

 1

Document Number: DSP-IS0203 2

Date: 2011-10-26 3

Version: 1.0.0 4

CIM-RS White Paper 5

Document Type: White Paper 6

Document Status: DMTF Informational 7

Document Language: en-US 8

 9

CIM-RS White Paper DSP-IS0203

2 DMTF Informational Version 1.0.0

Copyright Notice 10

Copyright © 2011 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 12
management and interoperability. Members and non-members may reproduce DMTF specifications and 13
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 14
time, the particular version and release date should always be noted. 15

Implementation of certain elements of this standard or proposed standard may be subject to third party 16
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 17
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 18
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 19
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 20
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 21
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 22
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 23
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 24
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 25
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 26
implementing the standard from any and all claims of infringement by a patent owner for such 27
implementations. 28

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 29
such patent may relate to or impact implementations of DMTF standards, visit 30
http://www.dmtf.org/about/policies/disclosures.php. 31

http://www.dmtf.org/about/policies/disclosures.php

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 3

CONTENTS 32

Abstract ... 4 33
Foreword ... 5 34
1 Executive Summary .. 6 35
2 Terminology ... 7 36
3 Rationale for a RESTful interface for CIM ... 9 37
4 Goals of the CIM-RS informational specifications ... 10 38
5 Characteristics of a RESTful protocol and CIM-RS .. 11 39
6 Resources in CIM-RS .. 12 40
7 Resource identifiers in CIM-RS ... 15 41
8 Operations in CIM-RS ... 15 42
9 Data representation in CIM-RS ... 17 43
10 Considerations for implementing CIM-RS ... 19 44
11 Conclusion ... 20 45
ANNEX A Change Log .. 21 46
Bibliography .. 22 47
 48

Tables 49

Table 1 – CIM-RS resources and what they represent ... 14 50
Table 2 – CIM-RS protocol payload elements .. 17 51
 52

CIM-RS White Paper DSP-IS0203

4 DMTF Informational Version 1.0.0

Abstract 53

This white paper provides background information for the informational specifications DSP-IS0201, CIM 54
Operations over RESTful Services, and DSP-IS0202, CIM-RS Binding to JSON. This white paper 55
explains some of the decisions in these specifications and gives the reader insight into when the use of 56
CIM-RS may be appropriate. Some of the considerations in choosing payload encodings such as JSON 57
or XML are also discussed. 58

This white paper is targeted to potential users of DSP-IS0201 and DSP-IS0202 who are considering 59
developing a server-side interface to a CIM implementation that follows REST principles, or to a client that 60
consumes such an interface. 61

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 5

Foreword 62

The CIM-RS White Paper (DSP-IS0203) was prepared by the CIM-RS Incubator. 63

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 64
management and interoperability. For information about the DMTF, see http://www.dmtf.org. 65

Acknowledgments 66

The DMTF acknowledges the following individuals for their contributions to this document: 67

• Andreas Maier, IBM (editor) 68

• Marvin Waschke, CA Technologies (editor) 69

• Cornelia Davis, EMC 70

• George Ericson, EMC 71

• Wojtek Kozaczynski, Microsoft 72

• Lawrence Lamers, VMware 73

• Bob Tillman, EMC 74

Document Conventions 75

Typographical Conventions 76

The following typographical conventions are used in this document: 77

• Document titles are marked in italics. 78

• Important terms that are used for the first time are marked in italics. 79

• Terms include a link to the term definition in the "Terminology" clause, enabling easy navigation 80
to the term definition. 81

http://www.dmtf.org/

CIM-RS White Paper DSP-IS0203

6 DMTF Informational Version 1.0.0

CIM-RS White Paper 82

1 Executive Summary 83

The DMTF Common Information Model (CIM) is a conceptual information model for describing computing 84
and business entities in Internet, enterprise, and service-provider environments. CIM uses object-oriented 85
techniques to provide a consistent definition of and structure for data. The CIM Schema establishes a 86
common conceptual framework that describes the managed environment. 87

CIM provides a foundation for IT management software that can be written in one environment and easily 88
converted to operate in a different environment. They also facilitate communication between software 89
managing different aspects of IT infrastructure. In this way, CIM provides a basis for an integrated IT 90
management environment that is more manageable and less complex than environments based on 91
narrower and less consistent information. 92

CIM is built on object-oriented principles and provides a consistent and cohesive programming model for 93
IT management software. One of the developing trends in enterprise network software architecture in 94
recent years has been Representational State Transfer (REST). REST represents a set of architectural 95
constraints that have risen from the experience of the World Wide Web. Developers have discovered that 96
the architecture of the Web offers some of the same benefits in simplicity and reliability to enterprise 97
software as it has provided for the Internet. IT management is an important application of enterprise 98
software, and there is growing interest in using CIM- based software in an architecture that adheres to 99
REST constraints. 100

Fortunately, CIM is built on object-oriented principles and follow basic architectural principles that largely 101
fit well into RESTful architectures. Therefore, the CIM-RS Incubator undertook to develop specifications 102
for a RESTful protocol tailored to the needs of CIM. 103

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 7

2 Terminology 104

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 105
are defined in this clause. 106

Some of the terms and abbreviations defined in DSP0004 and DSP0223 are used in this document but 107
are not repeated in this clause. 108

2.1 109
application state 110
The state that indicates where an application is in completing a task. In a RESTful system, the client is 111
solely responsible for application or session state. The server is only responsible for resource state, the 112
state of the resources managed by the service. An example of resource state is the account balance in a 113
banking service, which would be maintained by the server. An example of application state is a specific 114
client that has posted a deposit and is waiting for it to clear. Only the client would track the fact that it has 115
posted a deposit request. 116

2.2 117
Atom 118
The term Atom applies to two related standards. The Atom Syndication Format is an XML-based format 119
for publishing Web content and metadata. The Atom Publishing Protocol (AtomPub or APP) is an HTTP-120
based protocol for publishing and editing Web resources. See RFC4287 for the Atom Syndication Format. 121
See RFC5023 for the Atom Publishing Protocol. 122

2.3 123
CIMOM 124
CIM Object Manager 125

2.4 126
CIM-RS 127
RESTful Services for CIM 128
The protocol covered by this white paper. 129

