

Integrating CIM/WBEM with the Java Enterprise Model

Kenneth Carey & Fergus O’ Reilly
Adaptive Wireless Systems Group

Department of Electronic Engineering
Cork Institute of Technology, Cork,

IRELAND.
Tel. +353 21 4326100 Fax: +353 21 4326625

Email: kcarey@cit.ie, foreilly@cit.ie

Abstract

Enterprise level system development, integrating a broad
range of architectures and legacy systems, has received
significant attention over the last few years. Integrated
chain management, which allows companies to see their
full manufacturing, inventory and sales channels, has
driven much of this work. Delivering quality IP based
wireless access is forcing similar integration in
2.5G(GPRS) and 3G(UMTS) architectures. Networks are
now combining IP core backbones, legacy databases and
switching technology. This integration introduces
challenges for today's network administrators,
particularly in the area of Alarm Management. This paper
will discuss the experiences of developing a multi-tiered
Heterogeneous Alarm Management System based on the
Java2 Enterprise Edition, with CIM/WBEM as the
interface to the legacy and mixed protocol architectures.
We shall also discuss the simulation of a SNMP/CMIP
based heterogeneous network environment.

1. Introduction

Network management today is becoming increasingly
difficult because of the need to manage multiple devices
each using different network technologies. A particular
problem facing network administrators is the detection
and tracking of alarms sent from managed devices. In
order to observe these alarms telecommunications
network management systems must incorporate support
for the various network protocols and proprietary systems
operating within the heterogeneous environment. Such
systems must also be extendable as systems can quickly
become outdated due to the introduction of updated or
newly designed network protocols and equipment.

Current telecom network management systems are finding
it difficult to meet these needs. Incumbents have

large legacy systems, which have been built piecemeal
over many years. A typical such system has the
characteristics of a mature software discipline, such as
reference models, communications protocols, design
patterns and reference architectures. Consequently the
task of repeatedly updating the system to support updated
network devices and protocols is arduous and time
consuming.

Two popular protocols operating within heterogeneous
networks are the Common Management Information
Protocol (CMIP) and the Simple Network Management
Protocol (SNMP). SNMP is ubiquitous in the IP world,
while traditionally, CMIP is responsible for managing
telecommunications devices. The convergence of voice
and data networks has however, resulted in IP, and
subsequently SNMP, becoming popular throughout next
generation telecom carrier networks. The Web Based
Enterprise Management (WBEM) initiative is a
management architecture proposed under the umbrella of
the Distributed Management Task Force (DMTF). The
architecture is scalable and distributed and designed in
such a way so that it should be compatible with all major
existing management protocols and proprietary systems.

As illustrated in Figure 1, for a GPRS/UMTS Network,
the aim of this research project is to build and test an
extendable, scalable, platform independent, telecom
management architecture. This will be achieved through
the integration of the J2EE architecture and the WBEM
initiative. The management framework will be capable of
detecting and processing alarms generated within a
Heterogeneous Management Network.

�

��������	�
�������
�������
�������������������
�������

2. Web Based Enterprise Management

For this research project we will use the WBEM initiative,
which is characterised by a distributed architecture, an
object oriented information model, and the integration of
network, systems, application, service, and policy-based
management. For our uses it will provide:

�� A data description (CIM)
�� On-the-wire encoding (xml/CIM)
�� Operations to manipulate data (HTTP)

CIM is a mechanism for modelling managed resources
and representing those models in the Managed Object
Format (MOF) language[1]. Similar to the Management
Information Base (MIB) used to describe SNMP managed
resources, it is a textual format for describing
management information. Using the CIM and MOF, the
components that make up a managed resource or a
network of resources can be modelled and viewed in a
way similar to that used in an object-oriented software
design process.

The DMTF has proposed a layered class hierarchy to help
represent manageable elements from a variety of areas.
Each standard management area, such as storage or
applications, can be represented in a CIM Schema, which
inherits from a Core Schema (see Figure 1). Once a CIM

model and MOF definition are complete, the package is
imported into a CIM Object Manager (CIMOM). The
CIMOM provides a central repository where WBEM
clients in a network can go gather information about
managed resources within the system.

