
Power and Thermal

enhancement proposal

Redfish Forum

Version 0.8 – May 2020

Disclaimer

• The information in this presentation represents a snapshot of work in
progress within the DMTF.

• This information is subject to change without notice. The standard
specifications remain the normative reference for all information.

• For additional information, see the DMTF website.

2

Providing Feedback

• Redfish Forum is soliciting feedback on this proposal

• Items show in RED are open questions that need answers

• Several proposals are shown in mockups and schema, Forum desires

feedback from end users on direction for these items

• Feedback to the DMTF Redfish Forum is encouraged

• Submit items using the DMTF feedback portal

• https://www.dmtf.org/standards/feedback

• Questions and comments can be posted on the Redfish User Forum

• https://www.redfishforum.com

3

https://www.dmtf.org/standards/feedback
https://www.redfishforum.com/

Problems with existing Power and Thermal schemas

• Thermal and Power schemas have grown significantly in scope

• Both were defined in “pre-1.0” Redfish with an IPMI-replacement scope

• Original design avoided use of Resource Collections

• Items such as Fans, Power Supplies, Temperature sensors rendered as arrays

• Now, each power supply has more than enough data to stand alone as a resource

• Numerous arrays used – these are cumbersome

• Difficult to access and correlate data due to JSON array structure

• Large amount of static data mixed with multiple sensor readings

• Performance issue at scale for both Power and Thermal resources

• Existing models do not leverage Sensor definition

• Inconsistent definitions of properties (Power, Temperature in Processor / Memory)

• Cannot retrieve sets of sensor data by type

Goals

• Retain compatibility for existing implementations

• Allow migration but don’t break compatibility

• Provide updated models for power and cooling subsystems

• Use learnings over last 5 years of Redfish modeling

• Incorporate Sensor model

• Add connectivity to show additional and interoperable power / thermal relationships

• Separate “metrics” (sensor readings) from large static resources

• Support individual sensor polling as well as efficient metric gathering

• Provide consistent support for external power sources

• Not just “power supplies” or links to Chassis

• Include support for battery systems (in conjunction with UPS schema definitions)

• Provide support for liquid-cooled units

• Parallel the support provided for air-cooled (fan) units

Approach

• Phase 1: Disposition of existing Power and Thermal properties

• Decide on “new” locations, migration path, and deprecation

• Produce a work-in-progress release of this work in 2020.2 timeframe

• Provide time for feedback and design work on Phase 2 before finalizing

• Phase 2: Extend power / thermal model coverage

• External power sources not covered by power supply model

• Battery sources, shared infrastructure

• Liquid cooling systems – both internal and external

• Enhanced power management support

• Tools

• Provide tools / libraries to convert between models

• Allow client to assume “new” model, library will convert from “old”

6

Migration Summary

• Fans[] and PowerSupplies[] become Resource Collections

• Contain mostly static data for these devices (and their “bays”)

• PowerSupply gains a Metrics resource due to large sensor count

• Voltages[] and Temperature[] sensors become Sensor instances

• Summarized in new PowerSubsystemMetrics and ThermalMetrics

• PowerControl[] object split along functional lines

• Power limits move to the appropriate resources

• Sensor excerpts added to various “Metrics” resources where desired

• Much easier to correlate “CPU readings” by starting at Processor instead of

searching Sensor collection

• “Subsystem” resources lay groundwork for further model expansion

• Liquid cooling, external power sources

7

Power and Thermal resource tree additions

8

Chassis

Chassis Collection

Service Root

Power

(deprecate)

Thermal

(deprecate)

Sensor

Collection

sensor

Fan

collection

Thermal

Subsystem

Cooling

Metrics

PowerSupply

collection

Power

Subsystem

Power

Metrics

Fan

Power

Supply Thermal

Metrics

LiquidCooling

collection

Pump

Power

Supply

Power

Supply

Metrics
Fan

Fan

sensor
sensor

POWER MIGRATION

9

Migration of properties from Power schema

• Allow coexistence of Power with new resources and collections

• Deprecate use Power schema (will deprecate link in Chassis)

• Provide indications of which portions of the resource have migrated

• New resources for power subsystem, power supplies, and metrics

• Separate sensor data from large quantity of static data

• Lay groundwork to populate batteries and other external power sources

• Use RelatedItem[] link in PowerSupplies[] to point to PowerSupply?

