2 Document Number: DSP0004
3 Date: 2012-12-13
4 Version: 3.0.0

s Common Information Model (CIM) Metamodel

6 Document Type: Specification
7 Document Status: DMTF Standard

8 Document Language: en-US

10

11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

Common Information Model (CIM) Metamodel DSP0004

Copyright Notice
Copyright © 2012 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, oridentfy any such third party patent rights, or for
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php.

2 DMTF Standard Version 3.0.0

http://www.dmtf.org/about/policies/disclosures.php

31

32

33
34

35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

DSP0004 Common Information Model (CIM) Metamodel
CONTENTS

[0 (=110] (o SRR 7
[T £ [¥Tex 1 o] o R UROPRRRPRRN 8
DOCUMENT CONVENLIONSiiiiiitiiiee et eee e e e et e e e e e e e st ee b e e s e e e s eessab i teeeeeesss b aeaeessensbaaasseesseessrranns 8
Yo 0] o PP TTT T TUPPPPPRIN 10
2 NOIMALIVE FEFEIENCES e e e e s e e e e e e s st e et e e e s s sa s tetaeeeaeeaesantnnneeeeaeeeaanns 10
T =14 0 Eo 3T o o (= T 1 1o 1P 11
4 Symbols and abbreviated teIMIS. e e e e ee e e e e e aaans 13
5 CIM SChemMa BlEMENLS.......ciiiiiiiie e e e e e s e e e e e e s st ae e e e e aesssastetaeeeaeesessnsanneeeaeessaanns 13
70 R 1o (o 1o [8 [110 o JPU PP 13

5.2 Modeling a management QOMAINcooiuriiieiiiiiee et e s e e e s sabr e e e s aneneeas 13

LSTC T |V (oo (=1 ES3F=Y o (o [=Tod g T=1 0 V= OO PP 13

5.4 Common attributes of typed ElemMENtScooiiiiiiiii e 14
541 SCaAlAI . 14

D42 AT AY it ettt a e rar b 14

LR T w1 411N =01/ 011 15
5.5 1 DaAtetiMme...cccc o 16

5.5.2 OCHEtSIING cccceeeeieeeeeee e 18

B5.5.3 SHING i 18

LTS TS || T 19

N S T (ot a 1=1 0 g F= W =1 [T 4 1= £ PR 19
LI TR R =l o 10 14 =T = 1[0 o 19

NS T2 =l o 10 14 1AV Z= 11U 20

5.6.3 PIOPEITY .oooiiiiiiitiii ittt e e 20

LI T |V 1= 1 o o o [PPSR 21

N O T o= L= 1 4 1= =] S PSSP 22

L S G I Y 1 U o LU = PSSP 22

B.B.7 ClaSS it 23

B5.6.8 ASSOCIALION.......ccciiiiii i 23

5.6.9 ReEf@reNCE tYPE....ccoo i 25

N ST O T 1 1S3 =Yg (o7 R = 111 1 25

B.6.11 SHTUCTUINE VAIUEB.......cciieeeete ettt e e e e e e e et e e e e e e s eee it e e e e e e eesnnaanns 25

5.6.12 Qualifier types and qQUANIFIEISc.eeiiiiiiiii e s 25

5.7 Naming of model elements in @ SChEMa...........ccuiiiiiiiii e 26
I % R |V = (o] o 11 o PP OUPPRPT 26

B.7.2 UNIQUENESS ...ttt ettt ettt ettt e e skttt e ekttt e s bbbt e e s bbb e e e s anbb e e e s nanneeas 27

5.8 Schema backwards compatibDility FUIES.............euuiiiiimiiiiiiiiiiiiiiiee e 28

LT O 1Y I ¢ 1= =1 T Yo L= 31
70 R 1o 10 To 18 [1[0 o 32

022 o] = 11T o 32
6.2.1 AUNDULES ... 32

B.2.2 ASSOCIALIONSccceiiiiiie e 32

I T 00 | 4153 1 7=V | £ PSPPSR 33

6.3 Types used within the metamodeloooiiii e 33
B.3.1 ACCESSKING ..evuuiiiiiiiiieeiee ettt e e e e e e e e e e e e e et e e e e e e e e et eaaeeearraaan 34

6.3.2 AGOregationKiNdcuiiiiiiiii e 34

B.3.3 AITAYKING .ttt b bbb e e s nnnaeeas 34

LS TC T S = 1o Yo] (Y- T 34

LS TC TR T T (=Yoo a1 1 Vo 35

6.3.6 PropagationPOlICYKINGccuuiiiiiiiiii et 35

6.3.7 QUAlIfIErSCOPEKING ...ttt s e e s snneeeas 35

LRSS B 11 o [T PT TP 36

6.3.9 UNIIMIt@dNALUIAloovviiiiiieieeee e e e et e e e e e e e eeaaaaas 36

Version 3.0.0 DMTF Standard 3

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

Common Information Model (CIM) Metamodel DSP0004

LR O I U 1 R o =T L =Y 1T S 36

L A [r= U= =T g =T | RPN 36
L A O 111 = YA 2= 1L = S 36

L A O 111 =t To Lo =1 1 o] o PP 37
L B O 1111 @ - T S U PT TP 37
6.4.4 CIMM:COMPIEXVAIUEcoiiiiiiiieiiiite ettt e s 38
6.4.5 CIMM:EIBMENT ..ot e e s et e e e e e e s e anrraeeeeaeas 38
6.4.6 CIMM:IENUMETALIONiiiieiiiiie ettt et e e e e e s e st e e e e e e s e e nnrnaeeeeaeas 39
6.4.7 CIMM:IENUMVAIUE ...ttt e e e et e e e e e s e nnbraeeeaaeas 40
6.4.8 CIMM:INSIANCEVAIUEooiiiiiiiieiiiiie et e e s snneeeas 40
6.4.9 CIMM:LItEralVAIUEeveiiiiiiiii et e e s 41
6.4.10 CIMM:IMENOMviiiiiiiiiii et e e st e e st e e s nae e e s nnnneeas 41
6.4.11 CIMM:MEtNOAREIUINeeiiiiiiiiie it s e e s e e s snneeeas 43
6.4.12 CIMM:INAMEAEIEMENTooiiiiiiii it ee e snnaee s 44
6.4.13 CIMMIIPArAMELEN......cciiiiiiieieeeeee e 44
6.4.14 CIMM: P IMILIVETYPE .. tieee ettt sttt e e s st e e s e e s annneeas 45
6.4.15 CIMM:IPIOPEITY ..eveeiiee ittt e e e e e e e e ee s 45
6.4.16 CIMM:IPIOPEITYSIOt....ciiiiiiiitiiie ettt ettt st e e e e s sanneeas 46
6.4.17 CIMM:QUANTIEE ..eveeiie et e e e e s e st e e e e e e s e snneraaeeeeeas 47
6.4.18 CIMM:QUANTIEITYPE .ttt e s sanneeas 48

L S I O 1111 B = (=TT o = PSSP 49
6.4.20 CIMM:REfEIENCETYPE .cci e 49
L R O 1V Y Y] =T = L PSPPI 50
L A O VY s {8 ! (8= PRSPPI 50
6.4.23 CIMM:ISITUCIUIEVAIUE ...ttt e e e 52
N O 1V Y o I/ o T R SRRSO 52
6.4.25 CIMM:ITYPEUEIEMENTiiiiiiiiiie ittt snaeee s 53
6.4.26 CIMM::ValueSPECIfICALION........cciiiiiiiiiiiiii it 54

T QUAN BT By DS i ———————— 55
A Y o1 i - Tox TP P TR PUPPPPPPPPPPN 56
A2 Vo [| (=To T= 1110] 01 1] 4o [PPSR UOUPRPPPP 56
R T £ 1=\ VA 1Y O LT PP P PP TP PP PPPPPPPPPPPR 57
A = 1111, - o PSPPI 57
S T = 114 - 11 = OSSR 58
28 T O o 11] 1= P 58
LA AR O 1= o= Tox: 11=To EE PP PRRPP 58
8= T 0 1= =T 1]) 1[0 I 59
e T =141 o 7= (o [=T 0 (@]] =T X A 59
0 O T = d o= T 0= 1 = | 59
0 o R - T [PSSP PPPRT 60
45 172 | o SRRSO 60
4 T =1 = o 1 PSPPSR 61
T 14 KBY ..ttt et et e e tet e e et e EeEeRen e EeneEeEeEeneRennnenene R e n e e nennnerenernrnnn e rnrnne 61
A RS F- o] o1 g0 IS] (] 0 To L PP PU PR 62
200 G T 1Y - G 62
4 A /1 SO PRPPP 62
4R T /(oo [=1 (@ o g £=S] o Jo] o (=T o Tod T USSP PRPPP 63
7.18.1 Referencing model elements within @ SChemMa ..., 64

45 T © O PRSP 65
40 © 1| SRS 65
A R @Y= T4 ¢ To [P PPUU RO PRPPPPRPP 65
7.22 PaCKAQEPAN.......e et e e e e e ae e e e e e 66
422 T = L o || PR 67
42 = - o PSSR 67
44T = L= To (U 1] =T PP TUPRRPP 68
A TS - SRR 68

DMTF Standard Version 3.0.0

140
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170

171
172
173
174

175
176
177

178
179

180
181
182
183

184

185
186
187
188

DSP0004 Common Information Model (CIM) Metamodel

T.27 TEIMINAL ..ttt s Rt s R e e et e e e R et e s b et e R n e e s e e rne e e anne e 69
A S TV 1T o PRSP PPPRRP 69
A2 B 11 T PP PPPPPPPP 70
7.30 XMLNAMESPACENAIME.......coiiiiiitiiiieee ettt e e e e e et r e e e s s sttt e e e s e s rnneeeeeesenaes 70
8 Object Constraint LANgUAaQE (OCL)uuuuiiiieeiiiiiiiiieiiee e e s siiietee e e e e e e s sstaaeeeaeaessssststaeeeaeesessnnsnnaeeeeasssaanns 71
S J0 R 60] 1 (= HET PR TP PRPTPRPRPRPRN 71
8.2 TYPE CONFOMMANCEeeiiieitieee ettt b et e skttt e sttt e skttt e s bb e et e s aabb e e e e anneeeas 71
8.3 Navigation ACroSS @SSOCIALIONScccuurrieirriieeiiteee ettt e sttt e e st e e s e e e st e e e s asbe e e e s snbeeeesannneeas 72
8.4 OCL EXPIESSIONS ..eeeuteeiieitteeee ittt e e sttt e e sttt e e s be et e e s bt e et e e b e et e e s bbbt e e s bbbt e e s bb et e e s b be e e e e b e e e s nnnne s 73
8.4.1 Operations and PrECEUEINCEcuueiiiiiiiiii ettt e s sbr e s aneeeas 73
8.4.2 OCL eXPresSiON KEYWOITSccciiuiiiieiiiiieeiiieie ettt ettt e s s e e s snneeas 74
S T B O 1 @4 I oo =1 = L1 0] 1SS 74
8.5 OCL SIABIMENT... ...ttt e e e e 76
8.5.1 CommeNt StAIEMENT..........ouiiiiiiiiiiiiii 76
8.5.2 OCL definition StAEMENTcueiiiiieiiii e 77
8.5.3 OCL invariant CONSIIAINTScoouriiiiiriiieeiie e e e 77
8.5.4 OCL precondition CONSEIAINtccoeviiiiiiiiiicce e 77
8.5.5 OCL postcondition CONSIIAINT.ueiiiiiiiiieiiiiie ettt 77
8.5.6 OCL DOAY CONSIIAINTeiiiiiiiiieiiiiie ettt saaneeas 78
8.5.7 OCL derivation CONSIIAINTccciiuiiiiiiiiiie ittt e e e e sanneeas 78
8.5.8 OCL initialization CONSIIAINTocuuiiiiiiiiii it 78
8.6 OCL CONSLrAINt @XAMPIESoeiiiiiiiiiiiiiie ettt st e sab et et e e e s sabn e e e s nnnneeas 79
ANNEX A (normative) Common ABNF TUIEScoiiiiiiiiiiieiee et 81
N R o (= o1 1= USSP 81
LN 1 1 =To [T £ TP TP PP PPPPPP 81
N Y = £ (o o [USSP 81
ANNEX B (normative) UCS @nd UNICOUEcoiiiiiiieiiiiie ettt e e 82
ANNEX C (normative) CompariSON Of VAIUESuuuiiiiiiiiiiiiiieieiiieiiieieisieierersiersrsrsrerersrnrerern————.. 83
ANNEX D (normative) Programmatic UNITS............uuuuueuuueueuueeisisisisrersesnersesrersrsrsesrnrsesrnnrn——————. 85
ANNEX E (normative) Operations on timestamps and iNterValSccouieiiiiiiie e 92
E.1 Datetime OPEratiONS..........ccciiiiiiiiiiii e 92
ANNEX F (normative) MappingStrings fOrMALScoouueiiiiiiiiieiiii e 95
F.1 Mapping entities of other information Models to CIM ...t 95
F.2 SNMP-related mapping String fOrMALS.........coouiiiiiiiiiii e 95
F.3 General mapping string formatccccooeiiiii 96
ANNEX G (informative) CONSIrAINT INUEXciiiiuiiiiiiiiiiie ittt e et e e saneeas 98
ANNEX H (informative) Changes from CIM VEISION 2uuuuuuuuiuueiriiieininisinreisisisrsisinrsinss.——.. 101
F N NN = G I (T (o] 5 g F= A=) @3 = U Lo T (oo 105
2] o] ToTo =101) VAN PP RT TP PR 106
Figures
Figure 1 — Overview of CIM MetamMOTEloiiiiiiiiiiiii et 31
FIgUre 2 — EXAmMPIE SCREMIE@oiiiiiiiii ettt e sttt e s et e e e nb e e e e nbee e e e neee 73
Figure 3 — OCL CONSEIrAINT @XAMPIEeeiiiiiieiie ettt e e ettt e e e e e e s ebb e e e e e e e e e e e anneeeees 79
Tables
Table 1 — Distinguishable states of a scalar €leMEeNtcooo i 14
Table 2 — Distinguishable states of an array lemMeNnt...........cooiiiiiiiii e 15
Table 3 — ArrayKind @NUMETALIONoiiiiiiiie ettt e e st e e s st et e e e sbe e e e e sabbeeeesbneeeeans 15

Version 3.0.0 DMTF Standard 5

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Common Information Model (CIM) Metamodel DSP0004

LI o] Lo S o 4111}V Y/ 1= PSRRI 16
Table 5 — Propagation graph for qUalIfier VAIUESoocuuiiiiiiiiiiiii et 26
Table 6 — Backwards compatible schema modifiCationsooiiiiiiiiiiiie e 28
Table 7 — Schema modifications that are not backwards compatible............cccccooviiiiiiiiee e, 29
TaADIE 8 — ACCESSKING .ottt e ettt e e e sttt e e e s bb e e e sabb e e e e anbbeeeeabbeeeesbbeeeeabbeeeeans 34
Table 9 — AQGregatioNKING...........ooi it e et e e et e e e st b e e e e e e anreeeeaas 34
Table 10 — DIr@CHONKINGcoi ittt e e et et e e e e s s et b et e eeae e e s e anbebeeeeeaeeesaansneaeeeaaaeeaanns 35
Table 11 — PropagatioNPOlCYKINGoiiiiiiiiiee s set e e e e s s s e e e e e s s st n e e e e e s e ssntnraneeeaeeeannns 35
Table 12 — QUAlIfIErSCOPEKINGueiiieie i e e e e s s s e e ee e e s s s tn b e e e aaeesssnnnnraeeeeeeesaanns 36
Table 13 — Specializations Of LItEralVAlUEccooiiiiiiiii et 41
Table 14 — Required as applied 10 SCAIAIS...........coiiiiiiiie e 68
Table 15 — Required as appli€d 10 @rTAYSuueiieeeiiiiiiriieeieeeissstrireeee e et s srbraereee e s s s s snrarareeeeessssnrareeeaessaanns 68
Table 16 — OCL and CIM MetamOdel tYPES.....ccieeiiiiiiiiiiii ettt e e s s e e e e e s s e e e e e e s sennaaeeeaaeeeannns 72
Lo SR A @ o 1=T 7= 11 o] £ E T OO PP TOPPPPPPPPPPT 74
Table 18 — OCL eXPreSSiON KEYWOITUSoiiiiiiiiei ittt ettt e e e bbe e e e s bbeee e sbneeeeans 74
Table 19 — OCL OPEerationNS ON LYPES ...ccveiiieieiiiee ettt ettt ettt e e e e e e e e e e e 75
Table 20 — OCL operations 0N COECHIONScccoviiiiiiiiee e 75
Table 21 — OCL OPErationNS 0N SIINGS ..oooiveeeeiiiiiee ettt ettt sttt e e st e e e e st b e e e e abbeeeesabbeeeeanbbeeeeaabreeeeans 75
Table D-1 — Standard base units for programmatiC UNILSceoeiiiiiiiiiiiie e 88
Table F-1 — Example MappingStrings MapPiNg........cccveiiiiiiiiiiieieeeeeeeeeeee ettt 97
Table H-1: Removed QUAlIfIErsoooeiiiiii e 103

6 DMTF Standard Version 3.0.0

211

212
213

214
215

216
217

218
219

220
221
222
223
224
225

DSP0004 Common Information Model (CIM) Metamodel

Foreword

The Common Information Model (CIM) Metamodel (DSP0004) was prepared by the DMTF Architecture
Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:
Editor:

1 George Ericson — EMC

Contributors:

1 Andreas Maier — IBM

9 Jim Davis — WBEM Solutions

1 Karl Schopmeyer — Inova Development
1 Lawrence Lamers — VMware

)l

Wojtek Kozaczynski — Microsoft

Version 3.0.0 DMTF Standard 7

http://www.dmtf.org/

226

227
228
229

230
231

232
233

234
235

236
237
238

239
240
241
242

243
244
245
246
247

248
249

250
251

252
253
254

255

256
257
258

259

260
261
262
263

264

Common Information Model (CIM) Metamodel DSP0004

Introduction

This document specifies the DMTF Common Information Model (CIM) Metamodel. The role of CIM
Metamodel is to define the semantics for the construction of conformant models and the schema that
represents those models.

The primary goal of specifying the CIM Metamodel is to enable sharing of elements across independently
developed models for the construction of new models and interfaces.

Modeling requirements and environments are often different and change over time. The metamodel is
further enhanced with the capability of extending its elements through the use of qualifiers.

The Common Information Model (CIM) schema published by DMTF is a schema that is conformant with
the CIM Metamodel. The CIM is a rich and detailed ontology for computer and systems management.

The CIM Metamodel is based on a subset of the UML metamodel (as defined in the Unified Modeling
Language: Superstructure specification) with the intention that elements that are modeled in a UML user
model can be incorporated into a CIM schema with little or no modification.

In addition, any CIM schema can be represented as a UML user model, enabling the use of commonly
available UML tools to create and manage CIM schema.

Document conventions

Typographical conventions

The following typographical conventions are used in this document:
1 Document titles are marked in italics.
1 Important terms that are used for the first time are marked in italics.
1 ABNF rules and OCL text are in monospaced font.

ABNF usage conventions

Format definitions in this document are specified using ABNF (see RFC5234), with the following
deviations:

9 Literal strings are to be interpreted as case-sensitive UCS/Unicode characters, as opposed to
the definition in REC5234 that interprets literal strings as case-insensitive US-ASCII characters.

1 In previous versions of this document, the vertical bar (|) was used to indicate a choice. Starting
with version 2.6 of this document, the forward slash (/) is used to indicate a choice, as defined in
RFC5234.

Naming conventions

Upper camel case is used at all levels for the names of model or metamodel elements (e.g., Element,
TypedElement or ComplexValue). Lower camel case is used for the names of attributes of model or
metamodel elements (e.g., value and defaultValue).

Deprecated material

Deprecated material is not recommended for use in new development efforts. Existing and new
implementations may rely on deprecated material, but should move to the favored approach as soon as
possible. Implementations that are conformant to this specification shall implement any deprecated
elements as required by this document in order to achieve backwards compatibility.

8 DMTF Standard Version 3.0.0

265

266
267
268

269
270

271

272
273
274
275
276
277

278

279
280
281

282
283

284

DSP0004 Common Information Model (CIM) Metamodel

The following typographical convention indicates deprecated material:

DEPRECATED
Deprecated material appears here.

DEPRECATED

In places where this typographical convention cannot be used (for example, tables or figures), the
"DEPRECATED" label is used alone.

Experimental material

Experimental material has yet to receive sufficient review to satisfy the adoption requirements set forth by
the DMTF. Experimental material is included in this document as an aid to implementers of
implementations conformant to this specification who are interested in likely future developments.
Experimental material may change as implementation experience is gained. It is likely that experimental
material will be included in an upcoming revision of the document. Until that time, experimental material is
purely informational.

The following typographical convention indicates experimental material:

EXPERIMENTAL
Experimental material appears here.

EXPERIMENTAL

In places where this typographical convention cannot be used (for example, tables or figures), the
"EXPERIMENTAL" label is used alone.

Version 3.0.0 DMTF Standard 9

285

286

287
288
289
290
201

292
293

294
295

296

297
298
299
300

301
302

303
304
305
306
307

308
309

310
311

312
313

314
315

316
317
318

319
320

321
322

Common Information Model (CIM) Metamodel DSP0004

Common Information Model (CIM) Metamodel

1 Scope

This document describes the Common Information Model (CIM) Metamodel, which is based on the
Unified Modeling Language: Superstructure specification. CIM schemas represent object-oriented models
that can be used to represent the resources of a managed system, including their attributes, behaviors,
and relationships. The CIM Metamodel includes expressions for common elements that must be clearly
presented to management applications (for example, classes, properties, methods, and associations).

This document does not describe CIM schemas or languages, related schema implementations,
application programming interfaces (APIs), or communication protocols.

Provisions, (ie.s hal | , s houl dconsameens of the CIM matagedel, for example CIM schema
developers.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated or
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.
For references without a date or version, the latest published edition of the referenced document
(including any corrigenda or DMTF update versions) applies.

ANSI/IEEE 754-2008, IEEE® Standard for Floating-Point Arithmetic, August 29 2008
http://ieeexplore.ieee.org/serviet/opac?punumber=4610933

EIA-310, Cabinets, Racks, Panels, and Associated Equipment
http://global.ihs.com/doc_detail.cfm?currency code=USD&customer id=21254B2B350A&0shid=21254B2
B350A&shopping cart_id=21254B2B350A&rid=Z56&mid=5280&country code=US&lang code=ENGL&it
em_s key=00032880&item key date=940031&input_doc number=&input _doc title=Cabinets%2C%20R
acks%2C%20Panels

IETF RFC3986, Uniform Resource Identifiers (URI): Generic Syntax, August 1998
http://tools.ietf.org/html/rfc3986

IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008
http://tools.ietf.org/html/rfc5234

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards
http://isotc.iso.org/livelink/livelink.exe?func=IlI&objld=4230456&0bjAction=browse&sort=subtype

ISO 1000:1992, Sl units and recommendations for the use of their multiples and of certain other units
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue detail.htm?csnumber=5448

ISO 8601:2004 (E), Data elements and interchange formats — Information interchange — Representation
of dates and times
http://www.iso.org/iso/iso_catalogue/catalogue tc/catalogue detail.htm?csnumber=40874

IEC 80000-13:2008, Quantities and units - Part 13: Information science and technology,
http://www.iso.org/iso/iso _catalogue/catalogue tc/catalogue detail.htm?csnumber=31898

ISO/IEC 10646:2012, Information technology — Universal Coded Character Set (UCS)
http://standards.iso.org/ittf/PubliclyAvailableStandards/c056921 ISO IEC 10646 2012.zip

10 DMTF Standard Version 3.0.0

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://global.ihs.com/doc_detail.cfm?currency_code=USD&customer_id=21254B2B350A&oshid=21254B2B350A&shopping_cart_id=21254B2B350A&rid=Z56&mid=5280&country_code=US&lang_code=ENGL&item_s_key=00032880&item_key_date=940031&input_doc_number=&input_doc_title=Cabinets%2C%20Racks%2C%20Panels
http://global.ihs.com/doc_detail.cfm?currency_code=USD&customer_id=21254B2B350A&oshid=21254B2B350A&shopping_cart_id=21254B2B350A&rid=Z56&mid=5280&country_code=US&lang_code=ENGL&item_s_key=00032880&item_key_date=940031&input_doc_number=&input_doc_title=Cabinets%2C%20Racks%2C%20Panels
http://global.ihs.com/doc_detail.cfm?currency_code=USD&customer_id=21254B2B350A&oshid=21254B2B350A&shopping_cart_id=21254B2B350A&rid=Z56&mid=5280&country_code=US&lang_code=ENGL&item_s_key=00032880&item_key_date=940031&input_doc_number=&input_doc_title=Cabinets%2C%20Racks%2C%20Panels
http://global.ihs.com/doc_detail.cfm?currency_code=USD&customer_id=21254B2B350A&oshid=21254B2B350A&shopping_cart_id=21254B2B350A&rid=Z56&mid=5280&country_code=US&lang_code=ENGL&item_s_key=00032880&item_key_date=940031&input_doc_number=&input_doc_title=Cabinets%2C%20Racks%2C%20Panels
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5234
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=5448
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=31898
http://standards.iso.org/ittf/PubliclyAvailableStandards/c056921_ISO_IEC_10646_2012.zip

323
324

325
326

327
328

329
330

331
332

333

334
335

336
337
338
339
340
341

342
343

344
345
346

347

348
349
350

351
352

353
354

355
356

357
358

359
360

361
362

DSP0004 Common Information Model (CIM) Metamodel

OMG, Object Constraint Language, Version 2.3.1
http://www.omg.org/spec/OCL/2.3.1

OMG, Unified Modeling Language: Superstructure, Version 2.3
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

The Unicode Consortium, Unicode 6.1.0, Unicode Standard Annex #15: Unicode Normalization Forms
http://www.unicode.org/reports/tr15/tr15-35.html

W3C, Character Model for the World Wide Web 1.0: Normalization, Working Draft, 27 October 2005,
http://www.w3.org/TR/charmod-norm/

W3C, NamingContexts in XML, W3C Recommendation, 14 January 1999,
http://www.w3.0rg/TR/REC-xml-names

3 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
are defined in this clause.

The terms "shall” ("required™), "shall not", "should" ("recommended"), "should not" ("not recommended"),
"may"”, "need not" ("not required"), "can” and "cannot" in this document are to be interpreted as described
in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term,
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. ISO/IEC
Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional alternatives

shall be interpreted in their normal English meaning.

The terms "clause”, "subclause”, "paragraph”, and "annex" in this document are to be interpreted as
described in ISO/IEC Directives, Part 2, Clause 5.

The terms "normative” and "informative" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do
not contain normative content. Notes and examples are always informative elements.

The following additional terms are used in this document.

3.1
Cardinality
the number of elements

3.2
CIM Metamodel

the metamodel described in this document, defining the semantics for the construction of schemas that
conform to the metamodel

3.3
CIM schema

a formal language representation of a model, (including but not limited to CIM Schema), that is
conformant to the CIM Metamodel

3.4
CIM Schema

the CIM schema with schema name "CIM" that is published by DMTF. The CIM Schema defines an
ontology for management.

Version 3.0.0 DMTF Standard 11

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.unicode.org/reports/tr15/tr15-35.html
http://www.w3.org/TR/charmod-norm/
http://www.w3.org/TR/REC-xml-names

363
364
365

366
367
368

369
370
371

372

373
374

375

376
377

378
379

380
381
382

383

384
385
386

387
388

389

390
391
392

393
394
395

396
397
398

399
400
401

Common Information Model (CIM) Metamodel DSP0004

35
conformant
in agreement with the requirements and constraints of a specification

3.6
implementation
a realization of a model or metamodel

3.7
instance
the run-time realization of a class from a model

3.8

key
key property
a property whose value uniquely identifies an instance within some scope of uniqueness

3.9
model

set of entities and the relationships between them that define the semantics, behavior and state of that
set

3.10
managed resource
a resource in the managed environment

NOTE This was called "managed object" in CIM v2.