For applications to interoperate with one another it must
be possible to represent actual management data in a
standard way. Extensible Markup Language (XML) is a
markup language for representing information in a
standard format. An XML schema is a grammar that
describes the structure of an XML document. In the
WBEM system an XML schema is used to describe the
CIM, and both CIM classes and instances are valid XML
documents for that schema [2].

To allow WBEM to operate in an open, standardized
manner, the DMTF has defined a mapping of CIM
operations onto the Hyper Text Transfer Protocol
(HTTP). HTTP, running on top of TCP/IP, can be used
for many tasks through the extension of its request
methods, error codes and headers. The standard encoding
of CIM to XML favours completeness over conciseness
and consequently performance is compromised. This
target of generality as opposed to efficiency is a possible
shortcoming.

3. Selecting the WBEM/CIM Layer

Individual companies provide their own implementation
of WBEM, each of which must conform to the
specifications, accept the standardized schemas and all
associated CIMOMs must be accessible via the standard
HTTP operations. Java based implementations are
provided by Sun and the Storage Networking Industry
Association, in the form of the Sun WBEMServices[3]
and the SNIA CIMOM[4] respectfully. While both
versions offer excellent client programming APIs, the Sun
version has been chosen for the development/testing of
our WBEM system because of its excellent
documentation. Figure 2 outlines the position of the
CIM/WBEM implementation within our Enterprise
Framework. The purpose of the CIM/WBEM layer is to
provide an interface to the multi-protocol architectures
present within a typical Heterogeneous Telecom Network.

��������	���������
�����
������������

WBEM implementations use a client – server model as
illustrated in Figure 3. The client applications generate
requests against a CIMOM using the WBEM client
application programming interfaces (API). The CIMOM
may interpret these requests using information in its
internal store or support SNMP, CMIP and proprietary
protocols through the use of Providers. These are Java
translator classes responsible for acting as an interface
between the CIMOM and the real managed object. The
provider uses HTTP to interact with the CIMOM above
and whatever protocol is appropriate to interact with the
managed object below. Consequently for us, the provider
classes are responsible for detecting events and
incorporate SNMP or CMIP functionality.

We therefore designed SNMP and CMIP management
classes that could be inherited by the various Provider
classes/modules we developed. The respective classes
were implemented using the AdventNet SNMPAPI[5] and
the DynamicTMN GDMO Manager Java API[6].

��������	� !"��#���
�$���%�����&'���&�����

Figure 4 shows the operation of the manager classes.
They are based on a multithreaded design, permitting
them to perform management operations, while
simultaneously listening for, and processing alarm/events.

�������(���
�����#�����

3.1 Alarm/Event Processing in CIM/WBEM

An event is a real world occurrence and is typically
assumed to be a change in the state of the environment or
a record of the behaviour of some component of the
environment. In the case of SNMP enabled devices, Traps
are issued to notify a management application of an event.
For example, a cold-start trap is issued by an SNMP
enabled device when it has started.

There are two types of events in CIM, life cycle events
and process events. A life cycle event is a built-in CIM
event that occurs in response to a change in data in which
a class is created, modified or deleted etc. A Process event
is a user-defined event that is not described by a life cycle
event. The CIM Indication schema is used to
communicate occurrences of events in CIM. A CIM
indication is an object that communicates the occurrence
of an event and CIM indications are published for
subscription[7]. Types of indications (representing
different types of events) are denoted by CIM Indication
subclasses. These include InstIndication and
ClassIndication subclasses for modelling CIM life cycle
events and ProcessIndication classes for alert notifications
associated with objects that do not correspond to a simple
life cycle event; like SNMP traps and CMIP events.
Subclasses of ProcessIndication include
SNMPTrapIndication and AlertIndication, which map an
SNMP Trap and CMIP event to CIM. A client application
wishing to receive notifications of events from the
CIMOM subscribes for the correct type of Indication.

We developed providers capable of receiving SNMP traps
and CMIP events. When, for example, a trap is received
by a provider, the provider creates an instance of
SNMPTrapIndication. The SNMPTrapIndication class
contains properties that describe an SNMP trap, such as
Enterprise, AgentAddress and Specific Type. These
properties are assigned the appropriate values by
extracting the information from the received trap. The
indication is delivered to the CIMOM, which routes it to
client applications with a subscription to that particular
indication class. A similar operation is performed when a
CMIP enabled provider detects a CMIP event. In this case
however the provider generates an instance of
AlertIndication.

