

January, 2003 i

Desktop Management
Interface Specification

DSP0005 STATUS: Preliminary

Version 2.0.1s
January 10, 2003

Copyright © "1996-2003" Distributed Management Task Force, Inc. (DMTF). All rights
reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and
systems management and interoperability. DMTF standards and related documents may be
reproduced for uses consistent with this purpose by members and non-members, provided that
correct attribution is given. As DMTF specifications may be revised from time to time, the particular
version and release used should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third
party patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no
representations to users of the standard as to the existence of such rights, and is not responsible to
recognize, disclose, or identify any or all such third party patent right, owners or claimants, nor for any
incomplete or inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall
have no liability to any party, in any manner or circumstance, under any legal theory whatsoever, for
failure to recognize, disclose, or identify any such third party patent rights, or for such party’s reliance
on the standard or incorporation thereof in its product, protocols or testing procedures. DMTF shall
have no liability to any party implementing such standard, whether such implementation is
foreseeable or not, nor to any patent owner or claimant, and shall have no liability or responsibility for
costs or losses incurred if a standard is withdrawn or modified after publication, and shall be
indemnified and held harmless by any party implementing the standard from any and all claims of
infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit:

http://www.dmtf.org/about/policies/disclosures.php

January, 2003 ii

Technical inquiries and editorial comments should be directed in writing to:

Distributed Management Task Force
c/o MKI

54 SW Yamhill St.
Portland, OR 97204

(503) 225-0725
(503) 225-0765 (fax)

 email: dmtf-info@dmtf.org

Additional copies of this specification may be obtained free of charge electronically via internet at:
ftp//ftp.dmtf.org

or
from the World Wide Web at:

http://www.dmtf.org

 Desktop Management Interface Specification v2.01s

January, 2003 2

CONTENTS

1. INTRODUCTION AND OVERVIEW ..7

1.1 MOTIVATION...7
1.2 BASIC TERMINOLOGY ...8
1.3 ELEMENTS OF THE DMI ..9
1.4 DATA MODEL ..11
1.5 THE DMI SERVICE PROVIDER ...12

1.5.1 Service Provider Responsibilities ..12
1.6 OPERATIONAL CHARACTERISTICS ...13
1.7 REMOTEABLE INTERFACE ...14
1.8 SECURITY..15

2. INFORMATION SYNTAX..16
2.1 MANAGEMENT INFORMATION FORMAT...16

2.1.1 Lexical conventions ...16
2.1.2 Comments ..16
2.1.3 Keywords...16
2.1.4 Data types..17
2.1.5 Constants...18
2.1.6 Block scope..20
2.1.7 Language statement...20
2.1.8 Common statements...21
2.1.9 Component definition ..21
2.1.10 Path definition ...22
2.1.11 Enum definition ...22
2.1.12 Group definition ..22
2.1.13 Pragma statement..24
2.1.14 Attribute definition...26
2.1.15 Group example ..27
2.1.16 Populating tables...28

2.2 MIF GRAMMAR ..29
2.3 SAMPLE MIF...33
2.4 ISO 639 ..38
2.5 ISO 3166 ..39

3. STANDARD GROUPS ...41
3.1 COMPONENT STANDARD GROUPS ...41

3.1.1 The ComponentID group ...41
3.2 EVENT STANDARD GROUPS...43

3.2.1 Requirements ...44
3.2.2 Event Generation Group..44
3.2.3 Event State Group..49

3.3 DMI SERVICE PROVIDER STANDARD GROUPS ..52
3.3.1 SP Indication Subscription ..53
3.3.2 SP Filter Information...56

3.4 EVENT EXAMPLE ..59
3.4.1 Software Signature Template...59
3.4.2 Software Signature Table...60
3.4.3 Event Generation Group..60
3.4.4 MIF Template ..61

4. INTERFACE OVERVIEW..65
4.1 PROGRAMMING CONSIDERATIONS ..66

4.1.1 Binding To A Managed Machine ...66
4.1.2 The use of pointers...66

 Desktop Management Interface Specification v2.01s

January, 2003 3

4.1.3 Calling Conventions ..67
4.1.4 Re-entrancy ...68

4.2 NATIONAL LANGUAGE SUPPORT ...69
4.2.1 Requirement...69
4.2.2 Overview..69
4.2.3 Translatable Text...69
4.2.4 Installation...69
4.2.5 Operation ..70

5. KEY DATA STRUCTURES ..71
5.1 DMI DATA TYPES..71
5.2 ENUMERATED TYPES ...72

5.2.1 DmiAccessMode ..72
5.2.2 DmiDataType ..72
5.2.3 DmiFileType..73
5.2.4 DmiRequestMode ..73
5.2.5 DmiSetMode ..74
5.2.6 DmiStorageType..74

5.3 DATA STRUCTURES ..75
5.3.1 DmiAttributeData ..75
5.3.2 DmiAttributeIds ...76
5.3.3 DmiAttributeInfo..76
5.3.4 DmiAttributeList ..77
5.3.5 DmiAttributeValues ...77
5.3.6 DmiClassNameInfo..78
5.3.7 DmiClassNameList ..78
5.3.8 DmiComponentInfo ...78
5.3.9 DmiComponentList..79
5.3.10 DmiDataUnion ..79
5.3.11 DmiEnumInfo ..80
5.3.12 DmiEnumList...80
5.3.13 DmiFileDataInfo ...80
5.3.14 DmiFileDataList..81
5.3.15 DmiFileTypeList ..81
5.3.16 DmiGroupInfo ...82
5.3.17 DmiGroupList..83
5.3.18 DmiMultiRowData...83
5.3.19 DmiMultiRowRequest..83
5.3.20 DmiNodeAddress...84
5.3.21 DmiOctetString..84
5.3.22 DmiRowData...85
5.3.23 DmiRowRequest ..86
5.3.24 DmiString ..86
5.3.25 DmiStringList ..87
5.3.26 DmiTimeStamp ..87

6. MANAGEMENT INTERFACE...89
6.1 INITIALIZATION FUNCTIONS ..89

6.1.1 DmiRegister...89
6.1.2 DmiUnregister...89
6.1.3 DmiGetVersion ..90
6.1.4 DmiGetConfig ...91
6.1.5 DmiSetConfig ..91

6.2 LISTING FUNCTIONS ..92
6.2.1 DmiListComponents ..92
6.2.2 DmiListComponentsByClass ...93
6.2.3 DmiListLanguages...94
6.2.4 DmiListClassNames...94
6.2.5 DmiListGroups ..95

 Desktop Management Interface Specification v2.01s

January, 2003 4

6.2.6 DmiListAttributes ..96
6.3 OPERATION FUNCTIONS ..98

6.3.1 DmiGetAttribute ..98
6.3.2 DmiSetAttribute ...99
6.3.3 DmiGetMultiple...100
6.3.4 DmiSetMultiple..101
6.3.5 DmiAddRow...102
6.3.6 DmiDeleteRow...103

6.4 DATABASE ADMINISTRATION FUNCTIONS...104
6.4.1 DmiAddComponent ...104
6.4.2 DmiAddLanguage..104
6.4.3 DmiAddGroup ...105
6.4.4 DmiDeleteComponent..106
6.4.5 DmiDeleteLanguage..107
6.4.6 DmiDeleteGroup ...107

7. MANAGEMENT APPLICATION PROVIDER API...109
7.1 FUNCTIONS ...109

7.1.1 DmiDeliverEvent ...109
7.1.2 DmiComponentAdded..110
7.1.3 DmiComponentDeleted..110
7.1.4 DmiLanguageAdded ..111
7.1.5 DmiLanguageDeleted..111
7.1.6 DmiGroupAdded..112
7.1.7 DmiGroupDeleted ...112
7.1.8 DmiSubscriptionNotice..113

8. COMPONENT INTERFACE ..114
8.1 DATA STRUCTURES ...115

8.1.1 DmiAccessData ...115
8.1.2 DmiAccessDataList ...115
8.1.3 DmiRegisterInfo ..116

8.2 SERVICE PROVIDER FUNCTIONS FOR COMPONENTS...117
8.2.1 DmiRegisterCi Function..117
8.2.2 DmiUnregisterCi Function ..118
8.2.3 DmiOriginateEvent..118

8.3 COMPONENT PROVIDER FUNCTIONS..119
8.3.1 CiGetAttribute ...119
8.3.2 CiGetNextAttribute ..120
8.3.3 CiSetAttribute ..120
8.3.4 CiReserveAttribute...121
8.3.5 CiReleaseAttribute...122
8.3.6 CiAddRow..122
8.3.7 CiDeleteRow..123

9. OPTIONAL MI SUPPORT FUNCTIONS..124
9.1 PROGRAMMING CONSIDERATIONS ..125
9.2 RPC ABSTRACTIONS...126

9.2.1 MI Support Functions and RPC specific DMI API ..126
9.3 CONNECTION ESTABLISHMENT AND TEARDOWN...127

9.3.1 Connection Establishment ...127
9.3.2 Connection Teardown..127
9.3.3 Transport List ..127

9.4 ERROR MODEL..129
9.4.1 Simple Error Handling ..129
9.4.2 Extended Error Handling ..132
9.4.3 DCE/RPC and ONC/RPC mapping for standard functions ...134

9.5 RUNTIME LINKAGE ...135

 Desktop Management Interface Specification v2.01s

January, 2003 5

9.5.1 Naming Conventions..135
9.5.2 Runtime linkage example...136

9.6 MEMORY HANDLING FUNCTIONS ..137
9.6.1 DmiAllocPool ..137
9.6.2 DmiAlloc..137
9.6.3 DmiFree ..137
9.6.4 DmiFreePool ...138
9.6.5 Bulk Allocation ..138

10. INTRODUCTION TO DMI2.0S ..139
10.1 OVERVIEW ..140
10.2 THE DMIV2.0S APPROACH ..141

10.2.1 Authentication..141
10.2.2 Roles..141
10.2.3 Policy...141
10.2.4 Authorization...142
10.2.5 Logging and event generation ...142
10.2.6 Security of local interfaces ..142
10.2.7 OS dependence ..143
10.2.8 Compatibility ...143

11. ARCHITECTURE ..145
11.1 DMIV2.0S FUNCTIONAL BLOCKS ...146

11.1.1 Authentication..146
11.1.2 Authorization...146
11.1.3 Indication generation and logging...147
11.1.4 MIF database security ...147
11.1.5 Component instrumentation security ...147

12. DMIV2.0S SERVICE PROVIDER STANDARD GROUPS ..148
12.1 DMIV2.0S SERVICE PROVIDER CONFIGURATION ..149
12.2 DMIV2.0S SECURITY INDICATION AND LOGGING CONFIGURATION ..150
12.3 AUTHENTICATION PROTOCOLS ..152
12.4 POLICY GROUP ..154

12.4.1 Role ...154
12.4.2 Command ..154
12.4.3 Authorization...155
12.4.4 Class..155
12.4.5 Attribute ID..155
12.4.6 Additional Class, Attribute ID, Value ..156
12.4.7 Example...157

12.5 SPECIAL DMIV2.0S ROLES..158
13. MANAGEMENT INTERFACE SECURITY ...159

13.1 AUTHENTICATION ...160
13.1.1 Non-authenticated registration..160

13.2 POLICY AND AUTHORIZATION ...161
13.3 POLICY PROTECTION, MODIFICATION AND INITIALIZATION..162
13.4 INDICATION SUBSCRIPTION AND DELIVERY ...163
13.5 LOCAL MANAGEMENT INTERFACE ...164

13.5.1 Caveat: component instrumentation registration as a local management application.................................164
13.6 AUTHORIZATION ALGORITHM PSEUDO-CODE...165

14. COMPONENT INTERFACE SECURITY ...166
15. MIF DATABASE PROTECTION...167
16. SECURITY INDICATIONS...168

16.1 SECURITY INDICATION DATA...168

 Desktop Management Interface Specification v2.01s

January, 2003 6

16.1.1 Security indication event generation group ...168
16.1.2 Security indication additional attributes..170

17. LOGGING ...173
17.1 LOGGING INTERFACE ..174

17.1.1 DmiGenerateLog ...174
18. DMIV2.0 AND DMIV2.0S COMPATIBILITY CONSIDERATIONS..176
APPENDIX A – ERROR CODES ...177

APPENDIX B – DCE RPC IDL ...179

APPENDIX C – ONC RPCGEN..210

APPENDIX D – RELATED DOCUMENTS...237

APPENDIX E – GLOSSARY...239

INDEX ...242

 Desktop Management Interface Specification v2.01s

January, 2003 7

1. INTRODUCTION AND OVERVIEW

1.1 MOTIVATION
Within a computer system, there is a gap between management software and the system's components that require
management. Managers must understand how to manipulate information on a constantly growing number of products.
In order for products to be manageable, they must know the intricacies of complex encoding mechanisms and foreign
registration schemes. This arrangement is not desirable from either side.

This document describes the Desktop Management Interface, or DMI, that acts as a layer of abstraction between these
two worlds.

The DMI has been designed to be:

• independent of a specific computer or operating system

• independent of a specific management protocol

• easy for vendors to adopt

• usable locally  no network required

• usable remotely using DCE/RPC, ONC/RPC, or TI/RPC

• mappable to existing management protocols (e.g., CMIP, SNMP)

The DMI procedural interfaces are specifically designed to be remotely accessible through the use of Remote
Procedure Calls. The RPCs supported by the DMI include:

• DCE/RPC

• ONC/RPC

• TI/RPC

 Desktop Management Interface Specification v2.01s

January, 2003 8

1.2 BASIC TERMINOLOGY
Throughout this document, system means a computer system. Components are physical or logical entities on a
system, such as hardware, software or firmware. Components may come with the system or may be added to it. The
code that carries out management actions for a particular component is known as the component instrumentation.

A management application is a program that initiates management requests. A management application uses the
DMI to perform management operations. The management application may be a program such as an application with
a graphical user interface. It may be a network management protocol agent that translates requests from a standard
network management protocol (such as SNMP or CMIP) to the DMI and back again.

DMI Service Provider, which is analogous to the DMI Service Layer of previous DMI specifications, may be
shortened to just DMI SP throughout this document. The abbreviations DMIv1.x and DMIv2 are used respectively to
refer to the DMI 1.x and DMI 2.0 specifications.

Other terms are highlighted in italic bold when first introduced. A full glossary is provided in Appendix E.

 Desktop Management Interface Specification v2.01s

January, 2003 9

1.3 ELEMENTS OF THE DMI
The DMI has four elements:

 1. a format for describing management information

 2. a service provider entity
 3. two sets of APIs, one set for service providers and management applications
 to interact, and the other for service providers and components to interact.
 4. a set of services for facilitating remote communication

Component descriptions are defined in a language called the Management Information Format, or MIF. Each
component has a MIF file to describe its manageable characteristics. When a component is initially installed into the
system, the MIF is added to the (implementation-dependent) MIF database.

DMI Service Providers expose a set of entry points that are callable by Component instrumentation. These are
collectively termed the Service Provider API for Components. Likewise, Component instrumentation code exposes a
set of entry points that are callable by the DMI Service Provider. These are collectively termed the Component
Provider API. In the DMI Version 1.x specification, these two APIs were together embodied in the Component
Interface.

The Component Interface, or CI, is used by component providers to describe access to management information and
to enable a component to be managed. The CI and the MIF shield vendors from the complexity of encoding styles and
management registration information. They do not need to learn the details of the popular and emerging management
protocols.

Previous versions of this specification defined the CI to be a block oriented data interface as opposed to a procedural
interface. This specification introduces a new procedural CI interface. All new functions introduced by this
specification are available only as part of the new procedural CI. 1

NOTE that the functions in the Component Interface are OS-specific. Some OSes may not implement the
CI but provide equivalent functionality using other, native mechanisms. In the rest of this document, the
use of the term CI should be taken to stand equally for other OS-specific implementations of this
functionality.

The DMI Service Provider also exposes a set of entry points callable by Management Applications. These are
collectively termed the Service Provider API for Management Applications. Likewise, Management Applications
expose a set of entry points callable by the DMI Service Providers. These are collectively termed the Management
Provider API. In the DMI Version 1.x specification these were together embodied in the Management Interface.

The Management Interface, or MI, is used by applications that wish to manage components. The MI shields
management application vendors from the different mechanisms used to obtain management information from
elements within a computer system.

Previous versions of this specification defined the MI to be a block oriented data interface as opposed to a procedural
interface. This specification introduces a new procedural MI interface. All new functions introduced by this
specification are available only as part of the new procedural MI. 1

The new procedural MI introduced with this specification is a remotable interface designed to be used with one of the
supported RPCs.

The DMI Service Provider, previously called the Service Layer (SL), is an active, resident piece of code running on a
computer system that mediates between the MI and CI and performs services on behalf of each.

A functional block diagram is shown in Figure 1-1.

The DMI Version 1.1 block oriented MI and CI interfaces are local interfaces, to be used within a single system. The
new procedural MI introduced with this specification is a remotable interface designed to be used with Remote
Procedure Call. The new procedural CI is a local interface, to be used within a single system.

In Figure 1-1 all hardware and software components, the MIF Database, and the DMI Service Provider exist within a
single system, or are directly attached, such as printers or modems. The management applications may be command-

1 The DMTF Compliance Guidelines Document contains the information regarding backwards compatibility of previous
DMI specifications (the DMIv1.x block interface in particular).

 Desktop Management Interface Specification v2.01s

January, 2003 10

line or graphical user interface programs, located on the local system or located on remote management work-stations.
Network protocol agents may be used to translate between a particular management protocol and the DMI.

Note: It is valid for component instrumentation to register permanently or temporarily as an MI application in
addition to a CI registration.. This is usually used by components as a means of dynamically obtaining their current
component ID at runtime from the DMI Service Provider.

Management Interface Server

Local Block
Interface

Application

MI Interface
Client

RPC Support

Indication
Server

Indication
Server

MI Interface
Client

RPC Support

RPC Support
Indication Client

Data Block Mgmt
Interface (VI.X MI)

DMI SERVICE PROVIDER SP
DB

Data Block Component
Interface (VI.X MI)

Procedural Component Interface

Block CI
Component

(HW/SW)

Procedural CI
Hardware

Component

Procedural CI
Software

Component

Procedural CI
Firmware

Component

RPC to/from
remote systems

Figure 1-1. Functional Block Diagram.

 Desktop Management Interface Specification v2.01s

January, 2003 11

1.4 DATA MODEL
Components have one or more named attributes that collectively define the information available to a management
application. Attributes are collected into named groups for ease of reference. Groups may be scalar or may be
multiple instantiations, such as the set of attributes for each instance of a network interface table. Multiply
instantiated groups are called tables, and a row (instance) of a table is referred to by a set of attributes that form a key.

So, within a system, there are many components, each with one or more groups. Each group has one or more
attributes; and each group may be multiply instantiated as a table. The component instrumentation presents this
component/group/key/attribute representation to the management application. A diagram is shown in Figure 1-2.

Component instrumentation may respond to requests by management applications, and may offer unsolicited
information (indications or events).

 SYSTEM
Component A Component B Component C Component D

Group 3

Attribute 1
Attribute 2
Attribute 3

Group 2

Attribute 1
Attribute 2
Attribute 3

Group 2

Attribute 1
Attribute 2
Attribute 3
Attribute 4
Attribute 5
Attribute 6
Attribute 7
Attribute 8

Group 3
Attribute 1

Group 5
Attribute 1
Attribute 2

Group 4
Attribute 1
Attribute 2

Group 3
Attribute 1
Attribute 2

Group 2
Attribute 1
Attribute 2

Group 2
Attribute 1
Attribute 2
Attribute 3
Attribute 4
Attribute 5
Attribute 6

Attribute 1
Attribute 2
Attribute 3
Attribute 4

Group 3

Figure 1-2. Diagram of Attribute Representation In Data Model.

 Desktop Management Interface Specification v2.01s

January, 2003 12

1.5 THE DMI SERVICE PROVIDER
The DMI Service Provider coordinates and arbitrates requests from management applications to the specified
component instrumentation’s. The DMI Service Provider handles the run-time management of the MI and CI, which
includes component installation, registration at both levels, request serialization and synchronization, and general flow
control and housekeeping.

The interfaces have been designed so that commands at the MI level are either satisfied at the DMI Service Provider
or passed directly to the CI.

Figure 1-3 depicts a possible DMI Service Provider block diagram. This is an example only and is not part of the
DMI specification.

Component Interface

Management Interface

Requests

Requests

Indications

Events

MIF Access

MIF Set

MIF Install

MIF
Database

Command Processing Event Processing MIF Processing

Synchronization and Flow Control

Figure 1-3. DMI Service Provider Block Diagram.

1.5.1 Service Provider Responsibilities

The DMI Service Provider (SP) must coordinate the dynamic installation and removal of component instrumentation’s
and management applications. It must enforce that at least group 1 (the component ID group) is in each installed .

The DMI SP must coordinate the registration of entities wishing to initiate management activities.

The DMI SP is responsible for all run time accesses to the MIF data. Implementations of the DMI Service Provider
may choose to store MIF files in an internal format (a MIF database) for performance and ease of access.

The DMI SP is responsible for launching the component instrumentation, if necessary.

The DMI SP must enforce command serialization to a component instrumentation and ensure that commands are
allowed to run to completion. Multiple requests for a particular component instrumentation must be queued.

The DMI SP must support event/indication subscription and filtering.

The DMI SP must forward indications based on subscription and filters to each registered management application, and
must time-stamp incoming indications before forwarding them.

The DMI SP must send indications to all registered management applications which have subscribed for indications
when components are installed or removed from the MIF database.

The DMI SP must appear to management applications as a component with ID 1 (one). As a component, it must
support the standard ComponentID group, defined in Section 3.1.1. Additionally, the DMI SP must support the
Subscription Indication and Filter standard groups. Also like any component, it may define additional groups beyond
the ComponentID group.

The DMI SP must support all of the NLS mechanisms contained in this specification, including Unicode and multiple
NLS installations of schema for each component.

 Desktop Management Interface Specification v2.01s

January, 2003 13

1.6 OPERATIONAL CHARACTERISTICS
The relationship among management applications, the DMI Service Provider and component instrumentation can exist
as a many-to-one-to-many relationship. There may be many management applications issuing commands through a
single DMI SP to manage many components. If multiple management applications are active, each by have a
different language specified, requiring component instrumentation to support multiple languages simultaneously.

For purposes of identification, management applications must register with the DMI SP before they can participate in
management functions. Component instrumentation’s must install into the DMI SP once when first introduced to the
system. Components implemented using the Direct Interface MUST register with the DMI SP when they wish to
notify it of their immediate availability. The mechanics of "connecting" to the DMI SP to register or issue commands
may differ among operating systems and DMI SP implementations.

Control flow is usually initiated from the management application to the DMI Service Provider and on to the
component instrumentation. There may also be indications, which are unsolicited reports that flow in the opposite
direction.

There are three general categories of access commands: Get, Set and List. The Get and Set commands let
management applications read and write manageable entities within a system.

The List commands return "meta" information; information about the component MIF itself. The List commands do
not get the actual attribute values within the component. List commands allow a management application to get the
semantic information in a MIF. Since the DMI Service Provider gets MIF information from its MIF database, the List
commands do not cause any component instrumentation code to be invoked.

Along with these standard access commands are commands to register/unregister management entities, and allow
component instrumentation’s to generate indications.

Within DMI data structures, all strings are stored in the form <length> <data>, where <length> is an unsigned 32-bit
value giving the number of octets in the <data> part of the string. Note that the number of characters in the string
depend on whether it is in ISO 8859-1 format (1 octet/character) or Unicode format (2 octets/character. In DMIv1.x,
String <data> values were not required to be zero-terminated as in the C programming language. For DMIv2.0, they
must be NULL terminated in addition to the <length> specifier.

Component instrumentation’s are serially re-usable, but they are not expected to be re-entrant.

The DMI does not provide primitives to own or lock resources over a sequence of commands. Multiple management
applications may make simultaneous accesses to the interfaces described in this document. Grouping and scheduling
of operations, other than the synchronization provided by the DMI Service Provider, are the responsibility of the
management application. Likewise, any desire for mutual exclusion, to lockout certain accesses, or to provide DMI
database security in any form, is the responsibility of the management application.

 Desktop Management Interface Specification v2.01s

January, 2003 14

1.7 REMOTEABLE INTERFACE
The Data Block interface introduced in April of 1994 with DMI version 1 (DMIv1.x) uses a single entry point
(‘DmiInvoke’) and is passed a set of concatenated data structures. At the time DMIv1.x was created, it was felt that
this type of interface was needed for low level access such as when crossing protection rings in a protected processor,
interfacing to device drivers, and for easy packaging when remoting. The remoteable interface presents a procedural
interface as opposed to DMIv1.x’s block oriented interface. The procedural interface, in addition to being suitable to
remoting via one of the supported RPC mechanisms defined previously, is much friendlier to programmers and much
less error-prone.

RPC issues are limited to the opening and closing of remote sessions. Network-centric issues like transports, name
resolution, etc. are provided by the RPC services used and are outside of the scope of this specification.

The remotable interface (DMIv2.0) is designed to provide remote access to DMI functionality and data while hiding
the intricacies of manipulating the DMIv1.x data blocks. DMIv1.x often ‘batches’ together somewhat related
functions into single commands. This results in commands which return lots of related information and requires the
caller to pull out what they want. In DMIv2.0, calls are broken out functionally to provide specific information.
Therefore a given DMIv1.x command may equate to multiple DMIv2.0 commands, each one performing a specific
function.

RPC is based on a client / server architecture. The client side includes a set of Stubs which have interfaces with the
same signatures as the function calls they represent on the server. The stubs interact with the local RPC support to
exchange the input parameters, the output parameters, and return codes with the remote procedure located at the
server. A Remote node acts as a client for procedural MI function calls, and a server when receiving indications. The
node under management acts as a server for procedural MI function calls, and as a client when delivering indications
to a remote node.

Figure 1-4 shows the overall architecture for the remoteable interface. Note that the CI is a local interface and is not
remoted. Specific implementations of this specification may vary somewhat in the actual structure of the software
elements as shown.

 Figure 1-4. Remotable Interface Architecture

Certain elements of DMIv1.x are not present in DMIv2.0. The concept of concatenated command blocks has been
removed in DMIv2.0. DMIv2.0 is a totally synchronous call interface whereas DMIv1.x is asynchronous. Link level
security, new to DMIv2.0, is provided using the underlying RPC security mechanism.

 Desktop Management Interface Specification v2.01s

January, 2003 15

1.8 SECURITY
DMIv2.0s defines a mechanism to control remote access to the DMI Management Interface and local access to DMI
interfaces. The remote access control mechanism is defined on top of standard RPC mechanisms, whereas the local
access control mechanism is defined on top of operating system mechanisms. DMIv2.0s does not specify a standard
format for identities nor a cryptosystem to verify those identities, but relies on those provided through the RPC and by
the operating system. The main features introduced by DMIv2.0s are authentication, role-based authorization, flexible
policy, security indications and logging. DMIv2.0s is an extended version of DMIv2.0 specification. The bulk of the
DMI Security Extension appears in Sections 10 through 18.

The DMI Security Extension is conditionally required. That is, if a DMI Service Provider implementation provides an
access control mechanism, it has to implement the DMI Security Extension as defined in this specification.

Note that DMI2.0s security is based on the security infrastructure provided by the RPC and the Operating System.
Therefore, if the security of the RPC or the Operating System is compromised, DMI2.0s security will be
compromised as well. For example, if a malicious user can circumvent the file system security and modify the MIF
database on a system, she could modify the DMI2.0s policy in the database to her advantage.

 Desktop Management Interface Specification v2.01s

January, 2003 16

2. INFORMATION SYNTAX

2.1 MANAGEMENT INFORMATION FORMAT
Managed information is described in a simple format called the Management Information Format, or MIF. The MIF
defines components and their associated attributes. Files that contain information structured to MIF guidelines are
known as MIF files. Each instance of a managed component must provide a separate MIF file that describes the
manageable aspects of that component.

The MIF file is a text file that is "installed" -- presented to the DMI Service Provider for inclusion in the MIF
database. Modifications to the MIF file can be made with a text editor, although component providers are encouraged
to automate this process.

This section describes the MIF. The complete BNF syntax is specified in Section 2.2. A sample MIF file is given in
Section 2.3

2.1.1 Lexical conventions
The MIF uses either the International Standards Organization document ISO 8859-1 (Latin Alphabet no. 1) or
Unicode 1.1 specification for its character sets. If a Unicode MIF is provided, the first octet of the MIF file must be
0xFE (hexadecimal), and the second must be 0xFF. Otherwise the DMI Service Provider will treat the file as an
ISO8859-1 MIF.

There are four classes of tokens: keywords, integer constants, strings (literals), and separators. Two keywords, start
and end, are scope keywords that are only useful when followed by another keyword. Blanks, tabs, new lines,
carriage returns and comments (collectively, "white space") as described below are ignored except as they serve to
separate tokens. White space is required to separate otherwise adjacent keywords and constants.

The MIF is case insensitive in all cases except for literal strings (characters surrounded by double quote characters),
where case is retained.

Literal strings separated by white space are concatenated and stored as one literal string.

2.1.2 Comments
Comments may be placed throughout the file, and are ignored. The start of a comment is denoted by two
consecutive forward slashes ("//"). The comment continues through the end of the line.

2.1.3 Keywords
The MIF uses the following keywords:

component group attribute
table path enum
name description id
type class key
value access storage
language start end
unsupported counter counter64
gauge octetstring displaystring
string integer int
date integer64 int64
win16 win32 dos
macos os2 unix
read-only read-write write-only
direct-interface common specific
pragma win9x winnt
unknown

 Desktop Management Interface Specification v2.01s

January, 2003 17

2.1.4 Data types
The MIF supports data types that describe the storage requirements as well as some semantics. The type can be:

DATA TYPE DESCRIPTION
integer (or int) A 32-bit signed integer; no semantics known

integer64 (or int64) A 64-bit signed integer; no semantics known

gauge A 32-bit unsigned integer that may decrease or
increase

counter A 32-bit unsigned integer that never decreases

counter64 A 64-bit unsigned integer that never decreases

string (n) or
displaystring(n)

A displayable string of n octets

Note: For 8859-1, 1 octet/character;

For Unicode, 2 octets/character

octetstring(n) A string of n octets, not necessarily displayable

date A 28-octet displayable string, described below

A counter increases to its maximum value (232-1 or 264-1) and rolls over to zero at its maximum value. An
automobile's odometer is an example of a counter.

A gauge may increase or decrease, but when it reaches its maximum value (232-1), it continues to report the maximum
value until the value decreases below the maximum. An automobile's speedometer is an example of a gauge.

For the string types, the declared length n represents the maximum number of octets in the string. The actual number
of octets in use may be shorter than this maximum value. displaystrings are required to be zero-terminated as in the
C/C++ programming languages. String lengths represent the number of octets in the string for displaystrings and
include the terminating null character (Note, that in the case of Unicode a null character is 2 octets). In the case of
octetstrings the length n is the number of octets in the string.

 Desktop Management Interface Specification v2.01s

January, 2003 18

Implementation notes:

1) In the implementation of the string types the actual length of the string is computed and stored as part of the string
datastructure. See Section 5.3 for details.

2) Attributes whose values are Strings, OctetStrings, or DisplayStrings are required by the MIF syntax to specify a
maximum string length as part of their definition. However, in certain resource constrained environments, it is possible
that component instrumentation for such an attribute may implement a smaller maximum length for the attribute.
Therefore, consumers of MIF information must first ascertain the implemented maximum length of a string attribute
before operating on it, regardless of what the published MIF definition of the attribute might state. This may be done
through the use of the DmiListAttributes entry point that is defined in Section 6.2.6.

Dates are defined in the displayable format

 yyyymmddHHMMSS.uuuuuu+ooo
where yyyy is the year, mm is the month number, dd is the day of the month, HHMMSS are the hours, minutes and
seconds, respectively, uuuuuu is the number of microseconds, and +ooo is the offset from UTC in minutes. If east of
UTC, the number is preceded by a plus (+) sign, and if west of UTC, the number is preceded by a minus (-) sign.
While this is only 25 octets, the date is stored as a 28-octet field for memory alignment reasons, and the last three
octets are zero (‘\0’).

For example, Wednesday, May 25, 1994, at 1:30:15 PM EDT

 would be represented as: 19940525133015.000000-300

Values must be zero-padded if necessary, like "05" in the example above. If a value is not supplied for a field, each
character in the field must be replaced with asterisk ('*') characters.

2.1.5 Constants
Integer values may be specified as in the C/C++ programming languages:

SYNTAX BASE
nnn decimal
0nnn octal
0xnnn or 0Xnnn hexadecimal

where n is a digit in the proper base.

The MIF does not support floating point values.

Literals (strings) are character sequences surrounded by double quotes. Adjacent double quote characters (besides
white space) indicate multi-part literals that are treated as one string. For example:

"This is an example"
" of a multi-part"
" literal string."

The literal escape character is the backslash. It is used as in C/C++, to enter the following characters:

 Desktop Management Interface Specification v2.01s

January, 2003 19

SEQUENCE CHARACTER
\a alert (ring terminal

bell)
\b backspace
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\" double quote
\xhh bit pattern,

hexadecimal
\ooo bit pattern, octal

For the octal bit pattern, ooo can be one, two or three octal digits (from \0 to \377) when the MIF is specified in
ISO8859-1 format, and from one to six octal digits (from \0 to \177777) when the MIF is in Unicode format.

For the hexadecimal bit pattern, hh can be one or two hex digits (from \x0 to \xff) when the MIF is specified in
ISO8859-1 format, and from one to four hex digits (from \x0 to \xffff) when the MIF is in Unicode format.

If the character following a backslash is not one the letters specified in the above table, the backslash is being used as a
quoting character. This use of the backslash is necessary to quote characters in those situations where those characters
might otherwise trigger inappropriate syntax processing to occur e.g. the inclusion of a '"' (double-quote) character in a
string is not possible without quoting, since '"' characters are used to delimit strings.

The rules for using the '\' (backslash) character as a quoting character are as follows :

•Any printing character other than a,b,f,n,r,t, and v, may be quoted by prefacing it with the '\' character. In
particular '\' may be used to quote itself by using '\\'.

•In nested strings, the characters in the inner strings that might interfere with the parsing of the outer string
must be quoted

•If strings are nested more than two deep, then the quoting character must itself be quoted a number of times
that is equal to the nesting depth minus one. e.g.

 "This is a first level string containing \"A second level string"
 " and \\\"a third level string\\\"\""

In this example the '"' characters quoting the second level string are quoted. In the third level string the '\'
character that quotes the '"' characters must itself be quoted as '\\'.

•Non printing characters must be provided by their escaped octal or hexadecimal forms as described above.

 Desktop Management Interface Specification v2.01s

January, 2003 20

2.1.6 Block scope
The keywords start and end delimit the scope of a definition block. An associated keyword must follow both start
and end. The keywords and their scope are:

BLOCK WITHIN DESCRIPTION
component MIF file defines a component. All other blocks exist within this scope. There can be only one

component definition per MIF file.

path component associates a symbolic string with operating system-specific path names. Zero or more
path definitions may exist in the MIF, usually at the top of the file before any groups.

group component defines a collection of attributes, sometimes used as a template row for a table. At least
one group is required per MIF file (the ComponentID group, defined below).

attribute group defines a unit of managed data. All attributes "exist" within the scope of a group
definition. A group must have at least one attribute in it.

table component defines one or more instances of a group using a previously defined group. Optional.

enum component or
attribute

defines a list of integer-to-string mappings. Named enumerations
can be defined at the component level, while unnamed
enumerations can be defined within the scope of an attribute
definition. Optional (but while many enum definitions can exist at
the component level, only one can be defined per attribute)

Here's an example of the structure of a MIF file. For readability, only one of each block is given. Each level is
indented for readability:

 start component
 start path
 end path
 start enum
 end enum
 start group
 start attribute
 start enum
 end enum
 end attribute
 end group
 start table
 end table
 end component

2.1.7 Language statement
The language statement is used to describe the native (human) language of the MIF file. This statement appears
before the start component statement. The syntax is

language = "language string"

where language string is a text string that identifies the language, dialect (as territory) and character encoding. The
format of language string is:

language-code|territory-code|encoding

where language-code is one of the two-letter codes defined in ISO 639, territory-code is one of the two letter codes
defined in ISO 3166, and encoding is either iso8859-1 or unicode. For example, the language string:

"fr|CA|iso8859-1"

indicates French Canadian, with ISO 8859-1 (8-bit) encoding.

If any fields are not supplied, they are simply omitted, but the two vertical bars must appear in the string. The default
language string is "en|US|iso8859-1".

The encoding field is ignored in the MIF file because the first two bytes of the file determine the encoding. However
the field is used when communicating through the MI.

 Desktop Management Interface Specification v2.01s

January, 2003 21

The language statement may appear only once per MIF file.

Samples of the codes defined in the two ISO standards are in Sections 2.4 and 2.5.

A note on localization: MIF files that have been translated (localized) should translate only literal strings such as
names, descriptions and enumeration literals, and any comments within the MIF. Neither class strings nor language
names may be localized. Keywords must not be localized.

2.1.8 Common statements
The following three statements can be used within the scope of most definitions, as noted. Definition-specific
statements are described when the definition is described.

2.1.8.1 NAME STATEMENT
The required name statement is used inside the scope of a definition to assign a relatively short string to the definition.
The name is normally used for display to users, and must be less than 256 characters. The syntax is:

 name = "name string"

where name string is defined by the MIF file provider. However, users may edit the MIF file and change the name.
The name statement may appear only once per definition. Names are not required to be unique except for enumeration
and path names, which must be unique among other enum (and path) names within a component.

2.1.8.2 DESCRIPTION STATEMENT
The optional description statement is used inside the scope of a definition to give more information about the element
being defined. The description is used for display to users. The syntax is:

 description = "description string"

where description string is defined by the MIF file provider. However, users may edit the MIF file and change the
description.

The description statement is used in the component, group and attribute definitions. The description statement may
appear only once per definition.

2.1.8.3 ID STATEMENT
The id statement is used inside the scope of a definition to assign a unique numeric identifier for the definition. Each
type of definition that is required to have an id must have a unique id within its scope. The id is used for naming items
at the API level, and for mapping to network management protocols. The syntax is:

 id = n

where n is defined by the MIF file provider. The value of n must be a non-zero 32-bit unsigned integer, and must be
unique within the scope of the containing definition. For example, all attributes within a group must have different
IDs, but attribute IDs do not need to be unique across groups. Since components and management applications use
these IDs for communication, users may not change them.

The id statement is required in the attribute and table definitions. It is optional in the group definition. It is not used in
the component, path and enum definitions. While components have IDs, they are assigned by the DMI Service
Provider at installation time. The id statement may appear only once per definition.

2.1.9 Component definition
The component definition has the following syntax:

 start component
 name = "component name"
 [description = "description string"]
 [pragma = “pragma string”]
 (component definition goes here)
 end component

Only one component definition may appear in a MIF file.

2.1.10 Path definition
Path definitions are used to locate the files used for active management of the component. The definition begins with
the statement start path, followed by a name statement that defines a symbolic name, and a number of lines equating

 Desktop Management Interface Specification v2.01s

January, 2003 22

operating system identifiers to the path of the callable program. The symbolic name may be used later in attribute
definitions, indicating that the value for the specified attribute should be retrieved or set by invoking the associated
callable function. The path definition ends with the keyword end path.

The operating system identifiers are dos, macos, os2, unix, win16, win32, win9x, and winnt. Case is not significant.

NOTE: Use of the Win32 keyword implies that the instrumentation in question will function on either Windows 9x or
Windows NT. Using the specific keywords: win9x or winnt implies that the component will ONLY run on that
environment.

If the component instrumentation is provided by code that will connect to the DMI Service Provider (as opposed to
having the SL start the code at request time), the keyword direct-interface may be supplied instead of a path name.

Here's an example:
 start path
 name = "Performance Info Instrumentation Code"
 win16 = "C:\\someplace\\wincode.exe"
 os2 = "C:\\someplace\\os2code.dll"
 dos = "C:\\someplace\\doscode.ovl"
 unix = direct-interface

end path

Many path definitions may appear within the component definition; potentially one for each callable function. The
path name must be unique among all other path names in this component definition.

See the sample MIF (Section 2.3) for usage of the symbols defined in the path definition.

2.1.11 Enum definition
Enumerated lists allow strings to be associated with signed 32-bit integers. They are defined within the component
scope or within the scope of individual attributes. These enumerations are primarily used by component
instrumentation to pass integers through the DMI, so management applications can display the corresponding text
string in the user's native language.

The syntax of enumerated lists is:
 start enum
 name = "enum name"
 vvv = "string literal for vvv"
 [xxx = "string literal for xxx"]
 end enum

"enum name" is a unique enumeration list name within this component.

Integer values vvv and xxx above can be listed in any order and do not have to have every number represented between
the lowest and highest listed. However each value must be unique within this enumeration definition.

Many enum definitions may appear within the component definition; one for each enumeration list. Enumerations do
not have id or description statements.

2.1.12 Group definition
A group is a collection of one or more attributes. Groups let component providers arrange attributes into logical sets.
Groups can also be used to represent arrays (tables) of attributes. The use of groups allows logical subsets within a
component to be standardized across vendors.

 Desktop Management Interface Specification v2.01s

January, 2003 23

The syntax of a group definition is:
 start group
 name = "group name"
 class = "class string"
 [id = nnn]
 [description = "description string"]
 [key = nnn[,mm]...]
 [pragma = "pragma string"]
 (attribute definitions go here)

 end group

The id statement, if provided, must have a value unique among other groups within the component. Specifying a group
id without a key means that this group definition defines a group. If both id and key are provided, the group definition
represents a table but that group is not necessarily supported by component instrumentation code. Groups that provide
both an id and key can be used again later as a template in the creation of a table.

If the key statement is provided and the id statement is not provided, the group definition represents a template row in
a to-be-defined table, and the value statements (defined below) refer to default values within the row. A table
definition may follow to populate the table based on the template. See the section 2.1.16 on table definition for more.

The following table describes the possibilities:

KEY? ID? RESULT
No No error
No Yes scalar group (not a table. Id is the group's ID)
Yes No template (table definitions may follow)
Yes Yes table (Id is the table's ID. Can be used as a template later)

Many groups may be defined within the component.

2.1.12.1 CLASS STATEMENT
The required class statement is used inside a group definition to identify the source of the group and the group version.
All groups using the same class string must share the same attribute definitions within the group, including attribute
type, access, storage (defined below) and IDs. The attribute name, description and value may be different, however.
This assists management applications in determining the semantics of the group's attributes. Groups are identified as
unique only by their class string, not their Group ID. So management applications must retrieve the allocated ID of a
group by using its unique class string in a List command (refer to Section 6).

The class statement syntax is:
class = "class string"

where, by convention, class string is encoded as
 "defining body|specific name|version"

In this convention, defining body is the name of the organization (such as "DMTF", "IEEE", "Acme Computer", etc.)
defining the group; specific name identifies the contents of the group ("Server Stats", "Toaster Controls", etc.) and
version identifies the version of the group definition (001, 002, 003 etc.).

Essentially the class string is an opaque string, and any convention may be used. However, since applications and DMI
Service Providers might rely on this convention for obtaining information via the List Component command,
component providers are encouraged to use this convention.

It is an error to specify the same class string for two groups if the group definitions are different. Management
applications can count on identical group definitions for identical class strings.

Note that "DMTF|Sample|001" is not the same as "DMTF | Sample | 001" as one has spaces around the vertical
bars and the other does not.

Implementations that provide a subset of the attributes defined by a class must use the unsupported keyword within
the attribute definition (defined below).

Only one class statement is allowed per group.

 Desktop Management Interface Specification v2.01s

January, 2003 24

2.1.12.2 KEY STATEMENT
When the attributes in a group define a row in a table, the group definition must contain a key statement to define the
attribute ID(s) that is (are) used as the index into the table. Attributes that act as keys may be of any data type. Keys
always identify no more than one instance of a group (row of a table).

The key statement syntax is:
 key = n[,m]

where n is the attribute ID that acts as the key for this table. If multiple attributes are used to index a table, they should
be specified as comma-separated integers. When management applications send requests or component
instrumentation’s send results, key values must be sent in the order that they are listed in the key statement.

Only one key statement is allowed per group.

2.1.13 Pragma statement
Pragma definitions are used to provide additional information about the Component, Group or Attribute. As far as the
DMI Service Provider is concerned the <MIF Literal> which is the value of the pragma is simply an opaque octet
string. However, by DMTF convention the content of the octet string is structured in the following way:

 <Pragma String> ::=
 '"' { <Pragma Keyword> ':' <Parm> { ',' <Parm> }* ';' }* '"'

where <Pragma Keyword>, and <Parm> contain any literal character allowed by Unicode or ISO 8859-1, EXCEPT the
characters ':', ',', ';', '|' and '"' in any encoding unless inserted in the string as

• their quoted forms i.e. '\:', '\,', '\;', '\|' and '\"' respectively, OR

• their escaped hex or octal bit pattern equivalents i.e. in the form \nnn where the n's are octal digits, or
\xmm where the m's are hexadecimal digits.

At this time four <Pragma Keyword>s are defined, namely:

SNMP: This keyword takes a value that is an SNMP OID of the form n.n.n.....n.n, where the n's are positive integers.
It is intended to help in the DMI-SNMP translation process. This Pragma keyword has meaning only in the context of
a Group definition.

Dependent_Groups: This keyword takes a comma-delimited list of one or more class strings as its value. It has
meaning only in the context of a Group definition. The class strings in the value of this keyword identify the other
Groups that must be implemented for this Group to be functional or meaningful. The class strings that are provided as
values for this keyword may have null (wild-carded) portions. For example, in a typical case, a null version field
implies that the dependency exists on any groups with the same defining body or specific name portions of the class
string.

Implementation_Guideline: This Pragma keyword may take one of the three following values: REQUIRED,
OPTIONAL, or OBSOLETE. It has meaning only in the context of a DMTF Standard Group definition.

•The value REQUIRED indicates that the working committee that defined this standard group thought it
important that it be implemented.

•The value OPTIONAL indicates that the working committee that defined this standard group wished to allow
implementors the option of not implementing it.

•The value OBSOLETE indicates that the working committee that defined this standard group recommends
that new products should implement the new group that replaces this group, other than this group which has
been superseded.

NOTE: This does not invalidate implementations of this group that are already in the field. Management Apps will
have to continue to recognize and utilize this obsolete group as well as its successor.

Here is an example of a Pragma statement in a Group definition:

start group
name = "ABCD"
class = "DMTF|ABCD|001"
...

 Desktop Management Interface Specification v2.01s

January, 2003 25

...
pragma = "Dependent_Groups:\"DMTF|FRU|\"; "
 "Implementation_Guideline:REQUIRED;"
...
end group

This example pragma definition states that the dependent group for DMTF Standard Group "ABCD" has the class
string "DMTF|FRU|". This means that implementing the group "ABCD" is not meaningful unless the group
represented by "DMTF|FRU|" has also been implemented. Note that the version number of the dependent group has
been wild-carded and that the '"' and the '|' characters were quoted using '\'. Furthermore, the
Implementation_Guideline states that the DMTF working committee, which defined group "ABCD", felt that it was
required for implementation

Reg_Key: The syntax for this keyword is as follows:
Reg_Key : <Reg_Key_Value> ;
where
<Reg_Key_Value> ::= <Reg_Key_Parm> <MIF Literal>
<Reg_Key_Parm> ::=
 REG_VALUE | REG_DLL | REG_VXD | REG_NONE
<MIF Literal> ::= <as defined in the MIF grammar>

The <MIF Literal> field may be any legal, properly constructed, embedded string in the form prescribed by
Section 2.1.5 (Constants). In other words, the characters ':' (colon), ',' (comma), and ';' (semi-colon) must be properly
quoted, if they occur, by using the '\' (backward slash) character.

The <Reg_Key_Parm> field may take one of the four following values: REG_VALUE, REG_DLL, REG_VXD, or
REG_NONE.

•The value REG_VALUE indicates a value link to an existing data provider.

•The value REG_DLL indicates a value link to a dynamic link library data provider.

•The value REG_VXD indicates a value link to a dynamic device data provider.

•The value REG_NONE indicates that a value link should not be generated for this attribute.

The value of the Reg_Key pragma is intended to help in the MIF-to-Registry translation process in the Microsoft
Windows environment. It is used to provide an indirect value link into the Registry when an attribute value is provided
by instrumentation. For further information on this Pragma Keyword, and its usage, please refer to the latest Microsoft
documentation. This pragma has meaning only in the context of an Attribute definition.

 Desktop Management Interface Specification v2.01s

January, 2003 26

2.1.14 Attribute definition
An attribute is a piece of data related to a component. Attributes are defined within the scope of a group. The syntax
of the attribute definition is:

 start attribute
 name = "attribute name"
 id = nnn
 [description = "description string"]
 type = datatype
 [access = method]
 [pragma = “pragma string”]
 [storage = storagetype]
 [value = [v | * "name" | "enum string"
 |unsupported | unknown]]
 end attribute

The required id statement must have a value that is unique among all other attributes within the group.

Groups must have at least one attribute definition. Many attribute definitions may appear within the group definition.

2.1.14.1 TYPE STATEMENT
The required type statement in the attribute definition describes the storage and semantic characteristics of the attribute
being defined. The syntax is:

 type = datatype
where datatype is usually one of the data types previously defined in Section 5.

A data type may be an enumeration; stored and treated as a signed 32-bit integer. Enumerations that have been
previously defined (at the component level) can be referenced by name as if they were a type, for example: type =
"Color". Enumerations may also be constructed "in line":

 type = start enum
 (enum definition)
 end enum

In this case the enumeration does not need a name since it cannot be referred to outside the scope of this attribute
definition. Any name given is ignored.

Only one type statement may appear within the attribute definition.

2.1.14.2 ACCESS STATEMENT
The optional access statement determines whether the attribute value can be read or written. The syntax is:

 access = method

where method may be read-only, read-write, or write-only. If the access statement is not specified, the default access
is read-only. Attributes marked as keys may not be write-only. Only one access statement may appear in the attribute
definition.

2.1.14.3 STORAGE STATEMENT
The optional storage statement provides a hint to management applications to assist in optimizing storage
requirements. The syntax is:

storage = where

where may be common or specific. Common signifies that the value of this attribute is typically limited to a small set
of possibilities. An example of common may be the clock speed of a CPU. Specific signifies that the value of this
attribute is probably not a good candidate for optimization because there may be a large number of different values.
An example of a specific attribute would be a component's serial number.

If the storage statement is not specified, the default storage is specific. Only one storage statement may appear in the
attribute definition.

 Desktop Management Interface Specification v2.01s

January, 2003 27

2.1.14.4 VALUE STATEMENT
The value statement provides a value or value access mechanism. The syntax is:

 value = v
 value = "enumeration value"

 value = * "Name"
 value = unsupported
 value = unknown

The value v is for read-only attribute values that never change, such as the manufacturer of a component, or for read-
write attributes that the DMI Service Provider will handle, as opposed to the component instrumentation. It is illegal to
specify v for write-only attributes. It must be specified in the correct data type for the attribute; for example dates and
literal strings must be specified within double quotes.

The value "enumeration value" (a text string enclosed in double quotes) is an enumeration text string that the DMI
Service Provider will map to an integer. The mapping must have been previously defined in an enum definition within
this component or attribute definition, and the attribute’s type must be an enumeration. Note that specifying an integer
for an enumeration is acceptable.

When reading an enumerated value, there is no guarantee that a mapping exists for that value. Both static and dynamic
(instrumented) values may be outside the range of known mappings. This means that Management Applications
looking for a mapping must be prepared for the case where the mapping does not exist, and take appropriate action.
For example, an application may choose to display the string representation of the enum value. Note: in general it is
not considered good practice to return enumerated values that are outside the known range of values, since this reduces
the semantic value of the enumerated type.

The value * "Name" (a name with "*" before it and surrounded by double quotes) indicates the symbolic name of the
component instrumentation code to invoke to read or write the attribute at run time. The symbolic name must have
been previously defined in a path definition within this component definition.

The value unsupported (a reserved keyword) can be given to tell the DMI Service Provider that this attribute is not
supported by this component.

The value unknown (a reserved keyword) can be given to tell the DMI Service Provider that this attribute is normally
supported, but currently unknown.

The value statement is required except when defining table templates, in which case it is optional. If a value is
provided within a template, it becomes the default value when populating the table. If it is not provided, there is no
default value.

2.1.15 Group example
Here's an example of a group with two attributes:

Start Group
 Name = "Software Template"
 Class = "DMTF|Software Example|001"
 Key = 1 // key on Product Name
 Pragma = "SNMP:1.2.3.4.5.6"
 Start Attribute
 ID = 1
 Name = "Product Name"
 Description = "The name of the product"
 Storage = Common
 Type = String(64)
 End Attribute
 Start Attribute
 ID = 2
 Name = "Product Version"
 Description = "The product's version number"
 Type = String(32)
 Value = ""
 End Attribute
End Group

In this example, the group is acting as a template, because there is no group id and because a key is specified. The
default value for the version is an empty string. There is no default for the product name.