3.11
multiplicity
the allowable range for the number of instances associated to an instance

3.12
Null

a state of a typed element that indicates the absence of value

3.13
subclass
a specialized class

3.14
subtype
a specialized type

3.15
superclass
a generalization of a class (i.e., a more general class)

3.16
supertype
a generalization of a type (i.e., a more general type)

12 DMTF Standard Version 3.0.0

402
403
404

405
406

407
408
409

410
411
412

413
414
415

416
417
418

419

420

421
422
423

424
425
426
427
428

429

430
431

432

433
434
435
436
437

DSP0004 Common Information Model (CIM) Metamodel

3.17
Unified Modeling Language
a modeling language defined by the Unified Modeling Language (UML)

4 Symbols and abbreviated terms

The following abbreviations are used in this document.

4.1
CIM
Common Information Model

4.2
OMG
Object Management Group (see: http://www.omg.org)

4.3
OCL
Object Constraint Language

4.4
UML
Unified Modeling Language

5 CIM schema elements

5.1 Introduction

This clause is targeted at developers of CIM schemas and normatively defines the elements used in their
construction. The elements defined in this clause are conformant with the requirements of the CIM
Metamodel (see clause 6), but this clause does not define all constraints on these elements.

5.2 Modeling a management domain

Managed resources are modeled as classes.

State of a resource is modeled as properties of a class.
Behaviors of a resource are modeled as methods of a class.

Relationships between resources are modeled as associations.

5.3 Models and schema

A model is a conceptual representation of something and a schema is a formal representation of a model,
with the elements of a schema representing the essential concepts of the model.

Each schema provides a naming context for the declaration of schema elements.

The name of a schema should be globally unique across all schemas (in the world). To help achieve this
goal, the schema name should include a copyrighted, trademarked or otherwise unique name that is
owned by the business entity defining the schema, or is a registered ID that is assigned to that business
entity by a recognized global authority. However, given that there is no central registry of schema names,
this naming mechanism does not necessarily guarantee uniqueness of schema names.

Version 3.0.0 DMTF Standard 13

http://www.omg.org/

438
439

440
441

442

443
444
445

446

447
448

449

450
451
452

453

454

455
456
457

458

459
460
461

462
463

Common Information Model (CIM) Metamodel DSP0004

The CIM Schema published by DMTF is an example of a particular schema that conforms to the CIM
Metamodel.

Each schema has a version that contains monotonically increasing major, minor, and update version
numbers.

5.4 Common attributes of typed elements

Certain of the model elements are not types themselves, but have a type. These elements are: properties
(including references), method return values and parameters, and qualifier types. Unless otherwise
restricted, any type may be used for these elements.

Collectively, elements that hold values of a type are referred to as typed elements.

Each typed element specifies whether it is intended to be accessed as an array or a scalar. The elements
of an array each have the specified type.

5.4.1 Scalar
If a typed element is a scalar (i.e., not an array), it can have at most one value, and may be required to

have a value (for more information on the required qualifier, see 7.25). The default is that a value is not
required. Table 1 defines distinguishable states of a scalar element.

Table 11 Distinguishable states of a scalar element

Element Value
Value Represented | Specification | Description
Not present No No The element is not represented and shall be assumed to
have no value unless otherwise specified.
Null Yes No The element is specified with no value.
X Yes Yes The value is x.

5.4.2 Array

If the array is required, it shall have a value (for more information on the required qualifier, see 7.25). If
the array is not required, it may have no value (e.g., Null). If an array has a value, it contains a
consecutive sequence of zero or more elements.

If an array element is present, it shall either have a value consistent with its type or have no value.

The size of an implemented, non-Null array is the count of the number of elements. Indexes into the
sequence of elements start at zero and are monotonically increasing by one. (In other words, there are no
gaps.) Each element has a value of the type specified by the array or is Null.

Table 2 defines distinguishable states of an array. The states depend on whether or not the array element
is represented and if so, on the values of elements of the array.

14 DMTF Standard Version 3.0.0

464

465
466

467

468

469
470

471
472

473
474
475

DSP0004 Common Information Model (CIM) Metamodel
Table 27 Distinguishable states of an array element
Element Values

Value Represented | Specified | Description

N.A. No No The array element is not represented and shall be assumed to have
no value unless otherwise specified.

Null Yes No The array is specified with no value.

[1 Yes No The array has no elements.

[Null] Yes Yes The array has one element specified with no value.

[™] Yes Yes The array has one element specified with an empty string value.

["X", Null, "y" Yes Yes Thle array has multiple elements, some may be specified with no

value.

An array shall also specify the type of array. The array type is specified by the ArrayType qualifier (see
7.3) and by the ArrayKind enumeration (see Table 3).

Table 31 ArrayKind enumeration

Enumeration
value

Description

bag The set of element values may contain duplicates, the order of elements is not preserved, and
elements may be removed or added. (Equivalent to OCL::BagType.)

set The set of element values shall not contain duplicates, the order of elements is not preserved, and
elements may be removed or added. (Equivalent to OCL::SetType.)

dered The set of element values may contain duplicates and elements may be removed or added. Except

ordere on element addition, removal, or on element value change, the order of elements is preserved.

orderedSet The set of element values shall not contain duplicates and elements may be removed or added. The
order of elements is preserved, except on element addition, removal, or on element value change.
(Equivalent to OCL::OrderedSetType.)

indexed The set of element values may contain duplicates, the order of elements is preserved, and individual

elements shall not be removed or added. (Equivalent to OCL::SequenceType.)

5.5 Primitive types

Primitive types are predefined by the CIM Metamodel and cannot be extended at the model level. Future
minor versions of this document will not add new primitive types.

NOTE Primitive types were termed "intrinsic types" in version 2 of this document.

Languages that conform to the CIM Metamodel shall support all primitive types defined in this subclause.

Table 4 lists the primitive types and describes the value space of each type. Types marked as abstract
cannot be used for defining elements in CIM schemas. Their purpose is to be used in constraints that
apply to all concrete types derived directly or indirectly from them.

Version 3.0.0

DMTF Standard 15

476
477
478

479

480

481
482
483
484

Common Information Model (CIM) Metamodel

DSP0004

There is no type coercion of values between these types. For example, if a CIM method has an input
parameter of type uint32, the value provided for this parameter when invoking the method needs to be of

type uint32.
Table 41 Primitive types

Type Name Abstract | Supertype Meaning and Value Space

boolean No a boolean. Value space: True, False

datetime No a timestamp or interval in CIM datetime format. For details,
see 5.5.1.

integer Yes numeric an abstract base type for any positive or negative whole
number.

numeric Yes an abstract base type for any numbers.

octetstring No a sequence octets representing the value having an
arbitrary length from zero to a CIM Metamodel
implementation-defined maximum. For details see 5.5.2.

real Yes numeric an abstract base type for any IEEE-754 floating point
number.

real32 No real a floating-point number in IEEE-754 Single format.

real64 No real a floating-point number in IEEE-754 Double format.

signedinteger Yes integer an abstract base type for signed whole numbers.

sint8 No signedinteger a signed 8-bit integer. Value space: -2 ~ 7 ...-12 "7

sint16 No signedinteger a signed 16-bit integer. Value space: -2~ 15 ...- "1

sint32 No signedinteger a signed 32-bit integer. Value space: -2 * 31 ...-2 ™ 3

sint64 No signedinteger a signed 64-bit integer. Value space: -2 * 63 ...-R " 6

string No a sequence of UCS characters with arbitrary length from
zero to a CIM Metamodel implementation-defined
maximum. For details see 5.5.3.

uint8 No unsignedinteger |anunsigned8-bi t i nteger. Vallue s

uint16 No unsignedinteger |anunsigned 16-bi t i nt eger . Val-de {

uint32 No unsignedinteger |anunsigned32-bi t i nteger. Val-de {

uint64 No unsignedinteger |anunsigned64-bi t i nteger. Val-de g

unsignedinteger | Yes integer an abstract base type for unsigned whole numbers.

5.5.1 Datetime

Values of type datetime are timestamps or intervals. If the value is representing a timestamp, it specifies a
point in time in the Gregorian calendar, including time zone information, with varying precision up to
microseconds. If the value is representing an interval, it specifies an amount of time, with varying
precision up to microseconds.

16

DMTF Standard

Version 3.0.0

485

486
487

488

489
490

491
492

493
494
495
496
497
498
499
500
501
502
503
504

505
506
507

508

509
510

511
512
513
514
515
516

DSP0004 Common Information Model (CIM) Metamodel

5.5.1.1 Datetime timestamp format

Datetime is based on the proleptic Gregorian calendar, as defined in "The Gregorian calendar”, which is
section 3.2.1 of ISO 8601.

Note Timestamp values defined here do not have the same formats as their equivalents in ISO 8601.

Because timestamp values contain the UTC offset, the same point in time can be specified using different
UTC offsets by adjusting the hour and minute fields accordingly. The UTC offset shall be preserved.

For example, Monday, May 25, 1998, at 1:30:15 PM EST is represented in datetime timestamp format
19980525133015.0000000 - 300.

The year 1BC is represented as year 0000 and 0001 representing 1AD.
Values of type datetime have a fixed-size string-based format using US-ASCII characters.
The format for timestamp values is:
yyyymmddhhmmss.mmmmmmsutc
The meaning of each field is as follows:
yyyy is a four-digit year.
mmis the month within the year (starting with 01).
dd is the day within the month (starting with 01).
hh is the hour within the day (24-hour clock, starting with 00).
mmis the minute within the hour (starting with 00).
ss is the second within the minute (starting with 00).

mmmmmsnthe microsecond within the second (starting with 000000).

=A =/ =4 =4 A4 -4 -4 -3

s is a + (plus) or — (minus), indicating that the value is a timestamp, and indicating the direction of
the offset from Universal Coordinated Time (UTC). A + (plus) is used for time zones east of the
Greenwich meridian, and a — (minus) is used for time zones west of the Greenwich meridian.

1 ut c is the offset from UTC, expressed in minutes.

Values of a datetime timestamp formatted field shall be zero-padded so that the entire string is always 25
characters in length.

Datetime timestamp fields that are not significant shall be replaced with the asterisk (*) character. Fields
that are not significant are beyond the resolution of the data source. These fields indicate the precision of
the value and can be used only for an adjacent set of fields, starting with the least significant field
(mmmmrpand continuing to more significant fields. The granularity for asterisks is always the entire field,
except for the mmmmndiald, for which the granularity is single digits. The UTC offset field shall not contain
asterisks.

Version 3.0.0 DMTF Standard 17

517

518
519

520
521
522
523
524
525
526
527
528
529

530
531

532

533
534

535
536
537
538
539
540

541
542

543
544

545
546

547
548

549

550
551
552

553

Common Information Model (CIM) Metamodel DSP0004

5.5.1.2 Datetime interval format

NOTE Interval is equivalent to the term "duration” in ISO 8601. Interval values defined here do not have the same
formats as their equivalents in ISO 8601.

The format for intervals is:
ddddddddhh mmss.mmmmmm:000
The meaning of each field is:
1 dddddddd is the number of days.
1 hh is the remaining number of hours.
1 mmis the remaining number of minutes.
1 ss is the remaining number of seconds.
T mmmmnsthe remaining number of microseconds.
1 @ (colon) indicates that the value is an interval.

1 000 (the UTC offset field) is always zero for interval values.

For example, an interval of 1 day, 13 hours, 23 minutes, 12 seconds, and 0 microseconds would be
represented as follows:

00000001132312.000000:000

Datetime interval field values shall be zero-padded so that the entire string is always 25 characters in
length.

Datetime interval fields that are not significant shall be replaced with the asterisk (*) character. Fields
that are not significant are beyond the resolution of the data source. These fields indicate the precision of
the value and can be used only for an adjacent set of fields, starting with the least significant field
(mmmmrpand continuing to more significant fields. The granularity for asterisks is always the entire field,
except for the mmmmndiald, for which the granularity is single digits. The UTC offset field shall not contain
asterisks.

For example, if an interval of 1 day, 13 hours, 23 minutes, 12 seconds, and 125 milliseconds is measured
with a precision of 1 millisecond, the format is: 00000001132312.125***:000

An interval value is valid if the value of each single field is in the valid range. Valid values shall not be
rejected by any validity checking.

5.5.2 OctetString

The value of an octet string is represented as a sequence of zero or more octets (8-bit bytes).

An element of type octet string that is Null is distinguishable from the same element having a zero-length
value, (i.e. the empty string).

5.5.3 String

Values of type string are sequences of zero or more UCS characters with the exception of UCS character
U+0000. The UCS character U+0000 is excluded to permit implementations to use it within an internal
representation as a string termination character.

18 DMTF Standard Version 3.0.0

554
555

556
557

558
559

560
561

562
563
564
565
566
567
568

569

570

571
572

573

574

575
576
577

578
579
580

581
582

583
584

585
586
587
588
589

590

5901
592

593

DSP0004 Common Information Model (CIM) Metamodel

The semantics depends on its use. It can be a comment, computational language expression, OCL
expression, etc. It is used as a type for string properties and expressions.

An element of type string that is Null is distinguishable from the same element having a zero-length value,
(i.e. the empty string).

For string-typed values, CIM Metamodel implementations shall support the character repertoire defined
by ISO/IEC 10646. (This is also the character repertoire defined by the Unicode Standard.)

The UCS character repertoire evolves over time; therefore, it is recommended that CIM Metamodel
implementations support the latest published UCS character repertoire in a timely manner.

UCS characters in string-typed values should be represented in Normalization Form C (NFC), as defined
in The Unicode Standard, Annex #15: Unicode Normalization Forms. UCS characters in string-typed
values shall be represented in a coded representation form that satisfies the requirements for the
character repertoire stated in this subclause. Other specifications are expected to specify additional rules
on the usage of particular coded representation forms (see DSP0200 as an example). In order to
minimize the need for any conversions between different coded representation forms, it is recommended
that such other specifications mandate the UTF-8 coded representation form (defined in ISO/IEC 10646).

See ANNEX B for a summary on UCS characters.

5.5.4 Null

Null is a state of a typed element that indicates the absence of value. Unless otherwise restricted any
typed element may be Null.

5.6 Schema elements

5.6.1 Enumeration

An enumeration is a type with a literal type of string or integer and may have zero or more qualifiers (see
5.6.12). It describes a set of zero or more hamed values. Each named value is known as an enumeration
value and has the literal type of the enumeration.

An enumeration may be defined at the schema level with a schema unique name or within a structure,
(including class and association), with a structure unique name. The name of an enumeration is used as
its type name.

An enumeration may directly inherit from one other enumeration. The literal type of a derived enumeration
shall be the literal type of the base enumeration.

In an inheritance relationship between enumerations, the more general enumeration is called the
supertype, and the more specialized enumeration is called the subtype.

A derived enumeration inherits all enumeration values exposed by its supertype enumeration (if any).
These inherited enumeration values add to the enumeration values defined within the derived
enumeration. The combined set of enumeration values defined and inherited is called the set of
enumeration values exposed by the derived enumeration. There is no concept of overriding enumeration
values in derived enumerations (as there is for properties of structures).

An enumeration that exposes zero enumeration values shall be abstract.

The names of all exposed enumeration values shall be unique within the defining enumeration. The
following ABNF defines the syntax for local and schema level enumeration hames.

localEnumeration Name = IDENTIFIER

Version 3.0.0 DMTF Standard 19

594

595

596
597
598
599

600

601

602
603

604
605

606
607

608

609
610

611

612

613
614
615

616

617
618
619

620

621

622
623

624
625

626
627

628
629

Common Information Model (CIM) Metamodel

enumeration Name = schemaName " " IDENTIFIER

5.6.2 EnumValue

DSP0004

An enumeration value is a hamed value of an enumeration and may have zero or more qualifiers (see
5.6.12). If a value is not specified for an enumeration with a literal type of string, the value shall be set to
the name of the enumeration value. A value shall be specified for an enumeration with a literal type of
integer. The following ABNF defines the syntax for enumeration value names.

EnumValue Name = IDENTIFIER

5.6.3 Property

A property is a named and typed structural feature of a structure, (including class and association).
Properties may be scalars or arrays and may have zero or more qualifiers (see 5.6.12).

A property shall have a unique name within the properties of its defining type, including any inherited

properties. The following ABNF defines the syntax for property names.

property Name = IDENTIFIER

A property declaration may define a default value.

5.6.3.1 Key property

A property may be designated as a key. Each such property shall be a scalar primitive type (see 5.5) and

shall not be Null.

Properties designated as containing an embedded object (see 7.9) shall not be designated as key.

5.6.3.2 Property attributes

Accessibility to a
access the property

5.6.3.3 Property override

property’s

s values

values may benadesignated
access. This designation is a requirement on a CIM schema implementation to constrain the ability to

as

speci fied, and

A property may override a property with the same name that is defined in a supertype of the containing
type. Such a property in the subtype is called the overriding property, and the designated property is

called the overridden property.

Qualifiers of the overridden property are propagated to the overriding property as described in 5.6.12.

The overriding and the overridden properties shall be consistent, as follows:

1 The type of a structure, (including class and association), typed property shall be the same as,
or a subtype of the overridden property.

1 The type of an enumeration typed property shall be the same as, or a supertype of the

overridden property.

1 The type of a primitive typed property shall be the same as the overridden property.

1 The overridden and overriding property shall be both array or both scalar.

An overridden property is not exposed. An overriding property is exposed and inherits the qualifiers of the

overridden property as described in 5.6.12.

does

20

DMTF Standard

Version 3.0.0

n o f

630

631
632

633
634
635

636

637
638
639

640
641

642
643

644
645

646
647
648

649
650
651

652

653
654
655

656
657

658

659
660

661
662

663
664

665

666
667

DSP0004 Common Information Model (CIM) Metamodel

5.6.3.4 Reference property

A reference property is a property that has a type that is declared as a reference to a named class, and
has values that reference instances of that class (this includes instances of its subclasses).

A reference property is handled differently depending on whether it belongs to an association or not.
A reference property declared in a structure or non-association class shall be either a scalar or an array.

A reference property declared in an association shall be a scalar; for more details see 5.6.8.

5.6.4 Method

A method specifies a behavior of a class. It shall have a unique name within the methods of its defining
class, including any inherited method. A method may have zero or more qualifiers (see 5.6.12), some of
which apply specifically to the method return, while others apply to the method as a whole.

Method invocations can cause changes in property values of the defining class instance and might also
affect changes in the modeled system and as a result in the existence or values of other instances.

The following ABNF defines the syntax for method names.

method Name = IDENTIFIER

A method may have at most one method return that may be a scalar or array. If none, the method is said
to be "void". The method return defines the type of the return value passed out of a method.

A method may have zero or more parameters (see 5.6.5).
A method may be designated as static.
A non-static method can be invoked on an instance of the class in which it is defined or its subclasses.

A static method can be invoked on class in which it is defined, on a subclass of that class or on an
instance of that class or its subclasses. When invoked on an instance, a CIM schema implementation of a
static method shall not depend on the state of that instance.

5.6.4.1 Method override

A method may override a method with the same name that is defined in a superclass of the containing
class. Such a method in the subclass is called the overriding method, and the designated method is
called the overridden method.

Quialifiers of the overridden method (including its parameters) are propagated to the overriding method as
described in 5.6.12.

The return values of overriding and the overridden methods shall be consistent, as follows:

1 The return type of an overriding method that has a return type of a structure (including a class or
association) shall be the same as or a subtype of the return type of the overridden method.

1 The return type of an overriding method that has a return type of an enumeration shall be the
same as or a supertype of the return type of the overridden method.

1 The return type of an overriding method that has a return type of a primitive type shall be the
same as the return type of the overridden method.

1 The overridden and overriding method return shall be both array or both scalar.

The parameter having the same name in both an overriding and overridden method shall be consistent,
as follows:

Version 3.0.0 DMTF Standard 21

668

669
670

671
672
673

674
675

676
677

678

679
680

681

682
683

684

685
686
687

688
689
690

691
692

693

694
695

696

697
698
699

700
701

702
703
704
705

Common Information Model (CIM) Metamodel DSP0004

1 Aninput parameter of an overriding method that has a type of

— astructure (including a class or association) shall be the same as, or a supertype of, the
type of the overridden parameter

— an enumeration shall be the same as, or a subtype of, the type of the overridden parameter
— aprimitive type shall be the same as the type of the overridden parameter
1 Anoutput parameter of an overriding method that has a type of

— astructure (including a class or association) shall be the same as, or a subtype of, the type
of the overridden parameter

— an enumeration shall be the same as, or a supertype of, the type of the overridden
parameter

— aprimitive type shall be the same as the type of the overridden parameter

1 A parameter of an overriding method that is both input and output shall be the same as the type
of the overridden parameter.

1 The overridden and overriding parameter shall be both array or both scalar.

An overridden method is not exposed by the overriding class or association. An overriding method is
exposed and inherits the qualifiers of the overridden method as described in 5.6.12.

5.6.5 Parameter

A parameter is a named and typed specification of an argument passed into or out of an invocation of a
method. Each parameter has a name that is unique within the method and zero or more qualifiers (see
5.6.12). The following ABNF defines the syntax for parameter names.

parameter Name = IDENTIFIER
A parameter may be a scalar or an array.
A parameter has a direction (input, output, or both).

An input parameter that specifies a default value is referred to as optional. Optional parameters may be
omitted on a method invocation. If omitted, a CIM schema implementation shall assume the default.

5.6.6 Structure

A structure is a type that models a complex value. A structure has zero or more properties (see 5.6.3) and
zero or more qualifiers (see 5.6.12).

A structure shall not have methods.

A structure may be defined at the schema level with a schema-unique name or within a structure, class,
or association with a structure-unique name (see 5.7.2). The name of a structure is used as its type
name. The following ABNF defines the syntax for local and schema level structure names.

localS tructureName = IDENTIFIER
structureName = schemaName " " IDENTIFIER

A structure may define structures and enumerations (see 5.6.1). Such structure and enumeration
definitions are called local. Local structures and enumerations can be used as the types of elements in
their defining structure or its subtypes, but they cannot be used outside of their defining structure and its
subtypes.

22 DMTF Standard Version 3.0.0

706
707

708
709

710

711
712
713

714

715

716
717
718
719
720

721
722

723

724
725
726

727
728

729
730
731

732
733
734

735

736
737

738
739

740
741

742

743
744
745

DSP0004 Common Information Model (CIM) Metamodel

A structure may directly inherit from one other structure. A structure (not a class) shall not inherit from a
class.

In an inheritance relationship between structures, the more general structure is called the supertype, and
the more specialized structure is called the subtype.

The set of properties defined and inherited is called the set of properties exposed by the structure.

If a structure has a supertype, all properties exposed by the supertype are inherited by the structure. The
subtype then has both the properties it defines and the inherited properties. See 5.6.3.3 for a discussion
about the overridden properties.

A structure may be abstract. Abstract structures cannot be used as types of elements.

5.6.7 Class

A class models an aspect of a managed resource. A class is a type that has zero or more properties,
methods, and qualifiers and may define local structures and enumerations (see 5.6.1). Unless defined
differently, all of the rules for structures (see 5.6.6) apply to classes. The methods of a class represent
exposed behaviors of the managed resource it models, and its properties represent the exposed state or
status of that resource.

A class shall be defined at the schema level. Within that schema, the class name shall be unique (see
5.7.2) and is used as its type name. The following ABNF defines the syntax for class names.

className = schemaName "_" IDENTIFIER

A class may inherit from either one structure or from one class. In an inheritance relationship between
classes, the more general class is called the superclass, and the more specialized type is called the
subclass.

A class (not an association) shall not inherit from an association.
The set of methods defined and inherited is called the set of methods exposed by the subclass.

If a class has a superclass, all methods exposed by the superclass are inherited by the class. The
subclass then has both the elements it defines and the inherited elements. See clause 5.6.4.1 for a
discussion of method overriding.

A class may be abstract. Abstract classes cannot have instances and cannot be used as a type of an
element. Concrete classes shall expose one or more key properties; abstract classes may expose one or
more key properties.

A realization of a concrete class is a separately addressable instance.

The class name and the name value pairs of all key properties in an instance shall uniquely identify that
instance in the scope in which it is instantiated.

The values of key properties are determined once at instance creation time and shall not be modified
afterwards. For a comparison of instance values, see ANNEX C.

The value of a property in an instance of a class shall be consistent with the declared type of the property.
If the property is required (see 7.25), then its value shall be non-Null; otherwise, it may be Null.

5.6.8 Association

An association is a type that models the relationship between two or more managed resources. An
association instance represents a relationship between instances of the related classes. The related
classes are specified by the reference properties of the association.

Version 3.0.0 DMTF Standard 23

746
747
748

749

750
751
752

753

754
755
756
757

758
759

760
761
762
763

764
765
766

767
768
769

770

771
772
773

774
775

776

777
778
779

780

781
782
783

784
785
786

787
788
789
790

Common Information Model (CIM) Metamodel DSP0004

The semantics of an association are different from that of a class having one or more properties of type
reference. In an association, all references are endpoints of the associations. In a class, each reference is
an independent pointer to an instance.

In an association each reference property shall be a scalar and all reference properties shall not be Null.

An association has zero or more properties, methods, and qualifiers and may define local structures and
enumerations (see 5.6.1). Unless defined differently, all of the rules for classes (see 5.6.7) apply to
associations. The name of an association is used as its type name.

References, as with all properties of an association, are members of the association.

The reference properties may also be keys of an association. In associations, where the set of references
are all keys and no other properties are keys, at most one instance is possible between a unique set of
referenced instances. Otherwise it is possible to have multiple association instances between the same
set of instances.

The values of reference properties are determined once at instance creation time and shall not be
modified afterwards.

The multiplicity in the relationship between associated instances is specified on the reference properties
of the association, such that the multiplicity specified on a particular reference property is the range of the
number of instances that can be associated to a unique combination of instances referenced by the other
reference properties.

EXAMPLE 1: Given a binary association with reference properties a and b. If b has multiplicity 1..2, then for a set of
association instances: for each instance referenced by a; the set of instances referenced by b must include at least
one instance and no more than 2.

EXAMPLE 2: Given a ternary association with reference properties a, b, and c. If b has multiplicity [1..2], then for a
set of association instances: for each unique pair of instances referenced by a and c¢; b must reference at least one
instance and no more than 2.

NOTE 1 For all association instances, at least two reference properties must not be Null.

NOTE 2 In an instance of a ternary or above association, the value of a reference property may be Null if its
multiplicity lower bound is zero (0) and it is not qualified as Required (see 7.25) and at least two other reference
properties have values that are not Null.

The association name of an association defined at the schema level, shall be unique (see 5.7.2) and is
used as its type name. The following ABNF defines the syntax for association names.

association Name = schemaName "_" IDENTIFIER

An association may inherit from one other association. In an inheritance relationship between
associations, the more general association is called the superclass, and the more specialized type is
called the subclass.

A subclass of an association shall not change the number of reference properties.

In the case when the relationship is binary (i.e., between only two classes), the reference properties of an
association may additionally indicate that instances of one (aggregated) class are aggregated into
instances of the other (aggregating) class. There are two types of aggregation.

1 Shared aggregation indicates that the aggregated instances may be aggregated into more than
one aggregating instances. In this case, the referenced instance generally has a lifecycle that is
independent of referencing instances.

1 Composite aggregation indicates that referenced instances are part of at most one referencing
instance. Unless removed before deletion, referenced instances are typically deleted with the
referencing instance. However, that policy is left to be specified as semantics of the modeled
elements.

24 DMTF Standard Version 3.0.0

791

792
793

794
795

796
797
798

799
800
801

802
803
804

805
806

807
808

809
810
811
812

813
814

815
816

817
818

819

820
821
822

823
824

825
826

827

DSP0004

5.6.9 Reference type

A reference type models a reference to an instance of a specified class, including to instances of

Common Information Model (CIM) Metamodel

subclasses of the specified class. The name of a ReferenceType is used as its type name.

For two classes, C1 and C2, and corresponding reference types defined on those classes, R1 and R2: R2
is a subtype of R1 if C2 is a subclass of C1.

The referenced class may be abstract; however, all values shall refer to instances of concrete (non-
abstract) classes. The classes of these instances may be subclasses of the referenced class. As a result,
all reference types are concrete.

5.6.10 Instance value

An instance value represents the specification of an instance of a class or association.

For a comparison of the specification of instances, see ANNEX C.

5.6.11 Structure value

A structure value is a model element that specifies the existence of a value for a structure.

For comparison of structure values, see ANNEX C.

5.6.12 Qualifier types and qualifiers

Qualifier types and qualifiers provide a means to add metadata to schema elements.

Some qualifier types and qualifiers affect the schemae | e me n t

the schema element.

