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Disclaimer

• The information in this presentation represents a snapshot of work in 
progress within the DMTF.  

• This information is subject to change without notice.  The standard 
specifications remain the normative reference for all information.  

• For additional information, see the DMTF website. 
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Providing Feedback

• Redfish Forum is soliciting feedback on this proposal

• Items show in RED are open questions that need answers

• Several proposals are shown in mockups and schema, Forum desires 

feedback from end users on direction for these items

• Feedback to the DMTF Redfish Forum is encouraged

• Submit items using the DMTF feedback portal

• https://www.dmtf.org/standards/feedback

• Questions and comments can be posted on the Redfish User Forum

• https://www.redfishforum.com

3

https://www.dmtf.org/standards/feedback
https://www.redfishforum.com/


Problems with existing Power and Thermal schemas

• Thermal and Power schemas have grown significantly in scope

• Both were defined in “pre-1.0” Redfish with an IPMI-replacement scope

• Original design avoided use of Resource Collections

• Items such as Fans, Power Supplies, Temperature sensors rendered as arrays

• Now, each power supply has more than enough data to stand alone as a resource

• Numerous arrays used – these are cumbersome

• Difficult to access and correlate data due to JSON array structure

• Large amount of static data mixed with multiple sensor readings

• Performance issue at scale for both Power and Thermal resources

• Existing models do not leverage Sensor definition

• Inconsistent definitions of properties (Power, Temperature in Processor / Memory)

• Cannot retrieve sets of sensor data by type



Goals

• Retain compatibility for existing implementations 

• Allow migration but don’t break compatibility

• Provide updated models for power and cooling subsystems

• Use learnings over last 5 years of Redfish modeling

• Incorporate Sensor model

• Add connectivity to show additional and interoperable power / thermal relationships

• Separate “metrics” (sensor readings) from large static resources

• Support individual sensor polling as well as efficient metric gathering

• Provide consistent support for external power sources 

• Not just “power supplies” or links to Chassis

• Include support for battery systems (in conjunction with UPS schema definitions)

• Provide support for liquid-cooled units

• Parallel the support provided for air-cooled (fan) units



Approach

• Phase 1: Disposition of existing Power and Thermal properties 

• Decide on “new” locations, migration path, and deprecation

• Produce a work-in-progress release of this work in 2020.2 timeframe

• Provide time for feedback and design work on Phase 2 before finalizing

• Phase 2: Extend power / thermal model coverage

• External power sources not covered by power supply model

• Battery sources, shared infrastructure

• Liquid cooling systems – both internal and external

• Enhanced power management support

• Tools

• Provide tools / libraries to convert between models

• Allow client to assume “new” model, library will convert from “old”
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Migration Summary

• Fans[] and PowerSupplies[] become Resource Collections

• Contain mostly static data for these devices (and their “bays”)

• PowerSupply gains a Metrics resource due to large sensor count

• Voltages[] and Temperature[] sensors become Sensor instances

• Summarized in new PowerSubsystemMetrics and ThermalMetrics

• PowerControl[] object split along functional lines

• Power limits move to the appropriate resources

• Sensor excerpts added to various “Metrics” resources where desired

• Much easier to correlate “CPU readings” by starting at Processor instead of 

searching Sensor collection

• “Subsystem” resources lay groundwork for further model expansion

• Liquid cooling, external power sources
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Power and Thermal resource tree additions
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POWER MIGRATION
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Migration of properties from Power schema 

• Allow coexistence of Power with new resources and collections

• Deprecate use Power schema (will deprecate link in Chassis)

• Provide indications of which portions of the resource have migrated

• New resources for power subsystem, power supplies, and metrics

• Separate sensor data from large quantity of static data

• Lay groundwork to populate batteries and other external power sources

• Use RelatedItem[] link in PowerSupplies[] to point to PowerSupply?

• Alternative is to add new ‘migration’ link such as “PowerSupplyUri”

• Use RelatedItem[] link in PowerControls[] to point to new location?

