

Desktop Management Task Force
DMI to SNMP Mapping Standard

DSP0002

Version 1.0 – November 25, 1997

Approved by the Technical Advisory Committee on December 9, 1997

Approved by the Steering Committee on December 10, 1997

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

2

Technical inquiries and editorial comments should be directed in writing to:

Desktop Management Task Force (DMTF)
M/S JF2-53

2111 N.E. 25th Avenue
Hillsboro, OR 97124

PHONE: (503) 264-9300
FAX: (503) 264-9027

email: dmtf-info@dmtf.org

Additional electronic copies of this specification can be obtained free of charge
from the Internet at:

ftp://ftp.dmtf.org

or

from the World Wide Web at:

http://www.dmtf.org

Additional hardcopies can be obtained for a fee by contacting the DMTF at the
address listed above.

IMPORTANT INFORMATION AND DISCLAIMERS

1. THIS SPECIFICATION (WHICH SHALL INCORPORATE ANY REVISIONS, UPDATES, AND MODIFICATIONS
HERETO) IS FURNISHED FOR INFORMATIONAL PURPOSES ONLY. COMPAQ COMPUTER CORPORATION,
DELL COMPUTER CORPORATION, DIGITAL EQUIPMENT CORPORATION, HEWLETT-PACKARD COMPANY,
INTEL CORPORATION, INTERNATIONAL BUSINESS MACHINES CORPORATION, MICROSOFT CORPORATION,
NEC TECHNOLOGIES, INC., NOVELL INC., THE SANTA CRUZ OPERATION, SUN MICROSYSTEMS, INC.,
SYMANTEC, OR ANY OTHER DMTF MEMBER MAKE NO WARRANTIES WITH REGARD THERETO, AND IN
PARTICULAR DO NOT WARRANT OR REPRESENT THAT THIS SPECIFICATION OR ANY PRODUCTS MADE IN
CONFORMANCE WITH IT WILL WORK IN THE INTENDED MANNER OR BE COMPATIBLE WITH OTHER
PRODUCTS IN NETWORK SYSTEMS. NOR DO THEY ASSUME RESPONSIBILITY FOR ANY ERRORS THAT THE
SPECIFICATION MAY CONTAIN OR HAVE ANY LIABILITIES OR OBLIGATIONS FOR DAMAGES
INCLUDING, BUT NOT LIMITED TO, SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR
CONSEQUENTIAL DAMAGES WHETHER ARISING FROM OR IN CONNECTION WITH THE USE OF THIS
SPECIFICATION IN ANY WAY. CORPORATIONS MAY FOLLOW OR DEVIATE FROM THIS SPECIFICATION
AT ANY TIME.

2. NO REPRESENTATIONS OR WARRANTIES ARE MADE THAT ANY PRODUCT BASED IN WHOLE OR IN PART
ON THE ABOVE SPECIFICATION WILL BE FREE FROM DEFECTS OR SAFE FOR USE FOR ITS INTENDED
PURPOSE. ANY PERSON MAKING, USING OR SELLING SUCH PRODUCT DOES SO AT HIS OWN RISK.

3. THE USER OF THIS SPECIFICATION HEREBY EXPRESSLY ACKNOWLEDGES THAT THE SPECIFICATION IS
PROVIDED AS IS, AND THAT THE DMTF, NEITHER INDIVIDUALLY NOR COLLECTIVELY, MAKE ANY
REPRESENTATIONS, EXTEND ANY WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, ORAL OR
WRITTEN, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTY OR REPRESENTATION THAT THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY UTILIZING ANY ASPECT OF THE SPECIFICATION WILL BE FREE FROM ANY CLAIMS OF
INFRINGEMENT OF INTELLECTUAL PROPERTY, INCLUDING PATENTS, COPYRIGHT AND TRADE SECRETS
OF ANY THIRD PARTY, OR ASSUMES ANY OTHER RESPONSIBILITIES WHATSOEVER WITH RESPECT TO
THE SPECIFICATION OR SUCH PRODUCTS. IN NO EVENT WILL DMTF MEMBERS BE LIABLE FOR ANY
LOSSES, DAMAGES INCLUDING, WITHOUT LIMITATION, THOSE DAMAGES DESCRIBED IN SECTION 1
ABOVE, COSTS, JUDGMENTS, OR EXPENSES ARISING FROM THE USE OR LICENSING OF THE
SPECIFICATION HEREUNDER.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

3

Table of Contents

Table of Contents...3
Revision History..5
1 Introduction ..6

1.1 Enabling SNMP Management Applications6
1.2 Enabling Support of Standard MIBs ...7
1.3 Enabling Support for Non-resident Mapping Agents8

2 Overview ..9
2.1 The Desktop Management Interface ..9
2.2 The Simple Network Management Protocol10
2.3 Elements of the Mapping Solution ...10

3 OID Assignment Procedure ...12
3.1 Administratively Assigned OIDs ...12
3.2 Dynamically Generated OIDs ...13

4 MIF to MIB Conversion ..14
4.1 Name Mappings ..14

4.1.1 Name Mapping Algorithm ..14
4.1.2 Summary of Name Mappings ..15

4.2 Managed Object Mapping ...16
4.2.1 Mapping to the OBJECT-TYPE <descriptor>16
4.2.2 Mapping to the SYNTAX clause16
4.2.3 Mapping to the ACCESS or MAX-ACCESS clause18
4.2.4 Mapping to the STATUS clause18
4.2.5 Mapping to the DESCRIPTION clause18
4.2.6 Mapping to the REFERENCE clause18
4.2.7 Mapping to the INDEX clause19
4.2.8 Mapping RowStatus OBJECT ..19

4.3 Event Mapping ..19
4.3.1 Mapping to the TRAP-TYPE or NOTIFICATION-TYPE <descriptor>21
4.3.2 Mapping to the VARIABLES/OBJECTS clause21
4.3.3 Mapping to the STATUS clause21
4.3.4 Mapping to the DESCRIPTION clause21
4.3.5 Mapping to the REFERENCE clause21

4.4 Example ..22
4.4.1 Example DMI MIF ...23
4.4.2 Resulting SNMP MIB ..24
4.4.3 SNMP MIB for DMI Component ID Group25

5 Mapping Agent Operation ..26
5.1 Object Identifier Mapping ..26

5.1.1 Built-in Table of OIDs ..26
5.1.2 OIDs Acquired through MI ..31
5.1.3 Dynamically Generated OIDs ..31

5.2 Instance Identifier Mapping ..31
5.3 GetRequest Mapping ...31
5.4 GetNext and GetBulk Request Mapping32
5.5 Set Request Mapping ..33
5.6 Row Addition/Deletion Mapping ..33
5.7 Notification Mapping ...34

5.7.1 Mapping DMI Events ..34
5.7.2 Mapping DMI Component Added Indication35
5.7.3 Mapping DMI Component Deleted Indication36
5.7.4 Mapping DMI Group Added Indication36
5.7.5 Mapping DMI Group Deleted Indication36
5.7.6 Mapping DMI Language Added Indication36
5.7.7 Mapping DMI Language Deleted Indication36

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

4

5.7.8 Processing DMI Subscription Notice Indication36
6 The DMTF-DMI-MIB definitions ...38
7 References ...39
8 Acknowledgements ...41
9 Security Considerations ..42
10 Authors' Address ...43

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

5

Revision History

Original Proposal: July 7, 1995 (Steve Bostock)

Version 1.0: November 25, 1997 (Brian O'Keefe)

• Updated to use final DMI 2.0 and SNMPv2 conventions and methods, including
formal DMI pragma statement.

• Added new section for specifying DMI to SNMP Row Creation/Deletion.
• Added new sections specifying DMI Event to SNMP Notification mapping.
• Added additional SNMP Pragmas for new DMTF standard classes
• Use standard DMTF cover page and disclaimer.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

6

1 Introduction

This document specifies a Desktop Management Task Force (DMTF) standard. It defines
a set of mapping procedures to enable systems instrumented to the Desktop Management
Interface (DMI) to be remotely, and uniformly, managed using the Simple Network
Management Protocol (SNMP).

The Desktop Management Framework and the Internet-standard Network Management
Framework, commonly known as the "SNMP Management Framework", are standard
management frameworks widely deployed to manage computer systems and network
devices, respectively. The two frameworks are similar in concept and function.
However, while the two frameworks may co-exist on the same system, the two are not
inherently interoperable. Despite this, applications that span the heterogeneous
nature of system and network management must access management information using
both frameworks. Therefore, the objective of this mapping standard is to bridge the
interoperability gap between SNMP and DMI-based solutions. For example, by
providing the mapping specified in this document, existing SNMP-based applications
and/or toolkits can be leveraged to manage DMI-based systems as well as SNMP
devices.

There are three distinct facets to the mapping, and thus interoperation, of SNMP-
and DMI-based management solutions:

1. to enable SNMP applications to manage DMI instrumented systems,
2. to enable DMI instrumented systems to support standard MIBs, and
3. to provide SNMP access to DMI-instrumented systems that may or may not

have a local SNMP mapping agent resident.

A final consideration made in this specification is distinction between the two
basic models of management provided for in both frameworks: directed management
information access and unsolicited, event-triggered notifications. As such, the
mappings specified in this document provide flexibility to separate or unify the
mapping implementation for management access versus event-triggered notifications.
For example, a partial solution may only implement the notification mappings.

1.1 Enabling SNMP Management Applications

As new MIFs are defined, whether standard or proprietary, new management
applications will need to be written to reap the benefits of this new
instrumentation. Management applications span the spectrum from simple "MIB
Browsers" that understand only the syntax of the managed objects - enough to display
their values as text, graphs, tables, etc.; through to "expert" applications that
fully understand the semantics of the managed objects and can perform complex
management tasks autonomously.

Developing management applications, particularly "expert" ones, is time consuming
and expensive. For such applications to be commercially viable, they need a large
potential market. Standard instrumentation with a consistent behavior across a wide
variety of components and platforms is a major factor in creating this large market.
 The solution presented in this document was driven by this requirement;
specifically, it facilitates:

a. writing a standard SNMP-based management application that can manage the

functionality defined by a set of standard DMTF MIF groups, independent of both
the component that implements those groups, and the system on which that
component is installed.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

7

b. writing a single, general, DMI to SNMP mapping agent for any given platform that

will perform these mappings and provide SNMP access to any component MIF that
may get installed on that system.

c. consistent behavior and full interoperability between implementations.

1.2 Enabling Support of Standard MIBs

There are now thousands of standard MIB objects defined in the areas of network
management, system management, and application management. There are also many,
widely deployed, SNMP management applications that depend on these standard objects.

