and therefore not a requirement for an implementation to be considered conformant to the DMI model.
It isincluded here for continuity from the DMIv1.1 Specification (hereafter referred to as DMIv1.x).

In the DMIv1.x, the Cl provides calls necessary for amanaged component to install/uninstall with the DMI Service
Provider. In the procedura DMI model, equivalent functionality is provided by add/delete component calls across the
remotable M| layer.

The DMIv1.x Cl model uses ‘well known entry points' DmiCilnvoke() and DmiCiCancel() to set up and cancel
commands destined for Cl instrumentation. These entry points are no longer needed as this functionality will be
handled within the DMI Service Provider. Instead, the procedural Cl will make use of entry points to five well known
procedures common to DMIv1.x instrumentation: ciGetAttribute(), ciGetNextAttribute, ciReserveAttribute(),
ciSetAttribute, and ciReleaseAttribute(). Two new entry points are added for manipulating instrumented tables:
ciAddRow() and ciDeleteRow().

The procedural Cl uses formalized data structures instead of block oriented commands asin DMIv1.x. Theinterface
is completely synchronous with the service provider acting as the broker to ensure that component code need not be
re-entrant.

DMIv2.0s defines two features of the Component Interface: allowing only privileged processes to register component
instrumentation and disabling of component instrumentation override. These features are described in section 14.

January, 2003 114

Desktop Management I nterface Specification v2.01s

8.1 DATA STRUCTURES

8.1.1 DmiAccessData

This data structure contains group/attribute access ID for instrumentation wishing to register for the direct interface.

FIELD \AME

DESCRIPTION

Groupld

attributeld

Group that uses the direct interface. A value of zero
indicates that al groups within this MIF use the direct
interface, and the following iAttributeld field isignored.

the direct interface. A value of zero indicates that all at-
tributes within this group use the direct interface.

Attributes, within the group specified by Groupld, that use

typedef struct Dm AccessData {

Dmi | d_t groupl d;

Dmild_t attributeld;

} Dmi AccessData_t;

8.1.2 DmiAccessDatalist

This data structure contains describes an array of DmiAccessData structs.

FIt LD NAME DESCRIPTI DN
size Array elements
List Array data

typedef struct Dmi AccessData {

Dmi Unsi gned_t
Dmi AccessData_t*
} Dmi AccessDat ali st _t

8.1.3 DmiRegisterinfo

si ze;
list;

This data structure identifies entry points for registering Cl direct interface code.

FIt LD NAME

DESCRIPTION

componentld

ciGetAttribute
ciGetNextAttribute
ciReserveAtttribute
ciReleaseAtttribute
CiSetAttribute
ciAddRow
ciDeleteRow
accessData

Identifier assigned by the service provider on component
installation

Address ot the CiGetAttribute entry point
Address of the CiGetNextAttribute entry point
Address of the CiReserveAttrribute entry point
Address of the CiReleaseAttrribute entry point
Address of the CiSetAttribute entry point
Address of the CiAddRow entry point
Address of the CiDeleteRow entry point

Array containing the groups and/or individual attributes that use
the direct interface

January, 2003

115

Desktop Management I nterface Specification v2.01s

typedef struct Dmi Registerlinfo {

Dmi | d_t conponent | d;

Ci GetAttri bute* ci GetAttribute;

Ci Get Next Attri bute* ci Get Next Attribute;
Ci ReserveAttribute* ci ReserveAttribute;
Ci Rel easeAttribute* ci Rel easeAttribute;
Ci Set Attri bute* ci SetAttribute;

Ci AddRow* ci AddRow;

Ci Del et eRow* ci Del et eRow;

Dmi AccessDat aLi st _t* accessDat a;

} Dmi Regi sterinfo_t;

January, 2003 116

Desktop Management I nterface Specification v2.01s

8.2 SERVICE PROVIDER FUNCTIONS FOR COMPONENTS

The functions described in this section belong to the API described as the Service Provider Functions for
Components. Please see Section 4 for adiscussion of the abstract classes of interfaces in the DMI.

In the DMIv1.x block model, the Dmilnvoke() entry point was called with a DMI command block. Dmilnvoke() built a
Cl command block and called DmiProcess() to interpret the command and dispatch the appropriate Get and Set
operéations. Instead, the procedural Cl consists of five public entry pointsin component code called directly from the
service provider.

Component instrumentation code may register with the service provider to override its current access mechanism for
the registered attributes. Instead of manipulating the datain the MIF database or invoking programs, the service
provider will call the entry points provided in the registration call. Once the component unregisters, the SP will return
toits "normal method" of processing requests for the data as defined in the MIF. In this way, component
instrumentation can temporarily interrupt normal processing to perform some special function. Note that registering at-
tributes through the direct interface will override attributes that are already being served through the direct interface.

8.2.1 DmiRegisterCi Function

The DmiRegisterCi() call is used to register acallable interface for components that have resident instrumentation
code and/or to get the version of the service provider. Service Providers that implement the DMI Security Extension
defined in DMIv2.0swill check if the caller is a privileged process and if the DmiRegisterCi() call would override a
previous instrumentation registration, as defined in section 14.

P/ RAMETER DIRECTION DESCRIPTION
NAME
reglnfo In Data structure containing component, group and

attribute Ids, as well as pointers to component
instrumentation entry points

handle Out Service provider assigned handle uniquely
identifying this component instrumentation

dmi SpecL evel Out The service provider version string

Dmi ErrorStatus_t DM _API
Dni Regi sterCi (

[in] Dmi Regi sterinfo_t* regl nfo,
[out] Dmi Handl e_t * handl e,
[out] Dmi String_t** dmi SpeclLevel);

ERROR CODES

 NO_ERROR

| LLEGAL_HANDLE
_OUT_OF_NVEMORY

R_| NSUFFI CI ENT_PRI VI LEGES

R_SP_| NACTI VE

RR_ATTRI BUTE_NOT_FOUND

B

33
:
3
35

W)

RR_DATABASE_CORRUPT

RR_OUT_OF_MEMORY

RR_| LLEGAL_DM _LEVEL

22222222229

January, 2003 117

Desktop Management I nterface Specification v2.01s

8.2.2 DmiUnregisterCi Function

DmiUnregisterCi() tells the service provider to remove a direct component instrumentation interface from the service
provider's table of registered interfaces. This procedural DmiUnregisterCl() call is simplified over the DMIv1.x model
for unregistering component instrumentation, requiring asingle parameter: the service provider assigned handle given
to instrumentation at registration time.

P/ RAMETER DIRECTION DESCRIPTION
NAME
handle In Service provider assigned handle

uniquely identifying this component
instrumentation

Dmi ErrorStatus_t DM _API
Dmi UnregisterG (
[in] Dmi Handl e_t handle);

ERROR CODES

DM ERR_NO_ERROR
DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

DM ERR_UNKNOWK_Cl _REGI STRY

8.2.3 DmiOriginateEvent

This function call originates an event for filtering and delivery. Any necessary indication filtering is performed by this
function (or by subsequent processing) before the event is forwarded to the management applications. Implementation
note: acomplD value of zero (0) specifies that the event was generated by something that has not been installed as a
component, and hence has no component 1D.

P/ RAMETER DIRECTION DESCRIPTIC N
NAME
compld In Component reporting the event
language In language-code | territory-code | encoding
timestamp In Event generation time
rowData In Standard and context-specific indication
data

Dmi ErrorStatus_t DM _API
Dmi Ori gi nat eEvent (

[in] Dmi | d_t conpl d,
[in] Dmi String_t* | anguage,
[in] Dmi Ti mest anp_t * ti mest anp,
[in] Dmi Mul ti RowData_t* rowData);

ERROR CODES

DM ERR_NO_ERROR

DM ERR_| LLEGAL_HANDLE

DM ERR_OUT_OF_NEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_SP_I NACTI VE

January, 2003 118

Desktop Management I nterface Specification v2.01s

8.3 COMPONENT PROVIDER FUNCTIONS

The functionsin this section belong to the API described as the Component Provider Functions. See Section 4 for a

discussion of the abstract classes of APIsinthe DMI.

8.3.1 CiGetAttribute

This function gets value(s) of an individual attribute or multiple attributes within a single group. Although the
DmiGetAttributes command from the M1 allows gets across multiple groups, the service provider must serialize calls
across groups at the component interface level.

This function returns a pointer to a DmiAttributeData_t object that contains the 1D, type, and pointer to value for the
requested attribute. The component ID, group ID, and attribute ID are passed in as parameters.

If the given group is not atable, then keyList will beaNULL pointer. If the group is atable akeyList may or may not
be given. If it is provided, then the attribute value from the requested row should be returned. If thereisno key list,
then the attribute value from the first row should be returned.

ERROR CODES

DM ERR_NO_ERROR
DM ERR_OUT_OF_MEMORY

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM ERR_ATTRI BUTE_NOT_FOUND
ERR_COVPONENT_NOT_FQUND
ERR_GROUP_NOT_FOUND

ERR_| LLEGAL_KEYS

ERR_| LLEGAL_TO GET

ERR_ROW NOT_FOUND

ERR_ATTRI BUTE_NOT_SUPPORTED
E

DM
DM
DM
DM
DM
DM
DM ERR_VALUE_UNKNOWN

PA RAMETER DIRECTION DESCRIPTION
NAME
componendid In Component ID containing group
groupld In Group ID containing attribute
attributeld In Attribute ID to get
language In language-code | territory-code | encoding for return
data
keylist In List of row keys
data Out Attribute value returned
Dmi ErrorStatus_t DM _API
CiGetAttribute (
[in] Dmi | d_t conponent | d,
[in] Dmi | d_t groupl d,
[in] Dmild_t attributeld,
[in] Dmi String_t* | anguage,
[in] Dmi Attri buteVal ues_t* keyLi st
[out] Dmi AttributeData_t** data);

119

Desktop Management I nterface Specification v2.01s

8.3.2 CiGetNextAttribute

This function gets the value of the attribute immediately proceeding the currently referenced attribute, returning a
pointer to a DmiAttributeData t object that contains the ID, type, and pointer to value for the SUCCESSOR of the

specified attribute.

P/ RAMETER DIRECTION DESCRIPTIC\
NAME
componendid In Component ID containing group
groupld In Group ID containing attribute
attributeld In Attribute ID to get
language In language-code | territory-code | encoding for
return data
keylist In List of row keys
data Out Attribute value returned

Dmi ErrorStatus_t DM _API

Ci Get NextAttribute (

[in] Dmi conponent | d,

[in] Dmi groupl d,

[in] Dmi attributeld,

[in] Dmi ing_t* | anguage,

[in] Dmi ri buteval ues_t* keylLi st

[out] Dmi ributeData_t** data);
ERROR CODES

DM ERR_| NSUFFI CI ENT_PRI VI LEGES
ERR_ATTRI BUTE_NOT_FOUND
ERR_COVPONENT_NOT_FOUND
ERR_GROUP_NOT_FOUND

ERR_| LLEGAL_KEYS

ERR_| LLEGAL_TO GET

DM ERR_ROW NOT_FOUND

DM ERR_ATTRI BUTE_NOT_SUPPORTED
DM ERR_VALUE_UNKNOVN

8.3.3 CiSetAttribute

Thisfunction is called to set the specified attribute with the given value. The component ID, group ID, and attribute ID
are passed in as parameters.

DM
DM
DM
DM
DM

If the given group is not atable, then keyList will beaNULL pointer. If the group isatable akeyList may or may not
be given. If itis provided, then the attribute in the specified row should be set. If thereis no key list, then the attribute
in the first row should be set.

January, 2003 120

Desktop Management I nterface Specification v2.01s

['ARAMETER | JIRECTION DESCRIPTION
NAME
componendid In Component ID containing group
groupld In Group ID containing attribute
attributeld In Attribute ID to get
language In language-code | territory-code | encoding for return data
keylist In List of row keys
data In Attribute value to set

Dmi Error Status_t DM _API

CiSetAttribute (
[in] Dmi | d_t conponent | d,
[in] Dmi | d_t groupl d,
[in] Dmild_t attributeld,
[in] Dmi String_t* | anguage,
[in] Dmi Attri buteval ues_t* keylLi st
[in] Dmi AttributeData_t* data);

ERROR CODES

DM ERR_SP_I NACTI VE

DM ERR_ATTRI BUTE_NOT_FOUND

DM ERR_VALUE_EXCEEDS_MAXS| ZE
DM ERR_COMPONENT_NOT_FOUND

DM ERR_GROUP_NOT_FOUND

DM ERR_| LLEGAL_KEYS

DM ERR_| LLEGAL_TO_SET

DM ERR_ROW NOT_FOUND

DM ERR_ATTRI BUTE_NOT_SUPPORTED

8.3.4 CiReserveAttribute

Thisfunction is called to query if the specified attribute could be set given that these same parameters were passed to
the CiSetAttribute procedure. The function returns CiTrue or CiFalse.

PARAMETER | DIRECTION DESCRIPTION
NAME
componentld In Component ID containing group
groupld In Group ID containing attribute
attributeld In Attribute ID to get
keylist In List of row keys
data In Attribute value to reserve

Dmi ErrorStatus_t DM _API
Ci ReserveAttribute (

[in] Dmild_t conponent | d,
[in] Dmi | d_t groupl d,

[in] Dmi | d_t attributeld,
[in] Dmi Attri buteVval ues_t* keyLi st
[in] Dmi AttributeData_t* data);

January, 2003 121

Desktop Management I nterface Specification v2.01s

ERROR CODES

DM ERR_NO_ERROR
DM ERR_OUT_OF_MEMORY

ERR_SP_| NACTI VE

ERR_ATTRI BUTE_NOT_FOUND
ERR_VALUE_EXCEEDS_MAXSI| ZE
ERR_COVPONENT_NOT_FOUND
ERR_GROUP_NOT_FOUND

ERR_| LLEGAL_KEYS

DM ERR_| LLEGAL_TO_SET

DM ERR_ROW NOT_FOUND

DM ERR_ATTRI BUTE_NOT_SUPPORTED

222222

8.3.5 CiReleaseAttribute

Thisfunction is called to request that the instrumentation code decommit from a set operation after areserve has been

issued.
P/ RAMETER DIRECTION DESCRI °TION
NAME
componentld In Component ID containing group
groupld In Group ID containing attribute
attributeld In Attribute ID to get
keylist In List of row keys
data In Attribute value to release

Dmi Error Status_t DM _API
Ci Rel easeAttribute (

[in] Dmi | d_t conponent | d,
[in] Dmi | d_t groupl d,

[in] Dmi | d_t attributeld,
[in] Dmi Attri buteVal ues_t* keylLi st
[in] Dmi AttributeData_t* data);

ERROR CODES

DM ERR_NO_ERROR

DM ERR_OUT_OF_MEMORY

DM ERR_SP_I NACTI VE

DM ERR_ATTRI BUTE_NOT_FOUND
RR_VALUE_EXCEEDS_MAXS| ZE
RR_COVPONENT_NOT_FOUND
RR_GROUP_NOT_FOUND

| LLEGAL_KEYS

| LLEGAL_TO SET

ROW NOT_FOUND

RR_ATTRI BUTE_NOT_SUPPCRTED

RR
RR
RR

2222222

El
El
El
El
El
El
El

8.3.6 CiAddRow

This function allows component instrumentation to directly add arow of datato an existing table. Thisissimplified
over the DMIv1.x model, which required instrumentation code to register with the M1 for similar operations.

P/ RAMETER DIRECTION DESCF IPTION
NAME
rowData In Attribute values to set

January, 2003

122

Dmi Error Status_t DM _API

G AddRow (

[in] Dni RowDat a_t *rowbData) ;

ERROR CODES
DM ERR_NO_ERRCR

DM ERR_OUT_OF_MEMORY

DM ERR_SP_I NACTI VE

DM ERR_VALUE_EXCEEDS_MAXS| ZE
DM ERR_GROUP_NOT_FOUND

DM ERR_| LLEGAL_KEYS

DM ERR_UNABLE_TO_ADD_ROW

8.3.7 CiDeleteRow

This function allows component instrumentation to directly delete arow of datafrom an existing table.

Desktop Management I nterface Specification v2.01s

P/ RAMETER DIRECTION DESCRIPT ON
NAME
rowData In Row data to delete (component,

group, attribute)

Dmi ErrorStatus_t DM _API

Ci Del et eRow (

[in] Dnmi RowDat a_t *

ERROR CODES
DM ERR_NO_ERRCR

DM ERR_OUT_OF_MEMORY
DM ERR_SP_I NACTI VE

DM ERR_ENUM ERROR

DM ERR_GROUP_NOT_FOUND

DM ERR_| LLEGAL_KEYS

DM ERR_ROW NOT_FOUND

DM ERR_UNABLE_TO DELETE_ROW

January, 2003

rowData);

123

Desktop Management I nterface Specification v2.01s

9. OPTIONAL MI SUPPORT FUNCTIONS

The extensions presented here are optional and therefore not required for implementation.

DMIv2.0, aprocedural interface to DMI, is remotesble via the use of RPCs. A DMI Client (Management Application)
may need to communicate with multiple DMI Service Providers, not al of which support the same RPC. For example,
aWindows NT machine would be reachable through DCE/RPC, while a UNIX machine might be reachable via
SUN’s ONC/RPC.

While clients can be written to support multiple RPCs, thisis cumbersome and requires the client writer to invest in
coding for communication purposes, rather than for managing the remote node. The M1 Support Functions interface
serves as afront end to hide RPC specifics from the client, thus enabling the client to concentrate on the managing
aspect of the application. An explicit goal isto make client code written to the M1 Support Functions easily usable
under a specific RPC environment, requiring only slight modifications.

To achieve this, the M| Support Functions must address and hide RPC specifics such as:
- Connection establishment and tear-down
- Present a unified error model to the client, hiding RPC specific details
- Provide an API through which the client can issue DMI calls.

- Handle memory allocation and release to ease this burden for the user of the RPC mechanisms and to
reduce the chance of introducing memory leaks.

This chapter presents the M1 Support Functions, provided on the client side. It discusses a unified error model, both
simple and extended, presents connection establishment and teardown hel per functions, and applies them to run-time
binding of RPC specific implementation of DMI.

January, 2003 124

Desktop Management I nterface Specification v2.01s

9.1 PROGRAMMING CONSIDERATIONS

Theintention in providing this abstraction layer is to isolate the user of the DMI from the intricacies of working with
an RPC, and to allow the use of multiple RPCs. With that abstraction come a few programming considerations that
must be kept in mind.

All memory used by the DMI Functions, and the application using those functions must be allocated and freed from a
consistent heap. To accomplish this, the API provides a set of functionsto allow just such memory management:

- DmiAllocPool()
- DmiFreePool ()
-DmiAlloc()

- DmiFree()

The function of each of these APIswill be discussed in detail but, for now, it isimportant to keep in mind that when
using the M| Support Functions APIs as an access method to the DMI, these memory management functions must be
used to allocate and de-allocate memory used with this interface.

The use of memory is also a concern when dealing with incoming indications. To simplify thisissue, a user of this
interface should only consider a block of memory, passed on an indication, to be good for the duration of the call.
During the indication call, the application should either copy the data, or complete al of the processing it plansto do
with that data before returning from the call.

January, 2003 125

Desktop Management I nterface Specification v2.01s

9.2 RPC ABSTRACTIONS

The MI Support Functions serve as a front end which provides all DMI functionality through multiple RPCs. To that
effect, the M| Support Functions use the RPC specific DMI definition in order to communicate with the DMI Service
Provider using that RPC. At the same time, the M| Support Functions present the client with the DMI AP, as defined
elsewhere in this document.

The MI Support Functions (a) present the DMI functional entry points as defined elsewhere in this document, to client
application, aswell as (b) usethe DMI API to communicate with al RPC specific libraries. The following
modifications are applied to the DMI API by the MI Support Functions:

- Theerror statusis unified, to represent all error sources (DMI Service Provider, aswell as RPC packages).
- Additional helper functions are provided to handle errors.
- Additional functions are provided for connection establishment and teardown.

- Additional memory management functions are provided to handle bulk allocation and de-all ocation of memory
across the interface.

In addition, RPC and platform specific client linkage is defined to enable run-time addition of RPC specific DMI
implementations.

9.2.1 MI Support Functions and RPC specific DMI API

This chapter defines the API provided by the M| Support Functions. The DCE/RPC specific API, and the ONC/RPC
specific API, which are used by the MI Support Functions, are described in their respective interface description
languages and are attached as Appendices to this document.

January, 2003 126

Desktop Management I nterface Specification v2.01s

9.3 CONNECTION ESTABLISHMENT AND TEARDOWN

The following functions are provided in order to facilitate connection establishment and teardown in a RPC
independent fashion:

9.3.1 Connection Establishment

RPC Specific details of connection establishment are handled using this call. The result of this call isaBinding
Handle. In addition to an error information storage area, the Binding Handle contains information about the
Management Handle generated at the RPC stub interface when the M1 Support Functions interface invokes remote
DMI functions on behalf of the Management Application. This Management Handle is used in DmiRegister and
subsequent DMI commands.

The DmilndicationFuncs structure contains the address of indication callback functions provided by the Management
Application. Incoming indications are handed to the Management Application at these entry points. There is one entry
for each DMI indication type. The function prototypes are discussed in Section 7. If the application is not interested in
aparticular indication type, then it can passa NULL value for that function’s address to the M| Support Functions
interface.

typedef struct DmlndicationFuncs {

Dmi Del i ver Event * Del i ver Event Func;

Dmi Conponent Added* conponent AddedFunc;

Dmi Conponent Del et ed* conponent Del et edFunc;

Dni LanguageAdded* | anguageAddedFunc;

Dni LanguageDel et ed* | anguageDel et edFunc;
Dmi Gr oupAdded* gr oupAddedFunc;

Dmi Gr oupDel et ed* groupDel et edFunc;

Dmi Subscri pti onNotice* subscri ptionNoti ceFunc;

} Dmi I ndicationFuncs_t;

Management Applications use the DmiBind function to bind themselves to the MI Support Functions interface and
specify which particular machine they wish to correspond with and what transport and RPC to use on the connection.
In return, they receive a Binding Handle of type bi nd_handl e_t .

Dm ErrorStatus_t DM _API Dmi Bind (

[out] bind_handle_t* i Mgt Handl e,
[in] char * rpc,

[in] char * transport,
[in] char * machi ne,
[in] Dmi | ndi cati onFuncs_t* funcs

Where rpc is the name of the RPC, and the transport is the name of the transport to use under that RPC. rpc and
transport parameters are further defined in Section 9.3.3.° The Management Applications use their Binding Handles
when invoking DM functions through the MI Support Functions interface.
9.3.2 Connection Teardown
This call is used to close and release any resources allocated during connection establishment process.
Dmi ErrorStatus_t DM _API Dmi Unbi nd(
[in] bind_handle_t iMntHandl e
)
9.3.3 Transport List

Thetransport parameter in the Connection Establishment (Section 9.3.1), Connection Teardown (Section 9.3.2) and
Indication Subscription (Section 9.3.1) entry points is an opaque string parameter that is passed through to the
underlying RPC implementation to select the transport of interest.

% Note that the rpc name and transport name are also used to derive the name of the dynamically linked RPC specific library. See Section 9.5, Runtime
Linkage, for more details.

January, 2003 127

Desktop Management I nterface Specification v2.01s

Shown below isalist of some possible values for this parameter in the RPCs of interest. Note that not al possible
values of the opaque string may be represented in the list below. There may be more recent additions to thelist in the
various standard RPCs, as well asin extensions to the standard RPCs by various RPC vendors.

RPC DESCRIPTION TRANSPORT FUNCTION
DESCRIPTION
local dmi Local RPC used
dce ncacn_ip_tcp Connection-oriented TCP/IP
OSF DCE/RPC ncadg_ip_udp Datagram-oriented UDP/IP
onc udp UDP/IP
SUN RPC tcp TCPIP
ti ticlts Connectionless Loopback Transport Provider Interface
TI RPC (determined | ticots Connection Oriented Loopback TPI (Transport Provider
by Interface)
letc/netconfig, ticotsord Connection Oriented Loopback TPI with orderly release
equivcialr ent fi Ie) tcp Connection Oriented TCP/IP TPI with orderly release
udp Connectionless UDP/IP TPI
rawip Raw | P Protocol
icmp Internet Control Message Protocol

January, 2003 128

Desktop Management I nterface Specification v2.01s

9.4 ERROR MODEL

To hide the RPC specifics details related to error handling, the MI Support Functions coalesce al error information
into asingle error return value. The M1 Support Functions also provide extended error information, for clients
interested in this information.

The DMI only provides error information in the form of error status returned. No support is provided for DCE/RPC
exception mechanisms, or any other exception mechanisms.

9.4.1 Simple Error Handling
Simple error handling is targeted toward applications that are interested in the following information:
- Success/Fail status (including time-outs)
- Action Recommendation
- Error status
- Error text
Information is supplied using a set of C functions.

The model operates as follows. The management application calls a DMI procedure within the Optional M1 Support
Functions interface to accomplish a specific DMI function, e.g. GET the value of an attribute, SET the value of an
attribute, etc. Upon returning, the procedure provides a return value to the management application of the type

error_status_t
This type is a composite structure™ that conceptually contains three items, namely: asimple error result code, the full
DM error code as provided by the (potentially remote) DMI Service Provider, and the RPC error code that was
returned by the underlying RPC implementation. The simple error result is characterized by the following enumeration
definition and typedef:
enumerror_result {
DM _RESULT_SUCCESS,

DM _RESULT_FAI L,
DM _RESULT_UNKNOWN,

1
typedef enumerror_result error_result_t;
9.4.1.1 SUCCESS/FAIL STATUS

Whether or not the Management Application's call to the DMI functions succeeded or failed is ascertained by testing
the return value against DMI_NO_ERROR.

For example:

status = Dmi Li st Conponents(...);

if (status !'= DM _NO ERROR) {
/* analyze/fail */

}

/* success */

1 NOTE that the realization of error_status_t typeislikely not to be made visible by the vendor of the M1 Support Functions interface. The actual
redlization may vary between different implementations of the M| Support Functions. Code writers should only access error_status t information using the
provided functions.

January, 2003 129

Desktop Management I nterface Specification v2.01s

9.4.1.2 ERROR STATUS - DmiErrorStatus
When the calling Management Application obtains areturn value of type error _status_t, it submitsthisreturn
value as an in parameter to an error interpretation function DmiErrorStatus that returns the error status.

DmiErrorStatus is defined as follows:

error_result_t DM _API Dm ErrorStatus(
[in] error_status_t* status
)

The Management Application then compares the return from this function to DMI_RESULT_SUCCESS,
DMI_RESULT_FAIL, or DMI_RESULT_UNKNOWN, to determine the nature of the result from the DM| procedure.
If the result was DMI_RESULT_SUCCESS, then the application proceeds to its next operation. If, however, it
encounters the codes DMI_RESULT_FAIL, or DMI_RESULT_UNKNOWN, it may take further action as follows.

9.4.1.3 ACTION RECOMMENDATION - DmiErrorAction
The Management Application next invokes the hel per function DmiErrorAction with the structure of type
error_status_t asanin parameter. In response, the DmiErrorAction function analyzes the RPC and DMI error
codes contained within thisin parameter and then returns an item of typeer r or _acti on_t that isdefined as

follows:
enum error_action {
DM _ACTI ON_NORETRY, /* do not retry */
DM _ACTI ON_RETRY, /* retry the command */
DM _ACTI ON_UNKNOWN, /* need nore info */
DM _ACTI ON_NONE, /* no action required */

};

typedef enum error_action error_action_t;

The DmiErrorAction () function is defined as follows:

error_action_t DM _API Dm ErrorAction(
[in] error_status_t* status
)

The recommendation returned by DmiErrorAction might be any of the following:
Do not retry the command. (DMI_ACTION_NORETRY)
Re-try the command. (DMI_ACTION_RETRY)
Unknown. (DMI_ACTION_UNKNOWN)
No action required (DMI_ACTION_NONE)

9.4.1.3.1 DMI_ACTION_NORETRY - Do not retry
The command was sent to the remote node, and either failed at the remote node (Service Layer Error), or a
communication error occurred while returning the information (The reason for this recommendation in this case is that
the operation may yield undesirable results when an instrumentation code is re-executed.)

9.4.1.3.2 DMI_ACTION_RETRY - Re-try the command
The command was not sent, was not completely received, or there existed a condition at the remote Service Layer
which prevented its execution. It is safe to re-try the command.

9.4.1.3.3 DMI_ACTION_UNKNOWN - Unknown
There was not sufficient information to determine in the command was received at the other end. The command may
have been executed at the remote end, so decision taken must be based on extra error information or is related to the
operation performed.

January, 2003 130

9.4.1.3.4 Error Action Example

As an example, thisis how the Management Application might invoke DmiErrorAction:

do {

status = Dmi Li st Conponents(...);

Desktop Management I nterface Specification v2.01s

/* Handl e rembte DM SL Errors here */
/* Need to break out if not commerror */

if (coomerror) {
br eak;

}

action = Dm ErrorAction(status);

} while (action == DM _ACTI ON_RETRY);

if (status !'= DM _NO ERROR) {
/* anal yze/report error */

}

The combinations of success/fail status and action recommendations are summarized in the following table:

parameter error or
execution error. All
communications aspect
of the command
execution have been
successful.
Recommendation is to
reissue with fixed
parameters.
(ThisisaDMI Service
Provider error)

occurred before command
was completely sent.
Command not executed at
remote node.
Recommendation isto
reissue the command.

STATU!3= SUCCESS STATUS=FAIL STATUS=
UNKNOWN
action = Command was A communication error has |A communication error
NO_RETRY successful. Noneedto |occurred after command has occurred after
reissue. was completely sent or command was
(DMI_ACTION_NONE) |whilereceiving successfully sent to the
confirmation. Command remote node. The
executed at remote node. command is known to
Recommendation isnot to | have been received, but
reissue the command, its execution statusis
unless re-execution is unknown, however, it is
permissible. assumed that if the
command was valid, it
was executed.
Recommendation is not
to re-issue the
command.
action = RETRY [Command failed dueto |A communication error has |A error has occurred

while command was
sent to the remote node.
However, It is known
that the command has
not been fully received,
thus it was not executed
at the remote end.
Recommendation is to
reissue the command.

January, 2003

131

Desktop Management I nterface Specification v2.01s

STATU!3= SUCCESS STATUS=FAIL STATUS=
UNKNOWN
action = N/A N/A A communication error
UNKNOWN has occurred while
command was sent to

the remote node. It is
unknown if the
command was received
and executed.
Recommendation isto
further investigate,
based on extended error
information.

9.4.1.4 ERROR CODES - DMIERRORCODE AND DMIRPCERRORCODE
The main error status (in case of an error), whether it isa DMI Service Provider error code, or an underlying RPC error
code, isreturned using the DmiDmiErrorCode() and DmiRpcErrorCode() functions:

Dmi Unsi gned_t DM _API Dni Dmi Err or Code(
[in] error_status_t* status
)

Dni Unsi gned_t DM _API Dni RpcError Code(
[in] error_status_t* status
)

Error status returned include Service Provider errors, in addition to RPC specific error codes.

9.4.1.5 ERROR TEXT - DMIERRORTEXT
This function returns a static string which can be used to display/log errors. The string islocalized as per the
sLanguage set for the specific management handle used when the error occurred, or is an 1SO 8859-1 string if the
handle is not valid (asis the case before connection establishment or after connection has been terminated):
const char* DM _API Dmi Error Text (
[in] bind_handle_t* handl e,
[in] error_status_t* status

)
9.4.2 Extended Error Handling

Applications interested in further information may access the unified error information structure. Information gathered
is contained in a static array of structures, each containing error information as provided by the specific RPC, together
with whatever other relevant information available. Access to the structure is available using DmiGetExtendedError()
function.

The DmiGetExtendedError() may return NULL to indicate that no extended error information is available. Such
implementation should not be regarded as non-compliant.

This function returns an item of type DmiExtendedError which is, in effect, a pointer to a per-session extended error
status structure. Shown below is a possible example of such an extended error structure. NOTE: thisissimply an
example and applications must not depend on the structures necessarily having thisform. Applications must use
functions provided by the M| Support Functions I nterface to accessinformation within this structure.

struct Dmi ExtendedError {
struct Dmi ExtendedError *next;
voi d *addi tional _i nfornmation;
void (*error_function)(
int operation,
struct Dmi ExtendedError *error,
voi d *additional _information);

January, 2003 132

Desktop Management I nterface Specification v2.01s

unsi gned | ong action;
struct {
int |ength;
char *dat a;
} renote_nachi ne;
char *renote_nachi ne_nane;
char *subsystem nane;
char *subsystem description;

1
typedef struct Dmi ExtendedError Dmi ExtendedError_t;

Dni Ext endedError_t * DM _APlI Dm Get Ext endedError (
[in] bind_handle_t;
)

9.4.2.1 NEXT
A pointer to the next member of the extended error information list. aNULL pointer signals the end of the list.
Returned by the function:

Dmi Ext endedError_t * DM _API Dmi Next Ext endedError (
Dmi Ext endedError_t * extended_error;
)

9.4.2.2 ADDITIONAL INFORMATION AND ERROR_FUNCTION
Thisisapointer to additional information about the error, which can only be interpreted by subsystem specific routine.
Each subsystem which makes use of such information should also provide an error handling function,
error_functi on, which takes thisinformation as one of itsinputs. The implementation of this function and linkage
to it will be operating system specific.
Thiserror _funct i on implements the subsystem specific error handling which is targeted in re-establishing proper
working order of the subsystem. The input to this function is the operation required, a pointer to the current error
information structure and the subsystem additional information data. This function may modify the global error
information structure, remove or add elementsto it, as required. Further definition of the parameters is subsystem
specific.
A typica example of asubsystem might be a specific RPC and transport combination used.

9.4.2.3 ACTION

Thisis an enumeration, specifying the recommended action that a management application should take. This
information is derived from other sources, as appropriate for the transport and RPC used. Returned by:

error_action_t * DM _APlI Dnmi Ext endedErrorAction (
Dm Ext endedError _t extended_error
)

9.4.2.4 REMOTE MACHINE
Thisisadesignation of the remote machine where the error occurred, in amachine usable manner (i.e., the information
can be used to access the remote machine where the error occurred.)

