
Power and Thermal
enhancement proposal

Redfish Forum
Version 0.9 – October 2020

© 2020 DMTF

Disclaimer
• The information in this presentation represents a snapshot of work in

progress within the DMTF.
• This information is subject to change without notice. The standard

specifications remain the normative reference for all information.
• For additional information, see the DMTF website.

2© 2020 DMTF

Providing Feedback
• Redfish Forum is soliciting feedback on this proposal
• Items show in RED are open questions that need answers

• Several proposals are shown in mockups and schema, Forum desires
feedback from end users on direction for these items

• Feedback to the DMTF Redfish Forum is encouraged
• Submit items using the DMTF feedback portal
• https://www.dmtf.org/standards/feedback

• Questions and comments can be posted on the Redfish User Forum
• https://www.redfishforum.com

3© 2020 DMTF

Problems with existing Power and Thermal schemas
• Thermal and Power schemas have grown significantly in scope

• Both were defined in “pre-1.0” Redfish with an IPMI-replacement scope
• Original design avoided use of Resource Collections

• Items such as Fans, Power Supplies, Temperature sensors rendered as arrays
• Now, each power supply has more than enough data to stand alone as a resource

• Numerous arrays used – these are cumbersome
• Difficult to access and correlate data due to limits of JSON arrays

• Large amount of static data mixed with multiple sensor readings
• Performance issue at scale for both Power and Thermal resources

• Existing models do not leverage Sensor definition
• Inconsistent definitions of properties (Power, Temperature in Processor / Memory)
• Cannot retrieve sets of sensor data by type

© 2020 DMTF

Goals
• Retain compatibility for existing implementations

• Allow migration but don’t break compatibility
• Provide updated models for power and cooling subsystems

• Use learnings over last 5 years of Redfish modeling
• Incorporate Sensor model
• Add connectivity to show additional and interoperable power / thermal relationships

• Separate “metrics” (sensor readings) from large static resources
• Support individual sensor polling as well as efficient metric gathering

• Provide consistent support for external power sources
• Not just “power supplies” or links to Chassis
• Include support for battery systems (in conjunction with UPS schema definitions)

• Provide support for liquid-cooled units
• Parallel the support provided for air-cooled (fan) units

© 2020 DMTF

Approach
• Phase 1: Disposition of existing Power and Thermal properties

• Decide on “new” locations, migration path, and deprecation
• Work-in-progress v0.8 released in 2Q20
• Incorporated feedback for v0.9 work-in-progress release

• Phase 2: Extend power / thermal model coverage
• External power sources not covered by power supply model

• Battery sources, shared infrastructure
• Liquid cooling systems – both internal and external
• Enhanced power management support

• Educational material
• Provide open source tools / libraries to convert between models

• Allow client to assume “new” model, library will convert from “old”
• Seeking feedback on what tools or functions would be helpful

• White paper to explain migration and client usage

6© 2020 DMTF

Migration Summary
• Power and Thermal resources are completely replaced
• Fans[] and PowerSupplies[] become Resource Collections

• Contain mostly static data for these devices (and their “bays”)
• PowerSupply gains a Metrics resource due to large sensor count

• Voltages[] and Temperature[] sensors become Sensor instances
• Temperature readings now summarized in ThermalMetrics
• Voltage readings move to PowerSupplyMetrics or Sensor collection

• PowerControl[] object split along functional lines
• Power limits move to the appropriate resources

• Sensor excerpts added to various “Metrics” resources where desired
• Much easier to correlate “CPU readings” by starting at Processor instead of

searching Sensor collection
• “Subsystem” resources lay groundwork for further model expansion

• Liquid cooling, external power sources
7© 2020 DMTF

Power and Thermal resource tree additions

8

Chassis

Chassis Collection

Service Root

Power
(deprecate)

Thermal
(deprecate)