Although DMI-based instrumentation can coexist on the same platform with non-DMI
instrumentation, there is a growing desire to instrument computer systems solely to
the DMI, but still be able to support standard SNMP MIBs and their corresponding
management applications. For this to succeed, it must be transparent to an SNMP
management application whether the MIB is implemented using DMI instrumentation or
some other scheme.

Unfortunately, the combination of technical incompatibilities between the DMI and
SNMP frameworks and cultural differences between the DMTF and IETF organizations,
preclude a general, automated, solution to this problem.

Major incompatibilities between the two frameworks include the following:

- The DMI 1.x has no defined mechanism to add or delete rows in a table. The DMI

2.0 now provides these operations. SNMPv2 also defines a formal convention for
adding and deleting rows in a table. However, these methods differ between DMI
and SNMP.

- The DMI has no defined mechanism to permit interaction between tables (there is

no equivalent of an OBJECT IDENTIFIER that can be used as a generalized
pointer).

- The DMI does not support OBJECT IDENTIFIERs as data types.

- The DMI does not support scalar variables, all variables are (potentially) multi-

instanced.

An automated solution requires that the DMI instrumentation support those objects
required by the IETF standard MIBs; or, at least, a set of objects from which they
can be derived. By and large, the availability of such objects is not a technical
problem, but rather, a political and cultural one. Standard MIFs (like MIBs) are
designed by committee and are shaped as much by politics and personalities as
technical need. To make progress on this issue, DMTF working committees must
recognize the importance of supporting standard MIBs and make the effort to define
the necessary attributes while resisting the urge to make gratuitous omissions and
semantic changes.

In practice, each standard MIB to be supported will probably require a custom coded
SNMP sub-agent. At worst, this is no different from writing an SNMP sub-agent to
implement a standard MIB on any system (instrumented to the DMI or not). At best,
the SNMP sub-agent code can be reduced to a very thin layer (perhaps largely table
driven) if there are standard DMTF MIFs that support the same set of managed objects
(attributes) as the standard IETF MIBS.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

8

Note that even though a custom coded SNMP sub-agent may be required for each MIB,
the DMI still provides the benefit of a standard, platform independent, interface to
the instrumentation. Any sub-agent code could be written to be largely portable
between systems, only the interfaces to the SNMP master agent and host OS would need
to be recoded between systems.

1.3 Enabling Support for Non-resident Mapping Agents

Many computer systems that are DMI instrumented do not have an SNMP Agent installed
and running on that system. Therefore, in addition to providing the specifications
for an SNMP-to-DMI mapping agent resident on the managed system, the mapping agent
must also be able to run on a different system, acting as a proxy, that remotely
accesses the DMI instrumentation using one of the DMI 2.0 RPCs.

By convention, an SNMP-to-DMI mapping agent that acts in a proxy role for remote
DMI-based systems should use the SNMP community string (SNMPv1 and SNMPv2C) to
determine the target DMI system. The format of the SNMP community string for this
purpose is a URL-like string of the form:

dmi://target-address[/access-control-token]

where, "target-address" is the network-layer address (e.g., IP or IPX) of the target
DMI system, and "access-control-token" is an optional string that conforms to the,
yet to be defined, DMTF conventions for security and access control. It is an
implementation specific matter for the SNMP-to-DMI mapping agent to determine and
select which RPC to use for remote DMI access.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

9

2 Overview

2.1 The Desktop Management Interface

The Desktop Management Interface (DMI) is defined by the Desktop Management Task
Force (DMTF). It provides a management framework that consists of three elements:

• a Management Information Format (MIF), which specifies a structure and format
for defining manageable attributes;

• a set of standard MIF definitions for hardware and software components; and,
• a standard Application Programming Interface (API) for local access to the

management information.

The term "DMI" is used, interchangeably, to refer to either the framework or the
API.

The DMI API actually consists of two separate APIs: the Management Interface (MI),
through which management applications interact with managed objects; and the
Component Interface (CI), through which managed components provide access to dynamic
data and generate indications. The DMI also defines an active, resident, piece of
code termed the Service Provider (SP) which mediates between the MI and CI and
performs services on behalf of each.

The DMI 1.x is a local interface, to be used within a single system. The DMI is not
designed to replace existing network management protocols. It is designed to
provide a consistent method for providing instrumentation to those protocols. The
Service Provider is the broker of local instrumentation.

The DMI 2.0 adds a remote interface using any of three specified Remote Procedure
Protocol (RPC) options. The Management Interface (MI) API is also changed to be
procedure based rather than stream based. Finally, DMI 2.0 adds operations for
explicit row creation and removal; plus standard configuration tables for remotely
subscribing for DMI Indications and Events.

In the DMI, "components" are physical or logical entities on a (computer) system,
such as hardware, software or firmware. Components generally correspond to
products, and may come with the system or may be added to it. Components have one
or more named "attributes" that collectively define the information available to a
management application. Attributes are collected into named "groups" for ease of
reference. Groups may be scalar or may be replicated. Replicated groups are called
"tables", and a "row" (instance) of a table is referred to by a set of attributes
that form a "key".

So, within a system, there are many components, each with one or more groups. Each
group has one or more attributes; and each group may be replicated as a table. The
Service Provider presents this component/group/attribute/key representation to the
management application.

In the DMI, standardization occurs on the group level. Each group definition, or
class, is named with a globally unique class-string that, by convention, has the
form:

"defining-body|specific-name|version"

In this convention, defining body is the name of the organization (such as "DMTF",
"IEEE", "Acme Computer", etc.) defining the group; specific name identifies the
contents of the group ("FRU", "System Resources", etc.) And version identifies the

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

10

version of the group definition ("001", "002", etc.).

A standard MIF such as the "PC Systems Standard MIF Definition" [17] is actually
just a collection of standard groups that are relevant to instrument some hardware
or software component - in this case a desktop PC chassis.

The DMTF model is that a component typically corresponds to a physical product; for
example, an adapter board and its associated driver(s), a shrink-wrapped software
program/package, a PC-compatible computer, etc. The component vendor creates a MIF
file that describes the manageable characteristics of that component; the component
MIF may include groups from one or more "standard MIFs" and vendor proprietary MIFs
as applicable. For example a desktop PC with an Ethernet adapter integrated on the
mother board may ship with a single MIF that includes groups from both the "PC
Systems Standard MIF Definition" [17] plus groups from the "LAN Adapter Standard
Groups Definition" [15].

2.2 The Simple Network Management Protocol

The Internet-standard Network Management Framework is defined by the Internet
Engineering Task Force (IETF). It too consists of three elements:

• the Structure and identification of Management Information (SMI) that
specifies how to define managed object;

• a Management Information Base (MIB), which is a set of standard managed
objects for Internet devices; and

• the Simple Network Management Protocol (SNMP), which defines the protocol used
to manage these objects.

The term "SNMP" generally refers to both the Internet-standard Network Management
Framework and the protocol component of that framework. Two versions of the
Internet-standard Network Management Framework exist today. Version 1 (SNMPv1) [1-
3] is a full Internet standard and has become the de-facto standard for remote
management within the computer industry. Version 2 (SNMPv2) [4-11] further enhances
the SNMP Structure of Management Information, plus adds new protocol operations for
bulk retrieval and acknowledged notification. Version 3 (SNMPv3) is currently in
process of being defined by the IETF to add secure management via authentication and
privacy extensions.

An SNMP management application, as opposed to a simple browser, needs a priori
knowledge of the names and semantics of the objects it is designed to manage. In
the SNMP, an Object Identifier (OID) provides the unique and authoritative
identification (name) for each managed object (aka, attribute). An SNMP MIB provides
these names and semantics for some cohesive subset of the manageable features of a
device class. The view presented by the MIB is constant irrespective of the vendor
or the physical packaging of the device. For example, an application designed to
manage TCP/IP according to MIB-II will work for any (conformant) TCP/IP
implementation; whether it is part of NetWare, Windows95, a Cisco router, or a
toaster.

2.3 Elements of the Mapping Solution

A collection of related DMTF group classes is semantically equivalent to an SNMP
MIB, in that it models specific functionality independent of physical packaging.
The principle difference is the way in which DMI and SNMP management information is
named -- DMI uses class names, SNMP uses numeric object identifiers. The mapping
scheme described in this document is based on this observation. The scheme allows
(DMTF) standard MIBs to be generated from standard MIFs, and for proprietary MIBs to

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

11

be generated from proprietary MIFs. These MIBs can then be used by an SNMP-based
application in conjunction with a mapping agent to manage any DMI-instrumented
system whose MIF is made up of these groups. For example, the LAN Adapter MIB
derived from the "LAN Adapter Standard Groups Definition" MIF can be used to manage
the adapter whether it is an integrated part of the mother board component, or a
separately purchased plug in card.

The solution defined in this document has the following elements:

- An administrative procedure for assigning SNMP Object Identifiers to MIF group

classes in such a way that related groups can be automatically grouped together
into cohesive MIB modules. A method of embedding OIDs in the MIF file such that
the pairing of class string and OID is available at run-time through the MI

- A set of algorithms for converting MIF attributes into SNMP objects, such that a

general mapping agent can be written to perform the reverse algorithm at run
time using only information available through the MI. A MIF-to-MIB conversion
program that inputs a MIF file and outputs one or more MIB files according to
the translation scheme defined in this document.

- A standard DMTF DMI MIB that provides access to DMI meta-data such as names,

types, enumerations, descriptions, etc.; for all installed MIFs on a system. An
SNMP application could upload the information from this MIB and generate the
same MIB modules as the MIF-to-MIB program. The DMI MIB also provides the
"containment" information lost in the mapping scheme: a list of all components
installed on the system, and a list of all groups implemented by each component.

- A general DMI to SNMP mapping agent that resides on the managed node and acts as

an SNMP sub-agent to the SNMP master agent on that node. The mapping agent will
register for all Object Identifier (OID) subtrees supported by registered DMI
components and will satisfy incoming SNMP operations on those OIDs by making
appropriate calls to the MI. The mapping agent will conform to the mappings and
guidelines defined in this document. The mapping agent will also implement the
DMI MIB referred to above in its entirety. Note, by using DMI 2.0 remote
capabilities, the mapping agent could alternatively reside on another system
acting as a proxy for the DMI-instrumented system.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

12

3 OID Assignment Procedure

One of the most fundamental differences between the DMI and SNMP frameworks is how
management information is identified or named. To bridge the cap between the two
frameworks, a mapping of DMI class name to SNMP object identifier must be defined.

Two methods for assigning an ASN.1 Object Identifier (OID) to a DMI Class are
defined by this specification. The first, and recommended, method is administrative
assignment of OIDs to each DMI Class defined by the DMTF or other organization or
company. However, in the case where an OID has not been administratively assigned,
an automated procedure for generating deterministic and unique OIDs for a DMI Class
is also provided.

