Power and Thermal
enhancement proposal

Redfish Forum
Version 0.8 — May 2020

Disclaimer

« The information in this presentation represents a snapshot of work in
progress within the DMTF.

» This information is subject to change without notice. The standard
specifications remain the normative reference for all information.

« For additional information, see the DMTF website.

Providing Feedback

« Redfish Forum is soliciting feedback on this proposal

« |tems show in RED are open questions that need answers

« Several proposals are shown in mockups and schema, Forum desires
feedback from end users on direction for these items

 Feedback to the DMTF Redfish Forum is encouraged
« Submit items using the DMTF feedback portal
 https://www.dmtf.org/standards/feedback

« Questions and comments can be posted on the Redfish User Forum
« https://www.redfishforum.com

https://www.dmtf.org/standards/feedback
https://www.redfishforum.com/

Problems with existing Power and Thermal schemas

Thermal and Power schemas have grown significantly in scope
« Both were defined in “pre-1.0" Redfish with an IPMI-replacement scope
Original design avoided use of Resource Collections
« Items such as Fans, Power Supplies, Temperature sensors rendered as arrays
* Now, each power supply has more than enough data to stand alone as a resource
Numerous arrays used — these are cumbersome
 Difficult to access and correlate data due to JSON array structure
Large amount of static data mixed with multiple sensor readings
« Performance issue at scale for both Power and Thermal resources
Existing models do not leverage Sensor definition

» Inconsistent definitions of properties (Power, Temperature in Processor / Memory)
« Cannot retrieve sets of sensor data by type

Goals

Retain compatibility for existing implementations

« Allow migration but don’t break compatibility
Provide updated models for power and cooling subsystems

« Use learnings over last 5 years of Redfish modeling

« Incorporate Sensor model

« Add connectivity to show additional and interoperable power / thermal relationships
Separate “metrics” (sensor readings) from large static resources

« Support individual sensor polling as well as efficient metric gathering
Provide consistent support for external power sources

* Not just “power supplies” or links to Chassis

» Include support for battery systems (in conjunction with UPS schema definitions)
Provide support for liquid-cooled units

« Parallel the support provided for air-cooled (fan) units

www.dmtf.org

Approach

« Phase 1: Disposition of existing Power and Thermal properties

« Decide on “new” locations, migration path, and deprecation

* Produce a work-in-progress release of this work in 2020.2 timeframe

« Provide time for feedback and design work on Phase 2 before finalizing
« Phase 2: Extend power / thermal model coverage

« External power sources not covered by power supply model
« Battery sources, shared infrastructure

« Liquid cooling systems — both internal and external
« Enhanced power management support
 Tools

« Provide tools / libraries to convert between models
 Allow client to assume “new” model, library will convert from “old”

www.dmtf.org

Migration Summary

« Fans[] and PowerSupplies[] become Resource Collections

« Contain mostly static data for these devices (and their “bays”)

« PowerSupply gains a Metrics resource due to large sensor count
Voltages[] and Temperature[] sensors become Sensor instances

« Summarized in new PowerSubsystemMetrics and ThermalMetrics
PowerControl[] object split along functional lines

« Power limits move to the appropriate resources
Sensor excerpts added to various “Metrics” resources where desired

* Much easier to correlate “CPU readings” by starting at Processor instead of
searching Sensor collection

“Subsystem” resources lay groundwork for further model expansion
« Liquid cooling, external power sources

www.dmtf.org

h\s Power
Supply

Metrics Power
S Supply Thermal Cooling
Pump Metrics Metrics
Al [F\)
NE :
PowerSu_ppIy Pow_er Fan LiquidCooling
collection Metrics collection collection <y \A

Power “E‘N Thermal

“ﬁ Subsystem

Subsystem TI
sensor
sensor
(d ePOr\évcee;te) Chassis Sensor
i Collection

Thermal
(deprecate)