 Desktop Management Interface Specification v2.01s

January, 2003 28

2.1.16 Populating tables
An array of group instances is considered a table. The instances are rows of the table. Often simply defining the group
with a key is sufficient for defining the table, since the values of the attributes within each row are provided by the
component. However, sometimes it is useful to provide the table's values within the MIF file itself, just as it is
sometimes useful to define values within an attribute definition.

The table population mechanism separates the definition of the group from the data in the group. It uses a previously
defined group as a template to store values into the MIF database. The syntax to populate tables is:

 start table
 name = "table name"
 id = nnn
 class = "class string"

 { v1[,v2 ...] }
 [{ vn[,vm ...] }]

 end table

A name statement must be supplied that describes this table. The required id statement specifies an integer value
unique across all other groups and tables within this component. The required class statement identifies the previously
defined group that is being used as a template.

A group definition specifying both an ID and a Key list defines an empty (zero row) table. The value statements on the
attribute definitions do not implicitly define a table row. To initialize a table in the MIF grammar, use the MIF table
statement, as described in this section.

Within a table row, the values are provided as in Section 2.2 separated by commas and surrounded by the curly braces
"{" and "}". The list of values is provided left-to-right in attribute-ID order; the value of the attribute with the lowest
ID appearing first. If a value within the list is omitted, the corresponding attribute value, if defined in the template, is
used as the "default" value. It is illegal to omit an attribute’s value when no default value was provided in the template.
Rows with too few commas are treated as rows with the requisite number of trailing commas, so the values specified in
the template are used for the remaining attributes in the row.

Here's an example of populating a table using the group defined in Section 2.1.15.

 Start Table
 Name = "Software Table"
 Class = "DMTF|Software Example|001"
 Id = 42
 {"Circus", "4.0a"}
 {"Disk Blaster", "2.0c"}
 {"Oleo", "3.0"}
 {"Presenter", "1.2"}
 End Table

In this example, the resulting table has four rows. The value statements in the group definition are used as default
values during row population and not as a row themselves.

It is an error to populate rows without providing unique values for the combination of attributes that comprise the key.
DMI Service Providers must reject a MIF that does not provide unique keys during row population.

A table definition must come after the group definition to which it refers. The group must have been specified with a
key statement, and without an id statement. More than one table may be created from a single template but each table
must have a different id.

 Desktop Management Interface Specification v2.01s

January, 2003 29

2.2 MIF GRAMMAR
The MIF grammar below is expressed in BNF notation, based on the following rules:

1. Items are enclosed in less than and greater than symbols ("<>").

2. An item is defined in terms of other items by identifying the item (<item>), using the symbols "::=" and
following with a list of one or more other items (<item1> ::= <item2>).

3. Items not inside of less than and greater than signs ("<>") are considered literals and entered exactly as
they are defined. Single character literals are enclosed in apostrophes ('').

4. An item enclosed in brackets ("[]") is optional.

5. An item enclosed in braces with an asterisk ("{}*") is present one or more times.

The MIF grammar is as defined as follows:

<MIF Source File> ::= <Language> <Component Definition>

<Language> ::= Language '=' <Language String>

<Language String> ::= <MIF Literal>

<Component Definition> ::= Start Component
 <Component Identification>
 <Component Body>
 End Component

<Component Identification> ::= Name '=' <Component Name>

<Component Name> ::= <MIF Literal>

<Component Body> ::=[<Description>] |
 [{ <Path Definition > }*] |
 [{ <Global Enumeration Defn> }*] |
 { <Group Definition> }* |
 [{ <Table Definition> }*] |
 [<Pragma Statement>]
 (Note: These statements may be in any order.)

<Description> ::= Description '=' <Description Text>

<Description Text> ::= <MIF Literal>

<Path Definition> ::= Start Path
 <Path Identification>
 <Path Body>
 End Path

<Path Identification> ::= Name '=' <Instrumentation Symbolic Name>

<Instrumentation Symbolic Name> ::= <MIF Literal>

<Path Body> ::= <Path Body> <Path Statement> |
 <Path Statement>

<Path Statement> ::= <OS Name> '=' <Path Value> |
 <OS Name> '=' Direct-Interface

<OS Name> ::= DOS | MACOS | OS2 | UNIX | WIN16 | WIN32 |
 WIN9x | WINNT

<Path Value> ::= <MIF Literal>

<Global Enumeration Defn> ::= Start Enum
 <Enumeration Identification>
 [<Enumeration Type>]
 <Enumeration Body>
 End Enum

 Desktop Management Interface Specification v2.01s

January, 2003 30

<Enumeration Identification> ::= Name '=' <Enumeration Name>

<Enumeration Name> ::= <MIF Literal>

<Enumeration Type> ::= Type '=' Int[eger]

<Enumeration Body> ::= <Enumeration Body> <Enum Statement> |
 <Enum Statement>

<Enum Statement> ::= <MIF Integer> '=' <Enum Symbol Name>

<Enum Symbol Name> ::= <MIF Literal>

<Group Definition> ::= Start Group
 <Group Identification>
 <Group Body>
 End Group
<Group Identification> ::= <Group Name Statement>
 <Class Statement>
 [<ID Statement>]

 (Note: These statements may be in any order.
 If <Id Statement> is omitted, the group is a
 template definition.)

<Group Name Statement> ::= Name '=' <Group Name>

<Group Name> ::= <MIF Literal>

<Class Statement> ::= Class '=' <Class String>

<Class String> ::= <MIF Literal>

<ID Statement> ::= ID '=' <MIF ID>

<Group Body> ::= [<Description>]
 [<Key Statement>]
 [<Pragma Statement>]
 { <Attribute Definition> }*
 (Note: These statements may be in any order. If
 this is a template definition, <Key Statement>
 is required.)

<Key Statement> ::= Key '=' <Key List>

<Key List> ::= <Key List> , <Key> |
 <Key>

<Key> ::= <Attribute ID>

<Pragma Statement> ::= Pragma '=' <Pragma String>

<Pragma String> ::= <MIF Literal>

<Attribute ID> ::= <MIF ID>

<Table Definition> ::= Start Table
 <Table Identification>
 <Table Body>
 End Table

<Table Identification> ::= <Table Name Statement>
 <Class Statement>
 <ID Statement>
 (Note: These statements may be in any order.)

<Table Name Statement> ::= Name '=' <Table Name>

<Table Name> ::= <MIF Literal>

<Table Body> ::= <Table Body> <Table Row> |
 Table Row>

<Table Row> ::= '{' <Table Row List> '}'

 Desktop Management Interface Specification v2.01s

January, 2003 31

<Table Row List> ::= <Table Row List> , [<Table Item>] |
 [<Table Item>]

<Table Item> ::= <Constant Expression>

<Constant Expression> ::= <Enum Symbol Name> |
 '*' <Instrumentation Symbolic Name> |
 <MIF Counter> | <MIF Counter64> |
 <MIF Date> |
 <MIF Gauge> |
 <MIF OctetString> |
 <MIF DisplayString> |
 <MIF Integer> | <MIF Integer64>

<Attribute Definition> ::= Start Attribute
 <Attribute Identification>
 <Attribute Body>
 End Attribute

<Attribute Identification> ::= <Attribute Name Statement>
 <ID Statement>
 (Note: These statements may be in any order.)

<Attribute Name Statement> ::= Name '=' <Attribute Name>

<Attribute Name> ::= <MIF Literal>

<Attribute Body> ::= [<Description>]
 [<Access Statement>]
 [<Storage Statement>]
 <Type Statement>
 [<Value Statement>]
 [<Pragma Statement>]
 (Note: These statements may be in any order,
 but the <Value Statement> must appear
 after the <Type Statement>. The <Value Statement>
 is optional for templates, and required otherwise.)

<Access Statement> ::= Access '=' <Access Type>

<Access Type> ::= Read-Only |
 Read-Write |
 Write-Only |

<Storage Statement> ::= Storage '=' <Storage Type>

<Storage Type> ::= Specific |
 Common

<Type Statement> ::= Type '=' <Attribute Type>

<Attribute Type> ::= <Enumeration Name> |
 <Local Enumeration Defn> |
 Counter | Counter64 |
 Date |
 Gauge |
 OctetString <String Size> |
 DisplayString <String Size> |
 String <String Size> |
 Int[eger] | Int[eger]64

<String Size> ::= '(' <Unsigned Integer> ')'

<Value Statement> ::= Value '=' <Constant Expression> |
 Value '=' Unsupported
 Value '=' Unknown

<Local Enumeration Defn> ::= Start Enum
 [<Enumeration Identification>]
 [<Enumeration Type>]
 <Enumeration Body>
 End Enum

 Desktop Management Interface Specification v2.01s

January, 2003 32

<MIF Literal> ::= '"' { <Literal Char> }* '"'

<Literal Char> ::= <Escape Char> |
 <Any ISO 8859-1 Char> |
 <Any Unicode Char>
 (Note: character encoding cannot be mixed:
 use ISO 8859-1 or Unicode, but not both).

<Escape Char> ::= <Character Escape> |
 <Octal Escape> |
 <Hexadecimal Escape>

<Character Escape> ::= '\' <Literal Escape Char>

<Literal Escape Char> ::= '"' | '\' | 'a' | 'b' |
 'f' | 'n' | 'r' | 't' | 'v' | 'x'

<Octal Escape> ::= '\' <Octal Digit> { <Octal Digit> }*

<Hexadecimal Escape> ::= '\x' <Hex Digit> { <Hex Digit> }*

<MIF ID> ::= <Unsigned Integer (Non-Zero)>

<MIF Counter> ::= <Unsigned Integer>

<MIF Counter64> ::= <Unsigned Integer>

<MIF Date> ::= <MIF Literal>

 (Note: The contents of the literal is in the format
 described in Section 2.1.4, Data types)

<MIF Gauge> ::= <Unsigned Integer>

<MIF OctetString> ::= <MIF Literal>

<MIF DisplayString> ::= <MIF Literal>

<MIF Integer> ::= <Integer>

<MIF Integer64> ::= <Integer>

<Integer> ::= <Decimal Integer> |
 <Octal Integer> |
 <Hexadecimal Integer>

<Decimal Integer> ::= [<Sign>] <Decimal Digit> { <Decimal Digit> }*

<Octal Integer> ::= '0' <Octal Digit> { <Octal Digit> }*

<Hexadecimal Integer> ::= '0x' <Hex Digit> { <Hex Digit> }* |
 '0X' <Hex Digit> { <Hex Digit> }*

<Sign> ::= '+' | '-'

<Unsigned Integer> ::= <Decimal Digit> { <Decimal Digit> }*
 | <Octal Integer> | <Hexadecimal Integer>

<Octal Digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7'

<Decimal Digit> ::= <Octal Digit> | '8' | '9'

<Hex Digit> ::= <Decimal Digit> | 'A' | 'B' | 'C' | 'D' |
 'E' | 'F' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f'

<Any ISO 8859-1 Char> "From ISO 8859-1 First Edition 1987-02-15
 Reference number ISO 8859-1: 1987 (E)"

<Any Unicode Char> "From Unicode 1.1 specification"

 Desktop Management Interface Specification v2.01s

January, 2003 33

2.3 SAMPLE MIF
//
// SAMPLE MIF FOR THE FICTIONAL ACS-100
// MFG. BY ANY COMPUTER SYSTEM, INC.
//

START COMPONENT

 NAME = "ANY COMPUTER SYSTEM, MODEL 100"
 DESCRIPTION = "THIS COMPONENT REPRESENTS THE BASE CONFIGURATION"
 "OF A SYSTEM MANUFACTURED BY ANY COMPUTER, INC."
 "THREE GROUPS ARE INCLUDED:"
 "THE COMPONENTID GROUP, "
 "THE SERVICE GROUP, AND "
 "THE SYSTEM CHASSIS GROUP."
 START PATH
 NAME = "CHASSIS GROUP CODE"
 DOS = "C:\\ANY\\DOS\\CHASSIS.OVL"
 WIN16 = "C:\\ANY\\WIN3X\\CHASSIS.DLL"
 END PATH

//
// COMPONENT ID GROUP
//
// THIS IS THE REQUIRED GROUP CONTAINING THE
// REQUIRED ATTRIBUTES FOR ALL COMPONENTS.
//

START GROUP
 NAME = "COMPONENTID"
 ID = 1
 CLASS = "DMTF|COMPONENTID|001"
// THIS GROUP IS DMTF SANCTIONED
 DESCRIPTION = "THIS GROUP DEFINES ATTRIBUTES COMMON TO ALL"
 " COMPONENTS. THIS GROUP IS REQUIRED."

START ATTRIBUTE
 NAME = "MANUFACTURER"
 ID = 1
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = STRING(64)
 VALUE = "ANY COMPUTER SYSTEM, INC."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "PRODUCT"
 ID = 2
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = STRING(64)
 VALUE = "ACS-100"
END ATTRIBUTE

START ATTRIBUTE
 NAME = "VERSION"
 ID = 3

 Desktop Management Interface Specification v2.01s

January, 2003 34

 ACCESS = READ-ONLY
 STORAGE = SPECIFIC
 TYPE = STRING(64)
 VALUE = "V123"
END ATTRIBUTE

START ATTRIBUTE
 NAME = "SERIAL NUMBER"
 ID = 4
 ACCESS = READ-ONLY
 STORAGE = SPECIFIC
 TYPE = STRING(64)
 VALUE = "1234567890ABCDEF"
END ATTRIBUTE

START ATTRIBUTE
 NAME = "INSTALLATION"
 ID = 5
 ACCESS = READ-ONLY
 STORAGE = SPECIFIC
 TYPE = DATE
 DESCRIPTION = "THE TIME AND DATE OF THE (LAST) INSTALL OF "
 "THE COMPONENT"
 VALUE = "19930629100000.000000-300"
END ATTRIBUTE

START ATTRIBUTE
 NAME = "VERIFY"
 ID = 6
 ACCESS = READ-ONLY
 STORAGE = SPECIFIC
 TYPE = INTEGER
 DESCRIPTION = "A CODE THAT PROVIDES A LEVEL OF VERIFICATION "
 "THAT THE COMPONENT IS STILL INSTALLED AND WORKING."
 VALUE = UNKNOWN
END ATTRIBUTE

END GROUP // DMTF|COMPONENTID|001

//
// SERVICE GROUP
//
// THE SERVICE GROUP CONTAINS INFORMATION REGARDING THE SERVICING OF
// THIS SYSTEM.
//

START GROUP
 NAME = "SERVICE GROUP"
 ID = 2
 CLASS = "ANYCOMPUTER|SYSTEMGROUP|001"
 DESCRIPTION = "THE SERVICE GROUP CONTAINS INFORMATION"
 " ABOUT THE SERVICING OF THIS SYSTEM."

START ATTRIBUTE
 NAME = "SERVICE TAG NO."
 ID = 1
 ACCESS = READ-ONLY
 STORAGE = SPECIFIC

 Desktop Management Interface Specification v2.01s

January, 2003 35

 TYPE = STRING(64)
 VALUE = "1234567890ABCDEF"
 DESCRIPTION = "SERIAL TAG NUMBER."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "WARRANTY START DATE"
 ID = 2
 ACCESS = READ-ONLY
 STORAGE = SPECIFIC
 TYPE = DATE
 VALUE = "19930107093000.000000-300"
 DESCRIPTION = "THE START DATE OF THE SERVICE WARRANTY."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "WARRANTY DURATION"
 ID = 3
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = INTEGER
 VALUE = 24 // MONTHS OF DURATION
 DESCRIPTION = "THE TOTAL DURATION OF THIS SYSTEM'S WARRANTY"
 " IN CALENDAR MONTHS."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "SUPPORT PHONE NUMBER"
 ID = 4
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = STRING(64)
 VALUE = "1-800-555-1234"
 DESCRIPTION = "THE PHONE NUMBER(S) FOR SUPPORT FOR THIS SYSTEM."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "ASSET NUMBER"
 ID = 5
 ACCESS = READ-ONLY
 STORAGE = SPECIFIC
 TYPE = STRING(64)
 VALUE = "BIG-CORP-566-98-5725"
 DESCRIPTION = "THE ASSET NUMBER FOR THIS SYSTEM."
END ATTRIBUTE

END GROUP // SERVICE GROUP

 Desktop Management Interface Specification v2.01s

January, 2003 36

//
// SYSTEM CHASSIS GROUP
//
// THE SYSTEM CHASSIS GROUP
// CONTAINS A DESCRIPTION OF THE CHASSIS
// IN THIS SYSTEM.
//

START GROUP
 NAME = "SYSTEM CHASSIS GROUP"
 ID = 3
 CLASS = "ANYCOMPUTER|SYSTEMCHASSIS|001"
 DESCRIPTION = "THE SYSTEM CHASSIS GROUP DESCRIBES THE"
 " CHARACTERISTICS OF THIS SYSTEMS CHASSIS."

START ATTRIBUTE
 NAME = "SYSTEM MODEL NO."
 ID = 1
 ACCESS = READ-ONLY
 STORAGE = SPECIFIC
 TYPE = STRING(32)
 VALUE = * "CHASSIS GROUP CODE"
 DESCRIPTION = "THE SYSTEM MODEL NUMBER FOR THIS SYSTEM."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "PHYSICAL CHARACTERISTICS"
 ID = 2
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = STRING(64)
 VALUE = * "CHASSIS GROUP CODE"
 DESCRIPTION = "THE PHYSICAL CHARACTERISTICS OF THIS SYSTEM,"
 " SUCH AS TOWER VS. SLIM LINE VS. DESKTOP."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "CARD SLOT COUNT"
 ID = 3
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = INTEGER
 VALUE = * "CHASSIS GROUP CODE"
 DESCRIPTION = "THE TOTAL NUMBER OF CARD SLOTS FOR THIS SYSTEM."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "NUMBER OF DRIVE BAYS"
 ID = 4
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = INTEGER
 VALUE = * "CHASSIS GROUP CODE"
 DESCRIPTION = "THE NUMBER OF HALF-HEIGHT DRIVE BAYS "
 "IN THIS SYSTEM."
END ATTRIBUTE

START ATTRIBUTE

 Desktop Management Interface Specification v2.01s

January, 2003 37

 NAME = "POWER SUPPLY WATTAGE"
 ID = 5
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = INTEGER
 VALUE = * "CHASSIS GROUP CODE"
 DESCRIPTION = "THE WATTAGE OF THIS SYSTEM'S POWER SUPPLY."
END ATTRIBUTE

START ATTRIBUTE
 NAME = "POWER SUPPLY VOLTAGE"
 ID = 6
 ACCESS = READ-ONLY
 STORAGE = COMMON
 TYPE = INTEGER
 VALUE = * "CHASSIS GROUP CODE"
 DESCRIPTION = "THE VOLTAGE OF THIS SYSTEM'S POWER SUPPLY."
END ATTRIBUTE

END GROUP // SYSTEM CHASSIS GROUP

END COMPONENT

 Desktop Management Interface Specification v2.01s

January, 2003 38

2.4 ISO 639
The following is included for reference only. This is not the official ISO document. It is also not part of the DMI
specification, but is here for reference.For detailed information refer to the technical contents of ISO 639:1988 (E/F)
"Code for the representation of names of languages".

aa Afar ga Irish mg Malagasy sm Samoan
ab Abkhazian gd Scots Gaelic mi Maori sn Shona
af Afrikaans gl Galician mk Macedonian so Somali
am Amharic gn Guarani ml Malayalam sq Albanian
ar Arabic gu Gujarati mn Mongolian sr Serbian
as Assamese mo Moldavian ss Siswati
ay Aymara ha Hausa mr Marathi st Sesotho
az Azerbaijani hi Hindi ms Malay su Sundanese
 hr Croatian mt Maltese sv Swedish
ba Bashkir hu Hungarian my Burmese sw Swahili
be Byelorussian hy Armenian
bg Bulgarian na Nauru ta Tamil
bh Bihari ia Interlingua ne Nepali te Tegulu
bi Bislama ie Interlingue nl Dutch tg Tajik
bn Bengali; Bangla ik Inupiak no Norwegian th Thai
bo Tibetan in Indonesian ti Tigrinya
br Breton is Icelandic oc Occitan tk Turkmen
 it Italian om (Afan) Oromo tl Tagalog
ca Catalan iw Hebrew or Oriya tn Setswana
co Corsican to Tonga
cs Czech ja Japanese pa Punjabi tr Turkish
cy Welsh ji Yiddish pl Polish ts Tsonga
 jw Javanese ps Pashto, Pushto tt Tatar
da Danish pt Portuguese tw Twi
de German ka Georgian
dz Bhutani kk Kazakh qu Quechua uk Ukrainian
 kl Greenlandic ur Urdu
el Greek km Cambodian rm Rhaeto-Romance uz Uzbek
en English kn Kannada rn Kirundi
eo Esperanto ko Korean ro Romanian vi Vietnamese
es Spanish ks Kashmiri ru Russian vo Volapuk
et Estonian ku Kurdish rw Kinyarwanda
eu Basque ky Kirghiz wo Wolof
 sa Sanskrit
fa Persian la Latin sd Sindhi xh Xhosa
fi Finnish ln Lingala sg Sangro
fj Fiji lo Laothian sh Serbo-Croatian yo Yoruba
fo Faeroese lt Lithuanian si Singhalese
fr French lv Latvian, Lettish sk Slovak zh Chinese
fy Frisian sl Slovenian zu Zulu

 Desktop Management Interface Specification v2.01s

January, 2003 39

2.5 ISO 3166
The following is included for reference only. This is not the official ISO document. It is also not part of the DMI
specification, but is here for reference. Students of political science will note that some of these entries are out of
date. For detailed information refer to the technical contents of ISO 3166:1988 (E/F) "Code for the representation of
names of territory". ISO 3166 defines 2-letter codes, 3-letter codes and numeric codes. The DMI uses only the 2-
letter codes.

Afghanistan AF Chile CH Greenland GL
Albania AL China CN Grenada GD
Algeria DZ Christmas Island CX Gudeloupe GP
American Samoa AS Cocos (Keeling) Islands CC Guam GU
Andorra AD Colombia CO Guatemala GT
Angola AO Comoros KM Guinea GN
Anguilla AI Congo CG Guinea-Bissau GW
Antarctica AQ Cook Islands CK Guyana GY
Antigua & Barbuda AG Costa Rica CR
Argentina AR Cote D'Ivoire CI Haiti HT
Aruba AW Cuba CU Heard & McDonald I. HM
Australia AU Cyprus CY Honduras HN
Austria AT Czechoslovakia CS Hong Kong HK
 Hungary HU
Bahamas BS Denmark DK
Bahrain BH Djibouti DJ Iceland IS
Bangladesh BD Dominica DM India IN
Barbados BB Dominican Republic DO Indonesia ID
Belgium BE Iran (Islamic Republic) IR
Belize BZ East Timor TP Iraq IQ
Benin BJ Ecuador EC Ireland IE
Bermuda BM Egypt EG Israel IL
Bhutan BT El Salvador SV Italy IT
Bolivia BO Equatorial Guinea GQ
Botswana BW Ethiopia ET Jamaica JM
Bouvet Island BV Japan JP
Brazil BR Falkland I (Malvinas) FK Jordan JO
British Indian O. Terr. IO Faroe I. FO
Brunei Darussalam BN Fiji FJ Kampuchea, Democratic KH
Bulgaria BG Finland FI Kenya KE
Burkina Faso BF France FR Kiribati KI
Burma BU French Guiana GF Korea,Dem. People's Rep KP
Burundi BI French Polynesia PF Korea, Rep. of KR
Byelorussian SSR BY French Southern Terr. TF Kuwait KW

Cameroon CM Gabon GA Lao People's Dem. Rep. LA
Canada CA Gambia GM Lebanon LB
Cape Verde CV Germany DE Lesotho LS
Cayman Islands KY Ghana GH Liberia LR
Central African Rep. CF Gibraltar GI Libyan Arab Jamahiriya LY
Chad TD Greece GR Liechtenstein LI
Luxembourg LU Philippines PH Tunisia TN

 Desktop Management Interface Specification v2.01s

January, 2003 40

 Pitcairn Island PN Turkey TR
Macau MO Poland PL Turks and Caicos Isl. TC
Madagascar MG Portugal PT Tuvalu TV
Malawi MW Puerto Rico PR
Malaysia MY Uganda UG
Maldives MV Qatar QA Ukranian SSR UA
Mali ML United Arab Emirates AE
Malta MT Reunion RE United Kingdom GB
Marshall Islands MH Romania RO United States US
Martinique MQ Rwanda RW US Minor Outlying I. UM
Mauritania MR Uruguay UY
Mauritius MU St. Helena SH USSR SU
Mexico MX Saint Kitts and Nevis KN
Micronesia FM Saint Lucia LC Vanuatu VU
Monaco MC St. Pierre & Miquelon PM Vatican City State VA
Mongolia MN St.Vincent &

Grenadines
VC Venezuela VE

Montserrat MS Samoa WS Viet Nam VN
Morocco MA San Marino SM Virgin Islands (British) VG
Mozambique MZ Sao Tome and Principe ST Virgin Islands (US) VI
 Saudia Arabia SA
Namibia NA Senegal SN Wallis and Futuna Isl. WF
Nauru NR Seychelles SC Western Sahara EH
Nepal NP Sierra Leones SL
Netherlands NL Singapore SG Yemen YE
Netherlands Antilles AN Solomon Islands SB Yemen, Democratic YD
Neutral Zone NT Somalia SO Yugoslavia YU
New Caledonia NC South Africa ZA
New Zealand NZ Spain ES Zaire ZR
Nicaragua NI Sri Lanka LK Zambia ZM
Niger NE Sudan SD Zimbabwe ZW
Nigeria NG Suriname SR
Niue NU Svalbard & Jan Mayen

I.
SJ

Norfolk Island NF Swaziland SZ
Northern Mariana I. MP Sweden SE
Norway NO Switzerland CH
 Syrian Arab Republic SY
Oman OM
 Taiwan TW
Pakistan PK Tanzania, United Rep. TZ
Palau PW Thailand TH
Panama PA Togo TG
Papua New Guinea PG Tokelau TK
Paraguay PY Tonga TO
Peru PE Trinidad and Tobago TT

 Desktop Management Interface Specification v2.01s

January, 2003 41

3. STANDARD GROUPS

This section describes the three important classes of standard groups for this version of the DMI. They are the
ComponentID group, the Event Groups, and the DMI Service Provider Groups. The ComponentID group is one that
must be implemented by all DMI components. The Event groups include a template group used to describe the format
of event data for standard events. In addition an Event State group is defined to hold the current state of state-based
events An event example is provided at the end of this section. The Service Provider standard groups are required to
be implemented by all DMI Service Provider implementations.

3.1 COMPONENT STANDARD GROUPS

3.1.1 The ComponentID group

Every MIF file must contain a standard group with ID 1. This group offers base-level identification of the component
and represents the minimum amount of information that a component vendor should provide (when meaningful). An
attribute that is not supported or that has no meaning for a given component should give the keyword unsupported or
unknown as its value.

The ComponentID class string is "DMTF|ComponentID|001".

The six named attributes in the group are: "Manufacturer", "Product", “Version”, "Serial Number", "Installation", and
"Verify". Their definitions are:

3.1.1.1 MANUFACTURER

Name = "Manufacturer"
ID = 1
Description = " The organization that produced this component”
Access = Read-Only
Storage = Common
Type = String(64)

3.1.1.2 PRODUCT

Name = "Product"
ID = 2
Description = “The name of this component or product”
Access = Read-Only
Storage = Common
Type = String(64)

3.1.1.3 VERSION

Name = “Version”
ID = 3
Description = “The version string for this component”
Access = Read-Only
Storage = Specific
Type = String(64)

3.1.1.4 SERIAL NUMBER

Name = "Serial Number"
ID = 4
Description = “The serial number for this component”
Access = Read-Only
Storage = Specific
Type = String(64)

 Desktop Management Interface Specification v2.01s

January, 2003 42

3.1.1.5 INSTALLATION

Name = "Installation"
ID = 5
Description = “The time and date of the last install of the component on this”
 “system”
Access = Read-Only
Storage = Specific
Type = date

3.1.1.6 VERIFY

Name = "Verify"
ID = 6
Description = “The verification level for this component”
Access = Read-Only
Storage = common
Type = integer

Asking for the value of the “Verify” attribute causes the component instrumentation to perform checks to verify that
the component is still in the system and working properly. It should return one of the following values:

VALUE MEANING
0 an error occurred; check status code
1 component does not exist
2 verify not supported
3 RESERVED
4 component exists, functionality untested
5 component exists, functionality unknown
6 component exists, functionality no good
7 component exists, functionality good

 Desktop Management Interface Specification v2.01s

January, 2003 43

3.2 EVENT STANDARD GROUPS
This section describes a model for producing standard DMI events and also provides mechanisms that vendors may
use to extend standard events to produce proprietary event types.

An Event is the manifestation of a change of state, or the occurrence of condition of interest with a hardware or
software device. The generation of an Event causes the DMI Service Provider to directly or indirectly process it. An
Indication is a notification of an Event to an event consumer. Indications include Event notifications as well as
notifications of changes in the DMI Service Provider's database, e.g. notification that a Component or a Group has
been added to or deleted from the database, that a Component has been installed or uninstalled.

An Event Generator is hardware or software device that has undergone a change in state or in which a certain
condition of interest has occurred. An Event Consumer is an entity that is interested in receiving notification of the
occurrence of an Event of interest. This change of state or condition will directly or indirectly cause a new event to be
processed by the DMI Service Provider which then produces and delivers an Indication data structure to event
consumers that have expressed their interest in receiving Indications. An Event Reporter is a software entity that
causes a new DMI event to be processed by the Service Provider, either on its own behalf (in which case it is also an
Event Generator), or on behalf of another Event Generator entity. Events are “reported” by calling the Service
Provider entry point DmiOriginateEvent.2

Event consumers must express their interest in receiving event notifications through a subscription mechanism
described later in this chapter. Upon the reporting of an Event, the DMI Service Provider produces and delivers a data
structure (an Indication) containing data describing the Event to all event consumers that have subscribed to receive
Indications.

Event consumers could, of course, be remote relative to the DMI Service Provider. In this case it is desireable not to
propagate all event notifications to the remote site across the intervening communication medium. This implies the
need for a filtering mechanism for event notifications. Such a filtering mechanism is specified later in this chapter.
The DMI Service Provider matches each event against filters provided by a remote consumer to determine whether or
not a specific Indication should be delivered to that remote consumer.

When an Indication is delivered to an event consumer, the event data appear to the consumer exactly as though the
consumer had done a DMI Get operation to a functional group; we say that the Event data appear as though they were
the result of an "unsolicited Get". Naturally, therefore, the event data need to be formatted as a DMI group. To
describe this format we introduce the notion of a Event Generation Group which is really only a template. The
syntactic definition of this group appears very much like that of normal groups. However, its role is solely that of a
template to define the format of event data. Consequently, we distringuish this special format-defining group through
a special form of class string.

When a consumer receives an Indication the data structure contains a DmiMultiRowData structure within it. Each
DmiMultiRowData structure is composed of possibly multiple DmiRowData structures. This chapter describes the
format of the first two DmiRowData structures for standard Indications. (See Section 5.3 for definitions of these data
structures)

Some key aspects of the event model described in this chapter are:

•An Event Generation Group

As described above, this group is a template for, and defines the “format” of standard events. By interpreting the
delivered Indication data according to this format, the management application can display a localized3 description of
the cause (and possibly solution) of the event.

This chapter also describes a mechanism whereby a vendor can extend, in a proprietary manner, the set of events
described by a standard event generation group.

•An Event State Group

The Event State Group defines a table, each of whose rows represents the state of a state-based event, within the
Component where the Event State Group is instrumented. A state-based event can occur when the state of the event
generating device changes. Most typically, a state-based event might be generated when (a) a device encounters a
problem and enters a problem state, or, (b) when the problem is cleared and the device re-enters its normal operating
state. An instance of the Event State Group must be included in every Component that generates state-based events.

2 or an analogous native entry point in OSes that do not implement the CI
3 i.e. translated into the appropriate language.

 Desktop Management Interface Specification v2.01s

January, 2003 44

3.2.1 Requirements
3.2.1.1 MIF REQUIREMENTS

Each group in the MIF that represents Event Generator(s) must have a corresponding Event Generation Group (See
Section 3.2.2). It is recommended that each Event Generation group immediately follow the referenced group, and that
the Event Generation group’s ID value is the numeric successor of the referenced group’s ID value.

Additionally, if the Event Generation group is capable of generating state-based events (which is the usual case), then
there must be an instance of the Event State group defined in the Component that contains the Event Generation group.

3.2.1.2 EVENT REPORTER REQUIREMENTS
For events that may be associated with a particular instance of a group (a row in a table), Event Reporters must provide
instance-specific data (i.e. a keylist) in the second DmiRowData structure within the Indication data structure.

Software entities that are not registered as components with the DMI Service Provider may act as Event Reporters by
calling the DmiOriginateEvent entry point in the Component Interface (CI), or its equivalent in the operating system
environment in question. This would typically occur in situations where that software entity is reporting a "synthetic
event"; an event that is generated based on a composite analysis of various elements of state in the managed machine.
In such a case, the reported Component ID field in the Indication data structure must be zero. Likewise, the reported
Class String of the event generating group must be a null string.

3.2.2 Event Generation Group
This section describes the “skeleton” or template for a group that is used for event generation. The Event Generation
Group definition is in a template form and is not a true group definition. The reason for this is that the event definition
contains elements that must be tailored for the group representing the entity(s) actually causing the event(s).

Structure of event data

The event data received by an event consumer will consist of one or more DmiRowData structures (i.e. a
DmiMultiRowData structure). For standard events the following conditions apply to these DmiRowData structures:

• The first DmiRowData structure contains a row whose format is identical to that of the Event Generation
Group defined below in this section.

• The second DmiRowData structure contains a keylist in the case that the event generating group is a tabular
group. This keylist selects the precise row of the tabular group that was the Event Generator (e.g. the event
generating Processor in a table of Processors).

• The third DmiRowData structure is reserved for carrying addressing information describing the node that
originated the event in the case that the event is (multiply) forwarded to its eventual destination across a
communication medium.

• Fourth and subsequent DmiRowData structures, if they exist, may contain any additional (proprietary)
information that is required to further elaborate on the event.

Vendor proprietary events

Vendor proprietary events need not adhere to these conditions, but then their event data will not be recognized or
processed by all DMI management applications. A mechanism using an extended class string format is described
below for those vendors wishing to provide proprietary indications while staying within the above conditions.

Template definition and class string

Attribute definitions within a non-tabular group must have a value statement. The attribute values in template group
definition below are arbitrary; they are provided only for syntactic completeness, so that they will not cause errors
when processed by MIF parsers and processors. In practice, Management Applications will not access these values
defined in the template — rather, Management Applications will use values directly from the Indication data structure
that is delivered to a consumer of Indications. (An exception to this rule is Attribute 5, the Associated Group Attribute.
The value of this attribute identifies the Event Generator group and therefore must be a valid attribute value even
within the template.) The template group definition is used by Management Applications to associate values in the
Indication data structure with enumeration display strings. The definition of the event generation group will start as
follows:

Name = "Event Generation"
Class = "EventGeneration|<Specific name>|002"

 Desktop Management Interface Specification v2.01s

January, 2003 45

ID =
Key = 5

Note here that the version number in the class string for the Event Generation template refers to the version of the
template.

Each event generation group will have a unique class string in which the <Specific name> field above is constructed
according to the following format4:

<defining-body> <delim> <specific-name-of-assoc-group>
or
<defining-body> <delim> <specific-name-of-assoc-group> <delim> <proprietary-

extension>
where <delim> = ^^ (i.e. two caret characters in sequence)

It is suggested that the proprietary-extension field contain additional characters that make the field unique. To
accomplish this, component vendors who wish to include additional event types for a standard event generation group
should augment the proprietary-extension field with additional descriptive text. In particular, the full, registered name
of the corporate entity of the vendor should be used to ensure uniqueness of the specific-name field of the event
generation group.

For example, if the DMTF Server Working Committee wished to define an Event Generation group for the UPS
Battery standard group, they might choose:

"EventGeneration|DMTF^^UPS Battery|002"

as its class string. A UPS vendor, named say “Excellent Power Systems, Inc.” wishing to define an additional
proprietary event condition for their UPS batteries might choose, for example:

"EventGeneration|DMTF^^UPS Battery^^Low Electrolyte"
" Excellent Power Systems, Inc.|002"

as the class string.

Of course, vendors may choose to define entirely proprietary sets of events by using the full registered name of their
corporate entity in the defining-body portion of the class string. If the format of the EventGeneration template is
maintained in the first, second and third RowData structures of the Indication data, then these proprietary events could
still be manipulated in simple ways by any DMI management application. However, their full semantics would only be
known to the vendors' own proprietary management applications.

It is suggested that when defining multiple Event Generation templates for a single Event Generator group, that they all
appear immediately following the associated group in the MIF, and that they have sequential group IDs.

The value of this group’s ID may be any unused ID. The key is used by Management Applications to discover the
associated group. See “Associated Group” in Section 3.2.2.2.5.

3.2.2.1 COMMON DEFINITIONS
Start Enum
Name = "BOOL"
 0 = "False"
 1 = "True"
End Enum

3.2.2.2 DEFINITIONS OF REQUIRED ATTRIBUTES
The following attributes must be included in the definition of a standard Event Generation group. See Section 3.2.3.2.

4Rationale:

A. The use of another type of delimiter in the class string for the EventGeneration template, over and above the ‘|’
character, is required to
1. distinguish different defining bodies (e.g. user groups such as OURS),
2. disambiguate the cases “StdGroup”, “StdGroup Capabilities”, and “StdGroup MyTemplate” where the first

two are standard group names and the third one is a proprietary event extension to the “StdGroup” event
generator. In other words there is no way to tell that “StdGroup MyTemplate” is proprietary and “StdGroup
Capabilities” is standard unless the MA has an up-to-date list of all standard class names.

3. provide clarity and readability
B. A delimiter composed of an unlikely string of multiple characters is specified so that the use of the individual

characters is still retained. Also, current parsers will not break.

 Desktop Management Interface Specification v2.01s

January, 2003 46

3.2.2.2.1 Event Type
The “reason” that the event occurred. For example, a printer may be able to generate JAM events.

Name = "Event Type"
ID = 1
Description = "The type of event that has occurred."
Type = <Enum>
Access = Read-Only
Storage = Specific
Value = unknown

Note that the enumeration is not defined here. Each Event Generation group will have a unique definition for this
attribute.

3.2.2.2.2 Event Severity
The event severity describes the type of event. Monitor and Information events are not associated with the state of the
entity generating the event and are used to convey information. OK, Non-Critical, Critical, and Non-Recoverable
events are state-based and represent successively more serious abnormal conditions.

Monitor events are used by transaction-oriented event generators. Monitor events are periodic in nature and are
expected to be encountered by event consumers. An example of a Monitor event would a lock/unlock operation from a
database server.

Information events are used to indicate a non-problematic change that is non-periodic in nature. An example of an
Information event would be a paper size change in a paper tray of a printer.

OK events inform the event consumer that the entity generating the event has entered the OK or “normal” state. On
initialization a device may generate this event. State-based generators will produce this event after a Non-Critical,
Critical, or Non-Recoverable error state has “cleared.”

Non-Critical events convey a problem that needs to be corrected. However, they do not imply a specific time period
within which corrective action(s) need to be taken. For example, a printer that had two paper trays may generate a
Non-Critical event when one of them runs out of paper.

A Critical event is more serious. These problems need to be corrected usually within a specific time period whose
duration is governed by the device type and/or the particular problem situation. For example, if a printer has only one
paper tray, and that tray runs out of paper, printing cannot continue. In this scenario, the printer may generate a
Critical event. A time period may be associated with this event after which, if the paper tray is not replenished, the
print job might be discarded.

A Non-Recoverable event is the most serious. Not only must it be corrected immediately for an operation to proceed,
but the cause of the failure itself is severe. Failures in devices that can only be corrected by cycling the power, or
performing an off-line repair operation are Non-Recoverable events.

The contents of the event state field within the rows of the Event State group associated with the Component, in which
the Event Generator group is located, will contain one of the following four Severities at any time: OK, Non-Critical,
Critical, Non-Recoverable.

Name = "Event Severity"
ID = 2
Description = "The severity of this event."
Type = Start Enum
 0x001 = "Monitor"
 0x002 = "Information"
 0x004 = "OK"
 0x008 = "Non-Critical"
 0x010 = "Critical"
 0x020 = "Non-Recoverable"
 End Enum
Access = Read-Only
Storage = Specific
Value = unknown

The enumeration defined in this attribute must not be changed. This is to allow this same enumeration to be
used to filter events.

3.2.2.2.3 Event Is State-Based
Event generators may be state-based or non state-based. State-based generators generate an event anytime the device
changes state. Furthermore, for each non-normal event generated, an OK event will be generated when that condition
clears. If the printer runs out of paper in bin one (and generates a Non-Critical event), and develops a jam in the output

 Desktop Management Interface Specification v2.01s

January, 2003 47

path (generating a Critical event), then that printer will generate an OK event for each of those events when they are
corrected.

It is presumed that state-based event generators generate no more than one event of any given event type for each
relevant state transition.

A non state-based generator will issue an event for each condition of interest that develops, but does not issue
corresponding OK events as above.

This attribute takes the value TRUE if the Event being reported is state-based. Otherwise, it takes the value FALSE.

Name = " Event Is State Based"
ID = 3
Description = "The value of this attribute determines whether the Event being”
 “reported is a state-based Event or not. If the value of this attribute”
 “is TRUE then the Event is state-based. Else the Event is not state-
 “based."
Type = "BOOL"
Access = Read-Only
Storage = Common
Value = unknown

3.2.2.2.4 Event State Key
This attribute has meaning if and only if the Event being reported is state-based, i.e. the value of the attribute above
(Event Is State-Based) is TRUE (see Section 3.2.2.2.3). This attribute holds a single integer key that identifies a row in
the Event State group associated with the Component within which the Event Generator group is located. The Current
State attribute within that row holds the value of the current state of the Event. The contents of the Current State
attribute are one of four enumerated severity levels (not including Monitor and Information)

Name = "Event State Key"
ID = 4
Description = "This attribute holds the key identifying a row of the Event State group”
 “within the Component in which the event generator group is located. The”
 “Current State attribute within the row contains the current state of this”
 “state-based event. The current state can be one of the four severities: “
 “OK, Non-Critical, Critical, and Non-Recoverable."
Type = Integer
Access = Read-Only
Storage = Specific
Value = unknown

3.2.2.2.5 Associated Group
This attribute contains the value of the class string of the associated group i.e. the Event Generator group. This is a
keyed attribute. A Management Application that discovers an Event Generation template group can find the associated
group by using a DmiListComponentsByClass command with a class filter of “EventGeneration||” and a keylist with
this attribute’s value.

Name = "Associated Group"
ID = 5
Description = "The class string of the group that is associated with the events”

 “defined in this Event Generation group."
Type = String (<Size>)
Access = Read-Only
Storage = Common
Value = "<ClassString>"

The value of this attribute should be defined in the MIF. For example, if this Event Generation group defines events
for the Processor group defined in the Systems Standard Groups Definition, V1.0, then this value would be
“DMTF|Processor|003”.

3.2.2.2.6 Event System
The event system attribute indicates the functional system of the product that caused the event. For example a printer
might define Engine, Feeder, and Sorter as functional systems of the printer. A simple management application could
use the values of the Event System and Event subsystem attributes (see below) to construct a simple message
describing the event.

Name = "Event System"
ID = 6
Description = "The major functional aspect of the product causing the fault."
Type = <Enum>
Access = Read-Only

 Desktop Management Interface Specification v2.01s

January, 2003 48

Storage = Specific
Value = unknown

Note that the enumeration is not defined here. Each Event Generation Template will have a unique definition for this
attribute.

3.2.2.2.7 Event Subsystem
The event subsystem attribute indicates the functional subsystem of the product that caused the event. For example a
printer might define BIN1 and BIN2 as functional subsystems of the printer. A simple management application could
use the values of the Event System (see above) and Event subsystem attributes to construct a simple message
describing the event.

Name = "Event Subsystem"
ID = 7
Description = "The minor functional aspect of the product causing the fault."
Type = <Enum>
Access = Read-Only
Storage = Specific
Value = unknown

Note that the enumeration is not defined here. Each Event Generation Template will have a unique definition for this
attribute.

3.2.2.3 DEFINITIONS OF OPTIONAL ATTRIBUTES
The following attributes may be included or excluded from the definition of standard Event Generation Groups. See
Section 3.2.2.

3.2.2.3.1 Event Solution
The event solution attribute describes a solution to the problem that caused the event. The vendor of a product
generating this event may choose to provide a string here that describes what the user of the Management Application
must do to correct the problem. This string may also specify a time period within which action must be taken in the
case that a Critical event is being reported.

Name = "Event Solution"
ID = 8
Description = "A solution to the problem that caused the event."
Type = <Enum>
Access = Read-Only
Storage = Specific
Value = unknown

Note that the enumeration is not defined here. Each Event Generation Template will have a unique definition for this
attribute. The set of possible solution strings are provided here as an enumeration so that they may be easily localized
to the desired language of the end-user of the Management Application.

3.2.2.3.2 Instance Data Present
This attribute is used to inform the Management Application that the second DmiRowData data structure within the
Indication data structure contains instance-specific data...For example, if an event template were constructed to support
the Processor group from the Systems Standard Groups Definition, then it would be desirable if an event not only
described a particular processor fault, but also which processor in the table was the one that caused the failure.

Name = "Instance Data Present"
ID = 9
Description = "Indicates whether the second event block contains instance-specific data."
Type = "BOOL"
Access = Read-Only
Storage = Specific
Value = unknown

3.2.2.3.3 Vendor Specific Message
The following two attributes allows the product supplier to define a “private” interface between the producer and the
consumer of an event. Producers of events are usually the instrumentation code associated with a product, but may in
fact be any active task. Consumers are Management Applications that have registered with the DMI Service Provider
to receive indications. Manufacturers who develop products that encompass both producers and consumers may find
that these attributes provide an efficient, easy-to-use method of passing arbitrary information. In particular, they may
use these attributes to fold existing proprietary solutions into the DMI Indications paradigm.

This attribute is used to pass displayable string data.

 Desktop Management Interface Specification v2.01s

January, 2003 49

Name = "Event Message"
ID = 10
Description = "Auxiliary information related to the event."
Type = String(<Size>)
Access = Read-Only
Storage = Specific
Value = unknown

Note that the string definition has no maximum size associated with it. Implementors of this template may choose
whatever maximum size is convenient for the set of strings defined for this attribute.

3.2.2.3.4 Vendor Specific Data
This attribute is used to pass arbitrary data.

Name = "Vendor Specific Data"
ID = 11
Description = "Auxiliary information related to the event."
Type = OctetString(<Size>)
Access = Read-Only
Storage = Specific
Value = unknown

Note that the octetstring definition has no maximum size associated with it. Implementors of this template may choose
whatever maximum size is appropriate for this attribute.

3.2.3 Event State Group
The Event State group is a table keyed with a single integer which is a unique identifier for each row of the table. Each
row of this table holds information about a unique single event type that is generated from a given Event Generation
group within the event generating Component. The Event State group only carries the current state of state-based
events within the Component.

NOTE: Unlike the event generation template defined in Section 3.2.2, this is a true group definition with the usual form
of Class String.

In theory there is one event state table per location within a component which generates events, and it holds the current
state of the events generated at that location. However, for simplicity, the Event State Group combines these theoretical
tables into one single table in a Component, wherein each entry holds the state of one event type and "points back" to
the event generation group at the event generating location within the Component.

For each row of this keyed group the Event Generation Group attribute carries the ID of the event generation group
that defines the event type represented by the row. Management applications may scan for all state based events within
a system by using a class filter of "|Event State|" to discover instances of this group. Then for each instance of this
group the application may scan the rows of this group to discover state-based events.

A vendor desiring to maintain current state for proprietary state-based events may simply include additional rows
within this group that "point" to the vendor's proprietary event generation group. This is done by assigning the class
string of their proprietary event generation group (see Section 3.2.2) as the value of the Event Generation Group
attribute in those additional rows.

 Desktop Management Interface Specification v2.01s

January, 2003 50

Name = "Event State"
Class = "DMTF|Event State|001"
ID =
Key = 1

3.2.3.1 EVENT INDEX
This is a unique index for rows of this table.

Name = "Event Index"
ID = 1
Description = "A unique index into the Event State table"
Type = Integer
Access = Read-Only
Storage = Common
Value = unknown

3.2.3.2 EVENT GENERATION GROUP
This attribute contains the class string of the Event Generation group within this Component that described the
Indication format for the related Event. The Component ID of the component from which the Event arose is reported in
the header of the Indication data structure that is received by the Event Consumer(s).

Name = "Event Generation Group Class"
ID = 2
Description = "The Class String of the event generator group within the generating”
 “Component"
Type = String (256)
Access = Read-Only
Storage = Common
Value = unknown

3.2.3.3 EVENT TYPE
This attribute contains the type of the Event that was generated. The value of this attribute is the integer value of one of
the enumerated items in the Event Type attribute in the associated Event Generation group (see Section 3.2.2.2.1). The
Event Generation group in question can be identified by the attribute defined immediately above (see Section 3.2.3.2)

Name = "Event Type"
ID = 3
Description = "Integer value that identifies one of the Event types enumerated”
 “in the associated Event Generation group"
Type = Integer
Storage = Common
Value = unknown

3.2.3.4 CURRENT STATE
This attribute contains the current state (i.e. severity) of the specific event type represented by this row of the group.

Name = "Current State"
ID = 4
Description = "The current state of the Event type identified by Event Type”
 “attribute in this row."
Type = Start ENUM
 0x0004 = "OK"
 0x0008 = "Non-Critical"
 0x0010 = "Critical"
 0x0020 = "Non-Recoverable"
 End ENUM
Access = Read-Only
Storage = Specific
Value = "OK"

The enumeration defined in this attribute is a subset of the Event Severity enumeration defined in the Event Generation
group. It is kept aligned with that enumeration because it reflects the current severity of the event type within the event
generating component.

 Desktop Management Interface Specification v2.01s

January, 2003 51

3.2.3.5 ASSOCIATED GROUP KEYS
This attribute exists to identify an instance of the Associated Group that may generate the state-based event in question.

For instance, consider that the Associated Group is the Disks group in the Systems Standard Groups Definition. This is
a table group keyed by a pair of keys. The first key is an integer in an Enum called Storage Type, the second key is an
integer index within a storage type. If a disk in the Disks table generates a state-based event (e.g. "disk failure") then its
related entry in the Event State table must be able to identify the specific disk that was the source of the event... not just
that some disk sourced the event.

In the case of an arbitrarily keyed Associated Group there could be a number of different keys each of a different type.
However, we restrict the possible keys here to be Integers only (this includes simple table indexes as well as Enums.
This should cover the majority of practical cases.

To represent a KeyList of integers keys we use an encoded string, the contents of which are a comma-separated list of
integers without any spaces. The simple BNF for the grammar of this string is:

<KeyListString> ::= '"' <Integer> { ',' <Integer> }* '"'

where <Integer> is as defined in the MIF Grammar in Section 2.2.

Name = "Associated Group Keys"
ID = 5
Description = "A list of integer keys that identify the instance of the”
 “Associated Group that actually" "generated the state-based event.”
 “The list of integer keys are represented in the value of this”
 “attribute as a string containing a comma-separated list of"
 "integers. The management application must parse this string to”
 “obtain the list of integer keys.”
Type = String(256)
Access = Read-Only
Storage = Specific
Value = unknown

 Desktop Management Interface Specification v2.01s

January, 2003 52

3.3 DMI SERVICE PROVIDER STANDARD GROUPS

When Indications are sent to remote consumers, it is desireable to limit the set of indications that are actually
transmitted on the intervening communication medium. To achieve this indication consumers are required to
subscribe for indications at each potential indication-originating node in the network. In addition, the mere act of
subscribing for indications enables only the sending of notification of DMI Service Provider database changes to the
consumer (e.g. "component added/deleted", "group added/deleted", etc.). If Event notifications are desired, event
consumers must provide filters that select the specific event notifications they are interested in receiving. This section
describes the mechanisms for subscription and filtering. DMIv2.0s introduces new standard groups to configure the
security features, and to define security indications. These groups are defined in sections 12 and 16 respectively.