A qualifier type is a definition of a qualifier in the context of a schema. Defining a qualifier type in a

S

behavior

or

provi de

schema effectively adds a metadata attribute to every element in its scope with a value that is the default
value defined by the qualifier type. A qualifier type specifies a name, type, default value, propagation

policy, and scope.

Qualifier scope is a list of schema element types. A qualifier shall be applied only to schema elements
listed in the scope of its qualifier type.

When adding a qualifier type to a schema, its default value should not change the existing behavior of the
schema elements in its scope.

A qualifier type shall be defined at the schema level. Within that schema, the qualifier type name shall be
unique (see 5.7.2). The following ABNF defines the syntax for qualifier type names.

qualifierType

Except for qualifier types defined by this specification, the use of the optional schemaName is strongly

Name = [schemaName " "] IDENTIFIER

encouraged. The use of the schemaName assures that extension schema defined qualifiers will not
conflict with qualifiers defined by this specification or with those defined in other extension schemas.

A qualifier provides a means to modify the value of the metadata attribute defined by the default value of

the qualifier type.

The propagation policy controls how the value of an applied qualifier is propagated to affected elements
in subclasses. There are three propagation policies.

1 restricted

Version 3.0.0

DMTF Standard

25

Common Information Model (CIM) Metamodel DSP0004

828 1 disableOverride
829 1 enableOverride

830 The "restricted" propagation policy specifies that the value of an applied qualifier does not propagate to

831 elements in the propagation graph as defined in Table 5. Instead, and unless qualified directly, the

832 behavior of elements lower in the propagation graph is as if the default value of the qualifier type was

833 applied. A "restricted" qualifiermaybes peci fi ed anywhere in an el ement

s pr
834 The "disableOverride" propagation policy specifies that the element at the top of the propagation graph

835 has either the default value or a specified value for this qualifier. Each element lower in the propagation

836 graph has the same value and that value cannot be changed. A "disableOverride" qualifier may be re-

837 specified lower in the propagation graph, but shall not change the value.

838 The "enableOverride" propagation policy specifies that the qualifier may be specified on any element in a
839 propagation graph. For elements higher than the first application of the qualifier in the propagation graph,
840 the qualifier has the default value of its qualifier type.

841 NOTE 1 In the propagation graph higher means towards supertypes and lower means towards subtypes.

842 NOTE 2 Propagation is towards elements lower in the propagation graph.

843 Table 51 Propagation graph for qualifier values
Qualified Element Elements in the Propagation Graph
Association Sub associations
Class Sub classes
Enumeration Sub enumerations
Enumeration value Like named enumeration values of sub enumerations
Method Overriding methods of sub classes (including associations)
Parameters Like named parameters of overriding methods of sub classes (including associations)
Property Overriding properties of sub structures (including classes and associations)
Qualifier type Not applicable
Reference Overriding references of sub structures (including classes and associations)
Structure Sub structures (including associations and classes)

844 Qualifier types are defined in clause 7.
845 5.7 Naming of model elements in a schema

846 5.7.1 Matching
847 Element names are matched case insensitively.

848 CIM Metamodel implementations shall preserve the case of element names.

26 DMTF Standard Version 3.0.0

849
850

851
852

853
854

855
856

857
858

859
860

DSP0004 Common Information Model (CIM) Metamodel

5.7.2 Uniqueness
Model element names are defined in the context of an element that serves as a naming context.

Each schema level element (structure, class, association, enumeration, qualifier type, instance value and
structure value) name shall be unique within the set of schema level elements exposed by its schema.

Each locally defined type (structure or enumeration) name shall be unique within the set of local defined
type names exposed by its structure, class or association.

Each enumeration value name shall be unique within the set of enumeration value names exposed by its
enumeration.

Each property name shall be unique within the set of property names exposed by its structure, class or
association.

Each method name shall be unique within the set of method names exposed by its class or association.

Each parameter name shall be unique within the set of parameter names exposed by its method.

Version 3.0.0 DMTF Standard 27

861

862
863

864
865

866

867

Common Information Model (CIM) Metamodel DSP0004

5.8 Schema backwards compatibility rules

This clause defines rules for modifications that assure backwards compatibility for clients.

NOTE

Additional rules for qualifiers are listed in clause 7.

Table 6 describes modifications that are backwards compatible for clients.

NOTE

The table is organized into simple cases that can be combined.

Table 7 describes schema modifications that are not backwards compatible for clients.

Table 6 1 Backwards compatible schema modifications

ID Modification

C1 Adding a class to the schema. The new class may inherit from an existing class or structure.

C2 Adding a structure to the schema or as a local definition to a structure, class, or association. The new
structure may inherit from an existing structure.

C3 Adding an enumeration to the schema or as a local definition to a structure, class, or association. The new
enumeration may inherit from an existing enumeration.

C4 Adding an association to the schema. The new association may inherit from an existing association.

C5 Inserting a class into an inheritance hierarchy of existing classes (see also C6, C7, C9, and C10).

C6 Adding a property to an existing class that is not overriding a property. The property may have a non-Null
default value.

C7 Adding a property to an existing structure, class or association that is overriding a property.

C8 The overriding property specifies a type or qualifier that is compatible with the overridden property, see
Table 7

C9 The overriding property specifies a default value that is different from the default value specified by the
overridden property.

C10 Moving an existing property from a structure, class or association to one of its super classes.

Cl1 Adding a method to an existing class or association that is not overriding a method.

C12 Adding a method to an existing class or association that is overriding a method.

C13 The overriding method specifies changes to the type or qualifiers applied to the method or its parameters
that are compatible with the overridden method or its parameters, see Table 7

C14 Moving a method from a class or association to one of its super classes.

C15 Adding an input parameter to a method with a default value.

C16 Adding an output parameter to a method.

C17 Changing the effective value of a qualifier type on an existing schema element depends on definition of
qualifier types and on the allowed qualifier type modifications listed in Table 7.

28 DMTF Standard Version 3.0.0

868

869

DSP0004 Common Information Model (CIM) Metamodel

ID Modification

C18 Changing the complex type (i.e., structure, class, or association) of an output parameter, method return,
or property to a subtype of that complex type.

C19 Changing the enumeration type of an output parameter, method return, or property to a supertype of that
enumeration type.

C20 Changing the complex type (i.e., structure, class, or association) of an input parameter to a supertype of
that complex type.

c21 Changing the enumeration type of an input parameter to a subtype of that enumeration type.

Cc22 Adding an enumeration value to an enumeration.

Cc23 Restricting the allowable range of values (including disallowing Null if previously allowed), for output
parameters and method return or readable properties.

Table 77 Schema modifications that are not backwards compatible

ID Modification

11 Removing a structure, class, association or enumeration from the schema.

12 Changing the supertype of type such that it is no longer a subtype of the original supertype.

13 Changing a concrete type to be abstract.

14 Changing key property to be a non-key property or vice-versa.

15 Removing a local structure, local enumeration, property or method from an existing type, without adding it
to one of its super types.

16 Changing the complex type (i.e., structure, class, or association) of an output parameter, method return,
or property to a supertype of that complex type.

17 Changing the enumeration type of an output parameter, method return, or property to a subtype of that
enumeration type.

18 Changing the complex type (i.e., structure, class, or association) of an input parameter to a subtype of
that complex type.

19 Changing the enumeration type of an input parameter to a supertype of that enumeration type.

110 Removing an enumeration value from an enumeration.

111 Changing the value of an enumeration value in an enumeration.

112 Removing an input or output parameter.

113 Changing the direction of a parameter (including, for example, changes from in to inout).

Version 3.0.0 DMTF Standard 29

Common Information Model (CIM) Metamodel DSP0004

ID Modification

114 Adding an input parameter to an existing method that has no default.

115 Removing a parameter from an existing method.

116 Changing the primitive type of an existing method parameter, method (i.e., its return value), or ordinary
property.

117 Changing a reference property, parameter or method return to refer to a different class.

118 Changing a meta type of a type (i.e., between structure and class or class and association).

119 Reducing or increasing the arity of an association (i.e., increasing or decreasing the number of references
exposed by the association).

120 Increasing the allowable range of values (including allowing Null if previously disallowed), for output
parameters and method return or readable properties.

121 Restricting the allowable range of values for input parameters or writeable properties (including
disallowance of Null if it had been allowed).

122 Removing a qualifier type declaration.

123 Changing the datatype or multiplicity of an existing qualifier type declaration.

124 Removing an element type from the scope of an existing qualifier type declaration.

125 Changing the propagation policy of an existing qualifier type declaration.

126 Adding a qualifier type declaration if the default value implies a change to affected schema elements.

127 Adding an element type to the scope of an existing qualifier type declaration if the default value implies a

change to affected schema elements.

30

DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

g7o0 6 CIM metamodel

871 This clause normatively defines the semantics, attributes, and behaviors of the elements that comprise
872 the CIM Metamodel. CIM Metamodel is specified as a UML user model (see the Unified Modeling

873 Language: Superstructure specification). The principal elements of the CIM Metamodel are normatively
874 shown in Figure 1.

Element
— NamedElement
+name : String [0..1]
I E— . -3
+gualifiedElement ¥ 1
-
4' PropertySlot | | Qualifier I,i
011 I s
Fan?
0.1 0.1 1 |
TypedElement Schema
+arrayType . Arraykind [1] = bag i - S
+required : Boolean [1] = false =~ +version: String [1]
+array : Boolean [1] = false '.
0.1 0.1 .
_ . 1 +subType |*+superType |0..1
ValueSpecification Type
(Y I M} *
B * 1 +terminal : Boolean [1] = false
0. kelement 1| 0. 1)|+defaulivalue +abstract | Boolean [1] = false
+version ; String [0..1]
0.1
‘ 1 -3 +HiteralType |1
Qualifier Type | |
+policy : GualifierPelicyind [1] = enableCverride
+scope : QualifierScopeking [1..%] - rs r . rF 9
*
MethodReturn
1
0.1 0.1
0.1 Parameter - Method
ArrayValue +direction : Directionkind [1] = in | +static : Boolean [1] = false
) H * +overridden |0..1
0.1 * +overridden (0.1
- Property

LT i +accessibilty : AccessKind [1] = readCnly 1
1 +hey : Boolean [1] = false ' m +localStructure
+ *

Reference 1 T 0

+aggregationType ; Aggregationkind [0..1] = none Class

A
+max : Unlimitedtatural [1] =1
+min : Unsignedinteger [1]=10 1 0.1

0.1 Association
SEE— EnumValue | PrimitiveType

* |+localEnumeration

Literal\Value Enumeration |'+enu|ner§|on

1 L K

| Complevae |
7 =]

F-Y
— 1
875 Figure 11 Overview of CIM Metamodel

Version 3.0.0 DMTF Standard 31

876
877

878
879

880
881

882
883
884

885
886
887
888
889
890

891
892
893

894

895
896

897
898
899
900
901
902
903

904
905

906
907
908

909

910
911
912
913

Common Information Model (CIM) Metamodel DSP0004

6.1 Introduction
The CIM Metamodel is the basis on which CIM schemas are defined.

This clause specifies concepts used across the specification of the metamodel and assumes some
familiarity with UML notation and with basic object-oriented concepts.

A subset of the OMG Object Constraint Language (OCL) is used to precisely specify constraints on the
metamodel. That subset is defined in clause 8.

CIM Metamodel implementations shall support the semantics and behaviors specified in this document.
However, there is no requirement for CIM Metamodel implementations to implement the metaelements
described here.

The metaelements shown in Figure 1 are just one way to represent the semantics of the CIM Metamodel.
Other choices could have been made without changing the semantics; for example, by moving
associations between metaelements up or down in the inheritance hierarchy, or by adding redundant
associations, or by shaping the attributes differently. However, one way of shaping the metaelements had
to be picked to normatively express the semantics of the CIM Metamodel. The key requirement on any
representation is that it expresses all of the requirements and constraints of the CIM Metamodel.

In this document, when it is important to be clear that a CIM Metamodel metaelement is being referred to,
the name of the metaelement will be prefixed by "CIMM::". For instance, CIMM::Association refers to the
CIM Metamodel element named Association.

6.2 Notation

The following clauses describe additional rules on the usage of UML for specification of the CIM
Metamodel.

6.2.1 Attributes
Descriptions of attributes throughout clause 6 use the attrFormat ABNF rule (whitespace allowed):

attrEnum = IDENTIFIER

attrDefault =(Null [/"true"/ “false" /"0"/"1"/ attrEnum)
attrMultiplicity = multiplicity
attrType = IDENTIFIER

attrName = IDENTIFIER

attrFormat = attrName ™" attrType [attrMultiplicity "1
[r=* attrDefault]

NOTE Multiplicity specifies the valid cardinalities for values of the attribute. A lower bound of zero indicates that
the attribute may be Null, (i.e., no value). If the lower bound is specified as zero and a default value is specified, then
the attribute must be explicitly set to be Null.

6.2.2 Associations

A relationship between metaelements is modeled as a UML association. In this metamodel, association
ends are owned by the associated elements and the association has no additional properties. As a
consequence, association ends are listed with their owning metaelements and associations are not listed
as separate metaelements.

32 DMTF Standard Version 3.0.0

914
915

916
917
918
919
920

921

922
923

924

925
926
927

928

929
930

931
932

933
934

935
936

937
938

DSP0004 Common Information Model (CIM) Metamodel

Descriptions of association ends within the metamodel use the associationEndFormat ABNF rule
(whitespace allowed):

associationEndFormat = otherRole ™" otherElement
"["* other - cardinality "]"

otherRole = IDENTIFIER

otherElement = IDENTIFIER

otherMultiplicity = multiplicity

6.2.3 Constraints

Constraints on CIM Metamodel are defined on the metaelements that define the metamodel. CIM
Metamodel implementations shall enforce the specified constraints.

These constraints fall into two categories:

1 OCL constraints — Constraints defined by using a subset of the Object Constraint Language
(OCL) as defined in clause 8. This is the main category of constraints unless otherwise
specified:

The OCL context (i.e., self) for resolving names is the constrained metamodel element.

Unless needed for clarity, "self" is not explicitly stated and is assumed to prefix all names
used in an OCL constraint according to the following ABNF:

name=["self. "]IDENTIFIER *("." IDENTIFIER)
— All constraints are invariant and the context and in v keywords are implied and not stated.

1 Other constraints — Constraints defined by using normative text. This category only exists for
constraints for which it was not possible to define an according OCL statement.

NOTE OCL is used as a specification language in this document. CIM Metamodel implementations may use other
OCL statements or constraint languages other than OCL as long as they produce an equivalent result.

6.3 Types used within the metamodel

The following types are used within the metamodel.

Version 3.0.0 DMTF Standard 33

Common Information Model (CIM) Metamodel DSP0004

939 6.3.1 AccessKind

940 AccessKindisanenumer ati on for specifying a property’s ability
941 Table 81 AccessKind

Enumeration value Description

noAccess No access

readOnly Read only access

readWrite Read and write access

writeOnly Write only access

942 6.3.2 AggregationKind

943 AggregationKind specifies whether the relationship between two or more schema elements is: not an
944 aggregation; is a shared aggregation; or is a composite aggregation (see 5.6.8). AggregationKind is
945 specified on one end of an association.

946 Table 91 AggregationKind
Enumeration value Description
None The relationship is not an aggregation.
Shared The relationship is a shared aggregation.
Composite The relationship is a composite aggregation.

947 6.3.3 ArrayKind

948 ArrayKind (see Table 3) is an enumeration for specifying the characteristics of the elements of an array.

949 6.3.4 Boolean

950 An element with a true or false value.

34 DMTF Standard Version 3.0.0

951
952

953

954
955

956

957

958
959

DSP0004 Common Information Model (CIM) Metamodel

6.3.5 DirectionKind

DirectionKind is an enumeration used to specify direction of parameters.

Table 101 DirectionKind

Enumeration value Description

In The parameter direction is input.

inout The parameter direction is both input and output.
out The parameter direction is output.

6.3.6 PropagationPolicyKind

PropagationPolicyKind is an enumeration for defining QualifierType value change policies (see 5.6.12).

Table 111 PropagationPolicyKind

Enumeration value Description

disableOverride Indicatesaqual i fi er type’'s propagation policy
enableOverride Indicatesaqual i fi er type’'s propagation policy
restricted I ndicates a qualifier type’'s propagation

6.3.7 QualifierScopeKind

QualifierScopeKind is an enumeration that definest he met ael ement s t hat may
scope (see 5.6.12).

Version 3.0.0 DMTF Standard 35

be

960

961

962
963

964

965
966

967
968

969

970

971
972

973

974
975

976

Common Information Model (CIM) Metamodel DSP0004

Table 121 QualifierScopeKind

Enumeration value

Description

association Qualifiers may be applied to associations.

class Qualifiers may be applied to classes.

enumeration Qualifiers may be applied to enumerations.

enumValue Qualifiers may be applied to enumeration value specifications.
method Qualifiers may be applied to methods, including method returns.
parameter Qualifiers may be applied to parameters.

property Qualifiers may be applied to properties.

qualifierType

Qualifiers may be applied to qualifier types.

reference Qualifiers may be applied to reference properties, including in both associations and
classes.

structure Qualifiers may be applied to structures.

any Qualifiers may be applied to all other enumerated elements.

6.3.8 String

A string is a sequence of characters in some suitable character set that is used to display information
about the model (see 5.5.3).

6.3.9 UnlimitedNatural

An unlimitedNatural is an element inthe setofnon-negati ve i ntegers (0,
d is shown using an asterisk (“*').

of unl i mite

6.3.10 UnSignedinteger

An unsignedinteger is an element inthe setofnon-negati ve integers (0,

6.4 Metaelements

6.4.1 CIMM::ArrayValue

An ArrayValue is a metaelement that represents a value consisting of a sequence of zero or more
element ValueSpecifications of same type.

Generalization

CIMM::ValueSpecification (see 6.4.26)

Attributes

No additional attributes

36

DMTF Standard Version 3.0.0

977

978
979

980

981
982

983
984

DSP0004 Common Information Model (CIM) Metamodel

Associations

1 The ValueSpecifications that are the values of elements of the array
element : ValueSpecification [0.*]

Constraints

Constraint 6.4.1-1: An ArrayValue shall have array type
type.array

Constraint 6.4.1-2: The elements of an ArrayValue shall have scalar type
element - >forAll(v | not v.type.array)

6.4.2 CIMM::Association

The Association metaelement represents an association (see 5.6.8).

Generalization

CIMM::Class (see 6.4.3)
Attributes

No additional attributes

Associations

No additional associations
Constraints

Constraint 6.4.2-1: An association shall only inherit from an association
superType ->NotEmpty() implies superType .ocllsKindOf(Association)

Constraint 6.4.2-2: A specialized association shall have the same number of reference properties as
its superclass

superType ->select (g|g .ocllsKindOf(Association)) - >notEmpty() implies
superType - >property - >select(pp | pp- oclisKindOf(Reference)) - >size() =
property - >select(pc | pc . oclisKindOf(Reference)) - >size()

Constraint 6.4.2-3: An association class cannot reference itself.

property - >select(p | p.oclisKindOf(Reference)) - >type - >forAll (t|t .class -
>excludes(self)) and
property - >select(p | p.oclisKindOf(Reference)) - >type - >

forAll (t|t.class - >collect(et|et. allSuperTypes () - >excludes(self)))

Constraint 6.4.2-4: An association class shall have two or more reference properties
property - >select(p | p.oclisKindOf(Reference)) - >size() >=2

Constraint 6.4.2-5: The reference properties of an association class shall not be Null
property - >select(p|p . ocllsKindOf(Reference) and not p.ocllsUndefined())

6.4.3 CIMM::Class

The Class metaelement models a class (see 5.6.7).

Generalization

CIMM::Structure (see 6.4.22)
Attributes

No additional attributes

Version 3.0.0 DMTF Standard 37

Common Information Model (CIM) Metamodel DSP0004

1016 Associations

1017 § ReferenceType that refers to this class

1018 referenceType : ReferenceType [0..1]

1019 1 Methods owned by this class

1020 method : Method|0..*]

1021 Constraints

1022 Constraint 6.4.3-1: All methods of a class shall have unique, case insensitive names.
1023 self.exposedMethods() ->

1024 ; iterate through all exposed methods and check that names are distinct.

1025 forAll (m emb | self.exposed method s- >excluding(memb) - >

1026 forAll (other | memb.name.toUpperCase() <> other.name.toUpperCase())
1027)

1028 Constraint 6.4.3-2: If a class is not abstract, then at least one property shall be designated as a Key
1029 not abstract implies select (exposedProperties () - >key) .size() >= 1

1030 Constraint 6.4.3-3: A class shall not inherit from an association.

1031 superType ->notEmpty() and not self.oclisKindOf(Association)

1032 implies not superType ->forAll (g]g. ocllsKindOf(Association))

1033 Operations

1034 § The exposedMethods operation includes all exposed methods in the inheritance graph.

1035 Class :: exposedMethods () : Set(Method);
1036 exposedMethods = nethod - >union(allSuperTypes () - >method)

1037 6.4.4 CIMM::ComplexValue

1038 A ComplexValue is a metaelement that is the abstract base class for the metaelements StructureValue
1039 and InstanceValue.

1040 Generalization

1041 CIMM::ValueSpecification (see 6.4.26)
1042 Attributes

1043 No additional attributes

1044 Associations

1045 1 A ComplexValue is defined in a Schema.
1046 schema : Schema [1]

1047 I Each propertySlot gives the value or values for each represented property of the defining class or
1048 structure.

1049 propertySlot: PropertySlot [0..*]
1050 Constraints

1051 No additional constraints

1052 6.4.5 CIMM:Element

1053 Element is an abstract metaelement common to all other metaelements.

1054 Generalization

1055 None

38 DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

1056 Attributes
1057 No additional attributes
1058 Associations

1059 No additional associations
1060 Constraints

1061 No additional constraints

1062 6.4.6 CIMM::Enumeration

1063 An Enumeration metaelement models an enumeration (see 5.6.1).
1064 Generalization

1065 CIMM:Type (see 6.4.24)

1066 Attributes

1067 No additional attributes

1068 Associations

1069 1 An Enumeration has a literal type.
1070 literalType: Type[1]

1071 1 Alocal Enumeration belongs to a Structure.
1072 structure : Structure[0..1]

1073 1 An Enumeration is the scoping element for enumeration values.
1074 enumValue : EnumValue [0..*]

1075 Constraints

1076 Constraint 6.4.6-1: All enumeration values of an enumeration have unique, case insensitive names.
1077 Let el = self. exposedValues () in

1078 el - >forAll (memb |

1079 el - >excluding(memb) ->

1080 forAll (other | memb.name.toUpperCase() <> other.name.toUpperCase()))
1081 Constraint 6.4.6-2: The literal type of an enumeration shall not change through specialization

1082 superType - >notEmpty() implies literalType= superType literalType

1083 Constraint 6.4.6-3: The literal type of an enumeration shall be a kind of integer or string

1084 NOTE integer includes signed and unsigned integers

1085 literal Type. ocliskindOf(integer) OR literalType .oclIsKindOf(string))

1086 Constraint 6.4.6-4: Each enumeration value shall have a uniquevalueof t he enuymer ati on’ s
1087 Letel v =self. exposedValues () - >valueSpecification in

1088 If self. literalType. ocllskKindOf(string) then

1089 el v->forAll (v|v ->size()=1 and v.ocllsKindOf(StringValue)) and

1090 el v->forAll (memb | el v->excluding(memb) ->

1091 forAll (other | memb.oclAsKindOf(StringValue).value <>

1092 other.oclAsKindOf(StringValue).value)))

1093 else 1 integer

1094 el v->forAll (v|v ->size()=1 and v.ocllsKindOf(IntegerValue)) and

1095 el v->forAll (memb | el v->excluding(memb) ->

1096 forAll (other | memb.oclAsKindOf(IntegerValue).value <>

1097 other.oclAsKindOf(IntegerValue).value)))

1098 endif

Version 3.0.0 DMTF Standard 39

1099
1100

1101
1102

1103

1104

1105
1106
1107
1108
1109
1110

1111

1112
1113

1114
1115

1116
1117

1118
1119

1120
1121

1122
1123

1124

1125
1126

1127

1128
1129

1130
1131

1132
1133

1134

1135
1136

1137
1138

Common Information Model (CIM) Metamodel

DSP0004

Constraint 6.4.6-5: The super type of an enumeration shall only be another enumeration

superType - >notEmpty() implies

superType .ocllsKindOf(Enumeration)

Constraint 6.4.6-6: An enumeration with zero exposed enumeration values shall be abstract
self. exposedValues () - >size()=0 implies abstract

Operations

1 The exposedValues operation excludes overridden enumeration values.
Enumeration :: exposedValues () : Set(EnumValue);

If superType .isEmpty() then

exposedValues = enumValue

else

exposedValues = enumValue - >

union(superType - >exposedValues () - >excluding(

6.4.7 CIMM::EnumValue

The enumeration value metaelement models a value of an enumeration (see 5.6.2).

Generalization

CIMM::ValueSpecification (see 6.4.26)

Attributes

No additional attributes

Associations

| Enumeration value is defined in an Enumeration.

enumeration : Enumeration [1]

1 Anenumeration value has a value.
NOTE The default for a string enumeration value is its name and it is resolved at definition time.

valueSpecification : ValueSpecification [1]

Constraints

Constraint 6.4.7-1: Value of string enumeration is a StringValue; Null not allowed.

enumeration.ocllsKindOf(
valueSpecification.ocllsKindOf(

string

) implies
StringValue)

enumValue))

Constraint 6.4.7-2: Value of an integer enumeration is a IntegerValue; Null not allowed.

enumeration.ocllsKindOf(
valueSpecification.ocllsKindOf(

6.4.8 CIMM::InstanceValue

integer

) implies
IntegerValue)

An InstanceValue is a metaelement that models the specification of an instance (see 5.6.10).

When used as the value or default value of a typed element an InstanceValue shall not be abstract. The

type of the InstanceValue shall be the same as, or a subclass of, that element's type.

Generalization

CIMM::ComplexValue (see 6.4.4)
Attributes

No additional attributes

Associations

40

DMTF Standard

Version 3.0.0

1139
1140

1141
1142

1143

1144
1145
1146

1147
1148

1149

1150

1151

1152
1153

1154
1155

1156
1157

1158

1159
1160
1161
1162
1163
1164

DSP0004 Common Information Model (CIM) Metamodel

No additional associations
Constraints

1 Constraint 6.4.8-1: An InstanceValue has the type of a class or association
t ype.ocllsKindOf(Class)

6.4.9 CIMM::LiteralValue

A LiteralValue is an abstract metaelement that models the specification of a value for a typed element in
the range of a particular primitive type or in the case of NullValue represents that the typed element is
Null, (see 5.5.4).

LiteralValue has specialized metaelements for each primitive type. Each of the subtypes, except for
NullValue, has a value attribute that are used to represent a value of a primitive type.

The concrete subclasses of LiteralValue are shown in Table 13.

Table 1371 Specializations of LiteralValue

Subclasses Interpretation

BooleanValue A non-Null value of type boolean as defined in Table 4

DateTimeValue A non-Null value of type datetime as defined in 5.5.1

IntegerValue A non-Null value of one of the concrete subtypes of abstract type integer as defined in Table 4

NullValue Represents the state of Null as defined in 5.5.4

OctetStringValue | A non-Null value of type octetstring defined as in 5.5.2

RealValue A non-Null value of one of the concrete subtypes of abstract type real defined in Table 4

ReferenceValue | A non-Null value of type reference defined in 5.6.9

StringValue A non-Null value of type string defined in 5.5.3

Generalization

CIMM::ValueSpecification (see 6.4.26)
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

6.4.10 CIMM::Method

The Method metaelement models methods in classes and associations (see 5.6.4)
Generalization

CIMM::NamedElement (see 6.4.12)

Attributes

1 static indicates if the method is static. The value is determined by the Static qualifier.