Chassis Collection

POWER MIGRATION

Migration of properties from Power schema

« Allow coexistence of Power with new resources and collections
« Deprecate use Power schema (will deprecate link in Chassis)
* Provide indications of which portions of the resource have migrated
* New resources for power subsystem, power supplies, and metrics
« Separate sensor data from large quantity of static data
« Lay groundwork to populate batteries and other external power sources
« Use Relatedltem(] link in PowerSupplies[] to point to PowerSupply?
« Alternative is to add new ‘migration’ link such as “PowerSupplyUri”
« Use Relatedltem[] link in PowerControls[] to point to new location?
e Since the limits get distributed to Processor, Memory, etc.
» Alternative is to add new ‘migration’ link such as “ComponentUri”
* Requesting feedback on the usefulness of these pointers

www.dmtf.org

NEW PowerSubystem and supporting schemas

« PowerSubsystem

« The equipment and connectivity that provides power to a Chassis
« Expect to add a “Power Source” collection

« Redundancy group information
« PowerMetrics

« Power consumption as a structured object with Sensor excerpts

« Voltage regulators as a Sensor excerpt array
« PowerSupply

« Resource Collection for individual power supply (and bay) resources
« PowerSupplyMetrics

« Support measurements for a well-instrumented power supply

Migration of Power properties

PowerSupplies|]
« Contents move to PowerSupply schema
Voltages|]
« Voltage Regulator Modules become a set of Sensor resources
« Other voltage measurements shown in PowerSupplyMetrics
* Is a summary in PowerSubsystemMetrics useful? (likely an array)
PowerLimit
« Chassis power limit becomes a single property (perhaps two properties for Min / Max)

« Individual subsystem/device limits move to those resources
Example: CPU limit placed in Processor schema with excerpt for power reading

« May handle LimitException and CorrectionInMs by Sensor Thresholds
Power Allocation

« Set of properties for shared infrastructure (bladed chassis) becomes Allocation object
PowerControl[] (object array with multiple functions...)

« Moves to Chassis, PowerSubsystem and individual device resources
Redundancy(]

« Moves to PowerSubsystem and renaming to handle multiple redundancy topics

www.dmtf.org

PowerSubsystem

Resource holds static power subsystem data and settings
Chassis-level power limit
PowerAllocation object for shared power infrastructures (e.g. blades)
Redundancy information

» Individual objects by topic (not a single Redundancy(] array)

« PowerSupplyRedundancyl] is the first instance

« How to model redundant power feeds / sources?
» Since the redundancy is “external”, perhaps that’s out of scope for this resource
» Ability to show the power cord connections would allow aggregator to discover

PowerSubsystem mockup

"PowerSupplies": {

"@odata.id": "/redfish/vl/cChassis/1U/PowerSubsystem", . .
/ /v1/ /10/ Y "@odata.id": < URI of PowerSupply resource collection >

"@odata.type": "#PowerSubsystem.vl_0_0.PowerSubsystem",
"Name": "Power Subsystem for Chassis",
"Limitwatts": 1200,
"Allocation": {
"Requestedwatts": 1500,
"Capacitywatts": 2000,
"Allocatedwatts": 1200

3,
"Metrics": {
"@odata.id": < URI of PowerMetrics resource >
}!
"Status": {
"State": "Enabled",

} "Health": "OK"

"PowerSupplyRedundancy": [

{

}’
"oem": {}

"@odata.id": < URI of PowersSupplyRedundancy >,
"Member1id": "0",
"Name": "Power Supply Redundancy Group 1",
"Mode": "Failover",
"MaxNumSupported": 2,
"MinNumNeeded": 1,
"Redundancyset": [
{ "@odata.id": < URI of Power Supply Bay #1 > },
{ "@odata.id": < URI of Power Supply Bay #2 > }
14
"Status": {
"State": "offline",
"Health": "oKk"