Subscription and Filter table groups

There are two groups defined for use with the Indication subscription and filtering process. Each group is instantiated
as a table, where the addition or deletion of indication subscription and filter entries is handled as ADD/DELETE row
operations. It is the responsibility of the DMI Service Provider to manage and use these tables. To the user of the MI
interface, they will simply appear as two additional tables instantiated in the DMI Service Provider component. An
important distinction is that the subscription applies to all DMI indications, while the filter applies only to that subset
of indications called events. In other words, if a managing system simply adds an indication subscription entry in a
managed node, it will receive all indication that are not classified as events. It will only receive the indications
classified as events if it has added the appropriate filter table entry. NOTE: A consumer of indications must first
subscribe for events and then specify filters. A consumer may have only a single subscription but may specify
multiple filters.

Persistence of subscriptions

Subscriptions and Filters are intended to be persistent so that indications would continue to be delivered even if a
managing system dropped off the communication medium, or was otherwise inaccessible, for some period, before
returning. Likewise, subscriptions and filters are intended to be persistent over periods when the DMI Service
Provider is itself not functioning. However, it is not desireable for subscriptions and filters to be so long-lived that
they outlive the event consumer that specified them. To achieve this, each Indication subscription has a pair of
associated timestamps, namely, an expiration warning timestamp and a expiration timestamp. These timestamps are
specified by the consumer when subscribing. At the time specified by the expiration warning timestamp the DMI
Service Provider sends an expiration warning indication to the DmiSubscriptionNotice entry point of the consumer.
Likewise, at the time specified by the expiration timestamp, the DMI Service Provider sends an expiration indication
to the DmiSubscriptionNotice entry point of the consumer. NOTE: When a subscription expires, the DMI Service
Provider removes the row corresponding to the subscrption in the SP Indication Subscription table and all associated
filter rows in the SP Filter Information table. These may be identified by matching the subscriber address fields of the
subscription and the filters.

Indication retry threshold

The DMI Service Provider makes its best efforts to deliver indications despite outages of itself, the intervening
communication medium, or the event consumer. If indication delivery is not possible because of such outages, it
retries the delivery after waiting a reasonable period to allow the outage to clear. The maximum number of such
retries is specified by the event consumer in the Indication Failure Threshold attribute within the SP Indication
Subscription group defined below5.

Indication entry points in the client

Event notifications are delivered to the event consumer at the DmiDeliverEvent entry point. As noted above, event
notifications will not be delivered unless the consumer has specified filters for those events. There are specific
individual entry points for notification of DMI Service Provider database changes (e.g. DmiComponentAdded,
DmiGroupAdded, DmiComponentDeleted, DmiGroupDeleted, ... etc.). If a managing system does not wish to receive
one of this latter set of indications it simply does not implement and/or publish the specific entry point. Please refer to
the Interface Description Language (IDL) description of the Indication Delivery Interface for precise details of these
entry points.

5 It is expected that DMI Service Provider implementations will also choose to log at least the fact that the maximum retry
threshold was exceeded. In this case the event data of the undelivered indication should also be logged. Of course, DMI
Service Providers may also choose to log all events. It is expected that DMI Service Providers will use the native OS
logging mechanisms and this document does not specify a separate logging mechanism.

 Desktop Management Interface Specification v2.01s

January, 2003 53

3.3.1 SP Indication Subscription
This group will be instantiated as a table by the DMI Service Provider. It is simply a list of managing nodes that have
subscribed with this managed node to receive indications. This group is used to store the information about a
managing node that is required in order for the managed node to correctly forward indications. It is meant to be
persistent over reboots until the time specified by the “Subscription Expiration Datestamp” attribute, defined below.
The values in this group are set and modified by using the DmiAddRow(), DmiDeleteRow(), DmiGetAttribute(), and
DmiSetAttribute().

Subscriber address information

Note that the set of subscriber addressing information specified includes an RPC Type and a Transport Type. This is
because this version of DMI supports multiple standard RPCs, each of which is multi-transport. Thus the DMI Service
Provider sending the Indication needs to know which RPC and transport must be used to reach a particular subscriber.

Single versus multiple management applications on the client node

In most cases, the managing node has running on it a single management application. This management application
then needs to implement the indication delivery entry points described in the Indication Delivery Interface (see the
IDL description of this interface in the appendix). The management application also publishes these indication entry
points as available RPC service end points in the appropriate RPC naming services (e.g. Cell Directory Services in the
case of DCE/RPC). The DMI Service Provider sending the indication then binds to these RPC service end points
before calling the appropriate entry point to deliver the indication.

The situation may be slightly different in the case of a management node that is hosting multiple management
applications simultaneously. There are two possibilities in this case, namely:

• Each individual management application publishes its indication entry points as RPC service end points
separate and distinct from those of the other management applications on the node. In this case, each
management application will have its own subscription and filter entries registered at the DMI Service
Provider sending the indication.

• The managing node implements an optional "front-end" software entity that supports multiple simultaneous
management applications on the managing node and insulates these management applications from the
specifics of dealing with the underlying RPCs (see Section 9 "Optional MI Support Functions"). In this case,
the RPC service end points are published by the front-end so that all indications, intended for the
management applications it supports, are delivered to it alone. The front-end also subscribes for indications
and provides filters on behalf of the multiple management applications. In other words there will be a single
subscription entry and a set of filter entries corresponding solely to, and managed solely by the front-end on
behalf of the management applications it supports. In this situation, when an indication is delivered to the
front-end, it needs to be able to distinguish which management application is the intended final destination
for the indication. To achieve this local "routing" of indications to management applications, an attribute
named Subscriber ID is defined below in both the subscription and filter groups. The contents of this
attribute are a handle provided by the front-end for its own use in implementing this local "routing" of
indications to the management applications it supports. This handle is opaque to the DMI Service Provider at
which the subscription and filter entries are established; the DMI Service Provider simply returns this handle
as part of the indication information when it delivers the indication. NOTE: the implementation aspects of
this opaque handle are purely a function of the implementation of the front-end e.g. persistence of the
meaning of the handle over re-boots, management application crashes, etc.

The Indication Subscription group is defined next.
Name = "SP Indication Subscription"
Class = "DMTF|SP Indication Subscription|001"
Description = "This group defines the subscription information for a managing node”
 “interested in indications from this system. The DMI Service Provider”
 “will maintain this as a table, with each row representing an individual”
 “managing node.”
Key = 1,2,3,4

 Desktop Management Interface Specification v2.01s

January, 2003 54

3.3.1.1 SUBSCRIBER RPC TYPE

Name = "Subscriber RPC Type"
ID = 1
Description = "This is an identifier of the type of RPC in use by the Subscriber.”
Access = Read-Write
Storage = Common
Type = String(64)

// NOTE: the allowable RPC strings are defined as follows
// “DCE RPC”
// “ONC RPC”
// “TI RPC”
Value = unknown

3.3.1.2 SUBSCRIBER TRANSPORT TYPE

Name = "Subscriber Transport Type"
ID = 2
Description = "This is an identifier of the type of Transport in use by the Subscriber.”
Access = Read-Write
Storage = Common
Type = String(64)
Value = unknown

TRANSPORT

NAME
DESCRIPTION

ncacn_nb_tcp Connection-oriented NetBIOS
over TCP

ncacn_nb_ipx Connection-oriented NetBIOS
over IPX

ncacn_nb_nb Connection-oriented NetBEUI
ncacn_ip_tcp Connection-oriented TCP/IP
ncacn_np Connection-oriented named pipes
ncacn_spx Connection-oriented SPX
ncacn_dnet_nsp Connection-oriented DECnet
ncacn_at_dsp Connection-oriented AppleTalk

DSP
ncadg_ip_udp Datagram (connectionless)

UDP/IP
ncadg_ipx Datagram (connectionless) IPX
ncalrpc Local procedure call

3.3.1.3 SUBSCRIBER ADDRESSING

The format of the Subscriber Addressing field varies according to RPC type, Transport type, and
the implementation of the Service Provider. For example, for DCE RPC and transport type
ncacn_ip_tcp, the subscriber addressing information might take the form:

 ipaddress [port number]

where ipaddress is in dotted decimal form, and port number is the TCP/IP port assigned to the
management process during its initialization.

Because the format of this field is dependent on the Service Provider implementation, it is not
possible to list the formats for each combination of RPC and Transport type here. In order to
remove the burden of determining the correct contents and format of this field from the
management application, SP vendors provide a support function called
DmiGetSubscriptionAddress(). This function may be called by a management application to

 Desktop Management Interface Specification v2.01s

January, 2003 55

obtain the subscriber addressing information for a given combination of RPC and Transport types.
It takes the form:

DmiErrorStatus_t DMI_API
DmiGetSubscriptionAddress (
 [in] DmiString_t* rpcType,
 [in] DmiString_t* transportType,
 [out] DmiString_t* address);

Name = "Subscriber Addressing"
ID = 3
Description = "Addressing information of the managing node that has subscribed”
 “to receive indications from this managed node."
Access = Read-Write
Storage = Common
Type = String(1024)
Value = unknown

3.3.1.4 SUBSCRIBER ID

Name = "Subscriber ID"
ID = 4
Description = "An ID or handle passed by the managing node to the SP. It is opaque”
 “to the DMI Service Provider, but is used in all indications to the”
 “managing node as a correlator, or multiplexing handle. It is intended”
 “only for use by the managing node.”
Access = Read-Only
Storage = Specific
Type = Integer
Value = unknown

3.3.1.5 SUBSCRIPTION EXPIRATION WARNING DATE STAMP

Name = "Subscription Expiration Warning Date Stamp"
ID = 5
Description = "On this date and time, the DMI Service Provider will send an”
 “indication to the subscriber, notifying it that the subscription”
 “is about to lapse.”

// NOTE If the transmission was UNSUCCESSFUL the DMI Service Provider
// should reset this value using the following formula:
// (((Exp TimeStamp)-(Warn Timestamp)) / 2) + (Warn Timestamp)
// This behavior should continue until the indication is successfully
// transmitted, or until either the Expiration date is reached, or the
// Indication Failure Threshold is reached.

Access = Read-Only
Storage = Specific
Type = Date
Value = unknown

3.3.1.6 SUBSCRIPTION EXPIRATION DATESTAMP

Name = “Subscription Expiration DateStamp”
ID = 6
Description = "On this date, after having issued the appropriate number of”
 “warning indications as described by the Subscription Expiration”
 “Warning Timestamp, this subscription will lapse.”
 “NOTE: that then, this entry is to be removed by the DMI Service”
 “Provider, along with any filter table entries associated with it.”
Access = Read-Only
Storage = Specific
Type = DATE
Value = unknown

 Desktop Management Interface Specification v2.01s

January, 2003 56

3.3.1.7 INDICATION FAILURE THRESHOLD

Name = "Indication Failure Threshold"
ID = 7
Description = "This is a number that corresponds to the number of indication”
 “transmission failures to allow, before the indication subscription”
 “is considered to be invalid, and removed.”

Access = Read-Only
Storage = specific
Type = Integer
Value = unknown

3.3.2 SP Filter Information
This tabular group will be instantiated and maintained by the DMI Service Provider. It is a list of filters to applied to
all outbound indications that are classified as events.

Filter operation

The operation of the filter is such that the event will pass, ie. will be forwarded to the managing node, if a filter is
present that matches the event's ComponentID, Class string, and the event's severity is one of the severity levels
specified in the Event Severity attribute.

Specifying a Component ID of 0xFFFFFFFF in the filter will match any component ID in the event. Specific
component ID's may be used to match events generated by the corresponding component. Recall also that a component
ID of zero implies that the event is being reported by an Event Reporter on the originating node that is not registered as
a component with its DMI Service Provider.

Class strings may be matched by providing partial class strings in the filter in a manner similar to the class string
parameter to the ListComponentsByClass command in the MI. For example, the partial class string "DMTF||001" will
match all DMTF defined version 1 standard groups. Similarly, "||" will match all group definitions of all versions,
whether defined by the DMTF or another other industry body or vendor. Likewise "|Processor|" will match all
Processor groups of all versions whether defined by the DMTF or any other entity.

Event severity is matched by providing, in effect, a bit mask. It will be noted that the enumeration specifying event
severity has been deliberately defined with selectors that are powers of 2. Thus to match multiple event severities a bit
mask must be created by OR'ing the respective selectors. This bit mask is then stored in the Event Severity attribute in
the filter entry and must be specially interpreted by management applications and service providers, namely:

• Management applications must not use the contents of the Event Severity attribute as simply a single
enumeration selector but rather recognize that it is a bit mask and break it down into the corresponding event
severities before printing it or otherwise manipulating it.

• DMI Service Providers must interpret the contents of Event Severity attribute as a bit mask rather than as a
single enumeration selector when determining whether or not the event is to be propagated onto the
communication network.

The SP Filter Information group is defined next:

Name = "SP Filter Information"
Class = "DMTF|SPFilterInformation|001"
Description = "This group defines a row in a table of event filters. One filter”
 “is created for each combination of ComponentID, Class, and severity”
 “that the managing node is interested in.”
Key = 1,2,3,4,5,6

3.3.2.1 SUBSCRIBER RPC TYPE

Name = "Subscriber RPC Type"
ID = 1
Description = "This is an identifier of the type of RPC in use by the Subscriber.”
Access = Read-Write
Storage = Common
Type = String(64)

// NOTE: the allowable RPC strings are defined as follows
// “DCE RPC”
// “ONC RPC”

 Desktop Management Interface Specification v2.01s

January, 2003 57

// “TI RPC”
Value = unknown

3.3.2.2 SUBSCRIBER TRANSPORT TYPE

Name = "Subscriber Transport Type"
ID = 2
Description = "This is an identifier of the type of Transport in use by the Subscriber.”
Access = Read-Write
Storage = Common
Type = String(64)
Value = unknown

TRANSPORT
NAME

DESCRIPTION

ncacn_nb_tcp Connection-oriented NetBIOS
over TCP

ncacn_nb_ipx Connection-oriented NetBIOS
over IPX

ncacn_nb_nb Connection-oriented NetBEUI
ncacn_ip_tcp Connection-oriented TCP/IP
ncacn_np Connection-oriented named pipes
ncacn_spx Connection-oriented SPX
ncacn_dnet_nsp Connection-oriented DECnet
ncacn_at_dsp Connection-oriented AppleTalk

DSP
ncadg_ip_udp Datagram (connectionless)

UDP/IP
ncadg_ipx Datagram (connectionless) IPX
ncalrpc Local procedure call

3.3.2.3 SUBSCRIBER ADDRESSING

Name = "Subscriber Addressing"
ID = 3
Description = "Addressing information of the managing node that has subscribed”
 “to receive indications from this managed node."
Access = Read-Write
Storage = Common
Type = String(1024)
Value = unknown

3.3.2.4 SUBSCRIBER ID

Name = "Subscriber ID"
ID = 4
Description = "An ID or handle passed by the managing node to the SP. It is”
 “opaque to the DMI Service Provider, but is used in all”
 “indications to the managing node as a correlator, or”
 “multiplexing handle. It is intended only for use by the”
 “managing node.”
Access = Read-Only
Storage = Specific
Type = Integer
Value = unknown

 Desktop Management Interface Specification v2.01s

January, 2003 58

3.3.2.5 COMPONENT ID

Name = "Component ID"
ID = 5
Description = "The component ID, as assigned by the DMI Service Provider, of the”
 “component from which the managing node wishes to receive events.”
Access = Read-Write
Storage = Specific
Type = Integer
Value = unknown

3.3.2.6 GROUP CLASS STRING

name = "Group Class String"
ID = 6
Description = "The Class string corresponding to the groups within the above”
 “mentioned component, from which the managing node wishes to”
 “receive events.”
Access = Read-Write
Storage = Specific
Type = String(64)
Value = unknown

// Note: that a value of NULL STRING should be used if the entity generating
// this event is an application.

3.3.2.7 EVENT SEVERITY
This particular attribute within a row of the SP Filter Information Entry group needs to be treated specially by
Management Applications (i.e. subscribers for event notifications) and by DMI Service Providers. The Event Severity
enumeration is purposely defined as a bit-mask so that multiple event severities may be selected for a filter entry. This
means that when a management application reads a row of this group it must be aware that the contents of this attribute
might be a set of enumeration selectors that have been OR'ed together. In other words, the contents of this attribute in
the entry should not automatically be treated as a single enumeration selector as would happen in the case of normal
enumerations. DMI Service Providers must also interpret the contents of this attribute as potentially a set of OR'ed
enumeration selectors that specify several event severities for filtering.

Name = "Event Severity"
ID = 7
Description = "The event severity level, at which an event originating ”
 “in a group described by the previous class and componentID, should be ”
 “forwarded to the managing node. Note that ”
 "The Severity enumeration is defined as a bit mask so that events at more "
 "than one level of Severity may be requested by OR'ing together the appropriate "
 "Severity selectors."
Type = Start Enum
 0x001 = “Monitor”
 0x002 = “Information”
 0x004 = “OK”
 0x008 = “Non-Critical”
 0x010 = “Critical”
 0x020 = “Non-Recoverable”
 End Enum
Access = Read-Write
Storage = Specific
Value = unknown

 Desktop Management Interface Specification v2.01s

January, 2003 59

3.4 EVENT EXAMPLE
This section uses the previously described event model with standard groups to demonstrate the construction of an
Event Generation group.

Assume that a spreadsheet product has two executable modules: file.exe and calc.exe. File.exe opens and closes
worksheets and calc.exe performs calculations on them. Each of the modules can fault in various ways: (1) File.exe
can encounter a read error or a write error. (2) Calc.exe can encounter an overflow error or an out of range error. In
addition, calc.exe can encounter a write error during an automatic save.

3.4.1 Software Signature Template6
Start Group
Name = "Software Signature"
Class = "DMTF|Software Signature|001"
Key = 1

 Start Attribute
 Name = "File Name"
 ID = 1
 Storage = Common
 Access = Read-Only
 Type = String(256)
 End Attribute

 Start Attribute
 Name = "File Size"
 ID = 2
 Storage = Specific
 Access = Read-Only
 Type = Integer
 End Attribute

 Start Attribute
 Name = "File Date and Time"
 ID = 3
 Storage = Specific
 Access = Read-Only
 Type = Date
 End Attribute

 Start Attribute
 Name = "File Checksum"
 ID = 4
 Storage = Specific
 Access = Read-Only
 Type = Integer
 End Attribute

 Start Attribute
 Name = "File CRC 1"
 ID = 5
 Access = Read-Only
 Type = Integer
 End Attribute

 Start Attribute
 Name = "File CRC 2"
 ID = 6
 Storage = Specific
 Access = Read-Only
 Type = Integer
 End Attribute
End Group

6 The groups in this section are reproduced without the descriptions for the sake of brevity. For the same reason, the
ComponentID group and Software Component Information group are not reproduced here.

 Desktop Management Interface Specification v2.01s

January, 2003 60

3.4.2 Software Signature Table7
Start Table
Name = "Software Signature"
Class = "DMTF|Software Signature|001"
ID = 38

{"file.exe", 100, "19950101000000.000000-000", 200, 300, 400}
{"calc.exe", 100, "19950101000000.000000-000", 200, 300, 400}
End Table

3.4.3 Event Generation Group
Start Enum
Name = "BOOL"
 0 = "False"
 1 = "True"
End Enum
Start Group
Name = "Event Generation"
Class = "EventGeneration|DMTF^^Software Signature Example|002"
ID = 4
Key = 5

 Start Attribute
 Name = "Event Type"
 ID = 1
 Type = Start Enum
 1 = "Read Error"
 2 = "Write Error"
 3 = "Out of Range"
 4 = "Overflow"
 End Enum
 Access = Read-Only
 Storage = Specific
 Value = unknown
 End Attribute

 Start Attribute
 Name = "Event Severity"
 ID = 2
 Type = Start Enum
 0x001 = "Monitor"
 0x002 = "Information"
 0x004 = "OK"
 0x008 = "Non-Critical"
 0x010 = "Critical"
 0x020 = "Non-Recoverable"
 End Enum
 Access = Read-Only
 Storage = Specific
 Value = unknown
 End Attribute

 Start Attribute
 Name = "Event Is State-Based"
 ID = 3
 Type = "BOOL"
 Access = Read-Only
 Storage = Specific
 Value = unknown
 End Attribute

 Start Attribute
 Name = "Event State Key"
 ID = 4
 Type = Integer
 Access = Read-Only
 Storage = Specific
 Value = unknown

7 The values of the numeric data in this table are contrived.
8 ID 1 is the ComponentID group. ID 2 is the Software Component Information group.

 Desktop Management Interface Specification v2.01s

January, 2003 61

 End Attribute

 Start Attribute
 Name = "Associated Group"
 ID = 5
 Type = String
 Access = Read-Only
 Storage = Common
 Value = "DMTF|Software Signature|001"
 End Attribute

 Start Attribute
 Name = "Event System"
 ID = 6
 Type = Start Enum
 1 = "I/O"
 2 = "Calculation"
 End Enum
 Access = Read-Only
 Storage = Specific
 Value = unknown
 End Attribute

 Start Attribute
 Name = "Event Subsystem"
 ID = 7
 Type = Start Enum
 0 = "None"
 End Enum
 Access = Read-Only
 Storage = Specific
 Value = unknown
 End Attribute

 Start Attribute
 Name = "Instance Is Data Present"
 ID = 8
 Type = "BOOL"
 Access = Read-Only
 Storage = Specific
 Value = "False"
 End Attribute
End Group

3.4.4 MIF Template
//
// DMTF Standard Event Group Definition //
//

////////////////////////
// Common Definitions //
////////////////////////

Start Enum
Name = "BOOL"
 0 = "False"
 1 = "True"
End Enum

///
// Group Definition //
// (Replace bracketed identifiers with actual definition.) //
///

Start Group
Name = "Event Generation"
Class = "EventGeneration|<Specific name>|002"
ID = <ID>
Key = 5

 Desktop Management Interface Specification v2.01s

January, 2003 62

/////////////////////////
// Required Attributes //
/////////////////////////

 Start Attribute
 Name = "Event Type"
 ID = 1
 Description = "The type of event that has occurred."
 Type = <Enum>
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore.
 End Attribute

 Start Attribute
 Name = "Event Severity"
 ID = 2
 Description = "The severity of this event."
 Type = Start Enum
 0x001 = "Monitor"
 0x002 = "Information"
 0x004 = "OK"
 0x008 = "Non-Critical"
 0x010 = "Critical"
 0x020 = "Non-Recoverable"
 End Enum
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore.
 End Attribute

 Start Attribute
 Name = "Event Is State-Based"
 ID = 3
 Description = "The value of this attribute determines"
 "whether the Event being reported is a"
 "state-based Event or not. If the value of"
 "this attribute is TRUE then the Event is "
 "state-based. Otherwise the Event is not "
 "state-based."
 Type = "BOOL"
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore.
 End Attribute

 Start Attribute
 Name = "Event State Key"
 ID = 4
 Description = "A unique, single integer key into the”
 "Event State group if this is a state-based"
 "Event. If this is not a state-based Event then”
 “this attribute's value is not defined."
 Type = Integer
 Access = Read-Only
 Storage = Common
 Value = unknown // Value definition required by Installer. Ignore.
 End Attribute

 Desktop Management Interface Specification v2.01s

January, 2003 63

 Start Attribute
 Name = "Associated Group"
 ID = 5
 Description = "The class name of the group that is associated”
 “with the events defined in this Event Generation”
 “group."
 Type = String
 Access = Read-Only
 Storage = Common
 Value = "<Class name>"
 End Attribute

 Start Attribute
 Name = "Event System"
 ID = 6
 Description = "The major functional aspect of the product causing”
 “the fault."
 Type = <Enum>
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore.
 End Attribute

 Start Attribute
 Name = "Event Subsystem"
 ID = 7
 Description = "The minor functional aspect of the"
 "product causing the fault."
 Type = <Enumeration>
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore.
 End Attribute

/////////////////////////
// Optional Attributes //
/////////////////////////

 Start Attribute
 Name = "Event Solution"
 ID = 8
 Description = "A solution to the problem that caused the event."
 Type = <Enum>
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore.
 End Attribute

 Start Attribute
 Name = "Instance Data Present"
 ID = 9
 Description = "Indicates whether the second event"
 "data structure contains instance-specific data."
 Type = "BOOL"
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore.
 End Attribute

 Desktop Management Interface Specification v2.01s

January, 2003 64

 Start Attribute
 Name = "Vendor Specific Message"
 ID = 10
 Description = "Auxiliary information related to the event."
 Type = String(<Size>)
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore
 End Attribute

 Start Attribute
 Name = "Vendor Specific Data"
 ID = 11
 Description = "Auxiliary information related to the event."
 Type = OctetString(<Size>)
 Access = Read-Only
 Storage = Specific
 Value = unknown // Value definition required by Installer. Ignore
 End Attribute

End Group

 Desktop Management Interface Specification v2.01s

January, 2003 65

4. INTERFACE OVERVIEW

In the DMI framework there are four broad classes of APIs as depicted abstractly in Figure 4-1. They are,
respectively,

Management Application Provider Functions. These are functions implemented by the Management Application
Provider that may be invoked by the DMI Service Provider. An example of this is the function entry point at which
the DMI Service Provider delivers Indications to the Management Application. The Management Application
Provider Functions are specified in Section 7.

DMI Service Provider Functions for Management Applications. These are functions implemented by the DMI
Service Provider that may be invoked by Management Applications. All of the functions in the DMI Service Provider
Functions for Management Applications are specified as part of the Management Interface (MI) in subsequent Section
6.

DMI Service Provider Functions for Components. These are functions implemented by the DMI Service Provider
that may be invoked by Component Providers. Registrations functions, or Indication origination functions fall into
this abstract class. The DMI Service Provider Functions for Components are specified as part of the Component
Interface (CI) in Section 8. These functions are OS-specific. Some OSes may not implement the CI but provide the
equivalent functionality using other, native mechanisms.

Component Provider Functions. These are functions implemented by Component Providers that may be invoked by
DMI Service Providers. Examples of these functions are CiGetAttribute and CiSetAttribute. The Component Provider
functions are specified as part of the Component Interface (CI) in Section 8. These functions are OS-specific. Some
OSes may not implement the CI but provide the equivalent functionality using other, native mechanisms.

Management Application
Provider Functions

DMI Service Provider
Functions for Mgt Apps

Component Provider
Functions

DMI Service Provider
Functions for Components

DMI Service Provider
(previously called Service Layer)

Management Application Provider

Component
OPERATING

SYSTEM
SPECIFIC

Figure 4-1. Abstract classes of APIs in the DMI Framework.

In this document the DMI Service Provider Functions for Management Applications are defined in Section 6
"Management Interface". The Management Application Provider functions are defined in Section 7 "Management
Application Provider API". The remaining two abstract classes of functions described above are defined in Section 8
"Component Interface".

 Desktop Management Interface Specification v2.01s

January, 2003 66

4.1 PROGRAMMING CONSIDERATIONS
Working in an RPC environment has some unusual characteristics that merit special attention. The following section
introduces some of these issues. However, a complete discussion of all RPC issues is outside the scope of this
document. Appendix D contains a list of related documents for further reference.

4.1.1 Binding To A Managed Machine
One of the first questions to answer when developing a management application is that of connecting, or binding, to the
managed machine. The DMI 2.0 interface relies on standard RPC mechanisms to accomplish this binding.

To connect to a machine, a management application must supply

• the machine’s name or address,
• the protocol sequence (e.g,, TCP/IP),
• the Service Provider’s process address (endpoint) on the managed machine,
• and the user's identity

A management application will typically specify the machine name and protocol sequence, and will most likely use a
dynamically determined endpoint. This addressing data is used to construct a binding handle; binding handles are
RPC-defined data structures that are used to manage the connection between RPC clients and servers.

Management applications that only talk to one machine at a time can construct an implicit, or global, binding handle.
When used in this manner, the application is effectively saying that all remote procedure calls are directed toward a
specific machine. When the application is done talking to that machine, it will free the binding. At this point, the
application can construct a new binding handle for some other machine.

Management applications that simultaneously manage multiple machines will need to construct and maintain multiple
binding handles: one per connection. In this usage model, the management application must explicitly supply a
binding handle with each procedure call. This allows an application to direct procedure calls to different machines,
while eliminating the need to create and free binding handles between procedure calls.

The Management Interface APIs specified in Sections 6 and 7 do not include binding handles in the procedures’
formal parameter lists. Instead, these API specifications concentrate on the DMI 2.0 interfaces themselves.

Some RPC implementations can retrieve the management application's user identity implicitly and provide it to the
managed machine Service Provider.

4.1.2 The use of pointers

In general, the formal parameter list for any procedure will be composed of three parameter types: in, out, and in/out.
The “in” parameters are used to pass information to the procedure; the “out” parameters (including the procedure’s
return value) are used to return results from the procedure, and the “in/out” parameters are used to both pass
information and to receive results.

For simple data types, we can pass the data by value. This is the case, for example, when passing the component ID to
a procedure. To receive a simple data type in return, the caller passes the address of a variable to hold the result.

NOTE: The absence of a binding handle in a procedure’s formal parameter list
does not preclude the use of explicit binding handles in a management application.
The DCE RPC programming environment, for example, provides a mechanism
whereby management applications can tailor the interface for implicit or explicit
binding, without changing the IDL description itself. This customization occurs
when the developer creates the RPC procedure stubs with the RPC IDL compiler.
Appendix B describes the DCE RPC development process and includes the DCE
IDL description for the interfaces described in this document.

 Desktop Management Interface Specification v2.01s

January, 2003 67

When a procedure call returns from a remote system, the RPC stub copies the data value into the address specified by
the caller.

Things become a little more complicated when passing data structures by reference. The DMI procedural interface
contains procedures that accept and return arrays of data structures. These structures are passed by reference, with
some memory allocated by the management application, and some allocated by the DMI Service Provider. Given all
this memory allocation, we need some clear rules about who performs the allocation, and who owns the allocated data.
For each parameter class, the responsibility for allocating and freeing reference parameters is as follows:

TYPE ALLOCATED BY OWNED
BY

In Caller Caller

Out Callee Caller

In/Out Caller on input; callee reallocates on
output

Caller

In the latter two cases there is one piece of code (e.g., the RPC stub) that allocates the memory and a different piece of
code (e.g., the management application) that frees it. For this to be successful, the two pieces of code must have
knowledge of which memory allocator is being used. In RPC programming environments, the client application and
the RPC stubs use a common memory allocator, usually specified by the RPC runtime system.

Further, the treatment of out and in-out parameters in failure conditions requires special attention. If a function returns
a status code which is a failure code, then in general the caller has no way to clean up the out or in-out parameters
returned to him. This leads to a few additional rules:

out parameters

For error returns, out parameters must be always reliably set to a value which will be cleaned up without any action on
the caller’s part.

Further, it is the case that all out pointer parameters (usually passed in a pointer-to-pointer parameter, but which can
also be passed as a member of a caller-allocate, callee-fill structure) must explicitly be set to NULL.

As a DMI management application writer, then, you should assume that a failed procedure call requires no additional
memory cleanup; the DMI Service Provider should NOT allocate any memory in the failure case.

in-out parameters

For error returns, all in-out parameters must either be left alone by the callee (and thus remaining at the value to which
it was initialized by the caller) or be explicitly set as in the out parameter error return case.

4.1.3 Calling Conventions
In order to support portability, and for clarity in this document, all of the DMI functions are defined to have a calling
convention of DMI_API.

For example:

DmiErrorStatus_t DMI_API DmiAddRow(DmiHandle_t Handle, DmiRowData_t *RowData);

This allows a calling convention that is native to a host operating system to be used when building implementations for
that operating system. The following is a list of calling conventions to be used by each of the Operating Systems
discussed in this document:

 Desktop Management Interface Specification v2.01s

January, 2003 68

OS IMPLEMENTATIONS
 macos
Os2 #define DMI_API APIENTRY
unix
win16 #define DMI_API WINAPI
win32 #define DMI_API WINAPI
win9x #define DMI_API WINAPI
winnt #define DMI_API WINAPI

4.1.4 Re-entrancy
Most, if not all, 32-bit operating system environments today provide multi-threaded operation. In addition, in a
networked environment, there may be several simultaneous sources of function calls to any particular function entry
point. In consequence, all entry points in the procedural interface portion of this specification must be implemented to
be re-entrant, with the exception of the Component Provider functions. This exception is provided to subsume current
implementations of component instrumentation code with a minimum of re-design.

 Desktop Management Interface Specification v2.01s

January, 2003 69

4.2 NATIONAL LANGUAGE SUPPORT

4.2.1 Requirement

The DMI has always supported NLS functionality, but with this version it is no longer an optional element. Any
implementation that claims to be conformant to this specification MUST support all of the NLS functions defined in
this specification. One important note for component vendors, with this version of the specification the LANGUAGE
statement, as defined in Section 2.2 (MIF Grammar) of this document, is no longer optional.

4.2.2 Overview
DMI handles NLS functionality through several functions defined in this document. This section presents a brief
overview of all of those functions. There are two primary mechanisms that are enabled in the DMI architecture that
allow for NLS to work. The first is the installability of additional MIF files, known as language mapping files. These
files are MIF files that differ in two ways - the language string at the top (which is now mandatory in all MIF files)
defines the language and encoding style used for this file, and secondly that the translatable text is in that language.
The second mechanism defined in this spec to enable NLS is the use of two different character encoding styles. This
document allow the use of either ISO 8859-1 (Latin Alphabet I) for those languages that can be represented using this
single byte character set, or UNICODE. UNICODE is a two byte character set that represents an attempt to combine
the multitude of character sets, and encoding styles into a single element. It should be noted that the first 255 code
points of the UNICODE code page correspond exactly to ISO 8859-1, so coexistence is greatly simplified.

NOTE: the above description refers to OS environments that implement the CI interface described in Section 8.
However, the functionality and database schema implied by the CI are OS-specific. Some OSes may not implement
the CI functions and the MIF schema but provide equivalent functionality using other, native mechanisms and native
schema’s. In this case the language mapping files are another form of schema description files in that environment.

4.2.3 Translatable Text
A discussion of what is translatable within a MIF file is probably best dealt with by stating what is NOT translatable
within a MIF file. The following is a list of the MIF elements that are NOT translatable:

 1) Keywords
 2) Language strings
 3) Class strings
 4) String values that are keys

4.2.4 Installation

As stated above, NLS support is initiated by the installation of multiple MIF files for a given component. This is
accomplished by use of the DmiAddComponent() and DmiAddLanguage() functions. The primary difference
between these functions is that one - DmiAddComponent() returns a component ID, and the other
DmiAddLanguage() takes a component ID as one of its input parameters.

It should be noted, that DmiAddComponent() can be used to install both the Default MIF and language mapping MIFs
all at the same time. This is done through the use of the DmiFileDataList_t data structure. The first, or only MIF file
passed to DmiAddComponet() will become the default language for that component, and any additional MIF files
(and all files passed to DmiAddLanguage()) will be used as requestable languages. Additional languages can be
installed for a given component at any time, but it should be noted that since Groups can be added to, or removed
from, a component at any time, the newly installed language mapping should make a reasonable attempt to match the
installed component.

NOTE: the above description refers to OS environments that implement the CI interface described in Section 8.
However, the functionality and database schema implied by the CI are OS-specific. Some OSes may not implement
the CI functions and MIF schema but provide the equivalent functionality using other, native mechanisms and native
schemas. Also see Section 6.4.

 Desktop Management Interface Specification v2.01s

January, 2003 70

4.2.5 Operation
In operation, the DMI allows a user to discover and select the language to use on all subsequent requests in the
following manner. A user of the MI interface can issue the DmiListLanguages() to retrieve a list of the languages
that are currently available for a given component. The DMI Service Provider will return queries to all commands
using the default (first) language installed for a component, unless or until the application uses the DmiSetConfig()
function to change the response language. An application can issue this call at any time, and as often as needed, but it
should be noted that for the periods between invocations of this function, all DMI functions will use the currently set
language to build responses. If a component does not have the requested language installed to support a given request,
then the DMI Service Provider will use the default (first) language for the response, and an error code of
DMIERR_DEFAULT_LANGUAGE_RETURNED will be returned to the caller.

 Desktop Management Interface Specification v2.01s

January, 2003 71

5. KEY DATA STRUCTURES

5.1 DMI DATA TYPES
The DMI data types presented in this specification adhere to the naming convention for DCE RPC data types. DCE
data types have the following size representations:

IDL Datatype Size
char 8 bits
boolean 8 bits
long 32 bits
hyper 64 bits
unsigned long 32 bits
unsigned hyper 64 bits

typedef unsigned long DmiCounter_t;
typedef unsigned hyper DmiCounter64_t;
typedef unsigned long DmiErrorStatus_t;
typedef unsigned long DmiGauge_t;
typedef unsigned long DmiHandle_t;
typedef unsigned long DmiId_t;
typedef long DmiInteger_t;
typedef hyper DmiInteger64_t;
typedef unsigned long DmiUnsigned_t;
typedef boolean DmiBoolean_t;

 Desktop Management Interface Specification v2.01s

January, 2003 72

5.2 ENUMERATED TYPES

5.2.1 DmiAccessMode
This enumerated type defines the access modes for an attribute.

FIELD NAME DESCRIPTION
MIF_UNKNOWN Unknown access mode

MIF_READ_ONLY Read access only

MIF_READ_WRITE Readable and writable

MIF_WRITE_ONLY Write access only

MIF_UNSUPPORTED Attribute is not supported

typedef enum {
 MIF_UNKNOWN,
 MIF_READ_ONLY,
 MIF_READ_WRITE,
 MIF_WRITE_ONLY,
 MIF_UNSUPPORTED
} DmiAccessMode_t;

5.2.2 DmiDataType
This enumerated type defines the data types referenced by DmiDataUnion.

FIELD NAME DESCRIPTION
MIF_DATATYPE_0 RESERVED

MIF_COUNTER 32-bit unsigned integer that never decreases

MIF_COUNTER64 64-bit unsigned integer that never decreases

MIF_GAUGE 32-bit unsigned integer that may increase or decrease

MIF_DATATYPE_4 RESERVED

MIF_INTEGER 32-bit signed integer

MIF_INTEGER64 64-bit signed integer

MIF_OCTETSTRING String of n octets, not necessarily displayable

MIF_DISPLAYSTRING Displayable string of n octets

MIF_DATATYPE_9 RESERVED

MIF_DATATYPE_10 RESERVED

MIF_DATE 28-octet displayable string (yyyymmddhhmmss.uuuuuu+ooo)

typedef enum {
 MIF_DATATYPE_0,
 MIF_COUNTER,
 MIF_COUNTER64,
 MIF_GAUGE,

 Desktop Management Interface Specification v2.01s

January, 2003 73

 MIF_DATATYPE_4,
 MIF_INTEGER,
 MIF_INTEGER64,
 MIF_OCTETSTRING,
 MIF_DISPLAYSTRING,
 MIF_DATATYPE_9,
 MIF_DATATYPE_10,
 MIF_DATE
} DmiDataType_t;

5.2.3 DmiFileType
This data structure defines the DMI mapping file types.

FIELD NAME DESCRIPTION
DMI_FILETYPE_0 RESERVED

DMI_FILETYPE_1 RESERVED

DMI_MIF_FILE_NAME File data is the name of a DMI MIF file

DMI_MIF_FILE_DATA File data is the contents of DMI MIF file

SNMP_MAPPING_FILE_NAME File data is the name of an SNMP mapping file

SNMP_MAPPING_FILE_DATA File data is the contents of an SNMP mapping file

DMI_GROUP_FILE_NAME File data is the name of a DMI GROUP file

DMI_GROUP_FILE_DATA File data is the contents of a DMI GROUP file

VENDOR_FORMAT_FILE_NAME File data is the name of a Vendor-format data file

VENDOR_FORMAT_FILE_DATA File data is the contents of a Vendor-format data
file

typedef enum {
 DMI_FILETYPE_0,
 DMI_FILETYPE_1,
 DMI_MIF_FILE_NAME,
 DMI_MIF_FILE_DATA,
 SNMP_MAPPING_FILE_NAME,
 SNMP_MAPPING_FILE_DATA,
 DMI_GROUP_FILE_NAME,
 DMI_GROUP_FILE_DATA,
 VENDOR_FORMAT_FILE_NAME,
 VENDOR_FORMAT_FILE_DATA
} DmiFileType_t;

5.2.4 DmiRequestMode
This data structure defines sequential access modes.

FIELD NAME DESCRIPTION
DMI_UNIQUE Access the specified item (or table row)

DMI_FIRST Access the first item

DMI_NEXT Access the next item

typedef enum {
 DMI_UNIQUE,
 DMI_FIRST,

 Desktop Management Interface Specification v2.01s

January, 2003 74

 DMI_NEXT
} DmiRequestMode_t;

5.2.5 DmiSetMode
This data structure describes set operations.

FIELD NAME DESCRIPTION
DMI_SET Set data values

DMI_RESERVE Reserve resources for a set
operation

DMI_RELEASE Release previously reserved
resources

typedef enum {
 DMI_SET,
 DMI_RESERVE,
 DMI_RELEASE
} DmiSetMode_t;

5.2.6 DmiStorageType
This data structure defines the storage type for an attribute.

FIELD NAME DESCRIPTION
MIF_COMMON Value is from a small set of

possibilities

MIF_SPECIFIC Value is from a large set of
possibilities

typedef enum {
 MIF_COMMON,
 MIF_SPECIFIC
} DmiStorageType_t;

 Desktop Management Interface Specification v2.01s

January, 2003 75

5.3 DATA STRUCTURES

5.3.1 DmiAttributeData

This data structure describes an attribute id, type, and value.

size

body

text... 0
DmiString char[]

id

value

STRING

DmiAttributeData
size

body

text...id

value

OCTETSTRING

DmiAttributeData

DmiOctetString char[]

date / timeid

value

DATE

DmiTimestampDmiAttributeData
0 00

id

value

ALL OTHERS

DmiAttributeData

FIELD
NAME

DESCRIPTION

id Attribute ID

data Attribute type and
value

typedef struct DmiAttributeData {
 DmiId_t id;
 DmiDataUnion_t data;
} DmiAttributeData_t;

 Desktop Management Interface Specification v2.01s

January, 2003 76

5.3.2 DmiAttributeIds
This data structure describes a conformant array of DmiAttributeIds.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiAttributeIds {
 DmiUnsigned_t size;
 DmiId_t* list;
} DmiAttributeIds_t;

5.3.3 DmiAttributeInfo
This data structure holds information about an attribute.

id

name

access

storage

description

pragma

type

enumList

maxSize

DmiAttributeInfo

size

body

size

body

size

list

text... 0

text... 0

name

value

size

body

text... 0

size

body

text... 0

name

value

DmiString

DmiEnumList DmiEnumInfo

size

body

text... 0

...

DmiString char[]

char[]

 Desktop Management Interface Specification v2.01s

January, 2003 77

FIELD NAME DESCRIPTION
id Attribute ID

name Attribute name string

pragma Attribute pragma string [optional]

description Attribute description string [optional]

storage Common or specific storage

access read-only, read-write, etc.

type Counter, integer, etc.

maxSize Maximum length of the attribute

enumList EnumList for enumerated types [optional]

typedef struct DmiAttributeInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* description;
 DmiStorageType_t storage;
 DmiAccessMode_t access;
 DmiDataType_t type;
 DmiUnsigned_t maxSize;
 struct DmiEnumList* enumList;
} DmiAttributeInfo_t;

5.3.4 DmiAttributeList
This data structure describes a conformant array of DmiAttributeInfo structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiAttributeList {
 DmiUnsigned_t size;
 DmiAttributeInfo_t* list;
} DmiAttributeList_t;

5.3.5 DmiAttributeValues

This data structure describes a conformant array of DmiAttributeValues.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiAttributeValues {
 DmiUnsigned_t size;
 DmiAttributeData_t* list;
} DmiAttributeValues_t;

 Desktop Management Interface Specification v2.01s

January, 2003 78

5.3.6 DmiClassNameInfo
This data structure holds a group’s id and class string.

FIELD NAME DESCRIPTION
id Group ID

className Group class name string

typedef struct DmiClassNameInfo {
 DmiId_t id;
 DmiString_t* className;
} DmiClassNameInfo_t;

5.3.7 DmiClassNameList
This data structure describes a conformant array of DmiClassNameInfo structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiClassNameList {
 DmiUnsigned_t size;
 DmiClassNameInfo_t* list;
} DmiClassNameList_t;

5.3.8 DmiComponentInfo

This data structure holds information about a component.

id

name

description

pragma

exactMatch

DmiComponentInfo

size

body

size

body

text... 0

text... 0

size

body

text... 0
DmiString char[]

 Desktop Management Interface Specification v2.01s

January, 2003 79

FIELD NAME DESCRIPTION
id Component ID

name Component name string

pragma Component pragma string [optional]

description Component description string [optional]

exactMatch TRUE = Exact match

FALSE = Possible match

typedef struct DmiComponentInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* description;
 DmiBoolean_t exactMatch;
} DmiComponentInfo_t;

5.3.9 DmiComponentList
This data structure describes a conformant array of DmiComponentInfo structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiComponentList {
 DmiUnsigned_t size;
 DmiComponentInfo_t* list;
} DmiComponentList_t;

5.3.10 DmiDataUnion
This data structure is a discriminated union of DMI data types.

FIELD NAME DESCRIPTION
type Discriminator for the union

value Union of DMI attribute data types

typedef union
 switch (DmiDataType_t type) value {
 case MIF_COUNTER: DmiCounter_t counter;
 case MIF_COUNTER64: DmiCounter64_t counter64;
 case MIF_GAUGE: DmiGauge_t gauge;
 case MIF_INTEGER: DmiInteger_t integer;
 case MIF_INTEGER64: DmiInteger64_t integer64;
 case MIF_OCTETSTRING: DmiString_t* octetstring;
 case MIF_DISPLAYSTRING: DmiString_t* displaystring;
 case MIF_DATE: DmiTimestamp_t* date;
} DmiDataUnion_t;

 Desktop Management Interface Specification v2.01s

January, 2003 80

5.3.11 DmiEnumInfo
This data structure associates an integer value with descriptive text.

FIELD NAME DESCRIPTION
name Enumeration name

value Enumeration value

typedef struct DmiEnumInfo {
 DmiString_t* name;
 DmiInteger_t value;
} DmiEnumInfo_t;

5.3.12 DmiEnumList
This data structure describes a conformant array of DmiEnumInfo structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiEnumList {
 DmiUnsigned_t size;
 DmiEnumInfo_t* list;
} DmiEnumList_t;

5.3.13 DmiFileDataInfo
This data structure holds language file type and mapping data.

FIELD NAME DESCRIPTION
fileType Mif file, SNMP mapping file, etc.

file Data The file info (name or contents)

typedef struct DmiFileDataInfo {
 DmiFileType_t fileType;
 DmiOctetString_t* fileData;
} DmiFileDataInfo_t;

 Desktop Management Interface Specification v2.01s

January, 2003 81

5.3.14 DmiFileDataList
This data structure describes a conformant array of DmiFileDataInfo structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiFileDataList {
 DmiUnsigned_t size;
 DmiFileDataInfo_t* list;
} DmiFileDataList_t;

5.3.15 DmiFileTypeList
This data structure describes a conformant array of DmiFileTypes. It is used by the DmiGetVersion function to return
a list of file types supported by the DmiAddComponent, DmiAddLanguage, and DmiAddGroup functions.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiFileTypeList {
 DmiUnsigned_t size;
 DmiFileType_t* list;
} DmiFileTypeList_t;

 Desktop Management Interface Specification v2.01s

January, 2003 82

5.3.16 DmiGroupInfo
This data structure holds information about a group.

id

name

description

className

pragma

keyList

DmiGroupInfo

size

body

size

body

size

list

text... 0

text... 0

id

size

body

text... 0
DmiString

DmiAttributeIds DmiId

char[]

size

body

text... 0

id

...
id

FIELD NAME DESCRIPTION
id Group ID

name Group name string

pragma Group pragma string [optional]

className Group class name string

description Group description string [optional]

keyList Attribute Ids for table row keys

typedef struct DmiGroupInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* className;
 DmiString_t* description;
 struct DmiAttributesIds* KeyList;
} DmiGroupInfo_t;

 Desktop Management Interface Specification v2.01s

January, 2003 83

5.3.17 DmiGroupList
This data structure describes a conformant array of DmiGroupInfo structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiGroupList {
 DmiUnsigned_t size;
 DmiGroupInfo_t* list;
} DmiGroupList_t;

5.3.18 DmiMultiRowData
This data structure describes a conformant array of DmiRowData structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiMultiRowData {
 DmiUnsigned_t size;
 DmiRowData_t* list;
} DmiMultiRowData_t;

5.3.19 DmiMultiRowRequest
This data structure describes a conformant array of DmiRowRequest structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiMultiRowRequest {
 DmiUnsigned_t size;
 DmiRowRequest_t* list;
} DmiMultiRowRequest_t;

 Desktop Management Interface Specification v2.01s

January, 2003 84

5.3.20 DmiNodeAddress
This data structure describes addressing information for indication originators.

FIELD NAME DESCRIPTION
address Transport-dependent node address

rpc Identifies the RPC (DCE, ONC, etc)

transport Identifies the transport (TCP/IP, SPX, etc.)

typedef struct DmiNodeAddress {
 DmiString_t* address;
 DmiString_t* rpc;
 DmiString_t* transport;
} DmiNodeAddress_t;

5.3.21 DmiOctetString
This data structure defines the DMI octet string representation.

FIELD NAME DESCRIPTION
size Number of octets in the string body

body String contents

typedef struct DmiOctetString {
 DmiUnsigned_t size;
 char* body;
} DmiOctetString_t;

 Desktop Management Interface Specification v2.01s

January, 2003 85

5.3.22 DmiRowData
This data structure identifies {component, group, row, ids} to set.

compId

groupId

values

keyList

className

DmiRowData

size

list

id
DmiAttributeValues DmiAttributeData

type

size

list

DmiMultiRowData

valuecompId

groupId

values

keyList

className

...

size

list

id
DmiAttributeValues DmiAttributeData

type

value

id

type

value

...

size

body

text... 0
DmiString char[]

FIELD NAME DESCRIPTION
compId Component ID

groupId Group ID

className Class name string for the group. Used for
indications.

keyList Array of values for key attributes

values Array of values for data attributes

typedef struct DmiRowData {
 DmiId_t compId;
 DmiId_t groupId;
 DmiString_t* className;
 struct DmiAttributeValues* keyList;
 struct DmiAttributeValues* values;
} DmiRowData_t;

 Desktop Management Interface Specification v2.01s

January, 2003 86

5.3.23 DmiRowRequest
This data structure identifies {component, group, row, ids} to get.

compId

groupId

ids

keyList

requestMode

DmiRowRequest
size

list

id
DmiAttributeValues DmiAttributeData

type

size

list

DmiMultiRowRequest

value

id

size

list

DmiAttributeIds

compId

groupId

ids

keyList

requestMode

...

id

id

...

DmiId

FIELD NAME DESCRIPTION
compId Component ID

groupId Group ID

requestMode Get from specified row, first row, or next row

keyList Array of values for key attributes

ids Array of Ids for data attributes

typedef struct DmiRowRequest {
 DmiId_t compId;
 DmiId_t groupId;
 DmiRequestMode_t requestMode;
 struct DmiAttributeValues* keyList;
 struct DmiAttributeIds* ids;
} DmiRowRequest_t;

5.3.24 DmiString
This data structure defines the DMI string representation. All DmiStrings must be null terminated. A display string
with zero displayable characters still contains the null terminator, and thus has a non-zero length. For the ISO8859-1
character format, the string length for this empty string is 1.

FIELD NAME DESCRIPTION
size Number of octets in the string body including the

terminating null character (Note: null is 2 octets
in Unicode)

body String contents

typedef struct DmiString {
 DmiUnsigned_t size;
 char* body;
} DmiString_t;

 Desktop Management Interface Specification v2.01s

January, 2003 87

5.3.25 DmiStringList
This data structure describes a conformant array of DmiString structs.

FIELD NAME DESCRIPTION
size Array elements

list Array data

typedef struct DmiStringList {
 DmiUnsigned_t size;
 DmiString_t** list;
} DmiStringList_t;

5.3.26 DmiTimeStamp
This data structure describes the time format used by DMI. The format of the time block is a 28-octet displayable
string with ISO 8859-1 encoding, so each element is one or more printable characters.

For example, Wednesday May 25, 1994 at 1:30:15 PM EDT would be represented as:

19940525133015.000000-300
A seconds value of 60 is used for leap seconds.

The offset from UTC is the number of minutes west (negative number) or east offset from UTC that indicates the time
zone of the system.

Values must be zero-padded if necessary, like "05" in the example above. If a value is not supplied for a field, each
character in the field must be replaced with asterisk ('*') characters.

The DMI Server is not required to check the contents of this string for validity.