3.1 Administratively Assigned OIDs

The following administrative procedure shall be followed by the DMTF when producing
a standard MIF document. A similar procedure should be followed by other
organizations and companies who define proprietary MIFs, except that the object
identifier (OID) for the MIF should be allocated under their respective enterprise
node.

Assign a unique OID for each set of related groups in the MIF under the branch:

{ iso(1) org(3) dod(6) internet(1) private(4) enterprises(1)
 dmtf(412) dmtfStdMifs(2) }

A standard MIF will normally be cohesive and only include a single set of related
groups, thus all groups in the MIF will be rooted under a single OID sub-tree and
will be grouped together into a single SNMP MIB module. As of this writing, the
Technical Advisory Committee Chair is the assignment authority for new OIDs
immediately under the dmtfStdMifs(2) branch. If additional groups are added to an
existing related set, the same intermediate OID branch should be used for the new
groups as for the existing related groups.

For each non-event group class definition in the MIF assign it a unique OID directly
under MIF OID, such that there is a one-to-one correspondence between group class-
strings and OIDs. For each event group class definition in the MIF assign it the
same OID as the associated group class definition, provided there is a one-to-one
correspondance. Proprietary event group extensions must assign a unique OID so as
not to conflict with the standard event group.

The SNMP OID for each DMI Class is assigned using the "pragma" statement defined by
the DMI 2.0 MIF Grammar. Each DMI Class (group) definition should include a pragma
of the form:

pragma = "SNMP:<OID> ;"

Where <OID> is replaced by the actual SNMP OID assigned.

OID assignments for DMTF standard MIFs are defined in the MASTER.MIF. Section 5.1.1
of this document lists those assignments for standard MIF groups defined prior to
the adoption of this DMI-to-SNMP mapping standard.

Note: if the class-string obeys the naming conventions and has a numeric "version"
string, the same OID shall be used for all versions of the group (later versions are
backwards compatible).

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

13

3.2 Dynamically Generated OIDs

For each group class that does not have an administratively assigned SNMP OID
mapping, a dynamically generated OID may be assigned. If dynamic OID generation is
supported by a mapping agent, the following procedure shall be used to generate a
unique OID under the branch:

{ iso(1) org(3) dod(6) internet(1) private(4) enterprises(1)
 dmtf(412) dmtfDynOids(3) }

The generated OID will be predictable in the sense that any two implementations,
given the same group class string, will generate identical OIDs. The generated OID
will also have a very high probability of being globally unique.

This scheme will allow all DMI data to be accessed via SNMP even if no a priori
administrative OID assignments were made. An SNMP management application can
discover the OID assignments, syntax, access, descriptions, etc. through the DMTF-
DMI-MIB. A MIB browser type application could be constructed using these OIDs and
would have a high probability of working across all machines with those MIFs
installed.

The OID is generated from the group class string using the MD5 digest algorithm.
This algorithm is shamelessly borrowed from the SNMPv2 Simplified Configuration
Model Internet Draft.

Modify the group class string, if necessary, as follows: if the string follows the
convention and includes the numeric version number field, remove the version number
by truncating immediately following the final '|'.

Form a string of 1,048,576 octets by repeating the value of the modified class
string as often as necessary, truncating accordingly, and use the resulting string
as input to the MD5 algorithm. The resulting 16-octet digest is then treated as
four unsigned 32-bit integers (A, B, C, D) in network-byte order:

A0 A1 A2 A3 B0 B1 B2 B3 C0 C1 C2 C3 D0 D1 D2 D3
where x0 is most significant byte, x3 is least significant

The SNMP OID for the corresponding DMI Class is formed by concatenating the above
OID prefix with the 4 subids just generated:

1.3.6.1.4.1.412.3.A.B.C.D

Implementor’s Note: the generation of a 1 Mb string of octets described above need
not be implemented as a full 1 Mb block of data space. Most public domain
implementations of the MD5 algorithm provide a means to iterate through a
conceptually long block of input octets by repeatedly calling the MD5 functions on
shorter segments of the conceptual string.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

14

4 MIF to MIB Conversion

MIF to MIB conversion may be performed by hand, but would normally be performed
using an automated conversion program. In either case, the following algorithm
shall be used.

Inspect each group definition in the MIF and retrieve its OID from the SNMP pragma
included in the group definition. Split each OID into a trailing sub-id and a
prefix. A separate MIB module will be output for each distinct prefix. All groups
with the same prefix will be part of the same MIB module.

Groups with no SNMP pragma definition may be converted by using the algorithm
described in section 3.2 to dynamically generate an SNMP OID for the group. All
groups with dynamically generated SNMP OIDs can be output to the same MIB module or
separate MIB modules (e.g., grouped according to user intervention and selection).

For each group definition in the MIF:

If the class string has the form "EventGeneration|*|*" generate a series of
notification (or trap) definitions. See section "Event Mapping" below.

Otherwise, generate an SNMP conceptual table. See section "Managed Object
Mapping below.

For each global enumeration defined in the MIF, generate an equivalent SNMP textual
convention. Apply the name mappings (see below) to both the name and the
enumeration literals. Output the textual convention in each MIB module that has a
reference to it.

4.1 Name Mappings

An SNMP/ASN.1 "name" (formally called a "descriptor") is a string of at least one
character, drawn from A-Z, a-z, 0-9, and hyphen. In a name, a hyphen cannot appear
as the last character or adjacent to another hyphen. Names are case-sensitive, and
the first character of a name must be a letter. Identifiers must start with a
lower-case letter. Type and module names must start with an upper-case letter. All
types and variables defined in a single module must have unique names. SNMPv2 is
more restrictive, identifiers may not include hyphens and must not exceed 64
characters in length.

DMI names can be any sequence of characters (up to 255) drawn from either the ISO
8859-1 or Unicode character set (but not both). C-style escape characters are also
allowed.

4.1.1 Name Mapping Algorithm

The following general algorithm is used to convert a DMI name to a legal SNMPv2
name. Name mappings for each specific type of SNMP name also involve additional
procedures described in subsequent sections.

1. For each sequence of illegal characters and hyphens, discard the entire sequence

and convert the next character (if a letter) to upper-case. If the first
character of the resulting string is not alphabetic, prepend the character 'x'.

2. If the name being converted is a DMI Class name, truncate the resulting string to

59 characters, which leaves room for the various suffixes appended below;

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

15

otherwise, trunctate the name to 64 characters.

3. If the name refers to a type (used in an SNMP SYNTAX statement), convert the

first character to upper-case; otherwise, convert the first character to lower-
case.

4. If the name is not unique within the MIB module, append an ordinal (truncate if

necessary) such that the name becomes unique. Note, names given to numbers
within an enumeration list are only required to be unique within that particular
list.

4.1.2 Summary of Name Mappings

The elements of procedure described in subsequent sections include additional
procedures for mapping DMI names, using the general algorithm above, to produce the
complete SNMP name for a particular usage. This section summarizes those name
mappings for convenience and quick reference.

<className> refers to the name mapping, per the algorithm above, of the specific-
name portion of the DMI Class string for non-Event Generation Groups.

<assocName> refers to the specific-name-of-assoc-group portion of DMI Event
Generation class strings. Note, this is also is equivalent to the specific-name
portion of the DMI Associated Group attribute value.

<eventType> refers to the name mapping of the Event Type enumeration literal for DMI
Event Generation classes.

<enumName> refers to the name mapping of the name clause in a DMI ENUM definition.

<enumLiteral> refers to the name mapping of the DMI Enumeration string literals in
a DMI ENUM definition.

SNMP Descriptor for

Mapping Convention

Description

Table OBJECT <className>Table Append "Table" to <className>
Table Entry OBJECT <className>Entry Append "Entry" to <className>
Table Entry SYNTAX <ClassName>Entry Append "Entry" to <className>,

first character is upper-case
RowStatus OBJECT <className>State Append "State" to <className>
Attribute OBJECTs <attributeName>
Event Parent OID <assocName>Traps Append "Traps" to <className>
Event NOTIFICATION <assocName><eventType>

or
<assocName>Ev<###>

Append <eventType> name to
<assocName>; or if result too
long, append "Evt" and the Event
Type value to <assocName>

Event System <assocName>EvSys Append "EvSys" to <assocName>
Event Subsystem <assocName>EvSub Append "EvSub" to <assocName>
Event Solution <assocName>EvSol Append "EvSol" to <assocName>
Textual Convention <enumName>
Enum literal <enumLiteral>
Intermediate level
Dynamic OIDs

dmiDynOid<#> Append sub-id value to "dmiDynOid"

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

16

4.2 Managed Object Mapping

Each non-event group class becomes an SNMP conceptual table. The OID of the
conceptual table object is the OID assigned to the group class {grpOID}.

The conceptual row within the table object is assigned the sub-id "1".

 OID = {grpOID.1}

Each attribute within the DMI group becomes a columnar object of that table, with
the attribute id being used as a sub-id.

OID = {grpOID.1.attrId}

4.2.1 Mapping to the OBJECT-TYPE <descriptor>

For columnar objects, the descriptor is formed by applying the name mapping
algorithm defined above on the value of the MIF Name statement.

For the conceptual table object, the descriptor is formed by applying the name
mapping algorithm defined above on the "specific name" portion of the class string
and appending the text "Table".

For the conceptual row object, the descriptor is formed by applying the name mapping
algorithm defined above on the "specific name" portion of the class string and
appending the text "Entry".
4.2.2 Mapping to the SYNTAX clause

For columnar objects, the table below shows the mapping of data types from DMI to
SNMPv1 and SNMPv2 (where different). Areas where the two frameworks mismatch are
flagged and discussed in the notes below.

DMI

SNMPv1

SNMPv2

integer INTEGER Integer32
integer64 *1 OCTET STRING (SIZE(8))
gauge Gauge Gauge32
counter Counter Counter32
counter64 *2 Counter Counter64
string(n) *3,
displaystring(n)

OCTET STRING(SIZE(0..n))

octetstring(n) OCTET STRING(SIZE(0..n))
date *4 OCTET STRING(SIZE(25))

Notes:
1. SNMP has no Integer64 data type. Integer64 will be represented by a string of

exactly 8 octets in network byte order. The DMTF-DMI-MIB defines an appropriate
textual convention "DmiInteger64".

2. SNMPv1 has no Counter64 data type. Counter64 will be represented in SNMPv1 as a

Counter by taking the least significant 32 bits.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

17

3. The SNMP textual convention "DisplayString" represents textual information taken
from the NVT ASCII character set, as defined in pages 4, 10-11 of RFC 854. This
definition is too restrictive to handle DMI strings and displaystrings, which
can be either ISO8859-1 or Unicode; hence DMI strings (displaystring) are
represented as a sequence of octets. The DMTF-DMI-MIB defines an appropriate
textual convention "DmiString".

