

“Policy-Maker”, a Toolkit for Policy-Based Security Management

Andreas Pilz

Institute for Data Processing, TU München
andreas.pilz@ei.tum.de

Abstract

“Policy-Maker” is an implementation of our concept
for the security management of heterogeneous networks.
It is entirely based on the Common Information Model
(CIM) and the Web-Based Enterprise Management
(WBEM) architecture, which is an industry standard of
the Distributed Management Task Force (DMTF).

In our concept an administrator can specify security
policies uniformly and directly within the CIM data
model via a comfortable grapical user interface (GUI)
provided by our “Policy-Editor”. The policies are
processed and executed within the WBEM architecture,
in which component specific “providers” map the
policies to the mechanisms of the target network
devices.

A policy can represent a hierarchy of rules, which are
handled and solved in our concept by using several
hierarchic provider-calls within the WBEM framework.

Furthermore, CIM-based policy models for some
concrete security mechanisms (e.g. IP-Firewalls) have
been designed and implemented for testing the “Policy-
Maker”.

1. Introduction

New information and communication services are
using different network technologies, which are termed
in this paper as “heterogeneous networks”. Besides the
traditional internet technologies for LAN and WAN1
more and more mobile networks (e.g. GSM, UMTS2) and
radio networks (e.g. IEEE 802.11) are used.

There are rising security requirements for providing
new information and communication services, e.g.
confidentiality, authenticity and integrity, access control
and availability. The security requirements can only be
met by comprehensive, uniform and integrated security
management, which configures all participating networks
and devices. Therefore security management of
heterogeneous networks is a prerequisite, in order to

1 LAN: local area network, WAN: wide area network
2 GSM: global system for mobile communication, UMTS: universal mobile
telecommunication system

achieve the demanded level of security for any
information and communication service.

Management of heterogeneous networks is the
configuration of network devices with different
functionalities and interfaces, based on various
technologies and on different manufacturers. The
increasing demand for mobile services leads to dynamic
scenarios, in which the configuration of the security
mechanisms have to be permanently adopted by the
actual policies. A security management system must
support these dynamic scenarios.

Security management is a part of network and system
management. Traditional management architectures are
too simply structured for handling the problems
mentioned above (e.g SNMP3) or have not proved
successful for policy-based network management (e.g.
TMN4). A policy within our context is a set of rules or a
hierachy of rules, which consist of conditions and
associated actions. Simple policies can directly be
converted (e.g. by a single entry in an IP filter). Policies
of a higher abstraction layer can affect mechanisms of
several network components.

 Several languages for specifying policies have already
been developed, e.g. IBM’s TPL5 or Lucent’s PDL6.
These languages are limited to the specification of
policies. There are no mechanisms for the conversion of
policies into device dependent security mechanisms
specified. Ponder [1,2] is another approach for policy-
based network management. Within the Ponder toolkit
policies are specified at a high-level of abstraction, then
broken down internally into simple rules. Finally, the
policies are compiled and mapped to rules for the
network devices, using e.g. SNMP or CIM/WBEM
architecture.

Within our “Policy-Maker” [6] concept the policies for
the security management are directly specified within the
CIM model [4] and executed within the WBEM
architecture [5] as specified by the Distributed
Management Task Force DMTF [3]. Thereby, policies of
a higher abstraction layer are automatically broken down

3 SNMP: Simple Network Management Protocol
4 TMN: Telecommunications Management Protocol
5 TPL: Trust Policy Language
6 PDL: Policy Definition Language

into simple rules within the WBEM by hierachical
provider calls. An external policy preprocessing is not
necessary. The “Policy-Editor” offers a graphical user
interface (GUI) for editing the policy objects.

In this paper we present our concepts and the “Policy-
Maker” implementation. Finally, we compare the Ponder
concept with our Policy-Maker.

We assume that the reader is familiar with the
Common Information Model CIM and Web-Based
Management architecture WBEM of the DMTF.
Relevant information on these management concepts can
be found in [3,4,5].

2. Policy-Maker

Our security management system “Policy-Maker” is
based on the CIM model [4] and the WBEM
management architecture [5] of the DMTF [3].

We extended the CIM model by models for some
specific security mechanisms, e.g. IP and CORBA
firewalls and Intrusion Detection Systems (IDS). In
contrast to other policy-based approaches we integrated
the “intelligence” for the policy conversion and
transformation directly into the WBEM architecture by
using special providers. In particular we present our
concepts for creating policy trees and the transformation
of these trees. The “Policy-Editor” provides a graphical
user interface (GUI), which allows for specifying policies
and rules in a comfortable way for the administrator. The
GUI is automatically generated based on the information
stored in the repository of the WBEM. All associations
and aggregations of the policy objects are automatically
handled by the “Policy-Editor”. Therefore, the
administrator can concentrate on specifying the policies
in a graphical tree representation.