FIELD NAME DESCRIPTION
year The year

month The month (‘1’..’12’)

day The day of the month (‘1’..’31’)

hour The hour of the day (‘0’..’23’)

minutes The minutes (‘0’..’59’)

seconds The seconds (‘0’..’60’)

dot A dot (‘.’}

microseconds Microseconds (‘0’..’999999’)

plusORminus ‘+’ for east, or ‘-’ west of UTC

utcOffset Minutes (‘0’..’720’) from UTC

padding Unused padding for 4-byte alignment

 Desktop Management Interface Specification v2.01s

January, 2003 88

typedef struct DmiTimestamp {
 char year [4];
 char month [2];
 char day [2];
 char hour [2];
 char minutes [2];
 char seconds [2];
 char dot;
 char microseconds [6];
 char plusORminus;
 char utcOffset [3];
 char padding [3];
} DmiTimeStamp_t;

 Desktop Management Interface Specification v2.01s

January, 2003 89

6. MANAGEMENT INTERFACE

The functions that comprise the Management Interface (MI) belong to the API described as the Service Provider API
for Management Applications. Please see Section 4 for a discussion of the abstract classes of interfaces in the DMI.
Also see Section 4.1 for a description of explicit versus implicit bindings. If the Service Provider implements the
DMI Security Extension, Management Interface calls are authorized as described in section 13.

6.1 INITIALIZATION FUNCTIONS
DMIv2.0 retains the concept of registration of management applications to the DMI Service Provider agent. The
functions DmiRegister and DmiUnregister provide this capability. Some of the data carried in each command in
DMIv1.x DmiMgmtCommand block has been extracted. This information is set with a DmiSetConfig call and
accessed by DmiGetConfig. These calls contain fields which rarely change between a manager and a client.
DmiGetVersion is pulled out as a separate call rather than being a byproduct of the DmiRegisterMgmtReq as it was in
DMIv1.x.

6.1.1 DmiRegister
The DmiRegister procedure provides the management application with a unique per-session handle. The DMI Service
Provider uses this procedure to initialize its internal state for subsequent procedure calls made by the application. This
must be the first DMI command executed by the application. Upon registration, the DMIv2.0s Service Provider
associates the roles of the management application user with the allocated management handle, as described in section
13.1.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle Out On completion, an open session
handle

DmiErrorStatus_t DMI_API
DmiRegister (
 [out] DmiHandle_t* handle);

The client provides the address of the handle parameter and the server fills it in. All commands except DmiRegister()
require a valid handle, so this must be the first command sent to the server.

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

6.1.2 DmiUnregister
The DmiUnregister procedure must be the last DMI command executed by the management application. The DMI
Service Provider uses this procedure to perform its end-of-session cleanup actions. On return from this function, the
session handle is no longer valid.

 Desktop Management Interface Specification v2.01s

January, 2003 90

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle to be
closed

DmiErrorStatus_t DMI_API
DmiUnregister (
 [in] DmiHandle_t handle);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

6.1.3 DmiGetVersion
The DmiGetVersion procedure retrieves information about the DMI Service Provider. The management application
uses this procedure to determine the DMI specification level supported by the service provider. This procedure also
returns the service provider description string, and may contain version information about the service provider
implementation.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

dmiSpecLevel Out The DMI Specification version

description Out The os-specific DMI Service
Provider version

fileTypes Out The file types supported for MIF
installation

DmiErrorStatus_t DMI_API
DmiGetVersion (
 [in] DmiHandle_t handle,
 [out] DmiString_t** dmiSpecLevel,
 [out] DmiString_t** description,
 [out] DmiFileTypeList_t** fileTypes);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

 Desktop Management Interface Specification v2.01s

January, 2003 91

6.1.4 DmiGetConfig
The DmiGetConfig procedure retrieves the per-session configuration information. For the DMIv2.0 specification, this
configuration information consists of a string describing the current language in use for the session.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

language Out language-code | territory-code |
encoding

DmiErrorStatus_t DMI_API
DmiGetConfig (
 [in] DmiHandle_t handle,
 [out] DmiString_t** language);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

6.1.5 DmiSetConfig
The DmiSetConfig procedure sets the per-session configuration information. For the DMIv2.0 specification, this
configuration information consists of a string describing the language required by the management application.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

language In language-code | territory-code |
encoding

DmiErrorStatus_t DMI_API
DmiSetConfig (
 [in] DmiHandle_t handle,
 [in] DmiString_t* language);

ERROR CODES

 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_ILLEGAL_TO_SET
 DMIERR_DEFAULT_LANGUAGE_RETURNED

 Desktop Management Interface Specification v2.01s

January, 2003 92

6.2 LISTING FUNCTIONS
Discovery functions retain the DMIv1.1 model of sequential or random access to the component, group, and attribute
information. Each function takes a requestMode parameter, allowing the caller to specify DMI_FIRST, DMI_NEXT,
or DMI_UNIQUE when accessing the information.

In addition, the component list commands have been separated into individual calls to retrieve group classes within a
component, to use filtering options, and to retrive mapping files.

Note: commands that allow for the retrieval of pragma or description strings will return a NULL pointer if the string is
unavailable. This note applies to component, group, and attribute listings.

6.2.1 DmiListComponents
This call retrieves the name and (optionally) the description of components in a system. This command is used to
interrogate a system to determine what components are installed. An enumeration can access a specific component or
may be used to sequentially access all components in a system. The caller may choose not to retrieve the component
description by setting the value getDescription to false. The caller may choose not to retrieve the pragma string by
setting the value of getPragma to false.

The maxCount, requestMode, and compId parameters allow the caller to control the information returned by the DMI
Service Provider. When the requestMode is DMI_UNIQUE, compId specifies the first component requested (or only
component if maxCount is one). When the requestMode is DMI_NEXT, compId specifies the component just before
the one requested. When requestMode is DMI_FIRST, compId is unused.

To control the amount of information returned, the caller sets maxCount to something other than zero. The service
provider must honor this limit on the amount of information returned. When maxCount is zero the service provider
returns information for all components, subject to the constraints imposed by requestMode and compId.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

requestMode In Unique, first, or next

maxCount In Maximum number to return, or 0 for
all

getPragma In Get optional pragma string ?

getDescription In Get optional component description ?

compId In Component to start with (see
requestMode)

reply Out List of components

DmiErrorStatus_t DMI_API
DmiListComponents (
 [in] DmiHandle_t handle,
 [in] DmiRequestMode_t requestMode,
 [in] DmiUnsigned_t maxCount,
 [in] DmiBoolean_t getPragma,
 [in] DmiBoolean_t getDescription,
 [in] DmiId_t compId,
 [out] DmiComponentList_t** reply);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

 Desktop Management Interface Specification v2.01s

January, 2003 93

 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_DEFAULT_LANGUAGE_RETURNED

6.2.2 DmiListComponentsByClass
This command lists components which match specified criteria. This command is used to determine if a component
contains a certain group or a certain row in a table. A filter condition may be that a component contains a specified
group class name or that it contains a specific row in a specific group. As with DmiListComponents, the description
and pragma strings are optional return values.

Also, see DmiListComponents for an explanation of how requestMode, maxCount, and compId interact to select the
information returned.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

requestMode In Unique, first, or next

maxCount In Maximum number to return, or 0
for all

getPragma In Get optional pragma string ?

getDescription In Get optional component
description

compId In Component to start with (see
requestMode)

className In Group class name string to match

keyList In Group row keys to match, or null

reply Out List of components

DmiErrorStatus_t DMI_API
DmiListComponentsByClass (
 [in] DmiHandle_t handle,
 [in] DmiRequestMode_t requestMode,
 [in] DmiUnsigned_t maxCount,
 [in] DmiBoolean_t getPragma,
 [in] DmiBoolean_t getDescription,
 [in] DmiId_t compId,
 [in] DmiString_t* className,
 [in] DmiAttributeValues_t* keyList,
 [out] DmiComponentList_t** reply);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_NO_DESCRIPTION
 DMIERR_NO_PRAGMA
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_DEFAULT_LANGUAGE_RETURNED

 Desktop Management Interface Specification v2.01s

January, 2003 94

6.2.3 DmiListLanguages
The DmiListLanguages procedure retrieves the set of language mappings installed for the specified component. The
maxCount parameter limits the number of strings returned to the caller.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

maxCount In Maximum number to return, or 0
for all

compId In Component to access

reply Out List of language strings

DmiErrorStatus_t DMI_API
DmiListLanguages (
 [in] DmiHandle_t handle,
 [in] DmiUnsigned_t maxCount,
 [in] DmiId_t compId,
 [out] DmiStringList_t** reply);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR

6.2.4 DmiListClassNames
The DmiListClassNames procedure retrieves the class name strings for all groups in a component. This allows the
management application to easily determine if a component contains a specific group, or groups. The maxCount
parameter limits the number of class name strings returned to the caller.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

maxCount In Maximum number to return, or 0 for
all

compId In Component to access

reply Out List of class names and group ids

DmiErrorStatus_t DMI_API
DmiListClassNames (
 [in] DmiHandle_t handle,
 [in] DmiUnsigned_t maxCount,
 [in] DmiId_t compId,
 [out] DmiClassNameList_t** reply);

 Desktop Management Interface Specification v2.01s

January, 2003 95

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR

6.2.5 DmiListGroups
This call retrieves a list of groups within a component. This command can access a specific group or may be used to
sequentially access all groups in a component. Note that all enumerations of groups occur within the specified
component and do not span components.

The caller may choose not to retrieve the group description by setting the value getDescription to false. The caller may
choose not to retrieve the pragma string by setting the value of getPragma to false.

The maxCount, requestMode, and groupId parameters allow the caller to control the information returned by the DMI
Service Provider. When the requestMode is DMI_UNIQUE, groupId specifies the first group requested (or only group
if maxCount is one). When the requestMode is DMI_NEXT, groupId specifies the group just before the one requested.
When requestMode is DMI_FIRST, groupId is unused.

To control the amount of information returned, the caller sets maxCount to something other than zero. The service
provider must honor this limit on the amount of information returned. When maxCount is zero the service provider
returns information for all groups, subject to the constraints imposed by requestMode and groupId.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

requestMode In Unique, first, or next group

maxCount In Maximum number to return, or 0 for
all

getPragma In Get optional pragma string ?

getDescription In Get optional group description ?

compId In Component to access

groupId In Group to start with (see
requestMode)

reply Out List of groups

DmiErrorStatus_t DMI_API
DmiListGroups(
 [in] DmiHandle_t handle,
 [in] DmiRequestMode_t requestMode,
 [in] DmiUnsigned_t maxCount,
 [in] DmiBoolean_t getPragma,
 [in] DmiBoolean_t getDescription,
 [in] DmiId_t compId,
 [in] DmiId_t groupId,
 [out] DmiGroupList_t** reply);

 Desktop Management Interface Specification v2.01s

January, 2003 96

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_NO_PRAGMA
 DMIERR_NO_DESCRIPTION
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_DEFAULT_LANGUAGE_RETURNED

6.2.6 DmiListAttributes
This DmiListAttributes procedure retrieves the properties for one or more attributes in a group. Note that all
enumerations of attributes occur within the specified group, and do not span groups.

The caller may choose not to retrieve the description string by setting the value of getDescription to false. Likewise,
the caller may choose not to retrieve the pragma string by setting the value of getPragma to false.

The maxCount, requestMode, and attribId parameters allow the caller to control the information returned by the DMI
Service Provider. When the requestMode is DMI_UNIQUE, attribId specifies the first attribute requested (or only
attribute if maxCount is one). When the requestMode is DMI_NEXT, attribId specifies the attribute just before the one
requested. When requestMode is DMI_FIRST, attribId is unused.

To control the amount of information returned, the caller sets maxCount to something other than zero. The service
provider must honor this limit on the amount of information returned. When maxCount is zero the service provider
returns information for all attributes, subject to the constraints imposed by requestMode and attribId.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

requestMode In Unique, first, or next attribute

maxCount In Maximum number to return, or 0
for all

getPragma In Get optional pragma string ?

getDescription In Get optional attribute description
?

compId In Component to access

groupId In Group to access

attribId In Attribute to start with (see
requestMode)

reply Out List of attributes

DmiErrorStatus_t DMI_API
DmiListAttributes(
 [in] DmiHandle_t handle,
 [in] DmiRequestMode_t requestMode,
 [in] DmiUnsigned_t maxCount,
 [in] DmiBoolean_t getPragma,
 [in] DmiBoolean_t getDescription,
 [in] DmiId_t compId,
 [in] DmiId_t groupId,

 Desktop Management Interface Specification v2.01s

January, 2003 97

 [in] DmiId_t attribId,
 [out] DmiAttributeList_t** reply);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_NO_PRAGMA
 DMIERR_NO_DESCRIPTION
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_DEFAULT_LANGUAGE_RETURNED

 Desktop Management Interface Specification v2.01s

January, 2003 98

6.3 OPERATION FUNCTIONS

6.3.1 DmiGetAttribute
The DmiGetAttribute procedure provides a simple method for retrieving a single attribute value from the DMI Service
Provider. The compId, groupId, attribId, and keyList identify the desired attribute. The resulting attribute value is
returned in a newly allocated DmiDataUnion structure. The address of this structure is returned through the value
parameter.

A management application may or may not specify a keylist. When a keylist is omitted for a table access, the Service
Provider or instrumentation shall operate on the first row of the table, regardless of the Access Mode specified.

Note: the "first row" of a table will remain constant during the execution of the Service Provider. This is true for both
instrumented and non-instrumented tables. The "first row" can change between reboots of the system, or restarts of the
Service Provider. This restriction ensures that management applications dealing with the first row of a table are always
operating on the same row.

PARAMETER
NAME

DIRECTION DESCRIPTION

Handle In An open session handle

CompId In Component to access

GroupId In Group within component

attribId In Attribute within group

keyList In Keylist to specify a table row

value Out Attribute value returned

DmiErrorStatus_t DMI_API
DmiGetAttribute (
 [in] DmiHandle_t handle,
 [in] DmiId_t compId,
 [in] DmiId_t groupId,
 [in] DmiId_t attribId,
 [in] DmiAttributeValues_t* keyList,
 [out] DmiDataUnion_t** value);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_OVERLAY_NAME_NOT_FOUND
 DMIERR_ILLEGAL_TO_GET
 DMIERR_ROW_NOT_FOUND
 DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
 DMIERR_DATABASE_CORRUPT
 DMIERR_ATTRIBUTE_NOT_SUPPORTED
 DMIERR_UNKNOWN_CI_REGISTRY
 DMIERR_FILE_ERROR
 DMIERR_OVERLAY_NOT_FOUND
 DMIERR_VALUE_UNKNOWN

 Desktop Management Interface Specification v2.01s

January, 2003 99

6.3.2 DmiSetAttribute
The DmiSetAttribute procedure provides a simple method for setting a single attribute value. The compId, groupId,
attribId, and keyList identify the desired attribute; the setMode parameter defines the procedure call as a Set, Reserve,
or Release operation. The new attribute value is contained in the DmiDataUnion structure whose address is passed in
the value parameter.

A management application may or may not specify a keylist. When a keylist is omitted for a table access, the Service
Provider or instrumentation shall operate on the first row of the table, regardless of the Access Mode specified.

Note: the "first row" of a table will remain constant during the execution of the Service Provider. This is true for both
instrumented and non-instrumented tables. The "first row" can change between reboots of the system, or restarts of the
Service Provider. This restriction ensures that management applications dealing with the first row of a table are always
operating on the same row.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

compId In Component to access

groupId In Group within component

attribId In Attribute within group

keyList In Keylist to specify a table row

setMode In Set, reserve, or release ?

value In Attribute value to set

DmiErrorStatus_t DMI_API
DmiSetAttribute (
 [in] DmiHandle_t handle,
 [in] DmiId_t compId,
 [in] DmiId_t groupId,
 [in] DmiId_t attribId,
 [in] DmiAttributeValues_t* keyList,
 [in] DmiSetMode_t setMode,
 [in] DmiDataUnion_t* value);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_OVERLAY_NAME_NOT_FOUND
 DMIERR_ILLEGAL_TO_GET
 DMIERR_ROW_NOT_FOUND
 DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
 DMIERR_DATABASE_CORRUPT
 DMIERR_ATTRIBUTE_NOT_SUPPORTED
 DMIERR_UNKNOWN_CI_REGISTRY
 DMIERR_FILE_ERROR
 DMIERR_OVERLAY_NOT_FOUND
 DMIERR_VALUE_UNKNOWN

 Desktop Management Interface Specification v2.01s

January, 2003 100

6.3.3 DmiGetMultiple
The DmiGetMultiple procedure retrieves attribute values from the DMI Service Provider. This command may get the
value for an individual attribute, or for multiple attributes across groups, components, or rows of a table.

The request array, described in Section 5.3.16, specifies the attribute values requested by the management application.
Each element of the array specifies a component, group, request mode, key list (for table accesses), and attribute list to
retrieve. The key list is omitted (NULL pointer value) for scalar groups. If the attribute list is omitted, the service
provider returns all attributes in the group or table row. The requestMode specifier allows the management application
to request the first, next, or specific attribute value.

The rowData array, described in Sections 5.3.15, contains the reply from the DMI Service Provider. The structure of
this reply is identical to that of the original request, with the same number of elements that were in the request array.

A management application may or may not specify a keylist. When a keylist is omitted for a table access, the Service
Provider or instrumentation shall operate on the first row of the table, regardless of the Access Mode specified.

Note: the "first row" of a table will remain constant during the execution of the Service Provider. This is true for both
instrumented and non-instrumented tables. The "first row" can change between reboots of the system, or restarts of the
Service Provider. This restriction ensures that management applications dealing with the first row of a table are always
operating on the same row.

When DmiGetMultiple is called without an attribute list, the Service Provider returns all attributes in the group or table
row. Attributes that are UNSUPPORTED or WRITE-ONLY are omitted from the reply data, and the return status for
the operation is DMIERR_NO_ERROR.

When DmiGetMultiple is called with a specific attribute list, the Service Provider returns a value for each requested
attribute. Attributes that are UNSUPPORTED or WRITE-ONLY cause the Service Provider to stop processing the
request and return data for all attributes up to, but not including, the error attribute.

If partial attribute data is returned, the operation's return status is DMIERR_NO_ERROR_MORE_DATA. When
DmiGetMultiple returns a status of DMIERR_NO_ERROR_MORE_DATA, the caller should reissue the operation
with a new attribute list. This new attribute list should start with the first attribute not returned in the previous call, and
should contain all subsequent attributes from the original list.

If the first attribute in the attribute list is UNSUPPORTED, the Service Provider shall stop processing the request and
return an error status of DMIERR_ATTRIBUTE_NOT_SUPPORTED.

If the first attribute in the attribute list is WRITE-ONLY, the Service Provider shall stop processing the request and
return an error status of DMIERR_ILLEGAL_TO_GET.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

request In Attributes to get

rowData Out Requested attribute values

DmiErrorStatus_t DMI_API
DmiGetMultiple (
 [in] DmiHandle_t handle,
 [in] DmiMultiRowRequest_t* request,
 [out] DmiMultiRowData_t** rowData);

 Desktop Management Interface Specification v2.01s

January, 2003 101

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_OVERLAY_NAME_NOT_FOUND
 DMIERR_ILLEGAL_TO_GET
 DMIERR_ROW_NOT_FOUND
 DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
 DMIERR_DATABASE_CORRUPT
 DMIERR_ATTRIBUTE_NOT_SUPPORTED
 DMIERR_UNKNOWN_CI_REGISTRY
 DMIERR_FILE_ERROR
 DMIERR_OVERLAY_NOT_FOUND
 DMIERR_VALUE_UNKNOWN

6.3.4 DmiSetMultiple
This command performs a set operation on an attribute or list of attributes. Set operations include actually setting the
value, testing and reserving the attribute for future setting, or releasing the set reserve. These variations on the set
operation are specified by the parameter setMode.

The rowData array describes the attributes to set, and contains the new attribute values. Each element of rowData
specifies a component, group, key list (for table accesses), and attribute list to set. No data is returned from this
function.

A management application may or may not specify a keylist. When a keylist is omitted for a table access, the Service
Provider or instrumentation shall operate on the first row of the table, regardless of the Access Mode specified.

Note: the "first row" of a table will remain constant during the execution of the Service Provider. This is true for both
instrumented and non-instrumented tables. The "first row" can change between reboots of the system, or restarts of the
Service Provider. This restriction ensures that management applications dealing with the first row of a table are always
operating on the same row.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

setMode In Set, reserve, or release

rowData In Attribute values to set

DmiSetMultiple (
 [in] DmiHandle_t handle,
 [in] DmiSetMode_t setMode,
 [in] DmiMultiRowData_t* rowData);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_VALUE_EXCEEDS_MAXSIZE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_ILLEGAL_TO_SET
 DMIERR_OVERLAY_NAME_NOT_FOUND

 Desktop Management Interface Specification v2.01s

January, 2003 102

 DMIERR_ROW_NOT_FOUND
 DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
 DMIERR_DATABASE_CORRUPT
 DMIERR_ATTRIBUTE_NOT_SUPPORTED
 DMIERR_UNKNOWN_CI_REGISTRY
 DMIERR_FILE_ERROR
 DMIERR_OVERLAY_NOT_FOUND
 DMIERR_VALUE_UNKNOWN

6.3.5 DmiAddRow
The DmiAddRow procedure adds a row to an existing table. The rowData parameter contains the full data, including
key attribute values, for a row. It is an error for the key list to specify an existing table row.

When a table contains a mix of instrumented and non-instrumented attributes, the DmiAddRow operation is not
permitted. This restriction is necessary because the Service Provider does not know whether to add the row in the MIF
database, or in the (partially) supporting instrumentation. The Service Provider will fail the operation with a
DMIERR_UNABLE_TO_ADD_ROW status.

Note that, from both a design and implementation standpoint, it is generally a bad idea to mix instrumented and non-
instrumented values in a table. This is especially true where keys are concerned. Synchronization between the
component attributes and database attributes is problematic, at best. A case where some keys reside in component
instrumentation and other keys reside in the MIF database is nearly impossible to implement in the Service Provider, or
manage in component instrumentation. It is STRONGLY recommended that component providers do NOT mix table
rows in this way.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

rowData In Attribute values to set

DmiErrorStatus_t DMI_API
DmiAddRow (
 [in] DmiHandle_t handle,
 [in] DmiRowData_t* rowData);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_VALUE_EXCEEDS_MAXSIZE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_OVERLAY_NAME_NOT_FOUND
 DMIERR_ROW_NOT_FOUND
 DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
 DMIERR_DATABASE_CORRUPT
 DMIERR_ATTRIBUTE_NOT_SUPPORTED
 DMIERR_UNKNOWN_CI_REGISTRY
 DMIERR_FILE_ERROR
 DMIERR_OVERLAY_NOT_FOUND
 DMIERR_VALUE_UNKNOWN
 DMIERR_UNABLE_TO_ADD_ROW

 Desktop Management Interface Specification v2.01s

January, 2003 103

6.3.6 DmiDeleteRow
The DmiDeleteRow procedure removes a row from an existing table. The key list must specify valid keys for a table
row.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

rowData In Row to delete

DmiErrorStatus_t DMI_API
DmiDeleteRow (
 [in] DmiHandle_t handle,
 [in] DmiRowData_t* rowData);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_OVERLAY_NAME_NOT_FOUND
 DMIERR_ILLEGAL_TO_GET
 DMIERR_ROW_NOT_FOUND
 DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
 DMIERR_DATABASE_CORRUPT
 DMIERR_ATTRIBUTE_NOT_SUPPORTED
 DMIERR_UNKNOWN_CI_REGISTRY
 DMIERR_FILE_ERROR
 DMIERR_OVERLAY_NOT_FOUND
 DMIERR_VALUE_UNKNOWN
 DMIERR_UNABLE_TO_DELETE_ROW

 Desktop Management Interface Specification v2.01s

January, 2003 104

6.4 DATABASE ADMINISTRATION FUNCTIONS

The APIs listed in this section modify the schema of the database.

6.4.1 DmiAddComponent
The DmiAddComponent procedure is used to add a new component to the DMI database. It takes the name of a file, or
the address of memory block containing schema description data, checks the data for adherence to the appropriate
schema description format (e.g. DMI MIF format), and installs the schema description in the database. The procedure
returns a unique component ID for the newly installed component.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

fileData In Schema description file data for the
component

compId Out On Completion, the SP-allocated
component ID

errors Out Installation error messages

DmiErrorStatus_t DMI_API
DmiAddComponent()
 [in] DmiHandle_t handle,
 [in] DmiFileDataList_t* fileData,
 [out] DmiId_t* compId,
 [out] DmiStringList_t** errors);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_DATABASE_CORRUPT
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_FILE_ERROR
 DMIERR_BAD_SCHEMA_DESCRIPTION_FILE
 DMIERR_INVALID_FILE_TYPE
 DMIERR_FILE_TYPE_NOT_SUPPORTED

6.4.2 DmiAddLanguage
The DmiAddLanguage procedure is used to add a new language mapping for an existing component in the database. It
takes the name of a file, or the address of memory block containing translated schema description data, checks the data
for adherence to the schema description grammar (e.g. DMI MIF grammar), and installs the translated schema
description in the database.

The description of the new language mapping must match the currently installed component's groups and attributes,
excluding names, descriptions, pragmas, and values. That is, the structure of the component must be maintained by the
new language mapping.

 Desktop Management Interface Specification v2.01s

January, 2003 105

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

fileData In Language mapping file for the
component

compId In Component to access

errors Out Installation error messages

DmiErrorStatus_t DMI_API
DmiAddLanguage (
 [in] DmiHandle_t handle,
 [in] DmiFileDataList_t* fileData,
 [in] DmiId_t compId,
 [out] DmiStringList_t** errors);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_BAD_SCHEMA_DESCRIPTION_FILE
 DMIERR_INVALID_FILE_TYPE
 DMIERR_FILE_TYPE_NOT_SUPPORTED

6.4.3 DmiAddGroup
The DmiAddGroup procedure is used to add a new group to an existing component in the database. It takes the name
of a file, or the address of memory block containing the group's schema description data, checks the data for adherence
to the schema description grammar (e.g. DMI MIF grammar), and installs the group schema description in the
database.

When the DmiFileType is DMI_GROUP_FILE_NAME or DMI_GROUP_FILE_DATA, the format of the data must
be a valid component definition containing a single group definition. This means that the data must include both
START COMPONENT and END COMPONENT declarations, and may include, for example, PATH statements and
ENUM definitions at the component level.

Note that certains restrictions apply to the schema supplied for DmiAddGroup():

• Table Definitions are disallowed

• One and only one Group Definition is allowed. This group definition MUST specify a group ID (i.e., it may
not be an uninstantiated template).

Schema violating these restrictions will be rejected by the Service Provider with a status of
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE.

When adding a group to component that already has multiple languages installed, the fileData included with
DmiAddGroup must contain a group definition for each installed language. Tthis ensures that a complete language
mapping is always available for a component.

 Desktop Management Interface Specification v2.01s

January, 2003 106

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

fileData In Schema description file data for
the group definition

compId In Component to access

groupId Out On completion, the SP-allocated
group ID

errors Out Installation error messages

DmiErrorStatus_t DMI_API
DmiAddGroup (
 [in] DmiHandle_t handle,
 [in] DmiFileDataList_t* fileData,
 [in] DmiId_t compId,
 [out] DmiId_t groupId,
 [out] DmiStringList_t** errors);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_BAD_SCHEMA_DESCRIPTION_FILE
 DMIERR_INVALID_FILE_TYPE

6.4.4 DmiDeleteComponent
The DmiDeleteComponent procedure is used to remove an existing component from the database.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

compId In Component to delete

DmiErrorStatus_t DMI_API
DmiDeleteComponent (
 [in] DmiHandle_t handle,
 [in] DmiId_t compId);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_CANT_UNINSTALL_SP_COMPONENT

 Desktop Management Interface Specification v2.01s

January, 2003 107

6.4.5 DmiDeleteLanguage
The DmiDeleteLanguage procedure is used to remove a specific language mapping for a component. The caller
specifies the language string and component ID.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

language In language-code | territory-code |
encoding

compId In Component to access

DmiErrorStatus_t DMI_API
DmiDeleteLanguage (
 [in] DmiHandle_t handle,
 [in] DmiString_t* language,
 [in] DmiId_t compId);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_CANT_UNINSTALL_COMPONENT_LANGUAGE

6.4.6 DmiDeleteGroup
The DmiDeleteGroup procedure is used to remove a group from a component. The caller specifies the component and
group IDs.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An open session handle

compId In Component containing group

groupId In Group to delete

DmiErrorStatus_t DMI_API
DmiDeleteGroup (
 [in] DmiHandle_t handle,
 [in] DmiId_t compId,
 [in] DmiId_t groupId);

 Desktop Management Interface Specification v2.01s

January, 2003 108

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_FILE_ERROR
 DMIERR_CANT_UNINSTALL_GROUP

 Desktop Management Interface Specification v2.01s

January, 2003 109

7. MANAGEMENT APPLICATION PROVIDER API

7.1 FUNCTIONS
This section describes the functions that a client must provide to receive indications. These functions belong to the
API described as the Management Application Provider Functions. Please see Section 4 for a discussion of the
abstract classes of interfaces in the DMI.

A client receiving indications undergoes a role reversal where, in RPC terms, it becomes an indication delivery server.
The DMI Service Provider is a client of this interface.

There are eight indication types defined by the DMTF: add/delete component, add/delete language mapping,
add/delete group, subscription expiration notice, and event delivery. Each indication arrives at a unique entry point in
the indication interface.

All indication functions have some information in common, and some that is unique to the indication. The first piece
of common information is the opaque handle returned to the application. This handle contains the SubscriberID
attribute from the client's row in the SPIndicationSubscription table. This can be used by the indication delivery
interface to determine which local management application should receive the indication.

The second piece of common information is the sender's address. Since indications can arrive from any number of
remote systems, the receiver needs a way to determine its origin. The sender's address provides this mechanism.

The eight entry points, including their specific details, are described in the following sections.

7.1.1 DmiDeliverEvent
This command delivers event data to an application.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An opaque ID returned to the

sender In Address of the node delivering the

language In Language encoding for the indication

compId In Component reporting the event

timestamp In Event generation time

rowData In Standard and context-specific indication

DmiDeliverEvent (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiString_t* language,
 [in] DmiId_t compId,
 [in] DmiTimestamp_t* timestamp,
 [in] DmiMultiRowData_t* rowData);

 Desktop Management Interface Specification v2.01s

January, 2003 110

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

7.1.2 DmiComponentAdded
PARAMETER

NAME
DIRECTION DESCRIPTION

handle In An opaque ID returned to the
application

sender In Address of the node delivering the
indication

info In Information about the component
added

DmiErrorStatus_t DMI_API
DmiComponentAdded (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiComponentInfo_t* info);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

7.1.3 DmiComponentDeleted
PARAMETER

NAME
DIRECTION DESCRIPTION

handle In An opaque ID returned to the
application

sender In Address of the node delivering the
indication

compId In Component deleted from the data
base

DmiErrorStatus_t DMI_API
DmiComponentDeleted (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY

 Desktop Management Interface Specification v2.01s

January, 2003 111

 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

7.1.4 DmiLanguageAdded

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In An opaque ID returned to the
application

sender In Address of the node delivering the
indication

compId In Component with new language
mapping

language In Language-code | territory-code |
encoding

DmiErrorStatus_t DMI_API
DmiLanguageAdded (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId,
 [in] DmiString_t* language);

ERROR CODES
DmiLanguageAdded(handle,sender,compid,language)
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

7.1.5 DmiLanguageDeleted
PARAMETER

NAME
DIRECTION DESCRIPTION

handle In An opaque ID returned to the
application

sender In Address of the node delivering the
indication

compId In Component with deleted language
mapping

language In Language-code | territory-code |
encoding

DmiErrorStatus_t DMI_API
DmiLanguageDeleted (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId,
 [in] DmiString_t* language);

 Desktop Management Interface Specification v2.01s

January, 2003 112

ERROR CODES

 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

7.1.6 DmiGroupAdded
PARAMETER

NAME
DIRECTION DESCRIPTION

handle In An opaque ID returned to the
application

sender In Address of the node delivering the
indication

compId In Component with new group added

info In Information about the new group added

DmiErrorStatus_t DMI_API
DmiGroupAdded (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId,
 [in] DmiGroupInfo_t* info);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

7.1.7 DmiGroupDeleted
PARAMETER

NAME
DIRECTION DESCRIPTION

handle In An opaque ID returned to the application

Sender In Address of the node delivering the
indication

CompId In Component with the group deleted

GroupId In Group deleted from the component

DmiErrorStatus_t DMI_API
DmiGroupDeleted (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId,
 [in] DmiId_t groupId);

 Desktop Management Interface Specification v2.01s

January, 2003 113

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

7.1.8 DmiSubscriptionNotice
In order to receive indications, a managing node must have subscribed for indications with a managed node. The
process for doing this is basically the populating of a row in the SPIndicationSubscription table on the managed node.
This can be accomplished using the DmiAddRow() and DmiDeleteRow() commands defined elsewhere in this
document. Among the attributes in this group, are an expiration date for this subscription, and a date on which the
service provider should start warning the managing node of a pending expiration. The DMI Service Provider is
responsible for sending two types of indications to the managing node, based on these dates, to inform it that its current
subscription is either about to expire, or has expired, and it does so using DmiSubscriptionNotice.

NOTE: for a complete description of how the managed node determines when to send the expiration pending
indication, see the group definition for "SPIndicationSubscription", Section 3.3.1.

PARAMETE
R NAME

DIRECTION DESCRIPTION

handle In An opaque ID returned to the application

sender In Address of the originating node

expired In False: Subscription expiration pending
True: Subscription has expired

rowData In Information about this subscription. This will be the
row information for the appropriate entry in the
indication table defined by the
“SPIndicationSubscription” group.

DmiErrorStatus_t DMI_API
DmiSubscriptionNotice (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiBoolean_t expired,
 [in] DmiRowData_t* rowData);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

 Desktop Management Interface Specification v2.01s

January, 2003 114

8. COMPONENT INTERFACE

The Component Interface (CI) is an optional interface allowing managed components to connect directly to the DMI
Service Provider. Note that the capabilities provided by this interface are often platform or operating system specific.
For this reason the Distributed Management Task Force, the administrative body responsible for the DMI, has made
the CI optional and therefore not a requirement for an implementation to be considered conformant to the DMI model.
It is included here for continuity from the DMIv1.1 Specification (hereafter referred to as DMIv1.x).

In the DMIv1.x, the CI provides calls necessary for a managed component to install/uninstall with the DMI Service
Provider. In the procedural DMI model, equivalent functionality is provided by add/delete component calls across the
remotable MI layer.

The DMIv1.x CI model uses ‘well known entry points’ DmiCiInvoke() and DmiCiCancel() to set up and cancel
commands destined for CI instrumentation. These entry points are no longer needed as this functionality will be
handled within the DMI Service Provider. Instead, the procedural CI will make use of entry points to five well known
procedures common to DMIv1.x instrumentation: ciGetAttribute(), ciGetNextAttribute, ciReserveAttribute(),
ciSetAttribute, and ciReleaseAttribute(). Two new entry points are added for manipulating instrumented tables:
ciAddRow() and ciDeleteRow().

The procedural CI uses formalized data structures instead of block oriented commands as in DMIv1.x. The interface
is completely synchronous with the service provider acting as the broker to ensure that component code need not be
re-entrant.

DMIv2.0s defines two features of the Component Interface: allowing only privileged processes to register component
instrumentation and disabling of component instrumentation override. These features are described in section 14.

 Desktop Management Interface Specification v2.01s

January, 2003 115

8.1 DATA STRUCTURES
8.1.1 DmiAccessData

This data structure contains group/attribute access ID for instrumentation wishing to register for the direct interface.

FIELD NAME DESCRIPTION
GroupId Group that uses the direct interface. A value of zero

indicates that all groups within this MIF use the direct
interface, and the following iAttributeId field is ignored.

attributeId Attributes, within the group specified by GroupId, that use
the direct interface. A value of zero indicates that all at-
tributes within this group use the direct interface.

typedef struct DmiAccessData {
 DmiId_t groupId;
 DmiId_t attributeId;
 } DmiAccessData_t;

8.1.2 DmiAccessDataList
This data structure contains describes an array of DmiAccessData structs.

FIELD NAME DESCRIPTION
size Array elements

List Array data

typedef struct DmiAccessData {
 DmiUnsigned_t size;
 DmiAccessData_t* list;
 } DmiAccessDataList_t;

8.1.3 DmiRegisterInfo
This data structure identifies entry points for registering CI direct interface code.

FIELD NAME DESCRIPTION
componentId Identifier assigned by the service provider on component

installation

ciGetAttribute Address ot the CiGetAttribute entry point

ciGetNextAttribute Address of the CiGetNextAttribute entry point

ciReserveAtttribute Address of the CiReserveAttrribute entry point

ciReleaseAtttribute Address of the CiReleaseAttrribute entry point

ciSetAttribute Address of the CiSetAttribute entry point

ciAddRow Address of the CiAddRow entry point

ciDeleteRow Address of the CiDeleteRow entry point

accessData Array containing the groups and/or individual attributes that use
the direct interface

 Desktop Management Interface Specification v2.01s

January, 2003 116

typedef struct DmiRegisterInfo {
 DmiId_t componentId;
 CiGetAttribute* ciGetAttribute;
 CiGetNextAttribute* ciGetNextAttribute;
 CiReserveAttribute* ciReserveAttribute;
 CiReleaseAttribute* ciReleaseAttribute;
 CiSetAttribute* ciSetAttribute;
 CiAddRow* ciAddRow;
 CiDeleteRow* ciDeleteRow;
 DmiAccessDataList_t* accessData;
}DmiRegisterInfo_t;

 Desktop Management Interface Specification v2.01s

January, 2003 117

8.2 SERVICE PROVIDER FUNCTIONS FOR COMPONENTS
The functions described in this section belong to the API described as the Service Provider Functions for
Components. Please see Section 4 for a discussion of the abstract classes of interfaces in the DMI.

In the DMIv1.x block model, the DmiInvoke() entry point was called with a DMI command block. DmiInvoke() built a
CI command block and called DmiProcess() to interpret the command and dispatch the appropriate Get and Set
operations. Instead, the procedural CI consists of five public entry points in component code called directly from the
service provider.

Component instrumentation code may register with the service provider to override its current access mechanism for
the registered attributes. Instead of manipulating the data in the MIF database or invoking programs, the service
provider will call the entry points provided in the registration call. Once the component unregisters, the SP will return
to its "normal method" of processing requests for the data as defined in the MIF. In this way, component
instrumentation can temporarily interrupt normal processing to perform some special function. Note that registering at-
tributes through the direct interface will override attributes that are already being served through the direct interface.

8.2.1 DmiRegisterCi Function
The DmiRegisterCi() call is used to register a callable interface for components that have resident instrumentation
code and/or to get the version of the service provider. Service Providers that implement the DMI Security Extension
defined in DMIv2.0s will check if the caller is a privileged process and if the DmiRegisterCi() call would override a
previous instrumentation registration, as defined in section 14.

PARAMETER
NAME

DIRECTION DESCRIPTION

regInfo In Data structure containing component, group and
attribute Ids, as well as pointers to component
instrumentation entry points

handle Out Service provider assigned handle uniquely
identifying this component instrumentation

dmiSpecLevel Out The service provider version string

DmiErrorStatus_t DMI_API
DmiRegisterCi (
 [in] DmiRegisterInfo_t* regInfo,
 [out] DmiHandle_t* handle,
 [out] DmiString_t** dmiSpecLevel);

ERROR CODES

 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_DATABASE_CORRUPT
 DMIERR_OUT_OF_MEMORY
 DMIERR_ILLEGAL_DMI_LEVEL

 Desktop Management Interface Specification v2.01s

January, 2003 118

8.2.2 DmiUnregisterCi Function
DmiUnregisterCi() tells the service provider to remove a direct component instrumentation interface from the service
provider's table of registered interfaces. This procedural DmiUnregisterCI() call is simplified over the DMIv1.x model
for unregistering component instrumentation, requiring a single parameter: the service provider assigned handle given
to instrumentation at registration time.

PARAMETER
NAME

DIRECTION DESCRIPTION

handle In Service provider assigned handle
uniquely identifying this component
instrumentation

DmiErrorStatus_t DMI_API
DmiUnregisterCi (
 [in] DmiHandle_t handle);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE
 DMIERR_UNKNOWN_CI_REGISTRY

8.2.3 DmiOriginateEvent
This function call originates an event for filtering and delivery. Any necessary indication filtering is performed by this
function (or by subsequent processing) before the event is forwarded to the management applications. Implementation
note: a compID value of zero (0) specifies that the event was generated by something that has not been installed as a
component, and hence has no component ID.

PARAMETER
NAME

DIRECTION DESCRIPTION

compId In Component reporting the event

language In language-code | territory-code | encoding

timestamp In Event generation time

rowData In Standard and context-specific indication
data

DmiErrorStatus_t DMI_API
DmiOriginateEvent (
 [in] DmiId_t compId,
 [in] DmiString_t* language,
 [in] DmiTimestamp_t* timestamp,
 [in] DmiMultiRowData_t* rowData);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

 Desktop Management Interface Specification v2.01s

January, 2003 119

8.3 COMPONENT PROVIDER FUNCTIONS
The functions in this section belong to the API described as the Component Provider Functions. See Section 4 for a
discussion of the abstract classes of APIs in the DMI.

8.3.1 CiGetAttribute
This function gets value(s) of an individual attribute or multiple attributes within a single group. Although the
DmiGetAttributes command from the MI allows gets across multiple groups, the service provider must serialize calls
across groups at the component interface level.

This function returns a pointer to a DmiAttributeData_t object that contains the ID, type, and pointer to value for the
requested attribute. The component ID, group ID, and attribute ID are passed in as parameters.

If the given group is not a table, then keyList will be a NULL pointer. If the group is a table a keyList may or may not
be given. If it is provided, then the attribute value from the requested row should be returned. If there is no key list,
then the attribute value from the first row should be returned.

PARAMETER
NAME

DIRECTION DESCRIPTION

componendId In Component ID containing group

groupId In Group ID containing attribute

attributeId In Attribute ID to get

language In language-code | territory-code | encoding for return
data

keylist In List of row keys

data Out Attribute value returned

DmiErrorStatus_t DMI_API
CiGetAttribute (
 [in] DmiId_t componentId,
 [in] DmiId_t groupId,
 [in] DmiId_t attributeId,
 [in] DmiString_t* language,
 [in] DmiAttributeValues_t* keyList,
 [out] DmiAttributeData_t** data);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_ILLEGAL_TO_GET
 DMIERR_ROW_NOT_FOUND
 DMIERR_ATTRIBUTE_NOT_SUPPORTED
 DMIERR_VALUE_UNKNOWN

 Desktop Management Interface Specification v2.01s

January, 2003 120

8.3.2 CiGetNextAttribute
This function gets the value of the attribute immediately proceeding the currently referenced attribute, returning a
pointer to a DmiAttributeData_t object that contains the ID, type, and pointer to value for the SUCCESSOR of the
specified attribute.

PARAMETER
NAME

DIRECTION DESCRIPTION

componendId In Component ID containing group

groupId In Group ID containing attribute

attributeId In Attribute ID to get

language In language-code | territory-code | encoding for
return data

keylist In List of row keys

data Out Attribute value returned

DmiErrorStatus_t DMI_API
CiGetNextAttribute (
 [in] DmiId_t componentId,
 [in] DmiId_t groupId,
 [in] DmiId_t attributeId,
 [in] DmiString_t* language,
 [in] DmiAttributeValues_t* keyList,
 [out] DmiAttributeData_t** data);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_ILLEGAL_TO_GET
 DMIERR_ROW_NOT_FOUND
 DMIERR_ATTRIBUTE_NOT_SUPPORTED
 DMIERR_VALUE_UNKNOWN

8.3.3 CiSetAttribute
This function is called to set the specified attribute with the given value. The component ID, group ID, and attribute ID
are passed in as parameters.

If the given group is not a table, then keyList will be a NULL pointer. If the group is a table a keyList may or may not
be given. If it is provided, then the attribute in the specified row should be set. If there is no key list, then the attribute
in the first row should be set.

 Desktop Management Interface Specification v2.01s

January, 2003 121

PARAMETER
NAME

DIRECTION DESCRIPTION

componendId In Component ID containing group

groupId In Group ID containing attribute

attributeId In Attribute ID to get

language In language-code | territory-code | encoding for return data

keylist In List of row keys

data In Attribute value to set

DmiErrorStatus_t DMI_API
CiSetAttribute (
 [in] DmiId_t componentId,
 [in] DmiId_t groupId,
 [in] DmiId_t attributeId,
 [in] DmiString_t* language,
 [in] DmiAttributeValues_t* keyList,
 [in] DmiAttributeData_t* data);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_OUT_OF_MEMORY
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_VALUE_EXCEEDS_MAXSIZE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_ILLEGAL_TO_SET
 DMIERR_ROW_NOT_FOUND
 DMIERR_ATTRIBUTE_NOT_SUPPORTED

8.3.4 CiReserveAttribute
This function is called to query if the specified attribute could be set given that these same parameters were passed to
the CiSetAttribute procedure. The function returns CiTrue or CiFalse.

PARAMETER
NAME

DIRECTION DESCRIPTION

componentId In Component ID containing group

groupId In Group ID containing attribute

attributeId In Attribute ID to get

keylist In List of row keys

data In Attribute value to reserve

DmiErrorStatus_t DMI_API
CiReserveAttribute (
 [in] DmiId_t componentId,
 [in] DmiId_t groupId,
 [in] DmiId_t attributeId,
 [in] DmiAttributeValues_t* keyList,
 [in] DmiAttributeData_t* data);

 Desktop Management Interface Specification v2.01s

January, 2003 122

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_OUT_OF_MEMORY
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_VALUE_EXCEEDS_MAXSIZE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_ILLEGAL_TO_SET
 DMIERR_ROW_NOT_FOUND
 DMIERR_ATTRIBUTE_NOT_SUPPORTED

8.3.5 CiReleaseAttribute
This function is called to request that the instrumentation code decommit from a set operation after a reserve has been
issued.

PARAMETER
NAME

DIRECTION DESCRIPTION

componentId In Component ID containing group

groupId In Group ID containing attribute

attributeId In Attribute ID to get

keylist In List of row keys

data In Attribute value to release

DmiErrorStatus_t DMI_API
CiReleaseAttribute (
 [in] DmiId_t componentId,
 [in] DmiId_t groupId,
 [in] DmiId_t attributeId,
 [in] DmiAttributeValues_t* keyList,
 [in] DmiAttributeData_t* data);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_OUT_OF_MEMORY
 DMIERR_SP_INACTIVE
 DMIERR_ATTRIBUTE_NOT_FOUND
 DMIERR_VALUE_EXCEEDS_MAXSIZE
 DMIERR_COMPONENT_NOT_FOUND
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_ILLEGAL_TO_SET
 DMIERR_ROW_NOT_FOUND
 DMIERR_ATTRIBUTE_NOT_SUPPORTED

8.3.6 CiAddRow
This function allows component instrumentation to directly add a row of data to an existing table. This is simplified
over the DMIv1.x model, which required instrumentation code to register with the MI for similar operations.

PARAMETER
NAME

DIRECTION DESCRIPTION

rowData In Attribute values to set

 Desktop Management Interface Specification v2.01s

January, 2003 123

DmiErrorStatus_t DMI_API
CiAddRow (
 [in] DmiRowData_t* rowData);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_OUT_OF_MEMORY
 DMIERR_SP_INACTIVE
 DMIERR_VALUE_EXCEEDS_MAXSIZE
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_UNABLE_TO_ADD_ROW

8.3.7 CiDeleteRow
This function allows component instrumentation to directly delete a row of data from an existing table.

PARAMETER
NAME

DIRECTION DESCRIPTION

rowData In Row data to delete (component,
group, attribute)

DmiErrorStatus_t DMI_API
CiDeleteRow (
 [in] DmiRowData_t* rowData);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_OUT_OF_MEMORY
 DMIERR_SP_INACTIVE
 DMIERR_ENUM_ERROR
 DMIERR_GROUP_NOT_FOUND
 DMIERR_ILLEGAL_KEYS
 DMIERR_ROW_NOT_FOUND
 DMIERR_UNABLE_TO_DELETE_ROW

 Desktop Management Interface Specification v2.01s

January, 2003 124

9. OPTIONAL MI SUPPORT FUNCTIONS

The extensions presented here are optional and therefore not required for implementation.

DMIv2.0, a procedural interface to DMI, is remoteable via the use of RPCs. A DMI Client (Management Application)
may need to communicate with multiple DMI Service Providers, not all of which support the same RPC. For example,
a Windows NT machine would be reachable through DCE/RPC, while a UNIX machine might be reachable via
SUN’s ONC/RPC.

While clients can be written to support multiple RPCs, this is cumbersome and requires the client writer to invest in
coding for communication purposes, rather than for managing the remote node. The MI Support Functions interface
serves as a front end to hide RPC specifics from the client, thus enabling the client to concentrate on the managing
aspect of the application. An explicit goal is to make client code written to the MI Support Functions easily usable
under a specific RPC environment, requiring only slight modifications.

To achieve this, the MI Support Functions must address and hide RPC specifics such as:

•Connection establishment and tear-down

•Present a unified error model to the client, hiding RPC specific details

•Provide an API through which the client can issue DMI calls.

•Handle memory allocation and release to ease this burden for the user of the RPC mechanisms and to
reduce the chance of introducing memory leaks.

This chapter presents the MI Support Functions, provided on the client side. It discusses a unified error model, both
simple and extended, presents connection establishment and teardown helper functions, and applies them to run-time
binding of RPC specific implementation of DMI.

 Desktop Management Interface Specification v2.01s

January, 2003 125

9.1 PROGRAMMING CONSIDERATIONS
The intention in providing this abstraction layer is to isolate the user of the DMI from the intricacies of working with
an RPC, and to allow the use of multiple RPCs. With that abstraction come a few programming considerations that
must be kept in mind.

All memory used by the DMI Functions, and the application using those functions must be allocated and freed from a
consistent heap. To accomplish this, the API provides a set of functions to allow just such memory management:

•DmiAllocPool()

•DmiFreePool()

•DmiAlloc()

•DmiFree()

The function of each of these APIs will be discussed in detail but, for now, it is important to keep in mind that when
using the MI Support Functions APIs as an access method to the DMI, these memory management functions must be
used to allocate and de-allocate memory used with this interface.

The use of memory is also a concern when dealing with incoming indications. To simplify this issue, a user of this
interface should only consider a block of memory, passed on an indication, to be good for the duration of the call.
During the indication call, the application should either copy the data, or complete all of the processing it plans to do
with that data before returning from the call.

 Desktop Management Interface Specification v2.01s

January, 2003 126

9.2 RPC ABSTRACTIONS
The MI Support Functions serve as a front end which provides all DMI functionality through multiple RPCs. To that
effect, the MI Support Functions use the RPC specific DMI definition in order to communicate with the DMI Service
Provider using that RPC. At the same time, the MI Support Functions present the client with the DMI API, as defined
elsewhere in this document.

The MI Support Functions (a) present the DMI functional entry points as defined elsewhere in this document, to client
application, as well as (b) use the DMI API to communicate with all RPC specific libraries. The following
modifications are applied to the DMI API by the MI Support Functions:

• The error status is unified, to represent all error sources (DMI Service Provider, as well as RPC packages).

• Additional helper functions are provided to handle errors.

• Additional functions are provided for connection establishment and teardown.

• Additional memory management functions are provided to handle bulk allocation and de-allocation of memory
across the interface.

In addition, RPC and platform specific client linkage is defined to enable run-time addition of RPC specific DMI
implementations.

9.2.1 MI Support Functions and RPC specific DMI API
This chapter defines the API provided by the MI Support Functions. The DCE/RPC specific API, and the ONC/RPC
specific API, which are used by the MI Support Functions, are described in their respective interface description
languages and are attached as Appendices to this document.

 Desktop Management Interface Specification v2.01s

January, 2003 127

9.3 CONNECTION ESTABLISHMENT AND TEARDOWN
The following functions are provided in order to facilitate connection establishment and teardown in a RPC
independent fashion:

9.3.1 Connection Establishment
RPC Specific details of connection establishment are handled using this call. The result of this call is a Binding
Handle. In addition to an error information storage area, the Binding Handle contains information about the
Management Handle generated at the RPC stub interface when the MI Support Functions interface invokes remote
DMI functions on behalf of the Management Application. This Management Handle is used in DmiRegister and
subsequent DMI commands.

The DmiIndicationFuncs structure contains the address of indication callback functions provided by the Management
Application. Incoming indications are handed to the Management Application at these entry points. There is one entry
for each DMI indication type. The function prototypes are discussed in Section 7. If the application is not interested in
a particular indication type, then it can pass a NULL value for that function’s address to the MI Support Functions
interface.

typedef struct DmiIndicationFuncs {
 DmiDeliverEvent* DeliverEventFunc;
 DmiComponentAdded* componentAddedFunc;
 DmiComponentDeleted* componentDeletedFunc;
 DmiLanguageAdded* languageAddedFunc;
 DmiLanguageDeleted* languageDeletedFunc;
 DmiGroupAdded* groupAddedFunc;
 DmiGroupDeleted* groupDeletedFunc;
 DmiSubscriptionNotice* subscriptionNoticeFunc;
} DmiIndicationFuncs_t;

Management Applications use the DmiBind function to bind themselves to the MI Support Functions interface and
specify which particular machine they wish to correspond with and what transport and RPC to use on the connection.
In return, they receive a Binding Handle of type bind_handle_t.