2.5 130
HATEOAS 131
Hypertext As The Engine Of Application State 132
The practice of using links embedded in resource representations to advertise further possible activities 133
or resources related to the application .For example, an “order” link might be placed in the resource 134
representation for an item offered in a catalog. The presence of the order link indicates that the item can 135
be ordered and represents a path to order the item. In a visual representation, the “order” link would 136
appear as a button on the screen. When the button is clicked, a POST or PUT HTTP method targeting 137
the resource identifier provided in the link would be issued and would cause the item to be ordered. The 138
returned resource represents the next application state, perhaps a form for entering quantity and shipping 139
method. 140

2.6 141
HTTP content negotiation 142
Negotiation between HTTP clients and HTTP servers to determine the format of the content transferred. 143
When a client makes a request, it lists acceptable response formats by specifying MIME types in an 144
Accept header. Thus, the server is able to supply different representations of the same resource 145
identified with the same resource identifier. A common example is GIF and PNG images. A browser that 146
cannot display PNGs can be served GIFs based on the Accept header. In a RESTful system, the choice 147
is more often between XML and JSON. For details, see RFC2616. 148

CIM-RS White Paper DSP-IS0203

8 DMTF Informational Version 1.0.0

2.7 149
IANA 150
Internet Assigned Numbers Authority, http://www.iana.org/ 151

2.8 152
idempotent HTTP method 153
An HTTP method with the behavior that (aside from error or expiration issues) the side effects of N 154
consecutive identical requests are the same as for a single one of those requests. RFC2616 requires the 155
HTTP methods GET, HEAD, PUT and DELETE to be idempotent. HTTP methods that have no side 156
effects (that is, safe methods) are inherently idempotent. For details, see RFC2616. 157

2.9 158
International Resource Identifier (IRI) 159
URIs that are expanded to use the Universal Character Set (defined in ISO/IEC 10646, also known as 160
Unicode), including non-alphabetic characters like Arabic and Chinese in addition to ASCII. When 161
appropriate, an IRI can be used instead of a URI. Typically, a REST resource identifier is a URI or an IRI. 162
IRIs are defined in RFC3987. 163

2.10 164
JSON 165
JavaScript Object Notation, defined in chapter 15 of ECMA-262. 166

2.11 167
media type, MIME type 168
File format types originally defined for email attachments but now used in other protocols, including HTTP 169
where they are used to specify the payload format. Media types consist of a type, subtype and optional 170
parameters. Examples are text/plain (plain text), text/html (HTML markup), and application/json (JSON). 171
Types and subtypes are registered with IANA. For details, see RFC2045 and RFC2046. 172

2.12 173
MIME 174
Multipurpose Internet Mail Extension, defined in RFC2045 and RFC2046. 175

2.13 176
resource 177
An entity that can be identified and represented in a RESTful protocol. Example resources are devices, 178
documents, or events. 179

2.14 180
resource identifier 181
An unambiguous reference to (or address of) a resource, in some format. Usually, URIs or IRIs are used 182
as resource identifiers. A resource may have more than one resource identifier. 183

2.15 184
resource representation 185
A representation of a resource or some aspect thereof, in some format. A particular resource may have 186
any number of representations. The format of a resource representation is identified by a media type. 187

2.16 188
resource state 189
The state of a resource managed by a RESTful service. Contrast with application state. 190

http://www.iana.org/

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 9

2.17 191
REST 192
Representational State Transfer 193
A style of software architecture for distributed systems that is based on addressable resources, a uniform 194
constrained interface, representation orientation, stateless communication, and state transitions driven by 195
data formats. Usually REST architectures use the HTTP protocol, although other protocols are possible. 196
See Architectural Styles and the Design of Network-based Software Architectures for the original 197
description of the REST architectural style. 198

2.18 199
RPC 200
Remote Procedure Call 201
An implementation of a function in which a call to the function occurs in one process and the function is 202
executed in a different process, often in a remote location linked by a network. RPC-based systems are 203
often contrasted with RESTful systems. In a RESTful system, the interactions between client and server 204
follow the REST constraints and the design focus is on the resources. In an RPC-based system, the 205
design focus is on the functions invoked, and there is not necessarily even the notion of well-defined 206
resources. 207

2.19 208
safe HTTP method 209
An HTTP method that has no side effects. RFC2616 requires the HTTP methods GET and HEAD to be 210
safe. By definition, an HTTP method that is safe is also idempotent. 211

2.20 212
Universal Resource Identifier (URI) 213
Universal Resource Locator (URL) 214
Universal Resource Name (URN) 215
International Resource Identifier (IRI) 216
URLs and URNs are types of URIs. IRIs are URIs that are expanded to use the Universal Character Set 217
(defined in ISO/IEC 10646, also known as Unicode), including non-alphabetic characters like Arabic and 218
Chinese in addition to ASCII. When appropriate, an IRI can be used instead of a URI. Typically, a REST 219
resource identifier is a URI or an IRI. URIs are defined in RFC3986. URNs are defined in RFC2141. IRIs 220
are defined in RFC3987. 221

3 Rationale for a RESTful interface for CIM 222

There has been a great deal of interest in constructing RESTful enterprise applications in the last few 223
years and this interest has inspired the specification of CIM-RS. To understand the origins of this interest, 224
the nature of REST and its relationship to IT management must be explored. 225

Enterprise applications are being built more and more frequently on architectures that involve remote 226
network connections to some part of the implementation of the application. These connections are often 227
via the Internet. This is especially true with the rise of cloud computing. 228

REST is a set of architectural constraints that were designed around the features of the Internet. For 229
example, REST constraints are designed to assure that applications that follow constraints will have 230
maximum benefit from typical Internet features such as caches, proxies, and load balancers. 231

In addition, REST constraints are closely tied to the design of HTTP, the primary application level protocol 232
of the Internet. In fact, the prime formulator of REST, Roy Fielding, was also an author of the HTTP 233
standard. Consequently, REST was designed to take full advantage of HTTP and HTTP meets the needs 234
of REST. 235

CIM-RS White Paper DSP-IS0203

10 DMTF Informational Version 1.0.0

Some of the specific benefits that have been experienced in RESTful applications are as follows: 236

• Simplicity. REST limits itself to the methods implemented in HTTP and runs directly on the 237
HTTP stack. Note, however, that this simplicity can be deceptive. The design effort to comply 238
with REST may engender its own complexity. 239