Version 3.0.0 DMTF Standard 41

Common Information Model (CIM) Metamodel DSP0004

static : boole an[1]

Associations

|l

Class that owns this method
class: Class [1]

A method return of this method
methodReturn : MethodReturn [0..1]

Parameters of this method
parameter: Parameter [0..*]

Methods that override this method
method : Method [0..*]

A method that is overridden by this method
overridden : Method [0..1]

Constraints

Constraint 6.4.10-1: All parameters of the method have unique, case insensitive names.

parameter - >forAll (memb | parameter - >excluding(memb) ->
forAll (other | memb.name.toUpperCase() <> other.name.toUpperCase()))

Constraint 6.4.10-2: A method shall only override a method of the same name.

overridden - >notEmpty() implies
overridden .ocllsKindOf(Method)and name - >toUpper() = overridden .name -
>toUpper()

Constraint 6.4.10-3: A method return shall not be removed by an overriding method (changed to
void).
overridden ->notEmpty() and methodReturn.isEmpty() implies
overridden.methodReturn. isEmpty()

Constraint 6.4.10-4: An overriding method shall have at least the same method return as the method
it overrides.
overridden.notEmpty() and methodReturn.notEmpty() implies
overridden.methodRe turn.notEmpty() and
methodReturn.type - >ocllsKindOf(overridden.parameter.type) and
methodReturn. array = overridden.methodReturn. array

Constraint 6.4.10-5: An overriding method shall have at least the same parameters as the method it
overrides.

Additional out Parameters are allowed and additional in or inout Parameters are allowed if a default
value is specified.

overridden .notEmpty() implies

parameter - >size() >= overridden.parameter ->size() and

let oldParm = overridden.parameter in

let newParm = parameter - >excluding(oldParm) in

(oldParm - >exists (op | parameter - >exists(np |
np- >toUpper() = op.name - >toUpper() and
np.type.array = op.type.array and
np.type.direction = op.type.directio n and
-- Ainput parameter of an overriding method that has a type of a
-- structure (including a class or association) shall be the same
-- as orasuper type of the type of the overridden parameter
(np.type.oclisKindOf(Structure) and np.direction = DirectionKind.in

and op.type.ocllsKindOf(np.type))

or
-- Alinput parameter of an overriding method that has a type of a n

42

DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

-- enumeration shall be the same as orasubt ype of the

-- overridden parameter

(np.type .oclisKindOf(Enumeration) and np.direction = DirectionKind.in

and
np.type.oclisKindOf(op.type))
or

-- A output parameter of an overriding method that has a type of a

shall be the same as
-- orasub type of the type of the overridden parameter
(np.type.oclisKindOf(Structure) and np.direction = DirectionKind.out

-- structure (including a class or association)

and
np.type.oclisKindOf(op.type))
or

-- A output parameter of an overriding method that has a type of an
-- enumeration shall be the same as orasupert ype of the

-- overridden parameter
(np.type.oclisKindOf(Enumeration) and
np.direction = DirectionKind.out and
op.type.oclisKindOf(np.type))

or

-- A parameter of an overriding met hod that has a primitive type
-- shall be the same as the type of the overridden

(np.type.oclisKindOf(Primitive) and np.type = op.type)
or

-- A parameter of that has direction inout s hall be the same

-- the type of the overridden parameter
(np.direction = DirectionKind.inout and np.type = op.type)
)

))

(-- newin /inout parameters shall have a specified default value

newParm- >forAll(np |
np.direction=DirectionKind.in or np.direction=DirectionKind.inout
implies np.defaultValue .notEmpty())

)

Constraint 6.4.10-6: An overridden method must be inherited from a more general type.

if overridden ->notEmpty() then
-- collect all the supertype s

class - >collect(fc | allSuperTypes()) ->asSet() ->collect(c | c.method))

>includes(overridden))

6.4.11 CIMM::MethodReturn

A MethodReturn metaelement models method return (see 5.6.4).
Generalization

CIMM::TypedElement (see 6.4.25)

Attributes

No additional attributes

Associations

1 The method that this method return belongs to
method: Method [1]

Constraints

No additional constraints

Version 3.0.0 DMTF Standard

43

1267

1268

1269
1270
1271

1272

1273
1274

1275
1276

1277
1278

1279

1280
1281

1282

1283

1284
1285

1286

1287
1288

1289
1290

1291
1292

1293
1294

1295
1296

1297
1298

1299
1300
1301

1302

1303
1304

Common Information Model (CIM) Metamodel

Operations

Determine the set of method returns overridden by this methodReturn.

MethodReturn :allOverridden (): Set(

let o = method.overridden
allOverridden = o

MethodReturn);
.methodReturn in

->union(o ->collect(r | r.allOverridden()

6.4.12 CIMM::NamedElement

)

A NamedElement is an abstract metaelement that models elements that have a name.

Generalization

CIMM::Element (see 6.4.5)
Attributes

1

A name of the realized element in the model
name: string [0.. 1]

Associations

1

All applied qualifiers
qualifier : Qualifier [0..*]

Constraints

Constraint 6.4.12-1: Each qualifier appliedtoane | e me n t

qualifier.qualifierType
ocllsKindOf(self) ->

6.4.13 CIMM::Parameter

- >forAll (gt | gt.scope - >includes(
toUpper())

must

DSP0004

have the el

n|n ->toUpper() =

A Parameter is a metaelement that models a named parameter of a method (see 5.6.5).

Generalization

CIMM::TypedElement (see 6.4.25)
Attributes

il

Indicates the direction of the parameter, that is whether it is being sent into or out of a method, or
both. The value is determined by the In and Out qualifiers.

direction : Dire ctionKind [1]

Associations

il

1

An optional specification of the default value

defaultValue: Value

Specification [0.. 1]

The method that this parameter belongs to

method: Method [1]

Constraints

No additional constraints

Operations

Determine the set of parameters overridden by this parameter.

Parameter:allOverridden(): Set(Parameter);

let o = method.overridden

.parameter - >select(p | p.name

- >toUpper()

=self.name -

44

DMTF Standard

Version 3.0.0

ement

S

1305
1306

1307

1308
1309

1310
1311

1312
1313

1314
1315

1316

1317

1318
1319

1320

1321
1322

1323
1324

1325
1326
1327

1328

1329
1330

1331
1332

1333
1334

1335
1336

1337
1338

1339

1340

1341
1342

DSP0004 Common Information Model (CIM) Metamodel

>toUpper())in
allOverridden = 0- >union(o- >collect(p | p.allOverridden()))

6.4.14 CIMM::PrimitiveType

PrimitiveType is a metaelement that models a primitive type (see 5.5).

Generalization

CIMM::Type (see 6.4.24)
Attributes

No additional attributes

Associations

No additional associations

Constraints

No additional constraints

6.4.15 CIMM::Property

A Property is a metaelement that models the properties of structures, classes and associations (see
5.6.3).

Generalization

CIMM::TypedElement (see 6.4.25)
Attributes

1 Indicates that the property is a key property. The value is determined by Key qualifier.
key: boolean [1]

1 Indicates whether or not the values of the modeled property can be read or written. The value is
determined by the Read and Write qualifiers.

accessibility : CIMM:: AccessKind [1]
Associations

M Default values
defaultValue : Value Specification [O.. 1]

1 Properties that override this property
property : Property [0..*]

1 A Property that is overridden by this property
overridden : Property [0..1]

1 The structure that owns this property
structure : Structure [1]

1 PropertySlot models the values of a property for an InstanceValue.
propertySlot . PropertySlot [0..7]

Constraints

Constraint 6.4.15-1: An overridden property must be inherited from a more general type.

if overridden ->notEmpty() then
-- collect all the supertype s

Version 3.0.0 DMTF Standard 45

Common Information Model (CIM) Metamodel DSP0004

structure - >collect(st : Structure | structure. allSuperTypes()) ->
-- collect all of their properties and check that the overridden property
is in that collection.
collect(p: Property | st.all Properties ()) ->includes(overridden)

Constraint 6.4.15-2; An overriding property shall have the same name as the property it overrides.
overridden - >notEmpty() implies name- >toUpper() = overridden .name - >toUpper()

Constraint 6.4.15-3: An overriding property shall specify a type that is consistent with the property it
overrides (see 5.6.3.3).

overridden ->notEmpty() implies
type. ocllsKindOf (overridden .type)

Constraint 6.4.15-4: A key property shall not be modified, must belong to a class, must be of
primitiveType, shall be a scalar value and shall not be Null.

key = true implies

(‘access ibility = AccessKind:: readOnly = true) and
Structure.ocllsKindOf(Class) and
type.ocllsKindOf(Primitive Type) and array = false and
propertySlot - >forAll(s | s - >valueSpecification - >size()=1 and
nots - >valueSpecification.ocllsKindOf(NullValue))
Operations

1

Determine the set of properties overridden by this property.
Property:allOverridden (): Set(Property);
allOverridden = union(overridden ->
collect(p | p.allOverridden() and p.name ->toUpper() =self.name -
>toUpper()))

6.4.16 CIMM::PropertySlot

A PropertySlot is a metaelement that models a collection of entries for a property in a complex value
specification for the structure containing that property (see 5.6.10 and 5.6.11).

Generalization

CIMM::Element (see 6.4.5)
Attributes

No additional attributes

Associations

1

il

|l

The defining property for the values in the property slot of an InstanceValue
property : Property [1]

The complexValue that owns this property slot
complexValue : ComplexValue [1]

The value of the defining property
valueSpecification : ValueSpecification [0 - 1]

Constraints

Constraint 6.4.16-1: A scalar shall have at most one valueSpecification for its PropertySlot
property. type. array = false and valueSpecification.notEmpty() implies
valueSpecification .element .notEmpty()

Constraint 6.4.16-2: The values of a PropertySlot shall not be Null, unless the related property is
allowed to be Null

valueSpecification - >select (v | v.ocllsKindOf(NullValue)) - >notEmpty() implies

46

DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

not property. required

Constraint 6.4.16-3: The values of a PropertySlot shall be consistent with the property type

let vs = valueSpecification - >union(valueSpecification - >element) - >select(v | not
v.oclIsKindOf(NullValue))in
vs - >forAll (v | v.type.ocllsKindOf(property.type))

6.4.17 CIMM::Qualifier
The Qualifier metaelement models qualifiers. (see 5.6.12).

Each associated value specification shall be consistent with the type of the qualifier type.

Generalization

CIMM::Element (see 6.4.5)
Attributes

No additional attributes
Associations

1 The defining QualifierType
qualifierType : QualifierType [1]

1 The values of the Qualifier
valueSpecification : ValueSpecification [O.. 1]

1 The qualified element that is setting values for this qualifier
qualifiedElement : NamedElement [1]

Constraints

Constraint 6.4.17-1: A qualifier of a scalar qualifier type shall have no more than one
valueSpecification
qualifierType.array = false implies valueSpecification - >size() <=1

Constraint 6.4.17-2: Values of a qualifier shall be consistent with qualifier type

valueSpecification - >forAll (v | v.type. oclisKindOf(qualifierType.type))

Constraint 6.4.17-3: The qualifier shall be applied to an element specified by qualifierType.scope
qualifierType.scope - >includes(c | ¢ - >toUpper() = qualifiedElement.name -
>toUpper())

Constraint 6.4.17-4: A qualifier defined as DisableOverride shall not change its value in the
propagation graph

qualifierType.policy= PropagationPolicyKind ::disable Override implies
qualifiedElement - >allOverridden() - >qualifier ->
select(q | g-oclisKindOf(Qualifier) and
g.name - >toUpper()=self.name - >toUpper()) ->
forAll (q | g.valueSpecification =
self.valueSpecification)
and
let fe = qualifiedelement.allOverridden() - >select(f | f.allOverridden()
>isEmpty()) in
if fe - >isEmpty() then true i selfis already on the top element in the
hierarchy
else
let fq = fe - >qualifier - >select(q | g.ocllsKindOf(Qualifier) and
g.n ame- >toUpper()=self.name - >toUpper()) in

Version 3.0.0 DMTF Standard

47

Common Information Model (CIM) Metamodel DSP0004

if (fq ->size() =1 and fq - >valuespecification.value =
self.valueSpecification) then true
else false i Error the first element is not qualified
endif

endif
)

6.4.18 CIMM::QualifierType

A QualifierType metaelement models an extension to one or more metaelements that can be applied to
model elements realized from those metaelements (see 5.6.12).

Generalization

CIMM::TypedElement (see 6.4.25)
Attributes

I This enumeration defines the metaelements that are extended by as QualifierType
scope : QualifierScopeKind [1..%]

1 The policy that defines the update and propagation rules for values of the qualifierType
policy : PropagationPolicyKind [1]= PropagationPolicyKind ::enableOverride

Associations

1 Applied qualifiers defined by this qualifier type
qualifier : Qualifier [0..%]

1 The default values for qualifier types of this type.
defaultValue: ValueSpecification [O.. 1]

1 A qualifier type belongs to a schema
schema: Schema|[1]

Constraints

Constraint 6.4.18-1: If a default value is specified for a qualifier type, the value shall be consistent
with the type of the qualifier type.
defaultValue.size()=1
implies (
defaultValue. type.oclisKindOf(t ype)

Constraint 6.4.18-2: The default value of a non-string qualifier type shall not be null.

not type.ocllskindOf(string)
implies (
defaultValue.size()=1 and
not defaultValue.oclisKindOf(NullVValue)

Constraint 6.4.18-3: The qualifier type shall have a type that is either an enumeration, integer, string,

or boolean.
type.oclisKindOf(enumeration) or
type.ocllsKindOf(unlimitedNatural) or
type.ocllsKindOf(unsignedinteger) or

type.oclisKindOf(signedinteger) or
ty pe.ocllsKindOf(string) or
type.ocllsKindOf(boolean)

Operations

1 The set of overridden qualifier types is always empty.
QualifierType :allOverridden (): Set(QualifierType);

48 DMTF Standard Version 3.0.0

1479

1480

1481
1482

1483
1484

1485
1486

1487
1488
1489
1490

1491
1492

1493

1494
1495

1496
1497

1498
1499

1500

1501
1502

1503
1504

1505
1506

1507
1508

1509

1510
1511

1512
1513

DSP0004 Common Information Model (CIM) Metamodel

allOverridden = Null

6.4.19 CIMM::Reference

The Reference metaelement models reference properties (see 5.6.3.4).

Generalization

CIMM::Property (see 6.4.15)
Attributes

1 Specifies how associated instances are aggregated. The value is determined by the
AggregationType qualifier.
aggregationType : AggregationKind [1]

Associations
1 No additional associations
Constraints

Constraint 6.4.19-1: The type of a reference shall be a ReferenceType
t ype.ocliskindOf(ReferenceType)

Constraint 6.4.19-2: An aggregation reference in an association shall be a binary association
aggregationType <> AggregationKind::none implies
structure.property - >select(p | p.oclisKindOf(Reference)) ->size() =2

Constraint 6.4.19-3: A reference in an association shall not be an array
structure.ocllsKindOf(Association) implies not array

Constraint 6.4.19-4: A generalization of a reference shall not have a kind of its more specific type
subType - >notEmpty() implies not self.ocllsKindOf(subType)

6.4.20 CIMM::ReferenceType

The ReferenceType metaelement models a reference type (see 5.6.9).

Generalization

CIMM::Type (see 6.4.24)
Attributes

No additional attributes
Associations

1 The class that is referenced
class :Class[1]

Constraints

Constraint 6.4.20-1: A subclass of a ReferenceType shall refer to a subclass of the referenced Class
superType - >notEmpty() implies class. ocliskindOf(superType .class)

Constraint 6.4.20-2: ReferenceTypes are not abstract
not abstract

Version 3.0.0 DMTF Standard 49

Common Information Model (CIM) Metamodel DSP0004

6.4.21 CIMM::Schema

A Schema metaelement models schemas. A schema provides a context for assigning schema unique

names to the definition of elements including: associations, classes, enumerations, instance values,
qualifier types, structures and structure values.

The qualifier types defined in this specification belong to a predefined schema with an empty name.

Generalization

CIMM::NamedElement (see 6.4.12)
Attributes

No additional attributes
Associations

1 Types defined in this schema
types : Type [*]

I The complex values defined in this schema
complexValue : ComplexValue [0..*]

1 Qualifier types defined in this schema
qualifierType : QualifierType[*]

Constraints

Constraint 6.4.21-1: All members of a schema have unique, case insensitive names.

Let members: Set(NamedElement) = complexValue - >oclAsType(NamedElement) ->
union(qualifierType - >0clA sType(NamedElement) ->
union(type - >oclAsType(NamedElement)

in

members = forAll (this | members - >excluding(this)->
forAll (other | this .name.toUpperCase() <>
other.name.toUpperCase()))

Operations

1 The set of overridden Schemas is always empty

Schema:allOverridden (): Set(Schema);
allOverridden = Null

6.4.22 CIMM::Structure

A Structure metaelement models a structure (see 5.6.6).

Generalization

CIMM::Type (see 6.4.24)
Attributes

No additional attributes
Associations

1 Properties owned by this structure
property : Property [0..*]

1 Astructure may define local structures.
localStructure : Structure[0..*]

50 DMTF Standard Version 3.0.0

1554
1555

1556
1557

1558

1559
1560

1561

1562
1563
1564
1565

1566

1567

1568
1569
1570
1571
1572

1573

DSP0004

Common Information Model (CIM) Metamodel

1 A structure may define local enumerations.

local Enumeration

Enumeration [0..*]

9 Alocal structure is defined in a structure.
structure : Structure[0..1]

Constraints

Constraint 6.4.22-1: All properties of a structure have unique, case insensitive names within their

structure

For details about uniqueness of property names in structures, see 5.7.2.

self.exposedProperties()
-- For each exposed property test that it does not match all others.

forAll

forAll

(memb | self.exposedProperties()
(other | memb.name.toUp

->

- >excluding(memb) ->
perCase() <> other.name.toUpperCase())

Constraint 6.4.22-2: All localEnumerations of a structure have unique, case insensitive names.

For details about uniqueness of local enumeration names in structures, see 5.7.2.

self.exposedEnumerations()
-- For each exposed

others.
forAll

->
local enumeration

(memb | localE numeration - >excluding(memb)

forAll (other |

test that it does not match all

->

memb.name.toUpperCase() <> other.name.toUpperCase()))

Constraint 6.4.22-3: All localStructures of a structure have unique, case insensitive names.

For details about uniqueness of local structure names in structures, see 5.7.2.

self.exposedStructures()
-- For each exposed local structure test that it do

forAll(memb |

)

forAll(other |

self.exposedStructures()

->

es not match all others.

- >excluding(memb) - >

memb.name.toUpperCase() <> other.name.toUpperCase())

Constraint 6.4.22-4: Local structures shall not be classes or associations
localStructure - >forAll

Constraint 6.4.22-5: The superclass of a local structure must be schema level or a local structure
S supertype hierarchy
- >notEmpty() implies

within

superType - >notEmpty() and structure

this st

superType - >structure

or

exposedStructures()

(c | not c.ocllsKindOf(Class))

ructur e

- >iISEmpty() -- supertype is global

- >includes(superType) -- supertype is local

Constraint 6.4.22-6: The superclass of a local enumeration must be schema level or a local
enumeration within this struc

superType - >notEmpty() and enumeration
superType - >enumeration

or

exposedEnumerations()

- >includes(superType) --

)

ture’'s supertype

- >notEmpty() implies
- >isEmpty() -- supertype is global

supertype is local

Constraint 6.4.22-7: Specialization of schema level structures must be from other schema level

structures

structure
>isEmpty()

Operations

1 The query allProperties() gives all of the properties in the namespace of the structure. In general,

- >isEmpty() and

superType - >notEmpty() implies

through inheritance, this will be a larger set than property.

superType - >structure

Version 3.0.0

DMTF Standard

51

hi

erar

Common Information Model (CIM) Metamodel DSP0004

Structure::all Properties (): Set(Property);
allProperties = property - >union(self.allSuperTypes() - >property)

1 The exposedProperties operation excludes overridden properties.

Structure:: exposedProperties () : Set(Property);
exposedProperties = allProperties() ->
excluding(inh | property -> select(overridden - >includes(inh)))

1 The exposedStructures operation includes all local structures in the inheritance graph.

Structure:: exposedStructures () : Set(Structure);
exposedStructures = localStructure - >union(allSuperTypes () - >localStructure)

1 The exposedEnumerations operation includes all local enumerations in the inheritance graph.

Enumeration :: exposedEnumerations () : Set(Enumeration);
exposedEnumerations = localEnumeration - >union(allSup erTypes () -
>localEnumeration)

6.4.23 CIMM::StructureValue
The value of a structure (see 5.6.11).

When used as the value or default value of a typed element a structure value shall not be abstract. The
type of the structure value shall be the same as, or a subtype of, that element's type.

Generalization

CIMM::ComplexValue (see 6.4.4)
Attributes

No additional attributes

Associations

No additional associations

Constraints

1 Constraint 6.4.23-1: A structure value is a realization of a Structure
type.ocllsKindOf(Structure)

6.4.24 CIMM::Type

A Type is an abstract metaelement that models a type (structure, class, association, primitive type,
enumeration, reference type).

A Type indicates whether it is a scaler or an array.

Generalization

CIMM::NamedElement (see 6.4.12)
Attributes

1 Specifies whether the model element may be realized as an instance. True indicates that the
element shall not be realized. The value is determined by the Abstract qualifier.

abstract : boolean [1]

1 True specifies the type is an array.
array : boolean [1] = false

52 DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

1639 1 Specifies whether or not a model element may be specialized. True indicates that the element shall
1640 not be specialized. The value is determined by the Terminal qualifier.

1641 terminal : boolean [1]

1642 § Version is an optional string that indicates the version of the modeled type. The value is determined
1643 by Version qualifier.
1644 version : string [0.. 1]

1645 Associations

1646 1 Specifies the schema to which the type belongs

1647 schema:Schema[1]

1648 1 Specifies a more general type; only single inheritance
1649 superType : Type [0..1]

1650 1 Specifies the specializations of this type

1651 subType : Type [0..*]

1652 1 Typed elements that have this type

1653 typedElement : TypeElement [0..*]

1654 1 Values of this type

1655 valueSpecificat ion : ValueSpecification [0..*]

1656 Constraints

1657 Constraint 6.4.24-1: Terminal types shall not be abstract and shall not be subclassed
1658 terminal =true implies abstract=false and subType .size()=0

1659 Constraint 6.4.24-2: An instance shall not be realized from an abstract type

1660 abstract implies realizedElement - >isEmpty()

1661 Constraint 6.4.24-3: There shall be no circular inheritance paths

1662 superType ->closure(t | t<>self)

1663 Constraint 6.4.24-4: A value of an array shall be either NullvValue or ArrayValue
1664 array implies valueSpecification.oclisKind Of(NullValue) or

1665 valueSpecification.ocllsKindOf(ArrayValue)

1666 Operations

1667 1 The operation allSuperTypes() gives all of the direct and indirect ancestors of a type.

1668 Type:: allSuperTypes (): Set(Type); -- recursively collect supertype s

1669 allSuperTypes = superType ->union(superType - >collect(p | p. allSuperTypes ()
1670 1 The set of overridden types is the same as the set of all supertypes.

1671 Type:allOverridden (): Set(Type);

1672 alloverridden = self.allSuperTypes()))

1673 6.4.25 CIMM::TypedElement

1674 A TypedElement is an abstract metaelement that models typed elements. The value of a typed element
1675 shall conform to its type.

1676 A TypedElement indicates whether or not a value is required. If no value is provided, the element is Null.

1677 Generalization

1678 CIMM::NamedElement (see 6.4.12)

Version 3.0.0 DMTF Standard 53

1679

1680
1681

1682
1683

1684
1685

1686
1687

1688
1689

1690
1691

1692
1693
1694

1695
1696
1697

1698
1699

1700

1701
1702

1703
1704

1705
1706

1707
1708

1709
1710

1711
1712

1713
1714

1715
1716

1717
1718

Common Information Model (CIM) Metamodel DSP0004

Attributes

1 Specifies the behavior of elements of an array; the value is determined by the ArrayType qualifier.
arrayType : CIMM: ArrayKind [1]

1 Required true specifies that elements of the type shall not be Null. The value is determined by the
Required qualifier.
required : boolean [1]

Associations

il Has a Type
t ype: Type [1]
Constraints

No additional constraints

6.4.26 CIMM::ValueSpecification
A ValueSpecification is an abstract metaelement used to specify a value or values in a model.

The value specification in a model specifies a value, but shall not be in the same form as the actual value
of an element in a modeled system. It is required that the type and number of values represented is
suitable for the context where the value specification is used.

Values are described by the concrete subclasses of ValueSpecification. Values of primitive types are
modeled in subclasses of literal value (see 6.4.9), values of enumerations are modeled using
enumeration values 5.6.2), and values any other type are modeled using complex values (6.4.4).

NOTE A specific kind of value specification is used to indicate the absence of a value. In the model, this is a literal
Null and is represented by the NullValue metaelement.

Generalization

CIMM::NamedElement (see 6.4.12)
Attributes

No additional attributes
Associations

1 Qualifier that has this value specification
qualifier : Qualifier [0..1]

1 PropertySlot that has this value specification
propertySlot : Propert ySlot[0..1]

1 An enumeration value that has this value specification
enumValue : EnumValue [0..1]

1 QualifierType that has this default value specification
qualifierType : QualifierType [0..1]

1 Parameter that has this as a default value specification
parameter: Pa rameter[0..1]

1 Property that has this default value specification
property : Property [0..1]

1 Type of this value
type : Type[1]

54 DMTF Standard Version 3.0.0

1719
1720

1721

1722

1723
1724
1725

1726
1727

1728

1729
1730

1731
1732
1733

1734
1735
1736
1737
1738

1739
1740

1741
1742

1743
1744

1745

1746
1747
1748
1749
1750
1751

1752
1753
1754
1755
1756
1757

1758
1759

1760

DSP0004 Common Information Model (CIM) Metamodel

1 If this ValueSpecification is an element of an array, the ValueSpecification for the array
array Value : ArrayValue [0..1]

Constraints

Constraint 6.4.26-1: A value specification shall have one owner.

qualifier - >size() + propertySlot - >size() + enumValue - >size() +
qualifierType - >size() + parameter - >size() + property ->size() +
array - >size() =1

Constraint 6.4.26-2: A value specification owned by an array value specification shall have scalar
type
array - >notEmpty() implies type.array=false

1 Constraint 6.4.26-3: The type of a value specification shall not be abstract
not type.abstract

7 Qualifier types
A CIM Metamodel implementation shall support the qualifier types specified by this clause.
Qualifier types and qualifiers provide a means to add metadata to schema elements (see 5.6.12).

Each qualifier adds descriptive information to the qualified element or implies an assertion that shall be
true for the qualified element in a CIM Metamodel implementation. Assertions made by qualifiers should
be validated along with evaluation of schema declarations. CIM Metamodel implementations shall
conform to all assertions made by qualifiers. Run-time enforcement of such assertions is not required but
is useful for testing purposes.

The qualifiers defined in this specification shall be specified for each CIM Metamodel implementation.
Additional qualifier types may be defined.

If a qualifier type is not specified in a CIM schema implementation, then it has no effect on model
elements in that implementation.

If a qualifier type is specified in a CIM schema implementation, then it conceptually adds the qualifier to
all model elements that are in the scope of the qualifier type.

For a particular model element, the value of each such qualifier is as follows:

a) Ifitis explicitly set on that model element, then the qualifier has the value specified.

b) If the policy is disable override or enable override, and a value has been explicitly set on another
model element closer to the root of its propagation graph, (see 5.6.12), then the qualifier has the
nearest such value.

c) Otherwise, the qualifier has the default value if one is defined on the qualifier type or it has no
value (i.e., it is Null).

NOTE The metamodel is modeling language agnostic. It is the responsibility of a modeling language definition to
map the specification of qualifier types and the setting of qualifier values onto language elements. For example, there
is not a means in the MOF language to directly apply a qualifierType to a method return, but because there can be at
most one method return for a method, the MOF language allows specification of qualifier types that are applicable to
method returns on corresponding method. Other languages could map to this metamodel more directly, for instance
XMI as defined by the OMG MOF 2 XMI Mapping specification.

Unless otherwise specified, qualifier types that modify the semantics of the values of a TypedElement
apply to all values of that TypedElement. Examples include BitMap, MaxSize, and PUnit.

All qualifier types defined within this clause belong to the CIM Metamodel schema.

Version 3.0.0 DMTF Standard 55

Common Information Model (CIM) Metamodel DSP0004

1761 Each qualifier type expresses a qualifier added to a set of metaelements. Set the scope to the

1762 enumeration values defined by QualifierScopeKind that correspond to those metaelements. A schema
1763 representation language must define how it maps to those enumeration values. For example, if the
1764 qualifier type affects association, class, enumeration, and structure, then:

1765 scope = QualifierScopeKind::association or QualifierScopeKind::class or

1766 QualifierScopeKind::enumeration or QualifierScopeKind::structure

1767 The policy of a qualifier type shall be set to the specified policy. For example, if the policy is specified as
1768 restricted, then:

1769 policy= PropagationPolicyKind ::restricted

1770 The following qualifier types shall be supported by a CIM Metamodel implementation. Each clause
1771 specifies the name and semantics..