PowerSubsystemMetrics mockup

{
"@odata.id": "/redfish/vl/cChassis/1U/PowerSubsystem/Metrics",
"@odata.type": "#PowerSubsystemMetrics.vl_0_0.PowerSubsystemMetrics",
"1d": "PowerSubsystemMmetrics",
"Name": "Summary Power Metrics",
"Status": {
"State": "Enabled",
"Health": "oK"

1,
"Powerwatts": {
"General": {
"Reading": 374,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/TotalPower"

1,
"CPUSubsystem": {
"Reading": 139,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/CPUSubsystemPower"
1,
"SystemBoard": {
"Reading": 40,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/SysBrdPower"
Ko
"MemorySubsystem": {
"Reading": 42,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/MemorySubsystemPower"

}1

CONTINUED ON NEXT PAGE..

PowerMetrics mockup, continued

"voltageSummary": [{
"Name": "CPU #1 voltage Regulator",
"1d": "cpul",
"PhysicalContext": "System Board",
"vVoltage": {
"Reading": 3.31,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/VRM1"

"Name": "CPU #2 voltage Regulator",
"Id": "cpu2",
"PhysicalContext": "System Board",
"Voltage": {
"Reading": 3.31,
"DataSourceuri": "/redfish/vl/cChassis/1U/Sensors/VRM2"

1,
"Energykwh": {
"Datasourceuri": "/redfish/vl/Chassis/1U/Sensors/TotalEnergy",
"Reading": 325675
B
"Links": {
"oem": {}
1,
"oem": {},
"Actions": {
"PowerMetrics.ResetMetrics": {
"target": "/redfish/vl/Chassis/1U/PowerSubsystem/Metrics/PowerMetrics.ResetMetrics"”

www.dmtf.org

PowerSupply

» Most properties copied from existing PowerSupplies[] definition
 Need feedback from PMBus group to ensure full data coverage
« Redundancy object moved to PowerSubsystem
« Measurements moved to PowerSupplyMetrics

Outlet link to show power connectivity
Assembly link, Action for Reset of power supply

|s EfficiencyPercent expected as static value or dynamic (load-based)?

» Replace percent with enums to report the 80 Plus “Gold”/’Platinum”/etc.?
« “EfficiencyRating”: “Plus” |“Bronze” |“Silver” |“Gold” |“Platinum” [“Titanium”

« Dynamic efficiency can be calculated from input/output power readings
Handling of power supply fans
» Failures of “simple” internal P/S fans can be handled with PS fault reporting

« Fans that contribute to overall system cooling should be reported in the
Thermal / Fan resources with PhysicalContext of “PowerSupply”

www.dmtf.org

PowerSupply mockup

"@odata.id": "/redfish/vl/chassis/1u/Powersubsystem/PowerSupplies/Bayl",
"@odata.type": "#PowerSupply.PowerSupply",
"1d": "Bayl",
"Name": "Power Supply Bay 1",
"Status": {
"State": "Enabled",
"Health": "warning"
1,
"Model": "RKS-440DC",
"Manufacturer": "Contoso Power",
"Firmwareversion": "1.00",
"SerialNumber": "3488247",
"PartNumber": "23456-133",
"SparePartNumber": "93284-133",
"LocatorBeacon": "Off",
"HotPluggable": false,
"InputvoltageType": "AC200To240V",
"Capacitywatts": 400,
"EfficiencyRating": "Gold",
"InputRanges": [{
"InputvoltageType": "AC200To0240V",
"Capacitywatts": 400
1,
{
"InputvoltageType": "AC1l20Vv",
"Capacitywatts": 350

"InputvoltageType": "DC380V",
"Capacitywatts": 400
}
1, CONTINUED ON NEXT SLIDE

PowerSupply mockup, continued

"Location": {

"PartLocation": {
"ServicelLabel": "Psu 1",
"LocationType": "Bay",
"Locationordinalvalue": 0

1,
"Links": {
"outTet": {
"@odata.id": "/redfish/vl/Chassis/1U/PowerSubsystem/Outlets/A4"