• Resilience in the face of network disturbance. One of the hallmarks of a RESTful application is a 240
stateless relationship between the server and the client. Each request from the client contains 241
all the history the server needs to respond to the client. Therefore, when requests are self-242
contained and independent, if a server becomes inaccessible recovery does not require 243
unwinding a stack and complex recovery logic.. 244

• Upgradability. The operations available in a RESTful application are discovered by the client as 245
the processes occur. Consequently, in some cases, the server implementation often may be 246
upgraded transparently to the client. In some cases, a well-designed client may be able to take 247
advantage of new features automatically. 248

Although these are important benefits, it is important to note that REST is not a panacea. Some of the 249
limitations of REST are as follows: 250

• Not all activities are easily compatible with its constraints. 251

• Not every operation fits easily into the stateless paradigm. 252

• The discoverability of RESTful applications may break down as applications become more 253
complex and transactions become more elaborate. 254

Nevertheless, as a result of the benefits, a substantial number of developers of IT management 255
applications that use CIM have turned to REST. Therefore, there is a need for a specification for a 256
uniform protocol that will promote interoperability between RESTful CIM based applications. 257

4 Goals of the CIM-RS informational specifications 258

Unlike the usual informational documents produced by DMTF incubators, the CIM-RS Incubator produced 259
two informational specifications that rather precisely describe the RESTful protocol for CIM: 260

• DSP-IS0201 (CIM Operations Over RESTful Services) defines a RESTful protocol that follows 261
the semantics of generic operations (DSP0223). The format of the payload can be negotiated 262
between client and server and is not defined in this document. 263

• DSP-IS0202 (CIM-RS Binding to JSON) defines a payload representation in JSON. 264

A payload representation in XML has not been defined by the CIM-RS Incubator, because one of the 265
existing ones was envisioned to be used. 266

The purpose of these two informational specifications is to explore the a RESTful protocol for CIM in more 267
detail, also outside of the DMTF. 268

Specific aspects explored in these informational specifications are as follows: 269

• Does the generic-operations semantic lead to a reasonably RESTful protocol? 270

• Does it work to generically provide access to CIM modeled resources merely by providing a 271
new protocol and without redefining the CIM model? 272

• Does it work to implement the RESTful protocol as a protocol adapter on top of existing WBEM 273
infrastructure components, without changing the lower levels of the server-side instrumentation 274
(for example, providers), and how expensive is such an implementation? 275

• Is JSON sufficiently capable for representing the protocol payload for accessing CIM modeled 276
resources? 277

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 11

It is important to understand that these two specifications are informational, that is, they are not normative 278
DMTF standards. Any implementation of these two documents should be treated as experimental or 279
prototypical, in order to provide feedback on the aspects described above. 280

5 Characteristics of a RESTful protocol and CIM-RS 281

The characteristics of a RESTful protocol are not standardized or otherwise defined normatively. The 282
principles and constraints of the REST architectural style were originally described by Roy Fielding in 283
chapter 5 of Architectural Styles and the Design of Network-based Software Architectures. Roy Fielding's 284
blog entry REST APIs must be hypertext driven provides further insight into REST principles. While these 285
descriptions of the REST architectural style are not limited to the use of HTTP, the HTTP protocol comes 286
close to supporting that style and obviously has a very broad use. 287

The CIM-RS protocol is based on HTTP and supports the REST architectural style to a large degree. The 288
following list describes to what extent the typical REST constraints are satisfied by the CIM-RS protocol: 289

• Client-Server: The participants in the CIM-RS protocol are the WBEM client, the WBEM server, 290
and the WBEM listener. There is a client-server relationship between the WBEM client and 291
WBEM server, and one between the WBEM server and WBEM listener, where the WBEM 292
server acts as a client to the WBEM listener. Thus, the WBEM server has two roles: To act as a 293
server in the interactions with the WBEM client, and to act as a client in the interactions with the 294
WBEM listener. 295

This REST constraint is fully satisfied in CIM-RS. 296

• Stateless: Interactions in CIM-RS are self-describing and stateless in that the servers (that is, 297
the WBEM server in its server role, and the WBEM listener) do not maintain any application 298
state or session state. 299

This REST constraint is fully satisfied in CIM-RS. 300

NOTE: Pulled enumeration operations as defined in DSP0223 maintain the enumeration state either on 301
the server side or on the client side. In both approaches, the client needs to hand back and forth an 302
opaque data item called enumeration context, which is the actual enumeration state in the case of a client-303
maintained enumeration state, or a handle to the enumeration state in the case of a server-maintained 304
enumeration state. CIM-RS supports both of these approaches. It is possible for a server to remain 305
stateless, as far as the enumeration state goes, by implementing the client-based approach. The approach 306
implemented by a server is not visible to a client, because the enumeration context handed back and forth 307
is opaque to the client in both approaches. 308

• Cache: The HTTP methods used in CIM-RS are defined in RFC2616 and RFC5789 (for 309
PATCH). As a result, they are cacheable as defined in RFC2616. 310

This REST constraint is fully satisfied in CIM-RS. 311

NOTE: RFC2616 defines only the result of HTTP GET methods to be cacheable. 312

• Uniform interface: The resources represented in CIM-RS are CIM namespaces, CIM classes, 313
CIM qualifier types, and CIM instances. CIM-RS defines a uniform interface for creating, 314
deleting, retrieving, replacing, and modifying these resources, based on HTTP methods. 315

This REST constraint is satisfied in CIM-RS, with the following deviation: 316

CIM methods can be invoked in CIM-RS through the use of HTTP POST. This may be 317
seen as a deviation from the REST architectural style, which suggests that any "method" 318
be represented as a modification of a resource. However, that is not practical in CIM, 319
because significant effort has been put into the definition of CIM method semantics in the 320
CIM Schema and in management profiles, and into existing implementations of these 321
methods. Therefore, it is necessary to support CIM method invocation as an interaction in 322
CIM-RS. 323