1772 7.1 Abstract

1773 If the value of an Abstract qualifier is true, the qualified association, class, enumeration, or structure is
1774 abstract and serves only as a base. It is not possible to create instances of abstract associations or
1775 classes, to define values of abstract structures, or to use abstract types as a type of a typed element
1776 (except for reference types).

1777 The attributes of the qualifier type are:

1778 type = boolean (scalar, non - Null)

1779 defaultValue = false

1780 scope = QualifierScopeKind::association or QualifierScopeKind::class or
1781 QualifierScopeKind::enumeration or QualifierScopeKind::structure
1782 Policy = PropagationPolicyKind ::restrict ed

1783 Constraints

1784 Constraint 7.1-1: The value of the Abstract qualifier shall match the abstract meta attribute
1785 qualifier - >forAll(q | gq.valueSpecification.value=q.qualifiedElement.abstract)

1786 7.2 AggregationKind

1787 The AggregationKind qualifier shall only be specified within a binary association on a reference property,
1788 which references instances that are aggregated into the instances referenced by the other reference
1789 property.

1790 The value of AggregationKind qualifier indicates the type of the aggregation relationship. The values are
1791 specified by the AggregationKind enumeration (see 6.3.2). A value of none indicate that the relationship is
1792 not an aggregation. Alternatively the value can indicate a shared or composite aggregation. In both of
1793 those cases, the instances referenced by the qualified property are aggregated into instances referenced
1794 by the unqualified reference property.

1795 NOTE AggregationKind replaces the CIM v2 qualifiers Aggregate, Aggregation, and Composition. In CIM v2,
1796 Aggregation and Composition was specified on the association and the Aggregate qualifier was specified on the
1797 property that references an aggregating instance. AggregationKind is specified on the other reference property, that
1798 is the reference to an aggregated instance.

1799 The attributes of the qualifier type are:

1800 type = string (scalar, non - Null)]

1801 defaultValue = AggregationKind:: none

1802 scope = Qual ifierScopeKind:: reference

1803 policy = PropagationPolicyKind ::disableOverride

56 DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

1804 Constraints

1805 Constraint 7.2-1: The AggregationKind value shall be consistent with the AggregationKind attribute
1806 qualifier - >forA lI(q | g.valueSpecification.value = qg.qualifiedElement -

1807 >asType(Reference). AggregationKind)

1808 Constraint 7.2-2: The AggregationKind qualifier shall only be applied to a reference property of an
1809 Association

1810 qualifier - >forAll(q | g.qualifiedElement - >structure.ocllsKindOf(Association))

1811 7.3 ArrayType

1812 The value of an ArrayType qualifier specifies that the qualified property, reference, parameter, or method
1813 return is an array of the specified type. The values of the ArrayType qualifier are defined by the ArrayKind
1814 enumeration (see 6.3.3).

1815 The attributes of the qualifier type are:

1816 type= string (scalar , non - Null)

1817 defaultValue = ArrayKind::bag

1818 scope = QualifierScopeKind::Method or QualifierScopeKind:: parameter or
1819 QualifierScopeKind:: property or QualifierScopeKind:: reference
1820 policy = PropagationPolicyKind ::disableOverride

1821 Constraints

1822 Constraint 7.3-1: The ArrayType qualifier value shall be consistent with the arrayType attribute
1823 qualifier - >forAll(q | g.valueSpecification.value = g.qualifiedElement -
1824 >asType(TypedElement).arrayType)

1825 7.4 BitMap

1826 The values of this qualifier specifies a set of bit positions that are significant within a method return,
1827 parameter or property having an unsigned integer type.

1828 Bits are labeled by bit positions, with the least significant bit having a position of zero (0) and the most
1829 significant bit having the position of M, where M is one (1) less than the size of the unsigned integer type.
1830 For instance, for a uint16, M is 15.

1831 The values of the array are unsigned integer bit positions, each represented as a string.

1832 The position of a specific value in the Bitmap array defines an index used to select a string literal from the
1833 BitValues (see 7.5) array.

1834 The attributes of the qualifier type are:

1835 type = string (array, Null allowed)

1836 defaultValue = Null

1837 scope = {QualifierScopeKind::Method , QualifierScopeKind::parameter,
1838 QualifierScopeKind::property}

1839 policy = PropagationPolicyKind ::enableOverride

1840 Constraints

1841 Constraint 7.4-1: An element qualified with Bitmap shall have type Unsignedinteger

1842 qualifier.qualifiedElement - >forAll(e | e.type.oclisKindOf(Unsignedinteger))

1843 Constraint 7.4-2: The number of Bitmap values shall correspond to the number of values in BitValues

1844 qualifier.qualifiedElement - >qualifier ->select (gl g name=:"BitValuesd)
1845 forAll(valueSpecification ->size() = q - >valueSpecification - >size ()

Version 3.0.0 DMTF Standard 57

1846

1847
1848

1849
1850

1851

1852
1853
1854
1855
1856

1857

1858
1859

1860

1861
1862

1863

1864
1865
1866
1867

1868

1869

1870
1871
1872
1873
1874

1875

1876
1877

1878

1879
1880

1881

1882
1883
1884
1885

1886
1887
1888

Common Information Model (CIM) Metamodel

7.5 BitValues

DSP0004

The values of this qualifier specify a set of literals that corresponds to the respective bit positions
specified in a corresponding BitMap qualifier type.

The position of a specific value in the Bitmap (see 7.4) array defines an index used to select a string
literal from the BitValues array.

The attributes of the qualifier type are:

type =

defaultValue = Null

scope =

policy =

Constraints

string

(array, Null allowed)

{ QualifierScopeKind::Method
QualifierScopeKind::property}

PropagationPolicyKind

, QualifierScopeKind::parameter,

enableOverride

Constraint 7.5-1: An element qualified by BitValues shall have type Unsignedinteger

qualifier.qualifiedElement

- >forAll(q | g.type.oclisKindOf(

Unsignedinteger))

Constraint 7.5-2: The number of BitValues shall correspond to the number of values in the BitMap
qualifier.qualifiedElement - >qua

forAll(valueSpecification

7.6 Counter

->size() =q

lifier ->select (q| ¢

- >valueSpecification

namex' Bit Mapé)
- >size())

If true, the value of a Counter qualifier asserts that the qualified element represents a counter. The type of
the qualified element shall be an unsigned integer with values that monotonically increase until the value
of MaxValue is reached, or until the maximum value of the datatype. At that point, the value starts
increasing from the value of MinValue or zero (0), whichever is greater.

The qualifier type is specified on parameter, property, method, and qualifier type elements.

The attributes of the qualifier type are:
(scalar, non - Null)

type =

boolean

defaultValue = false
scope ={ QualifierScopeKind::Method
QualifierScopeKind::property} }

policy =

Constraints

PropagationPolicyKind

, Qu alifierScopeKind::parameter,

disableOverride

Constraint 7.6-1: The element qualified by Counter shall be an unsigned integer

qualifier.qualifiedElement

- >forAll(e | e.type.oclisKindOf(

unsignedinteger)

Constraint 7.6-2: A Counter qualifier is mutually exclusive with the Gauge qualifier

qualifier.qualifiedElement - >qua
6 GUAGED®)

7.7 Deprecated

lifier - >forAll(g | not g.name

- >toUpper() =

A non-Null value of this qualifier indicates that the qualified element has been deprecated. The semantics

of

this

gualifier

are informat.i

onal

onl y .[eprecatetl o

means that the qualified element may be removed in the next major version of the schema following the
deprecation. Replacement elements shall be specified using the syntax defined in the following ABNF:

replacement = ("No value" /

(typeN ame *("." typeName)

[

methodName ["."

parameterName] /

58

DMTF Standard

Version 3.0.0

not

af

DSP0004 Common Information Model (CIM) Metamodel

1889 "." *(propertyName ".") propertyName [EnumValue]])

1890 Where:

1891 1 The typeName rule names the ancestor Type (Association, Class, Enumeration, or Structure) that
1892 owns the replacement element.

1893 § The methodName rule is required if the replaced element is a method. If the overridden element is a
1894 parameter, then it shall be specified.

1895 1 The propertyName rule is required if a property is replaced.

1896 The attributes of the qualifier type are:

1897 type = string (scalar, Null allowed)

1898 defaultValue = Null

1899 scope ={QualifierScopeKind:: any}

1900 policy = PropagationPolicyKind ::restricted

1901 Constraint 7.7-1: The value of the Deprecated qualifier shall match the deprecated meta attribute
1902 qualifier - >forAll(g | q.valueSpecification.value=q.qualifiedElement.deprecated)

1903 7.8 Description
1904 The value of this qualifier describes the qualified element.

1905 The attributes of the qualifier type are:

1906 type = string (scalar, Null all owed)

1907 defaultValue = Null

1908 scope ={QualifierScopeKind:: any}

1909 policy = PropagationPolicyKind ::enableOverride

1910 7.9 EmbeddedObject

1911 If the value of this qualifier is true, the qualified string typed element contains an encoding of an instance
1912 value or an encoding of a class definition.

1913 To reduce the parsing burden, the encoding that represents the embedded object in the string value
1914 depends on the protocol or representation used for transmitting the qualified element. This dependency
1915 makes the string value appear to vary according to the circumstances in which it is observed.

1916 The attributes of the qualifier type are:

1917 type = boolean (scalar, non - Null)

1918 defaultValue = false

1919 scope ={ QualifierScopeKind::Method , QualifierScopeKind::parameter,

1920 QualifierS copeKind::property}

1921 policy = PropagationPolicyKind ::disableOverride

1922 Constraints

1923 Constraint 7.9-1: An element qualified by EmbeddedObject shall be a string

1924 qualifier - >forAll(q | g.qualifiedElement.type.oclisKind Of(string))

1925 7.10 Experimental

1926 The value of the Experimental qualifier specifies whether or not the qualified element has 'experimental’
1927 status. The implications of experimental status are specified by the organization that owns the element.

1928 If false, the qualified element has 'final' status. Elements with ‘final' status shall not be modified in
1929 backwards incompatible ways within a major schema version (see 7.28).

Version 3.0.0 DMTF Standard 59

1930
1931

1932
1933
1934

1935
1936
1937
1938

1939
1940

1941
1942

1943
1944

1945
1946
1947
1948
1949
1950

1951
1952

1953

1954
1955
1956

1957
1958

1959

1960
1961
1962
1963
1964

1965

1966
1967

1968

1969
1970

1971

1972

Common Information Model (CIM) Metamodel DSP0004

Experimental elements are subject to change. Elements with ‘experimental’ status may be modified in
backwards incompatible ways in any schema version, including within a major schema version.

Experimental elements are published for developing CIM schema implementation experience. Based on
CIM schema implementation experience: changes may occur to this element in future releases; the
element may be standardized "as is"; or the element may be removed.

When an enumeration, structure, class, or association has the Experimental qualifier applied with a value
of true, its properties, methods, literals, and local types also have 'experimental’ status. In that case, it is
unnecessary also to apply the Experimental qualifier to any of its local elements, and such redundant use
is discouraged.

When an enumeration, structure, class, or association has 'final' status, its properties, methods, literals,
and local types may individually have the Experimental qualifier applied with a value of true.

Experimental elements for which a decision is made to not take them final should be removed from their
schema.

NOTE The addition or removal of the Experimental qualifier type does not require the version information to be
updated.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)
defaultValue = false

scope ={QualifierScopeKind:: any }

policy = PropagationPolicyKind ::restricted

Constraint 7.10-1: The value of the Experimental qualifier shall match the experimental meta attribute

qualifier - >forAll(q |
g.valueSpecification.value=g.qualifiedElement.experimental)

7.11 Gauge

If true, the qualified integer element represents a gauge. The type of the qualified element shall be an
integer with values that can increase or decrease. The value is qualified to be within the range of the
elements type and within the range of any applied MinValue and MaxValue qualifier types.

The value is represented as literal boolean.
The qualifier type is specified on parameter, property, method, and qualifier type elements.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValue = false

scope ={ QualifierScopeKind::Method , QualifierScopeKind::parameter,
QualifierScopeKind::property}

policy = PropagationPolicyKind ::disableOverride

Constraints

Constraint 7.11-1: The element qualified by Gauge shall be an unsigned integer
qualifier.qualifiedElement - >forAll(e | e.type.oclisKindOf(integer))

Constraint 7.11-2: A Counter qualifier is mutually exclusive with the Gauge qualifier

qualifier.qualifiedElement - >qualifier - >forAll(g | not g.name - >toUpper() =
06 COUNTERGOG)

7.12 In

If the value of an In qualifier is true, the qualified parameter is used to pass values to a method.

60 DMTF Standard Version 3.0.0

1996

1997
1998
1999

2000
2001
2002
2003

2004

2005
2006
2007
2008

2009

2010
2011

2012

2013
2014

DSP0004 Common Information Model (CIM) Metamodel

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValue = true

scope ={QualifierScopeKind::parameter}

policy = PropagationPolicyKind ::disableOverride

Constraints

Constraint 7.12-1: The value the In qualifier shall be consistent with the direction attribute

qualifier - >forAll(q | g.valueSpecification.value = true implies
g.qualifiedElement - >asType(Parameter).direction= DirectionKind::in or
g.qualifie dElement - >asType(Parameter).direction= DirectionKind::inout)

7.13 IsPUnit

If the value is true, this qualifier asserts that the value of the qualified string element represents a
programmatic unit of measure. The value of the string element follows the syntax for programmatic units,
as defined in ANNEX D.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValue = false

scope ={ QualifierScopeKind::Method , QualifierScopeKind::parameter,
QualifierScopeKind::property}

pol icy = PropagationPolicyKind ::enableOverride

Constraints

Constraint 7.13-1: The type of the element qualified by IsPUnit shall be a string.
qualifier.qualifiedElement - >forAll(e | e.type.oclisKindOf(string))

7.14 Key

If the value of a Key qualifier is true, the qualified property or reference is a key property. In the scope in
which it is instantiated, a separately addressable instance of a class is identified by its class name and
the name value pairs of all key properties (see 5.6.7).

The values of key properties and key references are determined once at instance creation time and shall
not be modified afterwards. Properties of an array type shall not be qualified with Key. Properties qualified
with EmbeddedObject or Embeddedinstance shall not be qualified with Key. Key properties and Key
references shall not be Null.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValue = false

scope ={ QualifierScopeKind::property, QualifierScopeKind::reference}
policy = PropagationPolicyKind ::enableOverride

Constraints

Constraint 7.14-1: The value of the Key qualifier shall be consistent with the key attribute
qualifier - >forAll(q | g.valueSpecification.value = g.qualifiedElement -> key)

Constraint 7.14-2: If the value of the Key qualifier is true, then the value of Write shall be false

qualifier - >forAll(q | g.qualifiedElement .key = true implies -
>g.qualifiedElement.write=false)

Version 3.0.0 DMTF Standard 61

2041

2042
2043
2044
2045

2046

2047

2048
2049
2050
2051

2052

2053
2054

2055

2056
2057

Common Information Model (CIM) Metamodel DSP0004

7.15 MappingStrings

Each value of this qualifier specifies that the qualified element represents a corresponding element
specified in another standard. See ANNEX F for standard mapping formats.

The attributes of the qualifier type are:

type = string (array, Null allowed)

defaultValue = Null

scope ={QualifierScopeKind:: any }

policy = PropagationPolicyKi nd::enableOverride
7.16 Max

The value specifies the maximum size of a collection of instances referenced via the qualified reference in
an association (see 5.6.8) when the values of all other references of that association are held constant.
Within an instance of the containing association, the qualified reference can reference at most one
instance of the collection.

If not specified, or if the qualifier type does not have a value, then the maximum is unlimited.

The attributes of the qualifier type are:

type = unlimitedNatural (scalar, non - Null)
defaultValue = 06*56
scope ={ QualifierScopeKind::reference }

policy = PropagationPolicyKind ::enableOverride
Constraints

Constraint 7.16-1: The value of the MAX qualifier shall be consistent with the value of max in the
qualified element

qualifier - >forAll(q | g.valueSpecification.value = g.qualifiedElement. max)

Constraint 7.16-2: MAX shall only be applied to a Reference of an Association
qualifier - >forAll(q | g.qualifiedElement - >structure.ocllskKindOf(association))

7.17 Min

The value specifies the minimum size of a collection of instances referenced via the qualified reference in
an association (see 5.6.8) when the values of all other references of that association are held constant.
Within an instance of the containing association, the qualified reference can reference at most one
instance of the collection.

If not specified, or if the qualifier type does not have a value, then the minimum is zero.

The attributes of the qualifier type are:

type = unsignedinteger (scalar, non - Null)
defaultValue = 0

scope = {QualifierScopeKind::reference}

policy = PropagationPolicyKind ::enableOverride

Constraints

Constraint 7.17-1: The value of the MIN qualifier shall be consistent with the value of min in the
qualified element

qualifier - >forAll(q | g.valueSpecification.value = g.qualifiedElement. min)

Constraint 7.17-2: MIN shall only be applied to a Reference of an Association
qualifier - >forAll(q | g.qualifiedElement - >structure.ocllskKindOf(association))

62 DMTF Standard Version 3.0.0

2058

2059
2060
2061

2062
2063
2064
2065
2066

2067

2068
2069
2070

2071
2072

2073

2074
2075
2076

2077

2078
2079
2080
2081
2082

2083
2084

2085
2086
2087
2088
2089

2090
2091
2092
2093
2094
2095

2096
2097

2098

2099
2100

DSP0004 Common Information Model (CIM) Metamodel

7.18 ModelCorrespondence

Each value of this qualifier asserts a semantic relationship between the qualified element and a named
element. That correspondence should be described in the definition of those elements, but may be
described elsewhere.

The format of each name value is specified by the following ABNF:

corr espondingElementName =

*(typeName ".")
(methodName ["." parameterName]/
*(propertyName "") propertyName [EnumValue])

Where:

1 The typeName rule names the ancestor Type (Association, Class, Enumeration, or Structure) that
owns the corresponding element and is required if an element of the same name is exposed more
than once in the ancestry.

1 The methodName rule is required if the overridden element is a method. If the overridden element is
a parameter, then it shall be specified.

1 The propertyName rule is required if a property is overridden.

The basic relationship between the referenced elements is a "loose" correspondence, which simply
indicates that the elements are coupled. This coupling may be unidirectional. Additional meta information
may be used to describe a tighter coupling.

The following list provides examples of several correspondences:

1 A property provides more information for another. For example, an enumeration has an allowed
value of "Other", and another property further clarifies the intended meaning of "Other." In another
case, a property specifies status and another property provides human-readable strings (using an
array construct) expanding on this status. In these cases, ModelCorrespondence is found on both
properties, each referencing the other.

1 A property is defined in a subclass to supplement the meaning of an inherited property. In this case,
the ModelCorrespondence is found only on the construct in the subclass.

1 Multiple properties taken together are needed for complete semantics. For example, one property
could define units, another property could define a multiplier, and another property could define a
specific value. In this case, ModelCorrespondence is found on all related properties, each
referencing all the others.

NOTE This specification supports structures. A structure implies a relationship between its properties.

1 Multiple related arrays are used to model a multi-dimensional array. For example, one array could
define names while another defines the name formats. In this case, the arrays are each defined with
the ModelCorrespondence qualifier type, referencing the other array properties or parameters. Also,
they are indexed and they carry the ArrayType qualifier type with the value "Indexed."

NOTE This specification supports structures. A structure implies a relationship between its properties.
Properties that have type structure could be arrays.

The semantics of the correspondence are based on the elements themselves. ModelCorrespondence is
only a hint or indicator of a relationship between the elements.

While they do not replace all uses of ModelCorrespondence:

91 structures should be used in new schemas to gather indexed array properties belonging to the same
type (i.e., association, class, or structure).

Version 3.0.0 DMTF Standard 63

Common Information Model (CIM) Metamodel DSP0004

2101 1 OCL constraints should be used when the correspondence between elements can be expressed as
2102 an OCL expression.

2103 The attributes of the qualifier type are:

2104 type = string (array, Null allowed)

2105 defaultValue = Null

2106 scope ={QualifierScopeKind:: any}

2107 policy = PropagationPolicyKind ::enableOverride

2108 7.18.1 Referencing model elements within a schema

2109 The ability to reference specific elements of a schema from other elements within a schema is required.
2110 Examples of elements that reference other elements are: the MODELCORRESPONDENCE and OCL
2111 qualifier types. This clause defines common naming rules.

2112 1 Schema.

2113 schemaName = IDENTIFIER

2114 1 Class, Association, Structure.

2115 className = [[schemaName]" "] IDENTIFIER

2116 structureName = [[schemaName]" "]IDENTIFIER
2117 qualifiedStructureName = ¢ lassName / structureName)
2118 *(" . " structureName)

2119 1 Enumeration

2120 enumerationName = [[schemaName] " "] IDENTIFIER
2121 qualifiedEnumName = [qualifiedStructureName "."lenumerationName
2122 1 Property

2123 propertyName = IDENTIFIER

2124 qualifiedPropertyName = [qualifiedStructureName "."]

2125 propertyName *("." propertyName)

2126 1 Method

2127 methodName = IDENTIFIER

2128 qualifiedMethodName = [className "."] methodName
2129 1 Parameter

2130 parameterName = IDENTIFIER

2131 qualifiedParmName = [qualifiedMethodName "]

2132 parameterName *("." propertyName)

2133 1 EnumValue

2134 EnumValue = IDENTIFIER

2135 qualifiedEnum Value = [qualifiedEnumName ""] EnumValue

64 DMTF Standard Version 3.0.0

2163

2164
2165
2166

2167
2168

2169

2170
2171

2172
2173

2174
2175

DSP0004 Common Information Model (CIM) Metamodel

1 QualifierType
qualifierType = [schemaName] " " |IDENTIFIER

7.19 OCL
Values of this qualifier each specify an OCL statement on the qualified element.

Each OCL qualifier has zero (0) or more literal strings that each hold the value of one OCL statement,
(see clause 8).

The context (i.e., self) of a specified OCL statement is the qualified element. All names used in an OCL
statement shall be local to that element.

The attributes of the qualifier type are:

type = string (array, Null allowed)

defaultValue = Null

scope ={QualifierScopeKind::association, QualifierScopeKind::class,
QualifierScopeKind::structure,
QualifierScopeKind::method}

policy = PropagationPolicyKind ::enableOverride

7.20 Out
If the value of an Out qualifier is true, the qualified parameter is used to pass values out of a method.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValue = false

scope ={QualifierScopeKind::parameter}

policy = Prop agationPolicyKind ::disableOverride

Constraints

Constraint 7.20-1: The value of the Out qualifier shall be consistent with the direction attribute

qualifier - >forAll(q | g.valueSpecification.value = true implies
g.qualifiedElement - >asType(Parameter).direction= DirectionKind::out or
g.qualifiedElement - >asType(Parameter).direction= DirectionKind::inout)

7.21 Override

If the value of an Override qualifier is true, the qualified element is merged with the inherited element of
the same name in the ancestry of the containing type (association, class, or structure). The qualified
element replaces the inherited element.

The ancestry of an element is the set of elements that results from recursively determining its ancestor
elements. An element is not considered part of its ancestry.

The ancestor of an element depends on the kind of element, as follows:

1 For aclass or association, its superclass is its ancestor element. If the class or association does not
have a superclass, it has no ancestor.

1 For a structure, its supertype is its ancestor element. If the structure does not have a supertype, it
has no ancestor.

1 For an overriding property (including references) or method, the overridden element is its ancestor. If
the property or method is not overriding another element, it does not have an ancestor.

Version 3.0.0 DMTF Standard 65

Common Information Model (CIM) Metamodel DSP0004

1 For a parameter of an overriding method, the like-named parameter of the overridden method is its
ancestor. If the method is not overriding another method, its parameters do not have an ancestor.
The merged element is inherited by subtypes of the type that contains the qualified element.

NOTE Thi s qualifier type Thissneahethat ifrihe dqualifiesl elémere is agairi specifed ih a
subtype within the inheritance hierarchy, the qualified element will not be merged with the new descendant element
unless the Override qualifier is also specified on the new descendant.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValu e= false

scope ={QualifierScopeKind::property, QualifierScopeKind::Method
QualifierScopeKind::parameter}

policy = PropagationPolicyKind ::restricted

7.22 PackagePath

A package is a namespace for class, association, structure, enumeration, and package elements. That is,
all elements belonging to the same package shall have unique names. Packages may be nested and are
used to organize elements of a model as defined in UML (see the Unified Modeling Language:

Superstructure specification).

The value of this qualifier specifies a schema relative name for a package. If a value is not specified, or is
specified as Null, the package path shall be the schema name of the qualified element, followed by
"::default". The format of the value for a PackagePath conforms to the following ABNF:

schemaName = IDENTIFIER
packageName = IDENTIFIER
packagePath = SchemaName "::"

("default" / packageName *("::" packageName))

Example 1: Consider a class named "ACME_ADbc" that is in a package named "PackageB" that is in a package
named "PackageA" that, in turn, is in a package named "ACME". The resulting qualifier type value for this class is
"ACME::PackageA::PackageB"

Example 2: Consider a class named "ACME_Xyz" with no PackagePath qualifier type. The resulting qualifier type
value for this class is "ACME::default".

The attributes of the qualifier type are:

type = string (scalar, Null allowed)
defaultValue = Null
scope ={ QualifierScopeKind::association, QualifierScopeKind::cla ss,

QualifierScopeKind::enumeration,
QualifierScopeKind::structure}
policy = PropagationPolicyKind ::enableOverride

Constraints

Constraint 7.22-1: The name of all qualified elements having the same PackagePath value shall be

unique.
Let pkg Names : Set(String) = qualifier - >valueSpecification.value ->asSet() in
Sequence(l..pkgNames.size()) - >forAll(i |
| et pkgQualifiers : Set (qualifier) =
qualifier ->select (q| g.value Specification.value = pkgName.at(i)) in
Sequence(l..pkgQualifiers.size()) ->
forAll(pq | pkgQualifiers .at(pg) - >qualifiedElement - >isUnique(e
| e.name)

66 DMTF Standard Version 3.0.0

2222

2223
2224
2225

2226
2227
2228
2229
2230
2231

2232

2233
2234
2235
2236
2237

2238

2239
2240

DSP0004 Common Information Model (CIM) Metamodel

7.23 PUnit

If the value of this qualifier is not Null, the value of the qualified numeric element is in the specified
programmatic unit of measure. The specified value of the PUnit qualifier conforms to the syntax for
programmatic units is defined in ANNEX D.

NOTE String typed schema elements that are used to represent numeric values in a string format cannot have the
PUnit qualifier type specified, because the reason for using string typed elements to represent numeric values is
typically that the type of value changes over time, and hence a programmatic unit for the element needs to be able to
change along with the type of value. This can be achieved with a companion schema element whose value specifies
the programmatic unit in case the first schema element holds a numeric value. This companion schema element
would be string typed and the IsPUnit meta attribute would be set to true.

The attributes of the qualifier type are:
type = string (scalar, Null allowed)
defaultValue = Null
scope ={ QualifierScopeKind::property,
QualifierScopeKind::Method , QualifierScopeKind::parameter}
policy = PropagationPolicyKind ::enableOverride
Constraints

Constraint 7.23-1: The type of the element qualified by PUnit shall be a Numeric
t ype.ocllsKindOf(Numeric)

7.24 Read
If the value of this qualifier is true, the qualified property can be read.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValue = true

scope ={QualifierScopeKind::property, QualifierScop eKind::reference }
policy = PropagationPolicyKind ::enableOverride

Constraints

Constraint 7.24-1: The value of the Read qualifier shall be consistent with the accessibility attribute

qualifier - >forAll(q | g.valueSpecification.value = true implies
g.qualifiedElement - >asType(Property).accessibility= AccessKind::readonly or
g.qualifiedElement - >asType(Property). accessibility = AccessKind::readwrite

Version 3.0.0 DMTF Standard 67

2254

2255
2256
2257
2258

2259
2260

2261

2262

Common Information Model (CIM) Metamodel DSP0004

7.25 Required

If the value of a Required qualifier is true then: a qualified property or reference shall not be Null within a
separately addressable instance of a class containing that element; and a qualified parameter shall not be
Null when passed into or out of a method; and a method return shall not be Null when returned from a
passed out of a method.