4. Simulating a Heterogeneous Network

Before work on the multi-tiered enterprise application
could begin, it was first necessary to build a
heterogeneous network on which the functionality of the
WBEM providers could be tested and evaluated. As
discussed earlier, a heterogeneous telecom network
typically consists of SNMP and CMIP enabled devices.
To allow total flexibility in describing a large network we
decided to simulate the heterogeneous environment
through the development of Java based SNMP and CMIP
agents. The Java Dynamic Management Toolkit
(JDMK)[8], AdventNet Agent Toolkit[9] and the Monfox
DynamicTMN Agent Toolkit[6] are rapid prototyping and
development tools used for building cross platform Java
based SNMP and CMIP agents and proprietary protocols.

4.1 Java Based SNMP/CMIP Agents

The Java agents model real network devices and are
similar to agents found on SNMP and CMIP enabled
devices. They comprise several classes, which are
generated from an SNMP MIB or a CMIP GDMO[10]
file. These are responsible for handling manager requests,
sending alarms and representing the MIB or GDMO
information. The agents store statistics and information in
a database.

�

�������)	����
��*�%���+��
����&'
��������

Figure 5 outlines the technologies working in unison in
the simulated Java agents.

4.2 Network Failure Simulation

In a large complicated network, the failure of a single
piece of equipment may cause all network elements that
depend on that piece of equipment to malfunction. Each
malfunction may generate an event notification, leading to
an event storm of several hundred notifications, all of
which are the result of the same underlying problem.

�������,	��'���-�������.���	�

Therefore a requirement for our simulated heterogeneous
network is to generate random event storms. The event
storm scenario is created through the use of Pseudo
Random Binary Sequences (PRBS).

Pseudorandom binary sequences are a close
approximation to white noise and are widely used in

statistical testing[11]. An n stage linear feedback shift
register (LFSR), as per Figure 6, governed by the
primitive characteristic polynomial �(s), produces a
PRBS according to the formulae[12]

0,
1

��
�

�

� iaa ki

m

k
ki � (1)

where �k � {0,1} are coefficients determining the feedback
taps fb(x) and ai is the LFSR output. A PRBS is a binary
waveform and has two stable states. The number of stages
n in a LFSR determines the sequence length L of the
PRBS. We have taken two 30 bit primitive polynomials,
as per equations (2) and (3), and determined the
corresponding feedback tap positions as shown in
equations (4) and (5). The LFSR outputs are ANDed
together to produce a sequence containing streams of 0s
interspersed with bursts of 1s due to the AND operation.

s0 + s1 + s15 + s16 + s30 mod 2 (2)

s0 + s1 + s12 + s21 + s30 mod 2 (3)

x30 + x29 + x15 + x14 (4)

x30 + x29 + x18 + x9 (5)

Our simulated agents are configured to send events
according to this sequence, resulting in periods of
inactivity followed by random bursts of events issued
over a short period of time as illustrated in Figure 7.

1
2
3
4
5
6
7
8
9

1 30 59 88 117 146 175 204 233 262 291

B
ur

st
 L

en
gt

h

�������/	���
0���!�����.�
��'�

5. Developing the Multi-Tiered Management
__Application

To provide for scalability and reliability we have designed
a multi-tiered enterprise application based on the Java 2
Enterprise Edition (J2EE) server-side application model
and the Enterprise JavaBeans (EJB) component
model[13]. The J2EE provides industry-strength

scalability; support for existing information systems; a
simple flexible security model and allows for seamless
integration of the WBEM client API. Figure 8 illustrates
the various tiers incorporated into our management
application.

�
�������1	������$������++��&����
�

5.1 Tiered Architecture

 For the user, the client browser is the application. It must
be useful, usable, and responsive. The web-based client
we have developed uses HTML and Java Server Pages
(JSP)[15]. Being a thin client, it has two main advantages
over a thick client application; firstly it allows the
network to be managed from any platform capable of
running a web-browser, secondly, the resource
requirements are much less than that of a thick client
manager, so receiving alarm updates on a GPRS enabled
handheld device is also a possibility.