Sensor
Collection

sensor

Fan
collection

Thermal
Subsystem

Cooling
Metrics

PowerSupply
collection

Power
Subsystem

Power
Metrics

Fan
Power
Supply Thermal

Metrics

LiquidCooling
collection

Pump

Power
Supply

Power
Supply
Metrics

Fan
Fan

sensorsensor

© 2020 DMTF

POWER MIGRATION

9© 2020 DMTF

NEW PowerSubystem and supporting schemas
• PowerSubsystem

• The equipment and connectivity that provides power to a Chassis
• Expect to add a “Power Source” collection in the future

• Redundancy group information
• Streamlined definition from existing Redundancy object

• Lays groundwork to populate batteries and other external power sources
• PowerMetrics

• Power consumption at the chassis level
• Option for subsystem-level reporting if desired (may be future addition)

• PowerSupply
• Resource Collection for individual power supply (and bay) resources

• PowerSupplyMetrics
• Support measurements for a well-instrumented power supply

10© 2020 DMTF

Migration of properties from Power schema
• PowerSupplies[]

• Contents move to PowerSupply schema
• Voltages[]

• Voltage Regulator Modules become a set of Sensor resources
• Other voltage measurements shown in PowerSupplyMetrics

• PowerLimit
• Chassis power limit becomes a single object
• v0.9 WIP defines this object using the proposed Control schema

• Would handle LimitException and CorrectionInMs by Sensor Thresholds
• Continuing to refine this in parallel with the proposed Control schema

• Individual subsystem/device limits move to those resources
• Example: CPU limit placed in Processor schema with excerpt for power reading

• Power Allocation
• Set of properties for shared infrastructure (bladed chassis) becomes Allocation object

• PowerControl[] (object array with multiple functions…)
• Moves to Chassis, PowerSubsystem and individual device resources

• Redundancy[]
• Moves to PowerSubsystem and simplifying, but will handle multiple redundancy groups

11© 2020 DMTF

NEW PowerSubsystem schema
• This resource contains static power subsystem data and settings
• Chassis-level power limit

• Allows enable/disable of power limit
• Reporting of both the limit “set point” and the power sensor “reading”

• PowerAllocation object for shared power infrastructures (e.g. blades)
• Redundancy information

• Individual objects by topic (not a single Redundancy[] array)
• PowerSupplyRedundancy[] is the first instance
• How to model redundant power feeds / sources?

• Since the redundancy is “external”, perhaps that’s out of scope for this resource
• Ability to show the power cord connections would allow aggregator to discover

12© 2020 DMTF

PowerSubsystem mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem",

"@odata.type": "#PowerSubsystem.v1_0_0.PowerSubsystem",

"Name": "Power Subsystem for Chassis",

"CapacityWatts": 2000,

"PowerLimitControlWatts": {

"OperatingMode": "Automatic",

"SetPoint": 450,

"Reading": 284

},

"Allocation": {

"RequestedWatts": 1500,

"AllocatedWatts": 1200

},

"PowerSupplyRedundancy": [{

"RedundancyType": "Failover",

"MaxSuppliesSupported": 2,

"MinSuppliesNeeded": 1,

"RedundancySet": [{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1"

},

{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay2"

}

],

"Status": {

"State": "UnavailableOffline",

"Health": "OK"

}

}],

13

"PowerSupplies": {

"@odata.id": < URI of PowerSupply resource collection >

},

"Metrics": {

"@odata.id": < URI of PowerSubsystemMetrics resource >

},

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Oem": {}

}

© 2020 DMTF

PowerSubsystemMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/Metrics",

"@odata.type": "#PowerSubsystemMetrics.v1_0_0.PowerSubsystemMetrics",

"Id": "PowerMetrics",

"Name": "Summary Power Metrics",

"TotalPowerWatts": {

"Reading": 374,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/TotalPower"

},

"EnergykWh": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/TotalEnergy",

"Reading": 325675

},

"Oem": {},

"Actions": {

"#PowerSubsystemMetrics.ResetMetrics": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/Metrics/PowerSubsystemMetrics.ResetMetrics"

}

}

}

14© 2020 DMTF

NEW PowerSupply schema and collection
• Most properties copied from existing PowerSupplies[] definition