For an element that is an array, required does not prohibit individual elements from being Null. Table 14
and Table 15 show the consequences of setting required to true on scalar and array elements.

Table 141 Required as applied to scalars

Required | Element value

False Null is allowed

True Null is not allowed

Table 157 Required as applied to arrays

Array
has
Required | Elements | Array value Array element values
False No Null is allowed Not Applicable
False Yes Not Null May be Null
True No Null is not allowed Not Applicable
True Yes Not Null May be Null

The attributes of the qualifier type are:
type = boolean (scalar, non - Null)
defaultValue = false
scope ={ QualifierScopeKind::Method , QualifierScopeKind::parameter,
QualifierScopeKind::property,
QualifierScopeKind::reference}
policy = PropagationPolicyKind ::disableOverride

Constraints

Constraint 7.25-1: The value of the Required qualifier shall be consistent with the required attribute

qualifier - >forAll(q | g.valueSpecification.value = g.qualifiedElement -
>asType(TypedElement). required)

7.26 Static
If the value of a Static qualifier is true, the qualified method is static (see 6.4.10).

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValue = false

scope ={ QualifierScopeKind::method }

policy = Propagat ionPolicyKind ::disableOverride

68 DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

Constraints

Constraint 7.26-1: The value of the Static qualifier shall be consistent with the static attribute

qualifier - >forAll(q |
(g.qualifiedElement.oclisKindOf(Prop erty) implies
g.valueSpecification.value = g.qualifiedElement -
>asType(Property).static) or
(q.qualifiedElement.oclisKindOf(Method) implies
g.valueSpecification.value = g.qualifiedElement - >asType(Method).static)

)
7.27 Terminal

If true, the value of the Terminal qualifier specifies that the qualified element shall not have sub types.
The qualified element shall not be abstract.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)
defaultValue = false
scope ={QualifierScopeKind::association, QualifierScopeKind::class,
QualifierScopeKind::enumeration,
QualifierScopeKind::structure}
policy = PropagationPolicyKind ::enableOverride

Constraints

Constraint 7.27-1: The element qualified by Terminal qualifier shall not be abstract
qualifier.qualifiedElement - >forAll(e | e.abstract=false)

Constraint 7.27-2: The element qualified by Terminal qualifier shall not have subclasses
qualifier.qualifiedElement - >forAll(e | e. subType - >isEmpty())

7.28 Version

The value of this qualifier specifies the version of the qualified element. The version increments when
changes are made to the element.

NOTE Starting with CIM Schema 2.7 (including extension schema), the Version qualifier type shall be present on
each class to indicate the version of the last update to the class.

The string representing the version comprises three decimal integers separated by periods; that is,
Major.Minor.Update, as defined the versionFormat ABNF rule (see A.3).

NOTE A version change applies only to elements that are local to the class. In other words, the version change of
a superclass does not require the version in the subclass to be updated.

The version shall be updated if the Experimental qualifier value is changed.

NOTE The version is updated for changes of the Experimental qualifier to enable tracking that change.

The attributes the Version qualifier type are:

type = string (scalar, Null allowed)

defaultValue = Null

scope ={ QualifierScopeKind::association, QualifierScopeKind::class,
QualifierScopeKind::enumeration, QualifierScopeKind::struc ture}
policy = PropagationPolicyKind ::restricted

Version 3.0.0 DMTF Standard 69

2322

2323
2324

2325

Common Information Model (CIM) Metamodel DSP0004

Constraints

Constraint 7.28-1: The value of the Version qualifier shall be consistent with the version of the
qualified element

qualifier - >forAll(q | 9. qualifiedElement.version = g.valueSpecification.value)

7.29 Write
If the value of this qualifier is true, the qualified property can be written.

The attributes of the qualifier type are:

type = boolean (scalar, non - Null)

defaultValue = Null

scope ={QualifierScopeKind::property, QualifierScopeKind::reference }
policy = PropagationPolicyKind ::enableOverride

Constraints

Constraint 7.29-1: The value of the Write must be consistent with the accessibility attribute

qualifier - >forAll(q | g.valueSpecification.value = true implies
g.qualifiedElement - >asType(Property).accessibility= AccessKind::writeonly or
g.qualifiedElement - >asType(Property). accessibility = AccessKind::readwrite

7.30 XMLNamespaceName

If the value of this qualifier is not Null, then the value shall identify an XML schema and this qualifier
asserts that values of the qualified element conforms to the specified XML schema.

The value of the qualifier is a string set to the URI of an XML schema that defines the format of the XML
instance document that is the value of the qualified string element.

As defined in NamingContexts in XML, the format of the XML Namespace name shall be that of a URI
reference as defined in REC3986. Two such URI references can be equivalent even if they are not equal
according to a character-by-character comparison (e.g., due to usage of URI escape characters or
different lexical case).

If the value of the XMLNamespaceName qualifier type overrides an XMLNamespaceName qualifier type
specified on an ancestor of the qualified element, the XML schema specified on the qualified element
shall be a subset or restriction of the XML schema specified on the ancestor element, such that any XML
instance document that conforms to the XML schema specified on the qualified element also conforms to
the XML schema specified on the ancestor element.

No particular XML schema description language (e.g., W3C XML Schema as defined in XML Schema
Part 0: Primer Second Edition or RELAX NG as defined in ISO/IEC 19757-2) is implied by usage of this
qualifier.

The attributes of the qualifier type are:

type = string (scalar, Null allowed)

defaultValue = Null

scope ={ QualifierScopeKind::parameter, Qualifie rScopeKind::property,
QualifierScopeKind::Method }

policy = PropagationPolicyKind ::enableOverride

Constraints

Constraint 7.30-1: An element qualified by XMLNamespaceName shall be a string
qualifier - >qualifiedElement - >forAll(e | e.type.ocllsKindOf(string)

70 DMTF Standard Version 3.0.0

2365

2366
2367
2368
2369

2370
2371
2372

2373
2374
2375

2376
2377
2378

2379
2380
2381

2382

2383
2384
2385
2386
2387

2388
2389
2390
2391

2392

2393
2394

2395

2396
2397
2398
2399

2400
2401

DSP0004 Common Information Model (CIM) Metamodel

8 Object Constraint Language (OCL)

The Object Constraint Language (OCL) is a formal language for the description of constraints on the use
of model elements. For example, OCL constraints specified against an element of a metamodel affect the
use of that metaelement to construct elements of a model. Similarly, constraints specified against an
element of a user model affect all instances of that element.

Examples in this clause are drawn from elements in the CIM Metamodel. However, OCL can be used on
the elements of any model. The OCL qualifier provides a mechanism to specify constraints in a user
model.

OCL is defined by the Open Management Group (OMG) in the Object Constraint Language specification,
which states that OCL is intended as a specification language. Some OCL query functions included in
this subset are defined in the UML Superstructure Specification.

OCL expressions do not change anything in a model, but rather are intended to evaluate whether or not a
modeled system is conformant to a specification. This means that the state of the system will never
change because of the evaluation of an OCL expression.

This specification uses a subset of OCL to specify constraints on the metaelements of clause 6 and on
the use of qualifiers defined by Qualifier Types specified in this clause. Additionally, the subset described
here is intended to specify the subset of OCL that shall be supported for use with the OCL qualifier.

8.1 Context

Each OCL statement is made in the context of a model element that provides for naming unigueness. The
keyword "self" is an explicit reference to that context element. All other model elements referenced in a
constraint are named relative to the context element. In most expressions, "self" does not need to be
explicitly stated. For example, if CIMM::NamedElement is the context, then "self.name" and "name" both
refer to the name attribute of CIMM::NamedElement.

An OCL qualifier may be specified on any element. The context for evaluation of the specified OCL

statements is the containing structure, class, association, enumeration, or method. For example, consider

a class with a method "ShutDown", which has a boolean parameter "Force". To specify that "Force" must

always be true when the method is invoked, the following OCL constraint can be specified on the method:
pre: force=true

If, instead, the same constraint was associated with the class, that OCL constraint would have to be
specified as:
pre: shutdown: : f orce=true

Associating the constraint with the class can be advantageous if it is desired to specify that "Force" must
be true when some property of the class has a particular value. In the example below, if the class "State"
property has value of "disaster”, then the "Force" argument must be true:

pre: state= "disaster " implies shutdown : : f orce=true

8.2 Type conformance

OCL uses a type system that maps onto the types defined by CIM as defined in Table 16.

Version 3.0.0 DMTF Standard 71

2402

2403
2404

2405

2406
2407
2408
2409

2410
2411

2412
2413
2414
2415
2416
2417
2418

2419
2420
2421
2422

2423

Common Information Model (CIM) Metamodel DSP0004

Table 16 1 OCL and CIM Metamodel types

OCL Type CIM Metamodel Type Example

Boolean Boolean true, false

Integer Integer 0,15,-2 3,

Real Real 150. 47,

String String "OCL is useful in CIM"

Enumeration Enumeration Blue, Green, Yellow

UML Classifiers Types NamedEI ement , Property

Collection, Set, Bag, Sequence, and Tuple are basic OCL types as well.

Specific rules for all OCL types are defined in the Object Constraint Language specification.

8.3 Navigation across associations

OCL allows traversing associations in both directions, regardless of whether or not the reference
properties are owned by an association or by an associated class. While CIM Metamodel only uses
associations where the reference properties are owned by the associated classes, both styles are
supported by CIM Metamodel conformant models.

NOTE To simplify the conformance checking of CIM Metamodel conformant models, all associations in the CIM
Metamodel are owned by the associated classes.

Starting at one class in a model, typical OCL navigation follows a referencing property to an associated
class. However when association classes are used, which is common in user models, such referencing
properties do not exist in the associated classes. This is resolved by first referencing the association class
name, and then following the reference property in that association class. This strategy is described in the
Object Constraint Language specification in its sections 7.6.4 "Navigation to Association Classes" and
7.6.5 "Navigation from Association Classes". In that specification, the reference properties in association
classes are referred to as "roles".

As an example, (see Figure 2 — Example schema), from the point of view of a GOLF_Club, the role
professional is ambiguous. This is solved in OCL by including the name of the association class. For
example, in the context of a GOLF_Club, the following invariant asserts that there must at least one
GOLF_Professional on staff.

Inv: GOLF_Profes sionalStaffMember.size() > 0

72 DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

Golf_Club

* +club +cluby |*
Golf_ProfessionalMember

F--

Golf_Piofessionalember T zolf_Professional=taffMember
Golf_ProfessionalStaffMember
salary ; Real32 p - -
. | tprofessional +professional |*

Golf_Professional

2424

2425 Figure 21 Example schema

2426 8.4 OCL expressions

2427 The OCL specification provides syntax for creating expressions that produce an outcome of a specific
2428 type. The following subsections specify those aspects of OCL expressions that CIM Metamodel depends
2429 on. These are referred in subsequent ABNF as OCLExpression

2430 8.4.1 Operations and precedence

2431 Table 17 lists the operations in order of precedence.

Version 3.0.0 DMTF Standard 73

2432

2433
2434

2435

2436

2437
2438

Common Information Model (CIM) Metamodel DSP0004

Table 171 Operations

Operator Description

",)" Encapsulate and de-encapsulate operations
All operations within an encapsulation are evaluated before any values outside of an
encapsulation.

> Dot operations take the value, and arrow operations dereference

"not", "-" Logical not and arithmetic negative operations

e Multiplication and division operations

gt Addition and Subtraction operations

"if-then-else-endif" Conditional execution

TS =t > Comparison operations

e e Equality operations

"and" Logical boolean conjunction operation

"or" Logical boolean disjunction operation

"xor" Logical boolean exclusive disjunction (exclusive or) operation

"implies" If this is true, then this other thing must be true

"let-in" Define a variable and use it in the following

8.4.2 OCL expression keywords

The following are OCL reserved words.

Table 181 OCL expression keywords

and def derive else endif if implies in init

inv let not or post pre then xor

8.4.3 OCL operations

Table 19, Table 20, and Table 21 list OCL operations used by this specification or recommended for use
in CIM Metamodel conformant models.

74 DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

2439 Table 1917 OCL operations on types
Operation Result
oclAsType() Casts self to the specified type if it is in the hierarchy of self or undefined.
oclisKindOf() True if self is a kind of the specified type.
oclisUndefined() True if the result is undefined or Null.
2440 Table 201 OCL operations on collections
Operation Result
asSet() Converts a Bag or Sequence to a Set (duplicates are removed.)
at() The nth element of an Ordered Set or a Sequence
(Note: A string is treated as a Sequence of characters.)
closure() Like select, but closure returns results from the elements of a collection, the elements of
the elements of a collection, the elements of the elements of the elements of a collection,
and so forth
collect() A derived collection of elements
count() The number of times a specified object occurs in collection
excludes() True if the specified object is not an element of collection
excluding() The set containing all the elements in a collection except for the specified element(s)
exists() True if the expression evaluates to true for at least one element in a source collection
forAll() True if the expression evaluates to true for every element in a source collection
includes() True if the specified object is an element of collection
includesAll() True if self contains all of the elements in the specified collection
isEmpty() True if self is the empty collection
notEmpty() True if self is not the empty collection
sequence{}
select() The subset of elements from the a source collection for which the expression evaluates to
true
size() The number of elements in a collection
NOTE 1 OCL coerces a Null to an empty collection.
NOTE 2 OCL does not coerce a scalar to a collection.
union() The union of the collection with another collection
2441 Table 2117 OCL operations on strings
Operation Result
concat() The specified string appended to the end of self
substring() The substring of self, starting at a first character number and including all characters up to

a second character number
Character numbers run from 1 to self.size().

toUpperCase() Converts self to upper case, if appropriate to the locale; otherwise, returns the same
string as self

Version 3.0.0 DMTF Standard 75

2442
2443
2444
2445
2446
2447
2448
2449

2450

2451
2452

2453
2454
2455
2456

2457
2458
2459
2460
2461

2462
2463
2464
2465
2466
2467
2468
2469
2470

2471

2472
2473

2474
2475

Common Information Model (CIM) Metamodel DSP0004

8.4.3.1

Let expressions

The let expression allows a variable to be defined and used multiple times within an OCL constraint.

f
f
il
il

let Expression ="let" varName ":" typeName "=" varlnitializer "in"

ocl Expression
varName is a name for a variable.
typeName is the type of the variable.
varlnitializer is the OCL statement that evaluates to a typeName conformant value.

oclExpression is an OCL statement that utilizes varName.

8.5 OCL statement

The following sub clauses define the subset of OCL used by this document and which shall be supported
by the OCL qualifier.

By default, ABNF rules (including literals) are to be assembled without inserting any additional whitespace
characters, consistent with RFC5234. If an ABNF rule states "whitespace allowed", zero or more of the
following whitespace characters are allowed between any ABNF rules (including literals) that are to be
assembled:

f
f
f
f
f

U+0009 (horizontal tab)
U+000A (linefeed, newline)
U+000C (form feed)
U+000D (carriage return)
U+0020 (space)

The value for a single OCL constraint is specified by the following ABNF:

ocl Statement = *ocl_comment ; 8.5.1
(ocID efinition / ; 8.5.2
ocll nvariant / ; 8.5.3
oclP recondition / ; 8.5.4
oclP ostcondition / ; 8.56.5
oclB odycondition / ; 8.5.6
oclD erivation / ; 8.5.7
ocll nitialization) ; 8.5.8

8.5.1 Comment statement

Comments in OCL are written using either of two techniques:

f
1

The |Iine comment s-tarathsd wintdls twh & hs ttrhiengne'x t

The paragraph comment starts withthest r i ng “/ *’ and ends with
comments may be nested.

76

DMTF Standard Version 3.0.0

newl

t

he

n e

st

2476

2477
2478

2479
2480

2481
2482

2483
2484

2485
2486

2487

2488

2489
2490

2491
2492

2493
2494

2495
2496

2497

2498

2499
2500
2501

2502
2503

2504
2505

2506
2507

2508

2509
2510
2511

2512
2513

DSP0004 Common Information Model (CIM) Metamodel

8.5.2 OCL definition statement

OCL definition statements define OCL attributes and OCL operations that are reusable by other OCL
statements.

The attributes and operations defined by OCL definition statements shall be available to all other OCL
statements within the its context.

A value specifying an OCL definition statement shall conform to the following formal syntax defined in
ABNF (whitespace allowed):

oclD efinition = "def" [ocl_name] ":" ocl Expression
1 ocl_name is a name by which the defined attribute or operation can be referenced.

1 oclExpression is the specification of the definition statement, which defines the reusable
attribute or operation.

NOTE The use of the OCL keyword self to scope a reference to a property is optional.

8.5.3 OCL invariant constraints

OCL invariant constraints specify a boolean expression that shall be true for the lifetime of an instance of
the qualified class or association.

A value specifying an OCL definition invariant constraint shall conform to the following formal syntax
defined in ABNF (whitespace allowed):

ocll nvariant = "inv" [ocl_name] ":" ocl Expression
1 ocl_name is a name by which the invariant expression can be referenced.

1 oclExpression is the specification of the invariant constraint, which defines the boolean
expression.

NOTE The use of the OCL keyword self to scope a reference to a property is optional.

8.5.4 OCL precondition constraint

An OCL precondition constraint is expressed as a typed OCL expression that specifies whether the
precondition is satisfied. The type of the expression shall be boolean. For the method to be completed
successfully, all preconditions of a method shall be satisfied before it is invoked.

A string value specifying an OCL precondition constraint shall conform to the formal syntax defined in
ABNF (whitespace allowed):

oclP recondition = "pre" [ocl_name] ":" ocl Expression
1 ocl_name is the name of the OCL constraint.

1 oclExpression is the specification of the precondition constraint, which defines the boolean
expression.

8.5.5 OCL postcondition constraint

An OCL postcondition constraint is expressed as a typed OCL expression that specifies whether the
postcondition is satisfied. The type of the expression shall be boolean. All postconditions of the method
shall be satisfied immediately after successful completion of the method.

A string value specifying an OCL post-condition constraint shall conform to the following formal syntax
defined in ABNF (whitespace allowed):

Version 3.0.0 DMTF Standard 77

2514
2515

2516
2517

2518

2519
2520
2521

2522
2523

2524
2525
2526

2527

2528
2529

2530
2531

2532

2533
2534

2535

2536
2537

2538
2539

2540

2541
2542

Common Information Model (CIM) Metamodel DSP0004

oclP ostcondition = "post” [ocl_name] ":" ocl Expression
1 ocl_name is the name of the OCL constraint.

1 oclExpression is the specification of the post-condition constraint, which defines the boolean
expression.

8.5.6 OCL body constraint

An OCL body constraint is expressed as a typed OCL expression that specifies the return value of a
method. The type of the expression shall conform to the CIM datatype of the return value. Upon
successful completion, the return value of the method shall conform to the OCL expression.

A string value specifying an OCL body constraint shall conform to the following formal syntax defined in
ABNF (whitespace allowed):

oclB ody condition = "body" [ocl_name] ":" ocl Expression
1 ocl_name is the name of the OCL constraint.

1 oclExpression is the specification of the body constraint, which defines the method return value.

8.5.7 OCL derivation constraint

An OCL derivation constraint specifies the derived value for a property at any time in the lifetime of the
instance. The type of the expression shall conform to the CIM datatype of the property.

A string value specifying an OCL derivation constraint shall conform to the following formal syntax defined
in ABNF (whitespace allowed):

oclD erivation =" derive" ":" ocl Expression

1 oclExpression is the specification of the derivation constraint, which defines the typed
expression.

8.5.8 OCL initialization constraint

An OCL initialization constraint is expressed as a typed OCL expression that specifies the initial value for
a property. The type of the expression shall conform to the CIM datatype of the property.

A string value specifying an OCL initialization constraint shall conform to the following formal syntax
defined in ABNF (whitespace allowed):

ocll nitializat ion = "init" ":" ocl Expression

1 oclExpression is the specification of the initialization constraint, which defines the typed
expression.

78 DMTF Standard Version 3.0.0

2543

2544

2545

2546

2547
2548

2549

2550
2551
2552

2553
2554
2555
2556

2557

2558
2559

2560

DSP0004

8.6 OCL constraint examples

Golf_Address

e Cealf_Stme=ErLim Golf_TournamentParticipant
+city © String — .

+street ; String fnalPosition : Lint32 =0
+streetMo : String ¥
+apartmentMo : String l

+tournament

Common Information Model (CIM) Metamodel

Golf_Tournament

+ournamerthame : String
+hostingClubMame : String
+hostingClubAddress
+hostingClubPhoneMo : Golf_Phoneiumber
+hostingClukbVWebPage : String

+startDate ;. Golf_Date

+endlate | Golf_Date

+sponsors - String [*]

Golf_TournamentParticipant

*

+hiostCluk |1

+representedClubs L

Golf_Club
+clubMame : String

I L
+participart valMembers +yearEstablished : Golf_Date

Golf_ClubMember +clubAddress | Golf_Address
+firstName : String * +clubPhoneMo : Golf_Phonelumber
+lasthame : String +cluby :g:aﬁﬁ:ggnéﬁg:j;gﬁn
+status | MemberStatusEnum 1 - =tring
+membershipEstablishedDate | Golf_Date
+membershipSignlUpFee . Real32
+monthlyFee . Real32
+astPaymentDate . Golf_Date
+memberAddress : Golf_Address rmember Golf_MemberLocker +locker
+memberPhoneMo : Golf_Phonelumber T Golf_Locker
+memberEmailAddress | String 0.1 0.1 +location : String

| +ockerMo : Lint16

Golf_Date

+year : Lint16 = 2000
+month ; Golf_MorthsEnum = January
+elay : Lint16 =1

Golf_MemberLocker

+morthlyRentFee : Real32

+assignedOnDate | Golf_Date

zenumerations

Golf_PhoneHumber

MemberStatusEnum

+areaCode : LintS [*]
+number ;. Uints [*]

hasic
extended

WVIP

Figure 31 OCL constraint example

The following examples refer to Figure 3 — OCL constraint example.

EXAMPLE 1: Check that property firstName and property lastName cannot be both be Null in any instance of
GOLF_ClubMember. Define OCL constraint on GOLF_ClubMember as:

and | astName=Null)

inv : not (firstName=Null

EXAMPLE 2: Derivethemo nt hl y

rent al as

10%

GOLF Locker is associated with at most one GOLF_ClubMember via the member role of the
GOLF_MemberLocker association. Define OCL constraint on Golf _Locker as:

member - >notEmpty()

derive : if GOLF MemberLocker.
then nonthlyRentFee =

GOLF_MemberLocker.

member. nonthlyFee * .10

EXAMPLE 3: From GOLF_ClubMember, assert that a member with basic status is permitted to have only one locker:

else nonthlyRentFee =0
endif
inv: status = MemberStatusEnum.
not (

GOLF_MemberLocker.

basic

implies
| ocker

-> size() >1)

EXAMPLE 4: From GOLF_ClubMember, assert that a member must have a defined phone number:

o fWetkiow fromehmmUMLrdiaggamthatn t h | y

Version 3.0.0

DMTF Standard 79

f

e e.

2561

2562

2563
2564
2565

2566
2567

Common Information Model (CIM) Metamodel

Inv: not memberPhoneNo. oclisUndefined()

DSP0004

EXAMPLE 5: From GOLF_Tournament, assert that a member must belong to a club in the tournament:

-- each participant must belong to a repres

GOLF _TournamentParticipant.
p. club))

participant - >forAll(

ented club

Pl

r epresentedClubs

EXAMPLE 6: From GOLF_Tournament, assert that hostClub refers to exactly one club.

hostClub.size()=1

- >includes(

80

DMTF Standard

Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

2568 ANNEX A
2569 (normative)
2570 Common ABNF rules

2571 A.1 Identifiers

2572 The following ABNF is used for element naming throughout this specification.

2573 DIGIT = U+0030 - 0039 ;"0 .9

2574 UNDERSCORE = U+005F ;"

2575 LOWERALPHA = U+0061- 007A ;rat .. "z"

2576 UPPERALPHA = U+0041- 005A ;ALY

2577 firstidentifierChar = UPPERALPHA / LOWERALPHA / UNDERSCORE
2578 nextldentifierChar = firstidentifierChar / DIGIT

2579 IDENTIFIER = firstldentifierChar *(nextldentifierChar)

2580 A.2 Integers

2581 No whitespace is allowed in the following ABNF Rules.

2582 positiveDecimalDigit = "1"/"2" / "3" | "4" | "5 /6" T 8" 9"
2583 decimalDigit = "0" / positiveDecimalDigit

2584 integerValue = 1*decimalDigit

2585 positivelntegerValue = positiveDecimalDigit *decimalDigit

2586 decimalvalue =["+" /" -"]
2587 (positiveDecimalDigit *decimalDigit / "0")

2588 A.3 Version

2589 The version is represented as a string that comprises three unsigned integers separated by periods,
2590 major.minor.update, as defined by integerValue ABNF rule (see A.2) and the following ABNF:

2591 No whitespace is allowed in the following ABNF Rules.
2592 major = integerValue

2593 minor = integerValue

2594 update =integerValue

2595 versionFormat = major ["." minor [*." update]
2596 EXAMPLE

2597 version = "3.0.0"
2598 version = "1.0.1

Version 3.0.0 DMTF Standard 81

2599
2600
2601

2602
2603
2604

2605
2606
2607
2608

2609
2610
2611

2612

2613
2614

2615
2616

2617
2618

2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631

2632
2633

2634
2635
2636

2637
2638
2639

Common Information Model (CIM) Metamodel DSP0004

ANNEX B
(normative)
UCS and Unicode

ISO/IEC 10646 defines the Universal Coded Character Set (UCS). The Unicode Standard defines
Unicode. This clause gives a short overview on UCS and Unicode for the scope of this document, and
defines which of these standards is used by this document.

Even though these two standards define slightly different terminology, they are consistent in the
overlapping area of their scopes. Particularly, there are matching releases of these two standards that
define the same UCS/Unicode character repertoire. In addition, each of these standards covers some
scope that the other does not.

This document uses ISO/IEC 10646 and its terminology. ISO/IEC 10646 references some annexes of
The Unicode Standard. Where it improves the understanding, this document also states terms defined in
The Unicode Standard in parenthesis.

Both standards define two layers of mapping:

1 Characters (Unicode Standard: abstract characters) are assigned to UCS code positions (Unicode
Standard: code points) in the value space of the integers 0 to OX10FFFF.

In this document, these code positions are referenced using the U+ format defined in ISO/IEC
10646. In that format, the aforementioned value space would be stated as U+0000 to U+10FFFF.

Not all UCS code positions are assigned to characters; some code positions have a special purpose
and most code positions are available for future assignment by the standard.

For some characters, there are multiple ways to represent them at the level of code positions. For
example, the character "LATIN SMALL LETTER A WITH GRAVE" (&) can be represented as a
single pre-composed character at code position U+00EO (a), or as a sequence of two characters:; A
base character at code position U+0061 (a), followed by a combination character at code position
U+0300 (). ISO/IEC 10646 references The Unicode Standard, Annex #15: Unicode Normalization
Forms for the definition of normalization forms. That annex defines four normalization forms, each of
which reduces such multiple ways for representing characters in the UCS code position space to a
single and thus predictable way. The Character Model for the World Wide Web 1.0: Normalization
recommends using Normalization Form C (NFC) defined in that annex for all content, because this
form avoids potential interoperability problems arising from the use of canonically equivalent, yet
differently represented, character sequences in document formats on the Web. NFC uses pre-
composed characters where possible, but not all characters of the UCS character repertoire can be
represented as pre-composed characters.

1 UCS code position values are assigned to binary data values of a certain size that can be stored in
computer memory.

The set of rules governing the assignment of a set of UCS code points to a set of binary data values
is called a coded representation form (Unicode Standard: encoding form). Examples are UCS-2,
UTF-16 or UTF-8.

Two sequences of binary data values representing UCS characters that use the same normalization form
and the same coded representation form can be compared for equality of the characters by performing a
binary (e.g., octet-wise) comparison for equality.

82 DMTF Standard Version 3.0.0

2640
2641
2642

2643

2644
2645

2646
2647

2648
2649

2650
2651

2652
2653
2654

2655
2656
2657

2658
2659
2660
2661
2662
2663

2664
2665
2666
2667
2668

2669
2670
2671

2672
2673
2674

2675
2676
2677

2678
2679
2680

DSP0004 Common Information Model (CIM) Metamodel

ANNEX C
(normative)
Comparison of values

This annex defines comparison of values for equality and ordering.