DmiErrorStatus_t DMI_API DmiBind (
 [out] bind_handle_t* iMgmtHandle,
 [in] char * rpc,
 [in] char * transport,
 [in] char * machine,
 [in] DmiIndicationFuncs_t* funcs
);

Where rpc is the name of the RPC, and the transport is the name of the transport to use under that RPC. rpc and
transport parameters are further defined in Section 9.3.3.9 The Management Applications use their Binding Handles
when invoking DMI functions through the MI Support Functions interface.

9.3.2 Connection Teardown
This call is used to close and release any resources allocated during connection establishment process.

DmiErrorStatus_t DMI_API DmiUnbind(
 [in] bind_handle_t iMgmtHandle
);

9.3.3 Transport List
The transport parameter in the Connection Establishment (Section 9.3.1), Connection Teardown (Section 9.3.2) and
Indication Subscription (Section 9.3.1) entry points is an opaque string parameter that is passed through to the
underlying RPC implementation to select the transport of interest.

9 Note that the rpc name and transport name are also used to derive the name of the dynamically linked RPC specific library. See Section 9.5, Runtime
Linkage, for more details.

 Desktop Management Interface Specification v2.01s

January, 2003 128

Shown below is a list of some possible values for this parameter in the RPCs of interest. Note that not all possible
values of the opaque string may be represented in the list below. There may be more recent additions to the list in the
various standard RPCs, as well as in extensions to the standard RPCs by various RPC vendors.

RPC DESCRIPTION TRANSPORT
DESCRIPTION

FUNCTION

local dmi Local RPC used

dce
 OSF DCE/RPC

ncacn_ip_tcp

ncadg_ip_udp

Connection-oriented TCP/IP

Datagram-oriented UDP/IP

onc
 SUN RPC

udp

tcp

UDP/IP

TCP/IP

ti
 TI RPC (determined
by
 /etc/netconfig,
 or
 equivalent file)

ticlts

ticots

ticotsord

tcp

udp

rawip

icmp

Connectionless Loopback Transport Provider Interface

Connection Oriented Loopback TPI (Transport Provider
Interface)

Connection Oriented Loopback TPI with orderly release

Connection Oriented TCP/IP TPI with orderly release

Connectionless UDP/IP TPI

Raw IP Protocol

Internet Control Message Protocol

 Desktop Management Interface Specification v2.01s

January, 2003 129

9.4 ERROR MODEL
To hide the RPC specifics details related to error handling, the MI Support Functions coalesce all error information
into a single error return value. The MI Support Functions also provide extended error information, for clients
interested in this information.

The DMI only provides error information in the form of error status returned. No support is provided for DCE/RPC
exception mechanisms, or any other exception mechanisms.

9.4.1 Simple Error Handling
Simple error handling is targeted toward applications that are interested in the following information:

•Success/Fail status (including time-outs)

•Action Recommendation

•Error status

•Error text

Information is supplied using a set of C functions.

The model operates as follows. The management application calls a DMI procedure within the Optional MI Support
Functions interface to accomplish a specific DMI function, e.g. GET the value of an attribute, SET the value of an
attribute, etc. Upon returning, the procedure provides a return value to the management application of the type

error_status_t
This type is a composite structure10 that conceptually contains three items, namely: a simple error result code, the full
DMI error code as provided by the (potentially remote) DMI Service Provider, and the RPC error code that was
returned by the underlying RPC implementation. The simple error result is characterized by the following enumeration
definition and typedef:

enum error_result {
 DMI_RESULT_SUCCESS,
 DMI_RESULT_FAIL,
 DMI_RESULT_UNKNOWN,
};

typedef enum error_result error_result_t;

9.4.1.1 SUCCESS/FAIL STATUS
Whether or not the Management Application's call to the DMI functions succeeded or failed is ascertained by testing
the return value against DMI_NO_ERROR.

For example:

status = DmiListComponents(...);
if (status != DMI_NO_ERROR) {
 /* analyze/fail */
}
/* success */

10 NOTE that the realization of error_status_t type is likely not to be made visible by the vendor of the MI Support Functions interface. The actual
realization may vary between different implementations of the MI Support Functions. Code writers should only access error_status_t information using the
provided functions.

 Desktop Management Interface Specification v2.01s

January, 2003 130

9.4.1.2 ERROR STATUS - DmiErrorStatus
When the calling Management Application obtains a return value of type error_status_t, it submits this return
value as an in parameter to an error interpretation function DmiErrorStatus that returns the error status.

DmiErrorStatus is defined as follows:

error_result_t DMI_API DmiErrorStatus(
 [in] error_status_t* status
);

The Management Application then compares the return from this function to DMI_RESULT_SUCCESS,
DMI_RESULT_FAIL, or DMI_RESULT_UNKNOWN, to determine the nature of the result from the DMI procedure.
If the result was DMI_RESULT_SUCCESS, then the application proceeds to its next operation. If, however, it
encounters the codes DMI_RESULT_FAIL, or DMI_RESULT_UNKNOWN, it may take further action as follows.

9.4.1.3 ACTION RECOMMENDATION - DmiErrorAction
The Management Application next invokes the helper function DmiErrorAction with the structure of type
error_status_t as an in parameter. In response, the DmiErrorAction function analyzes the RPC and DMI error
codes contained within this in parameter and then returns an item of type error_action_t that is defined as
follows:

enum error_action {
 DMI_ACTION_NORETRY, /* do not retry */
 DMI_ACTION_RETRY, /* retry the command */
 DMI_ACTION_UNKNOWN, /* need more info */
 DMI_ACTION_NONE, /* no action required */
};

typedef enum error_action error_action_t;

The DmiErrorAction () function is defined as follows:

error_action_t DMI_API DmiErrorAction(
 [in] error_status_t* status
);

The recommendation returned by DmiErrorAction might be any of the following:

• Do not retry the command. (DMI_ACTION_NORETRY)

• Re-try the command. (DMI_ACTION_RETRY)

• Unknown. (DMI_ACTION_UNKNOWN)

• No action required (DMI_ACTION_NONE)

9.4.1.3.1 DMI_ACTION_NORETRY - Do not retry
The command was sent to the remote node, and either failed at the remote node (Service Layer Error), or a
communication error occurred while returning the information (The reason for this recommendation in this case is that
the operation may yield undesirable results when an instrumentation code is re-executed.)

9.4.1.3.2 DMI_ACTION_RETRY - Re-try the command
The command was not sent, was not completely received, or there existed a condition at the remote Service Layer
which prevented its execution. It is safe to re-try the command.

9.4.1.3.3 DMI_ACTION_UNKNOWN - Unknown
There was not sufficient information to determine in the command was received at the other end. The command may
have been executed at the remote end, so decision taken must be based on extra error information or is related to the
operation performed.

 Desktop Management Interface Specification v2.01s

January, 2003 131

9.4.1.3.4 Error Action Example
As an example, this is how the Management Application might invoke DmiErrorAction:

do {
 status = DmiListComponents(...);

 /* Handle remote DMI SL Errors here */
 /* Need to break out if not comm error */

 if (comm_error) {
 break;
 }

 action = DmiErrorAction(status);

} while (action == DMI_ACTION_RETRY);

if (status != DMI_NO_ERROR) {
 /* analyze/report error */
}

The combinations of success/fail status and action recommendations are summarized in the following table:

 STATUS = SUCCESS STATUS = FAIL STATUS =
UNKNOWN

action =
NO_RETRY

Command was
successful. No need to
reissue.
(DMI_ACTION_NONE)

A communication error has
occurred after command
was completely sent or
while receiving
confirmation. Command
executed at remote node.
Recommendation is not to
reissue the command,
unless re-execution is
permissible.

A communication error
has occurred after
command was
successfully sent to the
remote node. The
command is known to
have been received, but
its execution status is
unknown, however, it is
assumed that if the
command was valid, it
was executed.
Recommendation is not
to re-issue the
command.

action = RETRY Command failed due to
parameter error or
execution error. All
communications aspect
of the command
execution have been
successful.
Recommendation is to
reissue with fixed
parameters.
(This is a DMI Service
Provider error)

A communication error has
occurred before command
was completely sent.
Command not executed at
remote node.
Recommendation is to
reissue the command.

A error has occurred
while command was
sent to the remote node.
However, It is known
that the command has
not been fully received,
thus it was not executed
at the remote end.
Recommendation is to
reissue the command.

 Desktop Management Interface Specification v2.01s

January, 2003 132

 STATUS = SUCCESS STATUS = FAIL STATUS =
UNKNOWN

action =
UNKNOWN

N/A N/A A communication error
has occurred while
command was sent to
the remote node. It is
unknown if the
command was received
and executed.
Recommendation is to
further investigate,
based on extended error
information.

9.4.1.4 ERROR CODES - DMIERRORCODE AND DMIRPCERRORCODE
The main error status (in case of an error), whether it is a DMI Service Provider error code, or an underlying RPC error
code, is returned using the DmiDmiErrorCode() and DmiRpcErrorCode() functions:

DmiUnsigned_t DMI_API DmiDmiErrorCode(
 [in] error_status_t* status
);

DmiUnsigned_t DMI_API DmiRpcErrorCode(
 [in] error_status_t* status
);

Error status returned include Service Provider errors, in addition to RPC specific error codes.

9.4.1.5 ERROR TEXT - DMIERRORTEXT
This function returns a static string which can be used to display/log errors. The string is localized as per the
sLanguage set for the specific management handle used when the error occurred, or is an ISO 8859-1 string if the
handle is not valid (as is the case before connection establishment or after connection has been terminated):

const char* DMI_API DmiErrorText(
 [in] bind_handle_t* handle,
 [in] error_status_t* status
);

9.4.2 Extended Error Handling
Applications interested in further information may access the unified error information structure. Information gathered
is contained in a static array of structures, each containing error information as provided by the specific RPC, together
with whatever other relevant information available. Access to the structure is available using DmiGetExtendedError()
function.

The DmiGetExtendedError() may return NULL to indicate that no extended error information is available. Such
implementation should not be regarded as non-compliant.

This function returns an item of type DmiExtendedError which is, in effect, a pointer to a per-session extended error
status structure. Shown below is a possible example of such an extended error structure. NOTE: this is simply an
example and applications must not depend on the structures necessarily having this form. Applications must use
functions provided by the MI Support Functions Interface to access information within this structure.

struct DmiExtendedError {
 struct DmiExtendedError *next;
 void *additional_information;
 void (*error_function)(
 int operation,
 struct DmiExtendedError *error,
 void *additional_information);

 Desktop Management Interface Specification v2.01s

January, 2003 133

 unsigned long action;
 struct {
 int length;
 char *data;
 } remote_machine;
 char *remote_machine_name;
 char *subsystem_name;
 char *subsystem_description;
};

typedef struct DmiExtendedError DmiExtendedError_t;

DmiExtendedError_t * DMI_API DmiGetExtendedError(
 [in] bind_handle_t;
);

9.4.2.1 NEXT
A pointer to the next member of the extended error information list. a NULL pointer signals the end of the list.
Returned by the function:

DmiExtendedError_t * DMI_API DmiNextExtendedError(
 DmiExtendedError_t * extended_error;
);

9.4.2.2 ADDITIONAL INFORMATION AND ERROR_FUNCTION
This is a pointer to additional information about the error, which can only be interpreted by subsystem specific routine.
Each subsystem which makes use of such information should also provide an error handling function,
error_function, which takes this information as one of its inputs. The implementation of this function and linkage
to it will be operating system specific.

This error_function implements the subsystem specific error handling which is targeted in re-establishing proper
working order of the subsystem. The input to this function is the operation required, a pointer to the current error
information structure and the subsystem additional information data. This function may modify the global error
information structure, remove or add elements to it, as required. Further definition of the parameters is subsystem
specific.

A typical example of a subsystem might be a specific RPC and transport combination used.

9.4.2.3 ACTION
This is an enumeration, specifying the recommended action that a management application should take. This
information is derived from other sources, as appropriate for the transport and RPC used. Returned by:

error_action_t * DMI_API DmiExtendedErrorAction (
 DmiExtendedError_t extended_error
);

9.4.2.4 REMOTE MACHINE
This is a designation of the remote machine where the error occurred, in a machine usable manner (i.e., the information
can be used to access the remote machine where the error occurred.)

9.4.2.5 REMOTE MACHINE NAME
This is a printable representation of the above, for error reporting purposes.

9.4.2.6 SUBSYSTEM_NAME
This is the subsystem name where the error occurred, for reporting purposes.

9.4.2.7 SUBSYSTEM_DESCRIPTION
This is the subsystem description, for reporting purposes.

 Desktop Management Interface Specification v2.01s

January, 2003 134

9.4.3 DCE/RPC and ONC/RPC mapping for standard functions

OP DMI ONC/TI RPC DCE RPC

success/fail test != DMI_NO_ERROR != 0 != rpc_s_ok
Action DmiErrorAction() - -

Error number DmiErrorStatus() re_status member of
rpc_err.

DmiErrorStatus_t
returned upon call.

Error Text DmiErrorText() clnt_sperrno() dce_error_inq_text()
Extended error
info.

DmiGetExtendedError()

Extended Error information:

EXTENDED ERROR
MEMBER

ONC/TI RPC DCE RPC

error re_status (returned at call)

error_string clnt_sperrno() dce_error_inq_text()

additional_information rpc_err
action (generated) (generated)

remote_machine (generated) (generated)

remote_machine_name (generated) (generated)

subsystem_name (generated) (generated)

subsystem_description (generated) (generated)

 Desktop Management Interface Specification v2.01s

January, 2003 135

9.5 RUNTIME LINKAGE
The MI Support Functions implementation may either statically support a pre-defined list of RPCs, or may apply run-
time linkage to gain access to other RPC code. RPC binding is accomplished using the DmiBind() call, as follows:

DmiErrorStatus_t DMI_API DmiBind(
 NULL, rpc, transport, NULL);

ERROR CODES

 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

Where rpc is the rpc name, used to derive the DLL/share object containing the RPC specific DMI code and transport is
the transport. A statically linked implementation should return 0 if the transport exists, or should otherwise signal an
error condition.

RPC transports are unbound implicitly as a result of a call to the DmiUnbind() function, as follows:

DmiErrorStatus_t DMI_API DmiUnbind(
 DmiUnsigned_t handle);

Where handle is assigned at bind time.

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_ILLEGAL_HANDLE
 DMIERR_OUT_OF_MEMORY
 DMIERR_INSUFFICIENT_PRIVILEGES
 DMIERR_SP_INACTIVE

9.5.1 Naming Conventions
The name of the RPC specific DMI client library is as follows:

PLATFORM LIBRARY NAME
UNIX dmirpc.so
Netware dmirpc.nlm (rpc name 4 chars

max)
Win16 dmirpc16.dll (rpc name 3 chars

max)
Win32 dmirpc32.dll (rpc name 3 chars

max)
OS/2 dmirpc.dll

Where rpc stands for one of:

RPC STANDARD
NAME

DCE/RPC dce
ONC/RPC onc
TI/RPC ti
LOCAL local

 Desktop Management Interface Specification v2.01s

January, 2003 136

Since some OS allow only a single name space for all shared libraries, some OS specific libraries will require that all
DMI function names be prefixed with the RPC name. The following tables indicates where such prefix is required. In
all other cases, the exported function names should match EXACTLY the functions defined in the Procedural MI
section of this document.

PLATFORM PREFIX
NAMES

UNIX not required
Netware required
Win16 not required
Win32 not required
OS/2 not required

9.5.2 Runtime linkage example
One interesting example of how runtime linkage may be used to extend DMI to use other RPC is the case of a local,
no-rpc implementation. A local implementation needs to provide a dynamically linked library, properly named as per
the operating system used (for example, Win16 implementation would use DMILOC16.DLL .) This library, presenting
a DMI compatible interface, would be linked under the MI Support Functions, and would thus be accessible to any
Management Application/Client.

DCE ONC TI

MI + (Optional Extensions)

RPC Module
Loader

Memory
Management

Function
Routing

RPC Control
DmiBind()

MI + (Optional) DmiBind()

Indication
Server
Function

RPC Support Function

MI + (Optional) DmiBind()

Indication
Server
Function

RPC Support Function

MI + (Optional) DmiBind()

Indication
Server
Function

RPC Support Function

Figure 9-1. An expanded view of the DMI Service User Function - Client API.

The user (Management Application) in all cases will see only the MI interface exposed by the DMI Service User
Function, for sake of clarity let’s call it a DLL. This DLL is responsible for loading and managing all of the RPC
functions (again let’s think of them as DLLs) below it. Not only is the User function DLL responsible for loading the
RPC DLLs when needed, but it is also responsible for managing the function routing tables that will be required to pass
the calls through to the correct RPC DLL.

The DmiBind() function carries information in it that must be passed to the RPC DLL - namely the indication entry
point information. The DMI Service User function (DLL) is also an RPC Server, in that it has to field indications. It
must have a way of forwarding those received indications up to the application. This is where the DmiBind() call plays
a role. This call carries the entry point information for indications in it. See the description of that function in Section
9.5.

 Desktop Management Interface Specification v2.01s

January, 2003 137

9.6 MEMORY HANDLING FUNCTIONS
The MI Support Functions provide the client writer with convenient memory allocation routines, in order to ease
memory handling and allocation. DMI associates allocated memory to pools, being a convenient way of grouping
allocated memory. Users may create pools, allocate memory and associate it to a specific pool or free pool memory.
Pools can also be destroyed; this would also cause all allocated memory belonging to that pool to be released.

9.6.1 DmiAllocPool
This function is used to create a pool of memory. Subsequent calls to DmiAlloc() should use a memory pool handle to
associate allocated memory with that pool:

DmiVoid_t* DMI_API DmiAllocPool(
 void
);

The function return value is a pool handle, to be used in subsequent DmiAlloc() calls. DmiAllocPool() should return
NULL is memory pool cannot be created.

Note that multiple active pools can exists at the same time.

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_NO_POOL

9.6.2 DmiAlloc
This function is used to allocate memory for use as input parameters to DMI calls, or any other transient use. It
prototype is:

DmiVoid_t* DMI_API DmiAlloc(
 [in] DmiVoid_t * pool_handle,
 [in] DmiUnsigned_t size
);

Where pool_handle is the handle returned by DmiAllocPool(), and size is the number of bytes to allocate.

The DmiAlloc() function should return NULL if memory cannot be allocated.

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_INVALID_POOL
 DMIERR_OUT_OF_MEMORY

9.6.3 DmiFree
This function is used to free previously allocated memory:

DmiErrorStatus_t DMI_API DmiFree(
[in] DmiVoid_t * ptr
);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_INVALID_POOL
 DMIERR_INVALID_PTR

 Desktop Management Interface Specification v2.01s

January, 2003 138

9.6.4 DmiFreePool
Memory allocated using DmiAlloc() which belongs to a specific pool can be released using DmiFreePool() call. This
call would also delete the specified pool:

DmiErrorStatus_t DmiFreePool(
[in] DmiVoid_t * handle
);

ERROR CODES
 DMIERR_NO_ERROR
 DMIERR_INVALID_POOL

9.6.5 Bulk Allocation
DmiAllocPool, DmiAlloc and DmiFreePool can be used to ease memory allocation tracking. A DMI Client may use
DmiAllocPool() to create a memory pool, and request that memory allocated using the DmiAlloc() function be owned
by it. Memory belonging to that pool can then be freed using DmiFreePool(). For example:

manage_client(){
 DmiVoid_t *h, *h1,*h2;
 DmiErrorStatus_t status;

 h = DmiAllocPool();
 ...
 h1 = DmiAlloc(h, 100UL); /* allocate h1 */
 ...
 h2 = DmiAlloc(h, 200UL); /* allocate h2 */
 ...
 status = DmiListComponents(...)
 ...
 DmiFreePool(h); /* free h1, h2, h */
}

Using DmiFreePool releases the client writer from tracking all allocated memory, and provides an easy way of
preventing memory leakage problems common to RPC code.

 Desktop Management Interface Specification v2.01s

January, 2003 139

10. INTRODUCTION TO DMI2.0S

DMIv2.0s defines a mechanism to control remote access to the DMI Management Interface and local access
to DMI interfaces. The remote access control mechanism is defined on top of standard RPC mechanisms,
whereas the local access control mechanism is defined on top of operating system mechanisms. DMIv2.0s
does not specify a standard format for identities nor a cryptosystem to verify those identities, but relies on
those provided through the RPC and by the operating system. In addition, DMIv2.0s defines that certain
operations performed by the DMIv2.0s Service Provider may be logged and/or generate indications. The
DMI Security Extension introduced by DMIv2.0s appear in Sections 10 through 18.

DMIv2.0s Service Providers should be compatible with existing DMI management applications and
component instrumentation. The functions and parameters of the Management Interface and the Component
Interface in DMIv2.0s are identical to those of DMIv2.0; that is, the IDL of DMIv2.0s is identical to that of
DMIv2.0. DMIv2.0s adds authentication features to the remote Management Interface invocation
mechanism, and specifies that the DMIv2.0s Service Provider authorizes commands according to the identity
of the user accessing the Management Interface. Access to the Component Interface and to the local
Management Interface can be restricted to privileged users. The DMIv2.0s Service Provider can be
configured to log and generate indications upon certain security-related operations. DMIv2.0s also defines
the behavior of a DMIv2.0s Service Provider in the presence of non-authenticated management applications.

 Desktop Management Interface Specification v2.01s

January, 2003 140

10.1 OVERVIEW
The DMI architecture defines the Service Provider, a program that runs on the managed system, and
communicates with management applications by means of the Management Interface and with managed
components by means of the Component Interface. DMIv2.0 uses a standard Remote Procedure Call
mechanism to expose the Management Interface to remote management applications. Because DMIv2.0
does not define security mechanisms to control access to the various elements of the DMI, an unauthorized
user could invoke a standard DMIv2.0 management application from any computer on the network. With
the growing number of DMI-enabled systems deployed in the market, there is a strong demand by vendors
and users for a more secure version of DMI. In response to this request, the DMTF has formed the DMI
Security Working Committee which is chartered with extending the DMIv2.0 specification for security.

DMIv2.0s is a standard extended version of the DMIv2.0 specification. DMIv2.0s defines mechanisms to
secure the interaction between the Service Provider, management applications, component instrumentation
and the Management Information Format (MIF) database. In order to describe the features of DMIv2.0s, we
will use several terms related to security in a networked computing environment such as authentication and
authorization. Refer to Appendix E for a definition of those and other terms.

DMIv2.0s defines the following features to control and track the interactions between DMI elements:

• control access of remote management applications to DMI information
• security of component instrumentation
• security of MIF database
• security of local management applications
• generating events upon security-related operations
• logging of security-related operations
• role-based authorization model
• flexible, remotely configurable authorization policy
• implementing of the authentication interface on top of operating system or third party product

The approach followed to define these features is presented in Section 10.2.

Section 11 Architecture describes the DMIv2.0s extensions to the DMIv2.0 specification: the functional
blocks of DMIv2.0s, the interfaces defined by DMIv2.0s, the DMIv2.0s standard groups in the Service
Provider component, and the standard roles defined by DMIv2.0s.

Section 12 DMiv2.0s Service Provider standard groups describes several standard groups that must be
included in the Service Provider component, such as the SP Indication Subscription group and the SP
Filter Information group and introduces new standard groups to configure new features of the DMIv2.0s
Service Provider and to store the authorization policy.

Section 13 Management interface security defines this main feature of DMIv2.0s. Management Interface
security controls the access of management applications to DMI data and instrumentation.

Section 14 Component interface security defines security as it applies to component instrumentation
interfacing with the DMIv2.0s Service Provider, be it DMIv1 component instrumentation or DMIv2
component instrumentation.

Section 15 MIF Database PROTECTION defines the use of operating system or file system mechanisms to
protect the MIF database from access by non-privileged users.

Section 16 Security Indications describes security indications to be sent to monitoring management
applications.

Section 17 Logging describes security logging entries logged by the DMIv2.0s Service Provider for future
retrieval by monitoring applications at their convenience.

The actual mechanisms used by the RPC infrastructure to authenticate users (e.g. passwords, X.509 digital
certificates, SIDs, etc.) are outside the scope of this specification. This specification does not address threats
from hackers that have access to hardware within a managed system (e.g. physical memory, virtual memory,
buses, disks).

 Desktop Management Interface Specification v2.01s

January, 2003 141

10.2 THE DMIv2.0S APPROACH
DMI defines a client-server model in which management applications are clients and the Service Provider is
the server: management applications invoke DMI commands which are serviced by the Service Provider.
Note that in the case of indication delivery the roles are reversed: the Service Provider initiates the delivery
of indications to management applications which handle them.

In DMIv2.0s, the Service Provider controls access to management information through the remote
Management Interface according to a configurable policy. Management applications and component
instrumentation have to authenticate with the Service Provider to be granted access. Each of these aspects is
defined in the following paragraphs. A more technical description of DMIv2.0s features is found in Section
11.

10.2.1 Authentication
Authentication is a protocol through which a management application proves the identity of its user to the
Service Provider, in order to be granted privileges according to the user’s identity. DMIv2.0s does not
specify an authentication method and name space. Instead, DMIv2.0s implementations can use any existing
authentication method (often including user names, IDs, and passwords) available through an RPC
infrastructure, thus saving the costly deployment and management of a new authentication framework. An
example of a widely-deployed authentication system is the operating system. In most environments, users are
defined in the context of the operating system and are authenticated upon logging on their system. DMIv2.0s
may be implemented on top of an operating system authentication mechanism, so that a management
application authenticates with the DMIv2.0s Service Provider according to the identity of the user invoking
the management application. DMIv2.0s may also be implemented on top of an authentication system
independent of any operating system such as Kerberos or X.509 certificates.

NOTE that a DMIv2.0s management application has to use an authentication method supported by the
DMIv2.0s Service Provider on the managed system. For example, to access a DMIv2.0s Service Provider
that uses X.509 certificates for authentication, a management application has to invoke the DMI Management
Interface through an RPC that performs authentication using X.509 certificates.

10.2.2 Roles
In midsize and large installations, various groups of system administrators are in charge of managing different
aspects of a computing system. Each group of administrators needs to be assigned a specific set of privileges.
On the other hand, administrators frequently move from one group to another and assume different
responsibilities, so their privileges need to be updated. Using roles, DMIv2.0s allows granting the same
privileges to several users according to their function in managing the system.

A role is a set of privileges associated to a group of users. A user is said to possess a list of roles.
Authentication yields the list of a user’s roles, which is then used by the DMIv2.0s Service Provider for
authorization. Implementations of DMIv2.0s that are based on operating system authentication can use
operating system user groups to associate users with roles.

In addition to assigning the same role to several users, the roles paradigm allows associating the same role
and privileges to users from different environments. For example, authentication may associate the same role
to the group of UNIX helpdesk users and to the group of NT helpdesk users. Similarly, authentication may
associate the same role to NT administrators (members of the Administrators group) and to UNIX
administrators (members of group 0).

10.2.3 Policy
The policy determines which commands can be performed on which objects by which roles. The DMIv2.0s
Service Provider looks up the policy to determine whether a DMI command invoked by a remote
management application should be performed or rejected. The policy is stored as a table in the MIF database,
and it can be accessed and protected as a regular DMI table. Each row in the table represents a policy
statement which grants or denies the privilege of a role to perform a DMI command.

 Desktop Management Interface Specification v2.01s

January, 2003 142

The policy enables the system administrator to “secure” an attribute by specifying the roles that can access it.
If the policy “secures” an attribute, then only those roles specified will be granted access. Otherwise, if the
policy does not “secure” the attribute, all roles will be granted access to that attribute. Since DMI defines
standard groups (rather than standard attributes or standard components), attributes are identified in the policy
by their group class string and their attribute ID. For example, it is possible to set a policy that allows only
the helpdesk role to modify the base address of a serial port by defining a policy for attribute ID 2 in groups
whose class string is "DMTF|Serial Ports|003".

A policy row that specifies only an attribute ID and a group class string applies to all the groups in the system
whose class string matches. To narrow down the policy row to apply only to a subset of those groups, an
additional class, attribute ID, and value can be specified. In this case, the policy row will apply only to those
components in which the value of the specified attribute matches the value in the policy. For example, it is
possible to specify a different policy for each network interface card in a system, according to manufacturer
or serial number.

The policy also enables the system administrator to specify which roles are allowed to perform database
administration functions such as DmiAddGroup or DmiDeleteComponent.

10.2.4 Authorization
Authorization is the mechanism whereby the DMIv2.0s Service Provider decides whether to perform or reject
a DMI command. The decision depends on the command, its parameters, the user’s roles, and the policy.
Commands rejected return with status DMIERR_INSUFFICIENT_PRIVILEGES. Since a user may have several
roles, a command is allowed if at least one of the user’s roles is allowed to perform the command. Thus, a
user with several roles actually enjoys the combination of the privileges granted to each role.

To determine whether a role is authorized to perform a command, the DMIv2.0s Service Provider searches
the policy table for rows that match the attempted command. If no such row is found, the command is
allowed to all roles. Otherwise, the role is allowed to perform the command if there is (at least) one matching
row that grants the role permission to perform the command and there is no matching row that denies the role
permission to perform the command.

10.2.5 Logging and event generation
The DMIv2.0s Service Provider can be configured to log commands and to generate events upon several
operations such as installation of components and registration of management applications. Logging and
event generation are useful to detect security breaches in real time and to track actions that may affect the
configuration of a system, and to keep users accountable for their actions. DMIv2.0s defines a logging
interface which the Service Provider invokes when needed. The log format is defined by the logging module
provided as part of the DMIv2.0s Service Provider. The rationale for not specifying the log format is that
several such mechanisms exist and system administrators are familiar with them (e.g. syslog on UNIX, the
event log on WinNT or AUDITCON on NetWare).

10.2.6 Security of local interfaces
DMIv2.0 defines that the Management Interface can be accessed through a Remote Procedure Call. The
Management Interface can also be accessed locally (without going through an RPC) by directly invoking the
appropriate entry point of the DMIv2 Service Provider. The DMIv1 Management Interface and the DMIv1
and DMIv2 Component Interfaces are also local interfaces. Communication between the Service Provider
and the MIF database, though not a programming interface, is also considered a local interface from the
security point of view. Therefore, DMIv2.0s defines an elementary security model for local DMI interfaces:
the MIF database, the local Management Interface and the local Component Interface are accessible only to
privileged users.

Privileged users are defined by each operating system. Processes executed by privileged users are allowed to
configure the operating system and the file system. The table below summarizes the definition of privileged
users for several operating systems.

 Desktop Management Interface Specification v2.01s

January, 2003 143

OS PRIVILEGED USERS
UNIX effective user ID is 0
NetWare user is Supervisor or Admin
WinNT user is member of NT administrators group
Win9x all users are privileged

Thus, in DMIv2.0s, privileged users are authorized to invoke any Management Interface command through
the local Management Interface. (In the context of this specification, invoking the Management Interface
through an RPC from the same system on which the Service Provider is running is not considered a local
access, and the security model applied is the same as when the Management Interface is invoked through an
RPC from a system different from the one running the Service Provider.)

10.2.7 OS dependence
DMI can be implemented on various operating systems, RPC flavors, and computer architectures. DMI
specifications define interfaces and their behavior. These specifications do not define the specific
mechanisms involved in implementing those interfaces and accessing them within a system (for example,
calling convention, parameter passing, endianness). The local interfaces to access DMI under a specific
architecture and operating system are defined by each Service Provider implementation; that is, calling
conventions, parameter passing, and endianness are implementation-specific. Remote access is specified,
though. Remote procedure calls to DMIv2.0 Management Interface procedures are defined for each RPC
flavor: the ONC and DCE RPC standards, along with the IDL and RPCGEN listings in the DMIv2.0
specification define how to remotely access the Management Interface of DMIv2.0.

DMIv2.0s requires that the Remote Procedure Calls be authenticated, but the specific authentication
mechanism to use is determined by each DMIv2.0s Service Provider implementation. A DMIv2.0s
management application has to use an authentication method supported by the DMIv2.0s Service Provider on
the managed system. Authentication protocols may or may not be based on operating system mechanisms.

NOTE that even if the authentication mechanism supported by an implementation of the DMIv2.0s Service
Provider is based on the operating system on which the Service Provider runs, management applications
running under a different operating system may perform the authentication protocol. For example, just as a
Windows user can log on to a NetWare server, a user running a management application on a Windows
system can authenticate to a DMIv2.0s Service Provider running on a NW server using the NetWare login as
authentication mechanism.

10.2.8 Compatibility
The Management Interface defined by the DMIv2.0 is a remotable procedural interface (through a Remote
Procedure Call mechanism), whereas the Component Interface is a local procedural interface. The actual
mechanism used for local invocation of the Management Interface and the Component Interface is defined by
each DMI Service Provider implementation. In DMIv1, both the Component Interface and the Management
Interface are local data block interfaces. The actual mechanism for invoking these data block interfaces is
defined by each DMIv1 Service Provider implementation.

In DMIv2.0s, the entry points and parameters of the Management Interface and the Component Interface are
identical to those of DMIv2.0. DMIv2.0s requires that the user invoking the Management Interface be
authenticated through the RPC if access is remote or be a privileged user if access is local. DMIv2.0s
requires that the user invoking the Component Interface be a privileged user. Authentication failures result in
error codes.

The DMIv2.0s Service Provider authorizes commands according to the identity of the caller. If a command is
authorized, its result is as defined in DMIv2.0; if a command is not authorized, error code
DMIERR_INSUFFICIENT_PRIVILEGES is returned and the command is not performed. Note that
DMIERR_INSUFFICIENT_PRIVILEGES is defined by the DMIv2.0 specification and, therefore, should be
handled properly by existing management applications written to DMIv2.0. Additionally, DMIv2.0s
specifies that the Service Provider can be configured to log and generate indications upon certain operations.
DMIv2.0s also defines the behavior of a DMIv2.0s Service Provider in the presence of component

 Desktop Management Interface Specification v2.01s

January, 2003 144

instrumentation and management applications whose caller cannot be authenticated (management
applications that do not use an authenticated RPC fall in this category).

Since one of the objectives of this specification is to allow a smooth transition to DMIv2.0s, DMIv2.0s
Service Providers will be compatible with existing DMI management applications and component
instrumentation. For compatibility with existing component instrumentation and management applications, it
is recommended that Service Provider writers offer implementations of DMIv2.0s that are binary compatible
with their implementations of DMIv2.0. It is recommended that DMIv2.0s Service Providers be able to read a
MIF database generated by a DMIv2.0 Service Provider, so that DMIv2.0 systems can be upgraded to
DMIv2.0s without having to reinstall and configure each component.

 Desktop Management Interface Specification v2.01s

January, 2003 145

11. ARCHITECTURE

This section describes the DMIv2.0s extensions to the DMIv2.0 specification: the functional blocks of
DMIv2.0s, the interfaces defined by DMIv2.0s, the DMIv2.0s standard groups in the Service Provider
component, and the standard roles defined by DMIv2.0s.

NOTE that the partition into functional blocks or modules is intended to clarify the functionality of the
DMIv2.0s Service Provider and not to impose an architecture on DMIv2.0s Service Provider
implementations.

DMIv2.0s implements all the interfaces defined by DMIv2.0, and specifies one additional interface: the
Logging Interface which the DMIv2.0s Service Provider invokes in order to log operations and exceptional
conditions. The semantics of existing DMIv2.0 interfaces are extended by DMIv2.0s: for example,
commands that would have been executed by a DMIv2.0 Service Provider will be rejected by a DMIv2.0s
Service Provider if the user invoking the command does not have the required privilege. Existing DMIv2.0
management applications are supported in DMIv2.0s. Management applications using a non-authenticated
RPC infrastructure will be allowed to perform commands that the policy allows role dmi_default to
perform.

 Desktop Management Interface Specification v2.01s

January, 2003 146

11.1 DMIv2.0S FUNCTIONAL BLOCKS
11.1.1 Authentication

Authentication is performed at the time of management application registration. When a remote management
application registers with the DMIv2.0s Service Provider, the RPC infrastructure authenticates the user. If
authentication fails, the RPC infrastructure returns an RPC specific error. If authentication succeeds, the
authentication module of the DMIv2.0s Service Provider retrieves the identity from the RPC infrastructure
and yields the list of roles of the user. The authentication module may extract the roles list from the identity
or it may retrieve it from a database. The actual mechanism used to associate a role with a user is defined by
the DMIv2.0s Service Provider implementation. We recommend using operating system user groups or
digital certificate attributes to map user identities to roles since system administrators are likely to be familiar
with user/certificate administration and related tools.

The DMIv2.0s Service Provider associates the list of roles with the DMI management handle; that is, the
roles list assigned at registration applies to all subsequent commands issued with that management handle.
Optionally, the DMIv2.0s Service Provider may also perform authentication on each of the subsequent
Management Interface RPC calls after DmiRegister, and compare the identity of the caller with the identity
of the caller of DmiRegister; if different the service provider returns error DMIERR_ILLEGAL_HANDLE.
Management applications that register with the Service Provider using a non-authenticated RPC will be
assigned a role list that contains only role dmi_default.

If, during a DMI management session, the credentials of a management application expire or are revoked, the
RPC infrastructure will reject all subsequent remote procedure calls, even if the DMIv2.0s Service Provider
does not perform authentication at every call.

11.1.2 Authorization
For each DMI command issued by a management application, the DMIv2.0s Service Provider checks whether
that management application is allowed to perform the command according to the management application
role, the current contents of the Service Provider policy table and the command parameters.

 Desktop Management Interface Specification v2.01s

January, 2003 147

11.1.3 Indication generation and logging
The DMIv2.0s Service Provider can be configured to generate indications upon some operations performed
by management applications. These indications can be used to warn a system administrator of an operation
that may endanger a system or alter its configuration.

The logging module of the DMIv2.0s Service Provider implements the Logging Interface defined in Section
17.1. The DMIv2.0s Service Provider can be configured to invoke this interface in order to log operations
performed by management applications in a log. The log can be used to keep users accountable for their
actions or to keep track of changes in the configuration of a system.

11.1.4 MIF database security
Since the policy is stored in the MIF database, it is necessary to protect the database. The contents of the MIF
database are persistent across reboots and, therefore, the MIF database must be kept in some type of persistent
storage, typically a file. The contents of the database are protected from unauthorized access by DMI
management applications through the DMIv2.0s policy itself. However, it is also necessary to protect the
database in its stored form, such as a file. A DMIv2.0s Service Provider must protect the MIF database from
access by non-privileged users through file system mechanisms if supported by the system. If the MIF
database is not stored as a file, an appropriate access control mechanism should be set if supported.

11.1.5 Component instrumentation security
Since component instrumentation controls the actual behavior of DMI instrumented components, it is one of
the most powerful and vulnerable elements in the system. The DMIv2.0s Service Provider controls access of
management applications to component instrumentation through the authorization mechanism of the
Management Interface. However, it is also required to protect the Service Provider from unauthorized
component instrumentation. The DMIv2.0s Service Provider can be configured to disable registration of
component instrumentations that are not privileged (since privileged instrumentation is trusted by the OS).

The DMIv2.0s Service Provider can also be configured to disable overriding of component instrumentation
by a subsequent registration of instrumentation for the same attribute.

 Desktop Management Interface Specification v2.01s

January, 2003 148

12. DMIv2.0S SERVICE PROVIDER STANDARD
GROUPS

The DMI Service Provider is itself a component of a system and it has an associated MIF that describes its
capabilities. This component has a component ID equal to 1 by definition. Several standard groups are
defined that must be included in the Service Provider component, such as the SP Indication Subscription
group and the SP Filter Information group. DMIv2.0s introduces new standard groups to configure new
features of the DMIv2.0s Service Provider and to store the authorization policy. These groups are described
in the following sections.

NOTE that in the following group listings:

The group ID is included for syntactic correctness and is not part of the definition; instead, the groups should
be identified by their class string.

Value statements in the table definitions define the default value of attributes omitted in a table initialization
and should not be changed.

Value statements in scalar groups are the recommended initial value of the attribute. DMIv2.0s Service
Provider implementations may choose to use different initial values.

 Desktop Management Interface Specification v2.01s

January, 2003 149

12.1 DMIv2.0S SERVICE PROVIDER CONFIGURATION
The features provided by the DMIv2.0s Service Provider can be enabled or disabled through the “Service
Provider Characteristics” group. The DMIv2.0s Service Provider checks the value of these boolean attributes
upon startup and enables or disables features accordingly. A concise description is provided with each
attribute. Access to attributes in the Service Provider Characteristics group is controlled by the policy
like any other attribute. It is recommended that only administrators be allowed to modify these attributes.

Start Group
 Name = "Service Provider Characteristics"
 Class = "DMTF|SP Characteristics|001"
 ID = 6
 Description = "This group configures the DMIv2.0s SP characteristics."

The first attribute "enable local security" controls whether the DMIv2.0s Service Provider secures the
local interfaces. If the value of this attribute is True when the Service Provider initializes, local interfaces are
secured, thus:

• Component instrumentation which is not privileged cannot access the DMIv2.0s Service Provider

• A local management application which is not privileged cannot access the DMIv2.0s Service
Provider

 Start Attribute
 Name = "enable local security"
 ID = 1
 Type = start enum
 0x00 = "False"
 0x01 = "True"
 end enum
 Storage = common
 Value = "True"
 End Attribute
 Description = "If true, CI and MA must be privileged processes to "
 "access the DMIv2.0s SP.\"

The second attribute "disable CI override" controls whether the DMIv2.0s Service Provider allows
component instrumentation registration to override a previous component instrumentation registration of the
same attribute. If the value of this attribute is True when the Service Provider initializes, attempts to override
a previous component instrumentation registration will fail with error DMIERR_INSUFFICIENT_PRIVILEGES.

 Start Attribute
 Name = "disable CI override"
 ID = 2
 Description = "If true CI override attempts will fail."
 Type = start enum
 0x00 = "False"
 0x01 = "True"
 end enum
 Storage = common
 Value = "True"
 End Attribute

Changes in enable local security and disable CI override take effect at the next Service Provider
restart.

 Desktop Management Interface Specification v2.01s

January, 2003 150

12.2 DMIv2.0S SECURITY INDICATION AND LOGGING
CONFIGURATION

Security indication and logging are controlled by the Service Provider Logging and Security
Indication Characteristics group. The first attribute commands determines which commands/occurrences
are to be processed (Note that all DMI listing commands are grouped together.) The second attribute level
determines under what success/failure conditions the specified commands are to be processed. Commands
returning DMIERR_NO_ERROR or DMIERR_NO_ERROR_MORE_DATA are considered successful; Commands
returning DMIERR_INSUFFICIENT_PRIVILEGES or DMIERR_INVALID_HANDLE are considered security failures;
Commands returning other values are considered to have failed for non-security reasons. The third attribute
action determines the type of processing: logging, security indication or both. The fourth attribute class
string filter provides the ability to filter for what groups the processing is done. The semantics of this
filter are similar to the class string parameter to the ListComponentsByClass command in the Management
Interface.

Start Group
 Name = "Service Provider Logging and Security Indication Characteristics"

Class = "DMTF|SP Logging and Security Indication Characteristics|001"
 Key = 1,2,3,4
 Description = "This table selects which commands are logged or trigger "
 "a security indication."

 Start Attribute
 Name = "commands"
 ID = 1

 Description = "commands and occurrences to be processed "
 "by DMI2.0s SP for logging and/or security indications."

 Type = Start enum
 0 = "unknown"
 1 = "DmiRegister"
 2 = "DmiUnregister"
 3 = "DmiGetAttribute"
 4 = "DmiSetAttribute"
 5 = "DmiGetMultiple"
 6 = "DmiSetMultiple"
 7 = "DmiAddRow"
 8 = "DmiDeleteRow"
 9 = "DmiAddComponent"
 10= "DmiAddLanguage"
 11 = "DmiAddGroup"
 12 = "DmiDeleteComponent"
 13 = "DmiDeleteLanguage"
 14 = "DmiDeleteGroup"
 15 = "DmiRegisterCi"
 16 = "DmiList"
 17 = "Authentication Expired"
 18 = "DmiOriginateEvent"

 End enum
 Access = Read-Only
 Storage = Common
 Value = "unknown"
 End Attribute

 Start Attribute
 Name = "level"
 ID = 2

 Description = "This command will be processed under the \n"
 "specified condition. "
 Type = Start enum
 0 = "unknown"
 1 = "process if success"
 2 = "process if security failure"
 3 = "process if success or security failure"
 4 = "process if non-security failure"
 5 = "process if success or non-security failure"
 6 = "process if security or non-security failure"

 Desktop Management Interface Specification v2.01s

January, 2003 151

 7 = "process if success or security failure or non-security failure"
 End enum
 Access= Read-Only
 Storage = Common
 Value = "unknown"

 End Attribute

Start Attribute
 Name = "action"
 ID = 3
 Description = "The processing action to take."

 Type = Start enum
 0 = "unknown"
 1 = "log"
 2 = "send security indication"
 3 = "log and send security indication"
 End enum
 Access = Read-Only
 Storage = Common
 Value = 0
End Attribute

Start Attribute

 Name = "class string filter"
 ID = 4
 Type = String(256)
 Storage = Common
 Access = Read-Only
 Description = "The logging and/or security indication is performed \n"

"on groups whose class string matches the filter. \n"
"String || is a wildcard meaning all groups."

 Value = "||"
End Attribute

End Group

For example, in order to log all the successful DmiSetAttribute commands, and log and generate a security
indication upon all the modifications of the policy, the table should be set to:

Start Table
 Name = "DMI Logging Table"
 Class = "DMTF|SP Logging and Security Indication Characteristics|001"
 Id = 9

 { "DmiSetAttribute", "log", "process if success" }

 { "DmiAddRow", "log and send security indication", "process if success",
"DMTF|POLICY_DB|" }

 { "DmiDeleteRow", "log and send security indication", "process if success",
"DMTF|POLICY_DB|" }

End Table

 Desktop Management Interface Specification v2.01s

January, 2003 152

12.3 AUTHENTICATION PROTOCOLS
A DMIv2.0s Service Provider may support one or more authentication protocols. For example, it may
support authentication through NT login and through digital certificates. The Authentication Protocols
group is a table instrumented by the DMIv2.0s Service Provider that lists all the authentication protocols
supported along with their RPC type and transport type (since some authentication protocols may be
supported only on some of the RPCs). The definition of attributes SP RPC Type and SP Transport Type are
similar to those of attributes Subscriber RPC Type and Subscriber Transport Type in the SP Indication
Subscription table.

A management application may list the rows of the Authentication Protocols table to find out which
authentication protocols are supported by a DMIv2.0s Service Provider. It is recommended to set a policy
that allows any role to read the authentication protocols table, so that it can be read by management
applications without authenticating. That is, it is recommended that the policy contain the following row:

{"dmi_default", "DmiGetAttribute", "Allow", "DMTF|Authentication Protocols|", , , , }

The Authentication Protocols group is listed below:
Start Group
 Name = "Authentication protocols"
 Class = "DMTF|Authentication Protocols|001"
 Key = 1,2,3
 Description = "This table lists authentication protocols supported."

 Start Attribute

 Name = "Authentication Protocol Type "
 ID = 1
 Description = "This is an identifier of the type of Authentication "
 "in use by the SDMI SP."
 Access = Read-Only
 Storage = Common
 Type = Start enum

 1 = "ONC UNIX"
 2 = "Kerberos"
 3 = "Windows NT4 Authentication"
 4 = "NetWare 4.1"
 5 = "X.509"
 6 = "DES"

 End Enum
 End Attribute

 Start Attribute

 Name = "SP RPC Type"
 ID = 2
 Description = "This is an identifier of the type of RPC in "

 "use by the SP."
 Access = Read-Only
 Storage = Common
 Type = String(64)

 // NOTE: the allowable RPC Type strings are
 // "DCE RPC"
 // "ONC RPC"
 // "TI RPC"

 End Attribute

 Start Attribute
 Name = "SP Transport Type"
 ID = 3
 Description = "This is an identifier of the type of Transport in "

 "use by the SP."
 Access = Read-Only
 Storage = Common
 Type = String(64)

 // NOTE: the allowable Transport Type strings are

 Desktop Management Interface Specification v2.01s

January, 2003 153

 // "ncacn_dnet_nsp"
 // "ncacn_ip_tcp"
 // "ncadg_ip_udp"
 // "ncacn_nb_nb"
 // "ncacn_nb_tcp"
 // "ncacn_nb_ipx"
 // "ncacn_np"
 // "ncacn_spx"
 // "ncadg_ipx"
 // "ncalrpc"

 End Attribute
End Group

 Desktop Management Interface Specification v2.01s

January, 2003 154

12.4 POLICY GROUP
The Policy_DB group is a tabular group in which each row specifies a group of DMI commands that can or
cannot be performed on the system according to the role of the user invoking the command, the group’s class
string and attribute ID accessed by the command. To allow specifying different policies for different groups
with the same class string, the value of an additional attribute can be specified, in which case the policy row
applies only to those components that contain the specified attribute with the specified value. If one or more
rows in the policy specify roles that can perform a command on a component/group/attribute, then only those
roles specified will be allowed to perform that command; otherwise, all roles are allowed to. A more precise
description of the authorization algorithm can be found in Section 13.2, and pseudo-code is listed in Section
13.6.

The value of some of the attributes in a policy row may be a wildcard. The syntax of wildcards is specified in
the description of each attribute. Wildcards are used by the DMIv2.0s Service Provider when matching an
incoming command against policy rows for authorization. The policy group definition is listed below.

Start Group
 Name = "DMI Policy"
 Class = "DMTF|Policy_DB|001"
 Key = 1,2,3,4,5,6,7,8
 Description = "This table contains the DMIv2.0s SP authorization policy."

12.4.1 Role
Attribute role in a policy row specifies the role that a row applies to. Roles names are encoded as strings.
Role names are opaque to the DMIv2.0s Service Provider: the Service Provider matches the list of roles of a
user against the policy in order to authorize each command.

 Start Attribute

 Name = "Role"
 Id = 1

 Description = "Role to which this row applies."
 Storage = Specific
 Access = Read-Only
 Type = String(256)
 Value = ""

 End Attribute

12.4.2 Command
Attribute command in a policy row specifies the command or group of commands that a row applies to. Note
that all DMI listing commands are grouped together. Values out of range are reserved and should not be set.

 Start Attribute
 Name = "Command"
 Id = 2
 Description = "Command to which this row applies."
 Storage = Common
 Access = Read-Only
 Type = Start enum
 1 = "DmiGetAttribute"
 2 = "DmiSetAttribute"
 3 = "DmiAddRow"
 4 = "DmiDeleteRow"
 5 = "DmiAddGroup"
 6 = "DmiDeleteGroup"
 7 = "DmiAddComponent"
 8 = "DmiDeleteComponent"
 9 = "DmiAddLanguage"
 10 = "DmiDeleteLanguage"
 11 = "DmiList"
 End enum
 End Attribute

 Desktop Management Interface Specification v2.01s

January, 2003 155

The following commands are allowed to any role regardless of the policy: DmiRegister, DmiUnregister,
DmiGetVersion, DmiGetConfig and DmiSetConfig.

A DmiSetMultiple command is allowed if each of the individual sets is allowed. In a DmiGetMultiple
command, each individual get is authorized separately, and partial attribute data may be returned. See
Section 18 for a precise description of the behavior of DmiGetMultiple in the presence of errors. Note that a
DmiGetMultiple command that returns a key list (when RequestMode is DMI_FIRST or DMI_NEXT)
requires DmiGetAttribute permission on each of the keys.

12.4.3 Authorization
Attribute authorization in a policy row specifies whether the row allows or denies the specified role to
perform the specified command. The attribute authorization is of type enum {"Deny", "Allow"}. Values
out of range are reserved and should not be used.

 Start Attribute
 Name = "Authorization"
 Id = 3
 Description = "Defines whether this row allows or denies access."
 Storage = Common
 Access = Read-Only
 Type = Start enum
 0 = "Deny"
 1 = "Allow"
 End enum
 End Attribute

Attributes 4 through 8 in a policy row specify the component/group/attribute that the policy row applies to.
Not all of attributes 4 through 8 in a policy row are relevant to each command. For example, AttributeID is
not relevant to DmiAddComponent commands. The policy attributes that are relevant to each command type
are summarized in a table in Section 13.2.

12.4.4 Class
This attribute specifies the groups that a policy row applies to. The attribute Class is of type string. The
semantics of this attribute is similar to that of the class string parameter to the ListComponentsByClass
command in the Management Interface. Partial class strings may be specified. For example, the partial class
string "DMTF|Serial Ports|" will match all DMTF defined versions of the standard serial port group.