9.4.2.5 REMOTE MACHINE NAME
Thisisaprintable representation of the above, for error reporting purposes.

9.4.2.6 SUBSYSTEM_NAME
This isthe subsystem name where the error occurred, for reporting purposes.

9.4.2.7 SUBSYSTEM_DESCRIPTION
Thisis the subsystem description, for reporting purposes.

January, 2003 133

Desktop Management I nterface Specification v2.01s

9.4.3 DCE/RPC and ONC/RPC mapping for standard functions

OoP

DMI

ONC/TI RPC

DCE RPC

success/fail test

= DM _NO ERROR

=0

= rpc_s_ok

Action

DmiErrorAction()

Error number

DmiErrorStatus()

r e_st at us member of
rpc_err.

DmiErrorStatus t
returned upon call.

Extended Error information:

Error Text DmiErrorText() clnt_sperrno() dce_error_ing_text()
Extended error Dmi GetExtendedError()
info.

January, 2003

EXTEND :D ERROR ONC/TI RPC D E RPC
MEI 1BER

error re_status (returned at call)
error_string cInt_sperrno() | dce_error_ing_text()
additional_information rpc_err
action (generated) (generated)
remote_machine (generated) (generated)
remote_machine_name (generated) (generated)
subsystem _name (generated) (generated)
subsystem_description (generated) (generated)

134

Desktop Management I nterface Specification v2.01s

9.5 RUNTIME LINKAGE

The MI Support Functions implementation may either statically support a pre-defined list of RPCs, or may apply run-

time linkage to gain access to other RPC code. RPC binding is accomplished using the DmiBind() call, as follows:

Dmi ErrorStatus_t DM _API Dmi Bi nd(

NULL, rpc, transport,

ERROR CODES

DM ERR_NO_ERRCR

ERR_| LLEGAL_HANDLE

RR_OUT_OF_MEMORY

NULL);

DM
DM E 3

DM ERR_| NSUFFI Cl ENT_PRI VI LEGES
DM E

RR_SP_| NACTI VE

Where rpc is the rpc name, used to derive the DL L/share object containing the RPC specific DMI code and transport is
the transport. A statically linked implementation should return O if the transport exists, or should otherwise signal an

error condition.

RPC transports are unbound implicitly as aresult of acall to the DmiUnbind() function, as follows:

Dmi ErrorStatus_t DM _API Dmi Unbi nd(
Dmi Unsi gned_t handl e);

Where handleis assigned at bind time.

ERROR CODES
DM ERR_NO_ERRCR

DM ERR_| LLEGAL_HANDLE

DM ERR_QUT_OF NMEMORY

DM ERR_|I NSUFFI Cl ENT_PRI VI LEGES

DM ERR_SP_I NACTI VE

9.5.1 Naming Conventions
The name of the RPC specific DMI client library is as follows:

PLATFORM LIBRAR''NAME

UNIX dmirpc.so

Netware dmirpc.nim (rpc name 4 chars
max)

Winl6 dmirpcl6.dll (rpc name 3 chars
max)

Win32 dmirpc32.dll (rpc name 3 chars
max)

0s/2 dmirpc.dil

Where rpc stands for one of:
RPC {TANDARD
NAME

DCE/RPC dce

ONC/RPC onc

TI/RPC ti

LOCAL local

January, 2003

135

Desktop Management I nterface Specification v2.01s

Since some OS alow only asingle name space for al shared libraries, some OS specific libraries will require that all
DM function names be prefixed with the RPC name. The following tables indicates where such prefix isrequired. In
all other cases, the exported function names should match EXACTLY the functions defined in the Procedural M
section of this document.

PLATFORM PREFIX

NAMES

UNIX not required
Netware required

Winl6 not required

Win32 not required

0s/2 not required

9.5.2 Runtime linkage example

One interesting example of how runtime linkage may be used to extend DM to use other RPC is the case of alocal,
no-rpc implementation. A local implementation needs to provide adynamically linked library, properly named as per
the operating system used (for example, Win16 implementation would use DMILOC16.DLL .) Thislibrary, presenting
aDMI compatible interface, would be linked under the M| Support Functions, and would thus be accessible to any
Management Application/Client.

MI + (Optional Extensions)

RPC Module Memory Function RPC Control
Loader Management Routin DmiBind()

v v ¥ % %

MI + (Optional) DmiBind() MI + (Optional) DmiBind() MI + (Optional) DmiBind()
Indication Indication Indication
Server Server Server
Function Function Function
RPC Support Function RPC Support Function RPC Support Function
DCE ONC Tl

Figure 9-1. An expanded view of the DMI Service User Function - Client API.

The user (Management Application) in all cases will see only the M1 interface exposed by the DMI Service User
Function, for sake of clarity let'scall itaDLL. ThisDLL isresponsible for loading and managing al of the RPC
functions (again let’ s think of them as DLLs) below it. Not only isthe User function DLL responsible for loading the
RPC DLLswhen needed, but it is also responsible for managing the function routing tables that will be required to pass
the calls through to the correct RPC DLL.

The DmiBind() function carries information in it that must be passed to the RPC DLL - namely the indication entry
point information. The DMI Service User function (DLL) isalso an RPC Server, in that it has to field indications. It
must have away of forwarding those received indications up to the application. Thisiswhere the DmiBind() call plays
arole. Thiscall carriesthe entry point information for indicationsin it. See the description of that function in Section

9.5.

January, 2003 136

Desktop Management I nterface Specification v2.01s

9.6 MEMORY HANDLING FUNCTIONS

The MI Support Functions provide the client writer with convenient memory allocation routines, in order to ease
memory handling and allocation. DM| associates alocated memory to pools, being a convenient way of grouping
alocated memory. Users may create pools, allocate memory and associate it to a specific pool or free pool memory.
Pools can also be destroyed; this would also cause all allocated memory belonging to that pool to be released.

9.6.1 DmiAllocPool

This function is used to create a pool of memory. Subsequent calls to DmiAlloc() should use amemory pool handle to
associate allocated memory with that pool:

Dmi Void_t* DM _API Dmi Al | ocPool (
voi d
)

The function return value is a pool handle, to be used in subsequent DmiAlloc() calls. DmiAllocPool() should return
NULL is memory pool cannot be created.

Note that multiple active pools can exists at the same time.

ERROR CODES
DM ERR_NO_ERROR
DM ERR_NO_POCL

9.6.2 DmiAlloc
Thisfunction is used to allocate memory for use as input parameters to DMI calls, or any other transient use. It
prototypeis:
Dmi Void_t* DM _API Dnmi Al | oc(

[in] DmiVoid_t * pool _handl e,
[in] Dm Unsigned_t size

Where pool_handle is the handle returned by DmiAllocPool(), and size is the number of bytes to allocate.
The DmiAlloc() function should return NULL if memory cannot be allocated.

ERROR CODES

DM ERR_NO_ERROR
DM ERR_| NVALI D_POOL
DM ERR_OUT_OF_NEMORY

9.6.3 DmiFree

Thisfunction is used to free previoudly allocated memory:
Dmi ErrorStatus_t DM _API Dmi Free(

[in] DmiVoid_t * ptr

)

ERROR CODES

DM ERR_NO_ERROR
DM ERR_| NVALI D_POOL
DM ERR_| NVALI D_PTR

January, 2003 137

Desktop Management I nterface Specification v2.01s

9.6.4 DmiFreePool
Memory allocated using DmiAlloc() which belongs to a specific pool can be released using DmiFreePool() call. This
call would also delete the specified pool:

Dmi Error Status_t Dnmi FreePool (

[in] DmiVoid_t * handl e
)
ERROR CODES

DM ERR_NO_ERROR
DM ERR_| NVALI D_POOL

9.6.5 Bulk Allocation

DmiAllocPool, DmiAlloc and DmiFreePool can be used to ease memory allocation tracking. A DMI Client may use
DmiAllocPool() to create a memory pool, and request that memory allocated using the DmiAlloc() function be owned
by it. Memory belonging to that pool can then be freed using DmiFreePool (). For example:

manage_client (){
Dmi Void_t *h, *hi,*h2;
Dmi ErrorStatus_t status;
h = Dmi Al |l ocPool ();
hi = Dmi Alloc(h, 100UL); /* allocate hi */
h2 = Dni Alloc(h, 200UL); /* allocate h2 */
éiét us = Dmi Li st Conponents(...)
Dmi FreePool (h); /* free hi, h2, h */
}

Using DmiFreePool releases the client writer from tracking all allocated memory, and provides an easy way of
preventing memory leakage problems common to RPC code.

January, 2003 138

Desktop Management I nterface Specification v2.01s

10. INTRODUCTION TO DMI2.0S

DM v2.0s defines a mechanism to control remote access to the DMI Management Interface and local access
to DMI interfaces. The remote access control mechanism is defined on top of standard RPC mechanisms,
whereas the local access control mechanism is defined on top of operating system mechanisms. DMIv2.0s
does not specify a standard format for identities nor a cryptosystem to verify those identities, but relies on
those provided through the RPC and by the operating system. In addition, DMI1v2.0s defines that certain
operations performed by the DMIv2.0s Service Provider may be logged and/or generate indications. The
DMI Security Extension introduced by DMIv2.0s appear in Sections 10 through 18.

DMIv2.0s Service Providers should be compatible with existing DM| management applications and
component instrumentation. The functions and parameters of the Management Interface and the Component
Interface in DMIv2.0s are identical to those of DMIv2.0; that is, the IDL of DMIv2.0sisidentical to that of
DMIv2.0. DMIV2.0s adds authentication features to the remote Management Interface invocation
mechanism, and specifies that the DMIv2.0s Service Provider authorizes commands according to the identity
of the user accessing the Management Interface. Access to the Component Interface and to the local
Management Interface can be restricted to privileged users. The DMIv2.0s Service Provider can be
configured to log and generate indications upon certain security-related operations. DM1v2.0s aso defines
the behavior of a DMIv2.0s Service Provider in the presence of non-authenticated management applications.

January, 2003 139

Desktop Management I nterface Specification v2.01s

10.1 OVERVIEW

The DMI architecture defines the Service Provider, a program that runs on the managed system, and
communicates with management applications by means of the Management Interface and with managed
components by means of the Component Interface. DMIv2.0 uses a standard Remote Procedure Call
mechanism to expose the Management Interface to remote management applications. Because DMIv2.0
does not define security mechanisms to control access to the various elements of the DMI, an unauthorized
user could invoke a standard DMIv2.0 management application from any computer on the network. With
the growing number of DMI-enabled systems deployed in the market, there is a strong demand by vendors
and users for amore secure version of DMI. In response to this request, the DM TF has formed the DMI
Security Working Committee which is chartered with extending the DMIv2.0 specification for security.

DMIVv2.0sis astandard extended version of the DMIv2.0 specification. DMIv2.0s defines mechanismsto
secure the interaction between the Service Provider, management applications, component instrumentation
and the Management Information Format (MIF) database. In order to describe the features of DM1v2.0s, we
will use several terms related to security in a networked computing environment such as authentication and
authorization. Refer to Appendix E for a definition of those and other terms.

DMIv2.0s defines the following features to control and track the interactions between DM| elements:

control access of remote management applicationsto DMI information

security of component instrumentation

security of MIF database

security of local management applications

generating events upon security-related operations

logging of security-related operations

role-based authorization model

flexible, remotely configurable authorization policy

implementing of the authentication interface on top of operating system or third party product

The approach followed to define these features is presented in Section 10.2.

Section 11 Architecture describes the DM1v2.0s extensions to the DM v2.0 specification: the functional
blocks of DMIv2.0s, the interfaces defined by DMI1v2.0s, the DMI1v2.0s standard groups in the Service
Provider component, and the standard roles defined by DMIv2.0s.

Section 12 DMiv2.0s Service Provider standard groups describes several standard groups that must be
included in the Service Provider component, such asthe SP | ndi cati on Subscri pti on group and the sp
Filter Information group and introduces new standard groups to configure new features of the DM1v2.0s
Service Provider and to store the authorization policy.

Section 13 Management interface security defines this main feature of DMIv2.0s. Management Interface
security controls the access of management applications to DM data and instrumentation.

Section 14 Component interface security defines security as it applies to component instrumentation
interfacing with the DM1v2.0s Service Provider, be it DMIv1 component instrumentation or DMIv2
component instrumentation.

Section 15 MIF Database PROTECTION defines the use of operating system or file system mechanisms to
protect the MIF database from access by non-privileged users.

Section 16 Security Indications describes security indications to be sent to monitoring management
applications.

Section 17 Logging describes security logging entries logged by the DMIv2.0s Service Provider for future
retrieval by monitoring applications at their convenience.

The actual mechanisms used by the RPC infrastructure to authenticate users (e.g. passwords, X.509 digital
certificates, SIDs, etc.) are outside the scope of this specification. This specification does not address threats
from hackers that have access to hardware within a managed system (e.g. physical memory, virtual memory,
buses, disks).

January, 2003 140

Desktop Management I nterface Specification v2.01s

10.2 THE DMIv2.0S APPROACH

10

DMI defines a client-server model in which management applications are clients and the Service Provider is
the server: management applications invoke DMI commands which are serviced by the Service Provider.
Note that in the case of indication delivery the roles are reversed: the Service Provider initiates the delivery
of indications to management applications which handle them.

In DMIv2.0s, the Service Provider controls access to management information through the remote
Management Interface according to a configurable policy. Management applications and component
instrumentation have to authenticate with the Service Provider to be granted access. Each of these aspectsis
defined in the following paragraphs. A more technical description of DMIv2.0s featuresis found in Section
11.

.2.1 Authentication

Authentication is a protocol through which a management application proves the identity of its user to the
Service Provider, in order to be granted privileges according to the user’ sidentity. DMIv2.0s does not
specify an authentication method and name space. Instead, DM|v2.0s implementations can use any existing
authentication method (often including user names, 1Ds, and passwords) available through an RPC
infrastructure, thus saving the costly deployment and management of a new authentication framework. An
example of awidely-deployed authentication system is the operating system. In most environments, users are
defined in the context of the operating system and are authenticated upon logging on their system. DMIv2.0s
may be implemented on top of an operating system authentication mechanism, so that a management
application authenticates with the DM1v2.0s Service Provider according to the identity of the user invoking
the management application. DM|v2.0s may also be implemented on top of an authentication system
independent of any operating system such as Kerberos or X.509 certificates.

NOTE that a DMIv2.0s management application has to use an authentication method supported by the
DMIv2.0s Service Provider on the managed system. For example, to access a DMIv2.0s Service Provider
that uses X.509 certificates for authentication, a management application has to invoke the DMI Management
Interface through an RPC that performs authentication using X.509 certificates.

10.2.2 Roles

In midsize and large installations, various groups of system administrators are in charge of managing different
aspects of acomputing system. Each group of administrators needs to be assigned a specific set of privileges.
On the other hand, administrators frequently move from one group to another and assume different
responsibilities, so their privileges need to be updated. Using roles, DMI1v2.0s allows granting the same
privileges to severa users according to their function in managing the system.

A roleisaset of privileges associated to a group of users. A user is said to possess alist of roles.
Authentication yields the list of a user’ s roles, which is then used by the DM1v2.0s Service Provider for
authorization. Implementations of DMIv2.0s that are based on operating system authentication can use
operating system user groups to associate users with roles.

In addition to assigning the same role to several users, the roles paradigm allows associating the same role
and privileges to users from different environments. For example, authentication may associate the samerole
to the group of UNIX helpdesk users and to the group of NT helpdesk users. Similarly, authentication may
associate the same role to NT administrators (members of the Administrators group) and to UNIX
administrators (members of group 0).

10.2.3 Policy

The palicy determines which commands can be performed on which objects by which roles. The DMIv2.0s
Service Provider looks up the policy to determine whether aDMI command invoked by aremote
management application should be performed or rejected. The policy is stored as atable in the MIF database,
and it can be accessed and protected as aregular DMI table. Each row in the table represents a policy
statement which grants or denies the privilege of arole to perform aDMI command.

January, 2003 141

Desktop Management I nterface Specification v2.01s

The policy enables the system administrator to “secure” an attribute by specifying the roles that can accessit.
If the policy “secures’ an attribute, then only those roles specified will be granted access. Otherwise, if the
policy does not “secure” the attribute, all roles will be granted access to that attribute. Since DMI defines
standard groups (rather than standard attributes or standard components), attributes are identified in the policy
by their group class string and their attribute ID. For example, it is possible to set a policy that alows only
the helpdesk role to modify the base address of a serial port by defining apolicy for attribute ID 2 in groups
whose class string iS" DMTF| Seri al Ports| 003" .

A policy row that specifies only an attribute ID and a group class string applies to all the groupsin the system
whose class string matches. To narrow down the policy row to apply only to a subset of those groups, an
additional class, attribute ID, and value can be specified. In this case, the policy row will apply only to those
components in which the value of the specified attribute matches the value in the policy. For example, itis
possible to specify adifferent policy for each network interface card in a system, according to manufacturer
or serial number.

The policy also enables the system administrator to specify which roles are allowed to perform database
administration functions such as bni AddGr oup Or Dni Del et eConponent .

10.2.4 Authorization

Authorization is the mechanism whereby the DMIv2.0s Service Provider decides whether to perform or reject
aDMI command. The decision depends on the command, its parameters, the user’ sroles, and the policy.
Commands rejected return with status DM ERR_| NSUFFI CI ENT_PRI VI LEGES. Since a user may have several
roles, acommand is allowed if at least one of the user’ srolesis allowed to perform the command. Thus, a
user with several roles actually enjoys the combination of the privileges granted to each role.

To determine whether aroleis authorized to perform a command, the DM1v2.0s Service Provider searches
the policy table for rows that match the attempted command. If no such row is found, the command is
alowed to al roles. Otherwise, theroleisalowed to perform the command if thereis (at least) one matching
row that grants the role permission to perform the command and there is no matching row that denies the role
permission to perform the command.

10.2.5 Logging and event generation

The DMIv2.0s Service Provider can be configured to log commands and to generate events upon severa
operations such as installation of components and registration of management applications. Logging and
event generation are useful to detect security breachesin real time and to track actions that may affect the
configuration of a system, and to keep users accountable for their actions. DM1v2.0s defines alogging
interface which the Service Provider invokes when needed. Thelog format is defined by the logging module
provided as part of the DMIv2.0s Service Provider. The rationale for not specifying the log format is that
several such mechanisms exist and system administrators are familiar with them (e.g. syslog on UNIX, the
event log on WinNT or AUDITCON on NetWare).

10.2.6 Security of local interfaces

DMIv2.0 defines that the Management Interface can be accessed through a Remote Procedure Call. The
Management Interface can also be accessed locally (without going through an RPC) by directly invoking the
appropriate entry point of the DMIv2 Service Provider. The DMIv1 Management Interface and the DMIv1
and DMIv2 Component Interfaces are also local interfaces. Communication between the Service Provider
and the MIF database, though not a programming interface, is also considered alocal interface from the
security point of view. Therefore, DM1v2.0s defines an elementary security model for local DMI interfaces:
the MIF database, the local Management Interface and the local Component Interface are accessible only to
privileged users.

Privileged users are defined by each operating system. Processes executed by privileged users are allowed to
configure the operating system and the file system. The table below summarizes the definition of privileged
usersfor several operating systems.

January, 2003 142

Desktop Management I nterface Specification v2.01s

oS PRIVILEGED USERS
UNIX effectiveuser ID isO
NetWare user is Supervisor or Admin
WIinNT user is member of NT administrators group
Win9x all users are privileged

Thus, in DMIv2.0s, privileged users are authorized to invoke any Management Interface command through
the local Management Interface. (In the context of this specification, invoking the Management Interface
through an RPC from the same system on which the Service Provider is running is not considered alocal
access, and the security model applied is the same as when the Management Interface is invoked through an
RPC from a system different from the one running the Service Provider.)

10.2.7 OS dependence

DMI can be implemented on various operating systems, RPC flavors, and computer architectures. DMI
specifications define interfaces and their behavior. These specifications do not define the specific
mechanisms involved in implementing those interfaces and accessing them within a system (for example,
calling convention, parameter passing, endianness). The local interfaces to access DMI under a specific
architecture and operating system are defined by each Service Provider implementation; that is, calling
conventions, parameter passing, and endianness are implementation-specific. Remote access is specified,
though. Remote procedure callsto DMIv2.0 Management Interface procedures are defined for each RPC
flavor: the ONC and DCE RPC standards, along with the IDL and RPCGEN listingsin the DM1v2.0
specification define how to remotely access the Management Interface of DMI1v2.0.

DMIv2.0s requires that the Remote Procedure Calls be authenticated, but the specific authentication
mechanism to use is determined by each DMIv2.0s Service Provider implementation. A DMIv2.0s
management application has to use an authentication method supported by the DMIv2.0s Service Provider on
the managed system. Authentication protocols may or may not be based on operating system mechanisms.

NOTE that even if the authentication mechanism supported by an implementation of the DMIv2.0s Service
Provider is based on the operating system on which the Service Provider runs, management applications
running under a different operating system may perform the authentication protocol. For example, just as a
Windows user can log on to a NetWare server, a user running a management application on a Windows
system can authenticate to a DMIv2.0s Service Provider running on a NW server using the NetWare login as
authenti cation mechanism.

10.2.8 Compatibility

The Management Interface defined by the DMIv2.0 is aremotable procedural interface (through a Remote
Procedure Call mechanism), whereas the Component Interfaceisalocal procedural interface. The actual
mechanism used for local invocation of the Management Interface and the Component Interface is defined by
each DMI Service Provider implementation. In DMIv1, both the Component Interface and the Management
Interface are local data block interfaces. The actual mechanism for invoking these data block interfacesis
defined by each DMIv1 Service Provider implementation.

In DMIv2.0s, the entry points and parameters of the Management Interface and the Component Interface are
identical to those of DMIv2.0. DMIv2.0s requires that the user invoking the Management Interface be
authenticated through the RPC if accessis remote or be a privileged user if accessisloca. DMIv2.0s
requires that the user invoking the Component Interface be a privileged user. Authentication failuresresult in
error codes.

The DMIv2.0s Service Provider authorizes commands according to the identity of the caller. If acommand is
authorized, itsresult is as defined in DMIv2.0; if acommand is not authorized, error code

DM ERR_I NSUFFI CI ENT_PRI VI LEGES is returned and the command is not performed. Note that

DM ERR_| NSUFFI CI ENT_PRI VI LEGES is defined by the DMI1v2.0 specification and, therefore, should be
handled properly by existing management applications written to DMIv2.0. Additionally, DMIv2.0s
specifies that the Service Provider can be configured to log and generate indications upon certain operations.
DMIv2.0s aso defines the behavior of a DMIv2.0s Service Provider in the presence of component

January, 2003

143

Desktop Management I nterface Specification v2.01s

instrumentation and management applications whose caller cannot be authenticated (management
applications that do not use an authenticated RPC fall in this category).

Since one of the objectives of this specification is to allow a smooth transition to DMIv2.0s, DMIv2.0s
Service Providers will be compatible with existing DMI management applications and component
instrumentation. For compatibility with existing component instrumentation and management applications, it
is recommended that Service Provider writers offer implementations of DMIv2.0s that are binary compatible
with their implementations of DMIv2.0. It is recommended that DMIv2.0s Service Providers be ableto read a
MIF database generated by a DM1v2.0 Service Provider, so that DMIv2.0 systems can be upgraded to
DMIv2.0s without having to reinstall and configure each component.

January, 2003

144

Desktop Management I nterface Specification v2.01s

11. ARCHITECTURE

This section describes the DMIv2.0s extensions to the DMIv2.0 specification: the functional blocks of
DMIVv2.0s, the interfaces defined by DMI1v2.0s, the DM1v2.0s standard groups in the Service Provider
component, and the standard roles defined by DM|v2.0s.

NOTE that the partition into functional blocks or modulesisintended to clarify the functionality of the
DMIv2.0s Service Provider and not to impose an architecture on DMIv2.0s Service Provider
implementations.

DMIv2.0simplements all the interfaces defined by DMI1v2.0, and specifies one additional interface: the
Logging Interface which the DMIv2.0s Service Provider invokes in order to log operations and exceptional
conditions. The semantics of existing DMIv2.0 interfaces are extended by DM1v2.0s: for example,
commands that would have been executed by a DMIv2.0 Service Provider will be rejected by a DMIv2.0s
Service Provider if the user invoking the command does not have the required privilege. Existing DMIv2.0
management applications are supported in DM1v2.0s. Management applications using a non-authenticated
RPC infrastructure will be allowed to perform commands that the policy allowsrole dni _def aul t t0
perform.

January, 2003 145

Desktop Management I nterface Specification v2.01s

11.1 DMIv2.0S FUNCTIONAL BLOCKS
11.1.1 Authentication

Authentication is performed at the time of management application registration. When a remote management
application registers with the DMIv2.0s Service Provider, the RPC infrastructure authenticates the user. If
authentication fails, the RPC infrastructure returns an RPC specific error. If authentication succeeds, the
authentication module of the DMIv2.0s Service Provider retrieves the identity from the RPC infrastructure
and yields the list of roles of the user. The authentication module may extract the roles list from the identity
or it may retrieve it from a database. The actual mechanism used to associate arole with a user is defined by
the DMIv2.0s Service Provider implementation. We recommend using operating system user groups or
digital certificate attributes to map user identities to roles since system administrators are likely to be familiar
with user/certificate administration and related tools.

The DMIv2.0s Service Provider associates the list of roles with the DMI management handle; that is, the
roles list assigned at registration applies to all subsequent commands issued with that management handle.
Optionally, the DMIv2.0s Service Provider may also perform authentication on each of the subsequent
Management Interface RPC calls after Dni Regi st er, and compare the identity of the caller with the identity
of the caller of Dni Regi st er; if different the service provider returns error DM ERR_| LLEGAL_HANDLE.
Management applications that register with the Service Provider using a non-authenticated RPC will be
assigned arole list that contains only role dni _def aul t .

If, during a DM management session, the credentials of a management application expire or are revoked, the
RPC infrastructure will reject all subsequent remote procedure calls, even if the DMIv2.0s Service Provider
does not perform authentication at every call.

11.1.2 Authorization

For each DM| command issued by a management application, the DMIv2.0s Service Provider checks whether
that management application is alowed to perform the command according to the management application
role, the current contents of the Service Provider policy table and the command parameters.

January, 2003 146

Desktop Management I nterface Specification v2.01s

11.1.3 Indication generation and logging

The DMIv2.0s Service Provider can be configured to generate indications upon some operations performed
by management applications. These indications can be used to warn a system administrator of an operation
that may endanger a system or ater its configuration.

Thelogging module of the DMIv2.0s Service Provider implements the Logging Interface defined in Section
17.1. The DMIv2.0s Service Provider can be configured to invoke thisinterface in order to log operations
performed by management applicationsin alog. Thelog can be used to keep users accountable for their
actions or to keep track of changes in the configuration of a system.

11.1.4 MIF database security

Since the policy is stored in the MIF database, it is necessary to protect the database. The contents of the MIF
database are persistent across reboots and, therefore, the MIF database must be kept in some type of persistent
storage, typically afile. The contents of the database are protected from unauthorized accessby DM
management applications through the DM Iv2.0s policy itself. However, it is also necessary to protect the
database in its stored form, such as afile. A DMIv2.0s Service Provider must protect the MIF database from
access by non-privileged users through file system mechanisms if supported by the system. If the MIF
database is not stored as afile, an appropriate access control mechanism should be set if supported.

11.1.5 Component instrumentation security

Since component instrumentation controls the actual behavior of DM instrumented components, it is one of
the most powerful and vulnerable elements in the system. The DMIv2.0s Service Provider controls access of
management applications to component instrumentation through the authorization mechanism of the
Management Interface. However, it is also required to protect the Service Provider from unauthorized
component instrumentation. The DMIv2.0s Service Provider can be configured to disable registration of
component instrumentations that are not privileged (since privileged instrumentation is trusted by the OS).

The DMIv2.0s Service Provider can also be configured to disable overriding of component instrumentation
by a subsequent registration of instrumentation for the same attribute.

January, 2003 147

Desktop Management I nterface Specification v2.01s

12. DMIv2.0S SERVICE PROVIDER STANDARD
GROUPS

The DMI Service Provider isitself acomponent of asystem and it has an associated MIF that describes its
capabilities. This component has a component ID equal to 1 by definition. Several standard groups are
defined that must be included in the Service Provider component, such asthe SP | ndi cati on Subscri ption
group andthe sP Filter |nformation group. DMIV2.0sintroduces new standard groups to configure new
features of the DMIv2.0s Service Provider and to store the authorization policy. These groups are described
in the following sections.

NOTE that in the following group listings:

The group ID isincluded for syntactic correctness and is not part of the definition; instead, the groups should
be identified by their class string.

Value statements in the table definitions define the default value of attributes omitted in a table initialization
and should not be changed.

Value statements in scalar groups are the recommended initial value of the attribute. DMIv2.0s Service
Provider implementations may choose to use different initial values.

January, 2003 148

Desktop Management I nterface Specification v2.01s

12.1 DMIv2.0S SERVICE PROVIDER CONFIGURATION

The features provided by the DMIv2.0s Service Provider can be enabled or disabled through the “ Service
Provider Characteristics’ group. The DMIv2.0s Service Provider checks the value of these boolean attributes
upon startup and enables or disables features accordingly. A concise description is provided with each
attribute. Accessto attributesin the Servi ce Provider Characteristics group is controlled by the policy
like any other attribute. It isrecommended that only administrators be allowed to modify these attributes.
Start G oup

Nanme = "Service Provider Characteristics”

Class = "DMIF| SP Characteristics| 001"

ID=6

Description = "This group configures the DMv2.0s SP characteristics."

Thefirst attribute "enabl e | ocal security" controls whether the DMIv2.0s Service Provider securesthe
local interfaces. If the value of this attribute is Tr ue when the Service Provider initializes, local interfaces are
secured, thus:

Component instrumentation which is not privileged cannot access the DMIv2.0s Service Provider

A local management application which is not privileged cannot access the DMIv2.0s Service
Provider

Start Attribute
Name = "enabl e | ocal security"”
ID=1
Type = start enum
0x00 = "Fal se"
0x01 = "True"
end enum
St orage = conmmon
Val ue = "True"
End Attribute
Description = "If true, CI and MA nust be privil eged processes to "
"access the DMv2.0s SP.\"

The second attribute "di sabl e CI override” controls whether the DMIv2.0s Service Provider alows
component instrumentation registration to override a previous component instrumentation registration of the
same attribute. If the value of this attribute is Tr ue when the Service Provider initializes, attemptsto override
a previous component instrumentation registration will fail with error DM ERR | NSUFFI CI ENT_PRI VI LEGES.

Start Attribute

Name = "disable Cl override"
ID=2
Description = "If true Cl override attenpts will fail."
Type = start enum
0x00 = "Fal se"
0x01 = "True"
end enum
St orage = conmmon
Val ue = "True"

End Attribute

Changesinenabl e 1 ocal security anddisable O override take effect at the next Service Provider
restart.

January, 2003 149

Desktop Management I nterface Specification v2.01s

12.2 DMIv2.0S SECURITY INDICATION AND LOGGING
CONFIGURATION

Security indication and logging are controlled by the Ser vi ce Provi der Logging and Security

I ndi cation Characteristics group. Thefirst attribute cormands determines which commands/occurrences
are to be processed (Note that all DMI listing commands are grouped together.) The second attribute | evel
determines under what success/failure conditions the specified commands are to be processed. Commands
returning DM ERR_NO_ERROR O DM ERR_NO_ERROR_MORE_DATA are considered successful; Commands
returning DM ERR_| NSUFFI Cl ENT_PRI VI LEGES Or DM ERR_I NVALI D_HANDLE are considered security failures;
Commands returning other values are considered to have failed for non-security reasons. The third attribute
act i on determines the type of processing: logging, security indication or both. The fourth attribute cl ass
string filter providesthe ability to filter for what groups the processing is done. The semantics of this
filter are similar to the class string parameter to the Li st Conponent sByd ass command in the Management

Interface.
Start G oup
Name = "Service Provider Logging and Security Indication Characteristics"

Class = "DMIF| SP Loggi ng and Security Indication Characteristics|001"
Key = 1,2,3,4
Description = "This table selects which commands are | ogged or trigger "
"a security indication."

Start Attribute
Nanme = "commands"
ID=1
Description = "commands and occurrences to be processed "
"by DM 2.0s SP for |ogging and/or security indications."

Type = Start enum

0 = "unknown"

1 = "Dm Register”

2 = "Dm Unregister"

3 = "Dmi GetAttribute"

4 = "Dm SetAttribute"

5 = "Dm GetMil tiple"

6 = "Dm SetMil tiple"

7 = "Dm AddRow'

8 = "Dnmi Del et eRow'

9 = "Dm AddConponent "

10= " Dmi AddLanguage"

11 = " Dmi AddG oup"

12 = " Dmi Del et eConponent "

13 = " Dni Del et eLanguage"

14 = " Dmi Del et eG oup”

15 = "Dnmi Regi sterG "

16 = "DmiList"

17 = "Authentication Expired"

18 = "Dmi Ori gi nat eEvent "
End enum

Access = Read-Only

St orage = Conmon

Val ue = "unknown"
End Attribute

Start Attribute

Name = "l evel"
ID=2
Description = "This command wi ||l be processed under the \n"
"specified condition. "
Type = Start enum
0 = "unknown"
1 = "process if success"
2 = "process if security failure"
3 = "process if success or security failure"
4 = "process if non-security failure"
5 = "process if success or non-security failure"
6 = "process if security or non-security failure"

January, 2003 150

Desktop Management I nterface Specification v2.01s

7 = "process if success or security failure or non-security failure"
End enum
Access= Read-Only
Storage = Common
Val ue = "unknown"
End Attribute

Start Attribute
Nanme = "action"
ID =3
Description = "The processing action to take."
Type = Start enum
"unknown"
"1 og"
"send security indication"
"l og and send security indication"

wnr ol

End enum
Access = Read-Only
St orage = Common

Value = 0
End Attribute

Start Attribute
Name = “class string filter"
ID =4
Type = String(256)
Storage = Common
Access = Read-Only

Description = "The | ogging and/or security indication is performed \n"
"on groups whose class string matches the filter. \n"
"String || is a wildcard neaning all groups."
Value = "||"
End Attribute

End Group

For example, in order to log al the successful Dri Set At t ri but e commands, and log and generate a security
indication upon all the modifications of the policy, the table should be set to:

Start Tabl e
Name = "DM Loggi ng Tabl e"
Class = "DMIF| SP Loggi ng and Security Indication Characteristics|001"

Id =9
{ "Dm SetAttribute", "log", "process if success" }
{ "Dm AddRow', "log and send security indication", "process if success",
" DMTF| POLI CY_DB| " }
{ "Dm Del eteRow', "log and send security indication", "process if success",
" DMTF| POLI CY_DB| " }
End Tabl e

January, 2003 151

Desktop Management I nterface Specification v2.01s

12.3 AUTHENTICATION PROTOCOLS

A DMIv2.0s Service Provider may support one or more authentication protocols. For example, it may
support authentication through NT login and through digital certificates. The Aut henti cation Protocol s
group is atable instrumented by the DMIv2.0s Service Provider that lists all the authentication protocols
supported along with their RPC type and transport type (since some authentication protocols may be
supported only on some of the RPCs). The definition of attributes SP RPC Type and SP Transport Type are
similar to those of attributes Subscri ber RPC Type and Subscri ber Transport Type inthe SP I ndication
Subscri ption table.

