

Power Management Challenges in Virtualization Environments

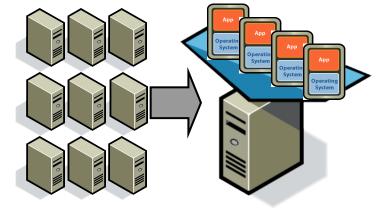
Congfeng Jiang, Jian Wan, Xianghua Xu, Yunfa Li, Xindong You Grid and Service Computing Technology Lab, Hangzhou Dianzi University, Hangzhou , 310037, China Sep., 2009 cjiang@hdu.edu.cn

Outline

- Introduction
- Implications of Virtualization
- Power management challenges
- Discussions
- Acknowledgments
- DQ&A

1 Introduction

- Power has been a critical resource for :
 - Battery-powered devices
 - PCs
 - Large scale server systems
 - Data centers



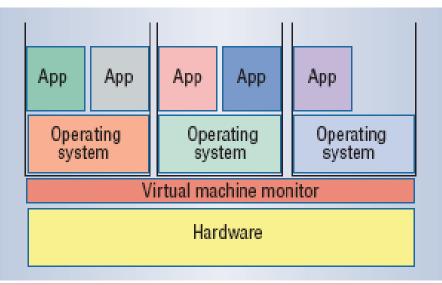
Example: Data centers

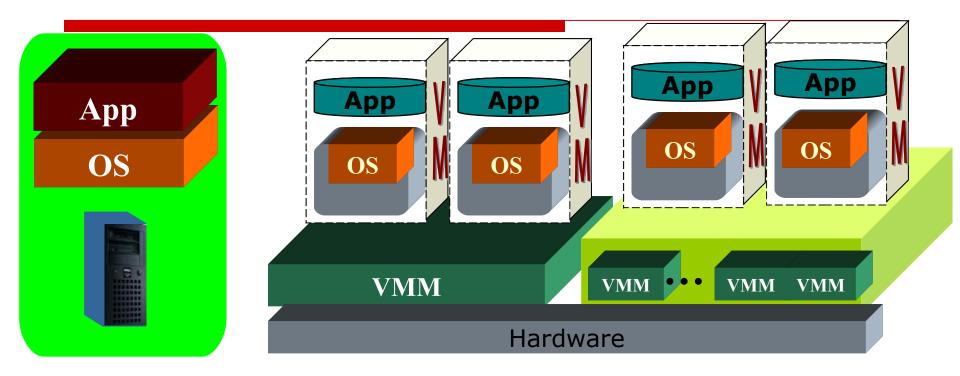
- Server consolidations and virtualizations in data centers
 - Higher power densities \rightarrow higher power consumptions
 - Expensive cooling → Total Cost of Ownership (TCO)
- Thermal emergencies
 - Failed fans or air conditioners
 - Poor cooling or air distribution
 - Hot spots
 - Brownouts
- Component reliability decreases
 - Unpredictable behaviors or failures
 - Can impact system performance and availability

Why Power Management(PM)?

- Use less electricity
 - E.g.,half of power used to power PCs is wasted
- Reducing cooling loads and costs
- Reducing peak load demand charges

2. Implications of Virtualization


- Characteristics
- Implications


Characteristics \rightarrow Issues

- □ Transparency → VMs know nothing about hardware power consumption
- Isolation \rightarrow PM coordination among VMs

- Conventional Computing Systems: OS with full knowledge of and full control over the underlying hardware
- Virtualization Environments: multi-layered, PM coordination among VMs
 SVM '(39)

Implications

- Conventional power management methods are not applicable to virtualization environments without modifications
 Bad news!
- Soft-level fine grained power management can save more power in virtualization environment through live VM migration, job scheduling, power hotspots elimination Good news!