4. Date is represented by a DisplayString of exactly 25 octets. The string has the

same format as the DMI date except that the trailing three octets of '\0's are
omitted. The DMTF-DMI-MIB defines an appropriate textual convention "DmiDate".

For the conceptual table and row objects, the value of the SYNTAX clause is SEQUENCE
OF <x> and <x> respectively, where <x> is the result of applying the name mapping
algorithm defined above on the "specific name" portion of the class string.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

18

4.2.3 Mapping to the ACCESS or MAX-ACCESS clause

Mapping the DMI access definition to the SNMP ACCESS (SNMPv1 SMI) or MAX-ACCESS
(SNMPv2 SMI) clause varies according to the following three conditions:

1. The attribute is a "key" attribute and hence appears in the INDEX clause.

The ACCESS clause is set to "read-only" for SNMPv1, and the MAX-ACCESS
clause is set to "not-accessible" for SNMPv2; unless there would be no
accessible columnar objects, in which case it is set to "read-only".

2. The attribute is not a key attribute; and either no key attributes exist for the

class, or all of the key attributes have DMI access equal to read-only.

In this case, rows of the table may not be created through the management
interface. Therefore, the SNMP ACCESS or MAX-ACCESS clause is mapped as follows:

DMI

SNMPv1

SNMPv2

read-only read-only read-only
read-write read-write read-write
write-only write-only read-write

3. The attribute is not a key attribute; and one or more key attributes for the

class have DMI access equal to read-write or write-only.

In this case, rows of the table may be created through the management interface.
Therefore, the SNMP ACCESS or MAX-ACCESS clause is mapped as follows and the
procedure described in section 4.2.8 is followed to include a RowStatus columnar
object in the resulting SNMP table.

DMI

SNMPv1

SNMPv2

read-only read-only read-only
read-write read-write read-create
write-only write-only read-create

4.2.4 Mapping to the STATUS clause

The value of the STATUS clause will always be "mandatory" for SNMPv1, and "current"
for SNMPv2.

4.2.5 Mapping to the DESCRIPTION clause

The value of the DESCRIPTION clause will be a sanitized version of the MIF
Description statement. Multi-part literals will be combined into a single string
according to MIF rules. Any embedded (escaped) double quotes will be replaced by a
(non-escaped) single quote.

For conceptual table and row objects, the description will be formed from the MIF
Description statement for the group definition.

4.2.6 Mapping to the REFERENCE clause

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

19

The value of the REFERENCE clause will be the group class string embedded in single
quotes followed by a space and the attribute id.
4.2.7 Mapping to the INDEX clause

Each DMI component may have multiple instances of a particular group class, hence a
conceptual table derived from a group with no keys will have an INDEX clause of the
form:

INDEX {compId, groupId}

where compId and groupId are imported from the DMTF-DMI-MIB.

If the conceptual table is derived from a group class definition that specifies one
or more keys (a DMTF table), then the ordered set of columnar objects corresponding
to those keys form the remainder of the INDEX clause:

INDEX {compId, groupId, <key1>, ...,<keyN>}

4.2.8 Mapping RowStatus OBJECT

If the DMI class contains one or more key attributes with access equal to read-write
or write-only, instances of that DMI class may be created or deleted through the
management interface (e.g., using the DmiAddRow and DmiDeleteRow MI functions).

To preserve this capability in the translated SNMP interface for the DMI class, an
additional columnar object is defined in the resulting SNMP conceptual table. When
SNMP SetRequest operations are performed on this object, the SNMP-to-DMI Mapping
Agent carries out the operation by invoking the appropriate DMI MI functions to add
or delete the specified row in the table. Note, this new columnar object is defined
only in the SNMP MIB translation; the DMI MIF definition is not modified in any way.

In accord with the SNMPv2 SMI standard, this additional columnar object is defined
to be of type "RowStatus" and has MAX-ACCESS "read-create". If the DMI MIF is
translated using SNMPv1 SMI, the ACCESS is defined as "read-write". Further,
implementation of the RowStatus object by the SNMP-to-DMI Mapping Agent must comply
with the rules defined in RFC 1902 [5]. See also section 5.6 of this specification.

The <descriptor> for the RowStatus object is formed by applying the name mapping
algorithm defined above to the "specific-name" portion of the DMI class string; then
appending the word "State".

The Object Identifier for the RowStatus object is assigned sub-identifier zero (0).
Hence, the complete OID is defined as:

OID = {grpOID.1.0}

Zero is a reserved attribute id value in both SNMP and DMI, so assigning zero to the
RowStatus object sub-id will not conflict with the attribute ids of current or
future attributes defined in the DMI class.

4.3 Event Mapping

This mapping assumes that the MIF complies with the semantic model for DMI events
defined in the DMTF document "DMI 2.0 Specification" [14].

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

20

A group class string of the form "EventGeneration|*|*" indicates that the group is
not a normal MIF data group, but rather is a special Event Generation group that
formally describes a related set of DMI Events. All such Event Generation groups
are constructed according to the skeleton in [14], but each has a unique class
string, and different sets of values for the "Event Type", "Event System",
"Event Subsystem" and "Event Solution" enumerations.

Each Event Generation group class becomes a set of SNMP traps (notifications) and a
set of non-columnar objects that are passed as varBinds of the traps
(notifications). The OID assigned to the group class {grpOID} is used to identify
the traps and varBinds as described below.

An SNMP TRAP-TYPE macro (SNMPv1) or NOTIFICATION-TYPE macro (SNMPv2) is generated
for each enumerated value of the "Event Type" attribute of the group.

For SNMPv1, the OID assigned to the Event Generation group class becomes the
"Enterprise ID", and the enumerated values of the "Event Type" attribute become the
specific trap numbers. The SNMP <descriptor> for the Enterprise ID is formed by
applying the name mapping algorithm defined above on the 'specific-name-of-assoc-
group' portion of the event class string. If the grpOID value of the Event
Generation group is the same as the OID for the associated group, the SNMP
<descriptor> should be left the same as for the associated group.

ENTERPRISE grpOID
Generic trap # = Enterprise Specific (6)
Specific trap # = Event Type

For SNMPv2, the OID assigned to each trap is formed by concatenating the OID of the
group, a sub-id of zero, and the value of the "Event Type" attribute.

OID = {grpOID.0.EventType}

The SNMP <descriptor> of the two OIDs that prefix the specific Notification Type
OIDs are formed by applying the name mapping algorithm defined above on the
"specific-name-of-assoc-group" portion of the event class string. The <descriptor>
associated with the grpOID is the same as that defined for the SNMPv1 Enterprise ID.
The <descriptor> associated with grpOID.0 is formed by applying the name mapping
algorithm above on the "specific-name-of-assoc-group" portion of the event class
string, then appending the text "Traps".

For the other enumerated attributes in the MIF event group: "Event System",
"Event Subsystem", and "Event Solution" (if present); a group of (non-columnar) SNMP
objects is generated using the OID of the group class as the prefix, and the id of
each attribute as the final sub-id:

OID = {grpOID.attrId}

The SNMP <descriptor> for these objects is formed by applying the name mapping
algorithm defined above on the 'specific-name-of-assoc-group' portion of the class
string, then appending the string "EvSys", "EvSub" or "EvSol", respectively.

These objects have an access type of "not-accessible" for SNMPv1 and "accessible-
for-notify" for SNMPv2. The other clauses are generated as described in "Managed
Objects Mapping".

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

21

4.3.1 Mapping to the TRAP-TYPE or NOTIFICATION-TYPE <descriptor>

The descriptor is formed by applying the name mapping algorithm defined above on the
'specific-name-of-assoc-group' portion of the event class string and on the
appropriate enumeration literal (string) of the "Event Type" attribute, then
appending the latter to the former.

If the resulting name is longer than the 64-character maximum for SNMP names, the
descriptor is instead formed by applying the name mapping algorithm on the
‘specific-name-of-assoc-group’ portion of the event class string, then appending the
text "Ev" followed by the numeric value of the event type.

4.3.2 Mapping to the VARIABLES/OBJECTS clause

The VARIABLES clause for SNMPv1 and the OBJECTS clause for SNMPv2 contain the
following ordered set of varBinds: dmiEventDateTime, dmiCompId, dmiEventSeverity,
dmiEventStateIndex, dmiEventAssocGroup, eventSystem, and eventSubsystem.

When the trap (notification) is generated, the mapping agent may also append any of
the following varbinds if the corresponding attribute is present in the DMI Event:
eventSolution, dmiEventVendorMsg, dmiEventVendorData.

If the DMI event contains event-specific attributes such as a key list or additional
information, those attributes are translated to SNMP according to the rules for
OBJECT-TYPE definitions and appended to the SNMP notification as well.

Note that the var-bind objects who's name starts with "dmiEvent..." are defined in
the DMTF-DMI-MIB and are shared by all traps.

4.3.3 Mapping to the STATUS clause

The value of the STATUS clause will always be "mandatory" for SNMPv1, and "current"
for SNMPv2.

4.3.4 Mapping to the DESCRIPTION clause

The value of the DESCRIPTION clause will be the enumeration value (string) of the
"Event Type" attribute.

4.3.5 Mapping to the REFERENCE clause

The value of the REFERENCE clause will be the group class string embedded in single
quotes followed by a space and the numeric value of "Event Type".

4.4 Enumeration Textual Convention Mapping

DMI Enumerations defined outside the scope of an attribute definition are translated
into SNMP MIBs according to the SNMP SMI version in use. In both cases, the
enumeration type descriptor and enumerated value descriptors are formed by
performing the name mapping defined above to the DMI enumeration Name statement and
literal strings, respectively.

For SNMPv1 SMI, the enumeration is defined as an ASN.1 alias of the form:

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

22

 EnumName ::= INTEGER { literal(value), ... }

For SNMPv2 SMI, the enumeration is defined as an SNMP Textual Convention of the
form:
 EnumName ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "DMI MIF Enumeration"
 REFERENCE ""
 SYNTAX INTEGER { literal(value}, ... }

Since the DMI ENUM definition does not include a description statement, the
DESCRIPTION clause for the SNMPv2 textual convention shall be "DMI MIF Enumeration".
The STATUS clause is "current". The REFERENCE clause is omitted, for lack of an
automated translation. If the MIF is translated manually, the DESCRIPTION clause
should describe what the enumeration is for and the REFERENCE clause should identify
the MIF and organization that created it; e.g., "DMTF: PC System MIF".

4.4 Example

The example on the next three pages shows a hypothetical MIF - the Kennel MIF, and
the SNMP MIBs produced from it by applying the mappings defined in this document.
Note that two separate MIB modules are generated, one for each OID prefix.