A management application may list the rows of the Aut henti cati on Protocol s tableto find out which
authentication protocols are supported by a DMIv2.0s Service Provider. It isrecommended to set a policy
that allows any role to read the authentication protocols table, so that it can be read by management
applications without authenticating. That is, it is recommended that the policy contain the following row:

{"dm _default", "Dmi GetAttribute", "Allow', "DMIF| Authentication Protocols|", , , , }

TheAut henti cation Protocol s group islisted below:

Start G oup
Name = "Aut hentication protocols"”
Class = "DMIF| Aut henti cation Protocol s| 001"
Key = 1,2,3
Description = "This table |lists authentication protocols supported.”

Start Attribute

Name = "Aut hentication Protocol Type

ID=1

Description = "This is an identifier of the type of Authentication
"in use by the SDM SP."

Access = Read-Only

St orage = Conmmon

Type = Start enum

"ONC UNI X"

" Ker ber os"

"W ndows NT4 Authentication”

"Net Ware 4.1"

" X. 509"

" DES"

End Enum

End Attribute

oOOhWNE

Start Attribute
Name = "SP RPC Type"
ID=2
Description = "This is an identifier of the type of RPCin
"use by the SP."
Access = Read-Only
Storage = Common
Type = String(64)

/1 NOTE: the all owabl e RPC Type strings are

11 "DCE RPC'
11 "ONC RPC'
/1 "TI RPC

End Attribute

Start Attribute
Name = "SP Transport Type"
ID =3
Description = "This is an identifier of the type of Transport in
"use by the SP."
Access = Read-Only
Storage = Common
Type = String(64)

/1 NOTE: the allowabl e Transport Type strings are

January, 2003 152

Desktop Management I nterface Specification v2.01s

11 “ncacn_dnet _nsp"
11 “ncacn_i p_tcp"
11 "ncadg_i p_udp"
11 "ncacn_nb_nb"
11 “ncacn_nb_tcp"
11 “ncacn_nb_i px"
11 "ncacn_np"
11 "ncacn_spx"
11 "ncadg_i px"
11 “ncal r pc"

End Attribute

End Group

January, 2003 153

Desktop Management I nterface Specification v2.01s

12.4 POLICY GROUP

ThePol i cy_DB group is atabular group in which each row specifies agroup of DMI commands that can or
cannot be performed on the system according to the role of the user invoking the command, the group’s class
string and attribute 1D accessed by the command. To allow specifying different policies for different groups
with the same class string, the value of an additional attribute can be specified, in which case the policy row
applies only to those components that contain the specified attribute with the specified value. If one or more
rowsin the policy specify rolesthat can perform a command on a component/group/attribute, then only those
roles specified will be allowed to perform that command; otherwise, al roles are allowed to. A more precise
description of the authorization algorithm can be found in Section 13.2, and pseudo-code is listed in Section
13.6.

The value of some of the attributes in a policy row may be awildcard. The syntax of wildcardsis specified in
the description of each attribute. Wildcards are used by the DMIv2.0s Service Provider when matching an
incoming command against policy rows for authorization. The policy group definition is listed below.

Start G oup
Nare = "DM Policy"
Class = "DMIF| Pol i cy_DB| 001"
Key = 1,2,3,4,5,6,7,8
Description = "This table contains the DM v2.0s SP authorization policy."

12.4.1 Role

Attributer ol e in apolicy row specifies the role that arow appliesto. Roles names are encoded as strings.
Role names are opaque to the DMIv2.0s Service Provider: the Service Provider matches the list of roles of a
user against the policy in order to authorize each command.

Start Attribute
Nanme = "Rol e"
Id =1

Description = "Role to which this row applies.”

Storage = Specific
Access = Read-Only
Type = String(256)
Value = ""

End Attribute

12.4.2 Command

Attribute command in apolicy row specifies the command or group of commands that arow appliesto. Note
that all DMI listing commands are grouped together. Values out of range are reserved and should not be set.

Start Attribute
Name = " Conmmand"
ld =2
Description = "Command to which this row applies."
Storage = Common
Access = Read-Only
Type = Start enum

1 = "DmiGetAttribute"
2 = "Dm SetAttribute"
3 = "Dm AddRow"
4 = " Dm Del et eRow'
5 = "Dm AddG oup”
6 = "Dmi Del et eG oup"
7 = "Dm AddConponent "
8 = "Dmi Del et eConponent "
9 = "Dm AddLanguage"
10 = " Dmi Del et eLanguage"
11 = "DmiList"
End enum

End Attribute

January, 2003 154

Desktop Management I nterface Specification v2.01s

The following commands are allowed to any role regardless of the policy: DmiRegister, DmiUnregister,
DmiGetV ersion, DmiGetConfig and DmiSetConfig.

A DmiSetMultiple command is allowed if each of theindividua setsisalowed. InaDmiGetMultiple
command, each individual get is authorized separately, and partia attribute data may be returned. See
Section 18 for a precise description of the behavior of DmiGetMultiple in the presence of errors. Note that a
DmiGetMultiple command that returns akey list (when ReguestMode is DMI_FIRST or DMI_NEXT)
requires DmiGetAttribute permission on each of the keys.

12.4.3 Authorization

Attribute aut hori zati on inapolicy row specifies whether the row allows or denies the specified role to
perform the specified command. The attribute aut hori zati on isof type enum {"Deny", "Allow'}. Values
out of range are reserved and should not be used.

Start Attribute

Name = "Authorization"
Id =3
Description = "Defines whether this row allows or denies access."

St orage = Conmon
Access = Read-Only
Type = Start enum
0 " Deny"
1 ="Alow
End enum
End Attribute

Attributes 4 through 8 in a policy row specify the component/group/attribute that the policy row appliesto.
Not al of attributes 4 through 8 in a policy row are relevant to each command. For example, Attri butel DiS
not relevant to Dni AddComponent commands. The policy attributes that are relevant to each command type
are summarized in atablein Section 13.2.

12.4.4 Class

This attribute specifies the groups that a policy row appliesto. The attribute d ass is of typestring. The
semantics of this attribute is similar to that of the class string parameter to the Li st Conponent sByd ass
command in the Management Interface. Partia class strings may be specified. For example, the partia class
string "DMTF| Seri al Ports| " will match all DMTF defined versions of the standard serial port group.

Start Attribute

Name = "d ass"
Id = 4
Description = "Class filter of groups to which this row applies."

Storage = Specific
Access = Read-Only
Type = String(256)
Value = "||"

End Attribute

12.4.5 Attribute ID

Attribute | Dspecifiesthe attribute that a policy row appliesto. Theattribute Attribute 1D isof type
integer. A value of zero isawildcard meaning that the policy row appliesto all the attributes in the group
specified by d ass. Thismakesit easy to protect awhole group. When atabular group is accessed, the
policy row appliesto attribute At t ri bute 1Dinall rows.
Start Attribute

Name = "Attributel D'

Id =5

Description = "Attribute IDto which this row applies. 0 is wldcard."

Storage = Specific

Access = Read-Only

January, 2003 155

Desktop Management I nterface Specification v2.01s

Type = Integer
Value = 0
End Attribute

12.4.6 Additional Class, Attribute ID, Value

To narrow down the scope of a policy row, in case there is more than one group in the system with the same
class string, specify an additional (class, attribute, value) triple. These attributes narrow down the scope of a
policy row so that it does not apply to all the groups of classd ass. O ass2 isastring, Attribute 1D2 iS
an integer, Val ue2 isan octet string representing the value of an attribute with the same syntax as <val ue
statement> inaMIFfile. If 0 ass2 isan empty string, Attribute 1 D2 and Val ue2 areignored and the
policy row appliesto al groups of classd ass.

When a management application attempts to perform a command, the DMIv2.0s Service Provider checks if
any rows in the policy apply to this command. Policy rowsinwhich d ass2 is specified apply to a
command only if the component being accessed contains a group whose class string isd ass2 and this group
contains an attribute with attribute ID Attri bute | D2 whose valueis equal to val ue2.

If the group is atabular group, the policy row appliesif thevalue Attri bute 1 D2 isVal ue2 in thefirst row.

Start Attribute
Nanme = "C ass2"
Id =6
Description = "Narrow down the scope of this row to conponents that "
"contain a group with this class in which attributel D2 has val ue2."
Storage = Specific
Access = Read-Only
Type = String(256)
Val ue = ""
End Attribute

Start Attribute
Name = "Attributel D2"
Id =7
Description = "Attribute whose value is used to narrow down the scope "
"of this policy row"
Storage = Specific
Access = Read-Only
Type = Integer
Value = 0
End Attribute

Start Attribute
Name = "Val ue2"
ld =8
Description = "Value used to narrow down the scope of this policy row"
Storage = Specific
Access = Read-Only
Type = CctetString(1024)
Val ue = ""
End Attribute

In the following example:

{"tester", "Dm SetAttribute" , "Allow', "DMIF| Network Adapter 802 Port| 001",
" DMTF| Conponent | D] 001", 1, "Intel" }

role "tester" is allowed to perform Dni Set At t ri but e On any attribute in agroup whose class string is

" DMTF| Net wor k Adapt er 802 Port| 001" in acomponent whose manufacturer is"Intel " (thatis, a
component that contains a group whose class string is " DMrF| Conponent | D 001" and the value of attribute
number 1 inthat group is"intel *).

January, 2003 156

Desktop Management I nterface Specification v2.01s

12.4.7 Example

Here's an example of the authentication protocols and policy tables:

Start Table
Name = "DM Authentication Protocols Table"
Class = "DMIF| Aut henti cati on Protocol s| 001"
ld =8

{"W ndows NT4 Authentication", "DCE RPC', "ncacn_ip_tcp"}
{"DES", "ONC RPC', " ncadg_ip_udp"}
End Tabl e

Start Table
Name = "DM Policy Table"
Class = "DMrIF| Pol i cy_DB| 001"

ld =7
// allowrole 'IT to add and renpve conponents
{"IT", "Dm AddConponent", "Allow', , , , , }
{"1T", "Dmi Del eteConponent”, "Allow', , , , , }
/1 allow role 'hel pdesk' to set attributes
{"hel pdesk", "Dm SetAttribute" , "Allow', , , , }
// allow role "HWsupport" to configure tenp probe
{"HW support", "Dmi SetAttribute" , "Allow', "DMIF| Tenperature Probe|",
/1 role "IBM support", not "hel pdesk" takes care of |BM conponents
{"IBM support", "Dm SetAttribute" , "Allow', "IBM|", , , ,
{"hel pdesk", "Dm SetAttribute" , "Deny", "IBM|", , ,
End Tabl e

The palicy table alows:
role"1 T to add and delete components.

role' hel pdesk' to set the value of any attribute except those in groups whose class string contains

"1 BM asdefining body.
role" HW support " to set the value of any attribute in the “ Temperature Probe” group.

role"1 BM support " to set the value of any attribute in any group whose class string contains " | BM

as defining body.

January, 2003

157

Desktop Management I nterface Specification v2.01s

12.5 SPECIAL DMIv2.0S ROLES

The authentication module is responsible for assigning alist of rolesto a user upon management application
registration. Although DMIv2.0s does not specify the mechanism for associating user identities with roles,
the recommended mechanism is the operating system user groups or digital certificate attributes. DMIv2.0s
defines a special role, dmi _def aul t, that is assigned to every management application, including those that
use a non-authenticated RPC. Therefore, commands that are permitted to role dni _def aul t are actually
permitted to all users. For example, the following row in the policy alows al usersto read the
authentication protocols table:

{"dm _default", "Dm GetAttribute", "Allow', "DMIF|Authentication Protocols|", , , , }

To ease the configuration of DMIv2.0s, it is recommended that DM v2.0s administrators define arole named
dni _adni n and alow thisrole to perform DM| database management operations (such as component
installation and removal) and to modify the policy. To implement this, the policy table would contain the
following rows:

{"dni _adnmin", "Dmi AddG oup", "Allow', , , , , }

{"dm _adnin", "Dm Del eteGoup", "Allow', , , , , }

{"dm _admin", "Dm AddConponent", "Allow', , , , , }

{"dnmi _adnmin", "Dm Del eteConponent”, "Alow, , , , , }

{"dnmi _admi n", "Dm AddRow', "Allow', "DMIF|PQOLICY_DB|OO1", , , , }
{"dnmi _admi n", "Dm Del eteRow', "Allow', "DMIF|PCLICY_DB|001", , , , }

January, 2003 158

Desktop Management I nterface Specification v2.01s

13. MANAGEMENT INTERFACE SECURITY

Management Interface security isthe main feature of DM1v2.0s. Management | nterface security controlsthe
access of management applications to DMI data and instrumentation.

Upon registration of a management application with the Service Provider, the Service Provider authenticates
the management application, obtainsthe list of roles of the user invoking that management application and
returns a management handle. Every subsequent DMI command requested through this management handle
will be authorized by the DM1v2.0s Service Provider according to thislist of roles and the policy.

Section 13.1 Authentication describes the interaction between the DM1v2.0s Service Provider and the
underlying RPC authentication mechanism.

Section 13.2 Policy and authorization defines DMIv2.0s authorization of Management Interface
commands issued by remote management applications.

Section 13.3 Policy protection, modification, and initialization discusses configuring the policy to control
access to the policy itself, and lists the recommended initial policy.

Section 13.4 I ndication subscription and delivery discusses security asit applies to the subscription of
management applications for indications and delivery of those indications.

Section 13.5 L ocal management inter face defines the security of the Management Interface when accessed
directly by local management applications (rather than through an RPC).

January, 2003 159

Desktop Management I nterface Specification v2.01s

13.1 AUTHENTICATION

DMIv2.0 uses Remote Procedure Call (RPC) standards for remoting the Management Interface. DMIv2.0s
also uses RPC for authenticating the user of the management application. The RPC infrastructure on the
RPC client (the management application) sends the identity of the user invoking the management application
to the RPC infrastructure of the RPC server (the DMIv2.0s Service Provider). Upon registration of a
management application, the DMIv2.0s Service Provider retrieves the identity of the user and extracts the
associated roleslist. Theactual call used by the DMIv2.0s Service Provider to retrieve the identity of the
user depends on the specific RPC being used (for example r pc_bi ndi ng_i nq_aut h_cl i ent () on DCE RPC
orrg_cred andrqcl ntcred instruct sve_req on ONC RPC). Optionally, the DMIv2.0s Service Provider
may also perform authentication on subsequent Management Interface RPC calls, and verify that the identity
of the caller isthe identity of the caller of Dri Regi ster.

The name space of user identities depends on the specific RPC and operating system. For example, when
using DCE RPC between Windows systems, user identities are of the form host/name, where host is the
name of a Windows NT workstation, Windows NT server or NT domain, and name is the login name of a
user. When using ONC between UNIX systems, the identity of auser is composed of its uid number.

The mapping of user identities onto roles is defined by the DMIv2.0s Service Provider implementation. This
mapping may be a simple one-to-one mapping with each user identity being arole, or the role list may be
contained in the user identity as, for example, an attribute in an X.509 certificate. It is recommended to use
operating system groups to map users onto roles, since system administrators are aready familiar with the
concept of operating system user groups and with the tools used to manage their membership.

A management application may support more than one authentication protocol in order to manage several
types of DM|v2.0s-enabled computers. To select the proper authentication protocol for managing a specific
computer, the management application can retrieve the list of authentication protocols supported by a
DMIv2.0s Service Provider by retrieving the rows of the Aut hent i cati on Protocol s table. Itis
recommended that the policy configure this table to be readable by any role.

Certain authentication protocols implement the concept of expiration or revocation of an identity or of
credentials. If such an authentication protocol is used, it isthe responsibility of the RPC infrastructure to
terminate the RPC session upon identity expiration or revocation. Subseguent commands attempted will fail
with an error defined by the RPC infrastructure.

13.1.1 Non-authenticated registration

A management application may register with the DMIv2.0s Service Provider using dni Regi st er but not
perform the authentication protocol. This may be because the management application does not use
authentication features of the RPC or because it uses an RPC that does not support authentication. In this
case the DMIv2.0s Service Provider will assign arole list that contains only role dri _def aul t to the
management application.

January, 2003 160

Desktop Management I nterface Specification v2.01s

13.2 POLICY AND AUTHORIZATION

Authorization is the mechanism whereby the DMIv2.0s Service Provider decides whether aDMI command
invoked by a user should be allowed or denied according to the command, its parameters, the user's roles,
and the policy.

A roleis said to be allowed to perform a given command if either:

Thereis at least one row in the policy with Aut hori zati on equal to " Al | ow' that matches this
role/command/parameters and there is no row in the policy with Aut hori zat i on equal to " Deny"
that matches this role/command/parameters.

There is no row in the policy that matches the command/parameters.

When searching the policy for rows that match a command, the Service Provider checks only relevant policy
attributes and command parameters. The command parameters and the policy attributes used for matching
each command against the policy are listed in the following table. Note that for simplicity all DMI Listing
commands have been grouped together, and can be alowed or denied to arole regardless of the component,
group or attributes being listed.

Cor mand Comman: parameters Policy attributes used for mat hing
checked f r match
Dmi GetAttribute Component, Group, Attribute | Class, Attributel D, Class2, Attributel D2, Value2
Dmi Set Attribute Component, Group, Attribute | Class, AttributelD, Class2, Attributel D2, Vaue2
Dni Del et eRow Component, Group Class, Class2, Attributel D2, Value2
Dni AddRow Component, Group Class, Class2, Attributel D2, Value2
Dni Del et eGr oup Component, Group Class, Class2, Attributel D2, Value2
Dm AddGr oup Component Class2, Attributel D2, Value2
Dri Del et eConponent | Component Class2, Attributel D2, Value2
Dm AddConponent
Dri Del et eLanguage Component Class2, Attributel D2, Value2
Dmi AddLanguage Component Class2, Attributel D2, Value2
Dmi Li st

When a management application attempts to perform a command that requires authorization, the Service
Provider searches the policy for rows that match the command. If there is no such row, then the command is
dlowed. If there are policy rows that match the command, the Service Provider checks whether one of the
roles of the user invoking the command is allowed to perform the command, and allows or denies the
command accordingly. Commands that a user is not authorized to perform are not performed and return
with error DM ERR_I NSUFFI CI ENT_PRI VI LEGES. Pseudo-code for the authorization algorithm islisted in
Section 13.6.

January, 2003 161

Desktop Management I nterface Specification v2.01s

13.3 POLICY PROTECTION, MODIFICATION AND

INITIALIZATION

The palicy is stored as atabular group in the MIF database. Accessto the policy is controlled by the policy
itself. For example, to allow role " dni _adni n* to modify the policy, the following rows should be included
in the policy:
{"dm _adnin", "Dmi AddRow' , "Allow', "DMIF| POLI CY_DB| 001", , , , }
{"dm _adnin", "DniDeleteRow' , "Allow', "DMIF|POLI CY_DB| 001", , , , }
Roles other than " dni _adni n* will not be allowed to modify the policy, unless specifically alowed to by
other policy rows.

Rows may be added to or removed from the policy table dynamically.

NOTE that attributesin the policy are read only, so the policy can be modified only by adding or deleting
rows.

When the DMIv2.0s Service Provider isinstalled, it creates an initial default policy table specified by the
Service Provider implementation. The recommended default policy islisted below, though the system
manufacturer may chose to set a different policy at system initialization:

{"dm _adm n", "Dm AddConponent”, "Allow', , , , , }

{"dm _adm n", "Dm Del eteConponent”, "Allow', , , , , }

{"dm _adm n", "Dmi AddG oup", "Allow', , , , , }

{"dm _adm n", "Dni Del eteG oup", "Alow', ..}

{"dm _adnmin", "Dm AddRow', "Allow', "DMIF| POLICY_DB|OO1", , , , }

{"dnmi _admin", "Dmi Del eteRow', "Allow', "DMIF| POLI CY_DB| 001", s

{"dm _adm n", "Dm AddRow', "Allow', "DMIF| SP Logging and Security Indication

Characteristics| 001", }
"dm _admin", "DmiDeleteRow', "Allow', "DMIF| SP Logging and Security |ndication

{

Characteristics|001*, , , , }

{"dnm _admi n", "Dm AddRow', "Allow', , , , , }

{"dnmi _admi n", "Dm Del eteRow', "Allow',

{"dm _adnin", "Dm SetAttribute", "Allow', , , , , }

{"dm _default", "Dm AddRow', "Allow', "DMIF|SP |ndication Subscription|001", , , , }
{"dm _default", "Dmi Del eteRow', "Allow', "DMIF|SP Indication Subscription|001", , , , }
{"dm _default", "Dm AddRow', "Allow', "“DMIF|SPFilterlnformation| 001", }

{"dm _default", "Dm Del eteRow', "Allow', "DMIF| SPFilterlnfornation|001", , , , }
{"dm _default", "Dm GetAttribute", "Alow', , , "DMIF| Conponent|D| 001", 2, "Wn32 DM
Service Provider"}

{"dm _default", "Dmi GetAttribute", "Allow', "DMIF| Authentication Protocols|", , , , }

January, 2003

162

Desktop Management I nterface Specification v2.01s

13.4 INDICATION SUBSCRIPTION AND DELIVERY

This section reviews the mechanisms involved in indication subscription and delivery and their interaction
with DMIv2.0s security. DMI management applications interested in receiving event notifications must
subscribe for indications with the Service Provider. The Service Provider component includes two tabular
groups through which a management application can subscribe for indications: SP I ndi cati on
SubscriptionandSP Filter I nformation. Management applications subscribe for indications with the
Service Provider by adding rows to these tables.

NOTE that subscribing for indicationsis different from performing DMI commands in two ways:

Indication subscription is persistent; that is, it staysin effect even after the end of the management session
during which the subscription was performed.

Indications are initiated by the Service Provider and consumed by management applications (unlike DM
commands which are initiated by management applications and performed by the Service Provider).

Theindication server block in the management application (Section 11.1) is actually an RPC server and the
indication client block in the Service Provider acts asits RPC client. The indication subscription and filter
tables are stored in the MIF database which is persistent across management sessions. The indication
subscription table contains alist of managing nodes that have subscribed to receive indications, and
information required to forward indications to them. When an indication is generated, the Service Provider
looks up the subscription and filter tables, opens an RPC session to each of the subscribed event consumers
that has set the appropriate filters, and sends the indication.

DMIv2.0s provides limited support for securing indication subscription and delivery because, in general,
indications carry no sensitive data; they often carry no dataat all. For example, when atemperature probe
detects that a system’s temperature istoo high, it generates an event containing data identifying this
particular probe group. Upon receiving the indication, the management application will query the current
temperature of the system by invoking bmi Get At t ri but e on the appropriate attribute in the probe group and
perform appropriate actions.

Indication subscription is protected by controlling access to the SP | ndi cati on Subscri ption and SP
Filter I nformation tablesthrough the policy. The policy can define which roles are allowed to add rows to
these tables; other roles will not be able to subscribe. However, the RPC session opened by the Service
Provider to deliver an indication to a management application is not authenticated.

January, 2003 163

Desktop Management I nterface Specification v2.01s

13.5 LOCAL MANAGEMENT INTERFACE

The Management Interface defined by DMIvl isaloca API. The Management Interface defined by
DMIv2.0 can be accessed remotely through a Remote Procedure Call mechanism. Note that management
applications running on the managed system itself can also access DMIv2.0s through an RPC. Remote
Procedure Calls within one system can be performed through a special local RPC transport (for example
ncal r pc) or through a networking RPC transport (for example, ncacn_i p_t cp) using the managed system’s
address or aloopback address as node address. In the context of this specification, invoking the
Management I nterface through an RPC from the same system on which the Service Provider isrunning is
not considered alocal access, and the access control mechanism applied is the same as when the
Management Interface isinvoked through an RPC from a different system, as defined in the previous
sections.

The Management Interface defined by DM1v2.0 can also be accessed through alocal interface within the
managed system. Thisinterfaceisusually awell known entry point inaDLL or asystem call. This section
defines security as it applies to management applications that access the DMIv2.0s Service Provider through
alocal AP, beit the DMIv1 Management Interface or the DMIv2 Management Interface. The behavior of
the DMIv2.0s Service Provider with local management applicationsis controlled by attribute enabl e | ocal
security inthe sP Characteristics group. If the value of thisattributeis Tr ue when the DMIv2.0s
Service Provider initializes, local management application security applies. Otherwise, all local management
applications have unlimited access to the Management Interface. The security mechanisms applied by
DMIv2.0sto local management applications are a simplified form of the mechanisms defined for remote
management applications:

Authentication is binary according to whether the local management application isinvoked by a
privileged user or not (see Section 10.2.6 for adefinition of privileged users).

Authorization is binary: local management applications invoked by a privileged user are allowed to
perform any DMI command, whereas those invoked by a non-privileged user are not allowed to
access DMI.

Indication subscription and delivery are affected accordingly: local management applications
invoked by a privileged user may subscribe for and receive indications, whereas those invoked by
anon-privileged user may not.

13.5.1 Caveat: component instrumentation registration as a local
management application

Component instrumentation often registers through the local Management Interface in order to access DMI
information. For example, component instrumentation can use DM information to find out the component
1D of the component it instruments, or to discriminate between two instances of the same component installed
on the system, or to store data pertaining to the component instrumentation. If local management application
security is enabled and component instrumentation registers as aloca management application through the
local DMI API, the security mechanisms described in Section 13.5 apply. Therefore, if attribute enabl e

I ocal security iSTrue whenthe DMIv2.0s Service Provider initializes, component instrumentation should
be configured to run as privileged processin order to be able to use the Management Interface. See also
Section 14 on component interface security.

January, 2003 164

Desktop Management I nterface Specification v2.01s

13.6 AUTHORIZATION ALGORITHM PSEUDO-CODE

When searching the policy for rows that match a command, relevant command parameters are checked
against each policy row’s attributes according to the table in Section 13.2. A fully specified policy row
{Role, Cmil, Authz, Cassl, Attrldl, Oass2, Attrld2, Value2} issaidtomatchaDMI command

with parameters CID, GID, AID if:
The class string of group GID matches the classfilter d ass1.

AIDisAttridi.
Component CID contains a group whose class string is d ass2 and an attribute in that group whose ID is
Attr1d2 and whose valueisval ue2.

Pseudo code for the authorization algorithm follows:
if (this coomand is Dmi Regi ster, Dmi Unregister, Dm GetVersion, Dm GetConfig or
Dmi Set Confi g) then
return all owed
else if (this command is Dmi SetMultiple) then
if (each of the sets is allowed per this algorithn then
return all owed
el se
return denied
else if (there are policy rows that match this command) then {

for (each role R of this user) {
if (there is a policy row matching this command such that rol e=R and aut h=deny) then

continue /* for */
if (there is a policy row matching this command such that role=R and auth=allow) then

return all owed
}y 1+ for */
return deni ed

}

el se return all owed

January, 2003

165

Desktop Management I nterface Specification v2.01s

14. COMPONENT INTERFACE SECURITY

The main objective of DMIVv2.0sis to control access of managed systems by remote management
applications. Nonetheless, DMIv2.0s also provides features to control registration of component
instrumentation and protect the system from software that behaves like a component instrumentation but is
not alegitimate component instrumentation. This section defines security as it applies to component
instrumentation interfacing with the DMIv2.0s Service Provider, be it DMIv1 component instrumentation or
DMIv2 component instrumentation. Component Interface security is controlled by attribute enabl e | ocal
security inthesP Characteristics group. If thevalue of this attribute is Tr ue when the DMIv2.0s
Service Provider initializes, Component Interface security applies. Otherwise, access to the DMIv2.0s
Component Interface is unrestricted.

DMI defines two types of interface between the Service Provider and component instrumentation: direct and
overlay. Instrumentation using the overlay interface is declared in the MIF by a value statement of the form
val ue = *"name", Where nane has been previously defined in a path definition within the component
definition. Upon aDni Get Attribute OF Dmi Set Attri but e to this attribute, the Service Provider loads and
invokes the code located in the file corresponding to the path definition for the OS running on the managed
system. The overlay Component Interfaceisnot supported by DMIv2.0s.

Instrumentation using the direct interface must register with the DMI Service Provider when it wishesto
notify the Service Provider of itsimmediate availability. (Attributes instrumented through the direct
interface and static attributes whose value is stored in the MIF database are defined in the same way in the
MIF.) Upon registration, direct interface instrumentation provides the Service Provider with entry points
through which the Service Provider can later invoke the instrumentation. The mechanics of “connecting” to
the DMI Service Provider to register or issue commands may differ among operating systems and DMI
Service Provider implementations.

If attribute enabl e 1 ocal security iSTrue when the DMIv2.0s Service Provider initializes, registration of
component instrumentation will succeed only if the component instrumentation is aprivileged process
as defined in Section 10.2.6. That is, invocations of Dni Regi st er G by anon-privileged process will fail and
return DM ERR_I NSUFFI CI ENT_PRI VI LEGES.

Registration of direct interface component instrumentation for an attribute overrides the previous access
mechanism for the attribute, which could be a static value in the MIF database, an overlay, or a previous
registration. In DMIv2.0s, this behavior can be controlled through attribute di sabl e € override inthesp
Characteristics group. If thevalue of this attribute is Tr ue when the DM1v2.0s Service Provider
initializes, invocations of Dni Regi st er G which would override a previous direct interface instrumentation
registration will fail and return DM ERR_| NSUFFI CI ENT_PRI VI LEGES. See also Sections 16 and 17 on
notifications generated as aresult of instrumentation override.

January, 2003 166

Desktop Management I nterface Specification v2.01s

15. MIF DATABASE PROTECTION

The MIF database is local to the managed PC. Since the palicy is stored in the MIF database, it is necessary
to protect the database. The contents of the database are protected from unauthorized access by DMI
management applications through the Management Interface security, based on roles and policy for remote
management applications and on operating system privileged processes for local management applications.
However, it is also necessary to protect the database in its stored form. The DMIv2.0s Service Provider uses
operating system or file system mechanisms to protect the MIF database, if such mechanisms are available.
The DMIv2.0s Service Provider will set up the ACL of the MIF database file such that only privileged
processes can read, write or erase the MIF database.

January, 2003 167

Desktop Management I nterface Specification v2.01s

16. SECURITY INDICATIONS

This section describes security indications to be sent to monitoring management applications. To avoid
generating spurious indication traffic on the network, security indications are configurable. Security
indications are declared in the DM1v2.0s Service Provider MIF with a standard event generation template
group. The event generation group and the attributes sent in the indication block are described in Section
16.1. Security indication generation is controlled by the SP Loggi ng and Security Indication
Charact eri sti cs group see the definition of this group in Section 12.2. This group aso controls the
configuration of DMIv2.0s logging.

16.1 SECURITY INDICATION DATA

When an indication is delivered to a consumer, the data supplied includes a standard event generation group
that is common to all standard events, and additional datathat is specific to the event. Refer to Section 5 for
the exact layout of the data in the indication data structure. The event generator group specifies the type of
the event, the severity, the group associated with the component that generated the event, the system and
subsystem concerned by the event. The event generation group is formatted according to the standard
template in Section 16.1.1. Additional attributes are described in Section 16.1.2.

16.1.1 Security indication event generation group

Start G oup
Name = "Event Generation"
Class = "Event Generation| DMIF* Security | ndication| 001"
ID =
Key =5

Start Attribute
Name = "Event Type"
ID=1
Description="The type of the event - This is actually "
"the command whi ch\ ncaused this event to be generated."
Type = Start Enum

0x00000 = "unknown"
0x00001 = "Dmi Regi ster"
0x00002 = "Dmi Unregister”
0x00003 = "Dm CGetAttribute"
0x00004 = "Dmi SetAttribute”
0x00005 = "Dmi GetMil tiple"
0x00006 = "Dmi Set Ml tiple”
0x00007 = "Dmi AddRow’
0x00008 = "Dni Del et eRow'
0x00009 = " Dmi AddConponent "
0x0000A = " Dm AddLanguage"
0x0000B = " Dnmi AddG oup"
0x0000C = " Dmi Del et eConponent "
0x0000D = " Dmi Del et eLanguage"
0x0000E = " Dmi Del et eG oup"
0x0000F = "Dmi RegisterC "
0x00010 = "Dmi Li st Conponent s"
0x00011 = "Dmi Li st Conponent sByCl ass"
0x00012 = "Dmi Li st Languages"
0x00013 = "Dnmi Li st O assNanes"
0x00014 = "Dmi Li st G oups"
0x00015 = "Dmi Li stAttributes"”
0x00016 = "Authentication Expired"
0x00017 = "Dm Ori gi nat eEvent”
End Enum

Access = Read-Only
Storage = Common

January, 2003

168

Desktop Management I nterface Specification v2.01s

Val ue = "unknown"
End Attribute

Start Attribute

Name = "Event Severity"
ID=2
Description = "The severity of this event."
Type = Start Enumeration
0x001 = "Monitor"
0x002 = "I nformation”
0x004 = "CK"
0x008 = "Non-Critical"
0x010 = "Critical"
0x020 = "Non- Recover abl e"

End Enuneration
Access = Read-Only
Storage = Specific
Val ue = "Information”
End Attribute

Start Attribute

Nanme = "Is Event State-Based?"
ID=3
Description = "The value of this attribute "

"determ nes whether the Event being reported "
"is a state-based Event or not. If the value "
"of this attribute is TRUE then the Event is "
"state-based. CGtherwise the Event is not "
"state-based. "

Type = "BOOL"

Access = Read-Only

Storage = Specific

Val ue = "Fal se"

End Attribute

Start Attribute

Name = "Event State Key"

ID =4

Description = "A unique, single integer key into the"

" Event State group if this is a state-based"

Event. If this is not a state-based Event then" "
this attribute's value is not defined.”