• Redundancy object moved to PowerSubsystem
• All measurements moved to PowerSupplyMetrics

• Outlet link to show power connectivity
• Link to Outlet in a PowerDistributionUnit instance

• Assembly link
• Action for Reset of power supply
• Handling of power supply fans

• Failures of “simple” internal P/S fans can be handled with PS fault reporting
• Fans that contribute to overall system cooling should be reported in the

Thermal / Fan resources with PhysicalContext of “PowerSupply”

15© 2020 DMTF

PowerSupply mockup (1 of 3)
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1",

"@odata.type": "#PowerSupply.v1_0_0.PowerSupply",

"Id": "Bay1",

"Name": "Power Supply Bay 1",

"Status": {

"State": "Enabled",

"Health": "Warning"

},

"Model": "RKS-440DC",

"Manufacturer": "Contoso Power",

"FirmwareVersion": "1.00",

"SerialNumber": "3488247",

"PartNumber": "23456-133",

"SparePartNumber": "93284-133",

"LocationIndicatorActive": false,

"HotPluggable": false,

"PowerCapacityWatts": 400,

"PhaseWiringType": "OnePhase3Wire",

"PlugType": "IEC_60320_C14",

"InputRanges": [{

"NominalVoltageType": "AC200To240V",

"CapacityWatts": 400

}, {

"NominalVoltageType": "AC120V",

"CapacityWatts": 350

}, {

"NominalVoltageType": "DC380V",

"CapacityWatts": 400

}

],

CONTINUED ON NEXT SLIDE

16© 2020 DMTF

PowerSupply mockup (2 of 3)
"EfficiencyRatings": [{

"LoadPercent": 25,

"EfficiencyPercent": 75

},

{

"LoadPercent": 50,

"EfficiencyPercent": 85

},

{

"LoadPercent": 90,

"EfficiencyPercent": 80

}

],

"OutputRails": [{

"NominalVoltage": 3.3,

"PhysicalContext": "SystemBoard"

},

{

"NominalVoltage": 5,

"PhysicalContext": "SystemBoard"

},

{

"NominalVoltage": 12,

"PhysicalContext": "StorageDevice"

}

],

CONTINUED ON NEXT PAGE

17© 2020 DMTF

PowerSupply mockup (3 of 3)
"Location": {

"PartLocation": {

"ServiceLabel": "PSU 1",

"LocationType": "Bay",

"LocationOrdinalValue": 0

}

},

"Links": {

"Outlet": {

"@odata.id": "https://redfishpdu.contoso.com/redfish/v1/PowerEquipment/RackPDUs/1/Outlets/A4"

}

},

"Assembly": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Assembly"

},

"Metrics": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Metrics"

},

"Actions": {

"#PowerSupply.Reset": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/PowerSupply.Reset"

}

}

}

18© 2020 DMTF

NEW PowerSupplyMetrics
• Sensor excerpts provide all measurements

• Sensor details can be obtained by following DataSourceUri links
• All sensors are contained in a Chassis-level Sensor collection

• Input and output measurements for Voltage, Current, Power
• Total power at input and output
• Separate measurements for individual output rails

• Frequency, Energy measurements
• Temperature and Fan Speed

19© 2020 DMTF

PowerSupplyMetrics mockup (1 of 3)
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Metrics",

"@odata.type": "#PowerSupplyMetrics.v1_0_0.PowerSupplyMetrics",

"Id": "Metrics",

"Name": "Metrics for Power Supply 1",

"Status": {

"State": "Enabled",

"Health": "Warning"

},

"InputVoltage": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputVoltage",

"Reading": 230.2

},

"InputCurrentAmps": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputCurrent",