• Alternative is to add new ‘migration’ link such as “PowerSupplyUri”

• Use RelatedItem[] link in PowerControls[] to point to new location?

• Since the limits get distributed to Processor, Memory, etc.

• Alternative is to add new ‘migration’ link such as “ComponentUri”

• Requesting feedback on the usefulness of these pointers

10

NEW PowerSubystem and supporting schemas

• PowerSubsystem

• The equipment and connectivity that provides power to a Chassis

• Expect to add a “Power Source” collection

• Redundancy group information

• PowerMetrics

• Power consumption as a structured object with Sensor excerpts

• Voltage regulators as a Sensor excerpt array

• PowerSupply

• Resource Collection for individual power supply (and bay) resources

• PowerSupplyMetrics

• Support measurements for a well-instrumented power supply

11

Migration of Power properties

• PowerSupplies[]

• Contents move to PowerSupply schema

• Voltages[]

• Voltage Regulator Modules become a set of Sensor resources

• Other voltage measurements shown in PowerSupplyMetrics

• Is a summary in PowerSubsystemMetrics useful? (likely an array)

• PowerLimit

• Chassis power limit becomes a single property (perhaps two properties for Min / Max)

• Individual subsystem/device limits move to those resources

• Example: CPU limit placed in Processor schema with excerpt for power reading

• May handle LimitException and CorrectionInMs by Sensor Thresholds

• Power Allocation

• Set of properties for shared infrastructure (bladed chassis) becomes Allocation object

• PowerControl[] (object array with multiple functions…)

• Moves to Chassis, PowerSubsystem and individual device resources

• Redundancy[]

• Moves to PowerSubsystem and renaming to handle multiple redundancy topics

12

PowerSubsystem

• Resource holds static power subsystem data and settings

• Chassis-level power limit

• PowerAllocation object for shared power infrastructures (e.g. blades)

• Redundancy information

• Individual objects by topic (not a single Redundancy[] array)

• PowerSupplyRedundancy[] is the first instance

• How to model redundant power feeds / sources?

• Since the redundancy is “external”, perhaps that’s out of scope for this resource

• Ability to show the power cord connections would allow aggregator to discover

13

PowerSubsystem mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem",

"@odata.type": "#PowerSubsystem.v1_0_0.PowerSubsystem",

"Name": "Power Subsystem for Chassis",

"LimitWatts": 1200,

"Allocation": {

"RequestedWatts": 1500,

"CapacityWatts": 2000,

"AllocatedWatts": 1200

},

"PowerSupplyRedundancy": [

{

"@odata.id": < URI of PowerSupplyRedundancy >,

"MemberId": "0",

"Name": "Power Supply Redundancy Group 1",

"Mode": "Failover",

"MaxNumSupported": 2,

"MinNumNeeded": 1,

"RedundancySet": [

{ "@odata.id": < URI of Power Supply Bay #1 > },

{ "@odata.id": < URI of Power Supply Bay #2 > }

],

"Status": {

"State": "Offline",

"Health": "OK"

}

}

],

14

"PowerSupplies": {

"@odata.id": < URI of PowerSupply resource collection >

},

"Metrics": {

"@odata.id": < URI of PowerMetrics resource >

},

"Status": {

"State": "Enabled",

"Health": "OK"

},

"Oem": {}

}

PowerSubsystemMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/Metrics",

"@odata.type": "#PowerSubsystemMetrics.v1_0_0.PowerSubsystemMetrics",

"Id": "PowerSubsystemMetrics",

"Name": "Summary Power Metrics",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"PowerWatts": {

"General": {

"Reading": 374,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/TotalPower"

},

"CPUSubsystem": {

"Reading": 139,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPUSubsystemPower"

},

"SystemBoard": {

"Reading": 40,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/SysBrdPower"

},

"MemorySubsystem": {

"Reading": 42,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/MemorySubsystemPower"