Type = Integer

Access = Read-Only

St orage = Conmmon

Value = 0 // ignored since event is not state-based //
End Attribute

Start Attribute

Name = "Associ ated G oup”

ID=5

Description = "The class name of the group that is

" associated with the events defined in this"
" Event Generation group."

Type = String

Access = Read-Only

Storage = Common

Val ue = "DMTF| SP Loggi ng and Security Indication
Characteristics| 001"

End Attribute

Start Attribute
Name = "Event Systent
ID=6
Description = "The major functional aspect of the

January, 2003 169

Desktop Management I nterface Specification v2.01s

"product causing the fault."
Type = Start enum
0x000 = "SP"
End enum
Access = Read-Only
Storage = Specific
Value = 0 // value to be filled in by instrunentation//
End Attribute

Start Attribute
Nanme = "Event Subsystent
ID=7
Description = "The minor functional aspect of the"
' product causing the fault."
Type = Start enum
0x000 = "SP"
End enum
Access = Read-Only
Storage = Specific
Value = 0 // value to be filled in by instrunentation//
End Attribute
End Group

The values of attributes in the event generation group are filled by the instrumentation (which in this caseis
part of the DM1v2.0s Service Provider itself) according to the specific security indication. The associated
group class string is" DMIF| SP Loggi ng and Security |ndication Characteristics|001" whichisthe
class string of the corresponding configuration group; the event system and event subsystem attributes will
be set to zero. Additional information for each security indication is provided in the additional attributes
defined in Section 16.1.2. Optionally, DMIv2.0s Service Provider implementations may provide four
optional attributes in the event generation group. These attributes are defined in section 3.2.2.3.

16.1.2 Security indication additional attributes

Additional attributes include information about the management application that performed or attempted to
perform an operation, the component, group, and attribute associated with the operation, the operation
completion code and the level which caused the indication. Additiona attributes are located in the fourth
Dni RowDat a structure of the indication data structure. The values are formatted according to the following
attribute definitions. The semantics of each attribute for each security indication type are specified at the end
of this section.
Start Attribute

Name = "Principal RPC Type"

ID=1

Description = "This is an identifier of the type of RPC in use by the

principal."

Access = Read-Wite

St orage = Common
Type = String(64)

/1 NOTE: RPC strings are defined as follows

/1 DCE'
/1 " ONC*
11 T

Val ue = unknown
End Attribute

Start Attribute
Name = "Principal Transport Type"
ID=2
Description = "This is an identifier of the type of Transport in use by the
Principal."
Access = Read-Wite
Storage = Common
Type = String(64)
Val ue = unknown

January, 2003 170

Desktop Management I nterface Specification v2.01s

// NOTE: the allowable Transport Type strings are

11 "ncacn_dnet _nsp"
11 "ncacn_i p_tcp"
11 “ncadg_i p_udp"
11 “ncacn_nb_nb"

11 "ncacn_nb_tcp"
11 "ncacn_nb_i px"
11 "ncacn_np"

11 "ncacn_spx"

11 "ncadg_i px"

11 "ncal rpc"

End Attribute

Start Attribute

Name = "Principal Addressing"

ID=3

Description = "This is an identifier of the addressing information"
" in use by the Principal."

Access = Read-Wite

Storage = Specific

Type = String(1024)

Val ue = unknown

End Attribute

Start Attribute

Name = "Principal 1d"
ID=4

Access = Read-Wite
Storage = Specific
Type = String(1024)
Val ue = unknown

End Attribute

Start Attribute

Narme = " Conponent |d"

ID=5

Description = "This is the Id of the conponent affected by the"
" operation perforned or attenpted.”

Access = Read-Wite

Storage = Common

Type = Integer

End Attribute

Start Attribute

Name = "Group |d"

ID=6

Description = "This is the Id of the group affected by the operation”
" perforned or attenpted.”

Access = Read-Wite

Storage = Common

Type = Integer

End Attribute

Start Attribute

Name = "Attribute 1d"

ID=7

Description = "This is the Id of the attribute affected by the operation
" perforned or attenpted."

Access = Read-Wite

St orage = Common

Type = Integer

End Attribute

Start Attribute

January, 2003

Name = "Level "
ID=8
Description = "This is the actual |evel that caused the indication."

171

Desktop Management I nterface Specification v2.01s

Access = Read-Wite
St orage = Conmmon
Type = Start Enumeration

0x000 = "Unknown"

0x001 = "Success”

0x002 = "Security Failure"
0x004 = "Non-Security Failure"

End Enuneration
End Attribute

Start Attribute
Name = "Conpl eti on Code"
ID=9
Description = "This is the error code the cormand conpleted with."
Access = Read-Wite
St orage = Conmmon
Type = Integer
End Attribute

The value of the additional attributesis defined as follows:

Principal RPC type, Principal Transport Type, Principal Addressing andPrincipal |Didentify
the remote management application performing or attempting to perform the operation that caused the
security indication. Their definition is similar to that of the corresponding attributesin the DMI
indication subscription table except for Pri nci pal 1D. Princi pal | Disthe name of the user
invoking the remote management application. If the name of the user cannot be obtained by the
Service Provider, pri nci pal 1 Dwill be anumber identifying the user or the remote management
application (such asaUNIX user ID or aNetWare NLM D).

If the security indication is triggered by a component instrumentation or local management application,
Princi pal RPC Type Will be"l ocal ", Principal Transport Type will be"dmi ", and Pri nci pal
Addr essi ng will be an empty string.

The next three attributes are component, group and attribute Id input parameters of the command that
triggered the security indication, or zero for parameters not specified by the command (for example,
Dni Regi st er and Aut henti cati on Expi red have no associated component, group nor attribute.). If
the command is Dni Set Mul ti pl e, Dni Get Mul ti pl e, OF Dni Regi sterCl, thenthe
component/group/attribute that caused the security indication is returned in the indication block.

The next two attributes are the level that triggered the indication and the command completion code.

January, 2003 172

Desktop Management I nterface Specification v2.01s

17. LOGGING

This section describes security logging entries logged by the DMIv2.0s Service Provider for future retrieval by
monitoring applications at their convenience. The logging mechanism is similar to the security indications
mechanisms described in Section 16: the information logged is similar to the information that isincluded in
security indications.

Security logging is controlled by the Servi ce Provider Logging and Security Indication

Characteri sti cs group. Thefirst attribute conmands determines which commands are to be logged. The
second attribute | evel determines under what success/failure conditions the command is to be logged. The
third attribute act i on determines whether to do logging, security indication or both. The fourth attributecl ass
string filter providesthe ability to filter for what groups the logging is done. See Section 12.2 for detailed
description of the group.

The mechanism used to log the information isimplementation-specific. It is recommended that DMIv2.0s
Service Provider implementations use mechanisms provided by the operating system for logging, such as the
NT event log on Windows NT, syslog on UNIX, or AUDITCON on NetWare. Toolsfor browsing log entries
and configuring the maximum log size are usually provided. DMIv2.0s Service Provider implementations may
define additional attributes to configure the logging mechanism, by, for example, providing the name of alog
file or the address of a central system on which a consolidated log is maintained.

January, 2003 173

Desktop Management I nterface Specification v2.01s

17.1 LOGGING INTERFACE

The Logging Interface isimplemented by the logging module of the DMIv2.0s Service Provider. When this
interface is invoked, the logging module adds an entry to the log. It isthe Service Provider’s responsibility to
recognize when acommand is to be logged and to call the interface provided by the logging module for each
such command. Inthe case of Get Mul ti pl e and Set Mul ti pl e, the Service Provider will call the interface once
for each element in the command that is to be logged (so, if the “level” attribute specifies that set Mul ti pl e is
to be logged always, and a number of attributes were successfully set by this command, then there will be a
separate entry in the log for each attribute that was set). The interface provided is Dni Gener at eLog.

17.1.1 DmiGeneratelLog

Dmi Bool ean_t Dnmi GenerateLog (Dmi Loglnfo_t *info);

The one parameter is a pointer to a structure that contains all the information necessary to log the command.
The definition type Dni Logl nf o_t will beincluded in the b LoG H header file.

typedef struct DmiLoglnfo {

Dmi ConmandCode_t commandCode;
Dmi Error Status_t conpl etionSt at us;
Dmi String_t *component Nane;
Dmild_t componentld;

Dmi String_t *groupNane;
Dmild_t groupld;

Dmi String_t *attributeNane;
Dmild_t attributeld;

DWORD | ogLevel ,

Dmi String_t *rpcType;

Dmi String_t *transport;

Dmi String_t *address;

Dmi String_t *userNameorld;

Dmi String_t *inpSpecificlnfo;

} DmiLoglnfo_t;

The definition of type bri CommandCode_t will beincluded in the bM LOG. H header file. The constants for each
command are as defined on page 235, with the addition of Dni Gi Regi st er Code, Dni Ci Unr egi st er Code and
Dmi Ori gi nat eEvent .

typedef enum Dmi CommandCode {

Dni Regi st er Code = 0x200,
Dni Unr egi st er Code = 0x201,
Dmi Get attri but eCode = 0x215,
Dmi SetattributeCode = 0x216,
Dnmi Ci Regi st er Code = 0x220,
Dni Ci Unr egi st er Code = 0x221,
Dmi Ori gi nat eEvent = 0x222

} Dmi CommandCode_t ;

January, 2003

174

Desktop Management I nterface Specification v2.01s

Fl zLD NAME DIRECTION DESCRIPTION

commandCode In An enumeration that identifies what the command is as
defined above.

conpl eti onCode In The DMI status with which the command completed.

conponent Name In The name of the component that was referenced. NULL if
not applicable.

conponent 1 d In Theid of the component that was referenced. 0 if not
applicable

groupName In The name of the group that was referenced. NULL if not
applicable.

groupld In Theid of the group that was referenced. O if not
applicable

attributeName In The name of the attribute that was referenced. NULL if
not applicable.

attributeld In Theid of the attribute that was referenced. O if not
applicable

logLevel In The actual level that caused the log.

rpeType In The name of the RPC that was used to deliver the
command.

transport In The name of the transport that was used to deliver the
command.

address In The address of the management application from which
the command arrived. The format of this address depends
on the transport used, and may be in numerical form.

user NameQr 1 d In The name of the user that originated the command. Or the
OS specific identifier of the process/application that
originated the command, represented as an ASCII string.

i mpSpeci fi clnfo In Implementation specific information that may be used.

January, 2003

175

Desktop Management I nterface Specification v2.01s

18. DMIv2.0 AND DMIv2.0s COMPATIBILITY
CONSIDERATIONS

This section discusses the interoperability of existing DMI management applications and component instrumentation with
new DMIv2.0s Service Providers by summarizing relevant features introduced by the DM|v2.0s specification.

If the value of attributesenabl e 1 ocal security anddisable Cl override areFal se whenthe DMIv2.0s Service
Provider initializes, the local interfaceis fully compatible to that DMIv2.0, and component instrumentation will run
unchanged with the DM1v2.0s Service Provider, even if it does not run in the context of a privileged process.

If attribute di sabl e CI override isTrue when the Service Provider initializes, component instrumentation attempting to
register for an attribute for which component instrumentation has already registered will fail, returning error
DM ERR_| NSUFFI Cl ENT_PRI VI LEGES.

If the value of attribute enabl e 1 ocal security isTrue when the DMIv2.0s Service Provider initializes, local component
instrumentations and management applications that do not run in the context of a privileged process will not be able to
interact with the DMIv2.0s Service Provider. Dni Regi st er G and Dri Regi st er will fail with error
DM ERR_| NSUFFI CI ENT_PRI VI LEGES.

Management applications that register with the Service Provider using a non-authenticated RPC will be allowed to
perform only commands that are allowed to role dni _def aul t .

A DMIv2.0s Service Provider returns the same result as a DMIv2.0 Service Provider for allowed commands.

For denied commands, a DMIv2.0s Service Provider returns error bM ERR_| NSUFFI CI ENT_PRI VI LEGES, wWhereas a
DMIv2.0 Service Provider returns the command'’ s result.

NOTE that apolicy that contains no rows will allow any role to perform any command.

It may be possible to upgrade existing management applications that access the DMIv2.0 Service Provider through a non-
authenticated RPC to DMIv2.0s by replacing the “front-end” module that interfaces with the RPC layer with a“front-
end” that uses an authenticated RPC. Once the RPC has been replaced with an authenticated RPC, DMI commands
sent by the management application will be authorized according to the policy and the identity of the user invoking the
management application.

The behavior of Dni Get Mul ti pl e in the presence of errors, as described in the DMI2.0 Errata#1, is extended as follows:

When Dni Get Mul ti pl e is caled without an attribute list, the DMIv2.0s Service Provider attempts to return all attributesin
the group or row. Attributes that are UNSUPPORTED, WRI TE- ONLY or that the management application is not authorized to get
are omitted from the reply data. If adifferent error occurs when the Service Provider attempts to get an attribute, the
Service Provider stops processing the request and returns data for all attributes up to, but not including, the attribute causing
the error.

When Dni Get Mul ti pl e is caled with a specific attribute list, any error that occurs when the Service Provider attempts to
get an attribute causes the Service Provider to stop processing the request and return data for all attributes up to, but not
including, the attribute causing the error.

If the Service Provider stops processing on the first attribute of a request, the Service Provider returns no data and a status
according to the specific error (e.g. DM ERR_ATTRI BUTE_NOT_SUPPORTED, DM ERR | LLEGAL_TO GET Or

DM ERR_| NSUFFI CI ENT_PRI VI LEGES for an UNSUPPORTED attribute, awrl TE ONLY attribute or an attribute that the
management application is not authorized to get, respectively).

If partia attribute datais returned, the operation’s return statusis DM ERR_NO_ERROR_MORE_DATA. When Dni Get Mul ti pl e
returns a status of DM ERR_NO_ERROR_MORE_DATA, the caller should reissue the operation with anew attribute list. This new
attribute list should start with the first attribute not returned in the previous call, and should contain all subsequent attributes
from the original request.

January, 2003 176

Desktop Management I nterface Specification v2.01s

APPENDIX A - ERROR CODES

Status codes are 32 hit unsigned values.

The error codes returned by an operating system are not passed back to a management application; the service provider

maps operating system errorsinto its error range. The intent is to insulate management applications from operating system

details.

Because the OS-related error codes are specific to a particular environment, they are not listed in this specification.
Likewise, error codes from components are not listed here, but rather in the component MIF file.

Service Provider Error Codes

SYMBOI. VALUE DESCRIPTION

DM ERR_ATTRI BUTE_NOT_FOUND 0x00100 Attribute not found

DM ERR_VALUE_EXCEEDS MAXS| ZE 0x00101 Val ue exceeds maxi mum si ze

DM ERR_COVPONENT_NOT_FOUND 0x00102 Conponent IDis not found

DM ERR_ENUM _ERROR 0x00103 Enuner ation error

DM ERR_GROUP_NGOT_FOUND 0x00104 Group not found

DM ERR | LLEGAL_KEYS 0x00105 Il legal keys

DM ERR | LLEGAL_TO SET 0x00106 Illegal to set

DM ERR_OVERLAY_NAME_NOT_FOUND 0x00107 Conponent instrunmentation not found

DM ERR_| LLEGAL_TO _GET 0x00108 Illegal to get

DM ERR_ROW NOT_FOUND 0x0010a Row not found

DM ERR _DI RECT_| NTERFACE_NOT_REG STERED |0x0010b Direct interface not registered

DM ERR_DATABASE_CORRUPT 0x0010c M F dat abase is corrupt

DM ERR_ATTRI BUTE_NOT_SUPPORTED 0x0010d Attribute is not supported

DM ERR_VALUE_UNKNOWN 0x0010f Value for this attribute is not known

DM ERR_BUFFER_FULL 0x00200 Buffer full

DM ERR | LL_FORVED COMVAND 0x00201 Ill-formed conmand

DM ERR | LLEGAL_COVWAND 0x00202 Il egal command

DM ERR_| LLEGAL_HANDLE 0x00203 Il'legal handle

DM ERR_OQUT_OF_MEMORY 0x00204 Qut of nenory

DM ERR_NULL_COVPLETI ON_FUNCTI ON 0x00205 No confirmfunction

DM ERR_NULL_RESPONSE_BUFFER 0x00206 No response buffer

DM ERR_CMD_HANDLE_| N_USE 0x00207 Command handl e is already in use

DM ERR_| LLEGAL_DM _LEVEL 0x00208 DM version mismatch

DM ERR_UNKNOWN_CI _REG STRY 0x00209 Unknown Cl registry

DM ERR_COWVVAND_CANCELED 0x0020a Comrand has been cancel ed

DM ERR_| NSUFFI ClI ENT_PRI VI LEGES 0x0020b Insufficient privileges

DM ERR_NULL_ACCESS_FUNCTI ON 0x0020c No access function provided

DM ERR_FI LE_ERROR 0x0020d CS File I/Oerror

DM ERR_EXEC_FAI LURE 0x0020e Coul d not spawn a new task

DM ERR_BAD_SCHEMA DESCRI PTI ON_FI LE 0x0020f 111-formed SCHEMA

DM ERR_| NVALI D_FI LE_TYPE 0x00210 Invalid file type

DM ERR_SP_I| NACTI VE 0x00211 Service provider is inactive

DM ERR_CANT_UNI NSTALL_SP_COVPONENT 0x00213 Unabl e to renpve the service provider
conponent

DM ERR_NULL_CANCEL_FUNCTI ON 0x00214 No cancel function provided

DM ERR_| NVALI D_POOL 0x00215 Menory Pool handle is invalid

DM ERR_| NVALI D_PTR 0x00216 A menory Ptr passed was invalid

DM ERR_NO_POOL 0x00217 A menory pool is required for use with this
function

0x00218 The passed file type, while legal, is not

DM ERR_FI LE_TYPE_NOT_SUPPORTED supported by this inplenmentation

DM ERR_CANT_UNI NSTALL_COVPONENT_LANGUAGE [0x00219 Unable to install a conponents | anguage
mappi ng

DM ERR_CANT_UNI NSTALL_GROUP 0x0021a Unable to install the group

DM ERR_UNABLE_TO ADD ROW 0x0021b The add row failed due to either a database
probl emor a conponent linitation

DM ERR_UNABLE_TO DELETE_ROW 0x0021c The delete row failed, due to either database
probl emor a conponent linitation

January, 2003 177

Non-Error Condition Codes

Desktop Management I nterface Specification v2.01s

SYMBOL. VALUE DESCRIPTION
DM ERR_NO_ERROR 0x00000 Success
DM ERR_NO_ERROR_MORE_DATA 0x00001 Mre data is available
DM ERR_DEFAULT_LANGUAGE_RETURNED 0x00002

The itemrequested did not have a | anguage
mappi ng installted that matched the one

requested. The value was returned using the
defaul t | anguage

January, 2003

178

Desktop Management I nterface Specification v2.01s

APPENDIX B - DCE RPC IDL
DCE RPC PROGRAMMING FOR DMI 2.0

This section describes the process of creating a DCE RPC client-server application, such as we have with the DMI 2.0
Management Interface. In our case, the DM 2.0 Service Provider is an RPC server and the management applicationis
an RPC client. Most people reading this specification will be creating RPC clients.

There are three main steps involved in creating a client-server application: defining the interface, implementing the
server, and implementing the client.

The Distributed Management Task Force has specified the DMI 2.0 interface in this document, and has created its
formal description. This description is presented in the DCE Interface Description Language (IDL).

In the following sections, we will see that the IDL is used by both client and server developers when implementing
their respective pieces of the application.

DMI 2.0
Specification

[Define the Interface]

Createv‘formal
desription \s)

Devel&p lop

Client Code Code

Management DMI Service
Application Provider

Devel
Server

Figure B-1. Developing An RPC Application

CREATING THE DMI SERVICE PROVIDER

AsaDMI Service Provider, you will develop the RPC server functionality for the DMI 2.0 interface.

Thefirst step in this process (see Figure B-2) is to create the server stub code and interface header file. The stub code
contains the actual routines that interface to the network software. The header file contains the data type declarations
and function prototypes that you must implement.

To create the stub code, you compile the DM TF-supplied IDL, aong with optional configuration information
contained in the server ACF file. The IDL compiler is supplied as part of the RPC development environment for the
Service Provider’s platform. The ACF file allows you to tailor some aspects of the stub code generator. For example,
does the generated stub code allocate memory on its stack, or on aheap? Note: The full set of ACF options are
described in the various DCE RPC references.

January, 2003 179

Desktop Management I nterface Specification v2.01s

DT 2.0 ;
IDL Definition File Server ACF File

[IDL Computer]
¢ server code
server header modules
stub code file

C Compiler and
Object Module Linker

DMI S€rvice RPC Runtime
Provider Libraries

Figure B-2. Creating the DMI Service Provider.

After creating the stub code and header file, you must then write code to implement each of the application’s entry
points. Inthe DMI 2.0 case, this means you will write code for each M1 function: DmiRegister, DmiUnregister,
DmiListComponents, etc. Once thisis done, your code and the server stub code are linked to produce the RPC server.

In addition to implementing the DMI 2.0 interface functions, you will need to write some code to register your server
interface with the RPC runtime service, and to listen for incoming procedure calls from DMI 2.0 clients. A full
description of the registration process is beyond the scope of this specification, but a small example may give some
flavor as to what isinvolved.

In the following sample code, the DMI Service Provider obtains a dynamic endpoint from the system’s endpoint
mapper, registersthe DMI interface (dmi_server_v2_0_s ifspec), then listens for incoming procedure calls arriving on
the connection-oriented TCP/IP protocol.

unsi gned32 status;
unsi gned char * pszProt ocol Sequence = "ncacn_i p_tcp";
unsi gned int cMaxCal | s = 20;

rpc_bindi ng_vector_p_t pbvBi ndi ngs NULL;

/1 Initialize the RPC bindings and |listen for requests. No

/1 explicit endpoint is specified, so use the protocol sequence

/1 and register the endpoint with the endpoint mapper. The string
/1 value of ncacn_ip_tcp says to use TCP/IP as the RPC transport.

rpc_server_use_protseq (pszProtocol Sequence, cMaxCalls, &status);
check ("rpc_server_use_protseq", status);

rpc_server_i nq_bi ndi ngs (&pbvBi ndi ngs, &status);
check ("rpc_server_ing_bindings", status);

rpc_ep_register (dm _server_v2_0_s_ifspec, pbvBindings, 0, 0, &status);
check ("rpc_ep_unregister", status);

rpc_server_register_if (dm _server_v2_0_s_ifspec, 0, 0, &status);
check ("rpc_server_register_if", status);

rpc_server_listen (cMaxCalls, &status);
check ("rpc_server_listen", status);

/1 Wen the rpc_server_listen() function returns, we are done
/1 listening so unregister our interface and exit.

rpc_server_unregister_if (dm _server_v2_0_s_ifspec, 0, &status);
check ("rpc_server_unregister_if", status);

rpc_ep_unregister (dm _server_v2_0_s_ifspec, pbvBindings, 0, &status);

January, 2003 180

Desktop Management I nterface Specification v2.01s

check ("rpc_ep_unregister", status);
rpc_bi ndi ng_vector_free (&bvBindings, &status);
check ("rpc_binding_vector_free", status);

CREATING THE MANAGEMENT APPLICATION

As aDMI management application writer, you will be developing an RPC client. The development process for RPC
clientsisvery similar to that of RPC servers. The differences are that you will be linking against the RPC client stubs
instead of the server stubs, and you will be calling the interface functions instead of implementing them.

DMI 2.0 , ;
[IDL Definition File] [clizi ATF Al

\

[IDL Computer

client header
stub code file

C Compfler and
Object Module Linker

client
application

[DMI Man!gement } ______ RPC Runtime
Application Libraries

Figure B-3. Creating The Client Application

The first step in the devel opment process isto create the client stub code and interface header file. Aswith the server
case, thisis done by compiling the DMTF-supplied IDL, along with client configuration information supplied in an
ACF file. Next, you will build and compile your application code, then link everything together to create the RPC
client application.

One of the first questions to answer when developing a management application is that of connecting, or binding, to
the managed machine. The DMI 2.0 interface relies on standard RPC mechanisms to accomplish this binding.

To connect to a machine, a management application must supply:
the machine’ s name or address,
the protocol sequence (e.g.,, TCP/IP),
and the Service Provider’s process address (endpoint) on the managed machine.

A management application will typically specify the machine name and protocol sequence, and will most likely use a
dynamically determined endpoint. This addressing datais used to construct a binding handle; binding handles are
RPC-defined data structures that are used to manage the connection between RPC clients and servers.

Management applications that only talk to one machine at a time can construct an implicit, or global, binding handle.
When used in this manner, the application is effectively saying that all remote procedure calls are directed toward a
specific machine. When the application is done talking to that machine, it will free the binding. At this point, the
application can construct a new binding handle for some other machine.

January, 2003 181

Desktop Management I nterface Specification v2.01s

Management applications that simultaneously manage multiple machines will need to construct and maintain multiple
binding handles: one per connection. In this usage model, the management application must explicitly supply a
binding handle with each procedure call. Thisallows an application to direct procedure calls to different machines,
while eliminating the need to create and free binding handles between procedure calls.

The IDL descriptions in this appendix do not include binding handles in the procedures’ formal parameter lists.
Instead, these API specifications concentrate on the DMI 2.0 interfaces themselves. If thisisthe case, then how can a
management application select between explicit and implicit bindings? The answer can be found in the client’s ACF
file.

USING THE ACF FILE TO SPECIFY AN IMPLICIT BINDING HANDLE

If aclient requires only one open connection at atime, it may choose to use an implicit binding handle. In this case,
the contents of the ACF file would look like the following:

inplicit_handl e(handl e_t dmi _server_bindi ng_handl e)]
nterface dm _server

[
|
{
}

When this ACF fileis supplied to the IDL compiler, the resulting header file will contain function prototypes that ook
exactly like those described in the IDL:

Dmi Error Status_t
Dni Regi ster (Dmi Handl e_t* handle);

To usethisimplicit handle in your application, you first need to establish a binding to a remote machine, then perform
the DMI 2.0 function calls, then unbind from the remote machine. Sample code for these actions might look
something like the following example. The thing to note here is that we call the DMI 2.0 functions without explicitly
passing abinding handle. A handle does exist, but it is stored within, and used by, the RPC stub code generated by the

IDL compiler.
unsi gned char* st ring_bi ndi ng;
unsi gned32 st at us;

/1 The rpc_string_binding_conpose function builds a string binding
/1 that can be used to bind an RPC client to a server. There are
/1 other methods for binding to a rempte machine; this is just the
/] easiest to show.

rpc_string_bindi ng_conmpose (NULL, "ncacn_ip_tcp", "your.nachine.conf,
NULL, NULL, &string_binding, &status);
CHECK_STATUS (status, ...);

/1 The rpc_binding_fromstring_binding is where we actually bind
/1 the managenent application to the renpte nachine. Note that
/1 we are passing the address of the dni_server_bindi ng_handl e,
/1 which is the name declared in the ACF file.

rpc_bindi ng_fromstring_binding (string_binding,
&dm _server _bi ndi ng_handl e,
&st at us) ;

CHECK_STATUS (status, ...);

/1 The rpc_string_free function is used to free the string storage
I/ allocated by the rpc_string_bindi ng_compose function.

rpc_string_free (&string_binding, &status);
CHECK_STATUS (st at us, ;

/1 Now we can performany DM 2.0 conmands by sinply calling
/1 the functions as if they were |ocal procedure calls:

if (! statusOkay ((status = Dmi Register (&handle)))) {
printf ("Dm Register = %\n", status);
RAI SE (status);

if (! statusOkay ((status = Dmi Unregister (handle))))

January, 2003 182

Desktop Management I nterface Specification v2.01s

printf ("Dm Unregister = %l\n", status);

/1 Now we are done with our DM 2.0 conmands, so it's tine
// to free up the binding so we can connect to soneone el se.

rpc_binding_free (&m _server_bindi ng_handl e, &status);
CHECK_STATUS (status);

USING THE ACF FILE TO SPECIFY AN EXPLICIT BINDING HANDLE

If you are building a client that requires simultaneous connections to different machines, you must use explicit binding
handles. Explicit binding handles are stored and maintained in your application code; the RPC stub knows nothing
about these handles. To use explicit binding handles, the contents of the ACF file would look like the following:

[explicit_handle]

interface dm _server

{
}

When this ACF fileis supplied to the IDL compiler, the resulting header file will contain function prototypes that
contain an extra parameter in the formal parameter list. Note that all function prototypes will have this extra, binding
handle parameter at the beginning of their parameter list. From this example, we can begin to see how the DMTF can
define and publish an interface specification (the IDL), yet leave room for varying client implementations.

Dmi Error Status_t

Dni Regi ster (handl e_t | DL_handl e,
Dmi Handl e_t * handl e) ;

To usethis explicit handle in your application, you first need to establish bindings to the remote machines of interest,
then perform the DMI 2.0 function calls, then unbind from the remote machines. Sample code for these actions might
look something like the following example. The thing to note hereis that we call the DMI 2.0 functions with an
explicit binding handle, and that commands are interleaved from one machine to another.

rpc_bi ndi ng_handl e_t bi ndi ng_handl e_1;
rpc_bi ndi ng_handl e_t bi ndi ng_handl e_2;
unsi gned char* st ring_bi ndi ng;
unsi gned32 status;

// Bind the client to your.nmachine.comusing TCP/IP. This is
// identical to the inplicit handl e case, except that we are
/1 specifying that the binding information be stored in

/1 binding_handl e_1.

rpc_string_bindi ng_conpose (NULL, "ncacn_ip_tcp", "your.nachine.conf,
NULL, NULL, &string_binding, &status);
CHECK_STATUS (status, ...);

rpc_bindi ng_from string_binding (string_binding, &binding_handle_1,
&st at us) ;
CHECK_STATUS (status, ...);

rpc_string_free (&string_binding, &status);
CHECK_STATUS (status, ...);

/1 Bind the client to ny.machine.comusing TCP/IP. This is
// identical to the inplicit handl e case, except that we are
/1 specifying that the binding information be stored in

/1 bindi ng_handl e_2.

rpc_string_bindi ng_conpose (NULL, “ncacn_ip_tcp", "ny.machine.cont,
NULL, NULL, &string_binding, &status);
CHECK_STATUS (status, ...);

rpc_bi ndi ng_from string_binding (string_binding, &binding_handle_2,
&st at us) ;
CHECK_STATUS (status, ...);

rpc_string_free (&string_binding, &status);
CHECK_STATUS (st atus, ;

/1 Now we can perform DM 2.0 commands to different machines by

January, 2003 183

Desktop Management I nterface Specification v2.01s

I/ calling the procedures with different binding handl es.

if (! statusOkay ((status = Dmi Register (binding_handle_1, &handle)))) {
printf ("Dm Register = %l\n", status);
RAI SE (status);

if (! statusOkay ((status = Dmi Register (binding_handle_2, &andle)))) {
printf ("Dm Register = %l\n", status);
RAI SE (status);

if (! statusOkay ((status = Dmi Register (binding_handle_2, &andle)))) {
printf ("Dm Register = %\n", status);
RAI SE (status);

if (! statusOkay ((status = Dmi Register (binding_handle_1, &handle)))) {
printf ("Dm Register = %\n", status);
RAI SE (status);

}

/1 Now we are done with our DM 2.0 commands, so it's tine
/1 to free up the bindings and | eave.

rpc_bi ndi ng_free (&binding_handle_1, &status);
CHECK_STATUS (status);

rpc_bi ndi ng_free (&binding_handl e_2, &status);
CHECK_STATUS (status);

USING THE ACF FILE TO CONTROL EXCEPTION HANDLING

We've seen how the ACF file can be used to select between implicit and explicit binding handles. There are several
other client customizations that can be performed viathe ACF file. Most notably, you can control whether or not
your application receives exceptions from the RPC runtime system.

In the RPC environment, faults and communication errors are raised as exceptions to the RPC client. For example, if
the client or server stub is unable to allocate sufficient memory for a procedure call, the client application may see an
rpc_x_no_menory exception. Likewise, if there are communication errors, the client will see some communication-
related exceptions, such asr pc_x_conm f ai | ure. To handle these exceptions, a client will typically contain code
witha TRY and CATCH block:

TRY {

if (! statusOkay ((status = Dmi Unregister (handle))))
fprintf (efp, "Dm Unregister = %\ n", status);

} CATCH ALL {
/1 Put recovery code here

} ENDTRY;

If you don’t want to use the RPC exception model, you can use the ACF file to change the behavior of the RPC stubs.
To avoid exceptions entirely, specify an extrast at us parameter in the formal parameter list for all DMI 2.0
functions. The ACF syntax to perform this looks like the following:

[inmplicit_handl e(handl e_t dm _server_bindi ng_handl e)]

interface dm _server

{
Dmi Error Status_t
Dmi Regi ster (Dmi Handle_t* handl e,
[commstatus, fault_status] status);

}

Here we have specified that both communication and fault exceptions for the DmiRegister function be reported in the
status variable. Itis possibleto have some functions that raise exceptions, while others trap exceptions in a status
variable. In practice, an application developer will probably pick one mechanism or another and stick with it for all

January, 2003 184

Desktop Management I nterface Specification v2.01s

functions. With the above declaration, the IDL compiler will generate function prototypes that look like the
following:

Dmi Error Status_t

Dmi Regi st er (
Dmi Handl e_t * handl e,
error_status_t* status);

After each function call, the client application must check the status variable to see if any exceptions were trapped by
the RPC stub.