CIM-RS White Paper DSP-IS0203

12 DMTF Informational Version 1.0.0

• Layered system: Layering is an inherent part of CIM, because it defines a CIM model of 324
managed objects in a managed environment and thus restricts knowledge of a client to only the 325
modeled representation of the managed environment. CIM-RS represents the entities modeled 326
in CIM, separating the concerns of the RESTful protocol from resource modeling concerns. In 327
addition, CIM-RS supports the use of HTTP intermediaries (for example, caches and proxy 328
servers). 329

This REST constraint is fully satisfied in CIM-RS. 330

• Code-On-Demand: CIM-RS does not provide for sending any code back to the client. 331

This REST constraint is not satisfied, but such functionality is not needed in CIM. 332

Beyond that, CIM-RS has the following other characteristics: 333

• Model independence: CIM-RS does not define or prescribe the use of a particular CIM model. 334
However, it does require the use of a CIM model defined using the CIM 335
infrastructure/architecture. This allows reusing the traditional DMTF technology stack and its 336
implementations, with only minimal impact to existing implementations. For details on CIM-RS 337
resources, see clause 6. 338

• Opaqueness of resource identifiers: CIM-RS uses URIs as resource identifiers and defines 339
all but a top-level URI to be opaque to clients. That allows reuse of the URIs supported by 340
existing WBEM protocols without any remapping, as well as the use of new URI formats in the 341
future. It encourages a client style of programming that is more RESTful than when clients 342
parse resource URIs. For details on CIM-RS resource identifiers, see clause 7. 343

• Consistency of operations: Beyond following the REST constraints, the CIM-RS operations 344
are consistent with the generic operations defined in DSP0223. This allows implementing CIM-345
RS as an additional protocol in existing WBEM infrastructures, causing impact only where it is 346
necessary (that is, at the protocol level), leveraging existing investments. For details on CIM-RS 347
operations, see clause 8. 348

• Supports use of new RESTful frameworks: Because CIM-RS is a RESTful protocol, it 349
supports the use of new RESTful frameworks both on the client side and on the server side, 350
without tying client application development to the use of traditional WBEM clients or CIM client 351
APIs, and without tying server instrumentation development to the use of traditional WBEM 352
servers, such as CIMOMs and providers. 353

6 Resources in CIM-RS 354

The REST architectural style allows for the representation of rather static entities, such as disk drives, or 355
entities with highly varying states, such as a metric measuring the amount of available disk space at a 356
specific point in time, or even entities that dynamically come into existence or cease to exist, such as file 357
system mounts. 358

CIM-RS represents CIM modeling entities as resources, and thus it can represent all these different kinds 359
of entities. 360

The resources supported by CIM-RS are defined at the level of CIM modeling entities: 361

• CIM instances: They represent certain aspects of managed objects in the managed 362
environment, as defined by their CIM class. 363

• CIM classes: They represent the definition of the structure of properties for CIM instances, 364
methods that can be invoked, and qualifier values (that is, metadata). 365

• CIM qualifier types: They represent the definition of the name, data type and other 366
characteristics of qualifiers (that is, the qualifier type specification). 367

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 13

• CIM namespaces: They represent a container and naming space for CIM instances, CIM 368
classes and CIM qualifier types. 369

In most cases, a client application using CIM-RS will need to interact only with CIM instance-level 370
resources. The knowledge about the data structure (that is, properties) of these instances, about the 371
methods that can be invoked, and about the semantics indicated by qualifier values on their classes, 372
properties, methods and method parameters is typically built into the client application at design time. 373
Only in cases where the client application has a need to dynamically discover such knowledge does it 374
need to interact with CIM class-level resources. CIM qualifier type-level resources are supported by CIM-375
RS mainly to be consistent with other WBEM protocols and are typically used by client applications to 376
support the loading of qualifier types into a WBEM server as part of its installation. Consistent with other 377
WBEM protocols, the enumeration interactions in CIM-RS are scoped to a single CIM namespace, 378
creating the need to represent CIM namespaces as resources. 379

Because these kinds of resources are defined at the level of CIM modeling entities and not at the level of 380
a particular CIM model (for example, “CIM instance” instead of “network interface”), the definition of CIM-381
RS is independent of any particular CIM model and thus applies to any current or future CIM model 382
defined by DMTF or by others. 383

This model independence allows CIM-RS to be implemented in an existing WBEM server as an additional 384
protocol, or as a gateway in front of an existing unchanged WBEM server, leveraging the investment in 385
that implementation. Specifically, in WBEM servers supporting a separation of CIMOM and providers, 386
adding support for CIM-RS typically drives change only to the CIMOM; it does not drive change to the 387
providers. On the client side, existing WBEM client infrastructures that provide client applications with a 388
reasonably abstracted API can implement CIM-RS as an additional protocol, shielding existing client 389
applications from the new protocol. 390

In order to make this work, CIM-RS must support the same operation semantics as the operations 391
supported at client APIs, provider APIs and existing WBEM protocols. As a central definition for these 392
operation semantics, the generic operations defined in DSP0223 were used by CIM-RS. For more details 393
about the operations supported by CIM-RS, see clause 8. 394

Because CIM-RS is a RESTful protocol, it supports the use of new RESTful frameworks both on the client 395
side and on the server side, without tying client application development to the use of traditional WBEM 396
clients or CIM client APIs, and without tying server instrumentation development to the use of traditional 397
WBEM servers, such as CIMOMs and providers. 398

Of course, combinations of new RESTful frameworks and traditional WBEM infrastructure are also 399
possible. A typical scenario would be the use of a new RESTful framework in a client application, with a 400
traditional WBEM server whose CIMOM portion is extended with CIM-RS protocol support. 401

It is key to understand that the model independence of CIM-RS and the resulting benefits are its main 402
motivation and are a key differentiator with other DMTF approaches for using REST. The model 403
independence is what positions CIM-RS to be a first-class member of the traditional DMTF technology 404
stack, leveraging a large number of standards defined by DMTF and others (most notably, the CIM 405
architecture/infrastructure, the CIM Schema, and management profiles defined by DMTF and others). 406

On the downside, the model independence of CIM-RS causes a certain indirection in dealing with the 407
managed objects: CIM-RS resources representing CIM instances and CIM classes can be understood 408
only after understanding the CIM model they implement. The CIM model is defined by a CIM schema and 409
typically by a number of management profiles that scope and refine the use of the CIM Schema to a 410
particular management domain. So the number of documents to read before a client application could 411
reasonably be developed against a CIM instrumentation supporting CIM-RS might be quite significant. On 412
the other hand, developing a client application in this context would be no more complex than developing 413
a client application against a CIM instrumentation supporting other existing WBEM protocols. 414