Note that both the MIF and MIBs are represented in an abbreviated syntax for
brevity.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

23

4.4.1 Example DMI MIF

start component "Pink Poodle Dog Kennel System"

start enum

"dog type" 1="Poodle" 2="Beagle"
end enum

start group
1 "ComponentID" class="DMTF|ComponentID|001"
 pragma "SNMP: 1.3.6.1.4.1.412.2.1.1;"

1 "Manufacturer" r/o string(64)
. . . .
. . . .

6 "Verify" r/o 0="an error..." 1=...
end group

start group
2 "Kennel Data" class="DMTF|KennelID|001"
 pragma "SNMP:1.3.6.1.4.1.412.2.999.1;"

1 "Kennel Address" r/o string(128)
2 "Number of Dogs" r/o integer

end group

start group
3 "Dog Data" class="DMTF|DogID|001" key=1
 pragma "SNMP:1.3.6.1.4.1.412.2.999.2;"

1 "Dog-tag" r/o integer
2 "Dog Breed r/o "dog type"
3 "Dog Name" r/o string(64)
4 "Dog Sex" r/o 1="Male" 2="Female"

end group

start group
4 "Alerts" class="EventGeneration|DMTF^^KennelID|001" key=4
 pragma "SNMP:1.3.6.1.4.1.412.2.999.3;"

1 "Event Type" r/o 1="Escape" 2="Sickness" 3="Death"
2 "Event Severity" r/o 1="Info" 2="OK" 3="Warn"...
3 "Event is State Based" r/o BOOL
4 "Event State Key" r/o integer
5 "Associated Group"r/o string
6 "Event System" r/o 1="Staff" 2="Dog"
7 "Event Subsystem" r/o 1="Male" 2=Female"

end group

end component

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

24

4.4.2 Resulting SNMP MIB

EDITOR NOTE: Reformat to use actual SNMPv2 SMI.

Kennel-MIB DEFINITIONS ::= BEGIN

IMPORTS dmiCompId, dmiGrpId, DmiDate
 dmiTimeStamp, dmiEventSeverity, dmiEventStateIndex
FROM DMTF-DMI-MIB

kennel ::= OBJECT IDENTIFIER { 1 3 6 1 4 1 412 2 999 }

DogType ::= INTEGER { poodle(1), beagle(2) }

kennel.1 kennelIDTable: SEQUENCE OF KennelIDEntry
kennel.1.1 kennelIDEntry: SEQUENCE KennelIDEntry
 INDEX { dmiCompId, dmiGrpId }
kennel.1.1.1 kennelAddress: InternationalDisplayString(SIZE(0..128)
kennel.1.1.2 numberOfDogs: INTEGER

kennel.2 dogIDTable: SEQUENCE OF DogIDEntry
kennel.2.1 dogIDEntry: SEQUENCE DogIDEntry
 INDEX { dmiCompId, dmiGrpId, dogTag }
kennel.2.1.1 dogTag: INTEGER
kennel.2.1.2 dogBreed: DogType
kennel.2.1.3 dogName: InternationalDisplayString(0..64)
kennel.2.1.4 dogSex: INTEGER { male(1), female(2)}

-- trap related stuff
kennel.3.5 kennelIDEventSystem: INTEGER { staff(1), dog(2) }
kennel.3.6 kennelIDEventSubsystem: INTEGER { male(1), female(2) }

enterprise: KennelID kennel.3
 trap: kennelIDEscape, value 1
 trap: kennelIDSickness, value 2
 trap: kennelIDDeath, value 3

END

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

25

4.4.3 SNMP MIB for DMI Component ID Group

Component-MIB DEFINITIONS ::= BEGIN

IMPORTS dmiCompId, dmiGrpId, DmiDate FROM DMTF-DMI-MIB

component ::= OBJECT IDENTIFIER { 1 3 6 1 4 1 412 2 1 }

component.1 componentIDTable SEQUENCE OF ComponentIDEntry
component.1.1 componentIDEntry SEQUENCE ComponentIDEntry
 INDEX { dmiCompId, dmiGrpId }
component.1.1.1 manufacturer: IntlDisplayString(SIZE(0..64))
component.1.1.2 product: IntlDisplayString(SIZE(0..64))
component.1.1.3 version: IntlDisplayString(SIZE(0..64))
component.1.1.4 serialNumber: IntlDisplayString(SIZE(0..64))
component.1.1.5 installation: DmiDate
component.1.1.6 verify: INTEGER { anErrorOccurredCheckStatusCode(0),
 componentDoesNotExist(1),

... }
END

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

26

5 Mapping Agent Operation

The SNMP-to-DMI Mapping Agent is a piece of code that resides on the managed node
along with the DMI instrumentation, the Service Provider, and the SNMP master agent.
 The mapping agent appears as an SNMP sub-agent to the SNMP master agent, and as a
management application to the DMI Service Provider, and acts as a broker between
them. Alternatively, the mapping agent can reside on another system acting as an
SNMP-to-DMI proxy for the managed system, provided the managed system supports one
of the DMI 2.0 remote access RPCs.

The mapping agent implements the DMTF-DMI-MIB that is defined in this document and
also provides SNMP access to any DMI data on the managed node. The mapping agent may
provide access to the DMI data either through customize implementation for each DMI
MIF Group, or through a general mapping procedure. Either way, the mapping agent is
able to perform these functions using only information available through the MI.

The mapping agent registers with the DMI Service Provider as a management
application and uses the MI calls to discover all registered group classes and their
associated OIDs. It then registers with the SNMP master agent for all OID sub-trees
supported by itself (DMTF-DMI-MIB) and the DMI instrumentation.

When the mapping agent receives an SNMP request from the master agent for one of the
objects it handles, it will service the request by making the appropriate calls to
the MI. When it receives an indication (event) from the Service Provider, it will
translate it into the appropriate SNMP trap (notification) and send it to the master
agent. A key requirement of the mapping agent is that it must preserve the semantics
of all SNMP operations defined by the SNMP version implemented by the mapping agent.

5.1 Object Identifier Mapping

To function, the mapping agent needs to maintain a mapping between OIDs and all
registered group class strings. This mapping is obtained using a combination of
three mechanisms:

1. Built in table for some standard MIFs.

2. The SNMP pragma specified in the group definition.

3. Generating unique OIDs for any registered group class that is not assigned an OID

though the other two methods.

5.1.1 Built-in Table of OIDs

All mapping agent implementations shall contain class string to OID mappings for all
DMTF standard groups defined at the time this specification was issued, as listed in
the following tables. A mapping agent may also implement a local configuration
store where these OID mappings may be augmented at run-time. These measures allow
the mapping agent to operate in existing DMI implementations where those MIFs
already installed in the DMI Service Provider do not contain embedded pragmas.

Note, the following mapping definitions are identical to the pragma assignments
specified in the MASTER.MIF revised October 1997.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

27

Desktop Management Interface Specification [14]

Group Class String

OBJECT IDENTIFIER

"DMTF|ComponentID|" 1.3.6.1.4.1.412.2.1.1
"DMTF|Event State|" 1.3.6.1.4.1.412.2.1.2
"DMTF|SP Indication Subscription|" 1.3.6.1.4.1.412.2.1.3
"DMTF|SPFilterInformation|" 1.3.6.1.4.1.412.2.1.4

LAN Adapter Standard MIF [15]

Group Class String

OBJECT IDENTIFIER

"DMTF|Network Adapter 802 Port|" 1.3.6.1.4.1.412.2.2.1
"DMTF|802 Alternate Address|" 1.3.6.1.4.1.412.2.2.2
"DMTF|Network Adapter Driver|" 1.3.6.1.4.1.412.2.2.3
"DMTF|Network Adapter Hardware|" 1.3.6.1.4.1.412.2.2.4
"DMTF|Boot ROM Configuration|" 1.3.6.1.4.1.412.2.2.5
"DMTF|Boot ROM Capabilities|" 1.3.6.1.4.1.412.2.2.6

Software Standard MIF [16]

Group Class String

OBJECT IDENTIFIER

"DMTF|Software Component Information|" 1.3.6.1.4.1.412.2.3.1
"DMTF|Software Signature|" 1.3.6.1.4.1.412.2.3.2
"DMTF|Location|" 1.3.6.1.4.1.412.2.3.3
"DMTF|Equivalence|" 1.3.6.1.4.1.412.2.3.4
"DMTF|Superseded components|" 1.3.6.1.4.1.412.2.3.5
"DMTF|Maintenance|" 1.3.6.1.4.1.412.2.3.6
"DMTF|Verification|" 1.3.6.1.4.1.412.2.3.7
"DMTF|Subcomponents|" 1.3.6.1.4.1.412.2.3.8
"DMTF|Component Dependencies|" 1.3.6.1.4.1.412.2.3.9
"DMTF|Attribute Dependencies|" 1.3.6.1.4.1.412.2.3.10
"DMTF|File List|" 1.3.6.1.4.1.412.2.3.11
"DMTF|Installation|" 1.3.6.1.4.1.412.2.3.12
"DMTF|Installation Log Files|" 1.3.6.1.4.1.412.2.3.13
"DMTF|Support|" 1.3.6.1.4.1.412.2.3.14

Systems Standard MIF [17,18]

Group Class String

OBJECT IDENTIFIER

"DMTF|General Information|" 1.3.6.1.4.1.412.2.4.1
"DMTF|Operating System|" 1.3.6.1.4.1.412.2.4.2
"DMTF|System BIOS|" 1.3.6.1.4.1.412.2.4.3
"DMTF|BIOS Characteristic|" 1.3.6.1.4.1.412.2.4.4
"DMTF|Processor|" 1.3.6.1.4.1.412.2.4.5
"EventGeneration|DMTF^^Processor|" 1.3.6.1.4.1.412.2.4.5
"DMTF|Motherboard|" 1.3.6.1.4.1.412.2.4.6
"EventGeneration|DMTF^^Motherboard|" 1.3.6.1.4.1.412.2.4.6