Values of boolean datatypes shall be compared for equality and ordering as if "true" was 1 and "false"
was 0 and the mathematical comparison rules for integer numbers were used on those values.

Comparison is supported between all numeric types. When comparisons are made between different
numeric types, comparison is performed using the type with the greater precision.

Values of integer number datatypes shall be compared for equality and ordering according to the
mathematical comparison rules for the integer numbers they represent.

Values of real number datatypes shall be compared for equality and ordering according to the rules
defined in ANSI/IEEE 754.

Values of the string datatypes shall be compared for equality on a UCS character basis, by using the
string identity matching rules defined in chapter 4 "String Identity Matching" of the Character Model for the
World Wide Web 1.0: Normalization specification.

In order to minimize the processing involved in UCS normalization, string typed values should be stored
and transmitted in Normalization Form C (NFC) as defined in The Unicode Standard, Annex #15: Unicode
Normalization Forms. This allows skipping the costly normalization when comparing the strings.

This document does not define an order between values of the string datatypes, since UCS ordering rules
could be compute intensive and their usage can be decided on a case by case basis. The ordering of the
"Common Template Table" defined in ISO/IEC 14651 provides a reasonable default ordering of UCS
strings for human consumption. However, an ordering based on the UCS code positions, or even based
on the octets of a particular UCS coded representation form is typically less compute intensive and might
be sufficient, for example when no human consumption of the ordering result is needed.

Two values of the octetstring datatype shall be considered equal if they contain the same number of
octets and have equal octets in each octet pair in the sequences. An octet sequence S1 shall be
considered less than an octet sequence S2, if the first pair of different octets, reading from left to right, is
beyond the end of S1 or has an octet in S1 that is less than the octet in S2. This comparison rule yields
the same results as the comparison rule defined for the strcmp() function in IEEE Std 1003.1.

Two values of the reference datatype shall be considered equal if they resolve to the same instance in the
same QualifiedElement. This document does not define an order between two values of the reference
datatype.

Two values of the datetime datatype shall be compared based on the time interval or point in time they
represent, according to mathematical comparison rules for these numbers. As a result, two datetime
values that represent the same point in time using different time zone offsets are considered equal.

Two values of compatible datatypes that both have no value, (i.e., are Null), shall be considered equal.
This document does not define an order between two values of compatible datatypes where one has a
value, and the other does not.

Two array values of compatible datatypes shall be considered equal if they contain the same number of
array entries and in each pair of array entries, the two array entries are equal. This document does not
define an order between two array values.

Version 3.0.0 DMTF Standard 83

Common Information Model (CIM) Metamodel DSP0004

2681 Two structure or instance values shall be considered equal if they have the same type and if all properties
2682 with matching names compare as equal.

84 DMTF Standard Version 3.0.0

2683
2684
2685

2686
2687

2688
2689
2690
2691

2692
2693
2694

2695
2696
2697
2698

2699
2700

2701
2702
2703
2704
2705
2706

2707
2708

2709

2710
2711

2712
2713
2714

2715
2716

2717
2718

2719
2720

2721
2722

DSP0004 Common Information Model (CIM) Metamodel

ANNEX D
(normative)
Programmatic units

This annex defines the concept of a programmatic unit and a syntax for representing programmatic units
as strings.

A programmatic unit is an expression of a unit of measurement for programmatic access. The goal is that
programs can make sense of a programmatic unit by parsing its string representation, and can perform
operations such as transformations into other (compatible) units, or combining multiple programmatic
units. The string representation of programmatic units is not optimized for use in human interfaces.

Programmatic units can be used as a value of the PUnit qualifierType, or as a value of any string typed
schema element whose values represents a unit. The boolean IsPUnit qualifierType can be used on a
string typed schema element to declare that its value is a string representation of a programmatic unit.

A programmatic unit can be as simple as a single base unit (for example, "byte"), or in the most complex
cases can consist of a number of base units and numerical multipliers (including standard prefixes for 10-
based or 2710-based multipliers) in the numerator and denominator a fraction (for example,
"kilobyte/second" or "2.54*centimeter").

Version 3 of this document introduced the following changes in the syntax of programmatic units,
compared to version 2.6:

The set of base units is now extensible by CIM schema implementations (e.g., "acme:myunit”).
Sl decimal prefixes can now be used (e.g., "kilobyte").

IEC binary prefixes can now be used (e.qg., "kibibyte").

Numerical modifiers can now be used multiple times and also as a denominator.

Floating point numbers can now be used as numerical modifiers (e.g., "2.54*centimeter").

Integer exponents can now be used on base units (e.g., "meter*2", "second”-2").

=A =4 =4 =4 A4 -4 -4

Whitespace between the elements of a complex programmatic unit has been reduced to be only
space characters; newline and tab are no longer allowed.

UCS characters beyond U+007F are no longer allowed in the nhames of base units.

"+" as a sign of the exponent of a numerical modifier or as a sign of the entire programmatic unit
is no longer allowed in order to remove redundancy.

A base unit of a programmatic unit is a simple unit of measurement with a name and a defined semantic.
It is not to be confused with Sl base units. The base units of programmatic units can be divided into these
groups:

1 standard base units; they are defined in Table D-1 extension base units; they can be defined in
addition to the standard base units

The name of a standard base unit is a simple identifier string (see the base - unit ABNF rule in the
syntax below) that is unique within the set of all standard base units listed in Table D-1.

The name of an extension base unit needs to have an additional organization-specific prefix to ensure
unigueness (see the extensio n-unit ABNF rule in the syntax below).

The set of standard base units defined in Table D-1 includes all Sl units defined in ISO 1000 and other
commonly used units.

Version 3.0.0 DMTF Standard 85

2723
2724
2725

2726
2727
2728

2729
2730
2731
2732

2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775

Common Information Model (CIM) Metamodel DSP0004

The base units of programmatic units can be extended in two ways:
1 by adding standard base units in future major or minor versions of this document, or

1 by defining extension base units

The string representation of programmatic units is defined by the programmatic - unit ABNF rule
defined in the syntax below. Any literal strings in this ABNF shall be interpreted case-sensitively and
additional whitespace characters shall not be implied to the syntax.

The string representation of programmatic units shall be interpreted using normal mathematical rules.
Prefixes bind to the prefixed base unit stronger than an exponent on the prefixed base unit (for example,
"millimeter"2" means (0.001*m)"2), consistent with ISO 1000. The comments in the ABNF syntax below
describe additional interpretation rules.

programmatic - unit = [sign] *S unit - element

*(*S unit - operator *S unit - element)
sign = HYPHEN
unit -element = number / [prefix] base - unit [CARET exponent]
unit - operator = "*"/"/"
number = floatingpoint -number / exponent - number

; An exponent shall be interpreted as a floating point number

; with the specified decimal base and exponent and a mantissa of 1
exponent - number = base CARET exponent

base = integer - number

exponent = [sign] integer - number

; Aninteger shall be interpreted as a decimal integer number
integer - number = NON -ZERQGDIGIT *(DIGIT)

; Afloat shall be interpreted as a decimal fl oating point number
floatingpoint - number = 1*(DIGIT) ["."] *(DIGIT)
; A prefix for a base unit (e.g. "kilo"). The numeric equivalents of

; these prefixes shall be interpreted as multiplication factors for the
; dir ectly succeeding base unit. In other words, if a prefixed base

; unitisin the denomina tor of the overall programmatic unit, the
; numeric eq uivalent of that prefix is also in the denominator
prefix = decimal - prefix / binary - prefix
; Sl decimal pref ixes as defined in ISO 1000
decimal - prefix =
"deca" ; 1001

/ "hecto" ; 1072

/ "kilo" ; 1073

/ "mega" ; 1076

/"giga" ; 1079

/ "tera" ; 10M2

/ "peta” ; 10M5

/ "exa" ; 1078

/ "zetta" ; 10721

/ "yotta" ; 10724

/ "deci" ;100 -1

/ "centi" ; 100 -2

["milli" ; 107 -3

/ "micro" ; 100 -6

86 DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

2776 / "nano" ; 1070 -9

2777 / "pico" ;100 -12

2778 / "femto" ; 107 -15

2779 / "atto" ;100 -18

2780 / "zepto" ; 107 -21

2781 / "yocto" ; 10N - 24

2782

2783 ; IEC binary prefixes as defined in IEC 80000-13

2784 binary - prefix =

2785 "kibi" ; 2710

2786 /"mebi" ~ ;2720

2787 / "gibi" ; 2730

2788 / "tebi" ; 270

2789 / "pebi" ; 2750

2790 / "exbi" ; 2760

2791 /"zebi" ; 2770

2792 / "yobi" ; 2780

2793

2794 ; The name of a base unit

2795 base - unit = stand ard - unit / extension - unit

2796

2797 ; The name of a standard base unit

2798 standard - unit = UNIT - IDENTIFIER

2799

2800

2801 ; The name of an extension base unit. If UNIT - IDENTIFIER begins with a
2802 prefix (see pr efix ABNF rule), the meaning of that prefix shal I not be
2803 changed by the extension base unit (examples of this for st andard base
2804 units are "decibel” or "kilogram™)

2805 extension - unit = org -id COLON UNIT - IDENTIFIER

2806

2807 ;org - id shall include a copyrighted, trademarked, or otherwise unique
2808 ; name thatis owned by the business entity that is defin ing the
2809 ; extension unit, or that is a registered ID assigne d to the business
2810 ; entity by a recognized global au thority. org - id shall not begin with
2811 ; aprefix (see prefix ABNF rule)

2812 org -id = UNIT - IDENTIFIER

2813 UNIT- IDENTIFIER = FIRST -UNIT- CHAR [*(MID - UNIT- CHAR)

2814 LAST- UNIT- CHAR]

2815 FIRST- UNIT- CHAR = UPPERALPHA / LOWERALPHA / UNDERSCORE

2816 LAST- UNIT- CHAR = FIRST -UNIT- CHAR / DIGIT / PARENS

2817 MID- UNIT- CHAR = LAST- UNIT- CHAR / HYPHEN / S

2818

2819 DIGIT = ZERO / NON - ZERG DIGIT

2820 ZERO = "0"

2821 NON ZERQ DIGIT = "1" -"o"

2822 HYPHEN = U+002D " -

2823 CARET = U+005E ; A

2824 COLON = U+003A ;"

2825 UPPERALPHA = U+0041 -005A ;"A".."Z"

2826 LOWERALPHA = U+0061 - 007TA ;"a"..."z"

2827 UNDERSCORE = U+005F ;"

2828 PARENS = U+0028 / U+0029)"

2829 S = U+0020 "

Version 3.0.0 DMTF Standard 87

2830
2831
2832
2833
2834

2835

2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853

2854
2855
2856
2857

2858
2859
2860

2861

Common Information Model (CIM) Metamodel

DSP0004

For example, a speedometer could be modeled so that the unit of measurement is kilometers per hour.
Taking advantage of the Sl prefix "kilo" and the fact that "hour" is a standard base unit and thus does not
need to be converted to seconds, this unit of measurement can be expressed as a programmatic unit
string "kilometer/hour". An alternative way of expressing this programmatic unit string using only S| base
units would be "meter/second/3.6".

Other examples are:

"meter*meter*10"-6" -
"millimeter*millimeter" -

square millimeters
square millimeters

"millimeter*2" - square millimeters
"byte*2710" - binary kBytes

"1024*byte" - binary kBytes

"kibibyte" - binary kBytes

"byte*1073" - decimal kBytes

"kilobyte" - decimal kBytes
"dataword*4" - QuadWords
"-decibel-m" - -dBm
"second*250*107-9" - 250 nanoseconds
"250*nanosecond" - 250 nanoseconds

"foot*foot*foot/minute” -
"foot"3/minute" -
"revolution/minute” -
"pound/inch/inch" -

"pound/inch”"2" -
"foot*pound” -

cubic feet per minute, CFM

cubic feet per minute, CFM

revolutions per minute, RPM
pounds per square inch, PSI
pounds per square inch, PSI
foot-pounds

In the "Standard Base Unit" column Table D-1 defines the names of the standard base units. The
"Symbol" column recommends a symbol to be used in a human interface. The "Calculation" column
relates units to other units. The "Quantity" column lists the physical quantity or quantities measured by the

unit.

The standard base units in Table D-1 consist of the Sl base units and the Sl derived units amended by
other commonly used units. "SI" is the international abbreviation for the International System of Units

(French:

"Syst eéeme

I nt er nl&®1060n a |

d’" Unites"),

Table D-17 Standard base units for programmatic units

Standard Base Unit [Symbol [Calculation Quantity
No unit, dimensionless unit (the empty string)
percent % 1% = 1/100 Ratio (dimensionless unit)
permille %0 1 % = 1/ 1 0 (Ratio (dimensionless unit)
decibel dB 1dB =10 -1Ig (P/PO) |Logarithmic ratio (dimensionless unit)
1dB =20 - Ig (U/U0))))
Used with a factor of 10 for power, intensity, and
so on. Used with a factor of 20 for voltage,
pressure, loudness of sound, and so on

88

DMTF Standard

Version 3.0.0

defined

DSP0004 Common Information Model (CIM) Metamodel

Standard Base Unit |Symbol |Calculation Quantity

Count Unit for counted items or phenomenons
The description of the schema element using
this unit should describe what kind of item or
phenomenon is counted.

revolution rev 1rev = 360° Turn, plane angle

degree ° 180° = pi rad Plane angle

Radian rad lrad =1 m/m Plane angle

steradian sr 1sr=1m2m? Solid angle

Bit bit Quantity of information

Byte B 1B =8hit Quantity of information

dataword word 1 word = N bit Quantity of information
The number of bits depends on the computer
architecture.

Meter m S| base unit Length (The corresponding ISO Sl unit is
"metre.")

Inch in 1in=0.0254 m Length

rack-unit U 1U=175in Length (height unit used for computer
components, as defined in EIA-310)

Foot ft 1ft=12in Length

Yard yd lyd=3ft Length

Mile mi 1 mi=1760 yd Length (U.S. land mile)

Liter I 1000 1=1m?3 Volume (The corresponding ISO Sl unit is
“litre.")

fluid-ounce fl.oz 33.8140227 fl.oz = 1 | [Volume for liquids (U.S. fluid ounce)

liquid-gallon gal 1 gal =128 fl.oz Volume for liquids (U.S. liquid gallon)

Mole mol Sl base unit Amount of substance

kilogram kg Sl base unit Mass

Ounce 0z 35.273961950z =1 [Mass (U.S. ounce, avoirdupois ounce)

kg
pound Ib llb=16 0z Mass (U.S. pound, avoirdupois pound)

Version 3.0.0

DMTF Standard

89

Common Information Model (CIM) Metamodel

DSP0004

Standard Base Unit |Symbol |Calculation Quantity

second s Sl base unit Time (interval)

minute min 1min=60s Time (interval)

Hour h 1 h=60min Time (interval)

Day d 1d=24h Time (interval)

Week week lweek=7d Time (interval)

Hertz Hz 1Hz=1/s Frequency

gravity g 1 g=9.80665 m/s? Acceleration

degree-celsius °C 1°C =1 K (diff) Thermodynamic temperature

degree-fahrenheit °F 1 °F =5/9 K (diff) Thermodynamic temperature

Kelvin K S| base unit Thermodynamic temperature, color temperature

candela cd S| base unit Luminous intensity

Lumen Im 1lm=1cd-sr Luminous flux

Nit nit 1 nit =1 cd/m? Luminance

Lux Ix 1Ix=1Im/mz2 llluminance

newton N 1 N =1 kg-m/s2 Force

pascal Pa 1 Pa=1N/m2 Pressure

Bar bar 1 bar = 100000 Pa Pressure

decibel-A dB(A) 1dB(A)=20"-1g Loudness of sound, relative to reference sound

(p/p0) pressure level of p0 = 20 yPa in gases, using

frequency weight curve (A)

decibel-C dB(C) 1dB(C)=20-1Ig Loudness of sound, relative to reference sound

(p/p0) pressure level of p0 = 20 yuPa in gases, using

frequency weight curve (C)

Joule J 1J=1Nm Energy, work, torque, quantity of heat

Watt W 1W=1J/s = 1V -A [Power, radiant flux
In electric power technology, the real power
(also known as active power or effective power
or true power)

volt-ampere VA 1VA=1V-A In electric power technology, the apparent power

90

DMTF Standard

Version 3.0.0

2862

DSP0004

Common Information Model (CIM) Metamodel

Standard Base Unit |Symbol |Calculation Quantity

volt-ampere-reactive |var lvar=1V-A In electric power technology, the reactive power
(also known as imaginary power)

decibel-m dBm 1dBm =10 - Ig (P/PO) |Power, relative to reference power of PO = 1 mW

british-thermal-unit |BTU 1 BTU = 1055.056 J |Energy, quantity of heat
The 1SO definition of BTU is used here, out of
multiple definitions.

ampere A Sl base unit Electric current, magnetomotive force

coulomb C 1C=1As Electric charge

Volt \% 1V=1W/A Electric tension, electric potential, electromotive
force

Farad F 1F=1CINV Capacitance

Ohm Ohm, 10hm =1V/A Electric resistance

Q

siemens S 1S=1/0hm Electric conductance

weber Wb 1Wb=1Vs Magnetic flux

Tesla T 1T=1Wb/m? Magnetic flux density, magnetic induction

Henry H 1H=1Wb/A Inductance

becquerel Bq 1Bg=1/s Activity (of a radionuclide)

Gray Gy 1Gy=1JKkg Absorbed dose, specific energy imparted,
kerma, absorbed dose index

sievert Sv 1Sv=1JKkg Dose equivalent, dose equivalent index

Version 3.0.0 DMTF Standard 91

2863
2864
2865

2866

2867
2868
2869
2870
2871
2872
2873
2874
2875
2876

2877
2878

2879
2880

2881
2882

2883
2884

2885

2886
2887

2888
2889

2890
2891
2892
2893

2894
2895
2896

2897
2898

2899
2900

Common Information Model (CIM) Metamodel DSP0004

ANNEX E
(normative)
Operations on timestamps and intervals

E.1 Datetime operations

The following operations are defined on datetime types:

1 Arithmetic operations:

Adding or subtracting an interval to or from an interval results in an interval.
Adding or subtracting an interval to or from a timestamp results in a timestamp.
Subtracting a timestamp from a timestamp results in an interval.

Multiplying an interval by a numeric or vice versa results in an interval.

Dividing an interval by a numeric results in an interval.

Other arithmetic operations are not defined.

1 Comparison operations:

Testing for equality of two timestamps or two intervals results in a boolean value.

Testing for the ordering relation (<, <=, >, >=) of two timestamps or two intervals results in
a boolean value.

Other comparison operations are not defined.

Comparison between a timestamp and an interval and vice versa is not defined.

Specifications that use the definition of these operations (such as specifications for query languages)
should state how undefined operations are handled.

Any operations on datetime types in an expression shall be handled as if the following sequential steps
were performed:

1) Each datetime value is converted into a range of microsecond values, as follows:

il

The lower bound of the range is calculated from the datetime value, with any asterisks
replaced by their minimum value.

The upper bound of the range is calculated from the datetime value, with any asterisks
replaced by their maximum value.

The basis value for timestamps is the oldest valid value (that is, 0 microseconds
corresponds to 00:00.000000 in the time zone with datetime offset +720, on January 1 in
the year 1 BCE, using the proleptic Gregorian calendar). This definition implicitly performs
timestamp normalization.

NOTE 1 BCE is the year before 1 CE.

2) The expression is evaluated using the following rules for any datetime ranges:

il

Definitions:

T(x,y) The microsecond range for a timestamp with the lower bound x and the upper
bound y

I(X,y) The microsecond range for an interval with the lower bound x and the upper
bound y

92

DMTF Standard Version 3.0.0

2901
2902

2903

2904
2905
2906
2907
2908
2909
2910

2911
2912
2913
2914
2915
2916

2917
2918

2919
2920

2921
2922
2923

2924
2925

2926

2927
2928

2929
2930

2931
2932

2933
2934

2935
2936

2937
2938
2939
2940

2941

DSP0004 Common Information Model (CIM) Metamodel

D(x,y) The microsecond range for a datetime (timestamp or interval) with the lower
bound x and the upper bound y

il Rules:

I(a, b) + I(c,d) := I(a+c, b+d)
I(a, b) - I(c, d) := I(a-d, b-c)
T(a, b) +1(c, d) := T(atc, b+d)
T(a, b) - I(c,d) := T(a-d, b-c)
T(a, b) - T(c,d) := I(a-d, b-c)
I(a, b) *c = I(a*c, b*c)
I(a,b)/c := I(alc, blc)

D(a, b) < D(c, d) := trueif b <c, false if a >= d, otherwise Null (uncertain)
D(a, b) <= D(c, d) := true if b <=, false if a > d, otherwise Null (uncertain)
D(a, b) > D(c, d) := true if a > d, false if b <= ¢, otherwise Null (uncertain)
D(a, b) >=D(c, d) := true if a >=d, false if b < c, otherwise Null (uncertain)
D(a, b) = D(c,d) = trueifa=b =c=d, false if b <c OR a > d, otherwise Null (uncertain)
D(a, b) <> D(c, d) := trueifb<c OR a >d, false if a = b = ¢ = d, otherwise Null (uncertain)

These rules follow the well-known mathematical interval arithmetic. For a definition of
mathematical interval arithmetic, see http://en.wikipedia.org/wiki/Interval arithmetic.

NOTE 1 Mathematical interval arithmetic is commutative and associative for addition and multiplication, as in
ordinary arithmetic.

NOTE 2 Mathematical interval arithmetic mandates the use of three-state logic for the result of comparison
operations. A special value called "uncertain” indicates that a decision cannot be made. The special value of
"uncertain” is mapped to the Null value in datetime comparison operations.

3) Overflow and underflow condition checking for datetime values is performed on the result of the
expression, as follows:

For timestamp results:

1 Atimestamp older than the oldest valid value in the time zone of the result produces
an arithmetic underflow condition.

1 Atimestamp newer than the newest valid value in the time zone of the result produces
an arithmetic overflow condition.

For interval results:
1 A negative interval produces an arithmetic underflow condition.

1 A positive interval greater than the largest valid value produces an arithmetic overflow
condition.

Specifications using these operations (for example, query languages) should define how these
conditions are handled.

4) If the result of the expression is a datetime type, the microsecond range is converted into a valid
datetime value such that the set of asterisks (if any) determines a range that matches the actual
result range or encloses it as closely as possible. The GMT time zone shall be used for any
timestamp results.

NOTE For most fields, asterisks can be used only with the granularity of the entire field.

Version 3.0.0 DMTF Standard 93

http://en.wikipedia.org/wiki/Interval_arithmetic

2942

2943

Common Information Model (CIM) Metamodel

Examples:

DSP0004

Datetime Expression

Result

"000000000011** *****+*:000" * 60

"0000000011**** *rxxxx:000"

60 times adding up "000000000011** ******:000Q"

"000000001 1**x* *rxx+x:00Q"

"20051003110000.******+000" + "00000000005959.******:000"

"20051003*%** #55%5+000"

"20051003112233.******+000" - "00000000002233.******:000"

"20051003*** #55%5+000"

"20051003110000.******+000" + "000000000022** ******:000"

"2005100311*x** *rxxrx+ (00"

"20051003112233.******+000" - "00000000002232.******:000"

"200510031100** *¥*****+(Q 00"

"20051003112233.******+000" - "00000000002233.00000*:000"

"20051003110000.******+000"

"20051003112233.******+000" - "00000000002233.000000:000"

"20051003110000.******+000"

"20051003112233.000000+000" - "00000000002233.000000:000"

"20051003110000.000000+000"

"20051003110000.******+000" + "00000000002233.******:000"

"200510031122** *¥****x+000"

"20051003110000.******+000" + "00000000002233.00000*:000"

"200510031122** ******+000"

"20051003060000.******

- 300" + "00000000002233.000000: 000"

"20051003112233.******+000"

"20051003110000.******+000" + "00000000002233.000000:000"

"20051003112233.******+000"

"20051003060000.000000 - 300" + "00000000002233.000000:000"

"20051003112233.000000+000"

"20051003110000.000000+000" + "00000000002233.000000:000"

"20051003112233.000000+000"

"20051003112233.******+000" = "200510031122** ******+000"

Null (uncertain)

"20051003112233.******+000" = "20051003112233.******+000"

Null (uncertain)

"20051003112233.5*****+000" < "20051003112233.******+000"

Null (uncertain)

"20051003112233.******+000" = "20051003112234.******+000" FALSE
"20051003112233.******+000" < "20051003112234.******+000" TRUE
"20051003112233.000000+000" = "20051003112233.000000+000" TRUE
"20051003122233.000000+060" = "20051003112233.000000+000" TRUE

94 DMTF Standard

Version 3.0.0

2944
2945
2946

2947

2948
2949
2950
2951
2952

2953
2954

2955

2956
2957
2958
2959

2960

2961
2962
2963
2964

2965
2966
2967

2968

2969
2970

2971
2972

2973

2974
2975

2976

2977
2978

2979
2980
2981

2982
2983

DSP0004 Common Information Model (CIM) Metamodel

ANNEX F
(normative)
MappingStrings formats

F.1 Mapping entities of other information models to CIM

The MappingStrings qualifierType can be used to map entities of other information models to CIM or to
express that a CIM element represents an entity of another information model. Several mapping string
formats are defined in this clause to use as values for this qualifierType. The CIM schema shall use only
the mapping string formats defined in this document. Extension schemas should use only the mapping
string formats defined in this document.

The mapping string formats defined in this document conform to the following formal syntax defined in
ABNF:

mappingstrings_format = mib_format / oid_format / general_format / mif_format

NOTE As defined in the respective clauses, the "MIB", "OID", and "MIF" formats support a limited form of
extensibility by allowing an open set of defining bodies. However, the syntax defined for these formats does not allow
variations by defining body; they need to conform. A larger degree of extensibility is supported in the general format,
where defining bodies might define a part of the syntax used in the mapping.

F.2 SNMP-related mapping string formats

The two SNMP-related mapping string formats, Management Information Base (MIB) and globally unique
object identifier (OID), can express that a CIM element represents a MIB variable. As defined in
RFC1155, a MIB variable has an associated variable name that is unique within a MIB and an OID that is
unique within a management protocol.

The "MIB" mapping string format identifies a MIB variable using naming authority, MIB name, and variable
name. The "MIB" mapping string format may be used only on CIM properties, parameters, or methods.
The format is defined as follows, using ABNF:

mib_format = "MIB" "." mib_naming_authority "|" mib_name "." mib_variable_name
Where:
mib_naming_authority = 1*(stringChar)

is the name of the naming authority defining the MIB (for example, "IETF"). The dot (.) and vertical
bar (|) characters are not allowed.

mib_name = 1*(stringChar)

is the name of the MIB as defined by the MIB naming authority (for example, "HOST-RESOURCES-
MIB"). The dot (.) and vertical bar (|) characters are not allowed.

mib_variable_name = 1*(stringChar)

is the name of the MIB variable as defined in the MIB (for example, "hrSystemDate"). The dot (.)
and vertical bar (|) characters are not allowed.

The MIB name should be the ASN.1 module name of the MIB (that is, not the RFC number). For example,
instead of using "RFC1493", the string "BRIDGE-MIB" would be used.
EXAMPLE:

[MappingStrings { "MIB.IETF|HOST - RESOURCESMIB.hrSystemDate" H
datetime LocalDateTime;

Version 3.0.0 DMTF Standard 95

2984
2985
2986
2087

2988

2989
2990

2991
2992

2993

2994
2995

2996

2997
2998
2999

3000
3001

3002
3003

3004
3005

3006

3007

3008
3009
3010

3011
3012

3013
3014
3015
3016

3017
3018

3019
3020
3021

Common Information Model (CIM) Metamodel DSP0004

The "OID" mapping string format identifies a MIB variable using a management protocol and an object
identifier (OID) within the qualifiedElement of that protocol. This format is especially important for mapping
variables defined in private MIBs. The "OID" mapping string format may be used only on CIM properties,
parameters, or methods. The format is defined as follows, using ABNF:

oid_format = "OID" "." oid_naming_authority "|" oid_protocol_name "." oid
Where:
oid_naming_authority = 1*(stringChar)

is the name of the naming authority defining the MIB (for example, "IETF"). The dot (.) and vertical
bar (|) characters are not allowed.

oid_protocol_name = 1*(stringChar)

is the name of the protocol providing the qualifiedElement for the OID of the MIB variable (for
example, "SNMP"). The dot (.) and vertical bar (|) characters are not allowed.

oid = 1*(stringChar)

is the object identifier (OID) of the MIB variable in the qualifiedElement of the protocol (for example,
"1.3.6.1.2.1.25.1.2").
EXAMPLE:

[MappingStrings { "OID.IETF|SNMP.1.3.6.1.2.1.25.1.2" }]
datetime LocalDateTime;

For both mapping string formats, the name of the naming authority defining the MIB shall be one of the
following:

1 The name of a standards body (for example, IETF), for standard MIBs defined by that standards
body

1 A company name (for example, Acme), for private MIBs defined by that company

F.3 General mapping string format

This clause defines the mapping string format, which provides a basis for future mapping string formats. A
mapping string format based on this format shall define the kinds of CIM elements with which it is to be
used.