1,
"Assembly": {

"@odata.id": "/redfish/vl/Chassis/1U/PowerSubsystem/PowerSupplies/Bayl/Assembly"
1,
"Metrics": {

"@odata.id": "/redfish/vl/Chassis/1U/PowerSubsystem/PowerSupplies/Bayl/Metrics"
1,
"Actions": {

"#PowersSupply.Reset": {

"target": "/redfish/vl/Chassis/1U/Powersubsystem/Powersupplies/Bayl/PowerSupply.Reset"
}

PowerSupplyMetrics

Use objects for input voltage ranges from PowerDistribution?
« Existing property is an array of supported ranges with min/max values
« Replace those with objects for AC (2 ranges) and DC ranges
« “AC”, “AC2”, “DC” (rationale that most supplies have a single AC range)
« Could Voltage/Frequency ranges be replaced with enumeration?
« Use values of LinelnputVoltageType and add range in normative description?
Adds separate input and output measurements for Voltage and Current
« Qutput metrics structures

» Follows repeating object pattern for simple, interoperable software access
« “ThreeVolt”, “FiveVolt”, “TwelveVolt”, “FortyEightVolt”, “Neg48Volt"?

* |s OutputPower needed? Single reading or structured object?
Power, Energy, Frequency measurements

Show Power Supply temperature, fan speed here or in separate
EnvironmentMetrics resource?

www.dmtf.org

PowerSupplyMetrics mockup (1 of 3)

"@odata.id": "/redfish/vl/Chassis/1U//PowerSubsystem/Powersupplies/Bayl/Metrics",
"@odata.type": "#PowerSupplyMetrics.PowerSupplyMetrics",
"1d": "Metrics",
"Name": "Metrics for Power Supply 1",
"Status": {
"State": "Enabled",
"Health": "warning"
1,
"NominalInputvoltage": "AC200To240V",
"Inputvoltage": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1lInputvVoltage",
"Reading": 230.2
1,
"InputCurrentAmps": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1lInputCurrent”,
"Reading": 5.19
1,
"InputPowerwatts": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1lInputPower",
"Reading": 937.4,
"ApparentVvA": 937.4,
"ReactiveVvAR": 0.0,
"PowerFactor": 0.98
1,
"InputFrequencyHz": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1lInputFrequency",
"Reading": 60.0
1,

CONTINUED ON NEXT SLIDE

PowerSupplyMetrics mockup (2 of 3)

"Outputvoltages": {
"Fivevolt": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1_5voutput",
"Reading": 5.03

1,

"Threevolt": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1_3voutput",
"Reading": 3.31

1,

"Twelvevolt": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1_12Voutput",
"Reading": 12.06

1,
"OutputCurrentAmps": {
"Fivevolt": {
"DataSourceuri”: "/redfish/vl/Chassis/1U/Sensors/PS1_5vCurrent",
"Reading": 1.25
1,
"Threevolt": {
"DataSourceuri”: "/redfish/vl/Chassis/1U/Sensors/PS1_3vCurrent",
"Reading": 9.84
Fo
"Twelvevolt": {
"DataSourceuri”: "/redfish/vl/chassis/1U/Sensors/PS1_12Current",
"Reading": 2.58

}Y

CONTINUED ON NEXT SLIDE

PowerSupplyMetrics mockup (3 of 3)

'OutputPowerwatts": {

"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PSloutputPower",
"Reading": 937.4,
"ApparentVA": 937.4,
"ReactiveVvAR": 0.0,
"PowerFactor": 0.98

1,

"Energykwh": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1lEnergy",
"Reading": 325675

1,

"TemperatureCelsius": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/PS1Temp",
"Reading": 43.9

1,

"FanSpeedPercent": {
"DataSourceuri”: "/redfish/vl/Chassis/1U/Sensors/PS1Fan",
"Reading": 68,
"SpeedRPM": 3290

1

"Actions": {
"#PowersSupplyMetrics.ResetMetrics": {

"target": "/redfish/vl/Chassis/1U/PowerSubsystem/PowerSupplies/Bayl/Metrics/PowersupplyMetrics.ResetMetrics"

THERMAL MIGRATION

Migration of Thermal resource

« Allow coexistence of Thermal with new resources and collections
« Deprecate Thermal link in Chassis after migration

« Add SensorUri pointer to Temperatures[] and Fansl]?
» Follow decision on Power Supplies (is this useful?)