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

28

"DMTF|Physical Memory|" 1.3.6.1.4.1.412.2.4.7
"DMTF|Logical Memory|" 1.3.6.1.4.1.412.2.4.8
"EventGeneration|DMTF^^Logical Memory|" 1.3.6.1.4.1.412.2.4.8
"DMTF|System Cache|" 1.3.6.1.4.1.412.2.4.9
"EventGeneration|DMTF^^System Cache|" 1.3.6.1.4.1.412.2.4.9
"DMTF|Parallel Ports|" 1.3.6.1.4.1.412.2.4.10
"DMTF|Serial Ports|" 1.3.6.1.4.1.412.2.4.11
"DMTF|IRQ|" 1.3.6.1.4.1.412.2.4.12
"DMTF|DMA|" 1.3.6.1.4.1.412.2.4.13
"DMTF|Memory Mapped I/O|" 1.3.6.1.4.1.412.2.4.14
"DMTF|System Enclosure|" 1.3.6.1.4.1.412.2.4.15
"DMTF|Power Supply|" 1.3.6.1.4.1.412.2.4.16
"EventGeneration|DMTF^^Power Supply|" 1.3.6.1.4.1.412.2.4.16
"DMTF|Cooling Device|" 1.3.6.1.4.1.412.2.4.17
"EventGeneration|DMTF^^Cooling Device|" 1.3.6.1.4.1.412.2.4.17
"DMTF|System Slot|" 1.3.6.1.4.1.412.2.4.18
"DMTF|System Slots|" 1.3.6.1.4.1.412.2.4.18
"DMTF|Video|" 1.3.6.1.4.1.412.2.4.19
"DMTF|Video BIOS|" 1.3.6.1.4.1.412.2.4.20
"DMTF|Video BIOS Characteristic|" 1.3.6.1.4.1.412.2.4.21
"DMTF|Disks|" 1.3.6.1.4.1.412.2.4.22
"EventGeneration|DMTF^^Disks|" 1.3.6.1.4.1.412.2.4.22
"DMTF|Disks Mapping Table|" 1.3.6.1.4.1.412.2.4.23
"DMTF|Partition|" 1.3.6.1.4.1.412.2.4.24
"DMTF|Disk Controller|" 1.3.6.1.4.1.412.2.4.25
"EventGeneration|DMTF^^Disk Controller|" 1.3.6.1.4.1.412.2.4.25
"DMTF|Logical Drives|" 1.3.6.1.4.1.412.2.4.26
"DMTF|Mouse|" 1.3.6.1.4.1.412.2.4.27
"DMTF|Keyboard|" 1.3.6.1.4.1.412.2.4.28
"DMTF|FRU|" 1.3.6.1.4.1.412.2.4.29
"DMTF|Operational State|" 1.3.6.1.4.1.412.2.4.30
"DMTF|System Resources Description|" 1.3.6.1.4.1.412.2.4.31
"DMTF|System Resources|" 1.3.6.1.4.1.412.2.4.32
"DMTF|Physical Memory Array|" 1.3.6.1.4.1.412.2.4.33
"EventGeneration|DMTF^^Physical Memory Array|" 1.3.6.1.4.1.412.2.4.33
"DMTF|Memory Array Mapped Addresses|" 1.3.6.1.4.1.412.2.4.34
"DMTF|Memory Device|" 1.3.6.1.4.1.412.2.4.35
"DMTF|Memory Device Mapped Addresses|" 1.3.6.1.4.1.412.2.4.36
"DMTF|System Resources 2|" 1.3.6.1.4.1.412.2.4.37
"DMTF|System Resource Device Info|" 1.3.6.1.4.1.412.2.4.38
"DMTF|System Resource Memory Info|" 1.3.6.1.4.1.412.2.4.39
"DMTF|System Resource I/O Info|" 1.3.6.1.4.1.412.2.4.40
"DMTF|System Resource IRQ Info|" 1.3.6.1.4.1.412.2.4.41
"DMTF|System Resource DMA Info|" 1.3.6.1.4.1.412.2.4.42
"DMTF|Mass Store Mapping Table|" 1.3.6.1.4.1.412.2.4.43
"DMTF|Mass Store Segment Table|" 1.3.6.1.4.1.412.2.4.44
"DMTF|Mass Store Logical Drives Table|" 1.3.6.1.4.1.412.2.4.45
"EventGeneration|DMTF^^Mass Store Logical
Drives Table|"

1.3.6.1.4.1.412.2.4.45

"DMTF|Mass Store Array Info Table|" 1.3.6.1.4.1.412.2.4.46
"DMTF|Sequential Access Devices|" 1.3.6.1.4.1.412.2.4.47
"DMTF|System Reset|" 1.3.6.1.4.1.412.2.4.48
"EventGeneration|DMTF^^System Reset|" 1.3.6.1.4.1.412.2.4.48

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

29

"DMTF|Sysetm Hardware Security|" 1.3.6.1.4.1.412.2.4.49
"EventGeneration|DMTF^^System Hardware
Security|"

1.3.6.1.4.1.412.2.4.49

"DMTF|Power Supply Output Voltage
Capabilities|"

1.3.6.1.4.1.412.2.4.50

"DMTF|System Power Controls|" 1.3.6.1.4.1.412.2.4.51
"DMTF|UPS Battery|" 1.3.6.1.4.1.412.2.4.52
"EventGeneration|DMTF^^UPS Battery|" 1.3.6.1.4.1.412.2.4.52
"DMTF|Voltage Probe|" 1.3.6.1.4.1.412.2.4.53
"EventGeneration|DMTF^^Voltage Probe|" 1.3.6.1.4.1.412.2.4.53
"DMTF|Temperature Probe|" 1.3.6.1.4.1.412.2.4.54
"EventGeneration|DMTF^^Temperature Probe|" 1.3.6.1.4.1.412.2.4.54
"DMTF|Electrical Current Probe|" 1.3.6.1.4.1.412.2.4.55
"EventGeneration|DMTF^^Electrical Current
Probe|"

1.3.6.1.4.1.412.2.4.55

"DMTF|Diagnostic Function Group|" 1.3.6.1.4.1.412.2.4.56
"DMTF|Diagnostic Request Group|" 1.3.6.1.4.1.412.2.4.57
"DMTF|Diagnostic Results Group|" 1.3.6.1.4.1.412.2.4.58
"DMTF|Diagnostic Results FRU Call|" 1.3.6.1.4.1.412.2.4.59
"DMTF|Out-of-band Remote Access|" 1.3.6.1.4.1.412.2.4.60
"DMTF|Cache Performance Table|" 1.3.6.1.4.1.412.2.4.61
"DMTF|Bus Utilization Table|" 1.3.6.1.4.1.412.2.4.62
"DMTF|Physical Container Global Table|" 1.3.6.1.4.1.412.2.4.63
"EventGeneration|DMTF^^Physical Container
Global Table|"

1.3.6.1.4.1.412.2.4.63

"DMTF|Bus Global Table|" 1.3.6.1.4.1.412.2.4.64
"DMTF|Physical Expansion Site Table|" 1.3.6.1.4.1.412.2.4.65
"DMTF|Power Unit Global Table|" 1.3.6.1.4.1.412.2.4.66
"DMTF|Cooling Unit Global Table|" 1.3.6.1.4.1.412.2.4.67
"DMTF|Structure Dependency Table|" 1.3.6.1.4.1.412.2.4.68
"EventGeneration|DMTF^^Structure Dependency
Table|"

1.3.6.1.4.1.412.2.4.68

"DMTF|Bus Card Location|" 1.3.6.1.4.1.412.2.4.69
"DMTF|System Contact Information|" 1.3.6.1.4.1.412.2.4.70
"DMTF|System Memory Settings| 1.3.6.1.4.1.412.2.4.71

Large Mailing Operations [19]

Group Class String

OBJECT IDENTIFIER

"DMTF|General|" 1.3.6.1.4.1.412.2.5.1
"DMTF|Localization Table|" 1.3.6.1.4.1.412.2.5.2
"DMTF|Finisher Device Table|" 1.3.6.1.4.1.412.2.5.3
"DMTF|Finisher Input Table|" 1.3.6.1.4.1.412.2.5.4
"DMTF|Finishing Features|" 1.3.6.1.4.1.412.2.5.5
"DMTF|Finisher Output Table|" 1.3.6.1.4.1.412.2.5.6
"DMTF|Finisher Supply Table|" 1.3.6.1.4.1.412.2.5.7
"DMTF|Finisher Colorant Table|" 1.3.6.1.4.1.412.2.5.8
"DMTF|Alert Table|" 1.3.6.1.4.1.412.2.5.9
"DMTF|Insert Feeder Table|" 1.3.6.1.4.1.412.2.5.10
"DMTF|Envelope Feeder Table|" 1.3.6.1.4.1.412.2.5.11
"DMTF|Output Device Table|" 1.3.6.1.4.1.412.2.5.12

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

30

"DMTF|Output Device Supply Table|" 1.3.6.1.4.1.412.2.5.13
"DMTF|Output Device Colorant Table|" 1.3.6.1.4.1.412.2.5.14
"DMTF|ProductTable|" 1.3.6.1.4.1.412.2.5.15
"DMTF|Process Path Table|" 1.3.6.1.4.1.412.2.5.16
"DMTF|Process History Table|" 1.3.6.1.4.1.412.2.5.17
"DMTF|Print History Table|" 1.3.6.1.4.1.412.2.5.18
"DMTF|Insert History Table|" 1.3.6.1.4.1.412.2.5.19
"DMTF|Print Job Table|" 1.3.6.1.4.1.412.2.5.20
"DMTF|Insert Job Table|" 1.3.6.1.4.1.412.2.5.21
"DMTF|Bill of Materials Table|" 1.3.6.1.4.1.412.2.5.22
"DMTF|Mailpiece XReference Table|" 1.3.6.1.4.1.412.2.5.23

Monitor Standard MIF [20]

Group Class String

OBJECT IDENTIFIER

"DMTF|Monitor Additional Informations|" 1.3.6.1.4.1.412.2.6.1
"DMTF|Monitor Resolutions|" 1.3.6.1.4.1.412.2.6.2

Printer Standard MIF [21]

Group Class String

OBJECT IDENTIFIER

"DMTF|Printer Interface Table|" 1.3.6.1.4.1.412.2.7.1
"DMTF|Storage Table|" 1.3.6.1.4.1.412.2.7.2
"DMTF|Device Table|" 1.3.6.1.4.1.412.2.7.3
"DMTF|Printer General|" 1.3.6.1.4.1.412.2.7.4
"DMTF|Cover Table|" 1.3.6.1.4.1.412.2.7.5
"DMTF|Printer Localization Table|" 1.3.6.1.4.1.412.2.7.6
"DMTF|Input Table|" 1.3.6.1.4.1.412.2.7.7
"DMTF|Output Table|" 1.3.6.1.4.1.412.2.7.8
"DMTF|Marker Table|" 1.3.6.1.4.1.412.2.7.9
"DMTF|Marker Supplies Table|" 1.3.6.1.4.1.412.2.7.10
"DMTF|Marker Colorant Table|" 1.3.6.1.4.1.412.2.7.11
"DMTF|Media Path Table|" 1.3.6.1.4.1.412.2.7.12
"DMTF|Channel Table|" 1.3.6.1.4.1.412.2.7.13
"DMTF|Interpreter Table|" 1.3.6.1.4.1.412.2.7.14
"DMTF|Display Buffer Table|" 1.3.6.1.4.1.412.2.7.15
"DMTF|Console Lights Table|" 1.3.6.1.4.1.412.2.7.16
"DMTF|Printer Alert Table|" 1.3.6.1.4.1.412.2.7.17

Mobile Computer Supplement MIF [22]

Group Class String

OBJECT IDENTIFIER

"DMTF|Portable Battery|" 1.3.6.1.4.1.412.2.8.1
"EventGeneration|DMTF^^Portable Battery|" 1.3.6.1.4.1.412.2.8.1
"DMTF|Dynamic States|" 1.3.6.1.4.1.412.2.8.2
"DMTF|Video Output Device|" 1.3.6.1.4.1.412.2.8.3
"DMTF|Infrared Port|" 1.3.6.1.4.1.412.2.8.4
"DMTF|Pointing Device|" 1.3.6.1.4.1.412.2.8.5

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

31

"DMTF|System Power Management|" 1.3.6.1.4.1.412.2.8.6
"DMTF|Power Management Table|" 1.3.6.1.4.1.412.2.8.7
"DMTF|Power Management Binary Association|" 1.3.6.1.4.1.412.2.8.8
"DMTF|Device Bay|" 1.3.6.1.4.1.412.2.8.9

5.1.2 OIDs Acquired through MI

The mapping agent will iterate through all registered group classes in the MIF
database and extract the mapping information (if any) from the SNMP pragma
statement.