CIM-RS White Paper DSP-IS0203

14 DMTF Informational Version 1.0.0

Following the REST architectural style, any entity targeted by an operation in the CIM-RS protocol is 415
considered a resource, and the operations are simple operations such as the HTTP methods GET, 416
POST, PUT, PATCH, and DELETE. 417

The simplicity of these operations requires that details, such as the difference between retrieving a single 418
resource versus a collection of resources or retrieving a resource versus navigating to a related resource, 419
be "encoded" into the resource definitions. This leads to a number of resource variations. 420

Note that the real-world entities are not called "resources" in this document. Rather, the standard DMTF 421
terminology is used, where such real-world entities are called "managed objects," and the real world itself 422
is called the "managed environment." This terminology allows distinguishing resources as represented in 423
the RESTful protocol from the managed objects they sometimes correspond to, in part or in whole. 424

CIM-RS defines the following resources, as listed in Table 1. 425

 426

Table 1 – CIM-RS resources and what they represent 427

CIM-RS resource Represents

WBEM server Top-level CIM-RS resource of a WBEM server

Namespace collection A collection of CIM namespaces in a WBEM server

Namespace A single CIM namespace in a WBEM server

Class collection A collection of CIM classes in a CIM namespace

Class A single CIM class in a CIM namespace

Class associator collection A collection of CIM classes associated to a given CIM class

Class reference collection A collection of CIM association classes referencing a given CIM class

Class method invocation A particular CIM method that can be invoked on a given CIM class

Instance collection A collection of CIM instances in a CIM namespace

Instance A single CIM instance in a CIM namespace

Instance associator collection A collection of CIM instances associated to a given CIM instance

Instance reference collection A collection of CIM association instances referencing a given CIM instance

Instance method invocation A particular CIM method that can be invoked on a given CIM instance

Qualifier type collection A collection of CIM qualifier types in a CIM namespace

Qualifier type A single CIM qualifier type in a CIM namespace

Instance query An instance-level query targeting a CIM namespace

Each of these resources can be addressed using a resource identifier; for details, see clause 7. 428

Each of these resources has a defined set of operations; for details, see clause 8. 429

Each of these resources has a defined resource representation in each of the supported representation 430
formats; for details, see clause 9. 431

CIM-RS supports retrieval of parts of resources. These parts are selected through query parameters in 432
the resource identifier URI addressing the resource. That renders these parts as separate resources, 433
following the principles in the REST architectural style. 434

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 15

For more details on CIM-RS resources, see DSP-IS0201. 435

7 Resource identifiers in CIM-RS 436

The REST architectural style recommends that all addressing information for a resource be in the 437
resource identifier (and not, for example, in the HTTP header). In addition, it recommends that resource 438
identifiers be opaque to clients and clients should not be required to understand the structure (or format) 439
of resource identifiers or be required to assemble any resource identifiers. 440

CIM-RS generally follows these recommendations. In CIM-RS, resource identifiers are fully represented 441
in URIs, without any need for additional information in HTTP headers or HTTP payload. However, these 442
recommendations do not detail whether client-driven assembly and modification of the query parameter 443
portion of a URI is also discouraged. In CIM-RS, the query parameter portion of a URI is normatively 444
defined and may be assembled or manipulated by clients. 445

The only URI a client needs to know up front in CIM-RS is the resource identifier URI of the WBEM server 446
(that is, the RESTful service itself). That is the only URI for which CIM-RS normatively defines a format. 447

After that starting point, any other URIs are server-defined and opaque to clients. They are discovered by 448
clients by means of links returned along with resource representations. While CIM-RS does not define the 449
format of these URIs, DSP-IS0201 provides an informational Annex defining one possible way to 450
structure these URIs. This information is meant only as an example of a URI format, and it must not be 451
relied on by clients. 452

The main benefit of client-opaque URIs is that servers can use existing URI formats, even in a mix of 453
different kinds of URI formats, directly as the CIM-RS URIs. This typically saves both performance and 454
space, and it allows flexibility for future URI formats. 455

For more details on resource identifiers in CIM-RS, see DSP-IS0201. 456

8 Operations in CIM-RS 457

The REST architectural style recommends that the operations on resources be simple and follow certain 458
constraints. Although the use of HTTP is not a requirement for REST, the HTTP methods satisfy these 459
constraints and are therefore a good choice for a RESTful system. 460

CIM-RS uses the HTTP methods OPTIONS, GET, POST, PUT, PATCH, and DELETE as its operations. 461

The HTTP OPTIONS method is used to discover implementation-dependent decisions on optional 462
features at the WBEM server level, such as support for pulled enumerations or query support. An 463
alternative would be to use the HTTP GET method on artificial resources representing these decisions, 464
but this approach was dismissed in order to void the definition of additional artificial resources. Another 465
alternative (for some of the cases covered with OPTIONS) would be to simply move the issue into the 466
modeling space and to define a CIM model for such discovery. This approach was also dismissed, 467
because these implementation decisions are at the CIM-RS protocol level, so handling them at that level 468
was simpler. 469

The HTTP GET method is used to retrieve the targeted resource (single resource or collection resource). 470
For collection resources, the result is an enumeration of the collection member resources (for example, 471
CIM instances). 472

GET is also used to execute an instance-level query in the scope of a CIM namespace. The GET method 473
in this case targets an artificial resource under the namespace resource, acting as a query execution 474
point for that namespace. An alternative would be to use the HTTP POST method, but that would also 475
require the definition of an artificial resource, and because a query is a read-only operation, it seems 476
more appropriate to use GET. 477

CIM-RS White Paper DSP-IS0203

16 DMTF Informational Version 1.0.0

The HTTP PUT method is used for replacing the targeted resource, while PATCH is used for partial 478
update of the targeted resource. (The use of PUT for partial update violates its idempotency constraint 479
and thus should be avoided.) Support for the HTTP PATCH method is still limited in the industry, but it is 480
definitely the best fit, so it seemed appropriate to put a stake in the ground in favor of PATCH support. An 481
alternative to PATCH would be the HTTP POST method; this might be a more practical choice given the 482
limited PATCH support. 483