Our client browser provides the user with an intuitive user
interface, allowing them to view the current state of the
heterogeneous network, invoke management operations,
create CIM classes and instances, upload Java provider
classes, perform alarm monitoring (Figure 9) and view a
log of all management operations performed.

�

�������2	�"%�
����
�����
���3�4#���
������5�

Time

��������6	�
�
0��
�� !"��3
0�&����
�

The Web-tier is responsible for handling all of the J2EE
application’s communications with the web client and
transmitting data in response to incoming requests. The
various web-tier technologies used include JSP,
JavaBeans and Java servlets. A JavaBeans component is a
Java class that follows certain coding conventions, so it
can be used by tools as a component in a larger
application [16]. A servlet is a Java class that extends a
web server, producing dynamic content in response to
requests from the server. The components execute inside
a Tomcat JSP server.

In a typical multiple-tier application, the EJB tier hosts
any application-specific business logic and provides
services such as concurrency control and security. Our
server-side components, as Enterprise JavaBeans (EJB),
are distributed objects that provide remote services to
clients, with the above features. Enterprise beans run in a
special environment called an EJB container which
manages every aspect of an enterprise bean at run time.
There are three types of enterprise beans: session beans,
entity beans and message driven beans[14]. We have
developed several session type EJBs, responsible for
performing operations on the CIMOM. These beans
achieve this through the use of the WBEM client API.
There are also session EJBs dedicated to alarm
management.

5.2 Scalable Management Architecture

The alarm management session bean works in
conjunction with a Message System, the Java Message
Service (JMS) API[18] and message-driven beans.

Messaging systems provide a way to exchange data
asynchronously and the JMS API allows a java
application to connect to these systems. Once connected,
an application can use the facilities of the underlying
enterprise messaging system to create messages and
communicate asynchronously with one or more peer
applications.

Figure 10 and 11 outline the various application tiers and
components involved in the detection and processing of
WBEM indications. Referring to Figure 10, an alarm is
dispatched from an agent and detected by either the
SNMP or CMIP provider. The provider sends an event to
the CIMOM, which routes it to the subscribing client, in
this case, the EJB session bean. The session bean converts
the indication to a JMS Message and places it on a
Message System Queue as outlined in Figure 11.
Message driven beans retrieve the messages from the
queue in parallel. The message contents are processed and
the event information is inserted into a database table.

���������	�����&����
�� !"��3
0�&����
�

At the client tier, a web page monitors the contents of the
database table, displaying on screen an alert box and any
new additions to the database table since the last poll. The
network administrator can view all events received and
also delete all alarms/events processed. The database-
polling interval can also be dynamically configured from
the web page.

The above method of storing and processing is efficient
and scalable. The system is initially configured to have a
pre-defined number (10) of message driven bean
instances created. However if all message beans are busy
processing messages and messages are building up on the
queue, then the EJB container is made to create another
message bean, resulting in a highly scalable mechanism
for processing messages. This is confirmed in the results
section. The container will continue to instantiate message
beans until the queue is empty or a maximum number of
beans, specified by the administrator of the system, are
instantiated.

6. Results

Table 1 outlines the performance of the architecture,
showing its ability to handle bursts of alarms over an
interval of 60 seconds. The average number of alarms sent
per second was continuously ramped up in order to
determine the average burst rate that the system could
manage over the interval. The CIMOM was deployed on a
Pentium 4 (2.0 GHz, 1024 MB Ram) running Linux
Mandrake 8.1. The JBoss EJB container was used to host
the various Enterprise Java Beans, while the Tomcat
JSP/Servlet container hosts the JSP, HTML and
JavaBeans. Both these containers were deployed on a
Pentium IV (1.5 GHz, 384 MB Ram) running Windows
2000.

From the results above we can see that the system begins
to drop alarms when the average burst rate exceeds 183
per second. From our examination of the system we
determined that the reason for the drop off in performance
is due to the provider classes responsible for detecting the
SNMP and CMIP alarms. Not all network events issued
by the SNMP and CMIP agents could be detected by the
management classes within the respective providers.
Figure 12 below outlines how the performance of the
systems drops linearly as the average burst rate exceeds
183 alarms per second.