« Separate resources for temperature and cooling metrics

« Large quantity of data if bundled together
« Cooling data needs to comprehend both air (fan) and liquid cooling

Migration of Thermal properties

 Temperatures|]
» Array moves to ThermalMetrics

« Sensor instance for each temperature reading/sensor
 All properties covered by Sensor instances

« Add schema excerpts in model where physical context exists
* Processor, Drive, Chassis, Memory
« Fans]]
« Array moves to FanCollection
« Summary of fan data becomes CoolingMetrics

 Fan resource
« Product identification (part #, serial #, etc.)
« Fan speed, status, etc.
« Redundancy moves to ThermalSubsystem

www.dmtf.org

NEW ThermalSubystem and supporting schemas

ThermalSubsystem
« The equipment and connectivity that provides cooling for a Chassis
« Redundancy group information

CoolingMetrics
« Fan metrics, summarized in a single array of metrics

« Future expectation for a summary of liquid cooling metrics

« Complexity of liquid cooling may warrant a separate resource for metrics on an
individual unit basis, following the pattern of PowerSupplyMetrics

ThermalMetrics
« Temperature measurements
« Humidity measurements
Fan
» Resource Collection for individual fan (and bay) resources

Future support for liquid cooling subsystems

www.dmtf.org

Reading for Fan speed

* Need to unify a “primary” fan ReadingUnit type

« Easiest for end users to comprehend is a utilization percentage
 RPM values are not comparable / meaningful across products or vendors
« Percent value can be reported regardless of fan implementation
« Simple fans without a reading could report a static value (suggest 100%)

« But the RPM / tach values are interesting to many users
* Engineers use RPM values and fan models to calculate airflow
« Add SpeedRPM as a new property in Sensor

« Alongside Reading, follows pattern for power sensors and excerpts when
additional data is provided alongside a primary reading value

« Desire to report the PWM setting (controller output) for a fan
« Desired state vs. result

« Add InputPWM property to Sensor (or perhaps Fan)
« Comparison of PWM to output speed has been used for failure prediction

www.dmtf.org

ThermalSubsystem mockup

"@odata.id": "/redfish/vl/chassis/1U/ThermalSubsystem",
"@odata.type": "#ThermalSubsystem.v1_0_0.ThermalSubsystem",
"Name": "Thermal Subsystem for Chassis",
"FanRedundancy": [{
"@odata.id": "/redfish/vl/Chassis/1u/Thermalsubsystem/#FanRedundancy/0",
"Name": "Fan Group 1",
"Memberzd": "0",
"RedundancyEnabled": true,
"Mode": "N+1",
"MaxNumSupported": 2,
"MinNumNeeded": 1,
"Redundancyset": [{ "@odata.id": "/redfish/vl/Chassis/1u/ThermalSubsystem/Fans/Bayl” },
{ "@odata.id": "/redfish/vl/Chassis/1U/ThermalSubsystem/Fans/Bay2“ } 1],
"Status": {
"State": "Enabled",
"Health": "oK"

1,
"Fans": {
"@odata.id": "/redfish/vl/Chassis/1U/ThermalSubsystem/Fans"
Ko
"ThermalMetrics": {
"@odata.id": "/redfish/vl/Chassis/1U/ThermalSubsystem/ThermalMetrics"
1,
"CoolingMetrics": {
"@odata.id": "/redfish/vl/cChassis/1U/Thermalsubsystem/CoolingMetrics"
1,
"Status": {
"State": "Enabled",
"Health": "oK"