5.1.3 Dynamically Generated OIDs

For each group class that does not have an administratively assigned SNMP OID
mapping, the procedure defined in section 3.2 is used to dynamically generate a
unique OID for the group class.

5.2 Instance Identifier Mapping

SNMP identifies a specific instance of an attribute by appending an OID fragment,
called the instance identifier, to the OID of the attribute definition. The instance
identifier is constructed by first applying the SYNTAX and INDEX mapping rules
defined in sections 4.2.2 and 4.2.7, then by applying the rules specified in Section
7.7 of RFC 1902 [5] to produce the object identifier representation of the index
values.

For convenience, construction of the SNMP instance identifier for a DMI Attribute
represented as an SNMP variable binding is summarized as follows:

1. The first sub-identifier is assigned the value of the DMI Component Id.
2. The second sub-identifier is assigned the value of the DMI Group Id.
3. For each of the DMI Key attributes listed in the INDEX mapping, one or more sub-

identifiers are appended according to the following conversion rules:
• DMI Integer-typed keys are represented by a single sub-identifier with value

equal to that of the DMI attribute.
• DMI Integer64-typed keys are mapped into SNMP as a fixed-length sequence of

eight octets. Therefore, an Integer64 value is represented by exactly eight
sub-identifiers, each sub-identifier equal to the respective octet value.

• DMI Date-typed keys are mapped into SNMP as a fixed-length sequence of 25
octets. Therefore, a DmiDate value is represented by exactly 25 sub-
identifiers, each sub-identifier equal to the respective octet value.

• DMI Octet String- and DMI Display String-typed keys are mapped into SNMP as a
variable-length sequence of octets. Therefore, a string is represented by
‘n+1’ sub-identifiers, the first sub-identifier equal to the length of the
octet string, and the remaining n sub-identifiers equal to the respective
octet value in the octet string.

5.3 GetRequest Mapping

The mapping agent must preserve the semantics of the SNMP GetRequest-PDU. For the
most part, this is a straight-forward translation between SNMP and DMI. However,
attention must be given to SNMP’s requirement that the Response-PDU include the
variable bindings in the same order as the original request, and so on.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

32

If a DMI error occurs while servicing the SNMP request, an appropriate SNMP error
value/code is returned in the SNMP Response-PDU. Error code mappings for the
GetRequest-PDU are shown in the following table. Any other DMI error should
probably result in a genErr. System specific errors should be mapped appropriately.

DMI Error

SNMPv1

SNMPv2

0x00001 More Data tooBig tooBig *1
0x00100 Attr not found noSuchName noSuchInstance *2
0x00101 Val exceeds max genErr genErr
0x00102 Comp instr not found noSuchName noSuchInstance *2
0x00103 Enum error genErr genErr
0x00104 Group not found noSuchName noSuchInstance *2
0x00105 Illegal keys noSuchName noSuchInstance
0x00106 Illegal to set genErr genErr
0x00107 Can't resolve attr fn noSuchName noSuchInstance *3
0x00108 Illegal to get noSuchName noSuchObject
0x00109 No description genErr genErr
0x0010A Row not found noSuchName noSuchInstance
0x0010B Direct I/f not reg'd noSuchName noSuchInstance *3
0x0010C MIF DB corrupt genErr genErr
0x0010D Attr not supported noSuchName noSuchInstance
0x0020B Insufficient Priv noSuchName noSuchInstance *3
0x0020C No access fn noSuchName noSuchInstance *3
0x01001 Overlay not found noSuchName noSuchInstance *3
0x10002 Overlay not found noSuchName noSuchInstance *3
0x10004 component get err noSuchName noSuchInstance *3
0x10005 component key err noSuchName noSuchInstance
0x10008 component row err noSuchName noSuchInstance

Notes:
1. Assumes DMI confirm buffer is > max PDU size
2. Could be noSuchObject if no components support it, but its kind of hard to tell
3. Component instrumentation not accessible, could be noSuchObject if no other

component supports it.

5.4 GetNext and GetBulk Request Mapping

The mapping agent must preserve the semantics of the SNMP GetNextRequest-PDU and
GetBulkRequestPDU. Special attention must be given to SNMP's requirement for
lexicographic ordering, because the DMI does not define any ordering for the way
keyed rows are returned when iterating through a table with DmiGetNextRow, nor does
it allow partial keys. Fortunately, the DmiList commands for components, groups,
and attributes are compatible with the requirements of SNMP.

If a DMI error occurs while servicing the SNMP request, an appropriate SNMP error
value/code is returned in the SNMP Response-PDU. Error code mappings for the
GetNetxtRequest-PDU and GetBulkRequest-PDU are the same as for the GetRequest-PDU
(see above), except that instead of returning noSuchObject, noSuchInstance or
noSuchName the lexicographically next object should be returned. System specific
errors should be mapped appropriately.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

33

5.5 Set Request Mapping

The mapping agent must preserve the semantics of the SNMP SetRequest-PDU by making
appropriate use of the Set, Release and Reserve DmiSetModes with the DmiSetAttribute
operation. If the DmiSetAttribute operation fails for any attribute, the mapping
agent must attempt to rollback the values of any attributes already set as part of
that SetRequest-PDU.

If a DMI error occurs while servicing the SNMP request, an appropriate SNMP error
value/code is returned in the SNMP Response-PDU. Mappings for errors codes returned
from a DmiSetReserveAttributeCmd are shown in the following table; any other DMI
error should result in a genErr. If an error is returned from the
DmiSetAttributeCmd, then either commitFailed or undoFailed should be returned as
appropriate.

DMI Error

SNMPv1

SNMPv2

0x00100 Attr not found noSuchName noAccess
0x00101 Val exceeds max wrongLength
0x00102 Comp instr not found noAccess
0x00103 Enum error wrongValue
0x00104 Group not found noAccess
0x00105 Illegal keys noAccess
0x00106 Illegal to set notWritable *1
0x00107 Can't resolve attr fn noAccess
0x00108 Illegal to get noSuchObject
0x0010A Row not found noAccess
0x0010B Direct I/f not reg'd resourceUnavailable
0x0010C MIF DB corrupt genErr
0x0010D Attr not supported noAccess
0x0020B Insufficient Priv noAccess
0x0020C No access fn resourceUnavailable
0x01001 Overlay not found resourceUnavailable
0x10002 Overlay not found resourceUnavailable
0x10005 component key err noAccess
0x10008 component row err noAccess
0x10009 component set err notWritable *1

Notes:
1. Use DmiListAttributeCmd to determine exact cause of error and return notWritable,

wrongType, wrongLength, or wrongValue as appropriate.

5.6 Row Addition/Deletion Mapping

Section 4.2.8 describes the addition of an SNMP RowStatus columnar object to the
resulting SNMP conceptual table for DMI classes that permit row addition and
deletion through the management interface.

When the mapping agent receives a SetRequest operation on the RowStatus object of a
conceptual table, the mapping agent must translate the request into appropriate uses
of the DMI MI DmiAddRow and DmiDeleteRow operations in accord with the semantics
defined by RFC 1902 [5] for the RowStatus textual convention. The DMI Set, Reserve

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

34

and Release modes of the DmiSetAttribute operation should also be used when changing
the RowStatus state for row modification.

5.7 Notification Mapping

The mapping agent converts DMI Events and Indications into SNMP Traps according to
the following elements of procedure. If the mapping agent supports SNMPv2,
construct an SNMPv2 Trap; otherwise construct an equivalent SNMPv1 Trap by applying
the SNMPv2 to SNMPv1 rules specified in RFC 1908 [11].

5.7.1 Mapping DMI Events

Upon receipt of a DMI Event, an attempt is made to resolve the Event Generation
group class name into an assigned SNMP OID either from the set of standard MIF
assignments or the SNMP pragma statement in the MIF definition. If an OID mapping
exists, the DMI Event is translated into an event-specific SNMP notification as
described below. Otherwise, an instance of the general-purpose dmiEventIndication
notification is created from the DMI Event.

To map the DMI Event into an event-specific SNMP notification, construct an SNMPv2
Trap PDU with the following variable bindings (varbinds). The first two varbinds
are mandatory, as defined by the SNMPv2 standard [8], and serve to identify an
instance of the event. The data varbinds follow. The first seven data varbinds are
always present in DMI Events. They convey mandatory information from the DMI Event
Generation class. The remaining varbinds are conditionally included based on the
presence of the corresponding information in the DMI Event.

SNMPv2 Standard Varbinds:

1. The first standard varbind is an instance of sysUpTime. The value is the

value of the SNMP master agent's sysUpTime at the time the trap is generated.
2. The second standard varbind is an instance of snmpTrapOID. The value is an

object identifier equal to <grpOID>.0.<eventType>; where, grpOID is the object
identifier associated with the DMI Event class name, and eventType is the
value of the DMI Event Type attribute.

Mandatory DMI Event Generation Attribute Varbinds:

1. The first data varbind is an instance of dmiEventDateTime. The value is a DMI

Timestamp assigned from the timestamp parameter of the DMI Event indication.
2. The second data varbind is an instance of dmiCompId. The value is the

Component Id associated with the received DMI Event.
3. The third data varbind is an instance of dmiEventSeverity. The value is the

integer (enumeration) assigned from the DMI Event Severity attribute.
4. The fourth data varbind is an instance of dmiEventStateIndex. The value is –1

if the DMI Event Is State Based attribute is FALSE; otherwise, the value is
assigned from the DMI Event State Key attribute.