"Reading": 5.19

},

"InputPowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputPower",

"Reading": 937.4

},

"RailVoltage": [{

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_3VOutput",

"Reading": 3.31

}, {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_5VOutput",

"Reading": 5.03

}, {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_12VOutput",

"Reading": 12.06

}

],

CONTINUED ON NEXT SLIDE

20© 2020 DMTF

PowerSupplyMetrics mockup (2 of 3)
"RailCurrentAmps": [{

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_3VCurrent",

"Reading": 9.84

},

{

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_5VCurrent",

"Reading": 1.25

},

{

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_12Current",

"Reading": 2.58

}

],

"OutputPowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1OutputPower",

"Reading": 937.4

},

"RailPowerWatts": [{

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_3VPower",

"Reading": 79.84

},

{

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_5VPower",

"Reading": 26.25

},

{

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_12VPower",

"Reading": 91.58

}

],

CONTINUED ON NEXT SLIDE

21© 2020 DMTF

PowerSupplyMetrics mockup (3 of 3)
"EnergykWh": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Energy",

"Reading": 325675

},

"FrequencyHz": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputFrequency",

"Reading": 60

},

"TemperatureCelsius": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Temp",

"Reading": 43.9

},

"FanSpeedPercent": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Fan",

"Reading": 68,

"SpeedRPM": 3290

},

"Actions": {

"#PowerSupplyMetrics.ResetMetrics": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Metrics/PowerSupplyMetrics.ResetMetrics"

}

}

}

22© 2020 DMTF

THERMAL MIGRATION

23© 2020 DMTF

Migration of properties from Thermal schema
• Temperatures[]

• Array content moves to ThermalMetrics
• Sensor instance for each temperature reading/sensor

• All properties covered by Sensor instances
• Add schema excerpts in model where physical context exists

• Processor, Drive, Chassis, Memory

• Fans[]
• Array content moves to FanCollection
• Summary of fan data becomes CoolingMetrics
• Fan resource

• Product identification (part #, serial #, etc.)
• Fan speed, status, etc.
• Redundancy moves to ThermalSubsystem

24© 2020 DMTF

NEW ThermalSubystem and supporting schemas
• ThermalSubsystem

• The equipment and connectivity that provides cooling for a Chassis
• Redundancy group information
• Future support for liquid cooling

• CoolingMetrics
• Fan metrics, summarized in a single array of metrics
• Future expectation for a summary of liquid cooling metrics

• Complexity of liquid cooling may warrant a separate resource for metrics on an
individual unit basis, following the pattern of PowerSupplyMetrics

• ThermalMetrics
• Temperature measurements
• Humidity measurements

• Fan
• Resource Collection for individual fan (and bay) resources

25© 2020 DMTF

Reading for Fan speed
• Unify a primary fan ReadingUnit

• Most usable for end users is a utilization percentage
• RPM values are not comparable / meaningful across products or vendors
• Percent value can be reported regardless of fan implementation
• Simple fans without a reading could report a static value (suggest 100%)

• But the RPM / tach values are interesting to many users
• Engineers use RPM values and fan models to calculate airflow

• Added SpeedRPM as a new property in Sensor
• Follows pattern established for power sensor excerpts when additional

data is provided alongside a primary Reading value
• Desire to report the PWM setting (controller output) for a fan

• Comparison of PWM to output speed has been used for failure prediction
• Add as a Control to Fan (Control schema is a Work-in-Progress)

• Control SetPoint in percent units (PWM devices typically use a 1-byte value)

26© 2020 DMTF

• Contains a Sensor excerpt, and may expose a Control as well

Fan resource with Sensor and Control excerpts

{

“SpeedControlPWM": {

“SetPoint": 125,

"DataSourceUri": "/redfish/v1/Chassis/1U/Controls/FanBay1"

},

“SpeedPercent”: {

“Reading”: 55,

“SpeedRPM”: 2300,

“DataSourceUri”: “/redfish/v1/Chassis/1U/Sensors/FanBay1”

}

}

27

Control excerpt to show SetPoint, if supported

Sensor excerpt to show Reading and
“extra fan excerpt property” SpeedRPM

Fan instances that expose the control include the
SpeedControlPWM object (excerpt of Control),
while fans without the control exposed include only
the SpeedPercent object (excerpt of Sensor)