ThermalMetrics mockup

{
"@odata.id": "/redfish/vl/chassis/1u/Thermalmetrics",
"@odata.type": "#ThermalMetrics.vl_0_0.ThermalmMetrics",
"1d": "ThermalMetrics",
"Name": "Chassis Thermal Metrics",
"Status": {
"State": "Enabled",
"Health": "oOK"
1,
"TemperaturesCelsius": {
"Internal": {
"Reading": 39,
"DatasSourceuri": "/redfish/vl/Chassis/1U/Sensors/CPUlTemp"
1,
"Intake": {
"Reading": 23,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/IntakeTemp"
1,
“CPUSubsystem": {
"Reading": 39,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/CPUTemps"
i
"SystemBoard": {
"Reading": 40,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/SysBrdTemp"
}
"Exhaust": {
"Reading": 44,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/ExhaustTemp"

www.dmtf.org

CoolingMetrics mockup

{
"@odata.id": "/redfish/vl/cChassis/1u/CoolingMetrics",
"@odata.type": "#CoolingMetrics.vl_0_0.CoolingMetrics",
"Name": "Chassis Fan and Liquid Cooling Metrics",
"Status": {
"State": "Enabled",
"Health": "oK"
1,
"FanSummary": [{
"1d": "Bayl",
"PhysicalContext": "System Board",
"SpeedPercent": {
"Reading": 45,
"SpeedrRPM": 1900,
"InputPwM": 55,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/FanBayl"

"1d": "Bay2",
"PhysicalcContext": "System Board",
"SpeedpPercent": {
"Reading": 55,
"SpeedrPM": 2100,
"InputPwm": 50,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/FanBay2"

Fan mockup

"@odata.id": "/redfish/vl/cChassis/1uU/ThermalSubsystem/Fans/Bayl",
"@odata.type": "#Fan.Fan",
"1d": "Bayl",
"Name": "Fan Bay 1",
"Status": {
"State": "Enabled",
"Health": "oOK"
1,
"PhysicalContext": "Chassis",
"Model": "RKS-440DC",
"Manufacturer": "Contoso Fans",
"PartNumber": "23456-133",
"SparePartNumber": "93284-133",
"LocatorBeacon": "Off",
"HotPluggable": true,
"FanSpeedPercent": {
"Reading": 45,
"SpeedRPM": 2200,
"PWMInput": 55,
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/FanBayl"
i
"Location": {
"PartLocation": {
"ServiceLabel": "Chassis Fan Bay 1",
"LocationType": "Bay",
"Locationordinalvalue": 0

NEW PROPERTY TOPICS

New UserThresholds in Sensor

« Add UserThresholds parallel structured object in Sensor
» Follows Threshold structure definition with additional properties

« Allows user to set multiple thresholds with a Reaction
« Implementation owns the reactions in the existing Threshold entries

« Clearly defines ‘owner’ while providing user with flexibility
« But implementation defines what support is enabled for each sensor
« Reaction values

« Provide user the ability to define what action (reaction) is taken when
threshold is violated

« Follow trigger criteria defined by equivalent Threshold
« Allow this reaction to be enabled/disabled individually

« Service may need to define supported range for UserThresholds

« Some existing Thresholds may move to UserThresholds
» If user can define reaction behavior (but perhaps not change value)?

www.dmtf.org

SENSOR INTEGRATION

Integration using Schema Excerpts

« Reference to a single Sensor is simple and low impact
“TemperatureCelsius”: {
“Reading”: 27.3,
“DataSourceuri”: “/redfish/vl/Chassis/1/Sensors/Drive3Temp”
}

« Set of multiple sensors (single type) is also possible

« ElectricalContext model gave us a better answer than cumbersome arrays
« Create an object structure using context to name excerpt objects