January, 2003 185

Desktop Management I nterface Specification v2.01s

COMMON DATA STRUCTURES (COMMON.IDL)

I * M

11

Il RCS:

11 $Workfile: comon.idl $

11 $Revision: 2.0 $

11 $Modt i me: 3/ 27/ 96 $

11 $Aut hor : DMTF $

11

/1 Purpose:

11

11 Describe data structures and types for the DMIF's Managenent

11 Interface in an IDL that is suitable for building remote

11 managenent using the DCE-RPC client/server nodel. This

11 file is included in the client.idl and server.idl files.

11

/1 Contents:

11

11 The following information is described in version 2.0

11 of the Desktop Managenent Interface Specification.

11

/1 Enurer ated Types:

11

11 Dni Set Mbde Define set operations

11 Dni Request Mode Define sequential access nodes

11 Dni St or ageType Define the storage type for an attribute

11 Dni AccessMode Define the access nodes for an attribute

11 Dni Dat aType Define the data types referenced by Dmi DataUni on
11 Dmi Fi | eType Define the DM mapping file types

11

// Data Structures:

11

11 Dmi Ti mest anp Describes the DM tinestanp structure

11 Dmi String Describes the DM string representation

11 Dmi Cctet String Describes the DM octet string representation

11 Dni Dat aUni on Di scrinminated union of DM data types

11 Dmi Enum nf o Associ ates an integer value with descriptive text
11 Dmi Attributelnfo Hol ds infornmation about an attribute

11 Dmi Attri but eDat a Describes an attribute id, type, and val ue

11 Dni Groupl nfo Hol ds i nformati on about a group

11 Dni Conponent | nf o Hol ds i nformati on about a conponent

11 Dmi Fi | eDat al nf o Hol ds the schema file information: type and data
11 Dmi Cl assNanel nf o Hol ds a group's id and class string

11 Dni RowRequest Identifies { component, group, row, ids } to get
11 Dni RowDat a Identifies { component, group, row, values } to set
11

11 Dmi Attributelds Describes a conformant array of Dmld

11 Dmi Attri but eVal ues Describes a conformant array of

Dmi Attri but eDat a

11 Dmi Enunli st Describes a confornmant array of Dm Enuml nfo

11 Dmi Attri buteLi st Describes a conformant array of Dmi Attributelnfo
11 Dmi GrouplLi st Describes a conformant array of Dm G ouplnfo

11 Dmi Conponent Li st Describes a conformant array of Dm Conponent!nfo
11 Dmi Fi | eDat aLi st Describes a confornant array of Dm Fil eDatal nfo
11 Dmi Cl assNaneLi st Describes a confornmant array of Dm C assNamel nfo
11 Dmi StringLi st Describes a conformant array of Dmi String

11 Dmi Fi | eTypelLi st Describes a conformant array of Dmi Fil eType

11 Dmi Mul ti RowRequest Describes a conformant array of Dm RowRequest

11 Dmi Mul t i RowDat a Describes a confornmant array of Dm RowData

* M/

ifndef DM _API
define DM _API
endi f

January, 2003

186

Desktop Management I nterface Specification v2.01s

[ko ke kk ok ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ok ok ok ko ok ko kR ok ok kR kK kR kK ko

* Dmi Set Mbde

R

/*D*
/1 Nare: Dmi Set Mbde
/'l Purpose: Define set operations
/1 Context: Dmi Set Attri but es()
/1 Fields:
11 DM _SET Set data val ues
11 DM _RESERVE Reserve resources for a set operation
11 DM _RELEASE Rel ease previously reserved resources
D/
typedef enum {
DM _SET,
DM _RESERVE,
DM _RELEASE

} Dmi Set Mode_t;

[K K K K K K K K K K K K K K K K K K kKKK KKK kKKK KKK KK KKK KKK KKK KKK KKK KKK KKKk

* Dmi Request Mode

ok ok ok ok ok ok ok Kk ok ok ok Kk ok ok kK k ok kK Kk ko kR kR kR kR Kk k kR Kk k kR Rk kK kR Kk ok kK Kk k ko

| *D*
/1 Nane: Dni Request Mode
/1 Purpose: Define sequential access nodes
/1 Context: Field in Dm RowRequest,
/1 Context: Dnmi Li st Component s(), Dmi Li st Conponent sByCd ass(),
/1 Context: Dmi Li st Groups(), DmiListAttributes(),
/1 Fields:
11 DM _UNI QUE Access the specified item (or table row)
11 DM _FI RST Access the first item
11 DM _NEXT Access the next item
*Dr/
typedef enum {
DM _UNI QUE,
DM _FI RST,
DM _NEXT

} Dni Request Mbde_t ;

[K K K K K K K K K K K K K K K K K KKKk KKK KKK KKK K kKK KKK KKK KKK KKK KKK KKK KKKk

* Dmi St orageType

ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok k ko Kk ok kR kR kR kR Kk k kR Kk k kR Rk kK kR Kk k kK Kk k ko

/*D*

/1 Nane: Dni St or ageType

/'l Purpose: Define the storage type for an attribute

/1 Context: Field in Dmi Attributelnfo

/1 Fields:

11 M F_COVMON Value is froma small set of possibilities
11 M F_SPECI FI C Value is froma large set of possibilities
D/

typedef enum {
M F_COMMVON,
M F_SPECI FI C
} Dmi StorageType_t;

[K K K K K K K K K K K K K K K KKKk KK KKK KKKk KKK KRR KKK KK KKK KKK KKKk KKK KKk

* Dmi AccessMde

ok ok ok ok ok ok Kk ok ok ok Kk ko ok kR kK Kk kK kR kR kR kR Kk kR kK ok kR Rk k kR kK ok kK Kk k ko

| *D*

/1 Nane: Dni AccessMode

/'l Purpose: Define the access nodes for an attribute
/1 Context: Field in DmiAttributelnfo

Il Fields:

11 M F_UNKNON Unknown access node

11 M F_READ ONLY Read access only

January, 2003 187

/1 M F_READ_WRI TE
/1 M F_WRI TE_ONLY
/1 M F_UNSUPPORTED
D/

typedef enum {
M F_UNKNOAN_ACCESS,
M F_READ ONLY,
M F_READ WRI TE,
M F_WRI TE_ONLY,
M F_UNSUPPORTED
} Dmi AccessMode_t;

Desktop Management I nterface Specification v2.01s

Readabl e and writable
Wite access only
Attribute is not supported

[k ok ko k ok ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok o ko ok ok kK ok ok ko kR ko kK kR kK kK ko

* Dmi Dat aType

R Y

| *D*

/1 Name: Dni Dat aType
I/ Purpose:

/1 Context:

/1 Fields:

11 M F_DATATYPE_O

11 M F_COUNTER

11 M F_COUNTER64

11 M F_GAUGE

/1l M F_DATATYPE_4

11 M F_I NTEGER

11 M F_I NTEGER64

11 M F_OCTETSTRI NG

11 M F_DI SPLAYSTRI NG
/1 M F_DATATYPE_9

11 M F_DATATYPE_10

11 M F_DATE
(yyyymddHHMVBSS. uuuuuu+000)
*Dr/

typedef enum {
M F_DATATYPE_O,

M F_COUNTER64,
F_GAUGE,
F_DATATYPE_4,
F_I NTEGER,

F_| NTEGER64,
F_OCTETSTRI NG,
F_DI SPLAYSTRI NG,
F_DATATYPE_9,
F_DATATYPE_10,
F_DATE

} Dmi Dat aType_t;

=TT

| *

Define the data types referenced by Dmi DataUni on

RESERVED

32-bit unsigned integer that never decreases
64-bit unsigned integer that never decreases
32-bit unsigned integer nmay increase or decrease
RESERVED

32-bit signed integer; no semantics known
64-bit signed integer; no semantics known
String of n octets, not necessarily displayable
Di spl ayabl e string of n octets

RESERVED

RESERVED

28-octet displayable string

* Aliases for the standard data types

*/

define MF_
define MF_
define MF_

I NT
| NT64
STRI NG

M F_I NTEGER
M F_I NTEGER64
M F_DI SPLAYSTRI NG

[ko ko ok k ok ok ok ok ok ok ok ok ok k ko ok ok ko ok ok k ko ok ok k ko ok ko ko kK ok kK kR kK kK ko

* DmiFil eType

)

| *D*

/1 Name: Dmi Fi | eType
/1 Purpose:

I/ Context:

/1 Fields:

11 DM _FI LETYPE_O

11 DM _FI LETYPE_1

11 DM _M F_FI LE_NAME
/1 DM _M F_FI LE_DATA

January, 2003

Define the DM mapping file types
Field in DmFil eDatal nfo

RESERVED

RESERVED

File datais DM MF file nane
File data is DM MF data

188

/1
/1
/1
/1
/1
/1
D/

t ypedef

Desktop Management I nterface Specification v2.01s

SNMP_MAPPI NG_FI LE_NAMVE File data is SNMP MAPPING file name
SNMP_MAPPI NG_FI LE_DATA File data is SNMP MAPPI NG dat a

DM _GROUP_FI LE_NANMVE File data is DM GROUP MF file nane
DM _GROUP_FI LE_DATA File data is DM GROUP M F data
VENDOR_FORMAT_FI LE_NAME File data is Vendor specific file name
VENDOR_FORMAT_FI LE_DATA File data is Vendor specific data

enum {

DM _FI LETYPE_O,
DM _FI LETYPE_1,

DM _M F_FI LE_NAME,
DM _M F_FI LE_DATA,
SNVP_MAPPI NG_FI LE_NAME,
SNVP_MAPPI NG_FI LE_DATA,

DM _GROUP_FI LE_NAMNE,
DM _GROUP_FI LE_DATA,

VENDOR_FORMAT_FI LE_NAME,
VENDOR_FORMAT_FI LE_DATA

} DriFil

eType_t;

R R

* DM Data Types

ok ok ok ok ok ok Kk ok ko ok k ok ok ok k ok kK Kk ko kR Rk kR kR Kk Rk kK ok kR Rk k kR kK Kk kK Kk k ko

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned hyper
unsi gned | ong
unsi gned | ong
| ong

hyper

bool ean

Dmi Counter _t;

Dmi ErrorStatus_t;
Dmi Counter64_t;
Dmi Gauge_t;

Dni Unsi gned_t ;
Dmi | nteger _t;

Dmi | nteger64_t;
Dmi Bool ean_t;

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ko ok ko ko kR ok kK kR kK kK ko

* DniTi

mest anp

)

| *D*
/1 Name: Dmi Ti mest anp
/1 Purpose: Describes the DM tinestanp structure
/1 Context: Field in Dm DataUni on
/1 Fields:
11 year The year ('1996')
11 nont h The month (*1'..'12")
11 yay The day of the nmonth ('1'..'23")
11 hour The hour ('0'.."'23")
11 m nut es The minutes ('0'.."'59")
11 seconds The seconds ('0'..'60"); includes |eap seconds
11 dot Adot ('.")
11 m cr oSeconds M croseconds ('0'..'999999")
11 pl usOr M nus '+ for east, or '-' west of UTC
11 utcOf f set M nutes ('0'..'720") from UTC
11 paddi ng Unused paddi ng for 4-byte alignnment
*Dr/
typedef struct Dmi Ti mestanp {
char vyear [4];
char nonth [2];
char day [2];
char hour [2];
char mnutes [2];
char seconds [2];
char dot;
char mcroSeconds [6];
char plusOrM nus;
char utcOff set [3];
char paddi ng [3];

} Dmi Tinestanp_t;

January, 2003

189

January, 2003

Desktop Management I nterface Specification v2.01s

[k ok ke kk ok ok ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok kR ok ok ko kR ok ok kK kR kK kK ko

* DmiString

R Y

| *D*

/1 Name: Dmi String

I/ Purpose: Describes the DM string representation

/1 Context: Field in Dm DataUni on

/1 Fields:

11 si ze Nunmber of octets in the string body

11 body String contents

11

/Il Notes: For displaystrings, the string is null term nated,
11 and the null character is included in the size.
*Dr/

typedef struct Dmi String {
Dmi Unsi gned_t si ze;
[size_is (size)] char* body;
} DmiString_t;

typedef DmiString_t* DmiStringPtr_t;

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok ok k ok ok ok ok ko ok ok kR ok ok ko ko kR ko kK kR kK kK ko

* DmiCctetString

e

/*D*

/1 Nane: Dmi Cctet String

/'l Purpose: Describes the DM octet string representation
/1 Context: Field in Dm DataUni on

/1 Fields:

11 si ze Nunber of octets in the string body

11 body String contents

D/

typedef struct Dmi OctetString {
Dmi Unsi gned_t si ze;
[size_is (size)] char* body;
} DmiCctetString_t;

[k ko ok k ok k ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok kR ok ok ko kK ko kK kR kK kK ko

* Dmi Dat aUni on

R

/*D*

/1 Nare: Drri Dat aUni on

/'l Purpose: Di scrinminated union of DM data types
/1 Context: Field in Dmi AttributeData

/1 Fields:

11 type Di scrimnator for the union

11 val ue Union of DM attribute data types
D/

typedef uni on Dm Dat aUni on
switch (DmiDataType_t type) value {

case M F_COUNTER: Dmi Count er _t counter;
case M F_COUNTER64: Dmi Count er 64_t count er 64;
case M F_GAUGE: Dmi Gauge_t gauge;
case M F_| NTEGER: Dmi | nt eger _t i nt eger;
case M F_| NTEGER64: Dmi | nt eger 64_t i nt eger 64;
case M F_COCTETSTRI NG Dmi CctetString_t* octetstring;
case M F_DI SPLAYSTRING Dmi String_t* string;
case M F_DATE: Dmi Ti mestanp_t * dat e;

i

190

Desktop Management I nterface Specification v2.01s

[ko ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok o ko ok ok kR ok ok ko kK ok kK kR ok Kk kK ko

* Dmi Enuml nf o

R

| *D*

/1 Name: Dmi Enuni nf o

I/ Purpose: Associ ates an integer value with descriptive text
/1 Context: El ement in Dmi Enunili st

/Il Fields:

11 name Enuner ation nane

11 val ue Enuner ation val ue

*Dr/

typedef struct Dmi Enuminfo {
Dmi String_t* name;
Dmi | nt eger _t val ue;

} Dmi Enum nfo_t;

[ko ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ko ok ok kR ok ok ok ko kR ok kK kR kK kR kK k

* DmiAttributelnfo

R

| *D*
/1 Name: Dmi Attributelnfo
/1 Purpose: Hol ds i nformation about an attribute
/1 Context: El ement in Dmi AttributelList
/1 Fields:
11 id Attribute ID
11 name Attribute name string
11 pragma Attribute pragma string [optional]
11 description Attribute description string [optional]
11 storage Common or specific storage
11 access Readonly, read-wite, etc
11 type Counter, integer, etc
11 maxSi ze Maxi mum | ength of the attribute
11 enuntLi st Enunli st for enunerated types [optional]
*Dr/
typedef struct Dmi Attributelnfo {
Dmi | d_t id;
Dmi String_t* nane;
Dmi String_t* pragma;
Dmi String_t* description;
Dmi St or ageType_t st or age;
Dmi AccessMode_t access;
Dni Dat aType_t type;
Dmi Unsi gned_t maxSi ze;

struct Dmi Enunlist* enunli st;
} DmiAttributelnfo_t;

[ok ko ok k ko ok ok ok ok ok Kk ok ok ok ok ko ok ok ok ko ok ok k ko o ok ko kR ok ok kR kK Kk Kk

* Dmi AttributeData

R e

| *D*

/1 Name: Dmi Attri but eDat a

/1 Purpose: Describes an attribute id, type, and val ue
/1 Context: El ement in Dmi AttributeVal ues

/1 Fields:

11 id Attribute ID

11 data Attribute type and val ue

*Dr/

typedef struct DmiAttributeData {
Dmi | d_t id;
Dmi Dat aUni on_t dat a;

} DmiAttributeData_t;

January, 2003 191

January, 2003

Desktop Management I nterface Specification v2.01s

[k ok ke kk ok ok ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok kR ok ok ko kR ok ok kK kR kK kK ko

* Dmi Groupl nfo

R Y

/*D*
/1 Name: Dmi Groupl nfo
I/ Purpose: Hol ds i nformati on about a group
/1 Context: El ement in Dmi Groupli st
/Il Fields:
11 id Goup ID
11 name Group nane string
11 pragma Group pragma string [optional]
11 cl assName Group class nane string
11 description Group description string [optional]
11 keyLi st Attribute IDs for table row keys [optional]
D/
typedef struct Dmi Grouplnfo {
Dmild_t id;
Dmi String_t* name;
Dmi String_t* pragma;
Dmi String_t* cl assNane;
Dmi String_t* description;

struct Dm Attributelds* keyLi st ;
} Dmi Grouplnfo_t;

R

* Dmi Conponent | nf o

ok ok ok ok ok ok Kk ok ok ok Kk ok ok kK kR kK Kk ko kK kR kR kR Kk Rk kK k kR Rk k kR kK Kk kK Kk k ko

| *D*

/1 Nane: Dni Conponent | nf o

/1 Purpose: Hol ds i nformati on about a conponent

/1 Context: El ement in Dmi Conponent Li st

/1 Fields:

11 id Conponent | D

11 name Conponent name string

11 pragma Conponent pragna string [optional]
11 description Conponent description string [optional]
11 exact Mat ch

11 idl _true = Exact match

11 idl _false = Possible match

*Dr/

typedef struct Dmi Conponentlnfo {
Dmi | d_t id;
Dmi String_t* nane;
Dmi String_t* pragma;
Dmi String_t* description;
Dmi Bool ean_t exact Mat ch;

} Dmi ConponentInfo_t;

[K K K K K K K K K K K K K K K K KKK KKK KKK KKKk kKKK KKK KKK KKK KKK KKK KKK KKKk

* Dmi Fi | eDat al nfo

R

/*D*

/1 Nane: Dmi Fi | eDat al nf o

/'l Purpose: Hol ds the schema file information: type and data
/1 Context: El ement in Dmi Fil eDat alLi st

/1 Fields:

11 fileType MF file, SNWP mapping file, etc

11 fileData The file info (name -or- contents)

D/

typedef struct Dm FileDatalnfo {
Dmi Fi | eType_t fileType;
Dmi Cctet String_t* fil eData;
} DmiFileDatalnfo_t;

192

Desktop Management I nterface Specification v2.01s

[k ok ke kk ok ok ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok kR ok ok ko kR ok ok kK kR kK kK ko

* Dmi C assNanel nfo

R

| *D*

/1 Name: Dni Cl assNanel nf o

I/ Purpose:

/1 Context:

/Il Fields:

11 id Goup ID

11 cl assNane

*Dr/

typedef struct Dmi Cl assNanmelnfo {
Dmi | d_t id;
Dmi String_t* classNane;

} DmiCl assNanelnfo_t;

Hol ds a group's id and class string
El enent in Dmi C assNamelLi st

Group class nane string

[k ok ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok k ko ok ok k ok ok ok ok ok ko kK ok ok kR kK Kk kK ko

* Dm RowRequest

Y

/*D*
/1 Name: Dnmi RowRequest
/1 Purpose: Identifies { conponent, group, row, ids } to get
/1 Context: El ement in Dmi Mul ti RowRequest
/1 Fields:
11 conpl d Conponent | D
11 groupl d Goup ID
11 request Mbde Get fromspecified row, first row, or next row
11 keyLi st Array of values for key attributes
11 ids Array of IDs for data attributes
D/
typedef struct Dmi RowRequest {
Dmi | d_t conpl d;
Dmi | d_t groupl d;
Dmi Request Mode_t request Mode;
struct Dm AttributeVal ues* keyLi st ;
struct Dm Attributelds* ids;

} Dmi RowRequest _t;

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok k ko ok ok kR ko ok ok ko kK ko kK kR ok Kk Kk

* Dmi RowDat a

R ey

/*D*
/1 Narme: D RowDat a
/'l Purpose: Identifies { component, group, row, values } to set
/1 Context: El ement in Dmi Mul ti RowDat a
/1 Fields:
11 conpl d Conponent
11 groupld Goup ID
11 cl assName Group class nane for events, or 0 [optional]
11 keyLi st Array of values for key attributes
11 val ues Array of values for data attributes
/1
/Il Notes: This structure is used for setting attributes, getting
11 attributes, and for providing indication data. The
11 classNanme string is only required when returning
11 indication data. For other uses, the field can be 0.
D/
typedef struct Dmi RowData {
Dmild_t conpl d;
Dmild_t groupl d;
Dmi String_t* cl assNane;
struct Dmi AttributeVal ues* keylLi st;
struct Dmi AttributeVal ues* val ues;

} Dmi RowData_t;

January, 2003

193

Desktop Management I nterface Specification v2.01s

[k ok ke kk ok ok ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok kR ok ok ko kR ok ok kK kR kK kK ko

* Dmi Attributelds

R

/*D*

/1 Narme: Dmi Attributelds

I/ Purpose: Describes a confornmant array of Dmld
/1 Context: Field i n Dm RowRequest

/Il Fields:

11 si ze Array el enents

11 list Array data

D/

typedef struct Dmi Attributelds {
Dmi Unsi gned_t si ze;
[size_is (size)] Dmild_t* list;
} DmiAttributelds_t;

[ko ke kk ok ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok k ko ok ko kK ko kR kK kR Kk

* Dmi AttributeVal ues

R

| *D*

/1 Name: Dmi At tri but eVal ues

/1 Purpose: Describes a conformant array of Dmi AttributeData
/1 Context: Field in Dmi RowRequest, Dm RowDat a

/1 Fields:

11 si ze Array el enents

11 list Array data

*Dr/

typedef struct Dmi AttributeVal ues {

Dmi Unsi gned_t si ze;

[size_is (size)] DmiAttributeData_t* |ist;
} DmiAttributeVal ues_t;

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok o ko ok kR ok ok ko kK ko kK kR kK kK ko

* Dmi Enunli st

R

| *D*

/1 Name: Dri EnuntLi st

/1 Purpose: Describes a conformant array of Dm Enuml nfo
I/ Context: Dmi EnumAt t ri but es()

/1 Fields:

11 si ze Array el enents

11 list Array data

*Dr/

typedef struct Dmi Enunlist {

Dmi Unsi gned_t si ze;

[size_is (size)] DmiEnuminfo_t* 1list;
} Dmi Enumli st _t;

[ko k k ko ok k ok ok ok ok ok ok ok ok Kk ok ok ok Kk ok ok o ko ok ok k ok ok ok ko ko kR ok ok kR kK Kk Kk

* Dmi AttributeList

)

| *D*

/1 Name: Dmi At tri but eLi st

/1 Purpose: Describes a conformant array of Dmi Attributelnfo
/1 Context: Dmi Li stAttributes()

/1 Fields:

11 si ze Array el ements

11 list Array data

*Dr/

typedef struct Dmi AttributeList {

Dmi Unsi gned_t si ze;

[size_is (size)] DmiAttributelnfo_t* 1ist;
} DmiAttributelist_t;

January, 2003 194

Desktop Management I nterface Specification v2.01s

[ko ko ok ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok ok ok ko ok ok k ko ok ok ko kK ok ok kK kR kK kK ko

* Dmi Groupli st

)

/*D*

/1 Nane: Dmi Groupli st

/'l Purpose: Describes a conformant array of Dmi G ouplnfo
/1 Context: Dni Li st G oups()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

typedef struct Dmi GroupList {

Dmi Unsi gned_t si ze;

[size_is (size)] Dmi Gouplnfo_t* |list;
} Dmi GrouplList_t;

[k ko ok ok ok ok ok ok ok ko ok Kk ko ok ok k ok ok o ko ok ok kR ko ok kR ok kK kR kR kK kR kK ko

* Dmi Conponent

)

/*D*

/1 Name: Dmi Conponent Li st

/'l Purpose: Describes a confornmant array of Dm Conmponent!nfo
/1 Context: Dnmi Li st Component s(), Dmi Li st Conponent sByCl ass()
/1 Fields:

11 si ze Array el ements

11 list Array data

D/

typedef struct Dmi ConponentList {

Dmi Unsi gned_t si ze;

[size_is (size)] Dmi Conponentlinfo_t* [|ist;
} Dmi Conponent Li st _t;

[k ko ok ko ok ok ok ok ok Kk ok ok ok Kk ok ok ok ok ko ok ko ko ko kK ko kR kK Kk Kk

* Dmi Fi | eDat alLi st

R

/*D*

/1 Nare: Di Fi | eDat alLi st

/'l Purpose: Describes a confornant array of Dmi Fil eDatal nfo

/1 Context: Dni AddConponent (), Dm AddLanguage(), Dmi AddG oup()
/1 Fields:

11 si ze Array el enents

11 list Array data

D/

typedef struct Dm Fil eDatalist {

Dmi Unsi gned_t si ze;

[size_is (size)] DmiFileDatalnfo_t* |ist;
} DmiFil eDataList_t;

[k ko ok k ok ok ok ok ok ok ok ok Kk ok ok ok ok ko ok o ko ok ok ko ok ko kR ok ok kR kK Kk Kk

* Dmi Cl assNaneLi st

)

/*D*

/1 Nare: Dmi Cl assNareLi st

/1 Purpose: Describes a confornmant array of Dm C assNamel nfo
/1 Context: Dmi Li st Gl assNames()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

typedef struct Dmi Cl assNaneList {

Dmi Unsi gned_t si ze;

[size_is (size)] DmiCassNanelnfo_t* |ist;
} Dmi Cl assNaneLi st _t;

January, 2003 195

Desktop Management I nterface Specification v2.01s

[k ko ok ok ok ok ok ok ok ko ok Kk ko ok Kk ko o ko ok ok kR ok ok ko kR ok ok kR kK Kk kK ko

* Dmi StringlLi st

R

/*D*

/1 Nane: Dmi StringlLi st

I/ Purpose: Describes a confornmant array of Dmi Strings
/1 Context: Dnmi Li st Languages()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

typedef struct Dm StringList {

Dmi Unsi gned_t si ze;

[size_is (size)] DmiStringPtr_t* |list;
} Dmi StringList_t;

[ko ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ko ok ok k ko ok ko kR ok ok kR kK Kk Kk

* Dmi Fi |l eTypeli st

Y

/*D*

/1 Name: Dmi Fi | eTypelLi st

I/ Purpose: Describes a confornmant array of DmiFileType entries
/1 Context: Dmi Get Ver si on()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

typedef struct Dm Fil eTypeList {

Dmi Unsi gned_t si ze;

[size_is (size)] DmiFileType_t* list;
} DmiFil eTypeList_t;

[ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ko ok ko kK kK kR kK kR kK ko

* Dmi Mul ti RowRequest

R

/*D*

/1 Name: Dmi Mul ti RowRequest

/'l Purpose: Describes a confornmant array of Dmi RowRequest
/1 Context: Dmi Get Attri butes()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

typedef struct Dmi Multi RowRequest {

Dmi Unsi gned_t si ze;

[size_is (size)] Dmi RowRequest_t* [ist;
} Dmi Mul ti RowRequest _t;

[ko ok k ko ok ok ok ok ok Kk ko ok Kk ko ok ok ko ok ok k ko ok ko ko kK ok kK kR ok Kk Kk

* Dmi Mul ti RowDat a

Y

/*D*

/1 Narme: Dmi Mul ti RowDat a

/'l Purpose: Describes a confornant array of Dm RowData
/1 Context: Dmi Get Attributes(), Dm SetAttributes()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

typedef struct Dm Multi RowData {

Dmi Unsi gned_t si ze;

[size_is (size)] Dmi RowData_t* |ist;
} DmiMulti RowData_t;

January, 2003 196

Desktop Management I nterface Specification v2.01s

MANAGEMENT INTERFACE (SERVER.IDL)

I * M

11

Il RCS:

11 $Workfile: server.idl $

11 $Revision: 2.0 $

11 $Modt i nme: 3/ 27/ 96 $

11 $Aut hor : DMTF $

11

/1 Purpose:

11

11 Describe the DMIF's Management Interface in an IDL that is

11 suitable for building renpte managenent using the DCE-RPC

11 client/server nodel. This file, along with server. acf,

11 is conpiled with the IDL conpiler to produce the follow ng

11 files:

11

11 server. h C-style interface header file

11 server_c.c Stub code for the rm client

11 server_s.c Stub code for the rm server

11

/1 Contents:

11

11 The following information is described in version 2.0

11 of the Desktop Managenent Interface Specification.

11

/1 Initialization:

11

11 Dmi Regi ster Regi ster a session with a renpte system
11 Dni Unr egi st er Unregister a previously registered session
11 Dmi Get Ver si on Get DM Service Provider version information
11 Dmi Get Confi g Get session configuration paraneters

11 Dmi Set Confi g Set session configuration paraneters

11

/1 Discovery:

11

11 Dnmi Li st Conponent s Li st conponent properties

11 Dnmi Li st Conponent sByCl ass Li st conponents matching certain criteria
11 Dnmi Li st Languages Li st a component's | anguage strings

11 Dni Li st Cl assNanes Li st a component's cl ass names and group ids
11 Dni Li st G oups Li st group properties

11 Dmi Li stAttributes List attribute properties

11

/1 Operation:

11

11 Dni AddRow Add a newrow to a table

11 Dni Del et eRow Delete a row froma table

11 Dmi Get Attribute Get a single attribute value

11 Dmi Set Attribute Set a single attribute value

11 Dmi Get Mul ti ple Get a collection of attribute val ues

11 Dmi Set Mul ti pl e Set a collection of attribute val ues

11

/'l Database Administration:

11

11 Dni AddConponent Add a new conponent to the DM database
11 Dmi AddLanguage Add a new | anguage mapping for a conponent
11 Dnmi AddGr oup Add a new group to a conponent

11 Dni Del et eConponent Del ete a conponent fromthe DM database
11 Dni Del et eLanguage Del ete a | anguage napping for a conponent
11 Dni Del et eGr oup Del ete a group froma conponent

*Mr/

uui d(892b2b90- 1532- 11cf - 9a39- 00aa0034b922) ,
version(2.0),
poi nter_defaul t(ptr)

I

{

include "comon.idl"

interface dm _server

January, 2003 197

Desktop Management I nterface Specification v2.01s

[k ok ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ko o ko ok ok kR ok ok ok ko kR ok ok kR kK kK ko Kk

* Dmi Regi ster

Y

| *F*

/1 Nane: Dni Regi ster

/'l Purpose: Regi ster a session with a renpte system

/1 Context: Initialization

/1l Returns:

/1 Paraneters:

11 handl e On conpl etion, an open session handl e

11

/1 Notes: The client provides the address of the handle

11 paraneter and the server fills it in. Al commands
11 except Dmi Register() require a valid handle, so

11 this nust be the first command sent to the DM server.
*Ex/

Dmi ErrorStatus_t DM _API
Dmi Regi ster (
[out] DmiHandle_t* handle);

[k ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok o k k ko ok kR ok ok ko ko kR ko kK kR ok kR Kk

* Dmi Unregi ster

)

| *F*

/1 Name: Dmi Unr egi st er

/'l Purpose: Unregister a previously registered session
/1 Context: Initialization

/'l Returns:

/1l Paraneters:

11 handl e An open session handle to be closed

*Ex/

Dm ErrorStatus_t DM _API
Dmi Unr egi ster (
[in] DmiHandle_t handle);

[k ok ko ok ok k ok ok ok ko ok Kk ko ok Kk ok ok ok ok ko ok ok k ko ok ko kR ok ok kR kK kR Kk

* Dmi Get Versi on

ok ok ok ok ok ok Kk ko ok Kk ok ok Kk ok kK kR kR kR kR kR Kk kR kK k kR Rk kK kR Kk ok kK Kk k ko

| *F*

/1 Name: Dri Get Ver si on

/1 Purpose: Get DM Service Provider version information

/1 Context: Initialization

/'l Returns:

/1 Parameters:

11 handl e An open session handl e

11 dmi SpecLevel The DM Specification version

11 description The OS-specific Service Provider version
11 fileTypes Supported file types for schema description
11

/1 Notes: 1. The client nust free the dm SpecLevel string
11 2. The client nust free the description string
*Ex/

Dmi ErrorStatus_t DM _API
Dmi Get Ver si on (

[in] Dmi Handl e_t handl e,
[out] Dm String_t** dm SpeclLevel ,
[out] Dm String_t** description,

[out] DmiFileTypeList_t** fileTypes);

January, 2003 198

Desktop Management I nterface Specification v2.01s

[k ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok o Kk ko ok ok k ko ok ko ko kK ok kK kR kK kK ko

* Dmi Get Config

)

| *F*

/1 Nane: Dmi Get Confi g

/'l Purpose: Get session configuration paraneters

/1 Context: Initialization

/1l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 | anguage | anguage- code| territory-code| encodi ng
/1

/1 Notes: The client nust free the | anguage string
F/

Dm ErrorStatus_t DM _API

Dmi Get Config (
[in] Dmi Handl e_t handl e,
[out] DmiString_t** |anguage);

[ko ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ko ok ko kK ko kK kR kK kK ko

* Dmi Set Config

ok ok ok ok ok ok Kk ok ok ok Kk ok ok ok ok ok ok ko kK ko kR kR ok kR kR Rk k kR ok kR Rk kK kR Kk kK kK ok k ko

| *F*

/1 Name: Dmi Set Confi g

/1 Purpose: Set session configuration paraneters

/1 Context: Initialization

/'l Returns:

I/ Parameters:

11 handl e An open session handl e

11 | anguage | anguage- code| territory-code| encodi ng
*Ex/

Dmi ErrorStatus_t DM _API

Dmi Set Config (
[in] Dmi Handl e_t handl e,
[in] DmiString_t* |anguage);

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok k ko ok ok kR ok ok ko ko kR kK Kk kK Kk Kk

* Dmilistconponents

R ey

| *F*

/1 Name: Dmi Li st Conponent s

/1 Purpose: Li st conponent properties

/1 Context: Di scovery

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 request Mode Uni que, first, or next conponent ?

11 max Count Maxi mum nunber to return, or O for all
11 get Pragma Get optional pragma string ?