5. The fifth data varbind is an instance of dmiEventAssociatedGroup. The value is
assigned the class string from the DMI Event Associated Group attribute.

6. The sixth data varbind is an instance of the DMI event-specific Event System
attribute.

7. The seventh data varbind is an instance of the DMI event-specific Event
Subsystem attribute.

Optional DMI Event Generation Attribute Varbinds:

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

35

Zero or more of the following varbinds may appear after the mandatory varbinds
described above if the corresponding attribute is present in the DMI Event. They
are:

1. The first optional varbind is an instance of the DMI event-specific Event

Solution attribute. The value is assigned the integer enumeration from the
DMI Event Solution attribute.

2. The second optional varbind is an instance of dmiEventVendorMsg. The value is
assigned the display string value from the DMI Event Vendor Specific Message
attribute.

3. The third optional varbind is an instance of dmiEventVendorData. The value is
assigned the octet string value from the DMI Event Vendor Specific Data
attribute.

NOTE: all of the event varbinds described thus far, except dmiCompId, are scalars;
therefore, the identifying OID for each varbind includes the ".0" instance
specifier. Since dmiCompId is the index object for the dmiComponentTable, its
instance specifier is the value of the component identifier.

Event Instance-specific Varbinds:

If the DMI Event includes a second DmiRowData structure containing instance-specific
row data, each DMI attribute in that row data is translated into an SNMP varbind
instance according to the rules specified in section 4.2 for mapping object
instances from DMI to SNMP. In particular, the instance indentifier portion of
varbind OID must conform to the conventions specified in section 4.2.7.

Event Source Varbinds:

The DMI 2.0 standard makes provision for an Event to be forwarded from its original
source to its eventual destination by including a third DmiRowData structure in the
DMI Event that identifies the original event source. In such cases, the resulting
SNMP notification must include identification of the event source to distinguish the
source from the system where the mapping agent is running. A similar need also
exists in cases where the mapping agent is running on a system other than the
managed system, even though the DMI Event is received directly from the managed
system. Since the two cases are indistinguishable to recipients of the resulting
SNMP notification, the following approach is always used instead of the proxy
conventions described in section 1.3.

If the DMI Event originates from a system other than the system where the mapping
agent resides, one last varbind, dmiEventSource, is appended to the SNMP
notification to identify the original source of the DMI Event. Otherwise, this
varbind is not included in the SNMP notification; and the DMI Event source is
identified by the source address of the SNMP Notification itself.

5.7.2 Mapping DMI Component Added Indication

Upon receipt of a DMI Component Added indication, construct an SNMPv2 Trap as
specified by the dmiComponentAddedIndication NOTIFICATION-TYPE definition. The
associated data varbinds are assigned from the indication parameters as follows:

1. The first varbind is an instance of dmiCompId.
2. The second varbind is an instance of dmiCompName.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

36

5.7.3 Mapping DMI Component Deleted Indication

Upon receipt of a DMI Component Deleted indication, construct an SNMPv2 Trap as
specified by the dmiComponentDeletedIndication NOTIFICATION-TYPE definition. The
associated data varbinds are from the indication parameters as follows:

1. The only varbind is an instance of dmiCompId.

5.7.4 Mapping DMI Group Added Indication

Upon receipt of a DMI Group Added indication, construct an SNMPv2 Trap as specified
by the dmiGroupAddedIndication NOTIFICATION-TYPE definition. The associated data
varbinds are assigned from the indication parameters as follows:

1. The first varbind is an instance of dmiCompId.
2. The second varbind is an instance of dmiGroupId
3. The second varbind is an instance of dmiGroupClassString.

5.7.5 Mapping DMI Group Deleted Indication

Upon receipt of a DMI Group Deleted indication, construct an SNMPv2 Trap as
specified by the dmiGroupDeletedIndication NOTIFICATION-TYPE definition. The
associated data varbinds are assigned from the indication parameters as follows:

1. The first varbind is an instance of dmiCompId.
2. The second varbind is an instance of dmiGroupId

5.7.6 Mapping DMI Language Added Indication

Upon receipt of a DMI Language Added indication, construct an SNMPv2 Trap as
specified by the dmiLanguageAddedIndication NOTIFICATION-TYPE definition. The
associated data varbinds are assigned from the indication parameters as follows:

1. The first varbind is an instance of dmiCompId.
2. The second varbind is an instance of dmiLanguage.

5.7.7 Mapping DMI Language Deleted Indication

Upon receipt of a DMI Language Deleted indication, construct an SNMPv2 Trap as
specified by the dmiLanguageDeletedIndication NOTIFICATION-TYPE definition. The
associated data varbinds are assigned from the indication parameters as follows:

1. The first varbind is an instance of dmiCompId.
2. The second varbind is an instance of dmiLanguage.

5.7.8 Processing DMI Subscription Notice Indication

The DMI Subscription Notice indication is NOT translated into an SNMP Trap. This
indication is only sent to the subscriber associated with the subscription entry.
Therefore, it is not relevant to other indication and event recipients.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

37

Upon receipt of a DMI Subscription Notice indication, the mapping agent should take
appropriate measures to re-subscribe with the DMI Service Provider so that DMI Event
and Indication reception is not interrupted.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

38

6 The DMTF-DMI-MIB definitions

The DMTF-DMI-MIB is an integral part of the mapping scheme defined in this document.
 Its implementation is mandatory for compliance with this standard.

The dmiClasses group provides complete access to the DMI meta-data for all
registered group classes. This information can be retrieved via SNMP and used to
perform the MIF to MIB conversion process defined in this document. A savvy MIB
Browser could even use the information directly to perform the same functions that
it could if all the converted-MIF (mapped) MIBs had been compiled into the
management system.

The dmiComponents group provides the containment information that is lost in the
mapping scheme; i.e., which group instances are present in each component. It also
provides some component level data which is not present in the ComponentID group

The dmiTraps and dmiTrapVars groups define traps that correspond to the standard DMI
indications. Event indications are mapped into specific traps defined in the
individual MIFs to MIB translations.

The DMTF-DMI-MIB also provides definitions for dmtfStdMifs, dmtfDynMifs, dmiCompId,
dmiGroupId, DmiDate, DmiInteger64, and DmiString. They all can be imported into the
other translated MIBs as necessary.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

39

7 References

[1] Rose, M., and McCloghrie, K., "Structure and Identification of Management

Information for TCP/IP-based internets", STD 16, RFC 1155, May 1990.

[2] Rose, M., and McCloghrie, K., "Concise MIB Definitions", STD 16, RFC 1212,

March 1991.

[3] Case, J., Fedor, M., Schoffstall, M., Davin, J., "Simple Network Management

Protocol", STD 15, RFC 1157, SNMP Research, Performance Systems International,
MIT Laboratory for Computer Science, May 1990.

[4] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Introduction to

Community-based SNMPv2", RFC 1901, SNMP Research, Inc., cisco Systems, Inc,
Dover Beach Consulting, Inc., International Network Services, January 1996.

[5] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Structure of

Management Information for Version 2 of the Simple Network Management Protocol
(SNMPv2)", RFC 1902, SNMP Research, Inc., cisco Systems, Inc, Dover Beach
Consulting, Inc., International Network Services, January 1996.

[6] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Textual Conventions

for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1903,
SNMP Research, Inc., cisco Systems, Inc, Dover Beach Consulting, Inc.,
International Network Services, January 1996.

[7] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Conformance Statements

for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1904,
SNMP Research, Inc., cisco Systems, Inc, Dover Beach Consulting, Inc.,
International Network Services, January 1996.

[8] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Protocol Operations

for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1905,
SNMP Research, Inc., cisco Systems, Inc, Dover Beach Consulting, Inc.,
International Network Services, January 1996.

[9] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Transport Mappings for

Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1906, SNMP
Research, Inc., cisco Systems, Inc, Dover Beach Consulting, Inc.,
International Network Services, January 1996.

[10] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Management

Information Base for Version 2 of the Simple Network Management Protocol
(SNMPv2)", RFC 1907, SNMP Research, Inc., cisco Systems, Inc, Dover Beach
Consulting, Inc., International Network Services, January 1996.

[11] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S., "Coexistence Between

Version 1 and Version 2 of the Internet-standard Network Framework", RFC 1908,
SNMP Research, Inc., cisco Systems, Inc, Dover Beach Consulting, Inc.,
International Network Services, January 1996.

[12] Desktop Management Task Force, "Desktop Management Interface Specification",

version 1.0, September 1994.

[13] Desktop Management Task Force, "Desktop Management Interface Reference",

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

40

version 1.1, January 1996.

[14] Desktop Management Task Force, "Desktop Management Interface Specification",

version 2.0, March 1996.

[15] Desktop Management Task Force, "LAN Adapter Standard Groups Definition",

version 1.0, October 1994

 [16] Desktop Management Task Force, "Software Standard MIF Definition", version

2.0, November 1995[17] Desktop Management Task Force, "PC Systems Standard MIF
Definition", version 1.3, March 1995.

[18] Desktop Management Task Force, "Systems Standard Group Definitions", version

1.0, May 1996.

[19] Desktop Management Task Force, "Large Mailing Organization MIF Definition",

version 1.0, April 1995.

[20] Desktop Management Task Force, "Monitor MIF Definition", version 1.0, January

1996.

[21] Desktop Management Task Force, "Printer MIF Definition", version 8.4, March

1995.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

41

8 Acknowledgements

The authors wish to acknowledge the contributions of the DMTF DMI to SNMP Mapping
Working Committee in general. Special thanks is extended to Asher Vardi and Sasha
Tolpin of the Intel Architecture Lab for their comments and implementation
experience of this specification.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

42

9 Security Considerations

This specification raises no security issues beyond those currently associated with
DMI 2.0 and SNMPv1/v2C. It is expected that as security methods are standardized
for both DMI and SNMP, the security methods will need to be implemented by the SNMP-
to-DMI mapping agent to operate sucessfully.

DMI to SNMP Mapping Specification Desktop Management Task Force

November 25, 1997

43

10 Authors' Address

Brian O'Keefe
Hewlett-Packard Company, Inc.
3404 East Harmony Road
Fort Collins, CO 80528

Voice: 970-868-4303 (970-229-4303 until 12/31/97)
Fax: 970-868-2038
Email: brian_okeefe@hp.com
 bok@cnd.hp.com

Steve Bostock
Novell, Inc.
2180 Fortune Drive
San Jose, CA 95131

Voice: 408-577-8203
Fax: 408-577-5706
Email: Steve_Bostock@novell.com
 steveb@novell.com