-15

5

25

45

65

85

105

167 175 183 192 200 208 217 225 233 242

Average Alarms per second
%

 A
la

ra
m

s
R

ec
ie

ve
d

���������	��-�������������
&�

The performance of the SNMP and CMIP classes is OS
and PC configuration dependant. Therefore performance
could be improved by increasing the processor speed or
physical memory available. Another possible solution
could be achieved through the distribution of alarms to
multiple CIMOMs, running on separate machines, each
responsible for detecting a certain type of alarm.

The maximum number of alarms that the system could
detect and process over an interval of 1 second was also
determined. Table 2 outlines the results obtained. It is
shown that the system can handle a maximum of 700
alarms in 1 second.

Table 1. Determining Average Burst Rate

Alarms
Sent

Time
(s)

Ave
(s-1)

Received
(cimom)

Received
(EJB)

%lost

10000 60 167 10000 10000 0

10500 60 175 10000 10000 0

11000 60 183 10000 10000 0

11500 60 192 11155 11155 3

12000 60 200 11160 11160 7

12500 60 208 10875 10875 13

13000 60 217 10660 10660 18

13500 60 225 10395 10395 23

14000 60 233 10080 10080 28

14500 60 242 9280 9280 36

Table 2. Maximum Burst Rate in 1 s
Alarms Sent Received % dropped

550 550 0
600 600 0
650 650 0
700 700 0
750 724 3.46

100

7. Conclusion

In this paper we have discussed the building of a multi-
tiered, platform independent Heterogeneous Alarm
Management System based on J2EE architecture. From
the outset we set out to design an extendable and scalable
system, capable of handling alarms generated by SNMP,
CMIP and proprietary agents. This was achieved through
the integration of the Web Based Enterprise Management
(WBEM) architecture and Enterprise Java Beans (EJB).
Results have confirmed this, showing how the system can
successfully handle up to 183 alarms per second over an
interval of 1 minute. The distributed nature of the
architecture is also evident, with the CIMOM server and
EJB/Web containers running on separation machines
during testing. The system’s scalability is achieved
through the use of an EJB container, session enterprise
beans and message driven beans. Extensibility is
incorporated through the use of the WBEM provider
architecture, which allows for the seamless integration of
network management protocols.

References

[1] Winston Bumpus, Andrea Westerinen – Common
Information Model, Wiley, Oct 2000
[2] K. Carey & F. O Reilly – Tools and Toolkits for Heterogeneous
Networks, DMTF Developers Conference 2002.
[3] Sun WBEM SDK -
http://wbemservices.sourceforge.net/
[4] SNIA CIMOM – http://www.snia.org
[5] AdventNet SNMP API -
http://www.adventnet.com/products/snmp/index.html
[6] Monfox DynamicTMN toolkit -
http://www.monfox.com/protocol.htm
[7] CIM Event Model White Paper, Mar 2002
http://www.dmtf.org/download/whitepaper/Events
[8] Java Dynamic Management Kit -
http://sun.java.com/jdmk4.2
[9] AdventNet SNMP Agent Toolkit -
http://www.adventnet.com/products/javaagent/
[10] William Stallings – SNMP, SNMPv2, and CMIP,
Addison-Wesley, Oct 1994
[11] S. Rae & R. Guinee, Uniform Random Number
Generation Using Pseudorandom Binary Sequences, Cork
Institute of Technology, 2001.
[12] V.N. Yarmolik and S.N. Demidenko, Generation and
Application of Pseudorandom sequences for Random
Testing, John Wiley and Sons.
[13] Java 2 Enterprise Edition – Specification
http://java.sun.com/j2ee/docs.html
[14] Enterprise JavaBeansTM Technology
Downloads & Specifications -
http://java.sun.com/products/ejb/docs.html

[15] Hans Bergsten – Java Server Pages, O’Reilly, Jan
2001
[16] The JavaBeans API Specification -
http://java.sun.com/products/javabeans/docs/spec.html
[17] Ed Roman, Mastering Enterprise JavaBeans, Wiley,
Sept 2002.
[18] Hapner, Burridge, Sharma, Java™ Message Service
API Tutorial and Reference: Messaging for the J2EE™
Platform, Addison-Wesley, Feb 2002

