

Past, Present, and Future

Jiewen Yao, Intel Steven Bellock, NVIDIA

www.dmtf.org

Disclaimer

- The information in this presentation represents a snapshot of work in progress within the DMTF SPDM WG.
- This information is subject to change without notice. The standard specifications remain the normative reference for all information.
- For additional information, see the DMTF website.
- This information is a summary of the information that will appear in the specifications. See the specifications for further details.

Agenda

- Past ←
- Present
- Future

Beginning of libspdm

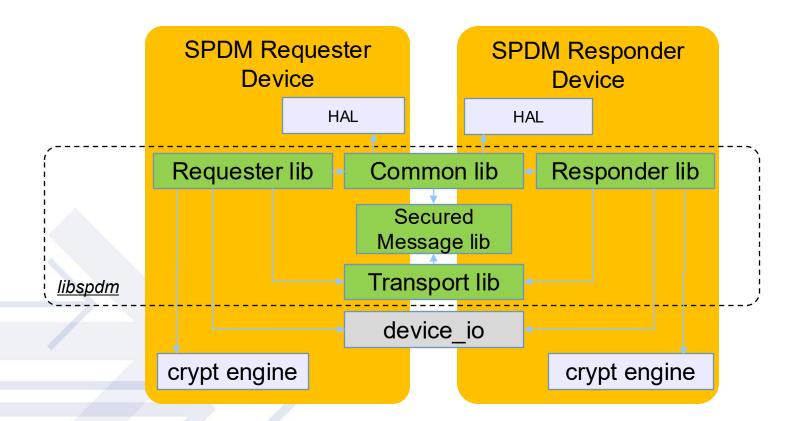
- The SPDM 1.0 specification was published at the end of 2019.
- Jiewen started the openspdm project as an SPDM proof-of-concept in May 2020.
 - Conceived as a submodule of the EDK II project.
 - Archived at https://github.com/jyao1/openspdm
- To foster interoperability between SPDM endpoints Jiewen donated openspdm to the DMTF at the beginning of 2021.
- Project was renamed to libspdm and was officially sponsored by the DMTF as the SPDM reference implementation.
 - Includes the establishment of the SPDM Code Task Force.

Early Work

- Early work on libspdm focused on
 - Disentanglement from EDK II to be a standalone code base.
 - Increased test coverage and build stability.
 - Fixing bugs with respect to the specification.
 - Formal verification, security review, and security hardening.
- Releases
 - 1.0 December 2021
 - 2.0 Apr 2022
 - 3.0 July 2023
- Approximately four releases a year based on a quarterly schedule.
- Contributor statistics
 - 52 contributors, 1705 pull requests, 2362 commits, 8899 unique cloners

Agenda

- Past
- Present
- Future



Library Architecture

- Core libraries
 - Common (shared between Requester and Responder)
 - Responder
 - Requester
 - Secured Message (DSP0277)
 - Crypt Includes bindings to OpenSSL and Mbed TLS.
 - Transport
 - MCTP (DSP0275/0276)
 - PCIe DOE
 - TCP (DSP0287)
 - Storage binding (DSP0286)
- Core libraries are written in C.

Library Architecture

Test and Verification

- libspdm is subjected to
 - Unit testing with weekly code coverage collection.
 - Random fuzz testing.
 - Static analysis Coverity and CodeQL
 - Formal verification CBMC.
 - Offensive security activities (Intel and NVIDIA)
 - Integration testing with SPDM emulator.
- Despite the above libspdm has had two CVEs.
 - DMTF-2023-0001
 - Bypass of mutual authentication.
 - DMTF-2023-0002
 - · C undefined behavior.

Use of libspdm in Other Projects

- Other related DMTF projects
 - SPDM emulator spdm-emu
 - SPDM message dump tool <u>spdm-dump</u>
 - SPDM device validation tool <u>SPDM-Responder-Validator</u>
- libspdm is leveraged by
 - TianoCore EDK II <u>Device Security</u>
 - NVIDIA Linux kernel module driver open-gpu-kernel-modules
 - QEMU <u>backend server</u>
 - Arm Realm Management Monitor reference implementation <u>TF-RMM</u>
 - TEE-IO device validation tool <u>tee-io-validator</u>
 - Planned support in <u>OpenBMC</u>

SPDM Working Group and Specification

- Work on libspdm has led to clarifications and improvements in the SPDM specification.
 - Constant presence of nonce in measurement response.
 - Endianness of signatures and GCM sequence numbers.
 - Double hashing of messages in SPDM 1.0/1.1.
- Approximately 90 issues filed against the specification reference libspdm.
- Since GitHub hosts both the specification and the reference implementation it is easy to cross-reference issues and pull requests.
- SPDM Code Task Force also contributed to the formation of the Security Response Task Force to handle security issues across the entirety of the DMTF.

Agenda

- Past
- Present
- Future ←

Future of libspdm

- The SPDM Code Task force is working on **libspdm 4.0 release** to complete feature enablement of SPDM 1.3/1.4.
 - Multi-key support. (SPDM 1.3)
 - Post-quantum cryptography. (SPDM 1.4)
 - Architectural changes to reduce complexity and streamline integration.
- Future work will include implementation of the DMTF Authorization specification (DSP0289).