• Since the limits get distributed to Processor, Memory, etc.

• Alternative is to add new ‘migration’ link such as “ComponentUri”

• Requesting feedback on the usefulness of these pointers
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NEW PowerSubystem and supporting schemas

• PowerSubsystem

• The equipment and connectivity that provides power to a Chassis

• Expect to add a “Power Source” collection

• Redundancy group information

• PowerMetrics

• Power consumption as a structured object with Sensor excerpts

• Voltage regulators as a Sensor excerpt array

• PowerSupply

• Resource Collection for individual power supply (and bay) resources

• PowerSupplyMetrics

• Support measurements for a well-instrumented power supply
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Migration of Power properties

• PowerSupplies[] 

• Contents move to PowerSupply schema

• Voltages[]

• Voltage Regulator Modules become a set of Sensor resources

• Other voltage measurements shown in PowerSupplyMetrics

• Is a summary in PowerSubsystemMetrics useful?  (likely an array)

• PowerLimit

• Chassis power limit becomes a single property (perhaps two properties for Min / Max)

• Individual subsystem/device limits move to those resources

• Example: CPU limit placed in Processor schema with excerpt for power reading

• May handle LimitException and CorrectionInMs by Sensor Thresholds

• Power Allocation

• Set of properties for shared infrastructure (bladed chassis) becomes Allocation object

• PowerControl[] (object array with multiple functions…)

• Moves to Chassis, PowerSubsystem and individual device resources

• Redundancy[]

• Moves to PowerSubsystem and renaming to handle multiple redundancy topics
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PowerSubsystem

• Resource holds static power subsystem data and settings

• Chassis-level power limit

• PowerAllocation object for shared power infrastructures (e.g. blades)

• Redundancy information

• Individual objects by topic (not a single Redundancy[] array)

• PowerSupplyRedundancy[] is the first instance

• How to model redundant power feeds / sources?

• Since the redundancy is “external”, perhaps that’s out of scope for this resource

• Ability to show the power cord connections would allow aggregator to discover
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PowerSubsystem mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem",

"@odata.type": "#PowerSubsystem.v1_0_0.PowerSubsystem",

"Name": "Power Subsystem for Chassis",

"LimitWatts": 1200,

"Allocation": {

"RequestedWatts": 1500,

"CapacityWatts": 2000,

"AllocatedWatts": 1200

},

"PowerSupplyRedundancy": [

{

"@odata.id": < URI of PowerSupplyRedundancy >,

"MemberId": "0",

"Name": "Power Supply Redundancy Group 1",

"Mode": "Failover",

"MaxNumSupported": 2,

"MinNumNeeded": 1,

"RedundancySet": [

{ "@odata.id": < URI of Power Supply Bay #1 > }, 

{ "@odata.id": < URI of Power Supply Bay #2 > }

],

"Status": {

"State": "Offline",

"Health": "OK"

}

}

],
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"PowerSupplies": {

"@odata.id": < URI of PowerSupply resource collection >

},

"Metrics": {

"@odata.id": < URI of PowerMetrics resource >

},

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Oem": {}

}



PowerSubsystemMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/Metrics",

"@odata.type": "#PowerSubsystemMetrics.v1_0_0.PowerSubsystemMetrics",

"Id": "PowerSubsystemMetrics",

"Name": "Summary Power Metrics",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"PowerWatts": {

"General": {

"Reading": 374,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/TotalPower"

},

"CPUSubsystem": {

"Reading": 139,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPUSubsystemPower"

},

"SystemBoard": {

"Reading": 40,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/SysBrdPower"

},

"MemorySubsystem": {

"Reading": 42,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/MemorySubsystemPower"

}

},

CONTINUED ON NEXT PAGE…
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PowerMetrics mockup, continued
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"VoltageSummary": [{