}

},

CONTINUED ON NEXT PAGE…

15

PowerMetrics mockup, continued

16

"VoltageSummary": [{

"Name": "CPU #1 Voltage Regulator",

"Id": "CPU1",

"PhysicalContext": "System Board",

"Voltage": {

"Reading": 3.31,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/VRM1"

}

},

{

"Name": "CPU #2 Voltage Regulator",

"Id": "CPU2",

"PhysicalContext": "System Board",

"Voltage": {

"Reading": 3.31,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/VRM2"

}

}

],

"EnergykWh": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/TotalEnergy",

"Reading": 325675

},

"Links": {

"Oem": {}

},

"Oem": {},

"Actions": {

"PowerMetrics.ResetMetrics": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/Metrics/PowerMetrics.ResetMetrics"

}

}

}

PowerSupply

• Most properties copied from existing PowerSupplies[] definition

• Need feedback from PMBus group to ensure full data coverage

• Redundancy object moved to PowerSubsystem

• Measurements moved to PowerSupplyMetrics

• Outlet link to show power connectivity

• Assembly link, Action for Reset of power supply

• Is EfficiencyPercent expected as static value or dynamic (load-based)?

• Replace percent with enums to report the 80 Plus “Gold”/”Platinum”/etc.?

• “EfficiencyRating”: “Plus” |“Bronze” |“Silver” |“Gold” |“Platinum” |“Titanium”

• Dynamic efficiency can be calculated from input/output power readings

• Handling of power supply fans

• Failures of “simple” internal P/S fans can be handled with PS fault reporting

• Fans that contribute to overall system cooling should be reported in the

Thermal / Fan resources with PhysicalContext of “PowerSupply”

17

PowerSupply mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1",

"@odata.type": "#PowerSupply.PowerSupply",

"Id": "Bay1",

"Name": "Power Supply Bay 1",

"Status": {

"State": "Enabled",

"Health": "Warning"

},

"Model": "RKS-440DC",

"Manufacturer": "Contoso Power",

"FirmwareVersion": "1.00",

"SerialNumber": "3488247",

"PartNumber": "23456-133",

"SparePartNumber": "93284-133",

"LocatorBeacon": "Off",

"HotPluggable": false,

"InputVoltageType": "AC200To240V",

"CapacityWatts": 400,

"EfficiencyRating": "Gold",

"InputRanges": [{

"InputVoltageType": "AC200To240V",

"CapacityWatts": 400

},

{

"InputVoltageType": "AC120V",

"CapacityWatts": 350

},

{

"InputVoltageType": "DC380V",

"CapacityWatts": 400

}

}, CONTINUED ON NEXT SLIDE

18

PowerSupply mockup, continued

"Location": {

"PartLocation": {

"ServiceLabel": "PSU 1",

"LocationType": "Bay",

"LocationOrdinalValue": 0

}

},

"Links": {

"Outlet": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/Outlets/A4"

}

},

"Assembly": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Assembly"

},

"Metrics": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Metrics"

},

"Actions": {

"#PowerSupply.Reset": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/PowerSupply.Reset"

}

}

}

19

PowerSupplyMetrics

• Use objects for input voltage ranges from PowerDistribution?

• Existing property is an array of supported ranges with min/max values

• Replace those with objects for AC (2 ranges) and DC ranges

• “AC”, “AC2”, “DC” (rationale that most supplies have a single AC range)

• Could Voltage/Frequency ranges be replaced with enumeration?

• Use values of LineInputVoltageType and add range in normative description?

• Adds separate input and output measurements for Voltage and Current

• Output metrics structures

• Follows repeating object pattern for simple, interoperable software access

• “ThreeVolt”, “FiveVolt”, “TwelveVolt”, “FortyEightVolt”, “Neg48Volt”?

• Is OutputPower needed? Single reading or structured object?

• Power, Energy, Frequency measurements

• Show Power Supply temperature, fan speed here or in separate

EnvironmentMetrics resource?