3. Power management challenges

- Power consumption accounting and estimation of VMs
- Power management Coordination among VMs

3.1 Power consumption accounting and estimation

- Non-Virtualized environments
- Virtualized environments

Non-Virtualized environments

- Code profiling
- Hardware Performance Counters
- Power-driven statistical sampling

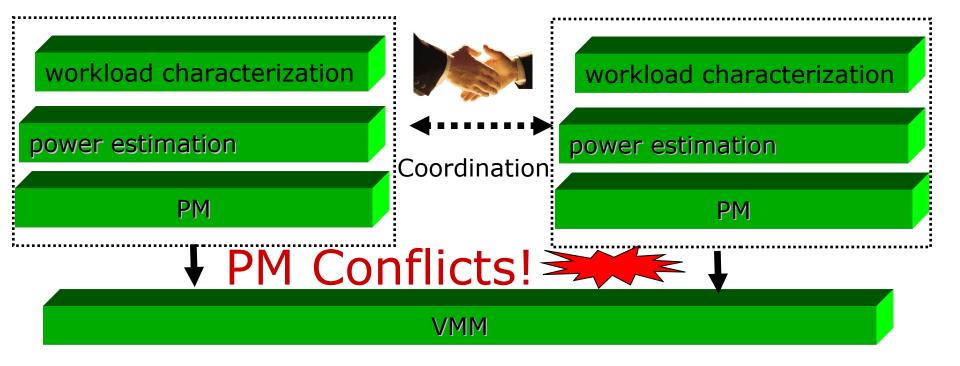
Power estimation

Application and thread level PM

Virtualized environments

- Devices are shared among multiple VMs
- Hardware heterogeneity

VM level PM


Considerations

- Overheads
- Prediction accuracy
- Highly expensive workload characterization in large scale data centers

3.2 Power Coordination among VMs

3.3 Comparison of Existing Solutions

- Conventional techniques
- Virtualization environments
 - VirtualPower Management (VPM)
 - Magnet
 - ClientVisor
 - Stoess et al Framework

3.3.1 Conventional techniques

- Hardware level
 - Micro-architectural design(VLSI& CMOS)
 - Per-component adaptations
 - Multi-components adaptations
- Software level
 - OS
 - Scheduling
 - Virtualization

System-wide PM

- Reduce power consumption and maximize hosting revenue
 - power estimation and profiles
 - workload characterization
 - OS support power-aware algorithms

Per-component adaptations

- CPU
- Memory
- Hard drives
- Network Interface Cards(NICs)
- Display devices
 - slowing down the devices or switching the devices to low-power modes

CPU

- ACPI (Advanced Configuration and Power Interface) specifications
 - C0, C1, C2, C3, . . . , Cn.
- DVS (Dynamic Voltage Scaling)
- DFS (Dynamic Frequency Scaling)
- UDFS (User-Driven Frequency Scaling)
- PDVS (Process-Driven Voltage Scaling)
- Per-core DVS/DFS

Memory

- DRAM power consumptions is significant
 - 45% of total system power (Lefurgy et al., IEEE Computer 2003)
- Opportunity:DRAM is usually installed in an over-provisioned style to avoid swapping between memory and hard disks

Memory

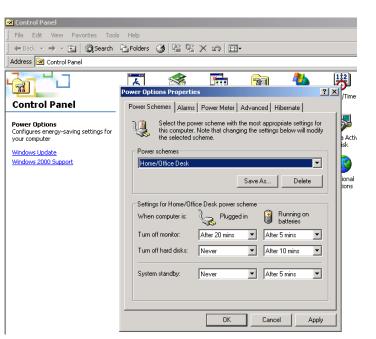
- Decide to power down which memory units and into which low-power state to transition
- Queue-Aware Power-Down Mechanism
- Power/Performance-Aware Scheduling
- Adaptive Memory Throttling
 - Power Shifting: (Felter et al., ICS 2005), Dynamically assign power budgets to CPU and DRAM

Reducing DRAM power consumptions

- Put certain ranks of DRAM into low-power mode
 - Entering and exiting has overhead
 - Ranks must remain in low-power mode for some minimum number of cycles
- How to enter and exit low-power mode?
 - Enter and exit too frequently → increased DRAM latency
 - Enter and exit too infrequently → less power savings