11 get Descri ption Get optional conponent description ?
11 conpl d Conponent to start with (see requestMde)
11 reply Li st of conponents

11

/Il Notes: The client nust free the reply structure

*Ex/

Dmi ErrorStatus_t DM _API
Dnmi Li st Component's (

[in] Dmi Handl e_t handl e,

[in] Dmi Request Mode_t request Mode,
[in] Dmi Unsi gned_t maxCount ,

[in] Dni Bool ean_t get Pragns,

[in] Dni Bool ean_t get Descri ption,
[in] Dmild_t conpl d,

[out] Dmi ConponentList_t** reply);

January, 2003

199

Desktop Management I nterface Specification v2.01s

[k ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ko ok ko kR ok kK kR kK kK ko

* Dmi Li st Component sByCl ass

R

| *F*

/1 Nane: Dni Li st Component sByCl ass

/'l Purpose: Li st conponents matching certain criteria

/1 Context: Di scovery

/1l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 request Mbde Uni que, first, or next conponent ?

11 maxCount Maxi mum nunber to return, or 0 for all
11 get Pragma Get optional pragma string ?

11 get Descri ption Get optional conponent description ?
11 conpl d Conponent to start with (see requestMde)
11 cl assName Group class nane string to match

11 keyLi st Group row keys to match, or null

11 reply Li st of conponents

/1

/Il Notes: The client nust free the reply structure

*Fx/

Dmi ErrorStatus_t DM _API
Dmi Li st Conponent sByd ass (

[in] Dni Handl e_t handl e,

[in] Dnmi Request Mode_t request Mode,
[in] Dmi Unsi gned_t maxCount ,

[in] Dmi Bool ean_t get Pragns,

[in] Dni Bool ean_t get Descri ption,
[in] Dmi | d_t conpl d,

[in] Dmi String_t* cl assNane,

[in, ptr] DmAttributevalues_t* keylist,

[out] Dmi Conponent Li st _t** reply);

R

* Dmi Li st Languages

ok ok ok ok ok ok Kk ok ok ok Kk ok ok ok ko kK kR ko kR ko Rk kR kR Rk kR kK kK kK Kk Kk kK Kk kK Kk k k]

| *F*

/1 Name: Dmi Li st Languages

/1 Purpose: Li st a conponent's |anguage strings

/1 Context: Di scovery

/'l Returns:

I/ Parameters:

11 handl e An open session handl e

11 maxCount Maxi mum nunber to return, or 0 for all
11 conpl d Conponent to access

11 reply Li st of |anguage strings

11

/1 Notes: The client nust free the reply structure
*Ex/

Dmi ErrorStatus_t DM _API
Dnmi Li st Languages (

[in] Dmi Handl e_t handl e,
[in] Dmi Unsi gned_t maxCount ,
[in] Dmi | d_t conpl d,

[out] DmStringList_t** reply);

[k ko ok ok ok ok ok ok ok ok ok ok Kk ok ok ok Kk ok ok o ko ok ok kR ko ko kR ko kK kR kK kK ko

* Dmi Li st Cl assNanes

R e Y

/*F*

/1 Name: Dnmi Li st O assNanes

/'l Purpose: Li st a component's cl ass names and group ids
/1 Context: Di scovery

/1l Returns:

Il Paraneters:

11 handl e An open session handl e

11 max Count Maxi mum nunber to return, or O for all

January, 2003

200

Desktop Management I nterface Specification v2.01s

11 conpl d Conponent to access

11 reply Li st of class nanes and group ids
11

Il Notes: The client nmust free the reply structure
F/

Dm ErrorStatus_t DM _API
Dnmi Li st Ol assNames (

[in] Dmi Handl e_t handl e,
[in] Dmi Unsi gned_t maxCount ,
[in] Dmild_t conpl d,

[out] Dm ClassNaneList_t** reply);

[k ok ko k ok ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok o ko ok ok kK ok ok ko kR ko kK kR kK kK ko

* Dmi Li st Groups

e

| *F*

/1 Name: Dnmi Li st G oups

/'l Purpose: Li st group properties

/1 Context: Di scovery

/'l Returns:

/1l Paraneters:

11 handl e An open session handl e

11 request Mode Uni que, first, or next group ?

11 maxCount Maxi mum nunber to return, or O for all
11 get Pragma Get optional pragma string ?

11 get Descri ption Get optional group description ?

11 conpl d Conponent to access

11 groupld Goup to start with (see requestMde)
11 reply Li st of groups

11

/1 Notes: The client nust free the reply structure

*Ex/

Dm ErrorStatus_t DM _API
Dmi Li st G oups (

[in] Dmi Handl e_t handl e,

[in] Dmi Request Mode_t request Mode,
[in] Dni Unsi gned_t maxCount ,

[in] Dni Bool ean_t get Pragnms,

[in] Dni Bool ean_t get Descri ption,
[in] Dmild_t conpl d,

[in] Dmild_t groupl d,

[out] Dm G oupList_t** reply);

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok ok ok ko ok ok k ko o ok ko kR ko kK kR Kk kK ko

* DmiListAttributes

R e ey

| *F*

/1 Name: Dmi Li stAttributes

/'l Purpose: List attribute properties

/1 Context: Di scovery

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 request Mode Uni que, first, or next attribute ?

11 maxCount Maxi mum nunber to return, or O for all
11 get Pragma Get optional pragma string ?

11 get Descri ption Get optional attribute description ?
11 conpl d Conponent to access

11 groupld Group to access

11 attribld Attribute to start with (see requestMde)
11 reply List of attributes

11

/1 Notes: The client nust free the reply structure

*Ex/

Dmi ErrorStatus_t DM _API
Dmi ListAttributes (
[in] Dmi Handl e_t handl e,
[in] Dni Request Mode_t request Mode,

January, 2003 201

Desktop Management I nterface Specification v2.01s

[in] Dmi Unsi gned_t maxCount ,

[in] Dmi Bool ean_t get Pragns,

[in] Dni Bool ean_t get Descri ption,
[in] Dmi | d_t conpl d,

[in] Dmild_t groupl d,

[in] Dmild_t attribld,

[out] DmAttributeList_t** reply);

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ko ok ok ko ok ok k ko ok ko kR ok ok kK kR Kk kK ko

* Dmi AddConponent

R e

| *F*
/1 Name: Dmi AddConponent
/1 Purpose: Add a new conponent to the DM database
/1 Context: Dat abase Administration
/'l Returns:
Il Paraneters:
11 handl e An open session handl e
11 fileData Schema description for the conponent
11 conpl d On conpletion, the SP-allocated conponent id
11 errors Installation error nmessages
*Ex/
Dmi ErrorStatus_t DM _API
Dni AddConponent (
[in] Dmi Handl e_t handl e,
[in] Dmi Fil eDataList_t* fileData,
[out] Dmld_t* conpl d,
[out] Dm StringlList_t** errors);

January, 2003

[k ko ok k ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ok ok ok ok kR ko ok ok ok ko kK ok ok kR kK Kk Kk

* Dm AddLanguage

R

| *F*
/1 Name: Dmi AddLanguage
/1 Purpose: Add a new | anguage mapping for a conponent
/1 Context: Dat abase Admini stration
/'l Returns:
Il Paraneters:
11 handl e An open session handl e
11 fileData Language mapping file for the conponent
11 conpl d Conponent to access
11 errors Installation error nmessages
*Ex/
Dmi ErrorStatus_t DM _API
Dmi AddLanguage (
[in] Dni Handl e handl e,
[in] Dni Fi | eDat. L|st t* fileData,
[in] Dmild_t conpl d,
[out] Dm StringlList_t** errors);

[k ko ok k ok ok ok ok ok ko ok Kk ok ok ok Kk ko ok ok ko ok ok k ko ok ko kK ok ok kR kK kR Kk

* Dmi AddG oup

e Y

| *F*

/1 Name: Dnmi AddGr oup

/1 Purpose: Add a new group to a conponent

/1 Context: Dat abase Admini stration

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 fileData Schema description for the group
11 conpl d Conponent to access

11 groupld On conpletion, the SP-allocated group |ID
11 errors Installation error nmessages

*Ex/

202

January, 2003

Desktop Management I nterface Specification v2.01s

Dmi ErrorStatus_t DM _API

Dmi AddG oup (
[in] Dni Handl e_t handl e,
[in] Dmi Fi |l eDatalList_t* fileData,
[in] Dmild_t conpl d,
[out] Dmld_t* groupl d,
[out] Dm StringlList_t** errors);

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ko ok ok ko ok ok k ko ok ko kR ok ok kK kR Kk kK ko

* Dmi Del et eConponent

R

| *F*

/1 Name: Dni Del et eConponent

/1 Purpose: Del ete a conponent fromthe DM database
/1 Context: Dat abase Admini stration

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 conpl d Conponent to delete

*Ex/

Dmi ErrorStatus_t DM _API

Dni Del et eConponent (
[in] DmiHandle_t handle,
[in] Dmld_t conpld);

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok kR ko ok ko kK ok ok kK kR Kk kK ko

* Dnmi Del et eLanguage

R Y

| *F*

/1 Name: Dni Del et eLanguage

/1 Purpose: Del ete a | anguage napping for a conponent
/1 Context: Dat abase Administration

/'l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 | anguage | anguage- code| territory-code| encodi ng
11 conpl d Conponent to access

F/

Dmi ErrorStatus_t DM _API

Dni Del et eLanguage (
[in] DmiHandle_t handl e,
[in] DmiString_t* |anguage,
[in] Dmld_t conpld);

[KKKk KKK KKK KKKk KK KKK K KKK KK KKK KKK KKK KKK KKK

* Dmi Del et eGr oup

ok ok ok ok ok ok Kk k ok ok ok ok ok ok ok ok ko Kk ok kR kR ok kR kR Rk Rk kR kR kR Kk kR kK ok kK Kk k ko

| *F*

/1 Nane: Dni Del et eGr oup

/1 Purpose: Del ete a group froma conponent
/1 Context: Dat abase Administration

/'l Returns:

/1 Parameters:

11 handl e An open session handl e

11 conpl d Conponent contai ni ng group
11 groupl d Goup to delete

*Ex/

Dmi ErrorStatus_t DM _API

Dmi Del et eGroup (
[in] DmiHandle_t handle,
[in] Dmld_t conpl d,
[in] Dmld_t groupld);

203

Desktop Management I nterface Specification v2.01s

[k ok ke kk ok ok ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok kR ok ok ko kR ok ok kK kR kK kK ko

* Dmi AddRow

R

| *F*
/1 Name: Dri AddRow
/'l Purpose: Add a new row to a table
/1 Context: Qperation
/'l Returns:
/1l Paraneters:
11 handl e An open session handl e
11 rowDat a Attribute values to set
*Ex/
Dmi ErrorStatus_t DM _API
Dri AddRow (
[in] DmiHandle_t handl e,

[in] DnmiRowData_t* rowData);

[ko ko k ok ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ok ok ok k ko ok ko ok ko ok kK kR kK kK ko

* Dmi Del et eRow

R

I *F*

/1 Narme: Dri Del et eRow

I/ Purpose: Delete a row froma table

/1 Context: Qperation

/1l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 rowDat a Row { conponent, group, key } to delete
*Fx/

Dmi ErrorStatus_t DM _API

Dni Del et eRow (
[in] DmiHandle_t handl e,
[in] DnmiRowData_t* rowData);

[K K K K K K K R K K K K K K K K K KKK KK KKK kKKK KK KKK KKK KKK KKK KKK KKK KKK KKK

* Dmi GetAttribute

ok ok ok ok ok ok Kk ko ok Kk ok ok ok ko ko kK ok ok kK ko Rk kR kR Rk Rk kR ok kR Rk k kR kK ok kK Kk k ko

| *F*

/1 Nane: Dmi Get Attribute

/'l Purpose: Get a single attribute value
/1 Context: Operation

/1l Returns:

/1 Paraneters:

11 handl e An open session handl e
11 conpl d Conponent to access

11 groupl d Group W thin conponent

11 attribld Attribute within group
11 keyLi st Keylist to specify a table row [optional]
11 val ue Attribute val ue returned
*Fx/

Dmi ErrorStatus_t DM _API

Dmi Get Attribute (
[in] Dmi Handl e_t handl e,
[in] Dmi | d_t conpl d,
[in] Dmild_t groupl d,
[in] Dmild_t attribld,
[in, ptr] DmAttributevalues_t* keylist,
[out] Dmi Dat aUni on_t ** val ue);

[k ko ok k ko ok ok ok ok ok ok Kk ok ok ok Kk ok ok o ok ko ok ok k ko ok ko kK ok ok kK kR kK kK ko

* DmiSetAttribute

ey

/*F*
/1 Nare: Dmi Set Attribute
/'l Purpose: Set a single attribute value

January, 2003 204

January, 2003

Desktop Management I nterface Specification v2.01s

/1 Context: QOperation

/1l Returns:

I/ Parameters:

11 handl e An open session handl e

11 conpl d Conponent to access

11 groupl d Group W thin conponent

11 attribld Attribute within group

11 keyLi st Keylist to specify a table row [optional]
11 set Mbde Set, reserve, or release ?
11 val ue Attribute value to set
*Ex/

Dm ErrorStatus_t DM _API

Dmi Set Attribute (

[in] Dmi Handl e_t handl e,
[in] Dmild_t conpl d,
[in] Dmi | d_t groupl d,
[in] Dmi | d_t attribld,
[in, ptr] DmAttributeVvalues_t* keylList,
[in] Dmi Set Mbde_t set Mbde,
[in] Dmi Dat aUni on_t * val ue);

[ko ke kk ok ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok o ko ok ok kR ok ok ok ok kK ko kK kR ok Kk kK ko

* Dmi GetMiltiple

ok ok ok ok ok ok Kk k ok ok Kk ok ok ok ok ok ok ko kK ok ok kR kR kR kR Rk kR kK ok kR Kk k kR kK ok kK Kk k k]

| *F*

/1 Name: Dmi Get Mul tiple

/1 Purpose: Get a collection of attribute val ues

/1 Context: Qperation

/'l Returns:

/1 Parameters:

11 handl e An open session handl e

11 request Attributes to get

11 rowDat a Requested attribute val ues

11

/Il Notes: 1. The request may be for a SINGLE row (size = 1)
11 2. An enpty id list for a row neans "get all attributes"”
11 3. The client nust free the rowData structure
*Ex/

Dmi ErrorStatus_t DM _API

Dmi GetMul tiple (
[in] Dmi Handl e_t handl e,
[in] Dmi Mul ti RowRequest _t* request,
[out] Dmi MiltiRowData_t** rowData);

[ko ok ok ok ok ok ok ko ok ok k ok ok ok ok ko ok ok ok ok ok ok ok kK ko ok ko kK ko ok kR kK Kk kK ko

* Dmi SetMiltiple

R

I *F*

/1 Nane: Dmi Set Mul ti pl e

/'l Purpose: Set a collection of attributes
/1 Context: Qperation

/1l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 set Mbde Set, reserve, or release ?
11 rowDat a Attribute values to set
F/

Dmi ErrorStatus_t DM _API

Dmi Set Mul tiple (
[in] Dmi Handl e_t handl e,
[in] Dnmi Set Mbde_t set Mbde,
[in] DmiMiltiRowData_t* rowData);

} /* interface dm _server */

205

Desktop Management I nterface Specification v2.01s

INDICATION DELIVERY INTERFACE (CLIENT.IDL)

1
{

sverkfile: client.idl $
$Revision: 2.0 $
$Modt i nme: 3/ 27/ 96 $
$Aut hor : DMTF $
Pur pose:
Describe the DMIF's Managenment Interface in an IDL that is
suitable for building renpte managenent using the DCE-RPC
client/server nodel. This file, along with client.acf, is
conpiled with the IDL conpiler to produce the foll ow ng
files:
client.h C-style interface header file
client_c.c Stub code for the managed system
client_s.c Stub code for the managi ng application
Contents:
The following information is described in version 2.0
of the Desktop Managenent Interface Specification.
Data Structures:

Dmi NodeAddr ess Node address for indication originators

I ndi cation Delivery:

Dmi Del i ver Event Del iver event data to an application

Dnmi Conponent Added A conponent was added to the database

Dni Conponent Del et ed A conponent was del eted fromthe database
Dni LanguageAdded A conponent | anguage mappi ng was added

Dmi LanguageDel et ed A conponent | anguage nappi ng was del et ed

Dmi Gr oupAdded A group was added to a conponent

Dni GroupDel et ed A group was del eted froma component

Dni Subscri pti onNotice I nformati on about an indication subscription

uui d(12f 1becO0- 5clc- 11cf - 9a4b- 00aa0034b922) ,
version(2.0),
poi nter_defaul t(ptr)

interface dm _client

include "comon.idl"

R

* Dmi NodeAddr ess

ok ok ok ok ok ok Kk ko ok Kk ok ok ok k kK Kk kK kR kR kR kR Kk k kR Kk kR kR Kk Kk kK Kk kK Kk k k]

| *D*

11
/1
/1
11
11
11
/1

D/

January, 2003

Fi el ds:

Nane: Dni NodeAddr ess
Pur pose: Addressing information for indication originators
Cont ext : Passed to indication delivery functions

address Transport-dependent node address

rpc ldentifies the RPC (DCE, ONC, etc)

transport Identifies the transport (TPC/IP, SPX, etc)

206

Desktop Management I nterface Specification v2.01s

typedef struct Dmi NodeAddress {
Dmi String_t* address;
Dmi String_t* rpc;
Dmi String_t* transport;

} Dmi NodeAddress_t;

R R

* Dmi Del i ver Event

ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok Kk ok kK k ok kK kR kR kR Rk kR kK kR kR Kk kR kK ok kK Kk k ko

| *F*

/1 Nane: Dni Del i ver Event

/1 Purpose: Del iver event data to an application

/1 Context: I ndi cation Delivery

/'l Returns:

I/ Parameters:

11 handl e An opaque ID returned to the application

11 sender Address of the node delivering the indication
11 | anguage Language encoding for the indication data

11 conpl d Conponent reporting the event

11 timestanp Event generation tine

11 rowDat a Standard and context-specific indication data
*Ex/

Dm ErrorStatus_t DM _API
Dni Del i ver Event (

[in] Dmi Unsigned_t handl e,
[in] Dmi NodeAddress_t* sender,
[in] DmiString_t* | anguage,
[in] Dmld_t conpl d,
[in] DmiTinmestanmp_t* ti mestanp,

[in] DmiMiltiRowData_t* rowData);

[K K K K K K K K K K K K K K K K K K KKK KKK KKK KKK KKK K KKK KKK KK KKK KKK KKK KKKk

* Dmi Conponent Added

ok ok ok ok ok ok kK k ok ok ok ok ok ok ok ok ok ko Kk ok kK kR kR ok kR kR Rk kR kR kR kK Kk kR kK ok kK Kk k ko

| *F*

/1 Nane: Dni Conponent Added

/1 Purpose: A conponent was added to the database

/1 Context: I ndi cation Delivery

/1 Returns:

I/ Parameters:

11 handl e An opaque ID returned to the application

11 sender Address of the node delivering the indication
11 info I nformation about the conponent added

*Ex/

Dm ErrorStatus_t DM _API

Dni Conponent Added (
[in] Dmi Unsigned_t handl e,
[in] Dmi NodeAddress_t* sender,
[in] Dmi Conponentinfo_t* info);

[k ko ok ok ok ok ok ok ok ok ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ko ok ko kK ok ok kK kR kK kK ko

* Dmi Conponent Del et ed

R

I *F*

/1 Name: Dnmi Conponent Del et ed

/'l Purpose: A conponent was del eted fromthe database

/1 Context: I ndi cation Delivery

/1 Returns:

/1 Paraneters:

11 handl e An opaque ID returned to the application

11 sender Address of the node delivering the indication
11 conpl d Conponent del eted fromthe database

F/

Dmi ErrorStatus_t DM _API
Dni Conponent Del et ed (

January, 2003 207

Desktop Management I nterface Specification v2.01s

[in] Dmi Unsigned_t handl e,
[in] Dmi NodeAddress_t* sender,
[in] Dmld_t conpld);

[k ko ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ko ok o ok ko ok ok k ko ok kR ok Kk ko ok kR kK Kk kK ko

* Dmi LanguageAdded

)

I *F*

/1 Name: Dmi LanguageAdded

/1 Purpose: A conponent | anguage mappi ng was added

/1 Context: I ndi cation Delivery

/'l Returns:

/1 Paraneters:

11 handl e An opaque ID returned to the application
11 sender Address of the node delivering the indication
11 conpl d Conponent with new | anguage mappi ng

11 | anguage | anguage- code| territory-code| encodi ng
F/

Dmi ErrorStatus_t DM _API
Dni LanguageAdded (

[in] Dmi Unsigned_t handl e,
[in] Dmi NodeAddress_t* sender,
[in] Dmld_t conpl d,
[in] DmiString_t* | anguage);

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok kR ko ok ko kK ok ok kK kR Kk kK ko

* Dmi LanguageDel et ed

Y

| *F*

/1 Name: Dmi LanguageDel et ed

/1 Purpose: A conponent | anguage mappi ng was del et ed

/1 Context: I ndi cation Delivery

/'l Returns:

/1 Paraneters:

11 handl e An opaque ID returned to the application
11 sender Address of the node delivering the indication
11 conpl d Conponent with del eted | anguage mappi ng
11 | anguage | anguage- code| territory-code| encodi ng
F/

Dm ErrorStatus_t DM _API
Dni LanguageDel et ed (

[in] Dmi Unsigned_t handl e,
[in] Dmi NodeAddress_t* sender,
[in] Dmld_t conpl d,
[in] DmiString_t* | anguage);

[ko ko ok ok ok ok ok ok ok ok ok ok Kk ok ok ok Kk ok ok o k k ko ok ok k ko ok ko ko kR ko kR kK Kk Kk

* Dmi GroupAdded

)

I *F*

/1 Name: Dmi Gr oupAdded

I/ Purpose: A group was added to a conponent

/1 Context: I ndi cation Delivery

/'l Returns:

/1 Paraneters:

11 handl e An opaque ID returned to the application
11 sender Address of the node delivering the indication
11 conpl d Conponent with new group added

11 info I nformati on about the group added

F/

Dmi ErrorStatus_t DM _API
Dnmi Gr oupAdded (

[in] Dmi Unsigned_t handl e,
[in] Dmi NodeAddress_t* sender,
[in] Dmld_t conpl d,
[in] Dmi Gouplnfo_t* info);

January, 2003 208

Desktop Management I nterface Specification v2.01s

[k ko ok ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok ok ok ko ok ok kR ok ok ko ko kK ok ok kK kR kK kK ko

* Dmi GroupDel et ed

)

| *F*

/1 Nane: Dni GroupDel et ed

/'l Purpose: A group was del eted froma component

/1 Context: I ndi cation Delivery

/1l Returns:

/1 Paraneters:

11 handl e An opaque ID returned to the application
11 sender Address of the node delivering the indication
11 conpl d Conponent with the group del eted

11 groupl d Group del eted fromthe conponent

F/

Dm ErrorStatus_t DM _API
Dmi GroupDel eted (

[in] Dmi Unsigned_t handl e,
[in] Dmi NodeAddress_t* sender,
[in] Dmld_t conpl d,
[in] Dmld_t groupld);

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ko ok ko kK ko kK kR ok Kk Kk

* Dmi Subscri ptionNotice

)

| *F*

/1 Nane: Dni Subscri ptionNotice

/'l Purpose: I nformati on about an indication subscription

/1 Context: I ndi cation Delivery

/1 Returns:

/1 Paraneters:

11 handl e An opaque ID returned to the application

11 expired True=expired; Fal se=expiration pending

11 rowDat a Row i nformation to identify the subscription
F/

Dmi ErrorStatus_t DM _API
Dmi Subscri ptionNotice (

[in] Dmi Unsigned_t handl e,
[in] Dmi NodeAddress_t* sender,
[in] Dmi Bool ean_t expired,
[in] Dni RowData_t* rowData);

} /* interface dm _client */

January, 2003 209

Desktop Management I nterface Specification v2.01s

APPENDIX C - ONC RPCGEN
COMMON DATA STRUCTURES (COMMON.X)

I * M

11

/Il RCS:

11 $Workfile: common. x $

11 $Revision: 2.0 $

11 $Modt i me: 3/ 27/ 96 $

11 $Aut hor : DMIF $

11

/1 Purpose:

11

11 Describe data structures and types for the DMIF's Managenent

11 Interface in an RPCGEN that is suitable for building renpte

11 managenent using the ONC RPC client/server nodel. This

11 file is included in the client.x and server.x files.

11

/1 Contents:

11

11 The following information is described in version 2.0

11 of the Desktop Managenent Interface Specification.

11

/1 Enurer ated Types:

11

11 Dni Set Mbde Define set operations

11 Dmi Request Mode Define sequential access nodes

11 Dmi St or ageType Define the storage type for an attribute

11 Dni AccessMode Define the access nodes for an attribute

11 Dni Dat aType Define the data types referenced by Dmi DataUni on
11 Dmi Fi | eDat al nf o Define the DM mapping file types

11

/1 Data Structures:

11

11 Dmi Ti mest anp Describes the DM timestanp structure

11 Dmi String Describes the DM string representation

11 Dmi Cctet String Describes the DM octet string representation

11 Dni Dat aUni on Di scrinminated union of DM data types

11 Dmi Enumi nf o Associ ates an integer value with descriptive text
11 Dmi Attributelnfo Hol ds i nformation about an attribute

11 Dmi Attri but eData Describes an attribute id, type, and val ue

11 Dmi Groupl nfo Hol ds i nformati on about a group

11 Dni Conponent | nf o Hol ds i nformati on about a conponent

11 Dmi Fi | eDat al nf o Hol ds | anguage file type and naepping data

11 Dmi Cl assNanel nf o Hol ds a group's id and class string

11 Dnmi RowRequest Identifies { conponent, group, row, ids } to get
11 Dni RowDat a Identifies { conponent, group, row, values } to set
11

11 Dmi Attributelds Describes a confornmant array of Dmild

11 Dmi Attri but eVal ues Describes a conformant array of Dmi AttributeData
11 Dmi Enuntii st Describes a conformant array of Dm Enuml nfo

11 Dmi Attri buteLi st Describes a conformant array of Dmi Attributelnfo
11 Dmi Groupli st Describes a conformant array of Dmi G ouplnfo

11 Dni Conponent Li st Describes a confornmant array of Dm Conmponent!nfo
11 Dmi Fi | eDat alLi st Describes a conformant array of Dmi Fil eDatal nfo
11 Dmi Cl assNaneLi st Describes a conformant array of Dm C assNanel nfo
11 Dmi StringlLi st Describes a confornant array of Dmi String

11 Dmi Fi | eTypelLi st Describes a confornmant array of Dmi Fil eType

11 Dmi Mul ti RowRequest Describes a confornmant array of Dmi RowRequest

11 Dmi Mul ti RowDat a Describes a conformant array of Dmi RowData

M/

i fndef DM _API
define DM _API
endi f

January, 2003

210

Desktop Management I nterface Specification v2.01s

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok o ok ko ok kR ok ok ko ko kK ok ok kK kR Kk kK ko

* Dmi Set Mbde

R

/*D*
/1 Nare: Dmi Set Mbde
I/ Purpose: Define set operations
/1 Context: Dmi Set Attri but es()
/1 Fields:
11 DM _SET Set data val ues
11 DM _RESERVE Reserve resources for a set operation
11 DM _RELEASE Rel ease previously reserved resources
D/
enum Dmi Set Mode {
DM _SET,
DM _RESERVE,
DM _RELEASE

I
typedef enum Dmi Set Mode Dmi Set Mode_t ;

[ko ok ok ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok ok ok ko ok ok k ko ok ko kK ko kK kR R kK ko Kk

* Dmi Request Mode

ok ok ok ok ok ok Kk ok ok ok Kk ok ok Kk ok ko k kR ok kK kR kR kR Kk k kR Kk kR kK Kk kR kK ok kK Kk k ko

| *D*
/1 Name: Dnmi Request Mode
/1 Purpose: Define sequential access nodes
/1 Context: Field in Dm RowRequest,
/1 Context: Dnmi Li st Component s(), Dmi Li st Conponent sByCd ass(),
/1 Context: Dmi Li st Groups(), DmiListAttributes(),
Il Fields:
11 DM _UNI QUE Access the specified item (or table row
11 DM _FI RST Access the first item
11 DM _NEXT Access the next item
*Dr/
enum Dmi Request Mode {
DM _UNI QUE,
DM _FI RST,
DM _NEXT

I
typedef enum Dmi Request Mode Dmi Request Mbde_t ;

[ko ko ok ok ok ok ok ok ok ok ok ok Kk ko ok Kk ok ok ok k ko ok ok k ko ok ko kK ok kK kR kK kK ko

* Dmi St orageType

ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok ok ko kK kR kK kR Rk kR kR Rk k kR Rk ok kR Rk ok kR kK Kk kK Kk k k]

| *D*
/1 Name: Dmi St or ageType
/1 Purpose: Define the storage type for an attribute
/1 Context: Field in Dm Attributelnfo
/1 Fields:
11 M F_COVMON Value is froma small set of possibilities
11 M F_SPECI FI C Value is froma large set of possibilities
*Dr/
enum Dmi St or ageType {
M F_COMVON,
M F_SPECI FI C

Iy
typedef enum Dmi St orageType Dm St orageType_t;

January, 2003 211

Desktop Management I nterface Specification v2.01s

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok o ok ko ok kR ok ok ko ko kK ok ok kK kR Kk kK ko

* Dmi AccessMde

R

| *D*

/1 Nane: Dni AccessMode

/1 Purpose: Define the access nodes for an attribute
/1 Context: Field in Dmi Attributelnfo

Il Fields:

11 M F_UNKNON Unknown access node

11 M F_READ ONLY Read access only

11 M F_READ WRI TE Readabl e and witable

11 M F_VRI TE_O\LY Wite access only

11 M F_UNSUPPORTED Attribute is not supported
*Dr/

enum Dm AccessMde {
F_UNKNOAN_ACCESS,
READ_ONLY,
READ_V\RI TE,

WRI TE_ONLY,

M
M
M
M
M F_UNSUPPORTED

F_l
F_l
F_
F_|

I
typedef enum Dmi AccessMbde Dmi AccessMde_t ;

[K K K K K K K K K K K K K K K K K K KKK KKK KKK KK KKK KKK KK KKK KK KKK KKK KKK KKK KKK

* Dmi Dat aType

ok ok ok ok ok ok Kk ok ok ok Kk ok ok ok kR kK kR kR kR kR kR Kk k kR Rk kR kR Kk ok kR Kk kK kK k ko

| *D*

/1 Nane: Dni Dat aType

/1 Purpose: Define the data types referenced by Dmi DataUni on

/1 Context:

/1 Fields:

11 M F_DATATYPE_O RESERVED

11 M F_COUNTER 32-bit unsigned integer that never decreases

11 M F_COUNTER64 64-bit unsigned integer that never decreases

11 M F_GAUGE 32-bit unsigned integer nmay increase or decrease
11 M F_DATATYPE_4 RESERVED

11 M F_I NTEGER 32-bit signed integer; no semantics known

11 M F_I NTEGER64 64-bit signed integer; no semantics known

11 M F_OCTETSTRI NG String of n octets, not necessarily displayable
11 M F_DI SPLAYSTRI NG Di spl ayabl e string of n octets

11 M F_DATATYPE_9 RESERVED

11 M F_DATATYPE_10 RESERVED

11 M F_DATE 28-octet displayable string

(yyyymudHHMVSS. uuuuuu+000)

*Dr/

enum Dmi Dat aType {
M F_DATATYPE_O,
F_COUNTER64,
F_GAUGE,
F_DATATYPE_4,
F_I NTEGER,
F_| NTEGER64,
F_OCTETSTRI NG,
F_DI SPLAYSTRI NG,
F_DATATYPE_9,
M F_DATATYPE_10,
M F_DATE

M
M
M
M
M
M
M
M
M

I
typedef enum Dmi Dat aType Dni DataType_t;

/*
* Aliases for the standard data types
*
/

define MF_INT M F_I NTEGER

define MF_INT64 M F_| NTEGER64

January, 2003 212

Desktop Management I nterface Specification v2.01s

define MF_STRING M F_DI SPLAYSTRI NG

R

* DmiFil eType

ok ok ok ok ok ok K ok ok ok ok Kk ok ok kK kR ko kK kR kR kR kR kR Kk k kR Rk kR kK Rk kR kK ok kK Kk k ko

| *D*

/1 Nane: Dmi Fi | eType

/1 Purpose: Define the DM mapping file types

/1 Context: Field in Dm Fil eDatal nfo

/1 Fields:

11 DM _FI LETYPE_O RESERVED

11 DM _FI LETYPE_1 RESERVED

11 DM _M F_FI LE_NAVE File data is DM MF file nane

11 DM _M F_FI LE_DATA File data is DM MF data

11 SNVP_MAPPI NG_FI LE_NAME File data is SNVP MAPPI NG fil e nane
11 SNVP_MAPPI NG_FI LE_DATA File data is SNVP MAPPI NG dat a

11 DM _GROUP_FI LE_NAME File data is DM GROUP MF file nane
11 DM _GROUP_FI LE_DATA File data is DM GROUP MF data

11 M5_FI LE_NAMVE File data is Mcrosoft-format file name
11 MS_FI LE_DATA File data is Mcrosoft-format data
*Dr/

enum Dmi Fi | eType {
DM _FI LETYPE_O,
DM _FI LETYPE_1,
DM _M F_FI LE_NAME,
DM _M F_FI LE_DATA,
SNVP_MAPPI NG_FI LE_NAME,
SNVP_NMAPPI NG FI LE_DATA,
DM _GROUP_FI LE_NAME,
DM _GROUP_FI LE_DATA,
MS_FI LE_NAME,
MS_FI LE_DATA

I
typedef enum Dmi Fil eType DmiFil eType_t;

[ko ko ok ok ko ok ok ok ok ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ko ok ok ok kK ko kK kR ok kR kK ko

* DM Data Types

R e e

typedef unsigned | ong Dmild_t;

typedef unsigned | ong Dmi Handl e_t ;
typedef unsigned | ong Dmi Counter _t;
typedef unsigned | ong Dmi ErrorStatus_t;
typedef unsigned | ong Dmi Counter64_t[2];
typedef unsigned | ong Dmi Gauge_t;
typedef unsigned | ong Dmi Unsi gned_t ;
typedef |ong Dmi | nteger _t;
typedef unsigned | ong Dmi I nteger64_t[2];
typedef unsigned | ong Dni Bool ean_t ;

[K K K K K K K K K K K K K K K K K K KKK KKK kKKK kKKK KKK KKK KKK KK KKK KKK KKK KKK

* Dmi Ti mest anp

ok ok ok ok ok ok Kk ko ok ok ok ko ok ko k ok kR kR Rk Rk kR kR Rk k kR Kk ok kR Rk kK kR Kk ok kK Kk k ko

| *D*

/1 Nane: Dmi Ti mest anp

/1 Purpose: Describes the DM timestanp structure

/1 Context: Field in Dm DataUnion

Il Fields:

11 year The year ('1996')

11 nont h The month ('1'..'12")

11 yay The day of the nmonth ('1'..'23")

11 hour The hour ('0'.."'23")

11 m nut es The minutes ('0'.."'59")

11 seconds The seconds ('0'..'60"); includes |eap seconds
11 dot Adot ('.")