20

PowerSupplyMetrics mockup (1 of 3)
{

"@odata.id": "/redfish/v1/Chassis/1U//PowerSubsystem/PowerSupplies/Bay1/Metrics",

"@odata.type": "#PowerSupplyMetrics.PowerSupplyMetrics",

"Id": "Metrics",

"Name": "Metrics for Power Supply 1",

"Status": {

"State": "Enabled",

"Health": "Warning"

},

"NominalInputVoltage": "AC200To240V",

"InputVoltage": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputVoltage",

"Reading": 230.2

},

"InputCurrentAmps": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputCurrent",

"Reading": 5.19

},

"InputPowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputPower",

"Reading": 937.4,

"ApparentVA": 937.4,

"ReactiveVAR": 0.0,

"PowerFactor": 0.98

},

"InputFrequencyHz": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1InputFrequency",

"Reading": 60.0

},

CONTINUED ON NEXT SLIDE

21

PowerSupplyMetrics mockup (2 of 3)
"OutputVoltages": {

"FiveVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_5VOutput",

"Reading": 5.03

},

"ThreeVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_3VOutput",

"Reading": 3.31

},

"TwelveVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_12VOutput",

"Reading": 12.06

}

},

"OutputCurrentAmps": {

"FiveVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_5VCurrent",

"Reading": 1.25

},

"ThreeVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_3VCurrent",

"Reading": 9.84

},

"TwelveVolt": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1_12Current",

"Reading": 2.58

}

},

CONTINUED ON NEXT SLIDE

22

PowerSupplyMetrics mockup (3 of 3)

"OutputPowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1OutputPower",

"Reading": 937.4,

"ApparentVA": 937.4,

"ReactiveVAR": 0.0,

"PowerFactor": 0.98

},

"EnergykWh": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Energy",

"Reading": 325675

},

"TemperatureCelsius": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Temp",

"Reading": 43.9

},

"FanSpeedPercent": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/PS1Fan",

"Reading": 68,

"SpeedRPM": 3290

},

"Actions": {

"#PowerSupplyMetrics.ResetMetrics": {

"target": "/redfish/v1/Chassis/1U/PowerSubsystem/PowerSupplies/Bay1/Metrics/PowerSupplyMetrics.ResetMetrics"

}

}

}

23

THERMAL MIGRATION

24

Migration of Thermal resource

• Allow coexistence of Thermal with new resources and collections

• Deprecate Thermal link in Chassis after migration

• Add SensorUri pointer to Temperatures[] and Fans[]?

• Follow decision on Power Supplies (is this useful?)

• Separate resources for temperature and cooling metrics

• Large quantity of data if bundled together

• Cooling data needs to comprehend both air (fan) and liquid cooling

25

Migration of Thermal properties

• Temperatures[]

• Array moves to ThermalMetrics

• Sensor instance for each temperature reading/sensor

• All properties covered by Sensor instances

• Add schema excerpts in model where physical context exists

• Processor, Drive, Chassis, Memory

• Fans[]

• Array moves to FanCollection

• Summary of fan data becomes CoolingMetrics

• Fan resource

• Product identification (part #, serial #, etc.)

• Fan speed, status, etc.

• Redundancy moves to ThermalSubsystem

26

NEW ThermalSubystem and supporting schemas

• ThermalSubsystem

• The equipment and connectivity that provides cooling for a Chassis

• Redundancy group information

• CoolingMetrics

• Fan metrics, summarized in a single array of metrics

• Future expectation for a summary of liquid cooling metrics

• Complexity of liquid cooling may warrant a separate resource for metrics on an

individual unit basis, following the pattern of PowerSupplyMetrics

• ThermalMetrics

• Temperature measurements

• Humidity measurements

• Fan

• Resource Collection for individual fan (and bay) resources

• Future support for liquid cooling subsystems

27

Reading for Fan speed

• Need to unify a “primary” fan ReadingUnit type

• Easiest for end users to comprehend is a utilization percentage

• RPM values are not comparable / meaningful across products or vendors

• Percent value can be reported regardless of fan implementation

• Simple fans without a reading could report a static value (suggest 100%)

