
libspdm

Past, Present, and Future

Jiewen Yao, Intel

Steven Bellock, NVIDIA

Disclaimer

• The information in this presentation represents a snapshot of work in

progress within the DMTF SPDM WG.

• This information is subject to change without notice. The standard

specifications remain the normative reference for all information.

• For additional information, see the DMTF website.

• This information is a summary of the information that will appear in the

specifications. See the specifications for further details.

2

Agenda

• Past 

• Present

• Future

3

Beginning of libspdm

• The SPDM 1.0 specification was published at the end of 2019.

• Jiewen started the openspdm project as an SPDM proof-of-concept in

May 2020.

• Conceived as a submodule of the EDK II project.

• Archived at https://github.com/jyao1/openspdm

• To foster interoperability between SPDM endpoints Jiewen donated

openspdm to the DMTF at the beginning of 2021.

• Project was renamed to libspdm and was officially sponsored by the

DMTF as the SPDM reference implementation.

• Includes the establishment of the SPDM Code Task Force.

4

https://github.com/jyao1/openspdm

Early Work

• Early work on libspdm focused on

• Disentanglement from EDK II to be a standalone code base.

• Increased test coverage and build stability.

• Fixing bugs with respect to the specification.

• Formal verification, security review, and security hardening.

• Releases

• 1.0 – December 2021

• 2.0 – Apr 2022

• 3.0 – July 2023

• Approximately four releases a year based on a quarterly schedule.

• Contributor statistics

• 52 contributors, 1705 pull requests, 2362 commits, 8899 unique cloners

5

Agenda

• Past

• Present 

• Future

6

Library Architecture

• Core libraries

• Common (shared between Requester and Responder)

• Responder

• Requester

• Secured Message (DSP0277)

• Crypt - Includes bindings to OpenSSL and Mbed TLS.

• Transport

• MCTP (DSP0275/0276)

• PCIe DOE

• TCP (DSP0287)

• Storage binding (DSP0286)

• Core libraries are written in C.

7

SPDM Responder

Device

SPDM Requester

Device

Requester lib Common lib Responder lib

Secured

Message lib

Transport liblibspdm

device_io

crypt engine crypt engine

HALHAL

Library Architecture

8

Test and Verification

• libspdm is subjected to

• Unit testing with weekly code coverage collection.

• Random fuzz testing.

• Static analysis - Coverity and CodeQL

• Formal verification - CBMC.

• Offensive security activities (Intel and NVIDIA)

• Integration testing with SPDM emulator.

• Despite the above libspdm has had two CVEs.

• DMTF-2023-0001

• Bypass of mutual authentication.

• DMTF-2023-0002

• C undefined behavior.

9

Use of libspdm in Other Projects

• Other related DMTF projects

• SPDM emulator - spdm-emu

• SPDM message dump tool - spdm-dump

• SPDM device validation tool - SPDM-Responder-Validator

• libspdm is leveraged by

• TianoCore EDK II - Device Security

• NVIDIA Linux kernel module driver - open-gpu-kernel-modules

• QEMU – backend server

• Arm Realm Management Monitor reference implementation - TF-RMM

• TEE-IO device validation tool - tee-io-validator

• Planned support in OpenBMC

10

https://github.com/DMTF/spdm-emu
https://github.com/DMTF/spdm-emu
https://github.com/DMTF/spdm-emu
https://github.com/DMTF/spdm-dump
https://github.com/DMTF/spdm-dump
https://github.com/DMTF/spdm-dump
https://github.com/DMTF/SPDM-Responder-Validator
https://github.com/DMTF/SPDM-Responder-Validator
https://github.com/DMTF/SPDM-Responder-Validator
https://github.com/DMTF/SPDM-Responder-Validator
https://github.com/DMTF/SPDM-Responder-Validator
https://github.com/tianocore/edk2/tree/master/SecurityPkg/DeviceSecurity
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/specs/spdm.rst
https://github.com/TF-RMM/tf-rmm
https://github.com/TF-RMM/tf-rmm
https://github.com/TF-RMM/tf-rmm
https://github.com/intel/tee-io-validator
https://github.com/intel/tee-io-validator
https://github.com/intel/tee-io-validator
https://github.com/intel/tee-io-validator
https://github.com/intel/tee-io-validator
https://github.com/openbmc/spdm/

SPDM Working Group and Specification

• Work on libspdm has led to clarifications and improvements in the

SPDM specification.

• Constant presence of nonce in measurement response.

• Endianness of signatures and GCM sequence numbers.

• Double hashing of messages in SPDM 1.0/1.1.

• Approximately 90 issues filed against the specification reference

libspdm.

• Since GitHub hosts both the specification and the reference

implementation it is easy to cross-reference issues and pull requests.

• SPDM Code Task Force also contributed to the formation of the

Security Response Task Force to handle security issues across the

entirety of the DMTF.

11

Agenda

• Past

• Present

• Future 

12

Future of libspdm

• The SPDM Code Task force is working on libspdm 4.0 release to

complete feature enablement of SPDM 1.3/1.4.

• Multi-key support. (SPDM 1.3)

• Post-quantum cryptography. (SPDM 1.4)

• Architectural changes to reduce complexity and streamline integration.

• Future work will include implementation of the DMTF Authorization

specification (DSP0289).

13

	Slide 1: libspdm Past, Present, and Future
	Slide 2: Disclaimer
	Slide 3: Agenda
	Slide 4: Beginning of libspdm
	Slide 5: Early Work
	Slide 6: Agenda
	Slide 7: Library Architecture
	Slide 8: Library Architecture
	Slide 9: Test and Verification
	Slide 10: Use of libspdm in Other Projects
	Slide 11: SPDM Working Group and Specification
	Slide 12: Agenda
	Slide 13: Future of libspdm