Hard drives

Slowing down


Switching to low-power modes Hibernate

Monitor PM

- Monitor power management (MPM) places *monitors* into low power sleep mode after period of inactivity
- System standby and hibernate place the *computer* (CPU, hard drive, etc.) into sleep mode
- Built into Windows 95,98, ME, 2000, XP and Vista
- Settings simply need to be activated

Tradeoffs

- Hardware-level PM
 - Disregards high-level information
 - E.g. CPU shutdown mechanism
 - Unnecessary performance loss
- Software policies
 - More sophisticated reactions to emergencies
 - E.g. reduce load on "hot server" in a datacenter
 - Example: Freon for Internet services
 SVM[ASPLOS'06]

- Tradeoffs between power reductions and performance degradions
- New trends
 - Multi-component joint-adaptations
 - Hardware-software joint-adaptations

3.3.2 PM in XEN

'(`}9

- what CPU load is suitable for reduction in speed and at what level do we increase the CPU speed
- Tricks: Switching to low power mode when all VMs are idle
 - An event channel to tell the Domain 0 guest to perform PM actions
 - Transitions between PM states
- XEN 3.1 No good ACPI&PM support

XEN 3.3: ACPI C/P States support

- The idle governor is triggered when the CPU is fully idle, and then the governor chooses the appropriate low power state based on the power budget and latency tolerance accordingly.
- The deeper C-state is, less power is consumed with longer entry/exit latency.
- governor monitors CPU utilization (using a call into Xen).
- No PM estimation and coordination features

XEN 3.4

- A new algorithms to better manage the processor including schedulers and timers optimized for peak power savings.
- No PM estimation and coordination features

3.3.3 Comparison of existing PMZHOU DIANZI UNIVERSITY methods for Virtualization environments

Metrics\schemes	VirtualPower	Magnet	ClientVisor	Ref.[20]
Testbed conf guration	Multiple PCs machines with Intel Dual Core Pentium 4 processors	A 64-hosts cluster with AMD Athlon 3500+processors	Desktop virtualization environment with Intel Core2 Duo T9400 processor	A machine with Intel Pentium D processor
Hardware Heterogeneity	Identical +Heterogeneous	Homogeneous	Homogeneous	Homogeneous
VMM	Xen	Xen	Xen	L4 micro-kernel
Using DVS/DFS	Yes	N/A	N/A	N/A
Number of VMs	>=4	N/A	3	N/A
Online/Off ine	bnline	online	online	online
Power consumption estimation	measured 'at the wall'	N/A	measured 'at the wall'	external high performance data acquisition (DAQ) system
Power management coordination	 (i)system-level abstractions including VPM states, channels, mechanisms, and rules (ii)VM-level 'soft' power scaling mapping to real power states and scaling 	centric, concentric non-overlapping rings with heartbeats exchange	coordinate only "at the key points"	budget allotment
Max. Power savings	34%	74.8%	22%	N/A
Overheads	Little performance penalties	Adjustably acceptable	Degration about 2%~3%.	N/A
With QoS/SLA guarantees	Yes	Yes	N/A	N/A
VM migration	Yes	Yes	N/A	N/A
Workload	RUBIS	bit-r, m-sort, m-m, t-sim, metis, r-sphere, and r-wing	SPECpower_ssj	DAQ/bzip2 application
SVP	1\39	-	<u> </u>	

4 Discussions

- Two possible goals of PM
 - Reduce power consumptions with minimal performance degradation
 - Stay within some given power budget while degrading performance as little as possible

- Fine-grained VM-level PM is necessary for virtualization
- Conventional power estimation techniques are designed only for monolithic kernels
- Negotiations among VMs
- SLAs and QoS guarantees

Future work

- Possible DMTF standards for power efficiency specifications, evaluation ,benchmarking & metrics
- Power Management interoperability among different virtualized devices

5 Acknowledgments

- State Key Development Program of Basic Research of China ("973"Project, Grant No. 2007CB310900)
- Natural Science Fund of China (NSFC) (Grant No. 60873023)

Thank you & Any question ?