• But the RPM / tach values are interesting to many users

• Engineers use RPM values and fan models to calculate airflow

• Add SpeedRPM as a new property in Sensor

• Alongside Reading, follows pattern for power sensors and excerpts when

additional data is provided alongside a primary reading value

• Desire to report the PWM setting (controller output) for a fan

• Desired state vs. result

• Add InputPWM property to Sensor (or perhaps Fan)

• Comparison of PWM to output speed has been used for failure prediction

28

ThermalSubsystem mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem",

"@odata.type": "#ThermalSubsystem.v1_0_0.ThermalSubsystem",

"Name": "Thermal Subsystem for Chassis",

"FanRedundancy": [{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/#FanRedundancy/0",

"Name": "Fan Group 1",

"MemberId": "0",

"RedundancyEnabled": true,

"Mode": "N+1",

"MaxNumSupported": 2,

"MinNumNeeded": 1,

"RedundancySet": [{ "@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay1“ },

{ "@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay2“ }],

"Status": {

"State": "Enabled",

"Health": "OK"

}

],

"Fans": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans"

},

"ThermalMetrics": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/ThermalMetrics"

},

"CoolingMetrics": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/CoolingMetrics"

},

"Status": {

"State": "Enabled",

"Health": "OK"

}

}

29

ThermalMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalMetrics",

"@odata.type": "#ThermalMetrics.v1_0_0.ThermalMetrics",

"Id": "ThermalMetrics",

"Name": "Chassis Thermal Metrics",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"TemperaturesCelsius": {

"Internal": {

"Reading": 39,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Temp"

},

"Intake": {

"Reading": 23,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/IntakeTemp"

},

“CPUSubsystem": {

"Reading": 39,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPUTemps"

},

"SystemBoard": {

"Reading": 40,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/SysBrdTemp"

}

"Exhaust": {

"Reading": 44,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/ExhaustTemp"

}

}

}

30

CoolingMetrics mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/CoolingMetrics",

"@odata.type": "#CoolingMetrics.v1_0_0.CoolingMetrics",

"Name": "Chassis Fan and Liquid Cooling Metrics",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"FanSummary": [{

"Id": "Bay1",

"PhysicalContext": "System Board",

"SpeedPercent": {

"Reading": 45,

"SpeedRPM": 1900,

"InputPWM": 55,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay1"

}

},

{

"Id": "Bay2",

"PhysicalContext": "System Board",

"SpeedPercent": {

"Reading": 55,

"SpeedRPM": 2100,

"InputPWM": 50,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay2"

}

}

],

"Oem": {}

}

31

Fan mockup
{

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem/Fans/Bay1",

"@odata.type": "#Fan.Fan",

"Id": "Bay1",

"Name": "Fan Bay 1",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"PhysicalContext": "Chassis",

"Model": "RKS-440DC",

"Manufacturer": "Contoso Fans",

"PartNumber": "23456-133",

"SparePartNumber": "93284-133",

"LocatorBeacon": "Off",

"HotPluggable": true,

"FanSpeedPercent": {

"Reading": 45,

"SpeedRPM": 2200,

"PWMInput": 55,

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/FanBay1"

},

"Location": {

"PartLocation": {

"ServiceLabel": "Chassis Fan Bay 1",

"LocationType": "Bay",

"LocationOrdinalValue": 0

}

}

}

32

NEW PROPERTY TOPICS

33

New UserThresholds in Sensor

• Add UserThresholds parallel structured object in Sensor

• Follows Threshold structure definition with additional properties

• Allows user to set multiple thresholds with a Reaction

• Implementation owns the reactions in the existing Threshold entries

• Clearly defines ‘owner’ while providing user with flexibility

• But implementation defines what support is enabled for each sensor

• Reaction values

• Provide user the ability to define what action (reaction) is taken when

threshold is violated

• Follow trigger criteria defined by equivalent Threshold

• Allow this reaction to be enabled/disabled individually

• Service may need to define supported range for UserThresholds

• Some existing Thresholds may move to UserThresholds

• If user can define reaction behavior (but perhaps not change value)?