11 m cr oSeconds M croseconds ('0'..'999999")

11 pl usODM Versi on 2nus ‘+' for east, or '-' west of UTC

January, 2003 213

Desktop Management I nterface Specification v2.01s

11 utcOf f set M nutes (*0'..'720") from UTC
11 paddi ng Unused paddi ng for 4-byte alignnment
*Dr/
struct Dmi Ti nestanp {

char vyear [4];

char nonth [2];

char day [2];

char hour [2];

char mnutes [2];

char seconds [2];

char dot;

char mcroSeconds [6];
char plusODM Version 2nus;
char utcOff set [3];
char paddi ng [3];
I
typedef struct Dmi Ti mestanp Dm Ti nestanp_t;

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok ok ok ko ok ok k ko ok ko ko kR ko ok kR kK kK kK ko

* DmiString

)

/*D*

/1 Name: Dmi String

I/ Purpose: Describes the DM string representation

/1 Context: Field in Dm DataUni on

/1 Fields:

11 si ze Nunber of octets in the string body

11 body String contents

/1

/Il Notes: For displaystrings, the string is null teDM Version 2nated,
/1 and the null character is included in the size.
D/

struct Dmi String {
char body<>;

i
typedef struct Dmi String Dmi String_t;
typedef Dmi String_t* DmiStringPtr_t;

[k ko ok ok k ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ok ok ok ko ko kK ok ok kK kR kK kK ko

* Dmi CQctetString

R)

| *D*

/1 Name: Dmi CctetString

/1 Purpose: Describes the DM octet string representation
/1 Context: Field in Dm DataUni on

/Il Fields:

11 si ze Nunber of octets in the string body

11 body String contents

*Dr/

struct DmiCctetString {
char body<>;
i

typedef struct DmiOctetString Dmi CctetString_t;

[ko ko ok ko ok ok ko ok ok ok ok ok Kk ok ok o ko ok ko ok ko ko kR ok kK kR Kk ko Kk

* Dmi Dat aUni on

R ey

| *D*

/1 Name: Dni Dat aUni on

/1 Purpose: Di scrimnated union of DM data types
/1 Context: Field in Dm AttributeData

/Il Fields:

11 type Di scrimnator for the union

11 val ue Union of DM attribute data types

January, 2003 214

Desktop Management I nterface Specification v2.01s

*Dr/

uni on Dmi Dat aUni on swi tch (Dm DataType_t type) {
case M F_COUNTER: Dmi Count er _t counter;
case M F_COUNTERG64: Dmi Count er 64_t count er 64;
case M F_GAUCE: Dmi Gauge_t gauge;
case M F_| NTEGER: Dmi | nt eger _t i nt eger;
case M F_| NTEGER64: Dmi | nt eger 64_t i nt eger 64;
case M F_COCTETSTRI NG Dmi CctetString_t* octetstring;
case M F_DI SPLAYSTRING Dmi String_t* str;
case M F_DATE: Dmi Ti mestanp_t * dat e;

I
typedef uni on Dmi Dat aUni on Dmi Dat aUni on_t;

[k ke kk ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok k ko ok ko kR ok kK kR kK kK ko

* Dmi Enumi nfo

R Y

| *D*

/1 Name: Dmi Enuni nf o

Il Purpose: Associ ates an integer value with descriptive text
/1 Context: El ement in Dmi Enunili st

Il Fields:

11 name Enuner ation nane

11 val ue Enuner ation val ue

*Dr/

struct Dm Enum nfo {
Dmi String_t* name;
Dmi | nt eger _t val ue;
I
typedef struct Dmi Enuminfo Dm Enuminfo_t;

R

* DmiAttributelnfo

R ey

| *D*
/1 Nane: Dmi Attributelnfo
/'l Purpose: Hol ds i nformation about an attribute
/1 Context: El enent in Dmi AttributelList
Il Fields:
11 id Attribute ID
11 name Attribute name string
11 pragma Attribute pragma string [optional]
11 description Attribute description string [optional]
11 storage Common or specific storage
11 access Readonly, read-wite, etc
11 type Counter, integer, etc
11 maxSi ze Maxi mum | ength of the attribute
11 enuntLi st Enunii st for enunerated types [optional]
*Dr/
struct DmiAttributelnfo {
Dmi | d_t id;
Dmi String_t* name;
Dmi String_t* pragma;
Dmi String_t* description;
Dni St or ageType_t storage;
Dmi AccessMode_t access;
Dni Dat aType_t type;
Dmi Unsi gned_t maxSi ze;

struct Dm Enunli st* enuntLi st ;

1
typedef struct Dmi Attributelnfo Dmi Attributelnfo_t;

January, 2003 215

Desktop Management I nterface Specification v2.01s

[k ko ok ok ok ok ok ok ko ok ok ko ok Kk ok ok ok ok ko ok ok kR ok ok ko ko kK ok ok kR kK kR kK ko

* Dmi AttributeData

R

| *D*
/1 Nane: Dmi Attri but eDat a
/1 Purpose: Describes an attribute id, type, and val ue
/1 Context: El ement in Dmi AttributeVal ues
/1 Fields:
/1 id Attribute ID
11 data Attribute type and val ue
*Dr/
struct Dmi AttributeData {
Dmi | d_t id;
Dmi Dat aUni on_t dat a;

1
typedef struct Dmi AttributeData Dmi AttributeData_t;

R

* Dmi Groupl nfo

ok ok ok ok ok ok Kk ok ok ok Kk ok ok ok k ok kK Kk ok kR Rk kR kK Rk kR kR kK kK Kk Kk kK ok kK Kk k ko

/*D*
/1 Nane: Dmi Groupl nfo
/'l Purpose: Hol ds i nformati on about a group
/1 Context: El ement in Dmi Groupli st
/1 Fields:
11 id Goup ID
11 name Group nane string
11 pragma Group pragma string [optional]
11 cl assNanme Group class nane string
11 description Group description string [optional]
11 keyLi st Attribute IDs for table row keys [optional]
D/
struct Dm Grouplnfo {
Dmild_t id;
Dmi String_t* nane;
Dmi String_t* pragma;
Dmi String_t* cl assNane;
Dmi String_t* description;

struct Dm Attributelds* keyLi st ;
I
typedef struct Dmi Grouplnfo Dm G ouplnfo_t;

[k ko ok k ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok o ko ok ok k ok ok ok ko kR ok kK kR kK Kk Kk

* Dmi Conponent | nf o

R Y

/*D*

/1 Nane: Dni Conponent | nf o

I/ Purpose: Hol ds i nformati on about a conponent

/1 Context: El ement in Dnmi Conponent Li st

/1 Fields:

11 id Conponent | D

11 name Conponent name string

11 pragma Conponent pragna string [optional]
11 description Conponent description string [optional]
/1 exact Mat ch

11 idl _true = Exact match

11 idl _false = Possible match

D/

struct Dmi ConponentInfo {
Dmi | d_t id;
Dmi String_t* nane;
Dmi String_t* pragma;
Dmi String_t* description;
Dni Bool ean_t exact Mat ch;

January, 2003 216

Desktop Management I nterface Specification v2.01s

I
typedef struct Dmi Conponent!nfo Dmi Conponentlnfo_t;

[ko ko k ok ok ok k ok ok ok ko ok Kk ok ok ok ok ko ok ok ok ko ok kR ok ok ko kK ko kK kR kK kK ko

* Dmi Fil eDatal nfo

R

| *D*

/1 Name: Dni Fi | eDat al nf o

/1 Purpose: Hol ds | anguage file type and mappi ng data
/1 Context: El ement in Dmi Fil eDatalLi st

/1 Fields:

11 fileType MF file, SNWP mapping file, etc

11 fileData The file info (name -or- contents)
*Dr/

struct DmiFileDatalnfo {
Dmi Fi | eType_t
Dmi CctetString_t*

fileType;

fileData;

H

typedef struct DmiFileDatalnfo DnmiFileDatalnfo_t;

[ko ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok kR ok ok ko ko kK ok ok kK kR kK kK ko

* Dmi C assNanel nfo

R

| *D*
/1 Name: Dni Cl assNanel nf o
/1 Purpose: Hol ds a group's id and class string
/1 Context: El ement in Dmi Cl assNaneLi st
/1 Fields:
11 id Goup ID
11 cl assNanme Group class nane string
*Dr/

struct Dmi Cl assNanmelnfo {

Dmi | d_t id;

Dmi String_t* classNane;

I
typedef struct Dmi Cl assNanmelnfo Dmi Cl assNanelnfo_t;

[k ko ok k ok k ok ok ok ok ok ok Kk ok ok ok Kk ok ok ok ok ok ok ok ok ko ok ko kK ok kK kR ok Kk Kk

* Dnmi RowRequest

e

/*D*
/1 Name: Dnmi RowRequest
/'l Purpose: Identifies { component, group, row, ids } to get
/1 Context: El ement in Dmi Mul ti RowRequest
/1 Fields:
11 conpl d Conponent | D
11 groupld Goup ID
11 request Mbde Get fromspecified row, first row, or next row
11 keyLi st Array of values for key attributes
11 ids Array of IDs for data attributes
D/
struct Dmi RowRequest {
Dmi | d_t conpl d;
Dmild_t groupl d;
Dmi Request Mode_t request Mode;
struct Dmi AttributeVal ues* keylLi st;
struct Dm Attributelds* ids;

I
typedef struct Dmi RowRequest Dmi RowRequest _t;

January, 2003

217

Desktop Management I nterface Specification v2.01s

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok o ok ko ok kR ok ok ko ko kK ok ok kK kR Kk kK ko

* Dmi RowDat a

R

/*D*
/1 Nane: Dni RowDat a
/1 Purpose: Identifies { component, group, row, values } to set
/1 Context: El ement in Dmi Mul ti RowDat a
/1 Fields:
11 conpl d Conponent | D
11 groupld Goup ID
11 cl assName Group class nane for events, or 0 [optional]
11 keylLi st Array of values for key attributes
11 val ues Array of values for data attributes
/1
/1 Notes: This structure is used for setting attributes, getting
11 attributes, and for providing indication data. The
11 classNane string is only required when returning
/1 indication data. For other uses, the field can be 0.
D/
struct Dm RowData {
Dmild_t conpl d;
Dmild_t groupl d;
Dmi String_t* cl assNane;
struct Dmi AttributeVal ues* keylLi st;
struct Dmi AttributeVal ues* val ues;

I
typedef struct Dmi RowData Dmi RowData_t;

R R

* Dmi Attributelds

ok ok ok k ok ok Kk ok ok ok Kk ok ok kK kR Kk ok kK kR Rk kR kR Kk k kR Kk kK kR Kk kR kK kK kK k ko

| *D*

/1 Nane: Dmi Attributelds

/1 Purpose: Describes a conformant array of Dmld
/1 Context: Field i n Dm RowRequest

/1 Fields:

11 si ze Array el ements

11 list Array data

*Dr/

struct Dmi Attributelds {
Dmld_t |ist<>;
Iy

typedef struct Dmi Attributelds Dm Attributelds_t;

R

* Dmi AttributeVal ues

ok ok ok ok ok ok Kk ko ok Kk ok ok Kk ok kK Kk ko kR Rk kR kR Kk kR kR kR kR Kk Kk kK ok kK Kk k ko

| *D*

/1 Nane: Dmi Attri but eVal ues

/1 Purpose: Describes a conformant array of Dmi AttributeData
/1 Context: Field in Dm RowRequest, Dmi RowData

/1 Fields:

11 si ze Array el ements

11 list Array data

*Dr/

struct Dmi AttributeVal ues {
Dmi AttributeData_t |ist<>;

I
typedef struct Dmi AttributeVal ues Dmi AttributeVal ues_t;

January, 2003 218

Desktop Management I nterface Specification v2.01s

[k ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ok ok ok kK ko ok ok ok ko Kk ko kK kR kK kK ko

* Dmi Enunli st

R

/*D*

/1 Nare: Dmi Enunti st

/1 Purpose: Describes a confornmant array of Dm Enum nfo
/1 Context: Dmi EnumAt t ri but es()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

struct Dm Enunilist {
Dm Enuminfo_t |ist<>;
1

typedef struct Dmi Enunii st Dm EnunList_t;

[k ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok k ko ok ok kR ok o ko ko kR ok ok kK kR ok kR Kk

* Dmi AttributelList

R Y

/*D*

/1 Narme: Dmi AttributelLi st

/'l Purpose: Describes a confornmant array of Dmi Attributelnfo
/1 Context: Dmi Li stAttributes()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

struct Dm AttributeList {
Dmi Attributelnfo_t |ist<>;
I
typedef struct Dmi Attributelist Dmi AttributeList_t;

[K K K K K K K K K K K K K K K K K K KK KKK kKKK kKKK kKKK KKK KKK KK KKK KKK KKK KK KKK

* Dmi Groupli st

ok ok ok ok ok ok Kk ok ok ok Kk ok ok Kk ok ko Kk kR kR kR kR kR Kk k kR Kk kK kK Kk Kk kK ok kK Kk k k]

/*D*

/1 Nane: Dmi Groupli st

/'l Purpose: Describes a conformant array of Dmi G ouplnfo
/1 Context: Dmi Li st G oups()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

struct Dm GroupList {
Dmi Grouplnfo_t |ist<>;

I
typedef struct Dmi GroupList Dm G oupList_t;

R

* Dmi Conponent

R

/*D*

/1 Nane: Dni Conponent Li st

/'l Purpose: Describes a confornmant array of Dmi Conponent!nfo
/1 Context: Dnmi Li st Conponent s(), Dmi Li st Conponent sByCl ass()
/1 Fields:

11 si ze Array el enents

11 list Array data

D/

January, 2003 219

Desktop Management I nterface Specification v2.01s

struct Dm Conponent Li st {
Dmi ConponentInfo_t |ist<>;
1

typedef struct Dmi ConponentLi st Dmi ConponentList_t;

R R

* Dmi Fi | eDat alLi st

ok ok ok ok ok ok Kk ko ok Kk ok ok kK k ok kK Kk kR kR kR kR Kk k kR Kk kR kR Kk kR kK ok kK Kk k ko

| *D*

/1 Nane: Dni Fi | eDat aLi st

/1 Purpose: Describes a confornant array of Dm Fil eDatal nfo

/1 Context: Dmi AddConponent (), Dmi AddLanguage(), Dmi AddG oup()
/1 Fields:

11 si ze Array el ements

11 list Array data

D/

struct Dm Fil eDataList {
Dm FileDatalnfo_t |ist<>;

1
typedef struct DmiFileDatalist Dm FileDatalist_t;

[K K K K K K K K R K K K K K K K K K K KKK KK KKK KKK KK KK KK KKK KKK KK KKK KKK KKK KKKk

* Dmi Cl assNaneLi st

ok ok ok ok ok ok ok ok ok ok Kk ko Kk ok kK Kk kK kR kR kR kR Kk kR kK ok kK Rk k kR kK ok kK Kk k ko

| *D*

/1 Nare: Dmi Cl assNamelLi st

/'l Purpose: Describes a confornmant array of Dm C assNamel nfo
/1 Context: Dmi Li st Cl assNanes()

/1 Fields:

11 si ze Array el ements

11 list Array data

D/

struct Dm Cl assNaneLi st {
Dm Cl assNanel nfo_t |ist<>;

1
typedef struct Dmi Cl assNaneLi st Dmi Cl assNaneList_t;

R

* Dmi StringlLi st

ok ok ok ok ok ok Kk ok ok ok Kk ok ok ok kR ok kK kR kK kR kR kR kR Kk k kR Kk kR Rk kK kR Kk ok kK Kk k ko

/*D*

/1 Nane: Dmi StringLi st

/'l Purpose: Describes a confornmant array of Dmi Strings
/1 Context: Dmi Li st Languages()

/1 Fields:

11 si ze Array el ements

11 list Array data

D/

struct Dm StringList {
Dmi StringPtr_t |ist<>;
1

typedef struct Dmi StringList Dm StringList_t;

[K K K K K K K K K K K K K K K K KKK KK KKK kKKK KKK KKK KRR KKK KKK KKK KKK KKKk

* Dmi Fi |l eTypeli st

ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko kK kR ko kR kR kR kR Kk kR kK kK kK Kk kR kK ok kK Kk k ko

/*D*

/1 Nane: Dmi Fi | eTypelLi st

/'l Purpose: Describes a confornmant array of DmiFileType entries
/1 Context: Dmi Get Ver si on()

/1 Fields:

January, 2003 220

Desktop Management I nterface Specification v2.01s

11 si ze Array el enents
11 list Array data
*Dr/

struct Dm Fil eTypeList {
Dmi Fil eType_t |ist<>;

I
typedef struct DmiFileTypelList Dm FileTypelList_t;

[ko ko ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok ok k ko ok ok k ko ko ok kK ok ok kR kK Kk kK ko

* Dmi Mul ti RowRequest

R

/*D*

/1 Name: Dmi Mul ti RowRequest

I/ Purpose: Describes a confornmant array of Dmi RowRequest
/1 Context: Dmi Get Attri butes()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

struct Dm Mul ti RowRequest {
Dmi RowRequest _t |ist<>;

b
typedef struct Dmi Multi RowRequest Dmi Milti RowRequest _t;

[k ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok kK ko ok ko kR ok ok kR kK kR Kk

* Dmi Mul ti RowDat a

R Y

/*D*

/1 Nare: Dmi Mul ti RowDat a

/1 Purpose: Describes a confornant array of Dm RowData
/1 Context: Dmi Get Attributes(), Dmi SetAttributes()

/1 Fields:

11 si ze Array el enents

11 list Array data

D/

struct Dm Multi RowData {
Dmi RowData_t |ist<>;
I

typedef struct Dmi Multi RowData Dmi Mul ti RowData_t;

January, 2003

221

Desktop Management I nterface Specification v2.01s

MANAGEMENT INTERFACE (SERVER.X)

RCS:
$Workfile: server.x $
$Revision: 2.0 $
$Modt i me: 3/ 27/ 96 $
$Aut hor : DMTF $
Pur pose:
Descri be the DMIF's Managenent Interface in an RPCGEN that is
suitable for building renpte managenent using the ONC RPC
client/server nodel. This file is conpiled with the RPCGEN
conpiler to produce the follow ng files:
server. h C-style interface header file
server_c.c Stub code for the rm client
server_s.c Stub code for the rm server
Contents:
The following information is described in version 2.0
of the Desktop Managerent Interface Specification.
Initialization:
Dmi Regi ster Regi ster a session with a renpte system
Dmi Unr egi st er Unregister a previously registered session
Dmi Get Ver si on Get DM Service Provider version information
Dmi Get Confi g Get session configuration paraneters
Dmi Set Confi g Set session configuration paraneters
Di scovery:
Dnmi Li st Conponent s Li st conponent properties
Dnmi Li st Conponent sByCl ass Li st conponents matching certain criteria
Dmi Li st Languages Li st a component's | anguage strings
Dni Li st Cl assNanes Li st a component's cl ass names and group ids
Dni Li st G oups Li st group properties
Dmi Li stAttributes List attribute properties
Qper ation:
Dni AddRow Add a newrow to a table
Dri Del et eRow Delete a row froma table
Dmi Get Mul tiple Get a collection of attribute val ues
Dmi Set Mul ti pl e Set a collection of attribute val ues
Dat abase Administration [optional]:

Dmi AddConponent Add a new conponent to the DM database
Dni AddLanguage Add a new | anguage mapping for a component
Dnmi AddGr oup Add a new group to a conponent

Dni Del et eConponent Del ete a conponent fromthe DM database
Dni Del et eLanguage Del ete a | anguage mappi ng for a conponent
Dni Del et eGr oup Del ete a group froma conponent

include "comon. x"

January, 2003

222

January, 2003

Desktop Management I nterface Specification v2.01s

[k ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok ok ko ok ok kR ok ok ko kK Kk ok kK kR kK kK ko

* Dmi Regi ster

R

| *F*

/1 Nane: Dni Regi ster

/1 Purpose: Regi ster a session with a renpte system

/1 Context: Initialization

/1l Returns:

/1 Paraneters:

11 handl e On conpl etion, an open session handl e

11

/1 Notes: The client provides the address of the handle

11 paraneter and the server fills it in. Al commands
11 except Dmi Register() require a valid handle, so

11 this nust be the first command sent to the DM server.
*Ex/

struct Dm RegisterlN {
Dmi Handl e_t handl e;
1

struct Dmi Regi sterQUT {
Dmi ErrorStatus_t error_status;
Dmi Handl e_t* handl e;

};

[ko k kk ok ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok kR ok ok ko kR ko ok kR kK kR Kk

* Dmi Unregi ster

R e

| *F*

I/ Name: Dmi Unr egi st er

/'l Purpose: Unregi ster a previously registered session
/1 Context: Initialization

/'l Returns:

Il Paraneters:

11 handl e An open session handle to be closed

*Ex/

struct Dmi UnregisterQUT {
Dmi ErrorStatus_t error_status;
I

struct Dmi UnregisterIN {
Dmi Handl e_t handl e;
H

[K K K K K K K R K K K K K K K K K K KKK KK kKKK kKKK KKK KKK KK KKK KKK KKK KKK KKK KKK

* Dmi Get Versi on

ok ok ok ok ok ok Kk ok ok ok Kk ko ok k ok kK Kk kR Rk Rk kR kR Kk k kK ok kR Rk kK kR Kk kK kK ok k ko

| *F*

/1 Nane: Dmi Get Ver si on

/1 Purpose: Get DM Service Provider version information

/1 Context: Initialization

/'l Returns:

I/ Parameters:

11 handl e An open session handl e

11 dm SpecLevel The DM Specification version

11 description The OS-specific Service Provider version
11 fileTypes The file types supported for MF installation
11

/1 Notes: 1. The client nust free the dm SpecLevel string
11 2. The client nust free the description string
*Ex/

struct Dmi Get Versi onQUT {
Dmi ErrorStatus_t error_status;
Dmi String_t* dm SpeclLevel ;

223

Desktop Management I nterface Specification v2.01s

Dmi String_t* description;
Dmi Fi |l eTypeList_t* fileTypes;
1
struct Dm Get VersionlN {
Dmi Handl e_t handl e;
1

[ko ke kk ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko kR ok ok ok ok kK ko kR kK kK kK ko

* Dmi Get Config

R

| *F*

/1 Name: Dmi Get Confi g

/1 Purpose: Get session configuration paraneters

/1 Context: Initialization

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 | anguage | anguage- code| territory-code| encodi ng
11

/Il Notes: The client nust free the | anguage string
*Ex/

struct Dm Get Confi gOUT {
Dmi ErrorStatus_t error_status;
Dmi String_t* |anguage;

H

struct Dmi Get ConfiglN {
Dmi Handl e_t handl e;

1

R

* Dmi Set Config

e

| *F*

/1 Nane: Dni Set Confi g

/'l Purpose: Set session configuration paraneters

/1 Context: Initialization

/1l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 | anguage | anguage- code| territory-code| encodi ng
F/

struct Dm Set Confi gOUT {
Dmi ErrorStatus_t error_status;
}s

struct Dmi Set ConfiglN {
Dmi Handl e_t handl e;
Dmi String_t* |anguage;
}s

[K K K K K K R K K K K K K K K K K KKKk kKKK KK KKK KKK KKK KKK KK KKK KKK KKK KKK KKKk

* Dmi Li st Component s

ey

| *F*

/1 Nane: Dni Li st Component s

/1 Purpose: Li st conponent properties

/1 Context: Di scovery

/1l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 request Mbde Uni que, first, or next conponent ?

/1 maxCount Maxi mum nunber to return, or 0 for all
11 get Pragma Get optional pragma string ?

January, 2003

224

Desktop Management I nterface Specification v2.01s

11 get Descri ption Get optional conponent description ?

11 conpl d Conponent to start with (see request Mde)
11 reply Li st of conponents

11

/1 Notes: The client nust free the reply structure

*Ex/

struct Dmi Li st Conmponent sOUT {
Dmi ErrorStatus_t error_status;
Dmi Conponent List_t* reply;

H
struct Dmi Li st Conponent sl N {
Dmi Handl e_t handl e;
Dmi Request Mode_t request Mode;
Dmi Unsi gned_t maxCount ;
Dni Bool ean_t get Pragma ;
Dni Bool ean_t get Descri ption;
Dmild_t conpl d;
H

R

* Dmi Li st Conponent sByCl ass

ok ok ok ok ok ok Kk k ok ok Kk ok ok Kk ok kK Kk kK kK kR kR kR Kk k kR Kk k kR Kk k kR kK k kK Kk k k]

| *F*

/1 Nane: Dni Li st Component sByCl ass

/1 Purpose: Li st conponents matching certain criteria

/1 Context: Di scovery

/'l Returns:

/1l Parameters:

11 handl e An open session handl e

11 request Mode Uni que, first, or next conponent ?

11 maxCount Maxi mum nunber to return, or O for all
11 get Pragma Get optional pragma string ?

11 get Descri ption Get optional conponent description ?
11 conpl d Conponent to start with (see requestMde)
11 cl assNanme Group class nane string to match

11 keyLi st Group row keys to match, or null

11 reply Li st of conponents

11

/1 Notes: The client nust free the reply structure

*Ex/

struct Dnmi Li st Conponent sByCl assQUT {
Dmi ErrorStatus_t error_status;
Dmi Conponent Li st _t* reply;

H

struct Dmi Li st Conponent sByCl assI N {
Dmi Handl e_t handl e;
Dmi Request Mode_t request Mode;
Dmi Unsi gned_t maxCount ;
Dni Bool ean_t get Pragns;
Dni Bool ean_t get Descri ption;
Dmi | d_t conpl d;
Dmi String_t* cl assNane;
Dmi AttributeVval ues_t* keylist;

}s

[ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ko ok k ko ok ok k ko ok ko ko kK ok kK kR ok Kk Kk

* Dmi Li st Languages

)

| *F*

/1 Name: Dmi Li st Languages

/1 Purpose: Li st a conponent's |anguage strings
/1 Context: Di scovery

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

January, 2003

225

/1
/1
/1
/1
/1
F/

Desktop Management I nterface Specification v2.01s

maxCount Maxi mum nunber to return, or O for all
conpl d Conponent to access
reply Li st of |anguage strings

Not es: The client nust free the reply structure

struct Dmi Li st LanguagesOUT {

I

Dmi Error Status_t
Dmi StringList_t*

error 7St at us;
reply;

struct DnmiLi st Languages!| N {

};

Dmi Handl e_t
Dmi Unsi gned_t
Dmi | d_t

handl e;
maxCount ;
conpl d;

[ko ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ok ok ok ok k ko ok ko kK ok kK kR kK Kk Kk

* DmiLi st O assNames

)

I *F*
/1
/1
11
11
/1
/1
11
11
11
/1
11
*Ex/

Nane: Dnmi Li st O assNanes
Pur pose: Li st a conponent's class nanes and group ids
Cont ext : Di scovery
Ret urns:
Par amet ers:
handl e An open session handl e
max Count Maxi mum nunber to return, or 0 for all
conpl d Conponent to access
reply Li st of class names and group ids
Not es: The client nust free the reply structure

struct DmiLi st Cl assNamesOUT {

};

Dmi Error Status_t

error_status;
Dmi Cl assNaneLi st _t*

reply;

struct Dmi ListC assNames!| N {

};

Dmi Handl e_t
Dmi Unsi gned_t
Dmild_t

handl e;
maxCount ;
conpl d;

[ko ko k ok ok ok k ok ok ok ko ok Kk ok ok ok Kk ok ok ok k ko ok ok k ko ok ko ko kK ko kK kR kK kK ko

* Dmi Li st G oups

e ey

/*F*
11
11
11
/1
/1
11
11
11

Nane: Dni Li st G oups

Pur pose: Li st group properties

Cont ext : Di scovery

Ret urns:

Par amet ers:
handl e An open session handl e
request Mbde Uni que, first, or next group ?
max Count Maxi mum nunber to return, or O for all
get Pragma Get optional pragma string ?
get Descri ption Get optional group description ?
conpl d Conponent to access
groupld Goup to start with (see requestMde)
reply Li st of groups

Not es: The client nust free the reply structure

struct Dmi Li st GroupsQUT {

January, 2003

Dmi Error Status_t

error_status;

226

Desktop Management I nterface Specification v2.01s

Dmi GroupLi st _t* reply;

H
struct DmiListGoupslIN {
Dmi Handl e_t handl e;
Dmi Request Mode_t request Mode;
Dmi Unsi gned_t maxCount ;
Dni Bool ean_t get Pragns;
Dni Bool ean_t get Descri ption;
Dmild_t conpl d;
Dmild_t groupl d;
I

[ko ko ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok ok k ko ok ok k ko ko ok kK ok ok kR kK Kk kK ko

* DmiListAttributes

R

| *F*

/1 Name: Dmi Li stAttributes

/1 Purpose: List attribute properties

/1 Context: Di scovery

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 request Mode Uni que, first, or next attribute ?

11 maxCount Maxi mum nunber to return, or 0 for all
11 get Pragma Get optional pragma string ?