"Name": "CPU #1 Voltage Regulator",

"Id": "CPU1",

"PhysicalContext": "System Board",

"Voltage": {

"Reading": 3.31,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/VRM1"

}

},

{

"Name": "CPU #2 Voltage Regulator",

"Id": "CPU2",

"PhysicalContext": "System Board",

"Voltage": {

"Reading": 3.31,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/VRM2"

}

}

],

"EnergykWh": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/TotalEnergy",

"Reading": 325675

},

"Links": {

"Oem": {}

},

"Oem": {},

"Actions": {

"PowerMetrics.ResetMetrics": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/Metrics/PowerMetrics.ResetMetrics"

}

}

}



PowerSupply

• Most properties copied from existing PowerSupplies[] definition

• Need feedback from PMBus group to ensure full data coverage

• Redundancy object moved to PowerSubsystem

• Measurements moved to PowerSupplyMetrics

• Outlet link to show power connectivity

• Assembly link, Action for Reset of power supply

• Is EfficiencyPercent expected as static value or dynamic (load-based)?

• Replace percent with enums to report the 80 Plus “Gold”/”Platinum”/etc.?

• “EfficiencyRating”: “Plus” |“Bronze” |“Silver” |“Gold” |“Platinum” |“Titanium”

• Dynamic efficiency can be calculated from input/output power readings

• Handling of power supply fans

• Failures of “simple” internal P/S fans can be handled with PS fault reporting

• Fans that contribute to overall system cooling should be reported in the 

Thermal / Fan resources with PhysicalContext of “PowerSupply”
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PowerSupply mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1",

"@odata.type": "#PowerSupply.PowerSupply",

"Id": "Bay1",

"Name": "Power Supply Bay 1",

"Status": {

"State": "Enabled",

"Health": "Warning"

},

"Model": "RKS-440DC",

"Manufacturer": "Contoso Power",

"FirmwareVersion": "1.00",

"SerialNumber": "3488247",

"PartNumber": "23456-133",

"SparePartNumber": "93284-133",

"LocatorBeacon": "Off",

"HotPluggable": false,

"InputVoltageType": "AC200To240V",

"CapacityWatts": 400,

"EfficiencyRating": "Gold",

"InputRanges": [{

"InputVoltageType": "AC200To240V",

"CapacityWatts": 400

},

{

"InputVoltageType": "AC120V",

"CapacityWatts": 350

},

{

"InputVoltageType": "DC380V",

"CapacityWatts": 400

}

},   CONTINUED ON NEXT SLIDE
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PowerSupply mockup, continued

"Location": {

"PartLocation": {

"ServiceLabel": "PSU 1",

"LocationType": "Bay",

"LocationOrdinalValue": 0

}

},

"Links": {

"Outlet": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/Outlets/A4"

}

},

"Assembly": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Assembly"

},

"Metrics": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Metrics"

},

"Actions": {

"#PowerSupply.Reset": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/PowerSupply.Reset"

}

}

}
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PowerSupplyMetrics

• Use objects for input voltage ranges from PowerDistribution?

• Existing property is an array of supported ranges with min/max values

• Replace those with objects for AC (2 ranges) and DC ranges

• “AC”, “AC2”, “DC”  (rationale that most supplies have a single AC range)

• Could Voltage/Frequency ranges be replaced with enumeration?

• Use values of LineInputVoltageType and add range in normative description?

• Adds separate input and output measurements for Voltage and Current

• Output metrics structures 

• Follows repeating object pattern for simple, interoperable software access

• “ThreeVolt”, “FiveVolt”, “TwelveVolt”, “FortyEightVolt”, “Neg48Volt”?

• Is OutputPower needed? Single reading or structured object?