34

SENSOR INTEGRATION

35

Integration using Schema Excerpts

• Reference to a single Sensor is simple and low impact
“TemperatureCelsius”: {

“Reading”: 27.3,

“DataSourceUri”: “/redfish/v1/Chassis/1/Sensors/Drive3Temp”

}

• Set of multiple sensors (single type) is also possible

• ElectricalContext model gave us a better answer than cumbersome arrays

• Create an object structure using context to name excerpt objects

• Easy when there can be max of one instance of a particular context
“TemperaturesCelsius”: {

“Intake”: {

“Reading”: 27.3,

“DataSourceUri”: “/redfish/v1/Chassis/1/Sensors/BezelTemp”

},

“Chassis”: <Excerpt>,

“Exhaust”: <Excerpt>

}

36

Proposed resource tree additions

37

ComputerSystem

Systems Collection

Service Root

Processor

Metrics

Sensor

collection

Sensor

Chassis

Chassis Collection

Processor

collection

Processor

Environment

Metrics

Memory

collection

Memory

Metrics

Memory

Environment

Metrics

NEW EnvironmentMetrics resource

• A summary of sensor data related to a specific component

• Environment readings are shown as Sensor excerpts

• Performance metrics read directly from component, not a Sensor resource

• Separates “performance” metrics from the environmental metrics

• Different use cases, with “other half” of data thrown away

• Includes Reading / Sensor excerpts for:

• Power

• Temperature

• Fan

• Voltage?

• Single schema definition used for instrumented components

• Processor

• Memory

• Drive

38

EnvironmentMetrics mockup
{

"@odata.id": "/redfish/v1/Systems/1/Processors/FPGA1/EnvironmentMetrics",

"@odata.type": "#EnvironmentMetrics.v1_0_0.EnvironmentMetrics",

"Name": "Processor Environment Metrics",

"Status": {

"Health": "Ok"

},

"TemperatureCelsius": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Temp",

"Reading": 44

},

"PowerWatts": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Power",

"Reading": 12.87

},

"FanPercent": {

"DataSourceUri": "/redfish/v1/Chassis/1U/Sensors/CPU1Fan",

"Reading": 80

},

"Oem": {}

}

39

Processor sensor integration

• Add EnvironmentMetrics resource under Processor

• Processor Temperature

• TemperatureCelsius already defined in ProcessorMetrics

• Deprecate this in favor of new EnvironmentMetrics property

• ThrottlingCelsius should migrate to a Threshold value in Sensor

• May be multiple values? Caution and Critical?

• Processor Power

• ConsumedPowerWatt already defined in ProcessorMetrics

• Deprecate this in favor of new EnvironmentMetrics property

40

Memory sensor integration

• Add EnvironmentMetrics resource under Memory

• TemperatureCelsius

• PowerWatts

• Add EnvironmentMetrics resource under MemorySummary?

• Temperature would be “average” or “highest” memory value

• An average value would point to a synthesized sensor

• Highest value would point to the specific memory device sensor being reported

• This could be covered with a “MemorySubsystem” reading in ThermalMetrics

• Power would be total power for memory subsystem

• Use the Synthesized sensor concept to provide total if desired

• This can be easily covered with a “MemorySubsystem” reading in PowerMetrics

• This is probably better handled by “Memory” instances in the Chassis-level

PowerSubsystemMetrics and ThermalMetrics resources

• Temperature and Power readings for “MemorySubsystem”

41

How far to go with “Summary” data using excerpts?

• Single sensor references are easy and an obvious use case

• Temperature of a specific device, etc.

• Object with multiple, named-for-context properties allows for easy access

• How far do we go to provide “single” context values?

• See Chassis temperatures as an example

• Arrays are more complex to parse, but highly flexible

• Likely want this structure to allow quick retrieval of all sensors per type

• Follow pattern from Circuit with “simple” and “complex” types?

• Single-phase voltage & current values are shown twice

• One without context for simple, deterministic client access

• One within electrical context

• Do we create structured object for temperatures (and others?) that defines a “few”

summary values, but show everything in the array version?

• Define a base context for temperature sensor (always present)?

• Suggest “Internal”, other choices include: “Overview”, “Summary”, “General”, others?

42

Q&A & Discussion

43