 Start Attribute
 Name = "Class"
 Id = 4
 Description = "Class filter of groups to which this row applies."
 Storage = Specific
 Access = Read-Only
 Type = String(256)
 Value = "||"
 End Attribute

12.4.5 Attribute ID
Attribute ID specifies the attribute that a policy row applies to. The attribute Attribute ID is of type
integer. A value of zero is a wildcard meaning that the policy row applies to all the attributes in the group
specified by Class. This makes it easy to protect a whole group. When a tabular group is accessed, the
policy row applies to attribute Attribute ID in all rows.

 Start Attribute
 Name = "AttributeID"
 Id = 5
 Description = "Attribute ID to which this row applies. 0 is wildcard."
 Storage = Specific
 Access = Read-Only

 Desktop Management Interface Specification v2.01s

January, 2003 156

 Type = Integer
 Value = 0
 End Attribute

12.4.6 Additional Class, Attribute ID, Value
To narrow down the scope of a policy row, in case there is more than one group in the system with the same
class string, specify an additional (class, attribute, value) triple. These attributes narrow down the scope of a
policy row so that it does not apply to all the groups of class Class. Class2 is a string, Attribute ID2 is
an integer, Value2 is an octet string representing the value of an attribute with the same syntax as <value
statement> in a MIF file. If Class2 is an empty string, Attribute ID2 and Value2 are ignored and the
policy row applies to all groups of class Class.

When a management application attempts to perform a command, the DMIv2.0s Service Provider checks if
any rows in the policy apply to this command. Policy rows in which Class2 is specified apply to a
command only if the component being accessed contains a group whose class string is Class2 and this group
contains an attribute with attribute ID Attribute ID2 whose value is equal to Value2.

If the group is a tabular group, the policy row applies if the value Attribute ID2 is Value2 in the first row.
 Start Attribute
 Name = "Class2"
 Id = 6

 Description = "Narrow down the scope of this row to components that "
 "contain a group with this class in which attributeID2 has value2."

 Storage = Specific
 Access = Read-Only
 Type = String(256)
 Value = ""
 End Attribute

Start Attribute
 Name = "AttributeID2"
 Id = 7
 Description = "Attribute whose value is used to narrow down the scope "

"of this policy row."
 Storage = Specific
 Access = Read-Only
 Type = Integer
 Value = 0
 End Attribute

 Start Attribute
 Name = "Value2"
 Id = 8
 Description = "Value used to narrow down the scope of this policy row."
 Storage = Specific
 Access = Read-Only
 Type = OctetString(1024)
 Value = ""
 End Attribute

In the following example:

{"tester", "DmiSetAttribute" , "Allow", "DMTF|Network Adapter 802 Port|001", ,
 "DMTF|ComponentID|001", 1, "Intel" }

role "tester" is allowed to perform DmiSetAttribute on any attribute in a group whose class string is
"DMTF|Network Adapter 802 Port|001" in a component whose manufacturer is "Intel" (that is, a
component that contains a group whose class string is "DMTF|ComponentID|001" and the value of attribute
number 1 in that group is "Intel").

 Desktop Management Interface Specification v2.01s

January, 2003 157

12.4.7 Example
Here’s an example of the authentication protocols and policy tables:

Start Table
 Name = "DMI Authentication Protocols Table"
 Class = "DMTF|Authentication Protocols|001"
 Id = 8

 {"Windows NT4 Authentication", "DCE RPC", "ncacn_ip_tcp"}
 {"DES", "ONC RPC", " ncadg_ip_udp"}
End Table

Start Table
 Name = "DMI Policy Table"
 Class = "DMTF|Policy_DB|001"
 Id = 7

 // allow role 'IT' to add and remove components
 {"IT", "DmiAddComponent", "Allow", , , , , }
 {"IT", "DmiDeleteComponent", "Allow", , , , , }

 // allow role 'helpdesk' to set attributes
 {"helpdesk", "DmiSetAttribute" , "Allow", , , , }
 // allow role "HW support" to configure temp probe
 {"HW support", "DmiSetAttribute" , "Allow", "DMTF|Temperature Probe|", , , , }
 // role "IBM support", not "helpdesk" takes care of IBM components
 {"IBM support", "DmiSetAttribute" , "Allow", "IBM||", , , , }
 {"helpdesk", "DmiSetAttribute" , "Deny", "IBM||", , , }

End Table

The policy table allows:

• role "IT" to add and delete components.

• role 'helpdesk' to set the value of any attribute except those in groups whose class string contains
"IBM" as defining body.

• role "HW support" to set the value of any attribute in the “Temperature Probe” group.

• role "IBM support" to set the value of any attribute in any group whose class string contains "IBM"
as defining body.

 Desktop Management Interface Specification v2.01s

January, 2003 158

12.5 SPECIAL DMIv2.0S ROLES
The authentication module is responsible for assigning a list of roles to a user upon management application
registration. Although DMIv2.0s does not specify the mechanism for associating user identities with roles,
the recommended mechanism is the operating system user groups or digital certificate attributes. DMIv2.0s
defines a special role, dmi_default, that is assigned to every management application, including those that
use a non-authenticated RPC. Therefore, commands that are permitted to role dmi_default are actually
permitted to all users. For example, the following row in the policy allows all users to read the
authentication protocols table:
{"dmi_default", "DmiGetAttribute", "Allow", "DMTF|Authentication Protocols|", , , , }

To ease the configuration of DMIv2.0s, it is recommended that DMIv2.0s administrators define a role named
dmi_admin and allow this role to perform DMI database management operations (such as component
installation and removal) and to modify the policy. To implement this, the policy table would contain the
following rows:

 {"dmi_admin", "DmiAddGroup", "Allow", , , , , }
 {"dmi_admin", "DmiDeleteGroup", "Allow", , , , , }
 {"dmi_admin", "DmiAddComponent", "Allow", , , , , }
 {"dmi_admin", "DmiDeleteComponent", "Allow", , , , , }
 {"dmi_admin", "DmiAddRow", "Allow", "DMTF|POLICY_DB|001", , , , }
 {"dmi_admin", "DmiDeleteRow", "Allow", "DMTF|POLICY_DB|001", , , , }

 Desktop Management Interface Specification v2.01s

January, 2003 159

13. MANAGEMENT INTERFACE SECURITY

Management Interface security is the main feature of DMIv2.0s. Management Interface security controls the
access of management applications to DMI data and instrumentation.

Upon registration of a management application with the Service Provider, the Service Provider authenticates
the management application, obtains the list of roles of the user invoking that management application and
returns a management handle. Every subsequent DMI command requested through this management handle
will be authorized by the DMIv2.0s Service Provider according to this list of roles and the policy.

Section 13.1 Authentication describes the interaction between the DMIv2.0s Service Provider and the
underlying RPC authentication mechanism.

Section 13.2 Policy and authorization defines DMIv2.0s authorization of Management Interface
commands issued by remote management applications.

Section 13.3 Policy protection, modification, and initialization discusses configuring the policy to control
access to the policy itself, and lists the recommended initial policy.

Section 13.4 Indication subscription and delivery discusses security as it applies to the subscription of
management applications for indications and delivery of those indications.

Section 13.5 Local management interface defines the security of the Management Interface when accessed
directly by local management applications (rather than through an RPC).

 Desktop Management Interface Specification v2.01s

January, 2003 160

13.1 AUTHENTICATION
DMIv2.0 uses Remote Procedure Call (RPC) standards for remoting the Management Interface. DMIv2.0s
also uses RPC for authenticating the user of the management application. The RPC infrastructure on the
RPC client (the management application) sends the identity of the user invoking the management application
to the RPC infrastructure of the RPC server (the DMIv2.0s Service Provider). Upon registration of a
management application, the DMIv2.0s Service Provider retrieves the identity of the user and extracts the
associated roles list. The actual call used by the DMIv2.0s Service Provider to retrieve the identity of the
user depends on the specific RPC being used (for example rpc_binding_inq_auth_client() on DCE RPC
or rq_cred and rqclntcred in struct svc_req on ONC RPC). Optionally, the DMIv2.0s Service Provider
may also perform authentication on subsequent Management Interface RPC calls, and verify that the identity
of the caller is the identity of the caller of DmiRegister.

The name space of user identities depends on the specific RPC and operating system. For example, when
using DCE RPC between Windows systems, user identities are of the form host/name, where host is the
name of a Windows NT workstation, Windows NT server or NT domain, and name is the login name of a
user. When using ONC between UNIX systems, the identity of a user is composed of its uid number.

The mapping of user identities onto roles is defined by the DMIv2.0s Service Provider implementation. This
mapping may be a simple one-to-one mapping with each user identity being a role, or the role list may be
contained in the user identity as, for example, an attribute in an X.509 certificate. It is recommended to use
operating system groups to map users onto roles, since system administrators are already familiar with the
concept of operating system user groups and with the tools used to manage their membership.

A management application may support more than one authentication protocol in order to manage several
types of DMIv2.0s-enabled computers. To select the proper authentication protocol for managing a specific
computer, the management application can retrieve the list of authentication protocols supported by a
DMIv2.0s Service Provider by retrieving the rows of the Authentication Protocols table. It is
recommended that the policy configure this table to be readable by any role.

Certain authentication protocols implement the concept of expiration or revocation of an identity or of
credentials. If such an authentication protocol is used, it is the responsibility of the RPC infrastructure to
terminate the RPC session upon identity expiration or revocation. Subsequent commands attempted will fail
with an error defined by the RPC infrastructure.

13.1.1 Non-authenticated registration
A management application may register with the DMIv2.0s Service Provider using DmiRegister but not
perform the authentication protocol. This may be because the management application does not use
authentication features of the RPC or because it uses an RPC that does not support authentication. In this
case the DMIv2.0s Service Provider will assign a role list that contains only role dmi_default to the
management application.

 Desktop Management Interface Specification v2.01s

January, 2003 161

13.2 POLICY AND AUTHORIZATION
Authorization is the mechanism whereby the DMIv2.0s Service Provider decides whether a DMI command
invoked by a user should be allowed or denied according to the command, its parameters, the user's roles,
and the policy.

A role is said to be allowed to perform a given command if either:

• There is at least one row in the policy with Authorization equal to "Allow" that matches this
role/command/parameters and there is no row in the policy with Authorization equal to "Deny"
that matches this role/command/parameters.

• There is no row in the policy that matches the command/parameters.

When searching the policy for rows that match a command, the Service Provider checks only relevant policy
attributes and command parameters. The command parameters and the policy attributes used for matching
each command against the policy are listed in the following table. Note that for simplicity all DMI Listing
commands have been grouped together, and can be allowed or denied to a role regardless of the component,
group or attributes being listed.

When a management application attempts to perform a command that requires authorization, the Service
Provider searches the policy for rows that match the command. If there is no such row, then the command is
allowed. If there are policy rows that match the command, the Service Provider checks whether one of the
roles of the user invoking the command is allowed to perform the command, and allows or denies the
command accordingly. Commands that a user is not authorized to perform are not performed and return
with error DMIERR_INSUFFICIENT_PRIVILEGES. Pseudo-code for the authorization algorithm is listed in
Section 13.6.

Command Command parameters
checked for match

Policy attributes used for matching

DmiGetAttribute Component, Group, Attribute Class, AttributeID, Class2, AttributeID2, Value2
DmiSetAttribute Component, Group, Attribute Class, AttributeID, Class2, AttributeID2, Value2
DmiDeleteRow Component, Group Class, Class2, AttributeID2, Value2
DmiAddRow Component, Group Class, Class2, AttributeID2, Value2
DmiDeleteGroup Component, Group Class, Class2, AttributeID2, Value2
DmiAddGroup Component Class2, AttributeID2, Value2
DmiDeleteComponent Component Class2, AttributeID2, Value2
DmiAddComponent
DmiDeleteLanguage Component Class2, AttributeID2, Value2
DmiAddLanguage Component Class2, AttributeID2, Value2
DmiList

 Desktop Management Interface Specification v2.01s

January, 2003 162

13.3 POLICY PROTECTION, MODIFICATION AND
INITIALIZATION

The policy is stored as a tabular group in the MIF database. Access to the policy is controlled by the policy
itself. For example, to allow role "dmi_admin" to modify the policy, the following rows should be included
in the policy:
{"dmi_admin", "DmiAddRow" , "Allow", "DMTF|POLICY_DB|001", , , , }

{"dmi_admin", "DmiDeleteRow" , "Allow", "DMTF|POLICY_DB|001", , , , }

Roles other than "dmi_admin" will not be allowed to modify the policy, unless specifically allowed to by
other policy rows.

Rows may be added to or removed from the policy table dynamically.

NOTE that attributes in the policy are read only, so the policy can be modified only by adding or deleting
rows.

When the DMIv2.0s Service Provider is installed, it creates an initial default policy table specified by the
Service Provider implementation. The recommended default policy is listed below, though the system
manufacturer may chose to set a different policy at system initialization:

{"dmi_admin", "DmiAddComponent", "Allow", , , , , }
{"dmi_admin", "DmiDeleteComponent", "Allow", , , , , }
{"dmi_admin", "DmiAddGroup", "Allow", , , , , }
{"dmi_admin", "DmiDeleteGroup", "Allow", , , , , }
{"dmi_admin", "DmiAddRow", "Allow", "DMTF|POLICY_DB|001", , , , }
{"dmi_admin", "DmiDeleteRow", "Allow", "DMTF|POLICY_DB|001", , , , }
{"dmi_admin", "DmiAddRow", "Allow", "DMTF|SP Logging and Security Indication
Characteristics|001", , , , }

{"dmi_admin", "DmiDeleteRow", "Allow", "DMTF|SP Logging and Security Indication
Characteristics|001", , , , }

{"dmi_admin", "DmiAddRow", "Allow", , , , , }
{"dmi_admin", "DmiDeleteRow", "Allow", , , , , }
{"dmi_admin", "DmiSetAttribute", "Allow", , , , , }
{"dmi_default", "DmiAddRow", "Allow", "DMTF|SP Indication Subscription|001", , , , }
{"dmi_default", "DmiDeleteRow", "Allow", "DMTF|SP Indication Subscription|001", , , , }
{"dmi_default", "DmiAddRow", "Allow", "DMTF|SPFilterInformation|001", , , , }
{"dmi_default", "DmiDeleteRow", "Allow", "DMTF|SPFilterInformation|001", , , , }
{"dmi_default", "DmiGetAttribute", "Allow", , , "DMTF|ComponentID|001", 2, "Win32 DMI
Service Provider"}

{"dmi_default", "DmiGetAttribute", "Allow", "DMTF|Authentication Protocols|", , , , }

 Desktop Management Interface Specification v2.01s

January, 2003 163

13.4 INDICATION SUBSCRIPTION AND DELIVERY
This section reviews the mechanisms involved in indication subscription and delivery and their interaction
with DMIv2.0s security. DMI management applications interested in receiving event notifications must
subscribe for indications with the Service Provider. The Service Provider component includes two tabular
groups through which a management application can subscribe for indications: SP Indication
Subscription and SP Filter Information. Management applications subscribe for indications with the
Service Provider by adding rows to these tables.

NOTE that subscribing for indications is different from performing DMI commands in two ways:

Indication subscription is persistent; that is, it stays in effect even after the end of the management session
during which the subscription was performed.

Indications are initiated by the Service Provider and consumed by management applications (unlike DMI
commands which are initiated by management applications and performed by the Service Provider).

The indication server block in the management application (Section 11.1) is actually an RPC server and the
indication client block in the Service Provider acts as its RPC client. The indication subscription and filter
tables are stored in the MIF database which is persistent across management sessions. The indication
subscription table contains a list of managing nodes that have subscribed to receive indications, and
information required to forward indications to them. When an indication is generated, the Service Provider
looks up the subscription and filter tables, opens an RPC session to each of the subscribed event consumers
that has set the appropriate filters, and sends the indication.

DMIv2.0s provides limited support for securing indication subscription and delivery because, in general,
indications carry no sensitive data; they often carry no data at all. For example, when a temperature probe
detects that a system’s temperature is too high, it generates an event containing data identifying this
particular probe group. Upon receiving the indication, the management application will query the current
temperature of the system by invoking DmiGetAttribute on the appropriate attribute in the probe group and
perform appropriate actions.

Indication subscription is protected by controlling access to the SP Indication Subscription and SP
Filter Information tables through the policy. The policy can define which roles are allowed to add rows to
these tables; other roles will not be able to subscribe. However, the RPC session opened by the Service
Provider to deliver an indication to a management application is not authenticated.

 Desktop Management Interface Specification v2.01s

January, 2003 164

13.5 LOCAL MANAGEMENT INTERFACE
The Management Interface defined by DMIv1 is a local API. The Management Interface defined by
DMIv2.0 can be accessed remotely through a Remote Procedure Call mechanism. Note that management
applications running on the managed system itself can also access DMIv2.0s through an RPC. Remote
Procedure Calls within one system can be performed through a special local RPC transport (for example
ncalrpc) or through a networking RPC transport (for example, ncacn_ip_tcp) using the managed system’s
address or a loopback address as node address. In the context of this specification, invoking the
Management Interface through an RPC from the same system on which the Service Provider is running is
not considered a local access, and the access control mechanism applied is the same as when the
Management Interface is invoked through an RPC from a different system, as defined in the previous
sections.

The Management Interface defined by DMIv2.0 can also be accessed through a local interface within the
managed system. This interface is usually a well known entry point in a DLL or a system call. This section
defines security as it applies to management applications that access the DMIv2.0s Service Provider through
a local API, be it the DMIv1 Management Interface or the DMIv2 Management Interface. The behavior of
the DMIv2.0s Service Provider with local management applications is controlled by attribute enable local
security in the SP Characteristics group. If the value of this attribute is True when the DMIv2.0s
Service Provider initializes, local management application security applies. Otherwise, all local management
applications have unlimited access to the Management Interface. The security mechanisms applied by
DMIv2.0s to local management applications are a simplified form of the mechanisms defined for remote
management applications:

• Authentication is binary according to whether the local management application is invoked by a
privileged user or not (see Section 10.2.6 for a definition of privileged users).

• Authorization is binary: local management applications invoked by a privileged user are allowed to
perform any DMI command, whereas those invoked by a non-privileged user are not allowed to
access DMI.

• Indication subscription and delivery are affected accordingly: local management applications
invoked by a privileged user may subscribe for and receive indications, whereas those invoked by
a non-privileged user may not.

13.5.1 Caveat: component instrumentation registration as a local
management application

Component instrumentation often registers through the local Management Interface in order to access DMI
information. For example, component instrumentation can use DMI information to find out the component
ID of the component it instruments, or to discriminate between two instances of the same component installed
on the system, or to store data pertaining to the component instrumentation. If local management application
security is enabled and component instrumentation registers as a local management application through the
local DMI API, the security mechanisms described in Section 13.5 apply. Therefore, if attribute enable
local security is True when the DMIv2.0s Service Provider initializes, component instrumentation should
be configured to run as privileged process in order to be able to use the Management Interface. See also
Section 14 on component interface security.

 Desktop Management Interface Specification v2.01s

January, 2003 165

13.6 AUTHORIZATION ALGORITHM PSEUDO-CODE
When searching the policy for rows that match a command, relevant command parameters are checked
against each policy row’s attributes according to the table in Section 13.2. A fully specified policy row
{Role, Cmd, Authz, Class1, AttrId1, Class2, AttrId2, Value2} is said to match a DMI command
with parameters CID, GID, AID if:

The class string of group GID matches the class filter Class1.

AID is AttrId1.

Component CID contains a group whose class string is Class2 and an attribute in that group whose ID is
AttrId2 and whose value is Value2.

Pseudo code for the authorization algorithm follows:
if (this command is DmiRegister, DmiUnregister, DmiGetVersion, DmiGetConfig or

 DmiSetConfig) then
 return allowed

else if (this command is DmiSetMultiple) then

 if (each of the sets is allowed per this algorithm) then
 return allowed

 else
 return denied

else if (there are policy rows that match this command) then {

 for (each role R of this user) {

 if (there is a policy row matching this command such that role=R and auth=deny) then

 continue /* for */

 if (there is a policy row matching this command such that role=R and auth=allow) then
 return allowed

 } /* for */

 return denied

}
else return allowed

 Desktop Management Interface Specification v2.01s

January, 2003 166

14. COMPONENT INTERFACE SECURITY

The main objective of DMIv2.0s is to control access of managed systems by remote management
applications. Nonetheless, DMIv2.0s also provides features to control registration of component
instrumentation and protect the system from software that behaves like a component instrumentation but is
not a legitimate component instrumentation. This section defines security as it applies to component
instrumentation interfacing with the DMIv2.0s Service Provider, be it DMIv1 component instrumentation or
DMIv2 component instrumentation. Component Interface security is controlled by attribute enable local
security in the SP Characteristics group. If the value of this attribute is True when the DMIv2.0s
Service Provider initializes, Component Interface security applies. Otherwise, access to the DMIv2.0s
Component Interface is unrestricted.

DMI defines two types of interface between the Service Provider and component instrumentation: direct and
overlay. Instrumentation using the overlay interface is declared in the MIF by a value statement of the form
value = *"name", where name has been previously defined in a path definition within the component
definition. Upon a DmiGetAttribute or DmiSetAttribute to this attribute, the Service Provider loads and
invokes the code located in the file corresponding to the path definition for the OS running on the managed
system. The overlay Component Interface is not supported by DMIv2.0s.

Instrumentation using the direct interface must register with the DMI Service Provider when it wishes to
notify the Service Provider of its immediate availability. (Attributes instrumented through the direct
interface and static attributes whose value is stored in the MIF database are defined in the same way in the
MIF.) Upon registration, direct interface instrumentation provides the Service Provider with entry points
through which the Service Provider can later invoke the instrumentation. The mechanics of “connecting” to
the DMI Service Provider to register or issue commands may differ among operating systems and DMI
Service Provider implementations.

If attribute enable local security is True when the DMIv2.0s Service Provider initializes, registration of
component instrumentation will succeed only if the component instrumentation is a privileged process
as defined in Section 10.2.6. That is, invocations of DmiRegisterCi by a non-privileged process will fail and
return DMIERR_INSUFFICIENT_PRIVILEGES.

Registration of direct interface component instrumentation for an attribute overrides the previous access
mechanism for the attribute, which could be a static value in the MIF database, an overlay, or a previous
registration. In DMIv2.0s, this behavior can be controlled through attribute disable CI override in the SP
Characteristics group. If the value of this attribute is True when the DMIv2.0s Service Provider
initializes, invocations of DmiRegisterCi which would override a previous direct interface instrumentation
registration will fail and return DMIERR_INSUFFICIENT_PRIVILEGES. See also Sections 16 and 17 on
notifications generated as a result of instrumentation override.

 Desktop Management Interface Specification v2.01s

January, 2003 167

15. MIF DATABASE PROTECTION

The MIF database is local to the managed PC. Since the policy is stored in the MIF database, it is necessary
to protect the database. The contents of the database are protected from unauthorized access by DMI
management applications through the Management Interface security, based on roles and policy for remote
management applications and on operating system privileged processes for local management applications.
However, it is also necessary to protect the database in its stored form. The DMIv2.0s Service Provider uses
operating system or file system mechanisms to protect the MIF database, if such mechanisms are available.
The DMIv2.0s Service Provider will set up the ACL of the MIF database file such that only privileged
processes can read, write or erase the MIF database.

 Desktop Management Interface Specification v2.01s

January, 2003 168

16. SECURITY INDICATIONS

This section describes security indications to be sent to monitoring management applications. To avoid
generating spurious indication traffic on the network, security indications are configurable. Security
indications are declared in the DMIv2.0s Service Provider MIF with a standard event generation template
group. The event generation group and the attributes sent in the indication block are described in Section
16.1. Security indication generation is controlled by the SP Logging and Security Indication
Characteristics group see the definition of this group in Section 12.2. This group also controls the
configuration of DMIv2.0s logging.

16.1 SECURITY INDICATION DATA
When an indication is delivered to a consumer, the data supplied includes a standard event generation group
that is common to all standard events, and additional data that is specific to the event. Refer to Section 5 for
the exact layout of the data in the indication data structure. The event generator group specifies the type of
the event, the severity, the group associated with the component that generated the event, the system and
subsystem concerned by the event. The event generation group is formatted according to the standard
template in Section 16.1.1. Additional attributes are described in Section 16.1.2.

16.1.1 Security indication event generation group

Start Group
Name = "Event Generation"
Class = "EventGeneration|DMTF^^Security Indication|001"
ID =
Key = 5

Start Attribute
 Name = "Event Type"
 ID = 1
 Description="The type of the event - This is actually "

 "the command which\ncaused this event to be generated."
 Type = Start Enum

 0x00000 = "unknown"
 0x00001 = "DmiRegister"
 0x00002 = "DmiUnregister”
 0x00003 = "DmiGetAttribute"
 0x00004 = "DmiSetAttribute"
 0x00005 = "DmiGetMultiple"
 0x00006 = "DmiSetMultiple”
 0x00007 = "DmiAddRow”
 0x00008 = "DmiDeleteRow"
 0x00009 = "DmiAddComponent"
 0x0000A = "DmiAddLanguage"
 0x0000B = "DmiAddGroup"
 0x0000C = "DmiDeleteComponent"
 0x0000D = "DmiDeleteLanguage"
 0x0000E = "DmiDeleteGroup"
 0x0000F = "DmiRegisterCi"
 0x00010 = "DmiListComponents"
 0x00011 = "DmiListComponentsByClass"
 0x00012 = "DmiListLanguages"
 0x00013 = "DmiListClassNames"
 0x00014 = "DmiListGroups"
 0x00015 = "DmiListAttributes"
 0x00016 = "Authentication Expired"
 0x00017 = "DmiOriginateEvent"
 End Enum

 Access = Read-Only
 Storage = Common

 Desktop Management Interface Specification v2.01s

January, 2003 169

 Value = "unknown"
 End Attribute

Start Attribute
 Name = "Event Severity"
 ID = 2
 Description = "The severity of this event."
 Type = Start Enumeration
 0x001 = "Monitor"
 0x002 = "Information"
 0x004 = "OK"
 0x008 = "Non-Critical"
 0x010 = "Critical"
 0x020 = "Non-Recoverable"
 End Enumeration
 Access = Read-Only
 Storage = Specific
 Value = "Information"
End Attribute

Start Attribute
 Name = "Is Event State-Based?"
 ID = 3
 Description = "The value of this attribute "
 "determines whether the Event being reported "
 "is a state-based Event or not. If the value "
 "of this attribute is TRUE then the Event is "
 "state-based. Otherwise the Event is not "
 "state-based."
 Type = "BOOL"
 Access = Read-Only
 Storage = Specific
 Value = "False"
End Attribute

Start Attribute
 Name = "Event State Key"
 ID = 4
 Description = "A unique, single integer key into the"
 " Event State group if this is a state-based"
 " Event. If this is not a state-based Event then" "
this attribute's value is not defined."
 Type = Integer
 Access = Read-Only
 Storage = Common
 Value = 0 // ignored since event is not state-based //
End Attribute

Start Attribute
 Name = "Associated Group"
 ID = 5
 Description = "The class name of the group that is"
 " associated with the events defined in this"
 " Event Generation group."
 Type = String
 Access = Read-Only
 Storage = Common

 Value = "DMTF|SP Logging and Security Indication
 Characteristics|001"

End Attribute

Start Attribute
 Name = "Event System"
 ID = 6
 Description = "The major functional aspect of the "

 Desktop Management Interface Specification v2.01s

January, 2003 170

 "product causing the fault."
 Type = Start enum
 0x000 = "SP"
 End enum
 Access = Read-Only
 Storage = Specific
 Value = 0 // value to be filled in by instrumentation//
End Attribute

Start Attribute
 Name = "Event Subsystem"
 ID = 7
 Description = "The minor functional aspect of the"
 " product causing the fault."
 Type = Start enum
 0x000 = "SP"
 End enum
 Access = Read-Only
 Storage = Specific
 Value = 0 // value to be filled in by instrumentation//
End Attribute

End Group

The values of attributes in the event generation group are filled by the instrumentation (which in this case is
part of the DMIv2.0s Service Provider itself) according to the specific security indication. The associated
group class string is "DMTF|SP Logging and Security Indication Characteristics|001" which is the
class string of the corresponding configuration group; the event system and event subsystem attributes will
be set to zero. Additional information for each security indication is provided in the additional attributes
defined in Section 16.1.2. Optionally, DMIv2.0s Service Provider implementations may provide four
optional attributes in the event generation group. These attributes are defined in section 3.2.2.3.

16.1.2 Security indication additional attributes
Additional attributes include information about the management application that performed or attempted to
perform an operation, the component, group, and attribute associated with the operation, the operation
completion code and the level which caused the indication. Additional attributes are located in the fourth
DmiRowData structure of the indication data structure. The values are formatted according to the following
attribute definitions. The semantics of each attribute for each security indication type are specified at the end
of this section.

Start Attribute
Name = "Principal RPC Type"
ID = 1
Description = "This is an identifier of the type of RPC in use by the
principal."
Access = Read-Write
Storage = Common
Type = String(64)

// NOTE: RPC strings are defined as follows
// "DCE"
// "ONC"
// "TI"
Value = unknown

End Attribute

Start Attribute

Name = "Principal Transport Type"
ID = 2
Description = "This is an identifier of the type of Transport in use by the
Principal."
Access = Read-Write
Storage = Common
Type = String(64)
Value = unknown

 Desktop Management Interface Specification v2.01s

January, 2003 171

// NOTE: the allowable Transport Type strings are
// "ncacn_dnet_nsp"
// "ncacn_ip_tcp"
// "ncadg_ip_udp"
// "ncacn_nb_nb"
// "ncacn_nb_tcp"
// "ncacn_nb_ipx"
// "ncacn_np"
// "ncacn_spx"
// "ncadg_ipx"
// "ncalrpc"

End Attribute

Start Attribute

Name = "Principal Addressing"
ID = 3
Description = "This is an identifier of the addressing information"
 " in use by the Principal."
Access = Read-Write
Storage = Specific
Type = String(1024)
Value = unknown

End Attribute

Start Attribute

Name = "Principal Id"
ID = 4
Access = Read-Write
Storage = Specific
Type = String(1024)
Value = unknown

End Attribute

Start Attribute

Name = "Component Id"
ID = 5
Description = "This is the Id of the component affected by the"
 " operation performed or attempted."
Access = Read-Write
Storage = Common
Type = Integer

End Attribute

Start Attribute
Name = "Group Id"
ID = 6
Description = "This is the Id of the group affected by the operation"
 " performed or attempted."
Access = Read-Write
Storage = Common
Type = Integer

End Attribute

Start Attribute

Name = "Attribute Id"
ID = 7
Description = "This is the Id of the attribute affected by the operation"
 " performed or attempted."
Access = Read-Write
Storage = Common
Type = Integer

End Attribute

Start Attribute

Name = "Level"
ID = 8
Description = "This is the actual level that caused the indication."

 Desktop Management Interface Specification v2.01s

January, 2003 172

Access = Read-Write
Storage = Common
Type = Start Enumeration
 0x000 = "Unknown"
 0x001 = "Success"
 0x002 = "Security Failure"

 0x004 = "Non-Security Failure"
 End Enumeration

End Attribute

Start Attribute

Name = "Completion Code"
ID = 9
Description = "This is the error code the command completed with."
Access = Read-Write
Storage = Common
Type = Integer

End Attribute

The value of the additional attributes is defined as follows:

Principal RPC type, Principal Transport Type, Principal Addressing and Principal ID identify
the remote management application performing or attempting to perform the operation that caused the
security indication. Their definition is similar to that of the corresponding attributes in the DMI
indication subscription table except for Principal ID. Principal ID is the name of the user
invoking the remote management application. If the name of the user cannot be obtained by the
Service Provider, Principal ID will be a number identifying the user or the remote management
application (such as a UNIX user ID or a NetWare NLM ID).

If the security indication is triggered by a component instrumentation or local management application,
Principal RPC Type will be "local", Principal Transport Type will be "dmi", and Principal
Addressing will be an empty string.

The next three attributes are component, group and attribute Id input parameters of the command that
triggered the security indication, or zero for parameters not specified by the command (for example,
DmiRegister and Authentication Expired have no associated component, group nor attribute.). If
the command is DmiSetMultiple, DmiGetMultiple, or DmiRegisterCI, then the
component/group/attribute that caused the security indication is returned in the indication block.

The next two attributes are the level that triggered the indication and the command completion code.

 Desktop Management Interface Specification v2.01s

January, 2003 173

17. LOGGING

This section describes security logging entries logged by the DMIv2.0s Service Provider for future retrieval by
monitoring applications at their convenience. The logging mechanism is similar to the security indications
mechanisms described in Section 16: the information logged is similar to the information that is included in
security indications.

Security logging is controlled by the Service Provider Logging and Security Indication
Characteristics group. The first attribute commands determines which commands are to be logged. The
second attribute level determines under what success/failure conditions the command is to be logged. The
third attribute action determines whether to do logging, security indication or both. The fourth attribute class
string filter provides the ability to filter for what groups the logging is done. See Section 12.2 for detailed
description of the group.

The mechanism used to log the information is implementation-specific. It is recommended that DMIv2.0s
Service Provider implementations use mechanisms provided by the operating system for logging, such as the
NT event log on Windows NT, syslog on UNIX, or AUDITCON on NetWare. Tools for browsing log entries
and configuring the maximum log size are usually provided. DMIv2.0s Service Provider implementations may
define additional attributes to configure the logging mechanism, by, for example, providing the name of a log
file or the address of a central system on which a consolidated log is maintained.

 Desktop Management Interface Specification v2.01s

January, 2003 174

17.1 LOGGING INTERFACE
The Logging Interface is implemented by the logging module of the DMIv2.0s Service Provider. When this
interface is invoked, the logging module adds an entry to the log. It is the Service Provider’s responsibility to
recognize when a command is to be logged and to call the interface provided by the logging module for each
such command. In the case of GetMultiple and SetMultiple, the Service Provider will call the interface once
for each element in the command that is to be logged (so, if the “level” attribute specifies that SetMultiple is
to be logged always, and a number of attributes were successfully set by this command, then there will be a
separate entry in the log for each attribute that was set). The interface provided is DmiGenerateLog.

17.1.1 DmiGenerateLog
DmiBoolean_t DmiGenerateLog (DmiLogInfo_t *info);

The one parameter is a pointer to a structure that contains all the information necessary to log the command.
The definition type DmiLogInfo_t will be included in the DMILOG.H header file.

typedef struct DmiLogInfo {
 DmiCommandCode_t commandCode;
 DmiErrorStatus_t completionStatus;
 DmiString_t *componentName;
 DmiId_t componentId;
 DmiString_t *groupName;
 DmiId_t groupId;
 DmiString_t *attributeName;
 DmiId_t attributeId;
 DWORD logLevel,
 DmiString_t *rpcType;
 DmiString_t *transport;
 DmiString_t *address;
 DmiString_t *userNameorId;
 DmiString_t *impSpecificInfo;
} DmiLogInfo_t;

The definition of type DmiCommandCode_t will be included in the DMILOG.H header file. The constants for each
command are as defined on page 235, with the addition of DmiCiRegisterCode, DmiCiUnregisterCode and
DmiOriginateEvent.

typedef enum DmiCommandCode {
 DmiRegisterCode = 0x200,
 DmiUnregisterCode = 0x201,
 ...
 DmiGetattributeCode = 0x215,
 DmiSetattributeCode = 0x216,
 DmiCiRegisterCode = 0x220,
 DmiCiUnregisterCode = 0x221,
 DmiOriginateEvent = 0x222
} DmiCommandCode_t;

 Desktop Management Interface Specification v2.01s

January, 2003 175

FIELD NAME DIRECTION DESCRIPTION
commandCode In An enumeration that identifies what the command is as

defined above.
completionCode In The DMI status with which the command completed.
componentName In The name of the component that was referenced. NULL if

not applicable.
componentId In The id of the component that was referenced. 0 if not

applicable
groupName In The name of the group that was referenced. NULL if not

applicable.
groupId In The id of the group that was referenced. 0 if not

applicable
attributeName In The name of the attribute that was referenced. NULL if

not applicable.
attributeId In The id of the attribute that was referenced. 0 if not

applicable
logLevel In The actual level that caused the log.
rpcType In The name of the RPC that was used to deliver the

command.
transport In The name of the transport that was used to deliver the

command.
address In The address of the management application from which

the command arrived. The format of this address depends
on the transport used, and may be in numerical form.

userNameOrId In The name of the user that originated the command. Or the
OS specific identifier of the process/application that
originated the command, represented as an ASCII string.

impSpecificInfo In Implementation specific information that may be used.

 Desktop Management Interface Specification v2.01s

January, 2003 176

18. DMIv2.0 AND DMIv2.0s COMPATIBILITY
CONSIDERATIONS

This section discusses the interoperability of existing DMI management applications and component instrumentation with
new DMIv2.0s Service Providers by summarizing relevant features introduced by the DMIv2.0s specification.

If the value of attributes enable local security and disable CI override are False when the DMIv2.0s Service
Provider initializes, the local interface is fully compatible to that DMIv2.0, and component instrumentation will run
unchanged with the DMIv2.0s Service Provider, even if it does not run in the context of a privileged process.

If attribute disable CI override is True when the Service Provider initializes, component instrumentation attempting to
register for an attribute for which component instrumentation has already registered will fail, returning error
DMIERR_INSUFFICIENT_PRIVILEGES.

If the value of attribute enable local security is True when the DMIv2.0s Service Provider initializes, local component
instrumentations and management applications that do not run in the context of a privileged process will not be able to
interact with the DMIv2.0s Service Provider. DmiRegisterCi and DmiRegister will fail with error
DMIERR_INSUFFICIENT_PRIVILEGES.

Management applications that register with the Service Provider using a non-authenticated RPC will be allowed to
perform only commands that are allowed to role dmi_default.

A DMIv2.0s Service Provider returns the same result as a DMIv2.0 Service Provider for allowed commands.

For denied commands, a DMIv2.0s Service Provider returns error DMIERR_INSUFFICIENT_PRIVILEGES, whereas a
DMIv2.0 Service Provider returns the command’s result.

NOTE that a policy that contains no rows will allow any role to perform any command.

It may be possible to upgrade existing management applications that access the DMIv2.0 Service Provider through a non-
authenticated RPC to DMIv2.0s by replacing the “front-end” module that interfaces with the RPC layer with a “front-
end” that uses an authenticated RPC. Once the RPC has been replaced with an authenticated RPC, DMI commands
sent by the management application will be authorized according to the policy and the identity of the user invoking the
management application.

The behavior of DmiGetMultiple in the presence of errors, as described in the DMI2.0 Errata #1, is extended as follows:

When DmiGetMultiple is called without an attribute list, the DMIv2.0s Service Provider attempts to return all attributes in
the group or row. Attributes that are UNSUPPORTED, WRITE-ONLY or that the management application is not authorized to get
are omitted from the reply data. If a different error occurs when the Service Provider attempts to get an attribute, the
Service Provider stops processing the request and returns data for all attributes up to, but not including, the attribute causing
the error.

When DmiGetMultiple is called with a specific attribute list, any error that occurs when the Service Provider attempts to
get an attribute causes the Service Provider to stop processing the request and return data for all attributes up to, but not
including, the attribute causing the error.

If the Service Provider stops processing on the first attribute of a request, the Service Provider returns no data and a status
according to the specific error (e.g. DMIERR_ATTRIBUTE_NOT_SUPPORTED, DMIERR_ILLEGAL_TO_GET or
DMIERR_INSUFFICIENT_PRIVILEGES for an UNSUPPORTED attribute, a WRITE ONLY attribute or an attribute that the
management application is not authorized to get, respectively).

If partial attribute data is returned, the operation’s return status is DMIERR_NO_ERROR_MORE_DATA. When DmiGetMultiple
returns a status of DMIERR_NO_ERROR_MORE_DATA, the caller should reissue the operation with a new attribute list. This new
attribute list should start with the first attribute not returned in the previous call, and should contain all subsequent attributes
from the original request.

 Desktop Management Interface Specification v2.01s

January, 2003 177

APPENDIX A - ERROR CODES
Status codes are 32 bit unsigned values.

The error codes returned by an operating system are not passed back to a management application; the service provider
maps operating system errors into its error range. The intent is to insulate management applications from operating system
details.

Because the OS-related error codes are specific to a particular environment, they are not listed in this specification.
Likewise, error codes from components are not listed here, but rather in the component MIF file.

 Service Provider Error Codes

SYMBOL VALUE DESCRIPTION
DMIERR_ATTRIBUTE_NOT_FOUND 0x00100 Attribute not found
DMIERR_VALUE_EXCEEDS_MAXSIZE 0x00101 Value exceeds maximum size
DMIERR_COMPONENT_NOT_FOUND 0x00102 Component ID is not found
DMIERR_ENUM_ERROR 0x00103 Enumeration error
DMIERR_GROUP_NOT_FOUND 0x00104 Group not found
DMIERR_ILLEGAL_KEYS 0x00105 Illegal keys
DMIERR_ILLEGAL_TO_SET 0x00106 Illegal to set
DMIERR_OVERLAY_NAME_NOT_FOUND 0x00107 Component instrumentation not found
DMIERR_ILLEGAL_TO_GET 0x00108 Illegal to get
DMIERR_ROW_NOT_FOUND 0x0010a Row not found
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED 0x0010b Direct interface not registered
DMIERR_DATABASE_CORRUPT 0x0010c MIF database is corrupt
DMIERR_ATTRIBUTE_NOT_SUPPORTED 0x0010d Attribute is not supported
DMIERR_VALUE_UNKNOWN 0x0010f Value for this attribute is not known
DMIERR_BUFFER_FULL 0x00200 Buffer full
DMIERR_ILL_FORMED_COMMAND 0x00201 Ill-formed command
DMIERR_ILLEGAL_COMMAND 0x00202 Illegal command
DMIERR_ILLEGAL_HANDLE 0x00203 Illegal handle
DMIERR_OUT_OF_MEMORY 0x00204 Out of memory
DMIERR_NULL_COMPLETION_FUNCTION 0x00205 No confirm function
DMIERR_NULL_RESPONSE_BUFFER 0x00206 No response buffer
DMIERR_CMD_HANDLE_IN_USE 0x00207 Command handle is already in use
DMIERR_ILLEGAL_DMI_LEVEL 0x00208 DMI version mismatch
DMIERR_UNKNOWN_CI_REGISTRY 0x00209 Unknown CI registry
DMIERR_COMMAND_CANCELED 0x0020a Command has been canceled
DMIERR_INSUFFICIENT_PRIVILEGES 0x0020b Insufficient privileges
DMIERR_NULL_ACCESS_FUNCTION 0x0020c No access function provided
DMIERR_FILE_ERROR 0x0020d OS File I/O error
DMIERR_EXEC_FAILURE 0x0020e Could not spawn a new task
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE 0x0020f Ill-formed SCHEMA
DMIERR_INVALID_FILE_TYPE 0x00210 Invalid file type
DMIERR_SP_INACTIVE 0x00211 Service provider is inactive
DMIERR_CANT_UNINSTALL_SP_COMPONENT 0x00213 Unable to remove the service provider

component
DMIERR_NULL_CANCEL_FUNCTION 0x00214 No cancel function provided
DMIERR_INVALID_POOL 0x00215 Memory Pool handle is invalid
DMIERR_INVALID_PTR 0x00216 A memory Ptr passed was invalid
DMIERR_NO_POOL 0x00217 A memory pool is required for use with this

function

DMIERR_FILE_TYPE_NOT_SUPPORTED

0x00218 The passed file type, while legal, is not
supported by this implementation

DMIERR_CANT_UNINSTALL_COMPONENT_LANGUAGE 0x00219 Unable to install a components language
mapping

DMIERR_CANT_UNINSTALL_GROUP 0x0021a Unable to install the group
DMIERR_UNABLE_TO_ADD_ROW 0x0021b The add row failed due to either a database

problem or a component limitation
DMIERR_UNABLE_TO_DELETE_ROW 0x0021c The delete row failed, due to either database

problem or a component limitation

 Desktop Management Interface Specification v2.01s

January, 2003 178

Non-Error Condition Codes

SYMBOL VALUE DESCRIPTION
DMIERR_NO_ERROR 0x00000 Success
DMIERR_NO_ERROR_MORE_DATA 0x00001 More data is available
DMIERR_DEFAULT_LANGUAGE_RETURNED 0x00002 The item requested did not have a language

mapping installted that matched the one
requested. The value was returned using the
default language

 Desktop Management Interface Specification v2.01s

January, 2003 179

APPENDIX B - DCE RPC IDL
DCE RPC PROGRAMMING FOR DMI 2.0

This section describes the process of creating a DCE RPC client-server application, such as we have with the DMI 2.0
Management Interface. In our case, the DMI 2.0 Service Provider is an RPC server and the management application is
an RPC client. Most people reading this specification will be creating RPC clients.

There are three main steps involved in creating a client-server application: defining the interface, implementing the
server, and implementing the client.

The Distributed Management Task Force has specified the DMI 2.0 interface in this document, and has created its
formal description. This description is presented in the DCE Interface Description Language (IDL).

In the following sections, we will see that the IDL is used by both client and server developers when implementing
their respective pieces of the application.

Define the Interface

Create a formal
description (IDL)

Develop
Client Code

Develop
Server Code

DMI Service
Provider

Management
Application

DMI 2.0
Specification

Figure B-1. Developing An RPC Application

CREATING THE DMI SERVICE PROVIDER

As a DMI Service Provider, you will develop the RPC server functionality for the DMI 2.0 interface.

The first step in this process (see Figure B-2) is to create the server stub code and interface header file. The stub code
contains the actual routines that interface to the network software. The header file contains the data type declarations
and function prototypes that you must implement.

To create the stub code, you compile the DMTF-supplied IDL, along with optional configuration information
contained in the server ACF file. The IDL compiler is supplied as part of the RPC development environment for the
Service Provider’s platform. The ACF file allows you to tailor some aspects of the stub code generator. For example,
does the generated stub code allocate memory on its stack, or on a heap? Note: The full set of ACF options are
described in the various DCE RPC references.

 Desktop Management Interface Specification v2.01s

January, 2003 180

DMI 2.0
IDL Definition File

DMI Service
Provider

Server ACF File

IDL Computer

server
stub code

header
file

server code
modules

RPC Runtime
Libraries

C Compiler and
Object Module Linker

Figure B-2. Creating the DMI Service Provider.

After creating the stub code and header file, you must then write code to implement each of the application’s entry
points. In the DMI 2.0 case, this means you will write code for each MI function: DmiRegister, DmiUnregister,
DmiListComponents, etc. Once this is done, your code and the server stub code are linked to produce the RPC server.

In addition to implementing the DMI 2.0 interface functions, you will need to write some code to register your server
interface with the RPC runtime service, and to listen for incoming procedure calls from DMI 2.0 clients. A full
description of the registration process is beyond the scope of this specification, but a small example may give some
flavor as to what is involved.

In the following sample code, the DMI Service Provider obtains a dynamic endpoint from the system’s endpoint
mapper, registers the DMI interface (dmi_server_v2_0_s_ifspec), then listens for incoming procedure calls arriving on
the connection-oriented TCP/IP protocol.

unsigned32 status;
unsigned char * pszProtocolSequence = "ncacn_ip_tcp";
unsigned int cMaxCalls = 20;
rpc_binding_vector_p_t pbvBindings = NULL;

// Initialize the RPC bindings and listen for requests. No
// explicit endpoint is specified, so use the protocol sequence
// and register the endpoint with the endpoint mapper. The string
// value of ncacn_ip_tcp says to use TCP/IP as the RPC transport.

rpc_server_use_protseq (pszProtocolSequence, cMaxCalls, &status);
check ("rpc_server_use_protseq", status);

rpc_server_inq_bindings (&pbvBindings, &status);
check ("rpc_server_inq_bindings", status);

rpc_ep_register (dmi_server_v2_0_s_ifspec, pbvBindings, 0, 0, &status);
check ("rpc_ep_unregister", status);

rpc_server_register_if (dmi_server_v2_0_s_ifspec, 0, 0, &status);
check ("rpc_server_register_if", status);

rpc_server_listen (cMaxCalls, &status);
check ("rpc_server_listen", status);

// When the rpc_server_listen() function returns, we are done
// listening so unregister our interface and exit.

rpc_server_unregister_if (dmi_server_v2_0_s_ifspec, 0, &status);
check ("rpc_server_unregister_if", status);

rpc_ep_unregister (dmi_server_v2_0_s_ifspec, pbvBindings, 0, &status);

 Desktop Management Interface Specification v2.01s

January, 2003 181

check ("rpc_ep_unregister", status);

rpc_binding_vector_free (&pbvBindings, &status);
check ("rpc_binding_vector_free", status);

CREATING THE MANAGEMENT APPLICATION
As a DMI management application writer, you will be developing an RPC client. The development process for RPC
clients is very similar to that of RPC servers. The differences are that you will be linking against the RPC client stubs
instead of the server stubs, and you will be calling the interface functions instead of implementing them.

DMI 2.0
IDL Definition File

DMI Management
Application

Client ACF File

IDL Computer

client
stub code

header
file

client
 application

RPC Runtime
Libraries

C Compiler and
Object Module Linker

Figure B-3. Creating The Client Application

The first step in the development process is to create the client stub code and interface header file. As with the server
case, this is done by compiling the DMTF-supplied IDL, along with client configuration information supplied in an
ACF file. Next, you will build and compile your application code, then link everything together to create the RPC
client application.

One of the first questions to answer when developing a management application is that of connecting, or binding, to
the managed machine. The DMI 2.0 interface relies on standard RPC mechanisms to accomplish this binding.

To connect to a machine, a management application must supply:

• the machine’s name or address,

• the protocol sequence (e.g.,, TCP/IP),

• and the Service Provider’s process address (endpoint) on the managed machine.

A management application will typically specify the machine name and protocol sequence, and will most likely use a
dynamically determined endpoint. This addressing data is used to construct a binding handle; binding handles are
RPC-defined data structures that are used to manage the connection between RPC clients and servers.

Management applications that only talk to one machine at a time can construct an implicit, or global, binding handle.
When used in this manner, the application is effectively saying that all remote procedure calls are directed toward a
specific machine. When the application is done talking to that machine, it will free the binding. At this point, the
application can construct a new binding handle for some other machine.

 Desktop Management Interface Specification v2.01s

January, 2003 182

Management applications that simultaneously manage multiple machines will need to construct and maintain multiple
binding handles: one per connection. In this usage model, the management application must explicitly supply a
binding handle with each procedure call. This allows an application to direct procedure calls to different machines,
while eliminating the need to create and free binding handles between procedure calls.

The IDL descriptions in this appendix do not include binding handles in the procedures’ formal parameter lists.
Instead, these API specifications concentrate on the DMI 2.0 interfaces themselves. If this is the case, then how can a
management application select between explicit and implicit bindings? The answer can be found in the client’s ACF
file.

 USING THE ACF FILE TO SPECIFY AN IMPLICIT BINDING HANDLE
If a client requires only one open connection at a time, it may choose to use an implicit binding handle. In this case,
the contents of the ACF file would look like the following:

[implicit_handle(handle_t dmi_server_binding_handle)]
interface dmi_server
{
}

When this ACF file is supplied to the IDL compiler, the resulting header file will contain function prototypes that look
exactly like those described in the IDL:

DmiErrorStatus_t
DmiRegister (DmiHandle_t* handle);

To use this implicit handle in your application, you first need to establish a binding to a remote machine, then perform
the DMI 2.0 function calls, then unbind from the remote machine. Sample code for these actions might look
something like the following example. The thing to note here is that we call the DMI 2.0 functions without explicitly
passing a binding handle. A handle does exist, but it is stored within, and used by, the RPC stub code generated by the
IDL compiler.

unsigned char* string_binding;
unsigned32 status;

// The rpc_string_binding_compose function builds a string binding
// that can be used to bind an RPC client to a server. There are
// other methods for binding to a remote machine; this is just the
// easiest to show.

rpc_string_binding_compose (NULL, "ncacn_ip_tcp", "your.machine.com",
 NULL, NULL, &string_binding, &status);
CHECK_STATUS (status, ...);

// The rpc_binding_from_string_binding is where we actually bind
// the management application to the remote machine. Note that
// we are passing the address of the dmi_server_binding_handle,
// which is the name declared in the ACF file.

rpc_binding_from_string_binding (string_binding,
 &dmi_server_binding_handle,
 &status);
CHECK_STATUS (status, ...);

// The rpc_string_free function is used to free the string storage
// allocated by the rpc_string_binding_compose function.

rpc_string_free (&string_binding, &status);
CHECK_STATUS (status, ...);

// Now we can perform any DMI 2.0 commands by simply calling
// the functions as if they were local procedure calls:

if (! statusOkay ((status = DmiRegister (&handle)))) {
 printf ("DmiRegister = %d\n", status);
 RAISE (status);
}

...

if (! statusOkay ((status = DmiUnregister (handle))))

 Desktop Management Interface Specification v2.01s

January, 2003 183

 printf ("DmiUnregister = %d\n", status);

// Now we are done with our DMI 2.0 commands, so it’s time
// to free up the binding so we can connect to someone else.

rpc_binding_free (&dmi_server_binding_handle, &status);
CHECK_STATUS (status);

USING THE ACF FILE TO SPECIFY AN EXPLICIT BINDING HANDLE
If you are building a client that requires simultaneous connections to different machines, you must use explicit binding
handles. Explicit binding handles are stored and maintained in your application code; the RPC stub knows nothing
about these handles. To use explicit binding handles, the contents of the ACF file would look like the following:

[explicit_handle]
interface dmi_server
{
}

When this ACF file is supplied to the IDL compiler, the resulting header file will contain function prototypes that
contain an extra parameter in the formal parameter list. Note that all function prototypes will have this extra, binding
handle parameter at the beginning of their parameter list. From this example, we can begin to see how the DMTF can
define and publish an interface specification (the IDL), yet leave room for varying client implementations.