The format is defined as follows, using ABNF. The division between the name of the format and the
actual mapping is slightly different than for the "MIF", "MIB", and "OID" formats:

general_format = general_format_fullname "|" general_format_mapping
Where:

general_format_fullname = general_format_name "." general_format_defining_body

general_format_name = 1*(str ingChar)

is the name of the format, unique within the defining body. The dot (.) and vertical bar (|)
characters are not allowed.

general_format_defining_body = 1*(stringChar)
is the name of the defining body. The dot (.) and vertical bar (|) characters are not allowed.

general_format_mapping = 1*(stringChar)

96 DMTF Standard Version 3.0.0

3022

3023
3024

3025

3026

DSP0004 Common Information Model (CIM) Metamodel

is the mapping of the qualified CIM element, using the named format.

The text in Table F-1 is an example that defines a mapping string format based on the general mapping
string format.

Table F-11 Example MappingStrings mapping

General Mapping String Formats Defined for InfiniBand Trade Association (IBTA)

IBTA defines the following mapping string formats, which are based on the general mapping string
format:

"MAD.IBTA"

This format expresses that a CIM element represents an IBTA MAD attribute. It shall be used only on
CIM properties, parameters, or methods. It is based on the general mapping string format as follows,
using ABNF:

general_format_fullname = "MAD" "." "IBTA"
general_format_mapping = mad_class_name "|" mad_attribute_na me
Where:

mad_class_name = 1*(stringChar)
is the name of the MAD class. The dot (.) and vertical bar (|) characters are not allowed.

mad_attribute_name = 1*(stringChar)
is the name of the MAD attribute, which is unique within the MAD class. The dot (.) and vertical bar (|)
characters are not allowed.

Version 3.0.0 DMTF Standard 97

3027
3028
3029

3030
3031
3032

3033
3034

3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050

3051
3052

3053
3054

3055
3056

3057
3058
3059
3060

3061
3062

3063
3064

3065

3066
3067

3068

3069
3070

3071
3072

Common Information Model (CIM) Metamodel DSP0004

ANNEX G
(informative)
Constraint index

Constraint 6.4.1-1: An ArrayValue shall have array type........cccuvveiiiee i e e 37
Constraint 6.4.1-2: The elements of an ArrayValue shall have scalar type.........ccococveeiiiiieiiiie e 37
Constraint 6.4.2-1: An association shall only inherit from an assocCiation..............ccccvvvveeee i 37
Constraint 6.4.2-2: A specialized association shall have the same number of reference properties as

1RSI 0] 01T (] = LSRR 37
Constraint 6.4.2-3: An association class cannot reference itSelf. ... 37
Constraint 6.4.2-4: An association class shall have two or more reference properties..........ccccccovcveeennnn 37
Constraint 6.4.2-5: The reference properties of an association class shall not be Null...............cccccoeeo. 37
Constraint 6.4.3-1: All methods of a class shall have unique, case insensitive names............cccccceveeeeenns 38
Constraint 6.4.3-2: If a class is not abstract, then at least one property shall be designated as a Key 38
Constraint 6.4.3-3: A class shall not inherit from an assoCiation.ccccuvviiiieiiiiiiii e 38
Constraint 6.4.6-1: All enumeration values of an enumeration have unigue, case insensitive names. 39
Constraint 6.4.6-2: The literal type of an enumeration shall not change through specialization 39
Constraint 6.4.6-3: The literal type of an enumeration shall be a kind of integer or stringccccec.. 39
Constraint 6.4.6-4 : Each enumeration value shal/l h av.e...a39
Constraint 6.4.6-5: The super type of an enumeration shall only be another enumeration....................... 40
Constraint 6.4.6-6: An enumeration with zero exposed enumeration values shall be abstract.................. 40
Constraint 6.4.7-1: Value of string enumeration is a StringValue; Null not allowed.oooee. 40
Constraint 6.4.7-2: Value of an integer enumeration is a IntegerValue; Null not allowed. 40
Constraint 6.4.10-1: All parameters of the method have unique, case insensitive names.......................... 42
Constraint 6.4.10-2: A method shall only override a method of the same name.......................c.o oo, 42
Constraint 6.4.10-3: A method return shall not be removed by an overriding method (changed to

1L T) PSSR 42
Constraint 6.4.10-4: An overriding method shall have at least the same method return as the

METNOA T OVEITIAES. ...ttt e et et e e e e s e bbb bttt e e e e e e e e abbb e e e e e e e e e e nnnrneee 42
Constraint 6.4.10-5: An overriding method shall have at least the same parameters as the method it

oY= T T [OOSR 42
Constraint 6.4.10-6: An overridden method must be inherited from a more general type...........c.ococeeenee 43
Constraint 6.4.12-1 : Each qualifier applied t ostyweainitsbkcepme.n44
Constraint 6.4.15-1: An overridden property must be inherited from a more general type. 45
Constraint 6.4.15-2: An overriding property shall have the same name as the property it overrides.......... 46
Constraint 6.4.15-3: An overriding property shall specify a type that is consistent with the property it

OVEITIAES (SEE 5.6.3.3). 1eiiiiiiiiiii ittt ettt e b et e e e bbbt e s bt et e e s bbbt e e s nbb et e s aabbe e e s annneeas 46
Constraint 6.4.15-4: A key property shall not be modified, must belong to a class, must be of

primitiveType, shall be a scalar value and shall not be Null. ... 46
Constraint 6.4.16-1: A scalar shall have at most one valueSpecification for its PropertySlot 46
Constraint 6.4.16-2: The values of a PropertySlot shall not be Null, unless the related property is

AlIOWEA 10 D8 NUIL....c et e oottt et e e e e e s bbb et e e e e e e e anbbbeeeeaeeeeann 46
Constraint 6.4.16-3: The values of a PropertySlot shall be consistent with the property type 47
Constraint 6.4.17-1: A qualifier of a scalar qualifier type shall have no more than one

VAIUESPECITICALIONeiiiiiiiiii ettt sttt e st e e s s bt e e e e st e e e e nbee e e enbaeeeennees a7
Constraint 6.4.17-2: Values of a qualifier shall be consistent with qualifier typecccccoiiiiiiinnns a7
Constraint 6.4.17-3: The qualifier shall be applied to an element specified by qualifierType.scope........... a7

98 DMTF Standard Version 3.0.0

u

ni que

mu st

h

3073
3074

3075
3076

3077

3078
3079

3080
3081
3082
3083

3084
3085

3086
3087

3088
3089

3090
3091
3092

3093
3094

3095
3096

3097
3098

3099
3100
3101
3102
3103

3104
3105

3106
3107

3108
3109

3110
3111

3112
3113

3114
3115
3116
3117
3118
3119

3120
3121

DSP0004 Common Information Model (CIM) Metamodel

Constraint 6.4.17-4: A qualifier defined as DisableOverride shall not change its value in the

[o]ge] oF= e F=Nilo] e] £=T o] o IFU TP OO PUPPPTUPPPPPPPPPRP a7
Constraint 6.4.18-1: If a default value is specified for a qualifier type, the value shall be consistent

With the type of the QUAITIEr TYPE. ... e e s e e reeeee s 48
Constraint 6.4.18-2: The default value of a non string qualifier type shall not be null.c.ocoeee 48
Constraint 6.4.18-3: The qualifier type shall have a type that is either an enumeration, integer,

SEMNG, OF DOOIBAN.ciiii ettt ettt e e et e e e nb e e e e nbre e e e neee 48
Constraint 6.4.19-1: The type of a reference shall be a ReferenceTypeccceeviiiie i 49
Constraint 6.4.19-2: An aggregation reference in an association shall be a binary association 49
Constraint 6.4.19-3: A reference in an association shall not be an arraycccccoeeecvvvvveeee e, 49
Constraint 6.4.19-4: A generalization of a reference shall not have a kind of its more specific type 49
Constraint 6.4.20-1: A subclass of a ReferenceType shall refer to a subclass of the referenced

L0 =TSP PP RSP PPPRRP 49
Constraint 6.4.20-2; ReferenceTypes are NOt @bSIIACT...........cccuvvieiiieeii i e s e e e e 49
Constraint 6.4.21-1: All members of a schema have unique, case insensitive names.cccoeeeen. 50
Constraint 6.4.22-1: All properties of a structure have unique, case insensitive names within their

] (N o1 (0T TP PP P TP P R PR PR PRPTPTPRPRPRPPTN 51
Constraint 6.4.22-2: All localEnumerations of a structure have unigue, case insensitive names. 51
Constraint 6.4.22-3: All localStructures of a structure have unique, case insensitive names. 51
Constraint 6.4.22-4: Local structures shall not be classes or associationscccvveeeeeeiiniiiiiiieeeeee s 51

Constraint 6.4.22-5: The superclass of a local structure must be schema level or a local structure
within this structur.e .s..s.uper.t.y.pe..hi.er.ar.c.hy..51

Constraint 6.4.22-6: The superclass of a local enumeration must be schema level or a local
enumeration within this s.tr.uc.t.ur.e.l.s..s.upe.r.t.y.ps

Constraint 6.4.22-7: Specialization of schema level structures must be from other schema level

L1 [11 S PP 51
Constraint 6.4.24-1: Terminal types shall not be abstract and shall not be subclassed.............ccccccceo.... 53
Constraint 6.4.24-2: An instance shall not be realized from an abstract typecccoeee i, 53
Constraint 6.4.24-3: There shall be no circular inheritance pathscccc e, 53
Constraint 6.4.24-4: A value of an array shall be either NullValue or ArrayValuecccoocveiiniienennn 53
Constraint 6.4.26-1: A value specification shall have 0Ne OWNET.ccciiiiiiiiiiiiie e 55
Constraint 6.4.26-2: A value specification owned by an array value specification shall have scalar

1157 L PP 55
Constraint 7.1-1: The value of the Abstract qualifier shall match the abstract meta attribute 56

Constraint 7.2-1: The AggregationKind value shall be consistent with the AggregationKind attribute....... 57
Constraint 7.2-2: The AggregationKind qualifier shall only be applied to a reference property of an

=0 o3 - {0 o S PR 57
Constraint 7.3-1: The ArrayType qualifier value shall be consistent with the arrayType attribute.............. 57
Constraint 7.4-1: An element qualified with Bitmap shall have type Unsignedintegerccccoeeeeenn. 57
Constraint 7.4-2: The number of Bitmap values shall correspond to the number of values in

BIEVAIUES ...ttt ettt oottt et e e e 4o ettt e e e e e e b bbbttt e e e e e e e bbba e e e e e e e e e e nnreees 57
Constraint 7.5-1: An element qualified by BitValues shall have type Unsignedinteger..........ccccccoveuveeenee. 58
Constraint 7.5-2: The number of BitValues shall correspond to the number of values in the BitMap 58
Constraint 7.6-1: The element qualified by Counter shall be an unsigned integercccoeecuiieeieennnnns 58
Constraint 7.6-2: A Counter qualifier is mutually exclusive with the Gauge qualifier............ccoccinnni, 58
Constraint 7.7-1: The value of the Deprecated qualifier shall match the deprecated meta attribute.......... 59
Constraint 7.9-1: An element qualified by EmbeddedObject shall be a String........cccccovveveiiiie i 59
Constraint 7.10-1: The value of the Experimental qualifier shall match the experimental meta

= L1100 (=SSP PEERR 60

Version 3.0.0 DMTF Standard 99

hierar

3122
3123
3124
3125
3126
3127

3128
3129

3130

3131
3132

3133
3134

3135
3136

3137
3138
3139
3140
3141
3142

3143
3144

3145
3146
3147

Common Information Model (CIM) Metamodel DSP0004

Constraint 7.11-1: The element qualified by Gauge shall be an unsigned integerccccccoovecvviveeeeennnnns 60
Constraint 7.11-2: A Counter qualifier is mutually exclusive with the Gauge qualifier.............c.cccoecveeenen 60
Constraint 7.12-1: The value the In qualifier shall be consistent with the direction attribute...................... 61
Constraint 7.13-1: The type of the element qualified by IsPunit shall be a string.........cccccccoe i, 61
Constraint 7.14-1: The value of the Key qualifier shall be consistent with the key attribute...................... 61
Constraint 7.14-2: If the value of the Key qualifier is true, then the value of Write shall be false............... 61
Constraint 7.16-1: The value of the MAX qualifier shall be consistent with the value of max in the

QUATITIEA EIEIMENT ...ttt e s bbbt e bbbt e e s aab b et e s anbe et e e anb e e e s annneeas 62
Constraint 7.16-2: MAX shall only be applied to a Reference of an Association...........cccccceveecvvieeeeeennnns 62
Constraint 7.17-1: The value of the MIN qualifier shall be consistent with the value of min in the

o (B E= 111 iT=To I T (=T o 1 =T o PP PRR PP 62
Constraint 7.17-2: MIN shall only be applied to a Reference of an Association.............ccccevvciieeiiiieeeenne, 62
Constraint 7.20-1: The value of the Out qualifier shall be consistent with the direction attribute................ 65
Constraint 7.22-1: The name of all qualified elements having the same PackagePath value shall be

00T TR 66
Constraint 7.23-1: The type of the element qualified by PUnit shall be a Numericcccoccennns 67

Constraint 7.24-1: The value of the Read qualifier shall be consistent with the accessibility attribute....... 67
Constraint 7.25-1: The value of the Required qualifier shall be consistent with the required attribute....... 68

Constraint 7.26-1: The value of the Static qualifier shall be consistent with the static attribute 69
Constraint 7.27-1: The element qualified by Terminal qualifier shall not be abstract................................ 69
Constraint 7.27-2: The element qualified by Terminal qualifier shall not have subclasses....................... 69
Constraint 7.28-1: The value of the Version qualifier shall be consistent with the version of the

QUANTIEA EIEMIEBNT ...ttt e e e e st e et e e e e e s nbb b e et e e e e e eaanbnbneeeaeeeeana 70
Constraint 7.29-1: The value of the Write must be consistent with the accessibility attribute 70
Constraint 7.30-1: An element qualified by XMLNamespaceName shall be a stringccccceeevviieeennee 70

100 DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

3148 ANNEX H

3149 (informative)

3150 Changes from CIM Version 2

3151 1 New Features

3152 — Enumerations (both global and local)

3153 — Structures (both global and local)

3154 — Method Overloading - Default value of parameters

3155 — Method Return Values can be arrays

3156 — REFin Class

3157 — Al REF props in an association instance must be non-Null

3158 — REF props are not required to be keys

3159 i Nolonger Supported

3160 — Covered Properties

3161 NOTE covered properties occur when a class and its superclass define properties with the same
3162 name but without overriding. The term is an unofficial term that refers to the property of the

3163 superclass that is therefore "covered" by the property of the same name in the subclass. CIM v2
3164 deprecated support for covered properties within the same schema. CIM v2 allowed covered
3165 properties between a superclass and subclass belonging to different schemas. CIM v3 disallows
3166 covered properties in all cases. In the event that a superclass adds properties that conflict with
3167 properties of existing subclasses, it is the responsibility of the vendor owning the subclass to resolve
3168 the conflict.

3169 — The ability to use UNICODE Characters within identifiers for schema element names has
3170 been removed. The CIM v3 character set for identifiers is specified in A.1.

3171 — Meta Qualifiers — The Association and Indication qualifiers are no longer supported. CIM
3172 v3 covers this functionality

3173 — CIM v2 classes that have the Indication qualifier can typically be changed to CIM v3
3174 structures. There is no need to further qualify the structure.

3175 — CIM v2 classes that have the Association qualifier must be changed to CIM v3
3176 associations. The Composition and Aggregation qualifiers are removed from the CIM
3177 v3 association. The Aggregate qualifier is removed from the reference to the

3178 aggregating class and the AggregationKind is added to the reference to the

3179 aggregated class to indicate that instances may be a shared or composed with the
3180 aggregating instance

3181 — The ability to specify a fixed size array using a value within the array brackets has been
3182 removed. This functionality is covered in CIM v3 by the use of an OCL qualifier that
3183 specifies that the size() of the property or parameter must be a specific value. For

3184 properties this is specified as an OCL invariant expression. For parameters the OCL
3185 constraint is specified as pre and post condition expressions.

3186 — The Translatable flavor and therefore the ability to specify language specific qualifier
3187 values has been removed

3188 — Charl6 datatype

3189 1 New Data Types

3190 — Byreference use of class in structure and class declarations

Version 3.0.0 DMTF Standard 101

3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207

Common Information Model (CIM) Metamodel DSP0004

il

— By value use of class
— By value use of enumeration
— By value use of structure
— OctetString
QualifierType
— Behavior of flavor vs propagation policy has changed
Qualifiers
— New
1 AggregationKind — replaces 3 (Aggregation, Aggregate, Composite)
T OCL
1 PackagePath replaces UMLPackagePath
— Modified
1 Override qualifier changed to Boolean
9 Static no longer supports property (continues to support method)
1 ArrayType
— Set and OrderedSet are added. Both assert that duplicates are not allowed.

Removed (see Table H-1)

102

DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel
3208 Table H-1: Removed qualifiers

Qualifier Replaced By Comments

Aggregate AggregationKind qualifier AggregationKind.shared

Alias No replacement

Association Association type

ClassConstraint

OCL qualifier

Invariant or definition constraint

Composition

AggregationKind qualifier

AggregationKind.composite

Correlatable

No replacement

No replacement

Delete OCL qualifier invariant constraint
DisplayDescription No replacement No replacement
DisplayName No replacement No replacement
DN No replacement No replacement

EmbeddedIinstance

By value type

Exception Structure type Exception inferred by context

Expensive No replacement No replacement

IfDeleted OCL qualifier invariant constraint

Indication Structure type Indication inferred by context

Invisible No replacement No replacement

Large No replacement No replacement

MaxLen OCL qualifier Example: self.element.size <= MaxLen (see Note 1)

MaxValue OCL qualifier Example: self.element <= MaxValue (see Note 1)

MethodConstraint OCL qualifier pre/post/body constraint

MinLen OCL qualifier Example: self.element.size >= MaxLen (see Note 1)

MinValue OCL qualifier Example: self.element >= MaxValue (see Note 1)

NullvValue No replacement No replacement

OctetString OctetString type The length is not part of the representation for values of the
OctetString type. Note that this is different from the
previous CIM v2 OctetString Qualifier.

Propagated OCL qualifier derivation constraint

PropertyConstraint OCL qualifier invariant or derivation constraint

PropertyUsage No replacement No replacement
Provider No replacement No replacement
Reference Reference type

Schema No replacement No replacement
Structure Structure type

Syntax No replacement No replacement
SyntaxType No replacement No replacement
TriggerType No replacement No replacement
UMLPackagePath PackagePath qualifier

Units Punit qualifier

Version 3.0.0

DMTF Standard

103

3209

3210
3211
3212
3213
3214
3215
3216

Common Information Model (CIM) Metamodel

DSP0004

Qualifier

Replaced By

Comments

UnknownValues

No replacement

No replacement

UnsupportedValues

No replacement

No replacement

ValueMap Enumeration type Reserved ranges are not handled by enumeration (see
Note 2)

Values Enumeration type Reserved ranges are not handled by enumeration (see
Note 2)

Weak OCL qualifier derivation constraint

NOTE 1 element refers to a property or parameter name, or may be "return” to specify a method return.

NOTE 2 Reserved ranges for string enumerations can be handled by requiring that each enumeration be prefixed
with an organization specific prefix (e.g., Golf_). Reserved ranges for string or integer enumerations can be handled
by adding a separate, schema specific enumeration and then using that enumeration as a separate property or
parameter. The use of additional enumerations can be in addition or an extension to an existing enumeration. If in
addition, the added enumerations need to make sense in the context of the existing enumerations. OCL qualifiers can
be used to restrict combinations. If used as an extension, the original enumeration would be extended to indicate that
extension schema specific values are used instead of those of the extended schema.

104

DMTF Standard Version 3.0.0

DSP0004 Common Information Model (CIM) Metamodel

3217 ANNEX |
3218 (informative)
3219 Change log
3220

Version | Date Description

1.0.0 1997-04-09

2.2.0 1999-06-14 | Released as Final Standard

2.2.1000 | 2003-06-07 | Released as Final Standard

2.3.0 2005-10-04 | Released as Final Standard

250 2009-03-04 | Released as DMTF Standard
2.6.0 2010-03-17 | Released as DMTF Standard
2.7.0 2012-04-22 | Released as DMTF Standard
3.0.0 2012-12-13 | Released as DMTF Standard

Version 3.0.0 DMTF Standard 105

3221

3222
3223

3224
3225
3226

3227
3228

3229
3230
3231

3232
3233
3234

3235
3236

3237
3238
3239

3240
3241

Common Information Model (CIM) Metamodel DSP0004

Bibliography

DMTF DSP0200, CIM operations over HTTP, Version 1.3
http://www.dmtf.org/standards/published documents/DSP0200 1.3.pdf

IEEE Std 1003.1, 2004 Edition, Standard for information technology - portable operating system interface
(POSIX). Shell and utilities
http://www.unix.org/version3/ieee std.html

IETF, RFC1155, Structure and Identification of Management Information for TCP/IP-based Internets,
http://tools.ietf.org/html/rfc1155

ISO/IEC 14651:2007, Information technology — International string ordering and comparison — Method
for comparing character strings and description of the common template tailorable ordering
http://standards.iso.org/ittf/PubliclyAvailableStandards/c044872 ISO IEC 14651 2007(E).zip

ISO/IEC 19757-2:2008, Information technology -- Document Schema Definition Language (DSDL) -- Part
2: Regular-grammar-based validation -- RELAX NG,
http://www.iso.org/iso/iso_catalogue/catalogue tc/catalogue detail.htm?csnumber=52348

OMG MOF 2 XMI Mapping Specification, formal/2011-08-09, version 2.4.1
http://www.omg.org/spec/XMl1/2.4.1

The Unicode Consortium. The Unicode Standard, Version 6.1.0, (Mountain View, CA: The Unicode
Consortium, 2012. ISBN 978-1-936213-02-3)
http://www.unicode.org/versions/Unicode6.1.0/

W3C, XML Schema Part 0: Primer Second Edition, W3C Recommendation, 28 October 2004,
http://www.w3.0org/TR/xmlschema-0/

106 DMTF Standard Version 3.0.0

http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf
http://www.unix.org/version3/ieee_std.html
http://tools.ietf.org/html/rfc1155
http://standards.iso.org/ittf/PubliclyAvailableStandards/c044872_ISO_IEC_14651_2007(E).zip
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52348
http://www.omg.org/spec/XMI/2.4.1
http://www.unicode.org/versions/Unicode6.1.0/
http://www.w3.org/TR/xmlschema-0/

	CONTENTS
	Foreword
	Acknowledgments

	Introduction
	Document conventions

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 CIM schema elements
	5.1 Introduction
	5.2 Modeling a management domain
	5.3 Models and schema
	5.4 Common attributes of typed elements
	5.4.1 Scalar
	5.4.2 Array

	5.5 Primitive types
	5.5.1 Datetime
	5.5.1.1 Datetime timestamp format
	5.5.1.2 Datetime interval format

	5.5.2 OctetString
	5.5.3 String
	5.5.4 Null

	5.6 Schema elements
	5.6.1 Enumeration
	5.6.2 EnumValue
	5.6.3 Property
	5.6.3.1 Key property
	5.6.3.2 Property attributes
	5.6.3.3 Property override
	5.6.3.4 Reference property

	5.6.4 Method
	5.6.4.1 Method override

	5.6.5 Parameter
	5.6.6 Structure
	5.6.7 Class
	5.6.8 Association
	5.6.9 Reference type
	5.6.10 Instance value
	5.6.11 Structure value
	5.6.12 Qualifier types and qualifiers

	5.7 Naming of model elements in a schema
	5.7.1 Matching
	5.7.2 Uniqueness

	5.8 Schema backwards compatibility rules

	6 CIM metamodel
	6.1 Introduction
	6.2 Notation
	6.2.1 Attributes
	6.2.2 Associations
	6.2.3 Constraints

	6.3 Types used within the metamodel
	6.3.1 AccessKind
	6.3.2 AggregationKind
	6.3.3 ArrayKind
	6.3.4 Boolean
	6.3.5 DirectionKind
	6.3.6 PropagationPolicyKind
	6.3.7 QualifierScopeKind
	6.3.8 String
	6.3.9 UnlimitedNatural
	6.3.10 UnSignedInteger

	6.4 Metaelements
	6.4.1 CIMM::ArrayValue
	6.4.2 CIMM::Association
	6.4.3 CIMM::Class
	6.4.4 CIMM::ComplexValue
	6.4.5 CIMM::Element
	6.4.6 CIMM::Enumeration
	6.4.7 CIMM::EnumValue
	6.4.8 CIMM::InstanceValue
	6.4.9 CIMM::LiteralValue
	6.4.10 CIMM::Method
	6.4.11 CIMM::MethodReturn
	6.4.12 CIMM::NamedElement
	6.4.13 CIMM::Parameter
	6.4.14 CIMM::PrimitiveType
	6.4.15 CIMM::Property
	6.4.16 CIMM::PropertySlot
	6.4.17 CIMM::Qualifier
	6.4.18 CIMM::QualifierType
	6.4.19 CIMM::Reference
	6.4.20 CIMM::ReferenceType
	6.4.21 CIMM::Schema
	6.4.22 CIMM::Structure
	6.4.23 CIMM::StructureValue
	6.4.24 CIMM::Type
	6.4.25 CIMM::TypedElement
	6.4.26 CIMM::ValueSpecification

	7 Qualifier types
	7.1 Abstract
	7.2 AggregationKind
	7.3 ArrayType
	7.4 BitMap
	7.5 BitValues
	7.6 Counter
	7.7 Deprecated
	7.8 Description
	7.9 EmbeddedObject
	7.10 Experimental
	7.11 Gauge
	7.12 In
	7.13 IsPUnit
	7.14 Key
	7.15 MappingStrings
	7.16 Max
	7.17 Min
	7.18 ModelCorrespondence
	7.18.1 Referencing model elements within a schema

	7.19 OCL
	7.20 Out
	7.21 Override
	7.22 PackagePath
	7.23 PUnit
	7.24 Read
	7.25 Required
	7.26 Static
	7.27 Terminal
	7.28 Version
	7.29 Write
	7.30 XMLNamespaceName

	8 Object Constraint Language (OCL)
	8.1 Context
	8.2 Type conformance
	8.3 Navigation across associations
	8.4 OCL expressions
	8.4.1 Operations and precedence
	8.4.2 OCL expression keywords
	8.4.3 OCL operations
	8.4.3.1 Let expressions

	8.5 OCL statement
	8.5.1 Comment statement
	8.5.2 OCL definition statement
	8.5.3 OCL invariant constraints
	8.5.4 OCL precondition constraint
	8.5.5 OCL postcondition constraint
	8.5.6 OCL body constraint
	8.5.7 OCL derivation constraint
	8.5.8 OCL initialization constraint

	8.6 OCL constraint examples
	ANNEX A (normative) Common ABNF rules
	A.1 Identifiers
	A.2 Integers
	A.3 Version

	ANNEX B (normative) UCS and Unicode
	ANNEX C (normative) Comparison of values
	ANNEX D (normative) Programmatic units
	ANNEX E (normative) Operations on timestamps and intervals
	E.1 Datetime operations

	ANNEX F (normative) MappingStrings formats
	F.1 Mapping entities of other information models to CIM
	F.2 SNMP-related mapping string formats
	F.3 General mapping string format

	ANNEX G (informative) Constraint index
	ANNEX H (informative) Changes from CIM Version 2
	ANNEX I (informative) Change log

	Bibliography