The HTTP DELETE method is used for removing the targeted resource. 484

The HTTP POST method when targeting a collection resource is used for creating a resource of the 485
collection member type in that collection. 486

POST is the non-idempotent operation in HTTP that has many uses. The Request-URI in the header of a 487
POST identifies the resource that will handle the entity enclosed in the message of the request, not 488
necessarily the entity affected by the POST (see RFC2616, page 54). Following this pattern, POST is 489
used for CIM method invocation by targeting a resource that represents the method invocation point of a 490
CIM class or CIM instance. 491

The following descriptions provide more detail about some typical operations in CIM-RS: 492

• HTTP GET method targeting an instance resource: 493

Retrieve a given instance's representation (that is, mainly property values as defined in the CIM 494
class of that CIM instance, representing the values of some attributes of the managed object, or 495
derivations or combinations thereof, dependent on the CIM modeling). The number of properties 496
of that instance that get returned can be filtered using query parameters in the resource 497
identifier URI. 498

• HTTP GET method targeting an instance collection resource: 499

Retrieve a representation of the given collection, including representations of instances in the 500
collection. The set of instances, and how much of each instance gets returned, can be filtered 501
using query parameters in the resource identifier URI. 502

• HTTP GET method targeting an instance associator collection resource: 503

Navigate to the CIM instances associated to a given CIM instance (that is, the CIM instance of 504
the instance associator collection resource), and retrieve a representation of that instance 505
collection, including representations of all instances in the collection. The association to 506
traverse, the set of associated instances, and how much of each such instance gets returned 507
can be filtered using query parameters in the resource identifier URI. 508

• HTTP POST method targeting an instance collection resource: 509

Create a new instance of a given CIM class (that is, the CIM class of the instance collection 510
resource). The CIM model defines whether that is possible, and, if so, what managed object 511
needs to be created in the managed environment as a result. 512

• HTTP PUT or PATCH method targeting an instance resource: 513

Modify the given CIM instance, either fully (PUT) or partially (PATCH). The CIM model defines 514
whether that is possible, and, if so, what managed object needs to be modified in the managed 515
environment as a result. 516

• HTTP DELETE method targeting an instance resource: 517

Delete the given CIM instance. The CIM model defines whether that is possible, and, if so, what 518
managed object needs to be deleted in the managed environment as a result. 519

• HTTP POST method targeting an instance method invocation resource: 520

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 17

Invoke the CIM method on the given CIM instance (that is, the CIM instance of the instance 521
method invocation resource). Depending on the CIM model definition for that method, some 522
activity happens in the managed environment, related to the managed object represented by 523
that CIM instance. 524

For more details on operations in CIM-RS, see DSP-IS0201. 525

9 Data representation in CIM-RS 526

The REST architectural style promotes late binding between the abstracted resource that is addressed 527
through a resource identifier and the resource representation that is chosen in the interaction between 528
client and server. 529

CIM-RS follows this architecture by supporting multiple HTTP payload formats that are chosen through 530
HTTP content negotiation. 531

The set of payload formats supported by CIM-RS is open for future extension, and currently consists of 532
the following: 533

• JSON, as defined in DSP-IS0202 534

• XML, as defined in DSP0230 (WS-CIM) 535

JSON and XML were chosen because each is considered a premier choice for a representation format of 536
RESTful systems, depending on the REST framework used and the technical and business environment. 537

A client or server needs to support at least one of these payload formats to conform to CIM-RS. However, 538
there is no common subset of formats required to be supported in the current (Incubator-defined) CIM-539
RS. This could lead to a situation where the client supports only one format and the server supports only 540
the other format, so they are unable to communicate. A future standardization of CIM-RS will need to 541
provide a solution for that scenario. 542

It is important to understand that the entities to be represented in the HTTP payload are not only the 543
resource representations. For example, operations such as method invocation or query execution require 544
the representation of input and output data entities that are not resources (in the sense that they cannot 545
be the target of CIM-RS operations). 546

Table 2 lists the protocol payload elements defined in CIM-RS. These are the entities that need to be 547
represented in any payload format of CIM-RS. 548

Table 2 – CIM-RS protocol payload elements 549

Protocol payload element Meaning

NamespaceCollection Representation of namespace collection resource

Namespace Representation of namespace resource

ClassCollection Representation of class collection resource

Class Representation of class resource

InstanceCollection Representation of instance collection resource

Instance Representation of instance resource

QualifierTypeCollection Representation of qualifier type collection resource

QualifierType Representation of qualifier type resource

MethodInvocationRequest Input data for CIM method invocation

CIM-RS White Paper DSP-IS0203

18 DMTF Informational Version 1.0.0

Protocol payload element Meaning

MethodInvocationResponse Output data for CIM method invocation

InstanceModificationRequest Input data for partial update of CIM instance

InstanceQueryRequest Input data for instance query execution

ErrorResponse Output data in case of operation-level errors

The particular flavors of JSON and XML that have been chosen as CIM-RS payload formats deserve 550
some attention. 551

Because CIM-RS is intended to provide a RESTful protocol for existing CIM models and infrastructures, 552
one goal was to reuse existing DMTF standards where possible. DMTF has two standards for an XML 553
representation of CIM elements: 554

• CIM-XML, as defined in DSP0201 555

• WS-CIM, as defined in DSP0230 556

CIM-XML supports the payload elements listed in Table 2 directly (that is, one can identify CIM-XML 557
elements that correspond directly to these payload elements). 558

WS-CIM supports only a subset of the payload elements listed in Table 2. The elements not supported 559
are the representations of class and qualifier type resources and collections. WS-CIM has been chosen 560
as the XML payload format for CIM-RS because it represents CIM instances in a way that is more in tune 561
with current Web Services frameworks. It is expected that this way of representing instances will also be 562
supported in REST frameworks. 563

The resources not supported in WS-CIM are expected to be covered at the CIM modeling level in the 564
future (by modeling classes and qualifier types in a future CIM schema inspection model). At that point, 565
classes and qualifier types would no longer be resources that could be targeted, thus no longer requiring 566
operations to support them. Inspection of classes and qualifier types would be handled at the instance 567
level, and any modifications could be done through properly defined methods in such a model. 568