2.1 CIM Model Extensions

At the beginning of the concept development phase
there existed a CIM model for IPSec policies. We
developed CIM models for some further security
mechanisms, e.g. IP and CORBA firewalls and IDS [6].
We presented our models to the DMTF in January 2003.

The CIM models of firewalls were the basis for
implementing and testing our concepts.

2.2 Policy Transformation

Real network devices depend upon their proprietary
management capabilites. Within the WBEM architecture,
providers perform the conversion, transformation and
translation of the generic management information for
real network devices with their proprietary management
capabilites. We are using the provider mechanisms not
only for “direct” transformations on real network devices,
but also for multi-level or “indirect” transformations
within a WBEM or between different WBEMs. In the
following, policies which can be “directly” transformed
are named “direct policies”. In contrast to that, there are
the so-called “indirect policies”, which can not be
directly transformed and processed by a network device.
An “indirect policy” is a tree, consisting of “indirect
policies” and finally “direct policies”.

Figure 1: Processing of “direct” and “indirect policies”

In Figure 1, the extended provider functionality is
shown. There are two WBEM systems (WBEM1 and
WBEM2). Both WBEM systems have their own
repository and providers. A “direct policy” can be
handled e.g. within WBEM1 using a “direct provider”
(e.g. provider for firewalls). An “indirect policy” is
handled by the corresponding provider for “indirect
policies” (here: the “indirect provider” of WBEM1
performs management actions on WBEM1 and
WBEM2). This provider breaks the “indirect policy”
down into its next sub-policies. These sub-policies can be
“indirect” or “direct policies”. The “direct sub-policies”
can be handled by the “direct providers”, the “indirect
sub-policies” are further broken down to their sub-
policies. This is done, until all “indirect policies” are
broken down entirely to their “direct policies”, which can
be directly applied to the real devices. In contrast to other
policy-based management approaches, the whole policy
processing, conversion and translation and therefore the
“intelligence” of the system can be integrated in an
existing WBEM system without any modification of the
WBEM implementation. Only the CIM models, which

are necessary for the policy processing and the providers
have to be installed.

We developed a policy template approach, which we
implemented the policy transformation concept as a
prototype. An administrator can define new policies,
which are composed out of other policies. Therefore,
several policies can be summarized into one single policy
and hierarchical policy trees can be created, as Figure 2
shows.

Figure 2: Policy Tree - Example

The administrator creates this tree preferably bottom-

up. He or she starts with the leaf object, which
corresponds to “direct policies”. The leaf object can be
combined by using node objects in the next abstraction
layer. The node objects correspond to “indirect policies”.
The node objects can be summarized by superior node
objects again.

The policy tree is processed top down. In the first step
the root node is processed by a special provider, which
maps the attributes of the root node to the attributes of
the inferior node objects. These nodes are in turn
processed by the corresponding providers. This is done,
until the attributes of the root node are mapped to all leaf
nodes of the policy tree. The leaf nodes correspond to
“direct policies” and can therefore be mapped to the
target devices.

This concept simplifies the reuse of policy blocks, in
which only a small amount of attributes has to be
changed. Our concept provides two possibilites for the
transformation of such policy trees with special classes
and providers or with universal ones, respectively.

1. special node and leaf classes with special

providers
In case of special node and leaf classes, the
transformation information is integrated into the
provider. Therefore, a special provider for each class
is needed. Using this approach, an administrator has
to implement special node and leaf classes as well as
special providers.

2. universal node and leaf classes with universal
providers
In this case, the transformation information can
directly be integrated into the node and leaf objects
by using an XML description. The advantage of this
approach is, that no special node and leaf classes or
special providers have to be implemented. A
universal provider can be used, which extracts the
XML transformation description out of the
corresponding node or leaf object. It performs the
transformation according to the description.
Therefore, an administrator has only to instantiate
node and leaf objects and provide the transformation
description.

2.3 Policy-Editor

Policy-Editor is an application for specification and

modification of policies [6]. A GUI is dynamically
generated out of the CIM model. A goal attribute of the
Policy-Editor was to support any CIM model derived
from the basic policy CIM model, whereas only a
minimum set of rules should be hardwired. Moreover, all
aggregations and associations of the objects should be
handled automatically. In contrast to existing CIM-
Browsers or CIM–Editors, the administrator is able to
concentrate on specifying the policies. He or she does
need to take care about the CIM internal management of
objects and relations. In addition, type checking of the
input of the administrator was extended using XML.
Another important aspect is the provision of transactions,
in order to guarantee a consistent state.

A multi-user system can be implemented within the
WBEM. Thus, the Policy-Editor itself can be designed as
a single-user application.

In Figure 3, a screenshot of the Policy-Editor is
shown. The GUI is divided into two parts. On the left
hand side the policy and policy group objects are
presented in a tree-structure. Several operations can be
performed on these objects, e.g. adding or deleting of
aggregated or associated objects. The CIM model is
analyzed thereby and only operations which are
consistent with the CIM model are provided for the user.