• Power, Energy, Frequency measurements

• Show Power Supply temperature, fan speed here or in separate 

EnvironmentMetrics resource?
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PowerSupplyMetrics mockup (1 of 3)
{

"@odata.id": "/redfish/v1/Chassis/1U//PowerSubsystem/PowerSupplies/Bay1/Metrics",

"@odata.type": "#PowerSupplyMetrics.PowerSupplyMetrics",

"Id": "Metrics",

"Name": "Metrics for Power Supply 1",

"Status": {

"State": "Enabled",

"Health": "Warning"

},

"NominalInputVoltage": "AC200To240V",

"InputVoltage": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputVoltage",

"Reading": 230.2

},

"InputCurrentAmps": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputCurrent",

"Reading": 5.19

},

"InputPowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputPower",

"Reading": 937.4,

"ApparentVA": 937.4,

"ReactiveVAR": 0.0,

"PowerFactor": 0.98

},

"InputFrequencyHz": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputFrequency",

"Reading": 60.0

},

CONTINUED ON NEXT SLIDE
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PowerSupplyMetrics mockup (2 of 3)
"OutputVoltages": {

"FiveVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_5VOutput",

"Reading": 5.03

},

"ThreeVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_3VOutput",

"Reading": 3.31

},

"TwelveVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_12VOutput",

"Reading": 12.06

}

},

"OutputCurrentAmps": {

"FiveVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_5VCurrent",

"Reading": 1.25

},

"ThreeVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_3VCurrent",

"Reading": 9.84

},

"TwelveVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_12Current",

"Reading": 2.58

}

}, 

CONTINUED ON NEXT SLIDE
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PowerSupplyMetrics mockup (3 of 3)

"OutputPowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1OutputPower",

"Reading": 937.4,

"ApparentVA": 937.4,

"ReactiveVAR": 0.0,

"PowerFactor": 0.98

},

"EnergykWh": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Energy",

"Reading": 325675

},

"TemperatureCelsius": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Temp",

"Reading": 43.9

},

"FanSpeedPercent": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Fan",

"Reading": 68,

"SpeedRPM": 3290

},

"Actions": {

"#PowerSupplyMetrics.ResetMetrics": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Metrics/PowerSupplyMetrics.ResetMetrics"

}

}

}
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THERMAL MIGRATION
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Migration of Thermal resource 

• Allow coexistence of Thermal with new resources and collections

• Deprecate Thermal link in Chassis after migration

• Add SensorUri pointer to Temperatures[] and Fans[]?

• Follow decision on Power Supplies (is this useful?)

• Separate resources for temperature and cooling metrics

• Large quantity of data if bundled together

• Cooling data needs to comprehend both air (fan) and liquid cooling
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Migration of Thermal properties 

• Temperatures[]

• Array moves to ThermalMetrics

• Sensor instance for each temperature reading/sensor

• All properties covered by Sensor instances

• Add schema excerpts in model where physical context exists

• Processor, Drive, Chassis, Memory

• Fans[]

• Array moves to FanCollection

• Summary of fan data becomes CoolingMetrics

• Fan resource

• Product identification (part #, serial #, etc.)

• Fan speed, status, etc.

• Redundancy moves to ThermalSubsystem
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NEW ThermalSubystem and supporting schemas

• ThermalSubsystem

• The equipment and connectivity that provides cooling for a Chassis

• Redundancy group information

• CoolingMetrics

• Fan metrics, summarized in a single array of metrics

• Future expectation for a summary of liquid cooling metrics

• Complexity of liquid cooling may warrant a separate resource for metrics on an 

individual unit basis, following the pattern of PowerSupplyMetrics

• ThermalMetrics

• Temperature measurements

• Humidity measurements

• Fan

• Resource Collection for individual fan (and bay) resources

• Future support for liquid cooling subsystems
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Reading for Fan speed

• Need to unify a “primary” fan ReadingUnit type

• Easiest for end users to comprehend is a utilization percentage

• RPM values are not comparable / meaningful across products or vendors

• Percent value can be reported regardless of fan implementation

• Simple fans without a reading could report a static value (suggest 100%)