Anticipating such a model-based solution, it seemed acceptable to leave this gap in the current definition 569
of the Incubator-defined CIM-RS. 570

Other alternatives for XML-based representations that were considered but not used in the current 571
versions of DSP-IS0201 and DSP-IS0202 are as follows: 572

• Atom Syndication Format, as defined in RFC4287 573

The Atom Syndication Format is targeted at the distribution of news entries. A number of the 574
CIM-RS payload elements are not supported directly and would need to be added as 575
extensions. The value provided by Atom to CIM-RS is relatively small. One argument in favor of 576
using Atom was the expectation that a large number of tools would emerge that support Atom. 577
However, given the number of extensions needed for a RESTful protocol such as CIM-RS, such 578
tools would also need to support these extensions to become really useful. In the end, the 579
minimal value provided by the Atom definitions outweighed these expectations on the tooling 580
environment. 581

• Open Data Protocol, as defined on http://www.odata.org 582

• Google Data Protocol, as defined on http://code.google.com/apis/gdata/ 583

For JSON, no specification exists that describes the representation of CIM elements in JSON. A number 584
of approaches exist that attempt to map XML formats into JSON formats, but none of them resulted in a 585
sufficiently simple and appealing use of JSON. The value of JSON lies in its simplicity; if mapping 586
approaches diminish that simplicity, a lot of the value of using JSON is lost. 587

http://www.odata.org/
http://code.google.com/apis/gdata/

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 19

For these reasons, CIM-RS defines its own representation of payload elements in JSON, as described in 588
DSP-IS0202 (CIM-RS Binding to JSON). That representation attempts to stay in the spirit of JSON. DSP-589
IS0202 currently uses a draft of the emerging JSON schema RFC to describe the JSON structures. 590
Alternatively, they could also be described using plain text and examples. 591

10 Considerations for implementing CIM-RS 592

CIM-RS is implemented in two places: a centralized server and many clients. The server provides access 593
to CIM objects, and the client accesses those objects. One of the goals of REST is to enable clients, such 594
as generic HTTP browsers, to discover and access RESTful services without specialized documentation 595
or programming. CIM-RS enables this kind of access, but, realistically, such usage would be too granular 596
and awkward for most tasks. More likely, CIM-RS will be used in the background as a Web service that 597
performs operations and collects data on IT infrastructure. The code that combines individual REST 598
requests into task-oriented applications can be implemented either on the server side or on the client 599
side. 600

On the server side, SOAP implementations respond to SOAP calls that are usually transported by HTTP 601
as a layer under the SOAP stack. The RESTful stack is less elaborate because the layer corresponding 602
to the SOAP calls is eliminated and calls are received directly from the HTTP server. 603
Correspondingly, on the client, in SOAP implementations calls are made through the SOAP stack and 604
transported by HTTP. In REST, calls are made using native HTTP verbs. REST simplicity comes with a 605
price. The SOAP stack and the additional specifications that have been written over SOAP add rich 606
functionality that may require extra effort to implement the equivalent in REST. 607

With the addition of CIM-RS, applications based on objects defined using CIM metadata can be surfaced 608
through the CIM-RS RESTful protocol. The choice of protocol affects both the server implementation and 609
the client implementation. In theory, the applications that result should be the same, but in practice there 610
may be differences, based on factors such as the statelessness of REST and the ease of implementing 611
some interaction patterns. 612

Many implementations are expected to involve using CIM-RS with existing implementations. The ease of 613
these implementations will largely depend on the layering of the architecture of the CIM implementation. 614
Ideally, the implementation of the CIM objects should be crisply separated from the transport mechanism. 615
In that case, the CIM-RS implementation, using appropriate frameworks for interfacing underlying code 616
with HTTP, such as JAX-RS, should be straight forward and relatively quick to implement. 617

Every implementation decision is based on many factors, including: 618

• The experience of the personnel involved. A group accustomed to RESTful applications will be 619
better prepared to work with CIM-RS than a SOAP-based implementation. A group not familiar 620
with REST may experience difficulty. 621

• The environment. For example, an implementation behind a corporate firewall will not realize as 622
many advantages from a REST implementation as an implementation that spans widely 623
separated architectures involving many firewalls. 624

• The purpose of the implementation. Some implementations will involve management of massive 625
storms of events. Others will involve long lists of managed objects. Yet others will involve only 626
light traffic but complex control operations. Every implementation has its own footprint. The 627
REST architecture is designed to optimize the capacity, scalability, and upgradability of the 628
server. The archetypical REST implementation is a server that serves an enormous number of 629
clients, for example, a Web storefront serving hundreds of thousands of clients simultaneously, 630
but with data exchange for each client that is intermittent, granular, and relatively small. This is 631
far different from an enterprise IT management application that manages and correlates data 632
from hundreds of thousands of objects, but only has a handful of clients. RESTful interfaces 633
have proven themselves in the first example, but they have not yet acquired a long track record 634

CIM-RS White Paper DSP-IS0203

20 DMTF Informational Version 1.0.0

in the second example. This is not to say that REST, and CIM-RS in particular, is not 635
appropriate for the second example, only that it may present new challenges. 636

CIM-RS provides an alternative to SOAP-based implementations and allows implementers to take 637
advantage of the unique characteristics of REST. The decision to use CIM-RS should be made in the full 638
context of the experience of the implementers, the environment, and the purpose of the implementation. 639

11 Conclusion 640

CIM-RS is not a complete standard. The specifications produced by the CIM-RS Incubator are works in 641
progress and published as informational documents. Nevertheless, the goal of the project is to provide a 642
rigorous and generalized REST interface to resources modeled following the principles of the CIM model. 643
The immediate and obvious benefit of achieving this goal is to provide REST access to management 644
instrumentation based on the more than 1,400 pre-existing classes in the DMTF CIM Schema and in 645
DMTF management profiles. 646

The development of a REST interface addresses an important issue in the industry: RESTful interfaces 647
have become an interface of choice for application interaction over the Internet. With rising interest in 648
cloud computing, which largely depends on Internet communications, the importance of REST interfaces 649
is also rising. Consequently, a protocol that promises to give existing applications a RESTful interface 650
with minimal investment is extremely attractive. 651