© 2020 DMTF

ThermalSubsystem mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem",

"@odata.type": "#ThermalSubsystem.v1_0_0.ThermalSubsystem",

"Name": "Thermal Subsystem for Chassis",

"FanRedundancy": [

{

"RedundancyType": "NPlusM",

"MaxFansSupported": 2,

"MinFansNeeded": 1,

"RedundancySet": [

{ "@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay1“ },

{ "@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay2“ }],

"Status": {

"State": "Enabled",

"Health": "OK"

}

}

],

"Fans": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans"

},

"ThermalMetrics": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/ThermalMetrics"

},

"CoolingMetrics": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/CoolingMetrics"

},

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Oem": {}

}

28© 2020 DMTF

ThermalMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/ThermalMetrics",

"@odata.type": "#ThermalMetrics.v1_0_0.ThermalMetrics",

"Id": "ThermalMetrics",

"Name": "Chassis Thermal Metrics",

"TemperatureCelsius": {

"Internal": {

"Reading": 39,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Temp"

},

"Intake": {

"Reading": 24.8,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/IntakeTemp"

},

"Ambient": {

"Reading": 22.5,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/AmbientTemp"

},

"Exhaust": {

"Reading": 40.5,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/ExhaustTemp"

}

},

CONTINUED ON NEXT PAGE

29© 2020 DMTF

ThermalMetrics mockup, continued
"TemperatureSummaryCelsius": [

{

"Reading": 40,

"DeviceName": "SystemBoard",

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/SysBrdTemp"

},

{

"Reading": 24.8,

"DeviceName": "Intake",

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/IntakeTemp"

},

{

"Reading": 39,

"DeviceName": "CPUSubsystem",

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPUTemps"

},

{

"Reading": 42,

"DeviceName": "MemorySubsystem",

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/MemoryTemp"

},

{

"Reading": 33,

"DeviceName": "PowerSupply",

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PSTemp"

},

{

"Reading": 40.5,

"DeviceName": "Exhaust",

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/ExhaustTemp"

}

],

"Oem": {}

}

30© 2020 DMTF

CoolingMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/CoolingMetrics",

"@odata.type": "#CoolingMetrics.v1_0_0.CoolingMetrics",

"Name": "Chassis Fan and Liquid Cooling Metrics",

"FanPercentSummary": [{

"DeviceName": "Chassis Fan #1",

"Reading": 45,

"SpeedRPM": 1900,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay1"

},

{

"DeviceName": "Chassis Fan #2",

"Reading": 55,

"SpeedRPM": 2100,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay2"

}

],

"Oem": {}

}

31© 2020 DMTF

Fan mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay1",

"@odata.type": "#Fan.v1_0_0.Fan",

"Id": "Bay1",

"Name": "Fan Bay 1",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"PhysicalContext": "Chassis",

"Model": "RKS-440DC",

"Manufacturer": "Contoso Fans",

"PartNumber": "23456-133",

"SparePartNumber": "93284-133",

"LocationIndicatorActive": true,

"HotPluggable": true,

"SpeedPercent": {

"Reading": 45,

"SpeedRPM": 2200,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay1"

},

"Location": {

"PartLocation": {

"ServiceLabel": "Chassis Fan Bay 1",

"LocationType": "Bay",

"LocationOrdinalValue": 0

}

}

}

32© 2020 DMTF

SENSOR INTEGRATION

33© 2020 DMTF

User-defined Thresholds
• Add User-defined Threshold support in Sensor

• Clearly define service vs user-defined thresholds
• Implementation may support user-defined thresholds for each sensor
• Some existing Thresholds usage may move to UserThresholds

• If user can define reaction behavior (but perhaps not change value)

• Adds to Thresholds structure with additional User instances
• UpperCautionUser, UpperCriticalUser, LowerCautionUser,

LowerCriticalUser

34© 2020 DMTF

Integration using Schema Excerpts
• Reference to a single Sensor is simple and low impact

“TemperatureCelsius”: {

“Reading”: 27.3,

“DataSourceUri”: “/redfish/v1/Chassis/1/Sensors/Drive3Temp”

}

• Set of multiple sensors (single type) is also possible
• ElectricalContext model gave us a better answer than cumbersome arrays