• But the RPM / tach values are interesting to many users

• Engineers use RPM values and fan models to calculate airflow

• Add SpeedRPM as a new property in Sensor

• Alongside Reading, follows pattern for power sensors and excerpts when 

additional data is provided alongside a primary reading value

• Desire to report the PWM setting (controller output) for a fan

• Desired state vs. result

• Add InputPWM property to Sensor (or perhaps Fan)

• Comparison of PWM to output speed has been used for failure prediction
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ThermalSubsystem mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem",

"@odata.type": "#ThermalSubsystem.v1_0_0.ThermalSubsystem",

"Name": "Thermal Subsystem for Chassis",

"FanRedundancy": [{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/#FanRedundancy/0",

"Name": "Fan Group 1",

"MemberId": "0",

"RedundancyEnabled": true,

"Mode": "N+1",

"MaxNumSupported": 2,

"MinNumNeeded": 1,

"RedundancySet": [ { "@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay1“ },

{ "@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay2“ } ],

"Status": {

"State": "Enabled",

"Health": "OK"

}

],

"Fans": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans"

},

"ThermalMetrics": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/ThermalMetrics"

},

"CoolingMetrics": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/CoolingMetrics"

},

"Status": {

"State": "Enabled",

"Health": "OK"

}

}
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ThermalMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalMetrics",

"@odata.type": "#ThermalMetrics.v1_0_0.ThermalMetrics",

"Id": "ThermalMetrics",

"Name": "Chassis Thermal Metrics",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"TemperaturesCelsius": {

"Internal": {

"Reading": 39,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Temp"

},

"Intake": {

"Reading": 23,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/IntakeTemp"

},

“CPUSubsystem": {

"Reading": 39,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPUTemps"

},

"SystemBoard": {

"Reading": 40,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/SysBrdTemp"

}

"Exhaust": {

"Reading": 44,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/ExhaustTemp"

}

}

}
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CoolingMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/CoolingMetrics",

"@odata.type": "#CoolingMetrics.v1_0_0.CoolingMetrics",

"Name": "Chassis Fan and Liquid Cooling Metrics",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"FanSummary": [{

"Id": "Bay1",

"PhysicalContext": "System Board",

"SpeedPercent": {

"Reading": 45,

"SpeedRPM": 1900,

"InputPWM": 55,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay1"

}

},

{

"Id": "Bay2",

"PhysicalContext": "System Board",

"SpeedPercent": {

"Reading": 55,

"SpeedRPM": 2100,

"InputPWM": 50,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay2"

}

}

],

"Oem": {}

}
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Fan mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay1",

"@odata.type": "#Fan.Fan",

"Id": "Bay1",

"Name": "Fan Bay 1",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"PhysicalContext": "Chassis",

"Model": "RKS-440DC",

"Manufacturer": "Contoso Fans",

"PartNumber": "23456-133",

"SparePartNumber": "93284-133",

"LocatorBeacon": "Off",

"HotPluggable": true,

"FanSpeedPercent": {

"Reading": 45,

"SpeedRPM": 2200,

"PWMInput": 55,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay1"

},

"Location": {

"PartLocation": {

"ServiceLabel": "Chassis Fan Bay 1",

"LocationType": "Bay",

"LocationOrdinalValue": 0

}

}

}

32



NEW PROPERTY TOPICS
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New UserThresholds in Sensor

• Add UserThresholds parallel structured object in Sensor

• Follows Threshold structure definition with additional properties

• Allows user to set multiple thresholds with a Reaction

• Implementation owns the reactions in the existing Threshold entries

• Clearly defines ‘owner’ while providing user with flexibility

• But implementation defines what support is enabled for each sensor

• Reaction values

• Provide user the ability to define what action (reaction) is taken when 

threshold is violated

• Follow trigger criteria defined by equivalent Threshold

• Allow this reaction to be enabled/disabled individually

• Service may need to define supported range for UserThresholds

• Some existing Thresholds may move to UserThresholds

• If user can define reaction behavior (but perhaps not change value)?
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SENSOR INTEGRATION
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Integration using Schema Excerpts