On the right hand side, the components of the
currently selected policy rule node are shown. In general,
a policy consists of a condition, a time period and an
action part.

Figure 3: GUI of the Policy-Editor

In Figure 3 there is an example set of firewall rules

defined for a banking application. On the left hand side
the firewall policy object is currently selected. On the
right hand side the components of the example firewall
rule for the banking application are shown:

1. Policy Condition

Here the condition part of the policy rule is defined.
A tcp protocol filter for filtering certain ports and
tcp flags in the input and output filter chain are
defined.

2. Policy Time Validity Period
In this part, the time period in which the rule is
valid can be defined. The rule is always valid in
this example, so no entry is needed.

3. Policy Action
The action defined in this part has to be performed
if the condition is true. In our example, the traffic
should pass the firewall. Access from the outside to
the bank server is allowed.

All objects and attributes can be modified. Each

operation is performed immediately on the data stored
in the repository of the WBEM server. Similarily, any
change in the management data in the WBEM server
takes effect on the Policy-Editor. For example if a new

CIM model for policies of a new security mechanism is
installed on the WBEM server, the Policy-Editor is able
to deal with the new model without any modifications.

3. Comparison of Policy-Maker and Ponder

3.1 Ponder

Ponder [1,2] has been developed by the Policy
Research Group of the Distributed Software
Engineering Department of Computing at the Imperial
College, London. It is a declarative, object oriented
language for specifying security policies for various
applications. Besides the policy language there is a
ponder policy toolkit including the following
components: a policy editor for the specification and
modification of policies, a ponder compiler for the
conversion and translation of the policy specifications
to Java objects and a domain browser for a graphical
representation of the structure of the domains.

Ponder is suitable for specification of policies. Even
complex policies can be specified easily. The ponder
rules and policies have to be mapped to the concrete
target devices. There exists an approach, in which
ponder policies are mapped to the CIM model.

Figure 4: Comparison: Ponder – Policy-Maker

3.2 Comparison of Policy-Maker and Ponder

In Figure 4 the architecture of Policy-maker and
Ponder is shown.

The functionality of both concepts is very similar.
Within the Policy-Maker concept, the policy
transformation and conversion is integrated into the
WBEM and CIM. Within Ponder, policies are
preprocessed in the first step within the ponder
framework and after that the policies are mapped to the
WBEM and CIM. Therefore, within the Ponder concept
even little changes to the management information
require a policy processing and an additional policy
translation to CIM.

Within the Ponder framework, dealing with
aggregations and associations is a subject of research. In
contrast, the Policy-Editor of the Policy-Maker facilitates
the work of the administrator by automatically handling
all aggregations and associations.
The Policy-Maker concept has some more advantages:
The Administrator does not need to learn a new
language. Performing management operations directly in
CIM results to a higher level of transparency. It is very
easy to expand the concept by adding new providers to
the existing system. The integration of the transformation
intelligence is made very easy by using special classes
and providers in the existing WBEM. Existing
management tools based on CIM and WBEM can be used
and integrated.
Policies have to be consistent and complete. There are
still problems open to be solved within Ponder, Policy-
Maker and any other existing policy-based management
system, e.g. the detection and solution of conflicts, which
are caused by contradictory policies. Another problem is
the systematic policy refinement, because the network
and security policies can not necessarily be applied to the
security mechanisms and capabilities of existing systems.

4. Summary

The CIM model and the WBEM architecture of the
DMTF are a good basis for an integrated security
management system for heterogeneous systems. The
standardized modelling of management information in
CIM is a prerequisite for the management of
heterogeneous system. The conversion and translation of
the management information described in the uniform
CIM model is processed by the so-called “provider”,
which takes the system and manufacturer specific
specialities into account.

Our Policy-Maker concept extends the existing CIM
and WBEM of the DMTF. In particular, policies can be
hierachically structured, whereas the leaves of the policy
tree can be directly mapped to a concrete target device.
Processing the policy tree is done within the WBEM
system by hierarchical provider calls. The Policy-Maker
concept has been implemented as a prototype. The
Policy-Editor, the policy models for IP and CORBA
firewalls, and the corresponding providers have been
implemented, too.

5. References

[1] Ponder and Ponder Toolkit of the Policy Research
Group of the Distributed Software Engineering
Department of Computing at the Imperial College,
London, UK: http://www-dse.doc.ic.ac.uk/Research/
policies/index.shtml
[2] N.N. Damianou et al., „The Ponder Policy
Specification Language“, Policies for Dist. Sys. Net., HP
Labs Bristol, 29-31 Jan. 2001, pp. 18-38
[3] Distributed Management Task Force DTMF:
www.dmtf.org
[4] Common Information Model CIM:
http://www.dmtf.org/standards/standard_cim.php
[5] Web-Based Enterprise Management:
http://www.dmtf.org/standards/standard_wbem.php
[6] Policy-Maker: http://www.ldv.ei.tum.de/page78