• Create an object structure using context to name excerpt objects
• Easy when there can be max of one instance of a particular context
“TemperaturesCelsius”: {

“Intake”: {

“Reading”: 27.3,

“DataSourceUri”: “/redfish/v1/Chassis/1/Sensors/BezelTemp”

},

“Chassis”: <Excerpt>,

“Exhaust”: <Excerpt>

}

35© 2020 DMTF

Proposed resource tree additions

36

ComputerSystem

Systems Collection

Service Root

Processor
Metrics

Sensor
collection

Sensor

Chassis

Chassis Collection

Processor
collection

Processor

Environment
Metrics

Memory
collection

Memory
Metrics

Memory

Environment
Metrics

Sensor
Sensor

Drive
collection

Drive

Environment
Metrics

Drive
SensorSensor

© 2020 DMTF

NEW EnvironmentMetrics resource
• A summary of sensor data related to a specific component

• Environment readings are shown as Sensor excerpts
• Performance metrics read directly from component, not a Sensor resource

• Separates “performance” metrics from the environmental metrics
• Different use cases, with “other half” of data thrown away

• Includes Reading / Sensor excerpts for:
• Power
• Temperature
• Fan
• Voltage?

• Single schema definition used for instrumented components
• Processor
• Memory
• Drive

37© 2020 DMTF

EnvironmentMetrics mockup
{

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Processors/1/EnvironmentMetrics",

"@odata.type": "#EnvironmentMetrics.v1_0_0.EnvironmentMetrics",

"Name": "Processor Environment Metrics",

"TemperatureCelsius": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Temp",

"Reading": 44

},

"PowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Power",

"Reading": 12.87

},

"FanSpeedPercent": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Fan",

"Reading": 80

},

"Oem": {}

}

38© 2020 DMTF

Processor sensor integration
• Add EnvironmentMetrics resource under Processor
• Processor Temperature

• TemperatureCelsius already defined in ProcessorMetrics
• Deprecate and replace with new EnvironmentMetrics property

• ThrottlingCelsius should migrate to a Threshold value in Sensor
• May be multiple values? Caution and Critical?
• May also be able to use the proposed Control schema for this

• Processor Power
• ConsumedPowerWatt already defined in ProcessorMetrics

• Deprecate and replaced with new EnvironmentMetrics property

39© 2020 DMTF

Memory sensor integration
• Add EnvironmentMetrics resource under Memory

• Expect TemperatureCelsius and PowerWatts to be populated
• Add EnvironmentMetrics resource under MemorySummary?

• Temperature would be “average” or “highest” memory value
• An average value would point to a synthesized sensor
• Highest value would point to the specific memory device sensor being reported
• This could be covered with a “MemorySubsystem” reading in ThermalMetrics

• Power would be total power for memory subsystem
• Use the Synthesized sensor concept to provide total if desired
• This can be easily covered with a “MemorySubsystem” reading in PowerMetrics

• This is probably better handled by “Memory” instances in the Chassis-level
PowerSubsystemMetrics and ThermalMetrics resources
• Temperature and Power readings for “MemorySubsystem”

40© 2020 DMTF

How far to go with “Summary” sensor data?
• Single sensor references are easy and an obvious use case

• Temperature of a specific device, etc.
• Object with multiple, named-for-context properties allows for easy access

• Need interoperable terms that are commonly implemented for this to be useful
• See ThermalMetrics temperatures as an example

• Arrays are more complex to parse, but highly flexible
• Use this structure to allow quick retrieval of “all sensors per type”

• For v0.9 work-in-progress:
• TotalPowerWatts and EnergykWh are shown in PowerSubsystemMetrics
• FanPercentSummary is an array of fan speeds in CoolingMetrics
• TemperatureCelsius is a structure in ThermalMetrics

• This structure defines temperatures at locations used by ASHRAE and others
• TemperatureSummaryCelsius is an array of temperature sensors in ThermalMetrics

41© 2020 DMTF

Q&A & Discussion

42© 2020 DMTF