CIM-RS provides more than an additional interface to existing CIM-based implementations. The CIM 652
model is a general object-oriented modeling approach and can be applied to many modeling challenges. 653
Thus, for any applications built using the CIM meta-schema, not just tools based on CIM itself, CIM-RS 654
specifies a standards-based RESTful interface that will increase interoperability. Developers can use the 655
CIM-RS specifications as the basis for a design pattern and avoid reinventing a RESTful API for each 656
application, saving time and effort and minimizing testing. 657

CIM-RS has the potential to become a basic pattern for application communication within the enterprise, 658
between enterprises, and within the cloud. It applies to existing implementations of CIM objects, future 659
CIM object implementations, and implementations of new objects modeled following the CIM model. 660

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 21

ANNEX A 661
 662

Change Log 663

 664
Version Date Description

1.0.0 2011-10-26 Released as a white paper

CIM-RS White Paper DSP-IS0203

22 DMTF Informational Version 1.0.0

Bibliography 665

Documents published by standards development organizations 666

DMTF DSP0004, CIM Infrastructure Specification 2.6, 667
http://www.dmtf.org/standards/published_documents/DSP0004_2.6.pdf 668

DMTF DSP0201, Representation of CIM in XML 2.3, 669
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.pdf 670

DMTF DSP0223, Generic Operations 1.0, 671
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf 672

DMTF DSP0230, WS-CIM Mapping Specification 1.1, 673
http://www.dmtf.org/standards/published_documents/DSP0230_1.1.pdf 674

DMTF DSP-IS0201, CIM Operations Over RESTful Services 1.0, 675
http://www.dmtf.org/standards/published_documents/DSP-IS0201_1.0.pdf 676

DMTF DSP-IS0202, CIM-RS Binding to JSON 1.0, 677
http://www.dmtf.org/standards/published_documents/DSP-IS0202_1.0.pdf 678

DMTF Technologies Diagram, http://www.dmtf.org/standards/stackmap 679

ECMA-262, ECMAScript Language Specification, 5th Edition, December 2009, 680
http://www.ecma-international.org/publications/standards/Ecma-262.htm 681

IETF RFC2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message 682
Bodies, November 1996, http://tools.ietf.org/html/rfc2045 683

IETF RFC2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, November 1996, 684
http://tools.ietf.org/html/rfc2046 685

IETF RFC2141, URN Syntax, May 1997 686
http://tools.ietf.org/html/rfc2141 687

IETF RFC2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999, 688
http://tools.ietf.org/html/rfc2616 689

IETF RFC3986, Uniform Resource Identifier (URI): Generic Syntax, January 2005, 690
http://tools.ietf.org/html/rfc3986 691

IETF RFC3987, Internationalized Resource Identifiers (IRIs), January 2005, 692
http://tools.ietf.org/html/rfc3987 693

IETF RFC4287, The Atom Syndication Format, December 2005, 694
http://tools.ietf.org/html/rfc4287 695

IETF RFC5023, The Atom Publishing Protocol, October 2007, 696
http://tools.ietf.org/html/rfc5023 697

IETF RFC5789, PATCH Method for HTTP, March 2010, 698
http://tools.ietf.org/html/rfc5789 699

http://www.dmtf.org/standards/published_documents/DSP0004_2.6.pdf
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0230_1.1.pdf
http://www.dmtf.org/standards/published_documents/DSP-IS0201_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP-IS0202_1.0.pdf
http://www.dmtf.org/standards/stackmap
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ietf.org/rfc/rfc2045.txt?number=2045
http://tools.ietf.org/html/rfc2045
http://www.ietf.org/rfc/rfc2046.txt?number=2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2141
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5789

DSP-IS0203 CIM-RS White Paper

Version 1.0.0 DMTF Informational 23

IETF RFC-json-schema (Internet-Draft), A JSON Media Type for Describing the Structure and Meaning of 700
JSON Documents, March 2010, http://tools.ietf.org/html/draft-zyp-json-schema-02 701
DSP-IS0202 uses a draft of the upcoming draft version 03, available at 702
http://groups.google.com/group/json-schema/browse_thread/thread/5dc7d56a18abd81b 703

ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS), 704
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip 705

The Unicode Consortium, The Unicode Standard, Version 5.2.0, Annex #15: Unicode Normalization 706
Forms, http://www.unicode.org/reports/tr15/ 707

Other documents 708

R. Fielding, Architectural Styles and the Design of Network-based Software Architectures, PhD thesis, 709
University of California, Irvine, 2000, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm 710

R. Fielding, REST APIs must be hypertext driven, October 2008, 711
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven 712

J. Holzer, RESTful Web Services and JSON for WBEM Operations, Master thesis, University of Applied 713
Sciences, Konstanz, Germany, June 2009, 714
http://mond.htwg-konstanz.de/Abschlussarbeiten/Details.aspx?id=1120 715

A. Manes, REST principle: Separation of Representation and Resource, March 2009, 716
http://apsblog.burtongroup.com/2009/03/rest-principle-separation-of-representation-and-resource.html 717

L. Richardson and S. Ruby, RESTful Web Services, May 2007, O’Reilly, ISBN 978-0-596-52926-0, 718
http://www.oreilly.de/catalog/9780596529260/ 719

http://tools.ietf.org/html/draft-zyp-json-schema-02
http://groups.google.com/group/json-schema/browse_thread/thread/5dc7d56a18abd81b
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip
http://www.unicode.org/reports/tr15/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://mond.htwg-konstanz.de/Abschlussarbeiten/Details.aspx?id=1120
http://apsblog.burtongroup.com/2009/03/rest-principle-separation-of-representation-and-resource.html
http://www.oreilly.de/catalog/9780596529260/

	Abstract
	Foreword
	Acknowledgments
	Document Conventions
	Typographical Conventions

	1 Executive Summary
	2 Terminology
	3 Rationale for a RESTful interface for CIM
	4 Goals of the CIM-RS informational specifications
	5 Characteristics of a RESTful protocol and CIM-RS
	6 Resources in CIM-RS
	7 Resource identifiers in CIM-RS
	8 Operations in CIM-RS
	9 Data representation in CIM-RS
	10 Considerations for implementing CIM-RS
	11 Conclusion
	ANNEX A Change Log

	Bibliography
	Documents published by standards development organizations
	Other documents