« Easy when there can be max of one instance of a particular context
“TemperaturesCelsius”: {
“Intake”: {
“Reading”: 27.3,
“DataSourceuri”: “/redfish/vl/Chassis/1/Sensors/BezelTemp”
|
“Chassis”: <Excerpt>,
“Exhaust”: <Excerpt>

Proposed resource tree additions

Memory
Metrics

Environment
Metrics

Memory

Memory
collection

Processor
Metrics

Environment
Metrics

Processor

| Processor

ComputerSystem

Systems Collection

Sensor
collection

Chassis

Chassis Collection

NEW EnvironmentMetrics resource

« A summary of sensor data related to a specific component

« Environment readings are shown as Sensor excerpts
« Performance metrics read directly from component, not a Sensor resource

« Separates “performance” metrics from the environmental metrics
 Different use cases, with “other half” of data thrown away
* Includes Reading / Sensor excerpts for:
Power
Temperature
Fan
Voltage?
» Single schema definition used for instrumented components
* Processor
« Memory
* Drive

EnvironmentMetrics mockup

"@odata.id": "/redfish/vl/Systems/1/Processors/FPGAl/EnvironmentMetrics",
"@odata.type": "#EnvironmentMetrics.vl_0_0.EnvironmentMetrics",
"Name": "Processor Environment Metrics",
"Status": {
"Health": "ok"
1,
"TemperatureCelsius": {
"DataSourceuri": "/redfish/vl/Chassis/1U/Sensors/CPUlTemp",
"Reading": 44
1,
"Powerwatts": {
"DataSourceuri”: "/redfish/vl/Chassis/1U/Sensors/CPUlPower",
"Reading": 12.87
1,
"FanPercent": {
"DataSourceuri”: "/redfish/vl/Chassis/1U/Sensors/CPUlFan",
"Reading": 80
1,
"oem": {}

Processor sensor integration

« Add EnvironmentMetrics resource under Processor

 Processor Temperature
« TemperatureCelsius already defined in ProcessorMetrics
« Deprecate this in favor of new EnvironmentMetrics property
« ThrottlingCelsius should migrate to a Threshold value in Sensor
« May be multiple values? Caution and Critical?

 Processor Power
« ConsumedPowerWatt already defined in ProcessorMetrics
» Deprecate this in favor of new EnvironmentMetrics property

Memory sensor integration

« Add EnvironmentMetrics resource under Memory
« TemperatureCelsius
 PowerWatts

« Add EnvironmentMetrics resource under MemorySummary?

« Temperature would be “average” or “highest” memory value
« An average value would point to a synthesized sensor
« Highest value would point to the specific memory device sensor being reported
» This could be covered with a “MemorySubsystem” reading in ThermalMetrics
« Power would be total power for memory subsystem
« Use the Synthesized sensor concept to provide total if desired
« This can be easily covered with a “MemorySubsystem” reading in PowerMetrics
« This is probably better handled by “Memory” instances in the Chassis-level
PowerSubsystemMetrics and ThermalMetrics resources
« Temperature and Power readings for “MemorySubsystem”

www.dmtf.org

How far to go with “Summary” data using excerpts?

» Single sensor references are easy and an obvious use case
« Temperature of a specific device, etc.

Object with multiple, named-for-context properties allows for easy access
« How far do we go to provide “single” context values?
« See Chassis temperatures as an example

Arrays are more complex to parse, but highly flexible
« Likely want this structure to allow quick retrieval of all sensors per type

Follow pattern from Circuit with “simple” and “complex” types?

« Single-phase voltage & current values are shown twice
« One without context for simple, deterministic client access
» One within electrical context

Do we create structured object for temperatures (and others?) that defines a “few”
summary values, but show everything in the array version?

Define a base context for temperature sensor (always present)?
« Suggest “Internal”, other choices include: “Overview”, “Summary”, “General”, others?

www.dmtf.org

Q&A & Discussion