11 get Descri ption Get optional attribute description ?
11 conpl d Conponent to access

11 groupld Group to access

11 attribld Attribute to start with (see requestMde)
11 reply List of attributes

11

/1 Notes: The client nust free the reply structure

*Ex/

struct DmiListAttributesOUT {
Dmi ErrorStatus_t error_status;
Dmi AttributeList_t* reply;

1

struct DmiListAttributeslN {
Dmi Handl e_t handl e;
Dmi Request Mode_t request Mode;
Dmi Unsi gned_t maxCount ;
Dni Bool ean_t get Pragns;
Dni Bool ean_t get Descri ption;
Dmild_t conpl d;
Dmild_t groupl d;
Dmild_t attribld;

}s

[K K K K K K R K K K K K K K KK KKK KKK kKKK KKKk kKKK KK KKK KKK KKK KKK KKK KKKk

* Dmi AddConponent

R Y

| *F*

/1 Nane: Dni AddConponent

/'l Purpose: Add a new conponent to the DM database
/1 Context: Dat abase Administration

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 fileData MF file data for the conponent

11 conpl d On conpletion, the SP-allocated conponent |
11 errors Installation error nmessages

*Ex/

struct Dmi AddConponent QUT {
Dmi ErrorStatus_t error_status;
Dmild_t conpl d;

January, 2003 227

Desktop Management I nterface Specification v2.01s

Dmi StringList_t* errors;

H
struct Dmi AddConponent | N {
Dmi Handl e_t handl e;
Dmi Fil eDataList_t* fileData;
1

[ko ke kk ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko kR ok ok ok ok kK ko kR kK kK kK ko

* Dmi AddLanguage

Y

| *F*

/1 Name: Dmi AddLanguage

/1 Purpose: Add a new | anguage mapping for a conponent
/1 Context: Dat abase Admini stration

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 fileData Language mapping file for the conponent
11 conpl d Conponent to access

11 errors Installation error nmessages

*Ex/

struct Dm AddLanguageQUT {
Dmi ErrorStatus_t error_status;
Dmi StringList_t* errors;

H

struct Dmi AddLanguagel N {
Dmi Handl e_t handl e;
Dm Fil eDataList_t* fileData;
Dmild_t conpl d;

b

[K K K K K K K R K K K K K K K K K KKK KKK KKK KKKk K KRR R KKK KKK KK KKK KKK KKKk

* Dmi AddG oup

ok ok ok ok ok ok Kk ko ok Kk ok ok ok k ok ko k k ok kR kR Rk Rk kR kR Kk kR kK k kK Kk kK kR Kk ok kK Kk k ko

/*F*

/1 Name: Dnmi AddGr oup

/1 Purpose: Add a new group to a conponent

/1 Context: Dat abase Adnministration

/'l Returns:

/1 Parameters:

11 handl e An open session handl e

11 fileData MF file data for the group definition
11 conpl d Conponent to access

11 groupld On conpletion, the SP-allocated group |ID
11 errors Installation error nmessages

*Ex/

struct Dmi AddG oupQOUT {
Dmi Error Status_t error_status;
Dmi | d_t groupl d;
Dmi StringList_t* errors;

b

struct Dmi AddG oupl N {
Dmi Handl e_t handl e;
Dmi Fil eDataList_t* fileData;
Dmild_t conpl d;

1

/~k*******~k~k~k~k~k~k~k~k~k~k************************
* Dmi Del et eConponent
***/

/*F*

/1 Name: Dni Del et eConponent

January, 2003 228

Desktop Management I nterface Specification v2.01s

/1 Purpose: Del ete a conponent fromthe DM database
/1 Context: Dat abase Administration

/1 Returns:

/1 Paraneters:

11 handl e An open session handl e

11 conpl d Conponent to delete

*Ex/

struct Dmi Del et eConponent OUT {
Dmi Error Status_t error_status;
H

struct Dmi Del et eConponent I N {
Dm Handl e_t handl e;
Dmild_t conpl d;

H

[ko ok ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok ok ok ko ok ok k ko ok ko Kk ko kK kR kK kK ko

* Dmi Del et eLanguage

ok ok ok ok ok ok Kk ok ok ok Kk ok ok Kk ok kK Kk kK kR Rk Rk kR kR Kk kR kK kK kK Kk kR kK k kK Kk k ko

| *F*

/1 Name: Dmi Del et eLanguage

/1 Purpose: Del ete a | anguage mapping for a conponent
/1 Context: Dat abase Administration

/'l Returns:

I/ Parameters:

11 handl e An open session handl e

11 | anguage | anguage- code| territory-code| encodi ng
11 conpl d Conponent to access

*Ex/

struct Dmi Del et eLanguageOUT {
Dmi ErrorStatus_t error_status;
1

struct Dmi Del et eLanguagel N {
Dmi Handl e_t handl e;
Dmi String_t* |anguage;
Dmi | d_t conpl d;

1

[ko ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok k ko ok ok k ok ko ko ok ok ko kK kR kK kK ko

* Dnmi Del et eGroup

R Y

I *F*

/1 Name: Dmi Del et eGr oup

/'l Purpose: Del ete a group froma conponent
/1 Context: Dat abase Administration

/1l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 conpl d Conponent contai ni ng group
11 groupld Goup to delete

F/

struct Dmi Del et eG oupQUT {
Dmi Error Status_t error_status;

1

struct Dmi Del et eGroupl N {
Dm Handl e_t handl e;
Dmi | d_t conpl d;
Dmild_t groupl d;

b

January, 2003 229

Desktop Management I nterface Specification v2.01s

[k ok ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok ko ok ok k ko ok ok ko kR ok ok kR R kK ko Kk

* Dmi AddRow

Y

| *F*

/1 Name: Dri AddRow

I/ Purpose: Add a newrow to a table
/1 Context: Qperation

/'l Returns:

Il Paraneters:

11 handl e An open session handl e
11 rowDat a Attribute values to set
*Ex/

struct Dmi AddRowOUT {
Dmi ErrorStatus_t error_status;
1

struct Dmi AddRowl N {
Dmi Handl e_t handl e;
Dmi RowDat a_t* rowbDat a;
1

[ko ko ok ok ok ok ok ok ko ok Kk ok ok ok Kk ok ok ok ok ko ok ok kR ok ok ko ko kK ok ok kK kR kK kK ko

* Dmi Del et eRow

R

I *F*

/1 Narme: Dri Del et eRow

/'l Purpose: Delete a row froma table

/1 Context: Qperation

/'l Returns:

/1 Paraneters:

11 handl e An open session handl e

11 rowDat a Row { conponent, group, key } to delete
*Fx/

struct Dmi Del et eRowOUT {
Dmi ErrorStatus_t error_status;
1

struct Dmi Del et eRow N {
Dmi Handl e_t handl e;
Dmi RowDat a_t* rowbDat a;
1

[k ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok ok ok ko ok ok kK ok o ok ko ko kR ko kR ko kK kK ko

* Dmi GetMiltiple

R

| *F*

/1 Name: Dmi Get Mul tiple

/'l Purpose: Get a collection of attribute val ues

/1 Context: Qperation

/'l Returns:

Il Paraneters:

11 handl e An open session handl e

11 request Attributes to get

11 rowDat a Requested attribute val ues

11

/1 Notes: 1. The request may be for a SINGLE row (size = 1)
11 2. An enpty id list for a row neans "get all attributes"”
11 3. The client nust free the rowbData structure
*Ex/

January, 2003 230

Desktop Management I nterface Specification v2.01s

struct Dm Get Ml tipl eQUT {
Dmi ErrorStatus_t error_status;
Dmi Mul ti RowDat a_t * rowDat a;

H
struct Dmi GetMultiplelN {
Dmi Handl e_t handl e;
Dmi Mul ti RowRequest _t* request;
H

R R

* Dmi SetMultiple

ok ok ok ok ok ok Kk ko ok Kk ok ok Kk ok kK k kR kK kR kR kR Rk k kR Kk kR kR Rk kR kK ok kK Kk k ko

| *F*

/1 Nane: Dmi Set Mul ti pl e

/1 Purpose: Set a collection of attributes
/1 Context: QOperation

/1 Returns:

I/ Parameters:

11 handl e An open session handl e

11 set Mode Set, reserve, or release ?
11 rowbat a Attribute values to set
*Ex/

struct Dmi Set Ml tipl eQUT {
Dmi ErrorStatus_t error_status;

H

struct Dmi SetMultiplelN {
Dmi Handl e_t handl e;
Dmi Set Mbde_t set Mbde;
Dmi Mul ti RowData_t* rowbData;

1

[k ok ko ok ok ok ok ok ok ok ko ok Kk ok ok ok Kk ko ok ko ok ok k ko ok ko ko kR ok ok kR kK kR kK ko

* Dmi GetAttribute

R

| *F*

/1 Name: Dmi Get Attribute

/1 Purpose: Get a single attribute value
/1 Context: Qperation

/'l Returns:

Il Paraneters:

11 handl e An open session handl e
11 conpl d Conponent to access

11 groupld Group w thin conponent

11 attribld Attribute within group
11 keyLi st Keylist to specify a table row [optional]
11 val ue Attribute val ue returned
*Ex/

struct Dmi GetAttributeQUT {
Dmi Error Status_t error_status;
Dmi Dat aUni on_t * val ue;

1

struct Dm GetAttributelN {
Dmi Handl e_t handl e;
Dmild_t conpl d;
Dmi | d_t groupl d;
Dmild_t attribld;
Dmi AttributeVval ues_t* keylist;

H

January, 2003

231

Desktop Management I nterface Specification v2.01s

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok o ok ko ok kR ok ok ko ko kK ok ok kK kR Kk kK ko

* DmiSetAttribute

R

| *F*
/1 Nane: Dmi Set Attribute
/1 Purpose: Set a single attribute value
/1 Context: Qperation
/1 Returns:
Il Paraneters:
11 handl e An open session handl e
11 conpl d Conponent to access
11 groupld Group w thin conponent
11 attribld Attribute within group
11 keyLi st Keylist to specify a table row [optional]
11 set Mbde Set, reserve, or release ?
11 val ue Attribute value to set
*Ex/
struct Dmi SetAttributeQUT {
Dmi Error Status_t error_status;
1
struct Dmi SetAttributelN {
Dmi Handl e_t handl e;
Dmild_t conpl d;
Dmi | d_t groupl d;
Dmild_t attribld;
Dmi AttributeVal ues_t* keylist;
Dni Set Mbde_t set Mbde;
Dni Dat aUni on_t * val ue;
1
program DM 2_SERVER {
versi on DM 2_SERVER_VERSI ON {
Dni Regi st er OUT _Dni Regi ster (Dmi RegisterI N) = 0x200;
Dmi Unr egi ster OQUT _Dmi Unregi ster (DmiUnregisterIN) = 0x201;
Dmi Get Ver si onOUT _Dmi Get Version (Dmi GetVersionlN) = 0x202;
Dmi Get Conf i gOUT _Dmi Get Config (Dm GetConfiglN) = 0x203;
Dni Set Conf i gOUT _Dnmi Set Config (Dmi SetConfiglN) = 0x204;

Dnmi Li st Component sOUT _Dmi Li st Conmponents (

Dnmi Li st ComponentsIN) = 0x205;

Dmi Li st Conponent sByCl assOUT _Dmi Li st Conponent sByCl ass (

Dmi Li st Conponent sByCl assI N) = 0x206;

i
i
i st GroupsOQUT _Dmi Li st Groups (
i

Dmi
Dmi
Dmi
Dmi
Dmi

>

ddRowOUT _Dni AddRow (
Dmi Del et eRowOUT _Dni Del et eRow (
Dri Get Mul ti pl eOUT _Dmi Get Mul tiple (
Dmi Set Mul ti pl eQUT _Dmi SetMultiple (
Dmi AddConponent QUT _Dmi AddConponent (
Dnmi AddLanguageOQUT _Dmi AddLanguage (
Dnmi AddG oupOUT _Dni AddG oup (

0x212;

Dmi Del et eLanguageOUT _Dmi Del et eLanguage (

Dni Del et eGr oupOUT _Dni Del et eGroup (
Dmi Get AttributeOUT _Dm GetAttribute (
Dmi Set Attri buteOUT _Dmi SetAttribute (
= 1;
} = 300598;

January, 2003

st LanguagesOUT _Dmi Li st Languages (
st O assNanesOUT _Dmi Li st O assNanes (
Dmi Li st GroupsI N)
stAttributesOUT _DmiListAttributes (
Dri AddRow N)
Dmi Del et eRow N)
Dmi GetMultiplelIN) =
Dmi SetMultiplelIN) =
Dmi AddConponent | N)
Dmi AddLanguagel N)
Dni AddGr oupl N)
Dni Del et eConponent QUT _Dni Del et eConponent (

= 0x207;
= 0x208;

Dmi Li st Languages!| N)
Dnmi Li st Cl assNames|I N)
= 0x209;
Dmi Li stAttributesIN)
= 0x20b;

= 0x20a;

= 0x20c;

= 0x20d;
0x20e;

= 0x20f;

= 0x210;

= 0x211;

Dni Del et eConponentIN) =

Dmi Del et eLanguagel N) = 0x213;

Dmi Del et eGroupl N) = 0x214;
Dmi Get Attributel N) = 0x215;
Dmi Set Attributel N) = 0x216;

232

Desktop Management I nterface Specification v2.01s

INDICATION DELIVERY INTERFACE (CLIENT.X)

M/

RCS:
$Workfile: client. x $
$Revision: 2.0 $
$Modt i me: 3/ 27/ 96 $
$Aut hor : DMTF $
Pur pose:
Describe the DMIF' s Managenent Interface in an RPCGEN that is
suitable for building renpte managenent using the ONC RPC
client/server nodel. This file is conpiled with the RPCGEN
conpiler to produce the follow ng files:
client.h C-style interface header file
client_c.c Stub code for the managed system
client_s.c Stub code for the managi ng application
Contents:
The following information is described in version 2.0
of the Desktop Managenent Interface Specification.
Data Structures:

Dnmi NodeAddr ess Node address for indication originators
I ndi cation Delivery:

Dmi Del i ver Event Deliver event data to an application

Dnmi Conponent Added A conponent was added to the database

Dni Conponent Del et ed A conponent was del eted fromthe database
Dni LanguageAdded A conponent | anguage mappi ng was added

Dmi LanguageDel et ed A conponent | anguage nmappi ng was del et ed

Dmi Gr oupAdded A group was added to a conponent

Dni GroupDel et ed A group was del eted froma conmponent

Dni Subscri pti onNotice I nformati on about an indication subscription

include "comon. x"

[ko ko ok ok ok ok ok ok ok ko kK ok ko ok Kk ok ok ok k ko ok ok k ko ok ko kK ko kK kR kK ko Kk

* Dmi NodeAddr ess

)

Nane: Dri NodeAddr ess
Pur pose: Addressing information for indication originators
Cont ext : Passed to indication delivery functions
Fi el ds:
address Transport - dependent node address
rpc Identifies the RPC (DCE, ONC, etc)
transport Identifies the transport (TPC/IP, SPX, etc)

struct Dmi NodeAddress {

Dmi String_t* address;
Dmi String_t* rpc;
Dmi String_t* transport;

1
typedef struct Dmi NodeAddress Dmi NodeAddress_t;

January, 2003

233

Desktop Management I nterface Specification v2.01s

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok o ok ko ok kR ok ok ko ko kK ok ok kK kR Kk kK ko

* Dmi Del i ver Event

R

| *F*
/1 Nane: Dmi Del i ver Event
/1 Purpose: Deliver event data to an application
/1 Context: I ndi cation Delivery
/1l Returns:
/1 Paraneters:
11 handl e An opaque ID returned to the application
11 sender Address of the node delivering the indication
11 | anguage Language encoding for the indication data
11 conpl d Conponent reporting the event
11 timestanp Event generation tinme
11 rowDat a Standard and context-specific indication data
*Fx/
struct Dmi DeliverEventIN {
Dmi Unsi gned_t handl e;
Dmi NodeAddr ess_t * sender ;
Dmi String_t* | anguage;
Dmild_t conpl d;
Dmi Ti mestanp_t * ti mestanp;

Dmi Mul ti RowData_t* rowbDat a;
};

[k ko ok ok ok ok ok ok ok ko ok Kk ko ok Kk ko ok ok ko ok ok k ko ok ko ko kK ok ok kK kR kK kK ko

* Dmi Conponent Added

R

I *F*

/1 Name: Dmi Conponent Added

/'l Purpose: A conponent was added to the database

/1 Context: I ndi cation Delivery

/'l Returns:

/1 Paraneters:

11 handl e An opaque ID returned to the application

11 sender Address of the node delivering the indication
11 info I nformati on about the conponent added

F/

struct Dm Conponent Added! N {
Dni Unsi gned_t handl e;
Dmi NodeAddr ess_t * sender ;
Dmi ConponentInfo_t* info;
I

R

* Dmi Conponent Del et ed

ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok Kk ok ko k ko kK kR kR ok kR kR Rk k kR ok kR Rk kK kR Kk ok kK Kk k ko

| *F*
/1 Nane: Dni Conponent Del et ed
/1 Purpose: A conponent was del eted fromthe database
/1 Context: I ndi cation Delivery
/'l Returns:
I/ Parameters:
11 handl e An opaque ID returned to the application
11 sender Address of the node delivering the indication
11 conpl d Conponent del eted fromthe database
*Ex/
struct Dm Conponent Del et edl N {
Dmi Unsi gned_t handl e;
Dmi NodeAddress_t* sender;
Dmi | d_t conpl d;

};

January, 2003

234

[Kk ok ko Kk kK

* Dmi LanguageAd

KRk kkok ok ok kK kokok kK

| *F*

/1 Nane:

I/ Purpose:

/1 Context:

/'l Returns:

Il Paraneters:

11 handl e

11 sender

11 conpl d

11 | anguage

*Ex/

struct Dmi Langua
Dmi Unsi gned_
D NodeAddr e
Dmi | d_t
Dmi String_t*

};

[Kk ok ko Kk kK

* Dmi LanguageDe

Hokkkokok ok ok kK kokok kK

| *F*

/1 Nane:

/'l Purpose:

/1 Context:

/'l Returns:

Il Paraneters:

11 handl e

11 sender

11 conpl d

11 | anguage

*Ex/

struct Dmi Langua
Dmi Unsi gned_
Dri NodeAddr e
Dmi | d_t
Dmi String_t*

};

[Kk ok ok ko Kk kK

* Dmi GroupAdded

Hkkkkokk ok ok ok kokok kK

Desktop Management I nterface Specification v2.01s

hokkkkkkkkhhkkkhhhhkkhkhhkhhkkkhkhkkkkhkkkkkkkkkkkkkkk k k&

ded

R)

Dni LanguageAdded
A conponent | anguage mappi ng was added
I ndi cation Delivery

An opaque ID returned to the application
Address of the node delivering the indication
Conponent with new | anguage mappi ng

| anguage- code| territory-code| encodi ng

geAdded! N {
t handl e;
ss_t* sender;
conpl d;
| anguage;

hokkkkkkkkhhkkkhkhhkkkhkhhkkkhkkkkkkhkkkkkkkkkkkkkkk k k&

leted

R)

Dni LanguageDel et ed
A conponent | anguage mappi ng was del et ed
I ndi cation Delivery

An opaque ID returned to the application
Address of the node delivering the indication
Conponent with del eted | anguage mappi ng

| anguage- code| territory-code| encodi ng

geDel etedl N {

t handl e;
ss_t* sender;
conpl d;
| anguage;

hkkkkkkkkhhkkkhhhhkkkhkkhkkkhkkkkkkhkkkkkkkkkkkkkkkk k&

R)

Dni Gr oupAdded
A group was added to a conponent
I ndi cation Delivery

An opaque ID returned to the application
Address of the node delivering the indication
Conponent with new group added

I nformati on about the group added

| *F*

/1 Nane:

I/ Purpose:

/1 Context:

/'l Returns:

/1l Paraneters:

11 handl e

11 sender

11 conpl d

11 info

*Ex/

struct Dm G oupAdded! N {
Dmi Unsi gned_
D NodeAddr e
Dmi | d_t
Dni Groupl nf o

January, 2003

t handl e;

ss_t* sender;
conpl d;

_t* info;

235

Desktop Management I nterface Specification v2.01s

[ko ko ok ok ok ok ok ok ko ok Kk ko ok Kk ok ok o ok ko ok kR ok ok ko ko kK ok ok kK kR Kk kK ko

* Dmi GroupDel et ed

Y

| *F*
/1 Nane: Dni GroupDel et ed
/1 Purpose: A group was del eted froma conmponent
/1 Context: I ndi cation Delivery
/1l Returns:
/1 Paraneters:
11 handl e An opaque ID returned to the application
11 sender Address of the node delivering the indication
11 conpl d Conponent with the group del eted
11 groupl d Group del eted fromthe conponent
F/
struct Dm G oupDel etedl N {
Dmi Unsi gned_t handl e;
Dmi NodeAddress_t* sender;
Dmild_t conpl d;
Dmi | d_t groupl d;

};

[ko ok ok ok ok ok ok ko ok Kk ok ok ok ok ko ok K ok ko ok ok k ok ok ok ko kR kK kR kK Kk Kk

* Dmi Subscri ptionNotice

R ey

| *F*
/1 Nane: Dmi Subscri ptionNotice
I/ Purpose: I nformati on about an indication subscription
/1 Context: I ndi cation Delivery
/1l Returns:
/1 Paraneters:
11 handl e An opaque ID returned to the application
11 expired True=expired; Fal se=expiration pending
11 rowDat a Row information to identify the subscription
F/
struct Dmi SubscriptionNoticel N {
Dmi Unsi gned_t handl e;
Dnmi NodeAddress_t* sender;
Dni Bool ean_t expired;
Dni RowDat a_t rowDat a;

};

program DM 2_CLI ENT {
versi on RM _CLI ENT_VERSI ON {
Dmi ErrorStatus_t _Dmi DeliverEvent(Dm DeliverEventIN) = 0x100;
Dmi Error Status_t _Dmi Conponent Added(Dmi Conmponent Addedl N) = 0x101;
Dmi Error Status_t _Dmi Conponent Del et ed(Dmi Conponent Del etedl N) = 0x102;
Dmi Error Status_t _Dmi LanguageAdded(Dmi LanguageAddedI N) = 0x103;
Dmi Error Status_t _Dmi LanguageDel et ed(Dmi LanguageDel etedl N) = 0x104;
Dmi Error Status_t _Dm G oupAdded(Dmi GroupAddedI N) = 0x105;
Dmi ErrorStatus_t _Dm GoupDel et ed(Dm G oupDel etedl N) = 0x106;
Dmi ErrorStatus_t _Dm SubscriptionNotice(Dmi SubscriptionNoticelN) = 0x107;
} = 0x1;
} = 0x20000000;

January, 2003

236

Desktop Management I nterface Specification v2.01s

APPENDIX D - RELATED DOCUMENTS

PC Systems Standard M1 F Definition
Release Version 1.1.3

PC Systems Working Committee

27 March 1995

Softwar e Standard Groups Definition
Version 2.0

Software Working Committee

29 November 1995

International Standard
1SO 8859-1
Information processing — 8 bit single-byte coded graphic character set

Desktop Management Interface (DM 1) Compliance Guidelines
Version 1.1

September 1995

Steering Committee

Distributed Management Task Force: Enabling your product for manageability with MIF files.
Version1.1

November 1994

Technical Committee

Distributed Management Task Force: Contactingthe DMTF
Version 1.1

November 1994

Steering Committee

LAN Adapter Standard Groups Definition
Version 1.1

April 1994

LAN Adapter Working Group (WG-NIC)

Monitor Standard Groups Definition
Version 1.1

January 1996

Technical Committee

Printer Standard MIF
Version 1.1
Printer Working Group

Finisher Standard MIF
Version 1.1
Large Mailroom Operation Working Group

Systems Standard Groups Definition
Version1.1

January 1996

Server Working Group

Guideto Writing DCE Applications
2nd Edition, May 1994

John Shirley, Wei Hu, and David Magid
O'Reilly & Associates, Inc.

January, 2003 237

Distributing Applications Across DCE and Windows NT
1st Edition, November, 1993

Ward Rosenberry and Jim Teague

O'Reilly & Associates, Inc.

Microsoft RPC Programming Guide
March, 1995

John Shirley and Ward Rosenberry
O'Reilly & Associates, Inc.

DCE Security Programming
1st Edition, July 1995

Wei Hu

O'Reilly & Associates, Inc.

Open Softwar e Foundation
World Wide Web Homepage
http://www.osf.org

Power Programming with RPC
John Bloomer

O'Reilly & Associates Inc
1-800-338-6887 US/Canada

International Standard
1SO 10646 Unicode

Desktop M anagement I nterface Specification
Version 1.1

April 1994

Desktop Management Task Force

Secure DM| Overview

DMI Security Working Committee
December 1997

Desktop Management Task Force

Network Security
Kaufman, Perlman, Speciner
1995

Prentice-Hall

NetWar e Softwar e Developer's Kit
Novell

Applied Cryptography
Bruce Schneler

1996

Wiley

DMI 2.0, Errata#l

August 6, 1997
Distributed Management Task Force

January, 2003

Desktop Management I nterface Specification v2.01s

238

Desktop Management I nterface Specification v2.01s

APPENDIX E - GLOSSARY

Authentication

Authorization

Attribute
Class string

CMIP

Command Block

Component

Component | nstrumentation

Component Interface (Cl)
Confirm

Confirm Buffer

Credentials

Direct Interface

DMI
DMI Security Indications

DMTF

Event

Event Generator

January, 2003

The process of reliably verifying the identity of a communicating party. For
example, alogin process is an authentication of auser by an operating system.

The process by which a provider decides whether to honor a request or not
(usually according to the authenticated identity of the requesting party and the
policy). For example, afile system may check the permission list associated
with each file in order to authorize a user to access afile. Thispermission list
maps between file operations (like read or write) and user groups.

A piece of information about a component.

A text string that identifies a group outside the context of a particular compo-
nent declaration. |dentical group definitions will have identical class strings.

Common Management |nformation Protocol, an OSI-based network man-
agement protocol standardized by 1SO.

The concatenation of data blocks (data structures) that constitute a command
to be sent between management applications and the service provider and be-
tween the Service provider and component instrumentation.

Any hardware, software or firmware element contained in (or primarily at-
tached to) a computer system.

The executable code that provides DMI management functionality for a par-
ticular component.

The DMI layer used by component instrumentations.
The final response from a Request.

The area of memory where a component instrumentation or service provider
puts response data.

A set of parameters uniquely identifying a principal in the system. The
credentials may also contain authentication-related parameters (such as
password hash or trusted certificate authority signature).

Method by which a component instrumentation informs the service provider
that it (the component instrumentation) is already running. Rather than
starting the code to service incoming requests, the service provider will use the
aready running code.

Desktop Management Interface, the subject of this specification.

Special type of DMI indications generated by a DM1v2.0s Service Provider
upon performing certain DMI requests.

Distributed Management Task Force

A type of indication (unsolicited report) that originates from a component in-
strumentation.

A hardware or software device that has undergone a changein state or in
which acertain condition of interest has occurred. This change of state or
condition will directly or indirectly cause a new event to be processed by the
service provider which then produces and delivers an Indication data structure
to event consumers that have registered their interest in receiving Indications.

239

Event Reporter

Event Consumer

Group
Indication

I nper sonation

Integrity

SO 8859-1

Kerberos
Key
Local Interface

Localized String
Logging
Management Agent

Management Application
Management Interface (MI)
MIF

MIF Database

MIF File
Octet
Onetime authentication

Poalicy

Principal

January, 2003

Desktop Management I nterface Specification v2.01s

The software entity that causes anew DMI event to be processed by the
service provider. Eventsare “reported” by calling the service provider entry
point Dmilndicate().

A software entity that has registered with the service provider through the M|
with anon null indication callback procedure address.

A collection of attributes. A group with multiple instancesis called atable.

An unsolicited report, either from a component instrumentation to the service
provider, or from the service provider to a management application.

The process of faking the identity of a principal in order to receive
authorization. Authentication should prevent this security violation.

A property of acommunication protocol that ensures that data received has not
been modified by an unauthorized principal and isidentical to the data that
was transmitted. Integrity mechanisms can be based on a checksum computed
on the transmitted message; messages received with an incorrect checksum are
discarded.

A character encoding standard defined by 1SO. Commonly known as
extended ASCI|I or 8-bit ASCII.

An authentication system developed at MIT.

Anidentifier of aparticular instance (row) of atable.
A DMI interface that can be accessed within the managed system, usually
through awell known entry pointinaDLL or asystem call. Note that remote

procedure calls from the managed system to itself are not considered alocal
interface, and RPC mechanisms apply.

A version of adisplay string that is atranglation of the original string into an
equivalent string in the appropriate local language.

The process of keeping arecord of events that might have some security
significance, such as when access to resources has occurred.

A network management protocol agent (such as SNMP or CMOL) that can
communicate to the DMI through the MI.

Code that uses the M| to request management activity from components.
The DMI layer between management applications and the service provider.

Management Information Format; the format used by the DMI for describing
components.

The collection of known MIF files, stored by the service provider (in animple-
mentation-specific format) for fast access.

A file that uses the MIF to describe a component.

An 8-bit quantity.

The authentication process is done only once in an active session between two
parties, usually at the beginning of the session.

A set of rulesthat define the actions that various entities can perform on an
object based on their identity. For example, the access control list of afile
represents the policy for accessing the file including which users have read
and write access to thefile.

A completely generic term used by the security community to include both
people and computer systems. A principa uniquely represents a security
‘object’ or ‘thing’ or ‘person’.

240

Privacy

Privileged user
Request

Response

Role

Row
Service provider (SL)

SNMP

System
Table
Ticket

Transport

Unicode

User

X.509

January, 2003

Desktop Management I nterface Specification v2.01s

A property of acommunication protocol that ensures that the data exchanged
can be disclosed only by itsintended recipient; that is, the data will remain
opaque for any unauthorized party trying to decode it.

A specia user identified by the system as having operating system
administration rights, such as an OS administrator or OS backup operator.

A command with associated context issued from the management application
to accomplish management.

The final response from an Indication.

A logical entity that has a name and a set of authorization permissions.
Usually there is a set of principals associated with arole.

An instance of atable.

The code between the MI and Cl that arbitrates access to component instru-
mentation and manages the MIF database.

Simple Network Management Protocol, an Internet-based network manage-
ment protocol standardized by the IETF.

A computer.
A multidimensional group; a group with more than one instance.

A data structure constructed by atrusted intermediary to enable two parties to
authenticate.

The 4" Layer in the 7-Layer OSI networking model. IPisan example of a
common network transport.

A character encoding standard defined by the Unicode Consortium. Unicode
characters are 2 octets each. When the first octet is zero, the second octet
maps to the charactersin 1SO 8859-1.

A uniquely-identified principal person user in a multi-user system. A useris
represented by its credentials (see Credential s).

A CCITT standard for security services within the X.500 directory services
framework. The X.509 encoding of public key certificates has been widely
adopted.

241

access statement, 26, 27
Associated Group, 47, 51
attribute definition, 23, 26, 28
attributes, 11, 16, 22, 27, 45, 239
block model, 117

Bulk Allocation, 138

cals, 119

case sensitivity, 16

Cl, 114

CiAddRow, 122
CiDeleteRow, 123
CiGetAttribute, 119
CiGetNextAttribute, 120
CiReleaseAttribute, 122
CiReserveAttribute, 121
CiSetAttribute, 120, 121

class name, 23, 239

class statement, 23, 24, 28
client.IDL, 206

clients, 66, 181

command sequencing, 12
comments, 16

Comments, 16

Common Data Structures, 210
common keyword, 26
common.idl, 186

component definition, 20, 21, 22
component 1D, 107
Component 1D, 50
component instrumentation, 8, 13, 22, 27, 239
Component I nterface, 9, 239
Component Interface (Cl), 114
Component Provider Functions, 119
Component Providers, 65
ComponentID group, 41
Components, 117

confirm buffer, 239
convention, 67

counter, 17, 78, 82

counter64, 17

creating event groups, 43
current state, 50

data structure, 84, 115

data structures, 13, 114

data types, 66, 71

database, 104

date, 17

default values, 23, 27, 28
Definitions, 45

description statement, 21, 22
direct interface, 118, 239
displaystring, 17

January, 2003

Desktop Management I nterface Specification v2.01s

INDEX

DLL, 136

DMI Client, 124

DMI data structures, 13
DMI Service Provider, 9
DmiAccessData, 115
DmiAccessDatal ist, 115
DmiAccessMode, 72
DmiAddComponent, 104
DmiAddGroup, 105
DmiAddLanguage, 104
DmiAddRow, 53, 102, 113
DmiAlloc, 137
DmiAllocPool, 137
DmiAttributeData, 75
DmiAttributelds, 76
DmiAttributelnfo, 76
DmiAttributeList, 77
DmiAttributeValues, 77
DmiBind, 127, 135, 136
DmiCiCancel, 114
DmiCilnvoke, 114
DmiClassNamelnfo, 78
DmiClassNameL.ist, 78
DmiComponentAdded, 110
DmiComponentDeleted, 110
DmiComponentinfo, 78
DmiComponentList, 79
DmiDataType, 72
DmiDataUnion, 79
DmiDeleteComponent, 106
DmiDeleteGroup, 107
DmiDeletelanguage, 107
DmiDeleteRow, 53, 103, 113
DmiDéliverEvent, 109
DmiEnuminfo, 80
DmiEnumList, 80
DMIERRORACTION, 130, 131
DmiErrorCode, 132
DMIERRORSTATUS, 130
DmiFileDatalnfo, 80
DmiFileDatal ist, 81
DmiFileType, 73
DmiFileTypeList, 81
DmiFree, 137
DmiFreePool, 138
DmiGetAttributes, 53, 98, 99, 100
DmiGetConfig, 91
DmiGetExtendedError, 132
DmiGetVersion, 89, 90
DmiGroupAdded, 112
DmiGroupDeleted, 112
DmiGrouplnfo, 82

242

DmiGroupList, 83

DmilndicationFuncs, 127

Dmil anguageAdded, 111

DmiLanguageDeleted, 111

DmiListAttributes, 96

DmiListClassNames, 94

DmiListComponents, 92. See

DmiListComponentsByClass, 93

DmiListGroups, 95

DmiListLanguages, 94

DmiMultiRowData, 83

DmiMultiRowRequest, 83

DmiNodeAddress, 84

DmiOctetString, 84

DmiOriginateEvent, 44, 118

DmiRegister, 89

DmiRegisterCilnd, 117

DmiRegisterInfo, 115

DmiRequestMode, 73

DmiRowData, 48, 85

DmiRowRequest, 86

DmiRpcErrorCode, 132

Dmi SetAttributes, 53, 101

DmiSetConfig, 89, 91

DmiSetMode, 74

DmiStorageType, 74

DmiString, 86

DmiStringList, 87

DmiSubscriptionNotice, 113

DmiTimeStamp, 87

DmiUnbind, 135

DmiUnregister, 89

DmiUnregisterCi Function, 118

entry point, 44

entry points', 114

enumerations, 20, 22

ERROR CODES, 89, 90, 91, 93, 94, 95, 96, 97,
98, 99, 101, 102, 103, 104, 105, 106, 107,
108, 110, 111, 112, 113, 117, 118, 119, 120,
121, 122, 123, 135, 137, 138

error handling, 129

Error Model, 129

error status, 126

event, 43

Event Example, 59

Event Generation group, 45, 50. See. See

Event Generation Group, 44

event severity, 58

event solution, 48

Event State Key, 47

event subsystem, 48

event system, 47

Event Type, 50

events, 11, 239

extensions, 124

filter, 56

January, 2003

Desktop Management Interface Specification v2.01s

floating point, 18

gauge, 17, 77, 79, 82, 86

get commands, 13

getPragma, 92. See

Glossary, 239

group, 52

Group Attribute, 44

group definition, 23

groupld. See

groups, 11, 22, 23, 28, 119, 240
id statement, 21, 23, 26, 28
Index, 242

Indication Delivery Interface (client), 233
indications, 11, 12, 240
Instance Data, 48
instrumentation, 114

integer, 16, 17

integer64, 17

interfaces, 109

Introduction and Overview, 7
1SO 3166, 20, 39

1S0 639, 20, 38

1SO 8859-1, 16, 19, 20

key statement, 24

keys, 11, 240

keyword, 16

language statement, 20, 21

list commands, 13

literal escapes, 18

literal strings, 16, 18, 27
locking, 13

management application, 8, 240
Management Applications, 44
Management I nterface, 9, 240
Management Interface (MI), 89
Management Interface (server), 222
Management Interface APIs, 66
management protocol, 7, 8, 9, 10, 21, 239, 241
managing node, 58, 113

MI, 89

MIF database, 12, 13, 240

MIF files, 9, 16, 20

MIF grammar, 104

MIF Grammar, 29

MIF Template, 61

name statement, 21, 28

Naming Conventions, 135

node, 14

octetstring, 17

path definition, 20, 22, 27
platform specific, 126

pointers, 66

procedural Ml, 14

Provider Functions, 65
registration, 13, 117

Remotable Interface Architecture, 14

243

remoteable, 124
requestMode, 92
reguests, 241

row, 11, 23, 24, 241
row operations, 52
RPC, 124, 126

RPC environment, 66
RPC Server, 136
run-time binding, 124
Runtime linkage, 136
Runtime Linkage, 135
Sample MIF, 33
schema, 104

scope keywords, 16
security, 13

server.idl, 197
servers, 66, 181
Service Layer, 9, 13
service provider, 92
Service provider, 241
Service Provider API, 9

Service Provider Functions, 117

set commands, 13

Software Signature Template, 59

SP Indication Subscription, 53
specific keyword, 26

January, 2003

Desktop Management Interface Specification v2.01s

SPIndicationSubscription, 109
Standard Groups, 41
state-based event, 43
State-based generators, 46
status codes, 177

storage statement, 26

string, 17

Subscriber Addressing, 57
Subscriber ID, 55, 57
Subscriber Transport Type, 54
SubscriberID, 109
Subscription Expiration Warning Date Stamp, 55
table templates, 27

tables, 11, 22, 28

template group, 44

Transport, 57

Transport List, 127

type statement, 26

Unicode, 16, 19, 20, 241
unknown, 41

unsupported, 41
unsupported keyword, 24, 27
value statement, 23, 27, 28
Vendor Specific Message, 48
white space, 16, 18

244