• Reference to a single Sensor is simple and low impact
“TemperatureCelsius”: {

“Reading”: 27.3,

“DataSourceUri”: “/redfish/v1/Chassis/1/Sensors/Drive3Temp”

}

• Set of multiple sensors (single type) is also possible

• ElectricalContext model gave us a better answer than cumbersome arrays

• Create an object structure using context to name excerpt objects

• Easy when there can be max of one instance of a particular context
“TemperaturesCelsius”: {

“Intake”: {

“Reading”: 27.3,

“DataSourceUri”: “/redfish/v1/Chassis/1/Sensors/BezelTemp”

},

“Chassis”: <Excerpt>,

“Exhaust”: <Excerpt>

}
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Proposed resource tree additions
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NEW EnvironmentMetrics resource

• A summary of sensor data related to a specific component

• Environment readings are shown as Sensor excerpts

• Performance metrics read directly from component, not a Sensor resource

• Separates “performance” metrics from the environmental metrics

• Different use cases, with “other half” of data thrown away

• Includes Reading / Sensor excerpts for:

• Power

• Temperature

• Fan

• Voltage?

• Single schema definition used for instrumented components

• Processor

• Memory

• Drive
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EnvironmentMetrics mockup
{

"@odata.id": "/redfish/v1/Systems/1/Processors/FPGA1/EnvironmentMetrics",

"@odata.type": "#EnvironmentMetrics.v1_0_0.EnvironmentMetrics",

"Name": "Processor Environment Metrics",

"Status": {

"Health": "Ok"

},

"TemperatureCelsius": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Temp",

"Reading": 44

},

"PowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Power",

"Reading": 12.87

},

"FanPercent": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Fan",

"Reading": 80

},

"Oem": {}

}
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Processor sensor integration

• Add EnvironmentMetrics resource under Processor

• Processor Temperature

• TemperatureCelsius already defined in ProcessorMetrics

• Deprecate this in favor of new EnvironmentMetrics property

• ThrottlingCelsius should migrate to a Threshold value in Sensor

• May be multiple values?  Caution and Critical?

• Processor Power 

• ConsumedPowerWatt already defined in ProcessorMetrics

• Deprecate this in favor of new EnvironmentMetrics property
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Memory sensor integration

• Add EnvironmentMetrics resource under Memory

• TemperatureCelsius

• PowerWatts

• Add EnvironmentMetrics resource under MemorySummary?

• Temperature would be “average” or “highest” memory value

• An average value would point to a synthesized sensor

• Highest value would point to the specific memory device sensor being reported

• This could be covered with a “MemorySubsystem” reading in ThermalMetrics

• Power would be total power for memory subsystem

• Use the Synthesized sensor concept to provide total if desired

• This can be easily covered with a “MemorySubsystem” reading in PowerMetrics

• This is probably better handled by “Memory” instances in the Chassis-level 

PowerSubsystemMetrics and ThermalMetrics resources

• Temperature and Power readings for “MemorySubsystem”
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How far to go with “Summary” data using excerpts?

• Single sensor references are easy and an obvious use case

• Temperature of a specific device, etc. 

• Object with multiple, named-for-context properties allows for easy access

• How far do we go to provide “single” context values?

• See Chassis temperatures as an example

• Arrays are more complex to parse, but highly flexible

• Likely want this structure to allow quick retrieval of all sensors per type

• Follow pattern from Circuit with “simple” and “complex” types?

• Single-phase voltage & current values are shown twice 

• One without context for simple, deterministic client access

• One within electrical context

• Do we create structured object for temperatures (and others?) that defines a “few” 

summary values, but show everything in the array version?

• Define a base context for temperature sensor (always present)?

• Suggest “Internal”, other choices include: “Overview”, “Summary”, “General”, others?
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Q&A & Discussion
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