DmiErrorStatus_t
DmiRegister (handle_t IDL_handle,
 DmiHandle_t* handle);

To use this explicit handle in your application, you first need to establish bindings to the remote machines of interest,
then perform the DMI 2.0 function calls, then unbind from the remote machines. Sample code for these actions might
look something like the following example. The thing to note here is that we call the DMI 2.0 functions with an
explicit binding handle, and that commands are interleaved from one machine to another.

rpc_binding_handle_t binding_handle_1;
rpc_binding_handle_t binding_handle_2;
unsigned char* string_binding;
unsigned32 status;

// Bind the client to your.machine.com using TCP/IP. This is
// identical to the implicit handle case, except that we are
// specifying that the binding information be stored in
// binding_handle_1.

rpc_string_binding_compose (NULL, "ncacn_ip_tcp", "your.machine.com",
 NULL, NULL, &string_binding, &status);
CHECK_STATUS (status, ...);

rpc_binding_from_string_binding (string_binding, &binding_handle_1,
 &status);
CHECK_STATUS (status, ...);

rpc_string_free (&string_binding, &status);
CHECK_STATUS (status, ...);

// Bind the client to my.machine.com using TCP/IP. This is
// identical to the implicit handle case, except that we are
// specifying that the binding information be stored in
// binding_handle_2.

rpc_string_binding_compose (NULL, "ncacn_ip_tcp", "my.machine.com",
 NULL, NULL, &string_binding, &status);
CHECK_STATUS (status, ...);

rpc_binding_from_string_binding (string_binding, &binding_handle_2,
 &status);
CHECK_STATUS (status, ...);

rpc_string_free (&string_binding, &status);
CHECK_STATUS (status, ...);

// Now we can perform DMI 2.0 commands to different machines by

 Desktop Management Interface Specification v2.01s

January, 2003 184

// calling the procedures with different binding handles.

if (! statusOkay ((status = DmiRegister (binding_handle_1, &handle)))) {
 printf ("DmiRegister = %d\n", status);
 RAISE (status);
}

if (! statusOkay ((status = DmiRegister (binding_handle_2, &handle)))) {
 printf ("DmiRegister = %d\n", status);
 RAISE (status);
}

...

if (! statusOkay ((status = DmiRegister (binding_handle_2, &handle)))) {
 printf ("DmiRegister = %d\n", status);
 RAISE (status);
}

if (! statusOkay ((status = DmiRegister (binding_handle_1, &handle)))) {
 printf ("DmiRegister = %d\n", status);
 RAISE (status);
}

// Now we are done with our DMI 2.0 commands, so it’s time
// to free up the bindings and leave.

rpc_binding_free (&binding_handle_1, &status);
CHECK_STATUS (status);

rpc_binding_free (&binding_handle_2, &status);
CHECK_STATUS (status);

USING THE ACF FILE TO CONTROL EXCEPTION HANDLING
We’ve seen how the ACF file can be used to select between implicit and explicit binding handles. There are several
other client customizations that can be performed via the ACF file. Most notably, you can control whether or not
your application receives exceptions from the RPC runtime system.

In the RPC environment, faults and communication errors are raised as exceptions to the RPC client. For example, if
the client or server stub is unable to allocate sufficient memory for a procedure call, the client application may see an
rpc_x_no_memory exception. Likewise, if there are communication errors, the client will see some communication-
related exceptions, such as rpc_x_comm_failure. To handle these exceptions, a client will typically contain code
with a TRY and CATCH block:

TRY {

 if (! statusOkay ((status = DmiUnregister (handle))))
 fprintf (efp, "DmiUnregister = %d\n", status);

} CATCH_ALL {

 // Put recovery code here

} ENDTRY;

If you don’t want to use the RPC exception model, you can use the ACF file to change the behavior of the RPC stubs.
To avoid exceptions entirely, specify an extra status parameter in the formal parameter list for all DMI 2.0
functions. The ACF syntax to perform this looks like the following:

[implicit_handle(handle_t dmi_server_binding_handle)]
interface dmi_server
{
 DmiErrorStatus_t
 DmiRegister (DmiHandle_t* handle,
 [comm_status, fault_status] status);
}

Here we have specified that both communication and fault exceptions for the DmiRegister function be reported in the
status variable. It is possible to have some functions that raise exceptions, while others trap exceptions in a status
variable. In practice, an application developer will probably pick one mechanism or another and stick with it for all

 Desktop Management Interface Specification v2.01s

January, 2003 185

functions. With the above declaration, the IDL compiler will generate function prototypes that look like the
following:

DmiErrorStatus_t
DmiRegister(
 DmiHandle_t* handle,
 error_status_t* status);

After each function call, the client application must check the status variable to see if any exceptions were trapped by
the RPC stub.

 Desktop Management Interface Specification v2.01s

January, 2003 186

COMMON DATA STRUCTURES (COMMON.IDL)

/*M*
//
// RCS:
// $Workfile: common.idl $
// $Revision: 2.0 $
// $Modtime: 3/27/96 $
// $Author: DMTF $
//
// Purpose:
//
// Describe data structures and types for the DMTF's Management
// Interface in an IDL that is suitable for building remote
// management using the DCE-RPC client/server model. This
// file is included in the client.idl and server.idl files.
//
// Contents:
//
// The following information is described in version 2.0
// of the Desktop Management Interface Specification.
//
// Enumerated Types:
//
// DmiSetMode Define set operations
// DmiRequestMode Define sequential access modes
// DmiStorageType Define the storage type for an attribute
// DmiAccessMode Define the access modes for an attribute
// DmiDataType Define the data types referenced by DmiDataUnion
// DmiFileType Define the DMI mapping file types
//
// Data Structures:
//
// DmiTimestamp Describes the DMI timestamp structure
// DmiString Describes the DMI string representation
// DmiOctetString Describes the DMI octet string representation
// DmiDataUnion Discriminated union of DMI data types
// DmiEnumInfo Associates an integer value with descriptive text
// DmiAttributeInfo Holds information about an attribute
// DmiAttributeData Describes an attribute id, type, and value
// DmiGroupInfo Holds information about a group
// DmiComponentInfo Holds information about a component
// DmiFileDataInfo Holds the schema file information: type and data
// DmiClassNameInfo Holds a group's id and class string
// DmiRowRequest Identifies { component, group, row, ids } to get
// DmiRowData Identifies { component, group, row, values } to set
//
// DmiAttributeIds Describes a conformant array of DmiId
// DmiAttributeValues Describes a conformant array of
DmiAttributeData
// DmiEnumList Describes a conformant array of DmiEnumInfo
// DmiAttributeList Describes a conformant array of DmiAttributeInfo
// DmiGroupList Describes a conformant array of DmiGroupInfo
// DmiComponentList Describes a conformant array of DmiComponentInfo
// DmiFileDataList Describes a conformant array of DmiFileDataInfo
// DmiClassNameList Describes a conformant array of DmiClassNameInfo
// DmiStringList Describes a conformant array of DmiString
// DmiFileTypeList Describes a conformant array of DmiFileType
// DmiMultiRowRequest Describes a conformant array of DmiRowRequest
// DmiMultiRowData Describes a conformant array of DmiRowData
M/

ifndef DMI_API
define DMI_API
endif

 Desktop Management Interface Specification v2.01s

January, 2003 187

/***
 * DmiSetMode
 ***/

/*D*
// Name: DmiSetMode
// Purpose: Define set operations
// Context: DmiSetAttributes()
// Fields:
// DMI_SET Set data values
// DMI_RESERVE Reserve resources for a set operation
// DMI_RELEASE Release previously reserved resources
D/

typedef enum {
 DMI_SET,
 DMI_RESERVE,
 DMI_RELEASE
} DmiSetMode_t;

/***
 * DmiRequestMode
 ***/

/*D*
// Name: DmiRequestMode
// Purpose: Define sequential access modes
// Context: Field in DmiRowRequest,
// Context: DmiListComponents(), DmiListComponentsByClass(),
// Context: DmiListGroups(), DmiListAttributes(),
// Fields:
// DMI_UNIQUE Access the specified item (or table row)
// DMI_FIRST Access the first item
// DMI_NEXT Access the next item
D/

typedef enum {
 DMI_UNIQUE,
 DMI_FIRST,
 DMI_NEXT
} DmiRequestMode_t;

/***
 * DmiStorageType
 ***/

/*D*
// Name: DmiStorageType
// Purpose: Define the storage type for an attribute
// Context: Field in DmiAttributeInfo
// Fields:
// MIF_COMMON Value is from a small set of possibilities
// MIF_SPECIFIC Value is from a large set of possibilities
D/

typedef enum {
 MIF_COMMON,
 MIF_SPECIFIC
} DmiStorageType_t;

/***
 * DmiAccessMode
 ***/

/*D*
// Name: DmiAccessMode
// Purpose: Define the access modes for an attribute
// Context: Field in DmiAttributeInfo
// Fields:
// MIF_UNKNOWN Unknown access mode
// MIF_READ_ONLY Read access only

 Desktop Management Interface Specification v2.01s

January, 2003 188

// MIF_READ_WRITE Readable and writable
// MIF_WRITE_ONLY Write access only
// MIF_UNSUPPORTED Attribute is not supported
D/

typedef enum {
 MIF_UNKNOWN_ACCESS,
 MIF_READ_ONLY,
 MIF_READ_WRITE,
 MIF_WRITE_ONLY,
 MIF_UNSUPPORTED
} DmiAccessMode_t;

/***
 * DmiDataType
 ***/

/*D*
// Name: DmiDataType
// Purpose: Define the data types referenced by DmiDataUnion
// Context:
// Fields:
// MIF_DATATYPE_0 RESERVED
// MIF_COUNTER 32-bit unsigned integer that never decreases
// MIF_COUNTER64 64-bit unsigned integer that never decreases
// MIF_GAUGE 32-bit unsigned integer may increase or decrease
// MIF_DATATYPE_4 RESERVED
// MIF_INTEGER 32-bit signed integer; no semantics known
// MIF_INTEGER64 64-bit signed integer; no semantics known
// MIF_OCTETSTRING String of n octets, not necessarily displayable
// MIF_DISPLAYSTRING Displayable string of n octets
// MIF_DATATYPE_9 RESERVED
// MIF_DATATYPE_10 RESERVED
// MIF_DATE 28-octet displayable string
(yyyymmddHHMMSS.uuuuuu+ooo)
D/

typedef enum {
 MIF_DATATYPE_0,
 MIF_COUNTER,
 MIF_COUNTER64,
 MIF_GAUGE,
 MIF_DATATYPE_4,
 MIF_INTEGER,
 MIF_INTEGER64,
 MIF_OCTETSTRING,
 MIF_DISPLAYSTRING,
 MIF_DATATYPE_9,
 MIF_DATATYPE_10,
 MIF_DATE
} DmiDataType_t;

/*
 * Aliases for the standard data types
 */

define MIF_INT MIF_INTEGER
define MIF_INT64 MIF_INTEGER64
define MIF_STRING MIF_DISPLAYSTRING

/***
 * DmiFileType
 ***/

/*D*
// Name: DmiFileType
// Purpose: Define the DMI mapping file types
// Context: Field in DmiFileDataInfo
// Fields:
// DMI_FILETYPE_0 RESERVED
// DMI_FILETYPE_1 RESERVED
// DMI_MIF_FILE_NAME File data is DMI MIF file name
// DMI_MIF_FILE_DATA File data is DMI MIF data

 Desktop Management Interface Specification v2.01s

January, 2003 189

// SNMP_MAPPING_FILE_NAME File data is SNMP MAPPING file name
// SNMP_MAPPING_FILE_DATA File data is SNMP MAPPING data
// DMI_GROUP_FILE_NAME File data is DMI GROUP MIF file name
// DMI_GROUP_FILE_DATA File data is DMI GROUP MIF data
// VENDOR_FORMAT_FILE_NAME File data is Vendor specific file name
// VENDOR_FORMAT_FILE_DATA File data is Vendor specific data
D/

typedef enum {
 DMI_FILETYPE_0,
 DMI_FILETYPE_1,
 DMI_MIF_FILE_NAME,
 DMI_MIF_FILE_DATA,
 SNMP_MAPPING_FILE_NAME,
 SNMP_MAPPING_FILE_DATA,
 DMI_GROUP_FILE_NAME,
 DMI_GROUP_FILE_DATA,
 VENDOR_FORMAT_FILE_NAME,
 VENDOR_FORMAT_FILE_DATA
} DmiFileType_t;

/***
 * DMI Data Types
 ***/

typedef unsigned long DmiId_t;
typedef unsigned long DmiHandle_t;
typedef unsigned long DmiCounter_t;
typedef unsigned long DmiErrorStatus_t;
typedef unsigned hyper DmiCounter64_t;
typedef unsigned long DmiGauge_t;
typedef unsigned long DmiUnsigned_t;
typedef long DmiInteger_t;
typedef hyper DmiInteger64_t;
typedef boolean DmiBoolean_t;

/***
 * DmiTimestamp
 ***/

/*D*
// Name: DmiTimestamp
// Purpose: Describes the DMI timestamp structure
// Context: Field in DmiDataUnion
// Fields:
// year The year ('1996')
// month The month ('1'..'12')
// yay The day of the month ('1'..'23')
// hour The hour ('0'..'23')
// minutes The minutes ('0'..'59')
// seconds The seconds ('0'..'60'); includes leap seconds
// dot A dot ('.')
// microSeconds Microseconds ('0'..'999999')
// plusOrMinus '+' for east, or '-' west of UTC
// utcOffset Minutes ('0'..'720') from UTC
// padding Unused padding for 4-byte alignment
D/

typedef struct DmiTimestamp {
 char year [4];
 char month [2];
 char day [2];
 char hour [2];
 char minutes [2];
 char seconds [2];
 char dot;
 char microSeconds [6];
 char plusOrMinus;
 char utcOffset [3];
 char padding [3];
} DmiTimestamp_t;

 Desktop Management Interface Specification v2.01s

January, 2003 190

/***
 * DmiString
 ***/

/*D*
// Name: DmiString
// Purpose: Describes the DMI string representation
// Context: Field in DmiDataUnion
// Fields:
// size Number of octets in the string body
// body String contents
//
// Notes: For displaystrings, the string is null terminated,
// and the null character is included in the size.
D/

typedef struct DmiString {
 DmiUnsigned_t size;
 [size_is (size)] char* body;
} DmiString_t;

typedef DmiString_t* DmiStringPtr_t;

/***
 * DmiOctetString
 ***/

/*D*
// Name: DmiOctetString
// Purpose: Describes the DMI octet string representation
// Context: Field in DmiDataUnion
// Fields:
// size Number of octets in the string body
// body String contents
D/

typedef struct DmiOctetString {
 DmiUnsigned_t size;
 [size_is (size)] char* body;
} DmiOctetString_t;

/***
 * DmiDataUnion
 ***/

/*D*
// Name: DmiDataUnion
// Purpose: Discriminated union of DMI data types
// Context: Field in DmiAttributeData
// Fields:
// type Discriminator for the union
// value Union of DMI attribute data types
D/

typedef union DmiDataUnion
 switch (DmiDataType_t type) value {
 case MIF_COUNTER: DmiCounter_t counter;
 case MIF_COUNTER64: DmiCounter64_t counter64;
 case MIF_GAUGE: DmiGauge_t gauge;
 case MIF_INTEGER: DmiInteger_t integer;
 case MIF_INTEGER64: DmiInteger64_t integer64;
 case MIF_OCTETSTRING: DmiOctetString_t* octetstring;
 case MIF_DISPLAYSTRING: DmiString_t* string;
 case MIF_DATE: DmiTimestamp_t* date;
} DmiDataUnion_t;

 Desktop Management Interface Specification v2.01s

January, 2003 191

/***
 * DmiEnumInfo
 ***/

/*D*
// Name: DmiEnumInfo
// Purpose: Associates an integer value with descriptive text
// Context: Element in DmiEnumList
// Fields:
// name Enumeration name
// value Enumeration value
D/

typedef struct DmiEnumInfo {
 DmiString_t* name;
 DmiInteger_t value;
} DmiEnumInfo_t;

/***
 * DmiAttributeInfo
 ***/

/*D*
// Name: DmiAttributeInfo
// Purpose: Holds information about an attribute
// Context: Element in DmiAttributeList
// Fields:
// id Attribute ID
// name Attribute name string
// pragma Attribute pragma string [optional]
// description Attribute description string [optional]
// storage Common or specific storage
// access Readonly, read-write, etc
// type Counter, integer, etc
// maxSize Maximum length of the attribute
// enumList EnumList for enumerated types [optional]
D/

typedef struct DmiAttributeInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* description;
 DmiStorageType_t storage;
 DmiAccessMode_t access;
 DmiDataType_t type;
 DmiUnsigned_t maxSize;
 struct DmiEnumList* enumList;
} DmiAttributeInfo_t;

/***
 * DmiAttributeData
 ***/

/*D*
// Name: DmiAttributeData
// Purpose: Describes an attribute id, type, and value
// Context: Element in DmiAttributeValues
// Fields:
// id Attribute ID
// data Attribute type and value
D/

typedef struct DmiAttributeData {
 DmiId_t id;
 DmiDataUnion_t data;
} DmiAttributeData_t;

 Desktop Management Interface Specification v2.01s

January, 2003 192

/***
 * DmiGroupInfo
 ***/

/*D*
// Name: DmiGroupInfo
// Purpose: Holds information about a group
// Context: Element in DmiGroupList
// Fields:
// id Group ID
// name Group name string
// pragma Group pragma string [optional]
// className Group class name string
// description Group description string [optional]
// keyList Attribute IDs for table row keys [optional]
D/

typedef struct DmiGroupInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* className;
 DmiString_t* description;
 struct DmiAttributeIds* keyList;
} DmiGroupInfo_t;

/***
 * DmiComponentInfo
 ***/

/*D*
// Name: DmiComponentInfo
// Purpose: Holds information about a component
// Context: Element in DmiComponentList
// Fields:
// id Component ID
// name Component name string
// pragma Component pragma string [optional]
// description Component description string [optional]
// exactMatch
// idl_true = Exact match
// idl_false = Possible match
D/

typedef struct DmiComponentInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* description;
 DmiBoolean_t exactMatch;
} DmiComponentInfo_t;

/***
 * DmiFileDataInfo
 ***/

/*D*
// Name: DmiFileDataInfo
// Purpose: Holds the schema file information: type and data
// Context: Element in DmiFileDataList
// Fields:
// fileType MIF file, SNMP mapping file, etc
// fileData The file info (name -or- contents)
D/

typedef struct DmiFileDataInfo {
 DmiFileType_t fileType;
 DmiOctetString_t* fileData;
} DmiFileDataInfo_t;

 Desktop Management Interface Specification v2.01s

January, 2003 193

/***
 * DmiClassNameInfo
 ***/

/*D*
// Name: DmiClassNameInfo
// Purpose: Holds a group's id and class string
// Context: Element in DmiClassNameList
// Fields:
// id Group ID
// className Group class name string
D/

typedef struct DmiClassNameInfo {
 DmiId_t id;
 DmiString_t* className;
} DmiClassNameInfo_t;

/***
 * DmiRowRequest
 ***/

/*D*
// Name: DmiRowRequest
// Purpose: Identifies { component, group, row, ids } to get
// Context: Element in DmiMultiRowRequest
// Fields:
// compId Component ID
// groupId Group ID
// requestMode Get from specified row, first row, or next row
// keyList Array of values for key attributes
// ids Array of IDs for data attributes
D/

typedef struct DmiRowRequest {
 DmiId_t compId;
 DmiId_t groupId;
 DmiRequestMode_t requestMode;
 struct DmiAttributeValues* keyList;
 struct DmiAttributeIds* ids;
} DmiRowRequest_t;

/***
 * DmiRowData
 ***/

/*D*
// Name: DmiRowData
// Purpose: Identifies { component, group, row, values } to set
// Context: Element in DmiMultiRowData
// Fields:
// compId Component ID
// groupId Group ID
// className Group class name for events, or 0 [optional]
// keyList Array of values for key attributes
// values Array of values for data attributes
//
// Notes: This structure is used for setting attributes, getting
// attributes, and for providing indication data. The
// className string is only required when returning
// indication data. For other uses, the field can be 0.
D/

typedef struct DmiRowData {
 DmiId_t compId;
 DmiId_t groupId;
 DmiString_t* className;
 struct DmiAttributeValues* keyList;
 struct DmiAttributeValues* values;
} DmiRowData_t;

 Desktop Management Interface Specification v2.01s

January, 2003 194

/***
 * DmiAttributeIds
 ***/

/*D*
// Name: DmiAttributeIds
// Purpose: Describes a conformant array of DmiId
// Context: Field in DmiRowRequest
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiAttributeIds {
 DmiUnsigned_t size;
 [size_is (size)] DmiId_t* list;
} DmiAttributeIds_t;

/***
 * DmiAttributeValues
 ***/

/*D*
// Name: DmiAttributeValues
// Purpose: Describes a conformant array of DmiAttributeData
// Context: Field in DmiRowRequest, DmiRowData
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiAttributeValues {
 DmiUnsigned_t size;
 [size_is (size)] DmiAttributeData_t* list;
} DmiAttributeValues_t;

/***
 * DmiEnumList
 ***/

/*D*
// Name: DmiEnumList
// Purpose: Describes a conformant array of DmiEnumInfo
// Context: DmiEnumAttributes()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiEnumList {
 DmiUnsigned_t size;
 [size_is (size)] DmiEnumInfo_t* list;
} DmiEnumList_t;

/***
 * DmiAttributeList
 ***/

/*D*
// Name: DmiAttributeList
// Purpose: Describes a conformant array of DmiAttributeInfo
// Context: DmiListAttributes()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiAttributeList {
 DmiUnsigned_t size;
 [size_is (size)] DmiAttributeInfo_t* list;
} DmiAttributeList_t;

 Desktop Management Interface Specification v2.01s

January, 2003 195

/***
 * DmiGroupList
 ***/

/*D*
// Name: DmiGroupList
// Purpose: Describes a conformant array of DmiGroupInfo
// Context: DmiListGroups()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiGroupList {
 DmiUnsigned_t size;
 [size_is (size)] DmiGroupInfo_t* list;
} DmiGroupList_t;

/***
 * DmiComponent
 ***/

/*D*
// Name: DmiComponentList
// Purpose: Describes a conformant array of DmiComponentInfo
// Context: DmiListComponents(), DmiListComponentsByClass()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiComponentList {
 DmiUnsigned_t size;
 [size_is (size)] DmiComponentInfo_t* list;
} DmiComponentList_t;

/***
 * DmiFileDataList
 ***/

/*D*
// Name: DmiFileDataList
// Purpose: Describes a conformant array of DmiFileDataInfo
// Context: DmiAddComponent(), DmiAddLanguage(), DmiAddGroup()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiFileDataList {
 DmiUnsigned_t size;
 [size_is (size)] DmiFileDataInfo_t* list;
} DmiFileDataList_t;

/***
 * DmiClassNameList
 ***/

/*D*
// Name: DmiClassNameList
// Purpose: Describes a conformant array of DmiClassNameInfo
// Context: DmiListClassNames()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiClassNameList {
 DmiUnsigned_t size;
 [size_is (size)] DmiClassNameInfo_t* list;
} DmiClassNameList_t;

 Desktop Management Interface Specification v2.01s

January, 2003 196

/***
 * DmiStringList
 ***/

/*D*
// Name: DmiStringList
// Purpose: Describes a conformant array of DmiStrings
// Context: DmiListLanguages()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiStringList {
 DmiUnsigned_t size;
 [size_is (size)] DmiStringPtr_t* list;
} DmiStringList_t;

/***
 * DmiFileTypeList
 ***/

/*D*
// Name: DmiFileTypeList
// Purpose: Describes a conformant array of DmiFileType entries
// Context: DmiGetVersion()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiFileTypeList {
 DmiUnsigned_t size;
 [size_is (size)] DmiFileType_t* list;
} DmiFileTypeList_t;

/***
 * DmiMultiRowRequest
 ***/

/*D*
// Name: DmiMultiRowRequest
// Purpose: Describes a conformant array of DmiRowRequest
// Context: DmiGetAttributes()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiMultiRowRequest {
 DmiUnsigned_t size;
 [size_is (size)] DmiRowRequest_t* list;
} DmiMultiRowRequest_t;

/***
 * DmiMultiRowData
 ***/

/*D*
// Name: DmiMultiRowData
// Purpose: Describes a conformant array of DmiRowData
// Context: DmiGetAttributes(), DmiSetAttributes()
// Fields:
// size Array elements
// list Array data
D/

typedef struct DmiMultiRowData {
 DmiUnsigned_t size;
 [size_is (size)] DmiRowData_t* list;
} DmiMultiRowData_t;

 Desktop Management Interface Specification v2.01s

January, 2003 197

MANAGEMENT INTERFACE (SERVER.IDL)

/*M*
//
// RCS:
// $Workfile: server.idl $
// $Revision: 2.0 $
// $Modtime: 3/27/96 $
// $Author: DMTF $
//
// Purpose:
//
// Describe the DMTF's Management Interface in an IDL that is
// suitable for building remote management using the DCE-RPC
// client/server model. This file, along with server.acf,
// is compiled with the IDL compiler to produce the following
// files:
//
// server.h C-style interface header file
// server_c.c Stub code for the rmi client
// server_s.c Stub code for the rmi server
//
// Contents:
//
// The following information is described in version 2.0
// of the Desktop Management Interface Specification.
//
// Initialization:
//
// DmiRegister Register a session with a remote system
// DmiUnregister Unregister a previously registered session
// DmiGetVersion Get DMI Service Provider version information
// DmiGetConfig Get session configuration parameters
// DmiSetConfig Set session configuration parameters
//
// Discovery:
//
// DmiListComponents List component properties
// DmiListComponentsByClass List components matching certain criteria
// DmiListLanguages List a component's language strings
// DmiListClassNames List a component's class names and group ids
// DmiListGroups List group properties
// DmiListAttributes List attribute properties
//
// Operation:
//
// DmiAddRow Add a new row to a table
// DmiDeleteRow Delete a row from a table
// DmiGetAttribute Get a single attribute value
// DmiSetAttribute Set a single attribute value
// DmiGetMultiple Get a collection of attribute values
// DmiSetMultiple Set a collection of attribute values
//
// Database Administration:
//
// DmiAddComponent Add a new component to the DMI database
// DmiAddLanguage Add a new language mapping for a component
// DmiAddGroup Add a new group to a component
// DmiDeleteComponent Delete a component from the DMI database
// DmiDeleteLanguage Delete a language mapping for a component
// DmiDeleteGroup Delete a group from a component
M/

[
 uuid(892b2b90-1532-11cf-9a39-00aa0034b922),
 version(2.0),
 pointer_default(ptr)
]
 interface dmi_server
{

include "common.idl"

 Desktop Management Interface Specification v2.01s

January, 2003 198

/***
 * DmiRegister
 ***/

/*F*
// Name: DmiRegister
// Purpose: Register a session with a remote system
// Context: Initialization
// Returns:
// Parameters:
// handle On completion, an open session handle
//
// Notes: The client provides the address of the handle
// parameter and the server fills it in. All commands
// except DmiRegister() require a valid handle, so
// this must be the first command sent to the DMI server.
F/

DmiErrorStatus_t DMI_API
DmiRegister (
 [out] DmiHandle_t* handle);

/***
 * DmiUnregister
 ***/

/*F*
// Name: DmiUnregister
// Purpose: Unregister a previously registered session
// Context: Initialization
// Returns:
// Parameters:
// handle An open session handle to be closed
F/

DmiErrorStatus_t DMI_API
DmiUnregister (
 [in] DmiHandle_t handle);

/***
 * DmiGetVersion
 ***/

/*F*
// Name: DmiGetVersion
// Purpose: Get DMI Service Provider version information
// Context: Initialization
// Returns:
// Parameters:
// handle An open session handle
// dmiSpecLevel The DMI Specification version
// description The OS-specific Service Provider version
// fileTypes Supported file types for schema description
//
// Notes: 1. The client must free the dmiSpecLevel string
// 2. The client must free the description string
F/

DmiErrorStatus_t DMI_API
DmiGetVersion (
 [in] DmiHandle_t handle,
 [out] DmiString_t** dmiSpecLevel,
 [out] DmiString_t** description,
 [out] DmiFileTypeList_t** fileTypes);

 Desktop Management Interface Specification v2.01s

January, 2003 199

/***
 * DmiGetConfig
 ***/

/*F*
// Name: DmiGetConfig
// Purpose: Get session configuration parameters
// Context: Initialization
// Returns:
// Parameters:
// handle An open session handle
// language language-code|territory-code|encoding
//
// Notes: The client must free the language string
F/

DmiErrorStatus_t DMI_API
DmiGetConfig (
 [in] DmiHandle_t handle,
 [out] DmiString_t** language);

/***
 * DmiSetConfig
 ***/

/*F*
// Name: DmiSetConfig
// Purpose: Set session configuration parameters
// Context: Initialization
// Returns:
// Parameters:
// handle An open session handle
// language language-code|territory-code|encoding
F/

DmiErrorStatus_t DMI_API
DmiSetConfig (
 [in] DmiHandle_t handle,
 [in] DmiString_t* language);

/***
 * Dmilistcomponents
 ***/

/*F*
// Name: DmiListComponents
// Purpose: List component properties
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// requestMode Unique, first, or next component ?
// maxCount Maximum number to return, or 0 for all
// getPragma Get optional pragma string ?
// getDescription Get optional component description ?
// compId Component to start with (see requestMode)
// reply List of components
//
// Notes: The client must free the reply structure
F/

DmiErrorStatus_t DMI_API
DmiListComponents (
 [in] DmiHandle_t handle,
 [in] DmiRequestMode_t requestMode,
 [in] DmiUnsigned_t maxCount,
 [in] DmiBoolean_t getPragma,
 [in] DmiBoolean_t getDescription,
 [in] DmiId_t compId,
 [out] DmiComponentList_t** reply);

 Desktop Management Interface Specification v2.01s

January, 2003 200

/***
 * DmiListComponentsByClass
 ***/

/*F*
// Name: DmiListComponentsByClass
// Purpose: List components matching certain criteria
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// requestMode Unique, first, or next component ?
// maxCount Maximum number to return, or 0 for all
// getPragma Get optional pragma string ?
// getDescription Get optional component description ?
// compId Component to start with (see requestMode)
// className Group class name string to match
// keyList Group row keys to match, or null
// reply List of components
//
// Notes: The client must free the reply structure
F/

DmiErrorStatus_t DMI_API
DmiListComponentsByClass (
 [in] DmiHandle_t handle,
 [in] DmiRequestMode_t requestMode,
 [in] DmiUnsigned_t maxCount,
 [in] DmiBoolean_t getPragma,
 [in] DmiBoolean_t getDescription,
 [in] DmiId_t compId,
 [in] DmiString_t* className,
 [in, ptr] DmiAttributeValues_t* keyList,
 [out] DmiComponentList_t** reply);

/***
 * DmiListLanguages
 ***/

/*F*
// Name: DmiListLanguages
// Purpose: List a component's language strings
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// maxCount Maximum number to return, or 0 for all
// compId Component to access
// reply List of language strings
//
// Notes: The client must free the reply structure
F/

DmiErrorStatus_t DMI_API
DmiListLanguages (
 [in] DmiHandle_t handle,
 [in] DmiUnsigned_t maxCount,
 [in] DmiId_t compId,
 [out] DmiStringList_t** reply);

/***
 * DmiListClassNames
 ***/

/*F*
// Name: DmiListClassNames
// Purpose: List a component's class names and group ids
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// maxCount Maximum number to return, or 0 for all

 Desktop Management Interface Specification v2.01s

January, 2003 201

// compId Component to access
// reply List of class names and group ids
//
// Notes: The client must free the reply structure
F/

DmiErrorStatus_t DMI_API
DmiListClassNames (
 [in] DmiHandle_t handle,
 [in] DmiUnsigned_t maxCount,
 [in] DmiId_t compId,
 [out] DmiClassNameList_t** reply);

/***
 * DmiListGroups
 ***/

/*F*
// Name: DmiListGroups
// Purpose: List group properties
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// requestMode Unique, first, or next group ?
// maxCount Maximum number to return, or 0 for all
// getPragma Get optional pragma string ?
// getDescription Get optional group description ?
// compId Component to access
// groupId Group to start with (see requestMode)
// reply List of groups
//
// Notes: The client must free the reply structure
F/

DmiErrorStatus_t DMI_API
DmiListGroups (
 [in] DmiHandle_t handle,
 [in] DmiRequestMode_t requestMode,
 [in] DmiUnsigned_t maxCount,
 [in] DmiBoolean_t getPragma,
 [in] DmiBoolean_t getDescription,
 [in] DmiId_t compId,
 [in] DmiId_t groupId,
 [out] DmiGroupList_t** reply);

/***
 * DmiListAttributes
 ***/

/*F*
// Name: DmiListAttributes
// Purpose: List attribute properties
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// requestMode Unique, first, or next attribute ?
// maxCount Maximum number to return, or 0 for all
// getPragma Get optional pragma string ?
// getDescription Get optional attribute description ?
// compId Component to access
// groupId Group to access
// attribId Attribute to start with (see requestMode)
// reply List of attributes
//
// Notes: The client must free the reply structure
F/

DmiErrorStatus_t DMI_API
DmiListAttributes (
 [in] DmiHandle_t handle,
 [in] DmiRequestMode_t requestMode,

 Desktop Management Interface Specification v2.01s

January, 2003 202

 [in] DmiUnsigned_t maxCount,
 [in] DmiBoolean_t getPragma,
 [in] DmiBoolean_t getDescription,
 [in] DmiId_t compId,
 [in] DmiId_t groupId,
 [in] DmiId_t attribId,
 [out] DmiAttributeList_t** reply);

/***
 * DmiAddComponent
 ***/

/*F*
// Name: DmiAddComponent
// Purpose: Add a new component to the DMI database
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// fileData Schema description for the component
// compId On completion, the SP-allocated component id
// errors Installation error messages
F/

DmiErrorStatus_t DMI_API
DmiAddComponent (
 [in] DmiHandle_t handle,
 [in] DmiFileDataList_t* fileData,
 [out] DmiId_t* compId,
 [out] DmiStringList_t** errors);

/***
 * DmiAddLanguage
 ***/

/*F*
// Name: DmiAddLanguage
// Purpose: Add a new language mapping for a component
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// fileData Language mapping file for the component
// compId Component to access
// errors Installation error messages
F/

DmiErrorStatus_t DMI_API
DmiAddLanguage (
 [in] DmiHandle_t handle,
 [in] DmiFileDataList_t* fileData,
 [in] DmiId_t compId,
 [out] DmiStringList_t** errors);

/***
 * DmiAddGroup
 ***/

/*F*
// Name: DmiAddGroup
// Purpose: Add a new group to a component
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// fileData Schema description for the group
// compId Component to access
// groupId On completion, the SP-allocated group ID
// errors Installation error messages
F/

 Desktop Management Interface Specification v2.01s

January, 2003 203

DmiErrorStatus_t DMI_API
DmiAddGroup (
 [in] DmiHandle_t handle,
 [in] DmiFileDataList_t* fileData,
 [in] DmiId_t compId,
 [out] DmiId_t* groupId,
 [out] DmiStringList_t** errors);

/***
 * DmiDeleteComponent
 ***/

/*F*
// Name: DmiDeleteComponent
// Purpose: Delete a component from the DMI database
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// compId Component to delete
F/

DmiErrorStatus_t DMI_API
DmiDeleteComponent (
 [in] DmiHandle_t handle,
 [in] DmiId_t compId);

/***
 * DmiDeleteLanguage
 ***/

/*F*
// Name: DmiDeleteLanguage
// Purpose: Delete a language mapping for a component
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// language language-code|territory-code|encoding
// compId Component to access
F/

DmiErrorStatus_t DMI_API
DmiDeleteLanguage (
 [in] DmiHandle_t handle,
 [in] DmiString_t* language,
 [in] DmiId_t compId);

/***
 * DmiDeleteGroup
 ***/

/*F*
// Name: DmiDeleteGroup
// Purpose: Delete a group from a component
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// compId Component containing group
// groupId Group to delete
F/

DmiErrorStatus_t DMI_API
DmiDeleteGroup (
 [in] DmiHandle_t handle,
 [in] DmiId_t compId,
 [in] DmiId_t groupId);

 Desktop Management Interface Specification v2.01s

January, 2003 204

/***
 * DmiAddRow
 ***/

/*F*
// Name: DmiAddRow
// Purpose: Add a new row to a table
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// rowData Attribute values to set
F/

DmiErrorStatus_t DMI_API
DmiAddRow (
 [in] DmiHandle_t handle,
 [in] DmiRowData_t* rowData);

/***
 * DmiDeleteRow
 ***/

/*F*
// Name: DmiDeleteRow
// Purpose: Delete a row from a table
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// rowData Row { component, group, key } to delete
F/

DmiErrorStatus_t DMI_API
DmiDeleteRow (
 [in] DmiHandle_t handle,
 [in] DmiRowData_t* rowData);

/***
 * DmiGetAttribute
 ***/

/*F*
// Name: DmiGetAttribute
// Purpose: Get a single attribute value
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// compId Component to access
// groupId Group within component
// attribId Attribute within group
// keyList Keylist to specify a table row [optional]
// value Attribute value returned
F/

DmiErrorStatus_t DMI_API
DmiGetAttribute (
 [in] DmiHandle_t handle,
 [in] DmiId_t compId,
 [in] DmiId_t groupId,
 [in] DmiId_t attribId,
 [in, ptr] DmiAttributeValues_t* keyList,
 [out] DmiDataUnion_t** value);

/***
 * DmiSetAttribute
 ***/

/*F*
// Name: DmiSetAttribute
// Purpose: Set a single attribute value

 Desktop Management Interface Specification v2.01s

January, 2003 205

// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// compId Component to access
// groupId Group within component
// attribId Attribute within group
// keyList Keylist to specify a table row [optional]
// setMode Set, reserve, or release ?
// value Attribute value to set
F/

DmiErrorStatus_t DMI_API
DmiSetAttribute (
 [in] DmiHandle_t handle,
 [in] DmiId_t compId,
 [in] DmiId_t groupId,
 [in] DmiId_t attribId,
 [in, ptr] DmiAttributeValues_t* keyList,
 [in] DmiSetMode_t setMode,
 [in] DmiDataUnion_t* value);

/***
 * DmiGetMultiple
 ***/

/*F*
// Name: DmiGetMultiple
// Purpose: Get a collection of attribute values
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// request Attributes to get
// rowData Requested attribute values
//
// Notes: 1. The request may be for a SINGLE row (size = 1)
// 2. An empty id list for a row means "get all attributes"
// 3. The client must free the rowData structure
F/

DmiErrorStatus_t DMI_API
DmiGetMultiple (
 [in] DmiHandle_t handle,
 [in] DmiMultiRowRequest_t* request,
 [out] DmiMultiRowData_t** rowData);

/***
 * DmiSetMultiple
 ***/

/*F*
// Name: DmiSetMultiple
// Purpose: Set a collection of attributes
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// setMode Set, reserve, or release ?
// rowData Attribute values to set
F/

DmiErrorStatus_t DMI_API
DmiSetMultiple (
 [in] DmiHandle_t handle,
 [in] DmiSetMode_t setMode,
 [in] DmiMultiRowData_t* rowData);

} /* interface dmi_server */

 Desktop Management Interface Specification v2.01s

January, 2003 206

INDICATION DELIVERY INTERFACE (CLIENT.IDL)

/*M*
//
// RCS:
// $Workfile: client.idl $
// $Revision: 2.0 $
// $Modtime: 3/27/96 $
// $Author: DMTF $
//
// Purpose:
//
// Describe the DMTF's Management Interface in an IDL that is
// suitable for building remote management using the DCE-RPC
// client/server model. This file, along with client.acf, is
// compiled with the IDL compiler to produce the following
// files:
//
// client.h C-style interface header file
// client_c.c Stub code for the managed system
// client_s.c Stub code for the managing application
//
// Contents:
//
// The following information is described in version 2.0
// of the Desktop Management Interface Specification.
//
// Data Structures:
//
// DmiNodeAddress Node address for indication originators
//
// Indication Delivery:
//
// DmiDeliverEvent Deliver event data to an application
// DmiComponentAdded A component was added to the database
// DmiComponentDeleted A component was deleted from the database
// DmiLanguageAdded A component language mapping was added
// DmiLanguageDeleted A component language mapping was deleted
// DmiGroupAdded A group was added to a component
// DmiGroupDeleted A group was deleted from a component
// DmiSubscriptionNotice Information about an indication subscription

M/

[
 uuid(12f1bec0-5c1c-11cf-9a4b-00aa0034b922),
 version(2.0),
 pointer_default(ptr)
]
 interface dmi_client
{

include "common.idl"

/***
 * DmiNodeAddress
 ***/

/*D*
// Name: DmiNodeAddress
// Purpose: Addressing information for indication originators
// Context: Passed to indication delivery functions
// Fields:
// address Transport-dependent node address
// rpc Identifies the RPC (DCE, ONC, etc)
// transport Identifies the transport (TPC/IP, SPX, etc)
D/

 Desktop Management Interface Specification v2.01s

January, 2003 207

typedef struct DmiNodeAddress {
 DmiString_t* address;
 DmiString_t* rpc;
 DmiString_t* transport;
} DmiNodeAddress_t;

/***
 * DmiDeliverEvent
 ***/

/*F*
// Name: DmiDeliverEvent
// Purpose: Deliver event data to an application
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// language Language encoding for the indication data
// compId Component reporting the event
// timestamp Event generation time
// rowData Standard and context-specific indication data
F/

DmiErrorStatus_t DMI_API
DmiDeliverEvent (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiString_t* language,
 [in] DmiId_t compId,
 [in] DmiTimestamp_t* timestamp,
 [in] DmiMultiRowData_t* rowData);

/***
 * DmiComponentAdded
 ***/

/*F*
// Name: DmiComponentAdded
// Purpose: A component was added to the database
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// info Information about the component added
F/

DmiErrorStatus_t DMI_API
DmiComponentAdded (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiComponentInfo_t* info);

/***
 * DmiComponentDeleted
 ***/

/*F*
// Name: DmiComponentDeleted
// Purpose: A component was deleted from the database
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component deleted from the database
F/

DmiErrorStatus_t DMI_API
DmiComponentDeleted (

 Desktop Management Interface Specification v2.01s

January, 2003 208

 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId);

/***
 * DmiLanguageAdded
 ***/

/*F*
// Name: DmiLanguageAdded
// Purpose: A component language mapping was added
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component with new language mapping
// language language-code|territory-code|encoding
F/

DmiErrorStatus_t DMI_API
DmiLanguageAdded (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId,
 [in] DmiString_t* language);

/***
 * DmiLanguageDeleted
 ***/

/*F*
// Name: DmiLanguageDeleted
// Purpose: A component language mapping was deleted
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component with deleted language mapping
// language language-code|territory-code|encoding
F/

DmiErrorStatus_t DMI_API
DmiLanguageDeleted (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId,
 [in] DmiString_t* language);

/***
 * DmiGroupAdded
 ***/

/*F*
// Name: DmiGroupAdded
// Purpose: A group was added to a component
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component with new group added
// info Information about the group added
F/

DmiErrorStatus_t DMI_API
DmiGroupAdded (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId,
 [in] DmiGroupInfo_t* info);

 Desktop Management Interface Specification v2.01s

January, 2003 209

/***
 * DmiGroupDeleted
 ***/

/*F*
// Name: DmiGroupDeleted
// Purpose: A group was deleted from a component
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component with the group deleted
// groupId Group deleted from the component
F/

DmiErrorStatus_t DMI_API
DmiGroupDeleted (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiId_t compId,
 [in] DmiId_t groupId);

/***
 * DmiSubscriptionNotice
 ***/

/*F*
// Name: DmiSubscriptionNotice
// Purpose: Information about an indication subscription
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// expired True=expired; False=expiration pending
// rowData Row information to identify the subscription
F/

DmiErrorStatus_t DMI_API
DmiSubscriptionNotice (
 [in] DmiUnsigned_t handle,
 [in] DmiNodeAddress_t* sender,
 [in] DmiBoolean_t expired,
 [in] DmiRowData_t* rowData);

} /* interface dmi_client */

 Desktop Management Interface Specification v2.01s

January, 2003 210

APPENDIX C - ONC RPCGEN
COMMON DATA STRUCTURES (COMMON.X)

/*M*
//
// RCS:
// $Workfile: common.x $
// $Revision: 2.0 $
// $Modtime: 3/27/96 $
// $Author: DMTF $
//
// Purpose:
//
// Describe data structures and types for the DMTF's Management
// Interface in an RPCGEN that is suitable for building remote
// management using the ONC RPC client/server model. This
// file is included in the client.x and server.x files.
//
// Contents:
//
// The following information is described in version 2.0
// of the Desktop Management Interface Specification.
//
// Enumerated Types:
//
// DmiSetMode Define set operations
// DmiRequestMode Define sequential access modes
// DmiStorageType Define the storage type for an attribute
// DmiAccessMode Define the access modes for an attribute
// DmiDataType Define the data types referenced by DmiDataUnion
// DmiFileDataInfo Define the DMI mapping file types
//
// Data Structures:
//
// DmiTimestamp Describes the DMI timestamp structure
// DmiString Describes the DMI string representation
// DmiOctetString Describes the DMI octet string representation
// DmiDataUnion Discriminated union of DMI data types
// DmiEnumInfo Associates an integer value with descriptive text
// DmiAttributeInfo Holds information about an attribute
// DmiAttributeData Describes an attribute id, type, and value
// DmiGroupInfo Holds information about a group
// DmiComponentInfo Holds information about a component
// DmiFileDataInfo Holds language file type and mapping data
// DmiClassNameInfo Holds a group's id and class string
// DmiRowRequest Identifies { component, group, row, ids } to get
// DmiRowData Identifies { component, group, row, values } to set
//
// DmiAttributeIds Describes a conformant array of DmiId
// DmiAttributeValues Describes a conformant array of DmiAttributeData
// DmiEnumList Describes a conformant array of DmiEnumInfo
// DmiAttributeList Describes a conformant array of DmiAttributeInfo
// DmiGroupList Describes a conformant array of DmiGroupInfo
// DmiComponentList Describes a conformant array of DmiComponentInfo
// DmiFileDataList Describes a conformant array of DmiFileDataInfo
// DmiClassNameList Describes a conformant array of DmiClassNameInfo
// DmiStringList Describes a conformant array of DmiString
// DmiFileTypeList Describes a conformant array of DmiFileType
// DmiMultiRowRequest Describes a conformant array of DmiRowRequest
// DmiMultiRowData Describes a conformant array of DmiRowData
M/

ifndef DMI_API
define DMI_API
endif

 Desktop Management Interface Specification v2.01s

January, 2003 211

/***
 * DmiSetMode
 ***/

/*D*
// Name: DmiSetMode
// Purpose: Define set operations
// Context: DmiSetAttributes()
// Fields:
// DMI_SET Set data values
// DMI_RESERVE Reserve resources for a set operation
// DMI_RELEASE Release previously reserved resources
D/

enum DmiSetMode {
 DMI_SET,
 DMI_RESERVE,
 DMI_RELEASE
};
typedef enum DmiSetMode DmiSetMode_t;

/***
 * DmiRequestMode
 ***/

/*D*
// Name: DmiRequestMode
// Purpose: Define sequential access modes
// Context: Field in DmiRowRequest,
// Context: DmiListComponents(), DmiListComponentsByClass(),
// Context: DmiListGroups(), DmiListAttributes(),
// Fields:
// DMI_UNIQUE Access the specified item (or table row)
// DMI_FIRST Access the first item
// DMI_NEXT Access the next item
D/

enum DmiRequestMode {
 DMI_UNIQUE,
 DMI_FIRST,
 DMI_NEXT
};
typedef enum DmiRequestMode DmiRequestMode_t;

/***
 * DmiStorageType
 ***/

/*D*
// Name: DmiStorageType
// Purpose: Define the storage type for an attribute
// Context: Field in DmiAttributeInfo
// Fields:
// MIF_COMMON Value is from a small set of possibilities
// MIF_SPECIFIC Value is from a large set of possibilities
D/

enum DmiStorageType {
 MIF_COMMON,
 MIF_SPECIFIC
};
typedef enum DmiStorageType DmiStorageType_t;

 Desktop Management Interface Specification v2.01s

January, 2003 212

/***
 * DmiAccessMode
 ***/

/*D*
// Name: DmiAccessMode
// Purpose: Define the access modes for an attribute
// Context: Field in DmiAttributeInfo
// Fields:
// MIF_UNKNOWN Unknown access mode
// MIF_READ_ONLY Read access only
// MIF_READ_WRITE Readable and writable
// MIF_WRITE_ONLY Write access only
// MIF_UNSUPPORTED Attribute is not supported
D/

enum DmiAccessMode {
 MIF_UNKNOWN_ACCESS,
 MIF_READ_ONLY,
 MIF_READ_WRITE,
 MIF_WRITE_ONLY,
 MIF_UNSUPPORTED
};
typedef enum DmiAccessMode DmiAccessMode_t;

/***
 * DmiDataType
 ***/

/*D*
// Name: DmiDataType
// Purpose: Define the data types referenced by DmiDataUnion
// Context:
// Fields:
// MIF_DATATYPE_0 RESERVED
// MIF_COUNTER 32-bit unsigned integer that never decreases
// MIF_COUNTER64 64-bit unsigned integer that never decreases
// MIF_GAUGE 32-bit unsigned integer may increase or decrease
// MIF_DATATYPE_4 RESERVED
// MIF_INTEGER 32-bit signed integer; no semantics known
// MIF_INTEGER64 64-bit signed integer; no semantics known
// MIF_OCTETSTRING String of n octets, not necessarily displayable
// MIF_DISPLAYSTRING Displayable string of n octets
// MIF_DATATYPE_9 RESERVED
// MIF_DATATYPE_10 RESERVED
// MIF_DATE 28-octet displayable string
(yyyymmddHHMMSS.uuuuuu+ooo)
D/

enum DmiDataType {
 MIF_DATATYPE_0,
 MIF_COUNTER,
 MIF_COUNTER64,
 MIF_GAUGE,
 MIF_DATATYPE_4,
 MIF_INTEGER,
 MIF_INTEGER64,
 MIF_OCTETSTRING,
 MIF_DISPLAYSTRING,
 MIF_DATATYPE_9,
 MIF_DATATYPE_10,
 MIF_DATE
};
typedef enum DmiDataType DmiDataType_t;

/*
 * Aliases for the standard data types
 */
define MIF_INT MIF_INTEGER
define MIF_INT64 MIF_INTEGER64

 Desktop Management Interface Specification v2.01s

January, 2003 213

define MIF_STRING MIF_DISPLAYSTRING

/***
 * DmiFileType
 ***/

/*D*
// Name: DmiFileType
// Purpose: Define the DMI mapping file types
// Context: Field in DmiFileDataInfo
// Fields:
// DMI_FILETYPE_0 RESERVED
// DMI_FILETYPE_1 RESERVED
// DMI_MIF_FILE_NAME File data is DMI MIF file name
// DMI_MIF_FILE_DATA File data is DMI MIF data
// SNMP_MAPPING_FILE_NAME File data is SNMP MAPPING file name
// SNMP_MAPPING_FILE_DATA File data is SNMP MAPPING data
// DMI_GROUP_FILE_NAME File data is DMI GROUP MIF file name
// DMI_GROUP_FILE_DATA File data is DMI GROUP MIF data
// MS_FILE_NAME File data is Microsoft-format file name
// MS_FILE_DATA File data is Microsoft-format data
D/

enum DmiFileType {
 DMI_FILETYPE_0,
 DMI_FILETYPE_1,
 DMI_MIF_FILE_NAME,
 DMI_MIF_FILE_DATA,
 SNMP_MAPPING_FILE_NAME,
 SNMP_MAPPING_FILE_DATA,
 DMI_GROUP_FILE_NAME,
 DMI_GROUP_FILE_DATA,
 MS_FILE_NAME,
 MS_FILE_DATA
};
typedef enum DmiFileType DmiFileType_t;

/***
 * DMI Data Types
 ***/

typedef unsigned long DmiId_t;
typedef unsigned long DmiHandle_t;
typedef unsigned long DmiCounter_t;
typedef unsigned long DmiErrorStatus_t;
typedef unsigned long DmiCounter64_t[2];
typedef unsigned long DmiGauge_t;
typedef unsigned long DmiUnsigned_t;
typedef long DmiInteger_t;
typedef unsigned long DmiInteger64_t[2];
typedef unsigned long DmiBoolean_t;

/***
 * DmiTimestamp
 ***/

/*D*
// Name: DmiTimestamp
// Purpose: Describes the DMI timestamp structure
// Context: Field in DmiDataUnion
// Fields:
// year The year ('1996')
// month The month ('1'..'12')
// yay The day of the month ('1'..'23')
// hour The hour ('0'..'23')
// minutes The minutes ('0'..'59')
// seconds The seconds ('0'..'60'); includes leap seconds
// dot A dot ('.')
// microSeconds Microseconds ('0'..'999999')
// plusODMI Version 2nus '+' for east, or '-' west of UTC

 Desktop Management Interface Specification v2.01s

January, 2003 214

// utcOffset Minutes ('0'..'720') from UTC
// padding Unused padding for 4-byte alignment
D/

struct DmiTimestamp {
 char year [4];
 char month [2];
 char day [2];
 char hour [2];
 char minutes [2];
 char seconds [2];
 char dot;
 char microSeconds [6];
 char plusODMI Version 2nus;
 char utcOffset [3];
 char padding [3];
};
typedef struct DmiTimestamp DmiTimestamp_t;

/***
 * DmiString
 ***/

/*D*
// Name: DmiString
// Purpose: Describes the DMI string representation
// Context: Field in DmiDataUnion
// Fields:
// size Number of octets in the string body
// body String contents
//
// Notes: For displaystrings, the string is null teDMI Version 2nated,
// and the null character is included in the size.
D/

struct DmiString {
 char body<>;
};
typedef struct DmiString DmiString_t;
typedef DmiString_t* DmiStringPtr_t;

/***
 * DmiOctetString
 ***/

/*D*
// Name: DmiOctetString
// Purpose: Describes the DMI octet string representation
// Context: Field in DmiDataUnion
// Fields:
// size Number of octets in the string body
// body String contents
D/

struct DmiOctetString {
 char body<>;
};
typedef struct DmiOctetString DmiOctetString_t;

/***
 * DmiDataUnion
 ***/

/*D*
// Name: DmiDataUnion
// Purpose: Discriminated union of DMI data types
// Context: Field in DmiAttributeData
// Fields:
// type Discriminator for the union
// value Union of DMI attribute data types

 Desktop Management Interface Specification v2.01s

January, 2003 215

D/

union DmiDataUnion switch (DmiDataType_t type) {
 case MIF_COUNTER: DmiCounter_t counter;
 case MIF_COUNTER64: DmiCounter64_t counter64;
 case MIF_GAUGE: DmiGauge_t gauge;
 case MIF_INTEGER: DmiInteger_t integer;
 case MIF_INTEGER64: DmiInteger64_t integer64;
 case MIF_OCTETSTRING: DmiOctetString_t* octetstring;
 case MIF_DISPLAYSTRING: DmiString_t* str;
 case MIF_DATE: DmiTimestamp_t* date;
};
typedef union DmiDataUnion DmiDataUnion_t;

/***
 * DmiEnumInfo
 ***/

/*D*
// Name: DmiEnumInfo
// Purpose: Associates an integer value with descriptive text
// Context: Element in DmiEnumList
// Fields:
// name Enumeration name
// value Enumeration value
D/

struct DmiEnumInfo {
 DmiString_t* name;
 DmiInteger_t value;
};
typedef struct DmiEnumInfo DmiEnumInfo_t;

/***
 * DmiAttributeInfo
 ***/

/*D*
// Name: DmiAttributeInfo
// Purpose: Holds information about an attribute
// Context: Element in DmiAttributeList
// Fields:
// id Attribute ID
// name Attribute name string
// pragma Attribute pragma string [optional]
// description Attribute description string [optional]
// storage Common or specific storage
// access Readonly, read-write, etc
// type Counter, integer, etc
// maxSize Maximum length of the attribute
// enumList EnumList for enumerated types [optional]
D/

struct DmiAttributeInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* description;
 DmiStorageType_t storage;
 DmiAccessMode_t access;
 DmiDataType_t type;
 DmiUnsigned_t maxSize;
 struct DmiEnumList* enumList;
};
typedef struct DmiAttributeInfo DmiAttributeInfo_t;

 Desktop Management Interface Specification v2.01s

January, 2003 216

/***
 * DmiAttributeData
 ***/

/*D*
// Name: DmiAttributeData
// Purpose: Describes an attribute id, type, and value
// Context: Element in DmiAttributeValues
// Fields:
// id Attribute ID
// data Attribute type and value
D/

struct DmiAttributeData {
 DmiId_t id;
 DmiDataUnion_t data;
};
typedef struct DmiAttributeData DmiAttributeData_t;

/***
 * DmiGroupInfo
 ***/

/*D*
// Name: DmiGroupInfo
// Purpose: Holds information about a group
// Context: Element in DmiGroupList
// Fields:
// id Group ID
// name Group name string
// pragma Group pragma string [optional]
// className Group class name string
// description Group description string [optional]
// keyList Attribute IDs for table row keys [optional]
D/

struct DmiGroupInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* className;
 DmiString_t* description;
 struct DmiAttributeIds* keyList;
};
typedef struct DmiGroupInfo DmiGroupInfo_t;

/***
 * DmiComponentInfo
 ***/

/*D*
// Name: DmiComponentInfo
// Purpose: Holds information about a component
// Context: Element in DmiComponentList
// Fields:
// id Component ID
// name Component name string
// pragma Component pragma string [optional]
// description Component description string [optional]
// exactMatch
// idl_true = Exact match
// idl_false = Possible match
D/

struct DmiComponentInfo {
 DmiId_t id;
 DmiString_t* name;
 DmiString_t* pragma;
 DmiString_t* description;
 DmiBoolean_t exactMatch;

 Desktop Management Interface Specification v2.01s

January, 2003 217

};
typedef struct DmiComponentInfo DmiComponentInfo_t;

/***
 * DmiFileDataInfo
 ***/

/*D*
// Name: DmiFileDataInfo
// Purpose: Holds language file type and mapping data
// Context: Element in DmiFileDataList
// Fields:
// fileType MIF file, SNMP mapping file, etc
// fileData The file info (name -or- contents)
D/

struct DmiFileDataInfo {
 DmiFileType_t fileType;
 DmiOctetString_t* fileData;
};
typedef struct DmiFileDataInfo DmiFileDataInfo_t;

/***
 * DmiClassNameInfo
 ***/

/*D*
// Name: DmiClassNameInfo
// Purpose: Holds a group's id and class string
// Context: Element in DmiClassNameList
// Fields:
// id Group ID
// className Group class name string
D/

 struct DmiClassNameInfo {
 DmiId_t id;
 DmiString_t* className;
};
typedef struct DmiClassNameInfo DmiClassNameInfo_t;

/***
 * DmiRowRequest
 ***/

/*D*
// Name: DmiRowRequest
// Purpose: Identifies { component, group, row, ids } to get
// Context: Element in DmiMultiRowRequest
// Fields:
// compId Component ID
// groupId Group ID
// requestMode Get from specified row, first row, or next row
// keyList Array of values for key attributes
// ids Array of IDs for data attributes
D/

struct DmiRowRequest {
 DmiId_t compId;
 DmiId_t groupId;
 DmiRequestMode_t requestMode;
 struct DmiAttributeValues* keyList;
 struct DmiAttributeIds* ids;
};
typedef struct DmiRowRequest DmiRowRequest_t;

 Desktop Management Interface Specification v2.01s

January, 2003 218

/***
 * DmiRowData
 ***/

/*D*
// Name: DmiRowData
// Purpose: Identifies { component, group, row, values } to set
// Context: Element in DmiMultiRowData
// Fields:
// compId Component ID
// groupId Group ID
// className Group class name for events, or 0 [optional]
// keyList Array of values for key attributes
// values Array of values for data attributes
//
// Notes: This structure is used for setting attributes, getting
// attributes, and for providing indication data. The
// className string is only required when returning
// indication data. For other uses, the field can be 0.
D/

struct DmiRowData {
 DmiId_t compId;
 DmiId_t groupId;
 DmiString_t* className;
 struct DmiAttributeValues* keyList;
 struct DmiAttributeValues* values;
};
typedef struct DmiRowData DmiRowData_t;

/***
 * DmiAttributeIds
 ***/

/*D*
// Name: DmiAttributeIds
// Purpose: Describes a conformant array of DmiId
// Context: Field in DmiRowRequest
// Fields:
// size Array elements
// list Array data
D/

struct DmiAttributeIds {
 DmiId_t list<>;
};
typedef struct DmiAttributeIds DmiAttributeIds_t;

/***
 * DmiAttributeValues
 ***/

/*D*
// Name: DmiAttributeValues
// Purpose: Describes a conformant array of DmiAttributeData
// Context: Field in DmiRowRequest, DmiRowData
// Fields:
// size Array elements
// list Array data
D/

struct DmiAttributeValues {
 DmiAttributeData_t list<>;
};
typedef struct DmiAttributeValues DmiAttributeValues_t;

 Desktop Management Interface Specification v2.01s

January, 2003 219

/***
 * DmiEnumList
 ***/

/*D*
// Name: DmiEnumList
// Purpose: Describes a conformant array of DmiEnumInfo
// Context: DmiEnumAttributes()
// Fields:
// size Array elements
// list Array data
D/

struct DmiEnumList {
 DmiEnumInfo_t list<>;
};
typedef struct DmiEnumList DmiEnumList_t;

/***
 * DmiAttributeList
 ***/

/*D*
// Name: DmiAttributeList
// Purpose: Describes a conformant array of DmiAttributeInfo
// Context: DmiListAttributes()
// Fields:
// size Array elements
// list Array data
D/

struct DmiAttributeList {

 DmiAttributeInfo_t list<>;
};
typedef struct DmiAttributeList DmiAttributeList_t;

/***
 * DmiGroupList
 ***/

/*D*
// Name: DmiGroupList
// Purpose: Describes a conformant array of DmiGroupInfo
// Context: DmiListGroups()
// Fields:
// size Array elements
// list Array data
D/

struct DmiGroupList {
 DmiGroupInfo_t list<>;
};
typedef struct DmiGroupList DmiGroupList_t;

/***
 * DmiComponent
 ***/

/*D*
// Name: DmiComponentList
// Purpose: Describes a conformant array of DmiComponentInfo
// Context: DmiListComponents(), DmiListComponentsByClass()
// Fields:
// size Array elements
// list Array data
D/

 Desktop Management Interface Specification v2.01s

January, 2003 220

struct DmiComponentList {
 DmiComponentInfo_t list<>;
};
typedef struct DmiComponentList DmiComponentList_t;

/***
 * DmiFileDataList
 ***/

/*D*
// Name: DmiFileDataList
// Purpose: Describes a conformant array of DmiFileDataInfo
// Context: DmiAddComponent(), DmiAddLanguage(), DmiAddGroup()
// Fields:
// size Array elements
// list Array data
D/

struct DmiFileDataList {
 DmiFileDataInfo_t list<>;
};
typedef struct DmiFileDataList DmiFileDataList_t;

/***
 * DmiClassNameList
 ***/

/*D*
// Name: DmiClassNameList
// Purpose: Describes a conformant array of DmiClassNameInfo
// Context: DmiListClassNames()
// Fields:
// size Array elements
// list Array data
D/

struct DmiClassNameList {
 DmiClassNameInfo_t list<>;
};
typedef struct DmiClassNameList DmiClassNameList_t;

/***
 * DmiStringList
 ***/

/*D*
// Name: DmiStringList
// Purpose: Describes a conformant array of DmiStrings
// Context: DmiListLanguages()
// Fields:
// size Array elements
// list Array data
D/

struct DmiStringList {
 DmiStringPtr_t list<>;
};
typedef struct DmiStringList DmiStringList_t;

/***
 * DmiFileTypeList
 ***/

/*D*
// Name: DmiFileTypeList
// Purpose: Describes a conformant array of DmiFileType entries
// Context: DmiGetVersion()
// Fields:

 Desktop Management Interface Specification v2.01s

January, 2003 221

// size Array elements
// list Array data
D/

struct DmiFileTypeList {
 DmiFileType_t list<>;
};
typedef struct DmiFileTypeList DmiFileTypeList_t;

/***
 * DmiMultiRowRequest
 ***/

/*D*
// Name: DmiMultiRowRequest
// Purpose: Describes a conformant array of DmiRowRequest
// Context: DmiGetAttributes()
// Fields:
// size Array elements
// list Array data
D/

struct DmiMultiRowRequest {
 DmiRowRequest_t list<>;
};
typedef struct DmiMultiRowRequest DmiMultiRowRequest_t;

/***
 * DmiMultiRowData
 ***/

/*D*
// Name: DmiMultiRowData
// Purpose: Describes a conformant array of DmiRowData
// Context: DmiGetAttributes(), DmiSetAttributes()
// Fields:
// size Array elements
// list Array data
D/

struct DmiMultiRowData {
 DmiRowData_t list<>;
};
typedef struct DmiMultiRowData DmiMultiRowData_t;

 Desktop Management Interface Specification v2.01s

January, 2003 222

MANAGEMENT INTERFACE (SERVER.X)

/*M*
//
// RCS:
// $Workfile: server.x $
// $Revision: 2.0 $
// $Modtime: 3/27/96 $
// $Author: DMTF $
//
// Purpose:
//
// Describe the DMTF's Management Interface in an RPCGEN that is
// suitable for building remote management using the ONC RPC
// client/server model. This file is compiled with the RPCGEN
// compiler to produce the following files:
//
// server.h C-style interface header file
// server_c.c Stub code for the rmi client
// server_s.c Stub code for the rmi server
//
// Contents:
//
// The following information is described in version 2.0
// of the Desktop Management Interface Specification.
//
// Initialization:
//
// DmiRegister Register a session with a remote system
// DmiUnregister Unregister a previously registered session
// DmiGetVersion Get DMI Service Provider version information
// DmiGetConfig Get session configuration parameters
// DmiSetConfig Set session configuration parameters
//
// Discovery:
//
// DmiListComponents List component properties
// DmiListComponentsByClass List components matching certain criteria
// DmiListLanguages List a component's language strings
// DmiListClassNames List a component's class names and group ids
// DmiListGroups List group properties
// DmiListAttributes List attribute properties
//
// Operation:
//
// DmiAddRow Add a new row to a table
// DmiDeleteRow Delete a row from a table
// DmiGetMultiple Get a collection of attribute values
// DmiSetMultiple Set a collection of attribute values
//
// Database Administration [optional]:
//
// DmiAddComponent Add a new component to the DMI database
// DmiAddLanguage Add a new language mapping for a component
// DmiAddGroup Add a new group to a component
// DmiDeleteComponent Delete a component from the DMI database
// DmiDeleteLanguage Delete a language mapping for a component
// DmiDeleteGroup Delete a group from a component
M/

include "common.x"

 Desktop Management Interface Specification v2.01s

January, 2003 223

/***
 * DmiRegister
 ***/

/*F*
// Name: DmiRegister
// Purpose: Register a session with a remote system
// Context: Initialization
// Returns:
// Parameters:
// handle On completion, an open session handle
//
// Notes: The client provides the address of the handle
// parameter and the server fills it in. All commands
// except DmiRegister() require a valid handle, so
// this must be the first command sent to the DMI server.
F/

struct DmiRegisterIN {
 DmiHandle_t handle;
};

struct DmiRegisterOUT {
 DmiErrorStatus_t error_status;
 DmiHandle_t* handle;
};

/***
 * DmiUnregister
 ***/

/*F*
// Name: DmiUnregister
// Purpose: Unregister a previously registered session
// Context: Initialization
// Returns:
// Parameters:
// handle An open session handle to be closed
F/

struct DmiUnregisterOUT {
 DmiErrorStatus_t error_status;
};

struct DmiUnregisterIN {
 DmiHandle_t handle;
};

/***
 * DmiGetVersion
 ***/

/*F*
// Name: DmiGetVersion
// Purpose: Get DMI Service Provider version information
// Context: Initialization
// Returns:
// Parameters:
// handle An open session handle
// dmiSpecLevel The DMI Specification version
// description The OS-specific Service Provider version
// fileTypes The file types supported for MIF installation
//
// Notes: 1. The client must free the dmiSpecLevel string
// 2. The client must free the description string
F/

struct DmiGetVersionOUT {
 DmiErrorStatus_t error_status;
 DmiString_t* dmiSpecLevel;

 Desktop Management Interface Specification v2.01s

January, 2003 224

 DmiString_t* description;
 DmiFileTypeList_t* fileTypes;
};

struct DmiGetVersionIN {
 DmiHandle_t handle;
};

/***
 * DmiGetConfig
 ***/

/*F*
// Name: DmiGetConfig
// Purpose: Get session configuration parameters
// Context: Initialization
// Returns:
// Parameters:
// handle An open session handle
// language language-code|territory-code|encoding
//
// Notes: The client must free the language string
F/

struct DmiGetConfigOUT {
 DmiErrorStatus_t error_status;
 DmiString_t* language;
};

struct DmiGetConfigIN {
 DmiHandle_t handle;
};

/***
 * DmiSetConfig
 ***/

/*F*
// Name: DmiSetConfig
// Purpose: Set session configuration parameters
// Context: Initialization
// Returns:
// Parameters:
// handle An open session handle
// language language-code|territory-code|encoding
F/

struct DmiSetConfigOUT {
 DmiErrorStatus_t error_status;
};

struct DmiSetConfigIN {
 DmiHandle_t handle;
 DmiString_t* language;
};

/***
 * DmiListComponents
 ***/

/*F*
// Name: DmiListComponents
// Purpose: List component properties
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// requestMode Unique, first, or next component ?
// maxCount Maximum number to return, or 0 for all
// getPragma Get optional pragma string ?

 Desktop Management Interface Specification v2.01s

January, 2003 225

// getDescription Get optional component description ?
// compId Component to start with (see requestMode)
// reply List of components
//
// Notes: The client must free the reply structure
F/

struct DmiListComponentsOUT {
 DmiErrorStatus_t error_status;
 DmiComponentList_t* reply;
};

struct DmiListComponentsIN {
 DmiHandle_t handle;
 DmiRequestMode_t requestMode;
 DmiUnsigned_t maxCount;
 DmiBoolean_t getPragma ;
 DmiBoolean_t getDescription;
 DmiId_t compId;
};

/***
 * DmiListComponentsByClass
 ***/

/*F*
// Name: DmiListComponentsByClass
// Purpose: List components matching certain criteria
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// requestMode Unique, first, or next component ?
// maxCount Maximum number to return, or 0 for all
// getPragma Get optional pragma string ?
// getDescription Get optional component description ?
// compId Component to start with (see requestMode)
// className Group class name string to match
// keyList Group row keys to match, or null
// reply List of components
//
// Notes: The client must free the reply structure
F/

struct DmiListComponentsByClassOUT {
 DmiErrorStatus_t error_status;
 DmiComponentList_t* reply;
};

struct DmiListComponentsByClassIN {
 DmiHandle_t handle;
 DmiRequestMode_t requestMode;
 DmiUnsigned_t maxCount;
 DmiBoolean_t getPragma;
 DmiBoolean_t getDescription;
 DmiId_t compId;
 DmiString_t* className;
 DmiAttributeValues_t* keyList;
};

/***
 * DmiListLanguages
 ***/

/*F*
// Name: DmiListLanguages
// Purpose: List a component's language strings
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle

 Desktop Management Interface Specification v2.01s

January, 2003 226

// maxCount Maximum number to return, or 0 for all
// compId Component to access
// reply List of language strings
//
// Notes: The client must free the reply structure
F/

struct DmiListLanguagesOUT {
 DmiErrorStatus_t error_status;
 DmiStringList_t* reply;
};

struct DmiListLanguagesIN {
 DmiHandle_t handle;
 DmiUnsigned_t maxCount;
 DmiId_t compId;
};

/***
 * DmiListClassNames
 ***/

/*F*
// Name: DmiListClassNames
// Purpose: List a component's class names and group ids
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// maxCount Maximum number to return, or 0 for all
// compId Component to access
// reply List of class names and group ids
//
// Notes: The client must free the reply structure
F/

struct DmiListClassNamesOUT {
 DmiErrorStatus_t error_status;
 DmiClassNameList_t* reply;
};

struct DmiListClassNamesIN {
 DmiHandle_t handle;
 DmiUnsigned_t maxCount;
 DmiId_t compId;
};

/***
 * DmiListGroups
 ***/

/*F*
// Name: DmiListGroups
// Purpose: List group properties
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// requestMode Unique, first, or next group ?
// maxCount Maximum number to return, or 0 for all
// getPragma Get optional pragma string ?
// getDescription Get optional group description ?
// compId Component to access
// groupId Group to start with (see requestMode)
// reply List of groups
//
// Notes: The client must free the reply structure
F/

struct DmiListGroupsOUT {
 DmiErrorStatus_t error_status;

 Desktop Management Interface Specification v2.01s

January, 2003 227

 DmiGroupList_t* reply;
};

struct DmiListGroupsIN {
 DmiHandle_t handle;
 DmiRequestMode_t requestMode;
 DmiUnsigned_t maxCount;
 DmiBoolean_t getPragma;
 DmiBoolean_t getDescription;
 DmiId_t compId;
 DmiId_t groupId;
};

/***
 * DmiListAttributes
 ***/

/*F*
// Name: DmiListAttributes
// Purpose: List attribute properties
// Context: Discovery
// Returns:
// Parameters:
// handle An open session handle
// requestMode Unique, first, or next attribute ?
// maxCount Maximum number to return, or 0 for all
// getPragma Get optional pragma string ?
// getDescription Get optional attribute description ?
// compId Component to access
// groupId Group to access
// attribId Attribute to start with (see requestMode)
// reply List of attributes
//
// Notes: The client must free the reply structure
F/

struct DmiListAttributesOUT {
 DmiErrorStatus_t error_status;
 DmiAttributeList_t* reply;
};

struct DmiListAttributesIN {
 DmiHandle_t handle;
 DmiRequestMode_t requestMode;
 DmiUnsigned_t maxCount;
 DmiBoolean_t getPragma;
 DmiBoolean_t getDescription;
 DmiId_t compId;
 DmiId_t groupId;
 DmiId_t attribId;
};

/***
 * DmiAddComponent
 ***/

/*F*
// Name: DmiAddComponent
// Purpose: Add a new component to the DMI database
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// fileData MIF file data for the component
// compId On completion, the SP-allocated component I
// errors Installation error messages
F/

struct DmiAddComponentOUT {
 DmiErrorStatus_t error_status;
 DmiId_t compId;

 Desktop Management Interface Specification v2.01s

January, 2003 228

 DmiStringList_t* errors;
};

struct DmiAddComponentIN {
 DmiHandle_t handle;
 DmiFileDataList_t* fileData;
};

/***
 * DmiAddLanguage
 ***/

/*F*
// Name: DmiAddLanguage
// Purpose: Add a new language mapping for a component
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// fileData Language mapping file for the component
// compId Component to access
// errors Installation error messages
F/

struct DmiAddLanguageOUT {
 DmiErrorStatus_t error_status;
 DmiStringList_t* errors;
};

struct DmiAddLanguageIN {
 DmiHandle_t handle;
 DmiFileDataList_t* fileData;
 DmiId_t compId;
};

/***
 * DmiAddGroup
 ***/

/*F*
// Name: DmiAddGroup
// Purpose: Add a new group to a component
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// fileData MIF file data for the group definition
// compId Component to access
// groupId On completion, the SP-allocated group ID
// errors Installation error messages
F/

struct DmiAddGroupOUT {
 DmiErrorStatus_t error_status;
 DmiId_t groupId;
 DmiStringList_t* errors;
};

struct DmiAddGroupIN {
 DmiHandle_t handle;
 DmiFileDataList_t* fileData;
 DmiId_t compId;
};

/***
 * DmiDeleteComponent
 ***/

/*F*
// Name: DmiDeleteComponent

 Desktop Management Interface Specification v2.01s

January, 2003 229

// Purpose: Delete a component from the DMI database
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// compId Component to delete
F/

struct DmiDeleteComponentOUT {
 DmiErrorStatus_t error_status;
};

struct DmiDeleteComponentIN {
 DmiHandle_t handle;
 DmiId_t compId;
};

/***
 * DmiDeleteLanguage
 ***/

/*F*
// Name: DmiDeleteLanguage
// Purpose: Delete a language mapping for a component
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// language language-code|territory-code|encoding
// compId Component to access
F/

struct DmiDeleteLanguageOUT {
 DmiErrorStatus_t error_status;
};

struct DmiDeleteLanguageIN {
 DmiHandle_t handle;
 DmiString_t* language;
 DmiId_t compId;
};

/***
 * DmiDeleteGroup
 ***/

/*F*
// Name: DmiDeleteGroup
// Purpose: Delete a group from a component
// Context: Database Administration
// Returns:
// Parameters:
// handle An open session handle
// compId Component containing group
// groupId Group to delete
F/

struct DmiDeleteGroupOUT {
 DmiErrorStatus_t error_status;
};

struct DmiDeleteGroupIN {
 DmiHandle_t handle;
 DmiId_t compId;
 DmiId_t groupId;
};

 Desktop Management Interface Specification v2.01s

January, 2003 230

/***
 * DmiAddRow
 ***/

/*F*
// Name: DmiAddRow
// Purpose: Add a new row to a table
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// rowData Attribute values to set
F/

struct DmiAddRowOUT {
 DmiErrorStatus_t error_status;
};

struct DmiAddRowIN {
 DmiHandle_t handle;
 DmiRowData_t* rowData;
};

/***
 * DmiDeleteRow
 ***/

/*F*
// Name: DmiDeleteRow
// Purpose: Delete a row from a table
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// rowData Row { component, group, key } to delete
F/

struct DmiDeleteRowOUT {
 DmiErrorStatus_t error_status;
};

struct DmiDeleteRowIN {
 DmiHandle_t handle;
 DmiRowData_t* rowData;
};

/***
 * DmiGetMultiple
 ***/

/*F*
// Name: DmiGetMultiple
// Purpose: Get a collection of attribute values
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// request Attributes to get
// rowData Requested attribute values
//
// Notes: 1. The request may be for a SINGLE row (size = 1)
// 2. An empty id list for a row means "get all attributes"
// 3. The client must free the rowData structure
F/

 Desktop Management Interface Specification v2.01s

January, 2003 231

struct DmiGetMultipleOUT {
 DmiErrorStatus_t error_status;
 DmiMultiRowData_t* rowData;
};

struct DmiGetMultipleIN {
 DmiHandle_t handle;
 DmiMultiRowRequest_t* request;
};

/***
 * DmiSetMultiple
 ***/

/*F*
// Name: DmiSetMultiple
// Purpose: Set a collection of attributes
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// setMode Set, reserve, or release ?
// rowData Attribute values to set
F/

struct DmiSetMultipleOUT {
 DmiErrorStatus_t error_status;
};

struct DmiSetMultipleIN {
 DmiHandle_t handle;
 DmiSetMode_t setMode;
 DmiMultiRowData_t* rowData;
};

/***
 * DmiGetAttribute
***/

/*F*
// Name: DmiGetAttribute
// Purpose: Get a single attribute value
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// compId Component to access
// groupId Group within component
// attribId Attribute within group
// keyList Keylist to specify a table row [optional]
// value Attribute value returned
F/

struct DmiGetAttributeOUT {
 DmiErrorStatus_t error_status;
 DmiDataUnion_t* value;
};

struct DmiGetAttributeIN {
 DmiHandle_t handle;
 DmiId_t compId;
 DmiId_t groupId;
 DmiId_t attribId;
 DmiAttributeValues_t* keyList;
};

 Desktop Management Interface Specification v2.01s

January, 2003 232

/***
 * DmiSetAttribute
 ***/

/*F*
// Name: DmiSetAttribute
// Purpose: Set a single attribute value
// Context: Operation
// Returns:
// Parameters:
// handle An open session handle
// compId Component to access
// groupId Group within component
// attribId Attribute within group
// keyList Keylist to specify a table row [optional]
// setMode Set, reserve, or release ?
// value Attribute value to set
F/
struct DmiSetAttributeOUT {
 DmiErrorStatus_t error_status;
};

struct DmiSetAttributeIN {
 DmiHandle_t handle;
 DmiId_t compId;
 DmiId_t groupId;
 DmiId_t attribId;
 DmiAttributeValues_t* keyList;
 DmiSetMode_t setMode;
 DmiDataUnion_t* value;
};

program DMI2_SERVER {
 version DMI2_SERVER_VERSION {
 DmiRegisterOUT _DmiRegister (DmiRegisterIN) = 0x200;
 DmiUnregisterOUT _DmiUnregister (DmiUnregisterIN) = 0x201;
 DmiGetVersionOUT _DmiGetVersion (DmiGetVersionIN) = 0x202;
 DmiGetConfigOUT _DmiGetConfig (DmiGetConfigIN) = 0x203;
 DmiSetConfigOUT _DmiSetConfig (DmiSetConfigIN) = 0x204;
 DmiListComponentsOUT _DmiListComponents (DmiListComponentsIN) = 0x205;
 DmiListComponentsByClassOUT _DmiListComponentsByClass (

DmiListComponentsByClassIN) = 0x206;
 DmiListLanguagesOUT _DmiListLanguages (DmiListLanguagesIN) = 0x207;
 DmiListClassNamesOUT _DmiListClassNames (DmiListClassNamesIN) = 0x208;
 DmiListGroupsOUT _DmiListGroups (DmiListGroupsIN) = 0x209;
 DmiListAttributesOUT _DmiListAttributes (DmiListAttributesIN) = 0x20a;
 DmiAddRowOUT _DmiAddRow (DmiAddRowIN) = 0x20b;
 DmiDeleteRowOUT _DmiDeleteRow (DmiDeleteRowIN) = 0x20c;
 DmiGetMultipleOUT _DmiGetMultiple (DmiGetMultipleIN) = 0x20d;
 DmiSetMultipleOUT _DmiSetMultiple (DmiSetMultipleIN) = 0x20e;
 DmiAddComponentOUT _DmiAddComponent (DmiAddComponentIN) = 0x20f;
 DmiAddLanguageOUT _DmiAddLanguage (DmiAddLanguageIN) = 0x210;
 DmiAddGroupOUT _DmiAddGroup (DmiAddGroupIN) = 0x211;
 DmiDeleteComponentOUT _DmiDeleteComponent (DmiDeleteComponentIN) =

0x212;
 DmiDeleteLanguageOUT _DmiDeleteLanguage (DmiDeleteLanguageIN) = 0x213;
 DmiDeleteGroupOUT _DmiDeleteGroup (DmiDeleteGroupIN) = 0x214;
 DmiGetAttributeOUT _DmiGetAttribute (DmiGetAttributeIN) = 0x215;
 DmiSetAttributeOUT _DmiSetAttribute (DmiSetAttributeIN) = 0x216;
 } = 1;
} = 300598;

 Desktop Management Interface Specification v2.01s

January, 2003 233

INDICATION DELIVERY INTERFACE (CLIENT.X)

/*M*
//
// RCS:
// $Workfile: client. x $
// $Revision: 2.0 $
// $Modtime: 3/27/96 $
// $Author: DMTF $
//
// Purpose:
//
// Describe the DMTF's Management Interface in an RPCGEN that is
// suitable for building remote management using the ONC RPC
// client/server model. This file is compiled with the RPCGEN
// compiler to produce the following files:
//
// client.h C-style interface header file
// client_c.c Stub code for the managed system
// client_s.c Stub code for the managing application
//
// Contents:
//
// The following information is described in version 2.0
// of the Desktop Management Interface Specification.
//
// Data Structures:
//
// DmiNodeAddress Node address for indication originators
//
// Indication Delivery:
//
// DmiDeliverEvent Deliver event data to an application
// DmiComponentAdded A component was added to the database
// DmiComponentDeleted A component was deleted from the database
// DmiLanguageAdded A component language mapping was added
// DmiLanguageDeleted A component language mapping was deleted
// DmiGroupAdded A group was added to a component
// DmiGroupDeleted A group was deleted from a component
// DmiSubscriptionNotice Information about an indication subscription

M/

include "common.x"

/***
 * DmiNodeAddress
 ***/

/*D*
// Name: DmiNodeAddress
// Purpose: Addressing information for indication originators
// Context: Passed to indication delivery functions
// Fields:
// address Transport-dependent node address
// rpc Identifies the RPC (DCE, ONC, etc)
// transport Identifies the transport (TPC/IP, SPX, etc)
D/

struct DmiNodeAddress {
 DmiString_t* address;
 DmiString_t* rpc;
 DmiString_t* transport;
};
typedef struct DmiNodeAddress DmiNodeAddress_t;

 Desktop Management Interface Specification v2.01s

January, 2003 234

/***
 * DmiDeliverEvent
 ***/

/*F*
// Name: DmiDeliverEvent
// Purpose: Deliver event data to an application
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// language Language encoding for the indication data
// compId Component reporting the event
// timestamp Event generation time
// rowData Standard and context-specific indication data
F/

struct DmiDeliverEventIN {
 DmiUnsigned_t handle;
 DmiNodeAddress_t* sender;
 DmiString_t* language;
 DmiId_t compId;
 DmiTimestamp_t* timestamp;
 DmiMultiRowData_t* rowData;
};

/***
 * DmiComponentAdded
 ***/

/*F*
// Name: DmiComponentAdded
// Purpose: A component was added to the database
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// info Information about the component added
F/

struct DmiComponentAddedIN {
 DmiUnsigned_t handle;
 DmiNodeAddress_t* sender;
 DmiComponentInfo_t* info;
};

/***
 * DmiComponentDeleted
 ***/

/*F*
// Name: DmiComponentDeleted
// Purpose: A component was deleted from the database
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component deleted from the database
F/

struct DmiComponentDeletedIN {
 DmiUnsigned_t handle;
 DmiNodeAddress_t* sender;
 DmiId_t compId;
};

 Desktop Management Interface Specification v2.01s

January, 2003 235

/***
 * DmiLanguageAdded
 ***/

/*F*
// Name: DmiLanguageAdded
// Purpose: A component language mapping was added
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component with new language mapping
// language language-code|territory-code|encoding
F/

struct DmiLanguageAddedIN {
 DmiUnsigned_t handle;
 DmiNodeAddress_t* sender;
 DmiId_t compId;
 DmiString_t* language;
};

/***
 * DmiLanguageDeleted
 ***/

/*F*
// Name: DmiLanguageDeleted
// Purpose: A component language mapping was deleted
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component with deleted language mapping
// language language-code|territory-code|encoding
F/

struct DmiLanguageDeletedIN {
 DmiUnsigned_t handle;
 DmiNodeAddress_t* sender;
 DmiId_t compId;
 DmiString_t* language;
};

/***
 * DmiGroupAdded
 ***/

/*F*
// Name: DmiGroupAdded
// Purpose: A group was added to a component
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component with new group added
// info Information about the group added
F/

struct DmiGroupAddedIN {
 DmiUnsigned_t handle;
 DmiNodeAddress_t* sender;
 DmiId_t compId;
 DmiGroupInfo_t* info;
};

 Desktop Management Interface Specification v2.01s

January, 2003 236

/***
 * DmiGroupDeleted
 ***/

/*F*
// Name: DmiGroupDeleted
// Purpose: A group was deleted from a component
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// sender Address of the node delivering the indication
// compId Component with the group deleted
// groupId Group deleted from the component
F/

struct DmiGroupDeletedIN {
 DmiUnsigned_t handle;
 DmiNodeAddress_t* sender;
 DmiId_t compId;
 DmiId_t groupId;
};

/***
 * DmiSubscriptionNotice
 ***/

/*F*
// Name: DmiSubscriptionNotice
// Purpose: Information about an indication subscription
// Context: Indication Delivery
// Returns:
// Parameters:
// handle An opaque ID returned to the application
// expired True=expired; False=expiration pending
// rowData Row information to identify the subscription
F/

struct DmiSubscriptionNoticeIN {
 DmiUnsigned_t handle;
 DmiNodeAddress_t* sender;
 DmiBoolean_t expired;
 DmiRowData_t rowData;
};

program DMI2_CLIENT {
 version RMI_CLIENT_VERSION {
 DmiErrorStatus_t _DmiDeliverEvent(DmiDeliverEventIN) = 0x100;
 DmiErrorStatus_t _DmiComponentAdded(DmiComponentAddedIN) = 0x101;
 DmiErrorStatus_t _DmiComponentDeleted(DmiComponentDeletedIN) = 0x102;
 DmiErrorStatus_t _DmiLanguageAdded(DmiLanguageAddedIN) = 0x103;
 DmiErrorStatus_t _DmiLanguageDeleted(DmiLanguageDeletedIN) = 0x104;
 DmiErrorStatus_t _DmiGroupAdded(DmiGroupAddedIN) = 0x105;
 DmiErrorStatus_t _DmiGroupDeleted(DmiGroupDeletedIN) = 0x106;
 DmiErrorStatus_t _DmiSubscriptionNotice(DmiSubscriptionNoticeIN) = 0x107;
 } = 0x1;
} = 0x20000000;

 Desktop Management Interface Specification v2.01s

January, 2003 237

APPENDIX D - RELATED DOCUMENTS
PC Systems Standard MIF Definition
Release Version 1.1.3
PC Systems Working Committee
27 March 1995

Software Standard Groups Definition
Version 2.0
Software Working Committee
29 November 1995

International Standard
ISO 8859-1
Information processing — 8 bit single-byte coded graphic character set

Desktop Management Interface (DMI) Compliance Guidelines
Version 1.1
September 1995
Steering Committee

Distributed Management Task Force: Enabling your product for manageability with MIF files.
Version 1.1
November 1994
Technical Committee

Distributed Management Task Force: Contacting the DMTF
Version 1.1
November 1994
Steering Committee

LAN Adapter Standard Groups Definition
Version 1.1
April 1994
LAN Adapter Working Group (WG-NIC)

Monitor Standard Groups Definition
Version 1.1
January 1996
Technical Committee

Printer Standard MIF
Version 1.1
Printer Working Group

Finisher Standard MIF
Version 1.1
Large Mailroom Operation Working Group

Systems Standard Groups Definition
Version 1.1
January 1996
Server Working Group

Guide to Writing DCE Applications
2nd Edition, May 1994
John Shirley, Wei Hu, and David Magid
O’Reilly & Associates, Inc.

 Desktop Management Interface Specification v2.01s

January, 2003 238

Distributing Applications Across DCE and Windows NT
1st Edition, November, 1993
Ward Rosenberry and Jim Teague
O’Reilly & Associates, Inc.

Microsoft RPC Programming Guide
March, 1995
John Shirley and Ward Rosenberry
O’Reilly & Associates, Inc.

DCE Security Programming
1st Edition, July 1995
Wei Hu
O’Reilly & Associates, Inc.

Open Software Foundation
World Wide Web Homepage
http://www.osf.org

Power Programming with RPC
John Bloomer
O’Reilly & Associates Inc
1-800-338-6887 US/Canada

International Standard
ISO 10646 Unicode

Desktop Management Interface Specification
Version 1.1
April 1994
Desktop Management Task Force

Secure DMI Overview
DMI Security Working Committee
December 1997
Desktop Management Task Force

Network Security
Kaufman, Perlman, Speciner
1995
Prentice-Hall

NetWare Software Developer's Kit
Novell

Applied Cryptography
Bruce Schneier
1996
Wiley

DMI 2.0, Errata #1
August 6, 1997
Distributed Management Task Force

 Desktop Management Interface Specification v2.01s

January, 2003 239

APPENDIX E - GLOSSARY

Authentication The process of reliably verifying the identity of a communicating party. For
example, a login process is an authentication of a user by an operating system.

Authorization The process by which a provider decides whether to honor a request or not
(usually according to the authenticated identity of the requesting party and the
policy). For example, a file system may check the permission list associated
with each file in order to authorize a user to access a file. This permission list
maps between file operations (like read or write) and user groups.

Attribute A piece of information about a component.

Class string A text string that identifies a group outside the context of a particular compo-
nent declaration. Identical group definitions will have identical class strings.

CMIP Common Management Information Protocol, an OSI-based network man-
agement protocol standardized by ISO.

Command Block The concatenation of data blocks (data structures) that constitute a command
to be sent between management applications and the service provider and be-
tween the Service provider and component instrumentation.

Component Any hardware, software or firmware element contained in (or primarily at-
tached to) a computer system.

Component Instrumentation The executable code that provides DMI management functionality for a par-
ticular component.

Component Interface (CI) The DMI layer used by component instrumentations.

Confirm The final response from a Request.

Confirm Buffer The area of memory where a component instrumentation or service provider
puts response data.

Credentials A set of parameters uniquely identifying a principal in the system. The
credentials may also contain authentication-related parameters (such as
password hash or trusted certificate authority signature).

Direct Interface Method by which a component instrumentation informs the service provider
that it (the component instrumentation) is already running. Rather than
starting the code to service incoming requests, the service provider will use the
already running code.

DMI Desktop Management Interface, the subject of this specification.

DMI Security Indications Special type of DMI indications generated by a DMIv2.0s Service Provider
upon performing certain DMI requests.

DMTF Distributed Management Task Force

Event A type of indication (unsolicited report) that originates from a component in-
strumentation.

Event Generator A hardware or software device that has undergone a change in state or in
which a certain condition of interest has occurred. This change of state or
condition will directly or indirectly cause a new event to be processed by the
service provider which then produces and delivers an Indication data structure
to event consumers that have registered their interest in receiving Indications.

 Desktop Management Interface Specification v2.01s

January, 2003 240

Event Reporter The software entity that causes a new DMI event to be processed by the
service provider. Events are “reported” by calling the service provider entry
point DmiIndicate().

Event Consumer A software entity that has registered with the service provider through the MI
with a non null indication callback procedure address.

Group A collection of attributes. A group with multiple instances is called a table.

Indication An unsolicited report, either from a component instrumentation to the service
provider, or from the service provider to a management application.

Inpersonation The process of faking the identity of a principal in order to receive
authorization. Authentication should prevent this security violation.

Integrity A property of a communication protocol that ensures that data received has not
been modified by an unauthorized principal and is identical to the data that
was transmitted. Integrity mechanisms can be based on a checksum computed
on the transmitted message; messages received with an incorrect checksum are
discarded.

ISO 8859-1 A character encoding standard defined by ISO. Commonly known as
extended ASCII or 8-bit ASCII.

Kerberos An authentication system developed at MIT.

Key An identifier of a particular instance (row) of a table.

Local Interface A DMI interface that can be accessed within the managed system, usually
through a well known entry point in a DLL or a system call. Note that remote
procedure calls from the managed system to itself are not considered a local
interface, and RPC mechanisms apply.

Localized String A version of a display string that is a translation of the original string into an
equivalent string in the appropriate local language.

Logging The process of keeping a record of events that might have some security
significance, such as when access to resources has occurred.

Management Agent A network management protocol agent (such as SNMP or CMOL) that can
communicate to the DMI through the MI.

Management Application Code that uses the MI to request management activity from components.

Management Interface (MI) The DMI layer between management applications and the service provider.

MIF Management Information Format; the format used by the DMI for describing
components.

MIF Database The collection of known MIF files, stored by the service provider (in an imple-
mentation-specific format) for fast access.

MIF File A file that uses the MIF to describe a component.

Octet An 8-bit quantity.

One time authentication The authentication process is done only once in an active session between two
parties, usually at the beginning of the session.

Policy A set of rules that define the actions that various entities can perform on an
object based on their identity. For example, the access control list of a file
represents the policy for accessing the file including which users have read
and write access to the file.

Principal A completely generic term used by the security community to include both
people and computer systems. A principal uniquely represents a security
‘object’ or ‘thing’ or ‘person’.

 Desktop Management Interface Specification v2.01s

January, 2003 241

Privacy A property of a communication protocol that ensures that the data exchanged
can be disclosed only by its intended recipient; that is, the data will remain
opaque for any unauthorized party trying to decode it.

Privileged user A special user identified by the system as having operating system
administration rights, such as an OS administrator or OS backup operator.

Request A command with associated context issued from the management application
to accomplish management.

Response The final response from an Indication.

Role A logical entity that has a name and a set of authorization permissions.
Usually there is a set of principals associated with a role.

Row An instance of a table.

Service provider (SL) The code between the MI and CI that arbitrates access to component instru-
mentation and manages the MIF database.

SNMP Simple Network Management Protocol, an Internet-based network manage-
ment protocol standardized by the IETF.

System A computer.

Table A multidimensional group; a group with more than one instance.

Ticket A data structure constructed by a trusted intermediary to enable two parties to
authenticate.

Transport The 4th Layer in the 7-Layer OSI networking model. IP is an example of a
common network transport.

Unicode A character encoding standard defined by the Unicode Consortium. Unicode
characters are 2 octets each. When the first octet is zero, the second octet
maps to the characters in ISO 8859-1.

User A uniquely-identified principal person user in a multi-user system. A user is
represented by its credentials (see Credentials).

X.509 A CCITT standard for security services within the X.500 directory services
framework. The X.509 encoding of public key certificates has been widely
adopted.

 Desktop Management Interface Specification v2.01s

January, 2003 242

INDEX

access statement, 26, 27
Associated Group, 47, 51
attribute definition, 23, 26, 28
attributes, 11, 16, 22, 27, 45, 239
block model, 117
Bulk Allocation, 138
calls, 119
case sensitivity, 16
CI, 114
CiAddRow, 122
CiDeleteRow, 123
CiGetAttribute, 119
CiGetNextAttribute, 120
CiReleaseAttribute, 122
CiReserveAttribute, 121
CiSetAttribute, 120, 121
class name, 23, 239
class statement, 23, 24, 28
client.IDL, 206
clients, 66, 181
command sequencing, 12
comments, 16
Comments, 16
Common Data Structures, 210
common keyword, 26
common.idl, 186
component definition, 20, 21, 22
component ID, 107
Component ID, 50
component instrumentation, 8, 13, 22, 27, 239
Component Interface, 9, 239
Component Interface (CI), 114
Component Provider Functions, 119
Component Providers, 65
ComponentID group, 41
Components, 117
confirm buffer, 239
convention, 67
counter, 17, 78, 82
counter64, 17
creating event groups, 43
current state, 50
data structure, 84, 115
data structures, 13, 114
data types, 66, 71
database, 104
date, 17
default values, 23, 27, 28
Definitions, 45
description statement, 21, 22
direct interface, 118, 239
displaystring, 17

DLL, 136
DMI Client, 124
DMI data structures, 13
DMI Service Provider, 9
DmiAccessData, 115
DmiAccessDataList, 115
DmiAccessMode, 72
DmiAddComponent, 104
DmiAddGroup, 105
DmiAddLanguage, 104
DmiAddRow, 53, 102, 113
DmiAlloc, 137
DmiAllocPool, 137
DmiAttributeData, 75
DmiAttributeIds, 76
DmiAttributeInfo, 76
DmiAttributeList, 77
DmiAttributeValues, 77
DmiBind, 127, 135, 136
DmiCiCancel, 114
DmiCiInvoke, 114
DmiClassNameInfo, 78
DmiClassNameList, 78
DmiComponentAdded, 110
DmiComponentDeleted, 110
DmiComponentInfo, 78
DmiComponentList, 79
DmiDataType, 72
DmiDataUnion, 79
DmiDeleteComponent, 106
DmiDeleteGroup, 107
DmiDeleteLanguage, 107
DmiDeleteRow, 53, 103, 113
DmiDeliverEvent, 109
DmiEnumInfo, 80
DmiEnumList, 80
DMIERRORACTION, 130, 131
DmiErrorCode, 132
DMIERRORSTATUS, 130
DmiFileDataInfo, 80
DmiFileDataList, 81
DmiFileType, 73
DmiFileTypeList, 81
DmiFree, 137
DmiFreePool, 138
DmiGetAttributes, 53, 98, 99, 100
DmiGetConfig, 91
DmiGetExtendedError, 132
DmiGetVersion, 89, 90
DmiGroupAdded, 112
DmiGroupDeleted, 112
DmiGroupInfo, 82

 Desktop Management Interface Specification v2.01s

January, 2003 243

DmiGroupList, 83
DmiIndicationFuncs, 127
DmiLanguageAdded, 111
DmiLanguageDeleted, 111
DmiListAttributes, 96
DmiListClassNames, 94
DmiListComponents, 92. See
DmiListComponentsByClass, 93
DmiListGroups, 95
DmiListLanguages, 94
DmiMultiRowData, 83
DmiMultiRowRequest, 83
DmiNodeAddress, 84
DmiOctetString, 84
DmiOriginateEvent, 44, 118
DmiRegister, 89
DmiRegisterCiInd, 117
DmiRegisterInfo, 115
DmiRequestMode, 73
DmiRowData, 48, 85
DmiRowRequest, 86
DmiRpcErrorCode, 132
DmiSetAttributes, 53, 101
DmiSetConfig, 89, 91
DmiSetMode, 74
DmiStorageType, 74
DmiString, 86
DmiStringList, 87
DmiSubscriptionNotice, 113
DmiTimeStamp, 87
DmiUnbind, 135
DmiUnregister, 89
DmiUnregisterCi Function, 118
entry point, 44
entry points’, 114
enumerations, 20, 22
ERROR CODES, 89, 90, 91, 93, 94, 95, 96, 97,

98, 99, 101, 102, 103, 104, 105, 106, 107,
108, 110, 111, 112, 113, 117, 118, 119, 120,
121, 122, 123, 135, 137, 138

error handling, 129
Error Model, 129
error status, 126
event, 43
Event Example, 59
Event Generation group, 45, 50. See. See
Event Generation Group, 44
event severity, 58
event solution, 48
Event State Key, 47
event subsystem, 48
event system, 47
Event Type, 50
events, 11, 239
extensions, 124
filter, 56

floating point, 18
gauge, 17, 77, 79, 82, 86
get commands, 13
getPragma, 92. See
Glossary, 239
group, 52
Group Attribute, 44
group definition, 23
groupId. See
groups, 11, 22, 23, 28, 119, 240
id statement, 21, 23, 26, 28
Index, 242
Indication Delivery Interface (client), 233
indications, 11, 12, 240
Instance Data, 48
instrumentation, 114
integer, 16, 17
integer64, 17
interfaces, 109
Introduction and Overview, 7
ISO 3166, 20, 39
ISO 639, 20, 38
ISO 8859-1, 16, 19, 20
key statement, 24
keys, 11, 240
keyword, 16
language statement, 20, 21
list commands, 13
literal escapes, 18
literal strings, 16, 18, 27
locking, 13
management application, 8, 240
Management Applications, 44
Management Interface, 9, 240
Management Interface (MI), 89
Management Interface (server), 222
Management Interface APIs, 66
management protocol, 7, 8, 9, 10, 21, 239, 241
managing node, 58, 113
MI, 89
MIF database, 12, 13, 240
MIF files, 9, 16, 20
MIF grammar, 104
MIF Grammar, 29
MIF Template, 61
name statement, 21, 28
Naming Conventions, 135
node, 14
octetstring, 17
path definition, 20, 22, 27
platform specific, 126
pointers, 66
procedural MI, 14
Provider Functions, 65
registration, 13, 117
Remotable Interface Architecture, 14

 Desktop Management Interface Specification v2.01s

January, 2003 244

remoteable, 124
requestMode, 92
requests, 241
row, 11, 23, 24, 241
row operations, 52
RPC, 124, 126
RPC environment, 66
RPC Server, 136
run-time binding, 124
Runtime linkage, 136
Runtime Linkage, 135
Sample MIF, 33
schema, 104
scope keywords, 16
security, 13
server.idl, 197
servers, 66, 181
Service Layer, 9, 13
service provider, 92
Service provider, 241
Service Provider API, 9
Service Provider Functions, 117
set commands, 13
Software Signature Template, 59
SP Indication Subscription, 53
specific keyword, 26

SPIndicationSubscription, 109
Standard Groups, 41
state-based event, 43
State-based generators, 46
status codes, 177
storage statement, 26
string, 17
Subscriber Addressing, 57
Subscriber ID, 55, 57
Subscriber Transport Type, 54
SubscriberID, 109
Subscription Expiration Warning Date Stamp, 55
table templates, 27
tables, 11, 22, 28
template group, 44
Transport, 57
Transport List, 127
type statement, 26
Unicode, 16, 19, 20, 241
unknown, 41
unsupported, 41
unsupported keyword, 24, 27
value statement, 23, 27, 28
Vendor Specific Message, 48
white space, 16, 18

